eCommons

 

Thermal conductivity of bulk and nanowire Mg2Si_{x}Sn_{1-x} alloys from first principles

Other Titles

Abstract

The lattice thermal conductivity (κ) of the thermoelectric materials, Mg2Si, Mg2Sn, and their alloys, are calculated for bulk and nanowires, without adjustable parameters. We find good agreement with bulk experimental results. For large nanowire diameters, size effects are stronger for the alloy than for the pure compounds. For example, in 200 nm diameter nanowires κ is lower than its bulk value by 30%, 20%, and 20% for Mg2Si0.6Sn0.4, Mg2Si, and Mg2Sn, respectively. For nanowires less than 20 nm thick, the relative decrease surpasses 50%, and it becomes larger in the pure compounds than in the alloy. At room temperature, κ of Mg2Si_{x}Sn_{1−x} is less sensitive to nanostructuring size effects than Si_{x}Ge_{1−x}, but more sensitive than PbTe_{x}Se_{1−x}. This suggests that further improvement of Mg2Si_{x}Sn_{1−x} as a nontoxic thermoelectric may be possible.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2012-11-29

Publisher

American Physical Society

Keywords

thermal conductivity; density functional theory; thermoelectric; alloy; Mg2Si; Mg2Sn; phonon; nanowire; Boltzmann transport equation

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

W. Li, L. Lindsay, D. A. Broido, D. A. Stewart, and N. Mingo, Phys. Rev. B, 86, 174307 (2012)

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

article

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record