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Appendix A Why design policies that are responsive

to preference heterogeneity?

A.1 Introduction

We begin by developing a stylized model to motivate the idea that preferences and choices

will have an influence on the outcomes for potential beneficiaries of a new policy. Let policy

τ be represented by a vector of normalized preference scores along n criteria,

Λτ = (λτ1, . . . , λ
τ
n)′ . (A.1)

Each λτk ∈ Λτ can be thought of as denoting a specific policy attribute, such as pecuniary cost,

effectiveness, or the type of provisioning institution. Household i will choose to participate

in (or adopt) a policy A if its perceived utility (u) from doing so is at least equal to that

derived from non-participation (0). More formally, adoption occurs if:

ui
(
λA1 , . . . , λ

A
n

)
> ui

(
λ01, . . . , λ

0
n

)
. (A.2)

If preferences over policy attributes vary across households, the “adoption condition”

outlined in equation (A.2) may only hold for some targeted beneficiaries, such that others

choose not to participate when A is the only policy option that is available. This result

of imperfect adoption or compliance with an intervention is the usual result in real-world

interventions. In this case, inclusion of an additional, sufficiently distinct policy B in the

choice set may better cater to the preferences of those households j for whom equation (A.2)

does not hold. That is:

uj
(
λB1 , . . . , λ

B
n

)
> uj

(
λ01, . . . , λ

0
n

)
> uj

(
λA1 , . . . , λ

A
n

)
. (A.3)

When two options A and B are included (relative to A or B alone), overall participation

will then be higher, unless option B also strictly dominates option A. The underlying premise

of our experiment is that this is not likely to be the case, despite frequent arguments to the

contrary—as evidenced, for example, by literature describing the idea that households move

consistently up an ordinal energy ladder (Hosier and Dowd, 1987).
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A.2 Simulation set-up

To demonstrate the extent to which uptake of a policy may differ as a function of such

heterogeneity, we rely on numerical simulations based on the logic of equation (A.3) for an

illustrative case where relevant policies only have two distinct attributes. As indicated in

Equation (A.1), each λτi ∈ Λτ denotes the normalized performance of policy τ for attribute

i ∈ (1, . . . , n). Instead of exogenously specifying the rate at which agents trade off one

attribute against all others, we simply assume that if λτi > λτ
′
i for all i ∈ (1, . . . , n) then

Λτ %j Λτ ′ (A.4)

for all agents j and policies τ, τ ′. In addition, if λτi > λτ
′
i for all i ∈ (1, . . . , n) and λτi > λτ

′
i

for any i ∈ (1, . . . , n) then

Λτ �j Λτ ′ . (A.5)

In other words, agent j weakly prefers policy τ to τ ′ if each of τ ’s attribute “scores” is weakly

larger than the corresponding value for policy τ ′, and strictly prefers τ if at least one such

value is strictly larger.

We next assume that n = 2, that is, each policy is a bundle of only two attributes.1

Let Θj
c =

(
θj1, θ

j
2

)′
represent the least preferred policy that agent j in community c would

be willing to participate in (or adopt), given these two attributes. This policy represents a

“threshold.” That is, agent j will adopt any policy whose attribute scores are higher than (or

equal to) those of the threshold policy; if this is not the case, the policy under consideration

will be rejected. Thus, Θj
c embodies agent j’s preferences over policy attributes, which we

assume are normalized so as to fall within the interval (−1, 1). To account for heterogeneity

over preferences for these attributes, we model the threshold policy for each agent as a draw

from a truncated bivariate normal distribution, bounded from above and below by 1 and −1,

respectively. That is,

Θj
c =

[
θj1

θj2

]
∼ N (µc,Σc) (A.6)

1This is purely for illustrative clarity, and the simulation exercise that follows readily generalizes to larger
values of n.
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where

µc =

[
µc1

µc2

]
, (A.7)

Σc =

[
σ2
1 σ1,2

σ1,2 σ2
2

]
(A.8)

f
(
Θj
c,µc,Σc

)
=


exp

{
−1

2
(Θj

c − µc)
′
Σ−1c (Θj

c − µc)
}∫ 1

−1 exp
{
−1

2

(
Θj
c − µc

)′
Σ−1c

(
Θj
c − µc

)}
dΘj

c

for −1 < θj1, θ
j
2 < 1

0 otherwise.

(A.9)

In equation (A.9), f (·) represents the density of a truncated normal distribution that

has support only over the interval (−1, 1). More crucial are (i) µc, in equation (A.7), which

represents a vector of community-specific means for the two policy attributes; and (ii) Σc, in

equation (A.8), the community-specific covariance matrix associated with agents’ preferences

over the two attributes. We specify µc as itself consisting of independent draws from a

uniform distribution over the full range of possible policy attributes:

µc1, µ
c
2 ∼ U (−1, 1) . (A.10)

To obtain Σc, we must randomly generate (positive-definite) community-specific covariance

matrices. To do so, we first generate a random correlation matrix (R) via the method

proposed by Joe (2006) and operationalized by Qiu and Joe (2015). We then randomly

generate two additional values:

σ′1, σ
′
2 ∼ U (0, 1) (A.11)

and use the resulting vector to construct Σc, as follows:

Σc = diag (σ′1, σ
′
2)
′
R diag (σ′1, σ

′
2)
′
. (A.12)

This specification allows us to model heterogeneity in preferences for policy attributes

hierarchically:

1. Heterogeneity across communities emerges via random generation of community-specific

means and covariance matrices in (A.10) and (A.12), respectively, which ensures that

the distribution of agents’ preferences over the two policy attributes—including how

agents see the relationship between the two attributes—is unique to each simulated

community; while
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2. Heterogeneity within communities emerges via random draws from the truncated

bivariate normal distribution in (A.9), conditional on the community-specific means

and covariance matrices obtained in the first step.

From a policy perspective, this specification also ensures that we remain relatively agnostic

about the “correct” underlying distribution of preferences over policy attributes. Indeed,

states often implement largescale social-welfare programs in a diversity of settings with

distinct geographic, socioeconomic, and cultural characteristics—including within the same

country.2 There is no reason to believe a priori that preferences are distributed identically

across starkly different contexts.

A.3 Evaluating a single-choice policy

We first generateM s =
(
µs1,c, . . . ,µ

s
1000,c

)
andEs =

(
Σs

1,c, . . . ,Σ
s
1000,c

)
using the distributions

and procedures outlined in equations (A.10), (A.11), and (A.12). Conditional on each

µsi,c ∈ M s and each Σs
i,c ∈ Es, we then sample agents’ preferences over policy attributes

Θs = (θs1, . . . ,θ
s
1000) for each community i ∈ (1, . . . , 1000). Each θsi ∈ Θs is a (5000× 2)

matrix, representing the threshold policy of 5,000 simulated agents in 1,000 simulated

communities.

Recall that an agent prefers one policy to another if its attributes strictly dominate those

of the alternative. Without loss of generality, let Θ∗ = (0, 0) represent the attributes of the

alternative available for a single-choice policy intervention.3 With this in hand, we calculate

the proportion of agents whose threshold policy is strictly dominated by the single-choice

policy to obtain the policy’s “adoption rate” in each of the 1,000 simulated communities.

Figure A1—which shows the first ten communities (and their corresponding agents) generated

in our simulations—provides an illustrative look at this process. The circular point at the

origin marks the location of the single-choice policy relative to each agent’s threshold policy

alternative. The single-choice policy strictly dominates any threshold policy located in the

third (bottom-left) quadrant; agents whose thresholds are located in this region adopt the

single-choice policy during implementation.

2India’s National Rural Employment Guarantee Scheme (NREGS)—which entitles every rural household
across the country to up to 100 days of paid employment per year, thereby covering roughly eleven percent of
the world’s population—is a case in point (Niehaus and Sukhtankar, 2013).

3This may reflect, for instance, a scenario where a jobs-training program offers only software training for
unemployed workers; prospective beneficiaries may either elect to participate (and receive this very specific
type of training) or not.
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A.4 Extending to the multi-choice setting

We next extend our simulations to evaluate how adoption rates change relative to the single-

choice benchmark when a second alternative is included in the set of options available to

potential beneficiaries. Note that given the setup of our model, any alternative located in the

first (top-right) quadrant of the panels in Figure A1 would strictly dominate the single-choice

alternative and at least weakly increase adoption rates. From a policy perspective, however,

it is not always clear that such a “strictly better” alternative necessarily exists. Weak supply

chains in remote, rural settings, for instance, limit the availability of alternatives available

to policies that aim to enhance the adoption of technologies that deliver welfare benefits

(Pattanayak et al., 2019). Policymakers and local implementers (such as non-governmental

organizations) may also simply be unaware of the underlying community-level distribution of

preferences and thus not be in a position to target policies with such precision. Indeed, there

may not even exist viable pathways to glean information about these underlying preferences

short of conducting large-scale surveys, an exercise that may quickly become infeasible as the

number of relevant policy attributes under consideration rises. Finally, from a conceptual

standpoint, certain policy attributes—such as the price and efficiency of a device offered as

part of a policy to increase use of energy-efficient technologies—may simply be fundamentally

at odds with each other. Assuming that upfront costs are increasing in efficiency, a device

that can cater to agents’ preferences for both higher efficiency and lower price fully is unlikely

to be available in the short- to medium-term, given underlying technological constraints.

Thus, to reflect constraints and uncertainty inherent in policymakers’ ability to pick the

“right” alternative to include to maximize adoption, we specify a sampling model for the

second alternative in a multi-choice policy intervention. Specifically, we assume that the two

attributes of the second alternative, Θ′ = (θ′1, θ
′
2), are sampled independently from a uniform

distribution over the interval (−1, 1):

θ′1, θ
′
2 ∼ U (−1, 1) , (A.13)

which is analogous to randomly picking a second alternative to include in the intervention.

We then draw Θ
′s =

(
θ

′s
1 , . . . ,θ

′s
1000

)
from the distribution outlined in (A.13) and repeat the

analysis outlined above—with a different second alternative in each iteration, holding the

initial alternative constant. In Figure A1, our randomly picked second policy alternative for

the first ten sampled communities is represented by a triangle in each panel. Now, agents

whose threshold stoves are strictly dominated by the original alternative or by the second

alternative are assumed to adopt one of the two policy alternatives. In this way, we recalculate

the adoption rate for each of the 1,000 simulated communities.
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Figure A2: Histogram of adoption rates in single- and multi-choice policies

A.5 Simulation results

Our simulation results are presented in Figure A2. We see that the introduction of a

second policy alternative—one that is randomly picked—leads to a considerable shift in the

distribution of adoption rates in a multi-choice policy setting relative to the single-choice

context. Specifically, the mean adoption rate across all 1,000 communities for the multi-choice

setting (represented by the solid vertical line) is over 10 percentage points (40%) higher

than the mean adoption rate in the single-choice scenario.4 These shifts are not limited to a

comparison of means. Our simulation results also show, for instance, that one of the two

policy alternatives strictly dominate the median agent’s threshold—that is, at least half of all

agents adopt one of the two alternatives—in approximately 31% of simulated communities. In

4Note that as our analysis relies on random simulation of a second policy alternative, it may be understating
the benefits of offering additional choices. Indeed, policymakers and promoters are likely to at least make an
effort to target available alternatives in ways that ex ante suggest increase policy adoption. To approximate
this, we omit all iterations in which the randomly simulated second policy alternative is in the bottom-left
quadrant—where it has no influence on adoption rates as it itself is dominated by the original single-choice
policy—and find that the mean adoption rate in a multi-choice setting is approximately 40% (over 15
percentage higher than that for the single-choice setting).
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contrast, this is only the case in 14% of communities in a single-choice setting. Our simulation

results, thus, suggest that in the presence of across- and within-community heterogeneity in

preferences over policy attributes, policies that entail the promotion of multiple alternatives

may greatly increase rates of adoption by expected beneficiaries.

A.6 Discussion

We can relate the general policy problem discussed above to the more specific example of

adoption of preventive health behavior outlined by Pattanayak and Pfaff (2009). In their

model, a household’s adoption of an environmental health improvement depends on its

contribution to utility given a range of relevant constraints, specifically on time and budget

resources, and on the nature of the health production function. The decision to adopt is made

based on a comparison of the private marginal benefits (monetized based on the contribution

of income to utility), which come from direct contributions to utility as well as through

reduced illness, and the marginal costs of the investment, which are comprised of the purchase

and operating price of the change and the cost of obtaining knowledge about it. In that

context, most existing research aims to enhance adoption by exogenously providing a price

subsidy, easing maintenance cost, or supplying information, that is, by making changes to the

marginal costs of behavior change (Beltramo et al., 2014; Hamoudi et al., 2012). Parameters

related to marginal benefits are usually deemed less amenable to intervention and are thus

frequently neglected, or considered to be of secondary importance.

Nonetheless, the inherent heterogeneity in the contribution of health or other implications

of a technology to household utility can lead to very different adoption decisions and very

different outcomes across households and settings (Brown et al., 2017; Heckman et al.,

1997). In the environmental health sphere specifically, such heterogeneity in demand and/or

outcomes has been demonstrated for a diverse set of technology promotion alternatives

including for household water treatment (Brown et al., 2017; Jeuland et al., 2016; Yang et

al., 2006), sanitation (Vasquez and Alicea-Planas, 2018), insecticide-treated bednets (Bonan

et al., 2017), and even vaccines (Larson et al., 2014). Moreover, systematic analyses have

previously described a set of common correlates of adoption behaviors, suggesting that such

patterns are at least partially amenable to explanation (Lewis and Pattanayak, 2012). If

this heterogeneity can be characterized and acted upon in a meaningful way, it could help

enhance the effectiveness of efforts to promote many seemingly beneficial technologies. This

paper develops and applies such an approach in the context of households’ choice of cooking

and heating technologies in low-income settings.
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Appendix B Stove fact sheet (with translation)
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Appendix C Additional tables of results
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Table C1: Balance tests across rebate levels (treatment group only)

Variables
Mean Mean Mean

Normalized Normalized Normalized
difference difference difference

Low rebate Medium rebate High rebate (R1 vs. others) (R2 vs. others) (R3 vs. others)

Village has paved road 0.31 0.33 0.29 0.003 0.055 -0.059
Distance to doctor (km) 8.84 9.45 9.70 -0.091 0.023 0.069
Bank facility in village 0.33 0.31 0.31 0.042 -0.024 -0.018
Presence of NGO 0.49 0.52 0.56 -0.097 -0.016 0.100*
Household size 4.87 4.65 4.79 0.077 -0.084 0.016
Education: Head of household (years) 6.36 6.37 6.02 0.042 0.047 -0.067
Education: Primary cook (years) 4.59 5.05 4.62 -0.056 0.097 -0.048
Female head of household 0.28 0.20 0.26 0.102 -0.179** 0.028
Below poverty line household 0.56 0.57 0.55 0.006 0.034 -0.036
Scheduled caste/Scheduled tribe 0.22 0.29 0.27 -0.127** 0.100* 0.031
Household members cold/cough in past two weeks 0.063 0.077 0.091 -0.110 0.001 0.111
Relative wealth (1: Low to 6: High) 2.09 2.12 2.19 -0.072 -0.017 0.114
Household has taken loan in past year 0.12 0.16 0.21 -0.171*** 0.011 0.186**
Household is able to save money 0.22 0.27 0.27 -0.123 0.064 0.036
Hours of electricity per day 17.7 16.5 17.0 0.138* -0.113 -0.006
Log of total expenditure (INR/month) 8.40 8.44 8.44 -0.056 0.028 0.028
Number of cell phones owned 1.30 1.34 1.27 0.002 0.055 -0.054
Total rooms in house 4.68 4.73 4.70 -0.013 0.014 -0.001
Presence of toilet 0.84 0.85 0.83 0.003 0.029 -0.032
Owns/leases agricultural land 0.98 0.98 0.98 -0.001 0.006 -0.005
Most patient respondent 0.50 0.49 0.50 0.002 -0.016 0.014
Most risk-taking respondent 0.42 0.47 0.40 -0.022 0.126 -0.106
Household believes ICS/clean fuels are beneficial 0.29 0.31 0.33 -0.068 0.006 0.063
Believe smoke is unsafe 0.51 0.47 0.52 0.020 -0.097 0.038
Traditional stove ownership 0.98 0.99 0.97 0.043 0.088 -0.134*
Improved stove ownership 0.30 0.31 0.33 -0.046 0.001 0.046
Minutes traditional stove use (minutes/day) 284 281 279 0.025 -0.017 -0.033
Amount of solid fuel used (kg/day) 7.50 7.37 7.82 0.004 -0.042 0.079
Total fuel expenditure (INR/month) 262 243 237 0.036 -0.011 -0.025

N 255 259 248

Notes. Balance was also assessed by regressing each variable in the left-hand column on treatment status using OLS, clustering standard errors at the hamlet level. Significance of

the coefficient for treatment status from these regressions is indicated in the three rightmost columns as follows: *** p < 0.01; ** p < 0.05; * p < 0.1. Rebate was assigned prior to

the intervention; the means and comparisons above include only households that ended up receiving a sales offer (results among all households by rebate level are available upon

request).
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Table C2: Analysis of serial non-response and class 3 membership

Variables Serial non-respondent Other respondent N

Household in class 3 543 169 712
Household not in class 3 0 351 351

N 543 520 1,063

Notes. Serial non-respondents are households who selected the traditional stove alternative in the

DCE in all four choice tasks, no matter the attributes of the ICS options.

Table C3: Differential responses to rebate amount, by preference class

Variables
(1) (2) (3) (4)

Visit 1 purchase Visit 1 purchase All purchases All purchases

Treatment group (exposed to sales) 0.17*** 0.18*** 0.24*** 0.24***
(0.043) (0.044) (0.048) (0.048)

Treatment × Class 1† 0.092 0.10 0.028 0.040
(0.092) (0.091) (0.096) (0.095)

Treatment × Class 2† 0.074 0.062 -0.007 -0.031
(0.091) (0.093) (0.092) (0.092)

Treatment × Rebate × Class 1 0.0019*** 0.0019*** 0.0020*** 0.0020***
(0.0003) (0.0003) (0.0003) (0.0003)

Treatment × Rebate × Class 2 0.0016*** 0.0017*** 0.0019*** 0.0019***
(0.0003) (0.0003) (0.0003) (0.0003)

Treatment × Rebate × Class 3 0.0014*** 0.0014*** 0.0013*** 0.0013***
(0.0002) (0.0002) (0.0002) (0.0002)

Constant 0.00*** -0.13 -0.00** -0.094
(0.00) (0.11) (0.00) (0.11)

Other controls‡ No Yes No Yes

Observations 987 987 987 987
R2 0.327 0.342 0.350 0.368

Notes. Linear probability model. *** p < 0.01, ** p < 0.05, * p < 0.1. Standard errors in parentheses; standard errors clustered at the

hamlet level. Only includes households who did not attrit from the final sample; results are qualitatively unchanged when all those with

sales data are included. †‘Class 1’ and ‘Class 2’ are indicator variables denoting assignment to a latent classes 1 and 2, respectively. Class

3 is the omitted class. ‡The other controls include all of those from the complete model in Table 6 (e.g., the basic controls from Table 6,

column 3 plus those indicated in the notes below Table 6). None of these were found to be significantly related to purchase; as shown they

did not alter the sign or significance of the main results shown here (Column 2). Observations with missing values for these additional

covariates are retained in these regressions by filling in median values; results are not sensitive to this procedure.
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Table C4: Stove choice among households exposed to sales intervention, including all sales (marginal effects)

Variables
(1) (2) (3)

Basic + Rebate and controls + Rebate-class interactions
Biomass ICS Electric ICS Biomass ICS Electric ICS Biomass ICS Electric ICS

Rebate amount (INR) 0.0006*** 0.0012*** 0.0005*** 0.0010***
(0.0001) (0.0002) (0.0002) (0.0003)

Class 1† -0.11** 0.26*** -0.077 0.26*** -0.034 0.064
(0.055) (0.053) (0.056) (0.062) (0.13) (0.10)

Class 2† 0.022 0.010** 0.019 0.074 -0.014 -0.030
(0.027) (0.049) (0.030) (0.056) (0.087) (0.12)

Rebate × Class 1 0.0004 0.0020***
(0.006) (0.0006)

Rebate × Class 2 0.0007*** 0.0015***
(0.0003) (0.0004)

Other controls‡ No No Yes Yes Yes Yes

Observations 716 716 716 716 716 716
Pseudo-R2 0.018 0.018 0.131 0.131 0.135 0.135

Notes. Multinomial logit model using all purchases; we report marginal effects at the mean of the sample covariates. *** p < 0.01, **

p < 0.05, * p < 0.1. Standard errors in parentheses; standard errors are clustered at the hamlet level. Only includes treatment group

households who did not attrit from the final sample; results are qualitatively unchanged when all those with sales data are included. †Class

1 and Class 2 are indicator variables denoting assignment to latent classes 1 and 2, respectively. Class 3 is omitted. ‡The other controls

include all of those from the complete model in Table 6 (e.g., the basic controls from Table 6, column 3 plus those indicated in the notes

below Table 6). Few of these were found to be significantly related to purchase; as shown they did not alter the sign or significance of the

main results shown here. Observations with missing values for these additional covariates are retained in these regressions by filling in

median values; results are not sensitive to this procedure.
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Table C5: Stove use conditional on purchase, by latent class

Variables
(1) (2) (3) (4) (5)

Basic + Rebate + Controls Electric ICS Biomass ICS
Daily use Daily use Daily use Daily use Daily use

Rebate amount (INR) 0.0007** 0.0008*** 0.0004 0.0011***
(0.0003) (0.0002) (0.0003) (0.0004)

Electricity supply (hours/day) 0.010 0.013** 0.015
(0.0072) (0.0063) (0.013)

Respondent reports high price of firewood 0.0040 0.0085 0.24**
(0.054) (0.065) (0.091)

Class 1† 0.0040 -0.0066 0.040 0.046 0.49**
(0.073) (0.077) (0.082) (0.082) (0.23)

Class 2† -0.031 -0.048 -0.034 -0.066 0.36***
(0.064) (0.062) (0.064) (0.073) (0.10)

Constant 0.55*** 0.40*** 0.30 0.17 0.23
(0.035) (0.069) (0.21) (0.23) (0.33)

Other controls‡ No No Yes Yes Yes

Observations 373 373 373 265 105
R2 0.0007 0.024 0.114 0.113 0.424

Notes. Linear probability model using all households that purchased a stove. *** p < 0.01, ** p < 0.05, * p < 0.1. Standard errors in

parentheses; standard errors are clustered at the hamlet level. †Class 2 and Class 3 are variables denoting the probability of assignment to

latent classes 2 and 3, respectively. Class 1 probability is omitted (all probabilities sum to 1). ‡The other controls include all of those from

the complete model in Table 6 (e.g., the basic controls from Table 6, column 3 plus those indicated in the notes below Table 6). Few of

these were found to be significantly related to purchase; as shown they did not alter the sign or significance of the main results shown here

(columns 3-5). Observations with missing values for these additional covariates are retained in these regressions by filling in median values;

results are not sensitive to this procedure.
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Appendix D Scale-adjusted latent class logit

The conditional probability of respondent i choosing alternative j in choice task t, given that

she belongs to preference class c and scale group s is:

P
[
Ci
t = j | s

]
=

exp (λsβcXjt + λsβ0,cpjt)∑K
k=0 exp (λsβcXkt + λsβ0,cpkt)

, (D.1)

where βc is a vector of coefficients for the attributes of the alternatives and λs is a scale

parameter for the scale group s. This scale parameter λs is also a measurement of the

uncertainty in estimation of the β coefficients (Magidson and Vermunt, 2007).

Next, the unconditional probability that respondent i belong to class c and scale s are

respectively:

P [respondent i is class c] =

(
exp (αcZi)∑C
c=1 exp (αcZi)

)
(D.2)

P [respondent i is scale s] =

(
exp (γsZi)∑S
s=1 exp (γsZi)

)
. (D.3)

Depending on the researcher’s objective, Zi can be a vector of observable characteristics

such as education and income or just a vector of constants. If Zi contains individual

characteristics, this probability expression is expressed as a multinomial form where coefficients

are relative to that for the excluded class. In our case, Zi is replaced with a constant; hence

these constants can be interpreted as the overall class and scale share in equations (D.2) and

(D.3), respectively.

Combining these expressions, the probability that respondent i chooses alternative j in

task t is:

P
[
Ct
i = j

]
= (D.4)

C∑
c=1

S∑
s=1

(
exp (αcZi)∑C
c=1 exp (αcZi)

)(
exp (γsZi)∑S
s=1 exp (γsZi)

)(
exp (λsβcXjt + λsβ0,cpjt)∑K
k=0 exp (λsβcXkt + λsβ0,cpkt)

)
.

If we multiply this expression by the probabilities from the other choice tasks, we recover
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the probability for choosing a particular sequence of alternatives:

P
[
Ci =

(
Ci
j1, . . . , C

i
jT

)]
= (D.5)

T∏
t=1

[
C∑
c=1

S∑
s=1

(
exp (αcZi)∑C
c=1 exp (αcZi)

)(
exp (γsZi)∑S
s=1 exp (γsZi)

)(
exp (λsβcXjt + λsβ0,cpjt)∑K
k=0 exp (λsβcXkt + λsβ0,cpkt)

)]
.

This expression is then summed over the entire sample to arrive at the log likelihood:

lnL =
N∑
n=1

ln
{
P
[
Ci =

(
Ci
j1, . . . , C

i
jT

)]}
. (D.6)

The preference parameters βc, S − 1 scale parameters λs, and class αc and scale shares γs

can be recovered from this log likelihood function either by maximum likelihood estimation

or through application of the EM algorithm (Bhat, 1997; Greene and Hensher, 2003; Train,

2008). To allow for the identification of the scale parameters λs, one of them is normalized to

take a value of one in order for all other scale parameters to be identified.

Using Bayes theorem and the parameters from the likelihood function, we can estimate

the conditional probabilities that a respondent belongs to each class c or each scale s or the

combination of either given her selection of alternative j:

P
[
respondent i is class c | Ci

t = j
]

= (D.7)

S∑
s=1

P [respondent i is class c and scale s]× P [Ci
t = j | respondent i is class c and scale s]

dijt

P [Ci
t = j]

P
[
respondent i is scale s | Ci

t = j
]

= (D.8)

C∑
c=1

P [respondent i is class c and scale s]× P [Ci
t = j | respondent i is class c and scale s]

dijt

P [Ci
t = j]

P
[
respondent i is class c and scale s | Ci

t = j
]

= (D.9)

P [respondent i is class c and scale s]× P [Ci
t = j | respondent i is class c and scale s]

dijt

P [Ci
t = j]

.
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Appendix E Results using predicted probabilities of class membership (rather

than dichotomous membership)
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Table E1: Stove purchase by latent class, using class probabilities

Variables
(1) (2) (3) (4) (5) (6) (7)

Basic + Rebate + All controls Basic + All controls Basic + All controls

Visit 1 purchase Visit 1 purchase Visit 1 purchase
With later With later Stove use Stove use
purchases purchases at follow-up§ at follow-up§

Treatment group (exposed to sales) 0.42*** 0.15*** 0.16*** 0.47*** 0.20*** n.a. n.a.
(0.036) (0.040) (0.040) (0.038) (0.043)

Treatment × Rebate amount (INR) 0.0015*** 0.0015*** 0.0015*** 0.0011***
(0.0002) (0.0002) (0.0002) (0.0001)

Age of household head -0.0004 -0.0007 -0.0009
(0.001) (0.001) (0.001)

Female household head -0.024 -0.024 -0.076
(0.032) (0.033) (0.047)

Education of household head -0.0008 -0.0000 0.0005
(0.004) (0.004) (0.005)

Perception of relative wealth 0.010 0.0086 -0.022
(0.017) (0.017) (0.023)

Hours of electricity supply per day -0.0027 -0.0024 0.0032
(0.003) (0.003) (0.004)

Respondent reports high price of firewood -0.032 -0.057** -0.036
(0.030) (0.027) (0.036)

Treatment × Class 1† 0.26*** 0.21*** 0.23*** 0.24*** 0.22*** 0.15* 0.19**
(0.076) (0.073) (0.070) (0.077) (0.072) (0.078) (0.080)

Treatment × Class 2† 0.14** 0.11* 0.098 0.12* 0.067 0.042 0.021
(0.065) (0.063) (0.064) (0.064) (0.061) (0.054) (0.051)

Constant 0.00*** -0.00*** -0.13 0.00*** -0.087 0.26*** -0.030
(0.00) (0.00) (0.11) (0.00) (0.11) (0.029) (0.13)

Other controls‡ No No Yes No Yes No Yes

Observations 987 987 987 987 987 716 716
R2 0.219 0.323 0.338 0.243 0.364 0.007 0.130

Notes. Linear probability model. *** p < 0.01, ** p < 0.05, * p < 0.1. Standard errors in parentheses; standard errors clustered at the hamlet level. The analytical sample is the final sample, after

sample attrition (results are qualitatively identical for the full sample with sales intervention data, however). †‘Class 1’ and ‘Class 2’ are variables denoting the predicted probabilities of membership

in latent classes 1 and 2, respectively. Class 3 probability is omitted. ‡The other controls that are not displayed include all but the covariate “respondent is primary cook” shown in Table 5, which

was omitted because the ultimate purchasing behavior should not depend on who participated in the DCE during the baseline survey. None of these controls were found to be significantly related to

purchase; as shown they did not alter the sign or significance of the main results (Columns 3, 5 and 7). Observations with missing values for these additional covariates are retained in these

regressions by filling in median hamlet-level values; results are not sensitive to this procedure. §The use outcome is only analyzed for households who were in the intervention group; hence the

smaller sample size.
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Table E2: Differential responses to rebate amount (first sales visit only), using preference
class probabilities

Variables
(1) (2) (3) (4)

Visit 1 purchase Visit 1 purchase All purchases All purchases

Treatment group (exposed to sales) 0.18*** 0.19*** 0.25*** 0.25***
(0.046) (0.047) (0.052) (0.051)

Treatment × Class 1† 0.047 0.068 -0.061 -0.035
(0.14) (0.14) (0.15) (0.14)

Treatment × Class 2† 0.065 0.045 -0.031 -0.064
(0.11) (0.11) (0.11) (0.11)

Treatment × Rebate × Class 1 0.0023*** 0.0023*** 0.0026*** 0.0026***
(0.0004) (0.0005) (0.0004) (0.0004)

Treatment × Rebate × Class 2 0.0016*** 0.0016*** 0.0019*** 0.0019***
(0.0004) (0.0004) (0.0004) (0.0004)

Treatment × Rebate × Class 3 0.0013*** 0.0013*** 0.0012*** 0.0012***
(0.0002) (0.0002) (0.0002) (0.0002)

Constant 0.00*** -0.13 -0.00** -0.089
(0.00) (0.11) (0.00) (0.11)

Other controls‡ No Yes No Yes

Observations 987 987 987 987
R2 0.324 0.339 0.351 0.369

Notes. Linear probability model. *** p < 0.01, ** p < 0.05, * p < 0.1. Standard errors in parentheses; standard errors clustered at the

hamlet level. Only includes households who did not attrit from the final sample; results are qualitatively unchanged when all those with

sales data are included. †‘Class 1’ and ‘Class 2’ are denote the predicted probability of membership in latent classes 1 and 2, respectively.

Class 3 is the omitted probability. ‡The other controls include all of those from the complete model in Table 6 (e.g., the basic controls

from Table 6, column 3 plus those indicated in the notes below Table 6). None of these were found to be significantly related to purchase;

as shown they did not alter the sign or significance of the main results shown here (Column 2). Observations with missing values for

these additional covariates are retained in these regressions by filling in median values; results are not sensitive to this procedure.
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Table E3: Stove choice among households exposed to sales intervention including all sales, using predicted class probabilities
(marginal effects)

Variables
(1) (2) (3) (4) (5) (6)

Basic Basic + Rebate and Controls + Rebate and Controls + Rebate and Controls + Rebate and Controls
Biomass ICS purchase Electric ICS purchase Biomass ICS purchase Electric ICS purchase Biomass ICS use Electric ICS use

Rebate amount (INR) 0.00066*** 0.0010*** 0.0004*** 0.0005**
(0.0001) (0.0002) (0.0001) (0.0001)

Class 1† -0.085 0.32*** -0.080 0.34*** -0.023 0.14**
(0.069) (0.078) (0.065) (0.076) (0.038) (0.058)

Class 2† 0.057* 0.083 0.063 0.045 0.091** -0.027
(0.032) (0.060) (0.038) (0.068) (0.038) (0.037)

Hours of electricity supply per day -0.003 -0.001 0.001 0.004
(0.004) (0.006) (0.002) (0.003)

Respondent reports high price of firewood 0.023 -0.078* 0.015 0.001
(0.024) (0.041) (0.022) (0.029)

Other controls‡ No No Yes Yes Yes Yes

Observations 716 716 716 716 716 716
Pseudo-R2 0.018 0.018 0.131 0.131 0.269 0.327

Notes. Columns 1-4 report results from a multinomial logit model using initial purchase decision only; we report marginal effects at the mean of the sample covariates; columns 5 and 6 are linear probability models for daily use of the biomass and

electric intervention stoves, respectively. *** p < 0.01, ** p < 0.05, * p < 0.1. Standard errors in parentheses; standard errors clustered at the hamlet level. The analytical sample is the final sample, after sample attrition (results are qualitatively

identical for the full sample with sales intervention data, except that class 2 households are significantly more likely to adopt the biomass ICS with that larger sample). †Class 1 and Class 2 are denote the predicted probabilities of membership in

latent classes 1 and 2, respectively. Class 3 probability is omitted. ‡The other controls include all of those from the complete model in Table 6 (e.g., the basic controls from Table 6, column 3 plus those indicated in the notes below Table 6). Few of

these were found to be significantly related to purchase; as shown they did not alter the sign or significance of the main results shown here (columns 3-6). Observations with missing values for these additional covariates are retained in these regressions

by filling in median values; results are not sensitive to this procedure.
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