eCommons

 

A Reconfigurable Analog Substrate for Highly Efficient Maximum Flow Computation

Other Titles

Abstract

We present the design and analysis of a novel analog reconfigurable substrate that enables fast and efficient computation of maximum flow on directed graphs. The substrate is composed of memristors and standard analog circuit components, where the on/off states of the crossbar switches encode the graph topology. We show that upon convergence, the steady-state voltages in the circuit capture the solution to the maximum flow problem. We also propose techniques to minimize the impacts of variability and non-ideal circuit components on the solution quality, enabling practical implementation of the proposed substrate. Our performance evaluation indicates two to three orders of magnitude improvements in speed and energy efficiency compared to a standard CPU implementation. In the last part of this report, we also discuss the major limitations of the current design, and suggest promising research directions.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2015-12

Publisher

Keywords

Analog computing; Optimization; Computer architecture

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

technical report

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record