eCommons

 

Prey evolution on the time scale of predator-prey dynamics revealed by allele-specific quantitative PCR

dc.contributor.authorMeyer, J. R.
dc.contributor.authorEllner, S. P.
dc.contributor.authorHairston, Nelson G., Jr.
dc.contributor.authorJones, L. E.
dc.contributor.authorYoshida, T.
dc.date.accessioned2018-05-31T20:52:59Z
dc.date.available2018-05-31T20:52:59Z
dc.date.issued2006-07-11
dc.description.abstractUsing rotifer-algal microcosms, we tracked rapid evolution resulting from temporally changing natural selection in ecological predator-prey dynamics. We previously demonstrated that predator-prey oscillations in rotifer-algal laboratory microcosms are qualitatively altered by the presence of genetic variation within the prey. In that study, changes in algal gene frequencies were inferred from their effects on population dynamics but not observed directly. Here, we document rapid prey evolution in this system by directly observing changes in Chlorella vulgaris genotype frequencies as the abundances of these algae and their consumer, Brachionus calyciflorus, change through time. We isolated a group of algal clones that we could distinguish by using microsatellite-DNA markers, and developed an allele-specific quantitative PCR technique (AsQ-PCR) to quantify the frequencies of pairs of clones in mixed culture. We showed that two of these genotypes exhibited a fitness tradeoff in which one was more resistant to predation (more digestion-resistant), and the other had faster population growth under limiting nitrogen concentrations. A fully specified mathematical model for the rotifer-algal population and evolutionary dynamics predicted that these two clones would undergo a single oscillation in clonal frequencies followed by asymptotic fixation of the more resistant clone, rather than the recurrent oscillations previously observed with other algal clones. We used AsQ-PCR to confirm this prediction: the superior competitor dominated initially, but as rotifer densities increased, the more predator-resistant clone predominated.
dc.identifier.citationProceedings of the National Academy of Sciences, USA (2006) 103:10690-10695
dc.identifier.urihttps://hdl.handle.net/1813/57248
dc.language.isoen
dc.publisherNational Academy of Sciences
dc.relation.doihttps://doi.org/10.1073/pnas.0600434103
dc.subjectChlorella vulgaris
dc.subjectclonal models
dc.subjectevolutionary tradeoff
dc.subjectrazing resistance
dc.subjectrapid evolution
dc.titlePrey evolution on the time scale of predator-prey dynamics revealed by allele-specific quantitative PCR
dc.typearticle
dcterms.licensehttp://hdl.handle.net/1813/57207

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Prey_evolution_on_the_time_scale_of_predator–prey_dynamics_revealed_by_allele-specific_quantitative_PCR.pdf
Size:
889.41 KB
Format:
Adobe Portable Document Format