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Closed-loop approaches in systems neuroscience and therapeutic stimulation

have the potential to revolutionize our understanding of the brain and develop

novel neuromodulation therapies for restoring lost functions. Neural interfaces

with capabilities such as multi-channel neural recording, on-site signal process-

ing, rapid symptom detection, and closed-loop stimulation are crucial for en-

abling these innovative treatments. However, current closed-loop neural inter-

faces are limited by their simplicity and lack of sufficient on-chip processing and

intelligence.

This dissertation focuses on the development of next-generation neural de-

coders for closed-loop neural interfaces, utilizing on-chip machine learning to

detect and suppress symptoms of neurological disorders. These neural de-

coders offer high versatility, low power consumption, minimal on-chip area,

and robustness against neural signal fluctuations. Chapter 2 explores migraine

state classification using somatosensory evoked potentials, an emerging appli-

cation for neural interfaces. In Chapter 3, we introduce a resource-efficient

oblique tree model that enables low-power, memory-efficient classifiers for real-

time neurological disease detection and motor decoding. Chapter 4 presents a

novel Tree in Tree decision graph model with applicability beyond neural data,

demonstrating success in general tabular prediction tasks. In Chapter 5, we

propose an adaptive machine learning-based decoder to compensate for fluc-



tuations in neural signals during test time. The dissertation concludes with a

discussion of future research directions for on-chip neural decoders.
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CHAPTER 1

INTRODUCTION

Developing novel non-pharmacological treatments such as neurostimula-

tion is becoming increasingly important to treat some of the most prevalent

and intractable neurological disorders. Brain stimulation is currently the most

common surgical treatment for movement disorders and has shown promise

in epilepsy, neuropsychiatric disorders, memory, chronic pain, and traumatic

brain injury, with new applications rapidly emerging. Despite promising proof-

of-concept results, current clinical neurostimulators are limited in many aspects.

For example, while deep-brain stimulation (DBS) can effectively control motor

symptoms in most patients suffering from Parkinson’s disease (PD), it causes

persistent side effects (e.g., speech impairment and cognitive symptoms) [1, 2].

It is now widely known that this is due to the conventional “open-loop” ap-

proach, which involves delivering constant high-frequency (∼130Hz) stimula-

tion regardless of the patient’s clinical state. In addition, open-loop stimulation

increases the power consumption and the need for surgical battery replacement.

This simplistic open-loop approach is also a key limiting factor in designing

clinically effective stimulation for more complex disorders such as depression

[3], Alzheimer’s disease [4], and stroke [5, 6], among others [5, 7, 8].

To further leverage the benefits of stimulation and address the aforemen-

tioned limitations, closed-loop neuromodulation techniques have been recently

explored, such as the responsive neurostimulator for epilepsy [9] and PD [10],

with promising results. In this approach, stimulation is dynamically controlled

according to a patient’s clinical state, either with a continuous (i.e., adaptive) or

an on-off (i.e., on-demand) strategy. Through feedback from relevant biomark-
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ers of a neurological symptom (e.g., a seizure event, tremor episode, or mood

change), closed-loop stimulation can titrate charge delivery to the brain, thus

reducing the side effects and the amount of stimulation delivered, enhancing

the therapeutic efficacy and battery life compared to its open-loop counterparts

[2]. However, several critical challenges remain to be addressed in order to fully

exploit the potential of closed-loop therapies for neurological disorders. The ex-

isting closed-loop devices mainly rely on simple comparison of a pre-selected

biomarker (typically from 1 out of 4 channels) against a fixed threshold. Such

simplistic approaches are known to be suboptimal in terms of predictive accu-

racy, resulting in low sensitivity and high false alarm rates, while exacerbating

other symptoms [8]. Multiple biomarkers and control loops may be necessary

to reliably improve symptoms, leading to design complexity.

A promising solution to address this challenge is to implement a machine

learning (ML) algorithm directly on the implant or wearable to predict the on-

set or severity of neurological symptoms, an approach that has gained signifi-

cant interest in recent years [11–15]. Real-time symptom control can be achieved

through on-chip biomarker extraction and ML-based disease state detection, fol-

lowed by a closed-loop intervention (e.g., electrical, magnetic or optical stimu-

lation, drug delivery) to suppress the abnormal activity. This approach offers

significant advantages over the conventional wireless transmission and exter-

nal processing methods [16, 17] that suffer from feedback loop latency, high

power consumption due to continuous telemetry, security and privacy con-

cerns [18, 19]. A number of clinical trials have recently shown the advantage of

machine learning-based control for closed-loop stimulation in movement disor-

ders, epilepsy, and memory [4, 20]. In addition, machine learning systems have

been developed to forecast the onset of neurological symptoms during preic-
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tal phase, allowing sufficient time prior to seizure manifestation (e.g., in the

order of several minutes) to provide early warnings to the patients and care-

givers [21–23]. In closed-loop neural prostheses, however, both the ML decoder

and neurostimulator are integrated on the implant, eliminating the need for ex-

cessively long symptom prediction horizons [24]. Therefore, most closed-loop

devices train the classifier to differentiate ictal epochs from interictal period,

several seconds prior to symptom onset [25]. Such systems detect the onset and

termination (i.e., offset) of neurological symptoms to precisely control the deliv-

ery of stimulation [26].

Despite the benefits of using machine learning for closed-loop intervention,

strict power and area requirements on an implantable or wearable device pose

critical challenges for hardware realization of ML algorithms, particularly in

the form of a miniaturized ASIC. The choice of learning algorithm and neural

biomarkers affects the prediction accuracy and latency. Moreover, the predic-

tion accuracy depends on the spatial resolution of the recording system and

the number of input channels. Thus, there is a crucial need to develop high-

performance, energy- and area-efficient biomarker extraction and ML solutions

that are scalable to high channel counts and satisfy the implantable/wearable

power budget and form factor.

This dissertation addresses various challenges in the development of next-

generation ML-embedded neural interfaces. In Chapter 2, I explore the ap-

plication of neural decoders for migraine attack prediction. I propose a ma-

chine learning approach to utilize somatosensory evoked potential (SSEP)-

based biomarkers for migraine state classification in a noninvasive setting. Us-

ing a set of relevant features, we successfully separated migraine patients from

3



healthy controls with an accuracy of 89.7%. The proposed approach suggests

the potential use of SSEP as a prominent and reliable signal in migraine state

classification.

In Chapter 3, I introduce a machine learning model based on oblique de-

cision trees to enable resource-efficient classification on a neural implant. By

integrating model compression with probabilistic routing and implementing

cost-aware learning, our proposed model could significantly reduce the mem-

ory and hardware cost compared to state-of-the-art models, while maintain-

ing classification accuracy. We trained the resource-efficient oblique tree with

power-efficient regularization (ResOT-PE) on three neural classification tasks to

evaluate the performance, memory, and hardware requirements. On seizure

detection task, we were able to reduce the model size by 3.4× and the feature

extraction cost by 14.6× compared to the ensemble of boosted trees, using the

intracranial EEG from 10 epilepsy patients. The proposed model can enable

a low-power and memory-efficient implementation of classifiers for real-time

neurological disease detection and motor decoding.

In Chapter 4, I present Tree in Tree decision graph (TnT), a framework that

extends the conventional decision tree to a more generic and powerful directed

acyclic graph. TnT constructs decision graphs by recursively growing decision

trees inside the internal or leaf nodes instead of greedy training. The time com-

plexity of TnT is linear to the number of nodes in the graph, and it can construct

decision graphs on large datasets. Compared to decision trees, we show that

TnT achieves better classification performance with reduced model size, both

as a stand-alone classifier and as a base estimator in bagging/AdaBoost ensem-

bles.
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In Chapter 5, I develop an adaptive machine learning-based decoder ca-

pable of unsupervised adaptation to unseen target distributions. The adap-

tive decoder uses contextual information to compensate for distribution shifts

in neural signals during test time and as a result, it automatically adapts to

both abrupt and continual changes in neural signals. We evaluate our model

on cross-session gait decoding tasks to reliably predict movement during nat-

ural walking, using neural recordings from a chronically implanted device in

Parkinson patients. The adaptive model outperforms conventional decoders

with fixed parameters and achieved robust gait decoding in the presence of

therapy-induced domain shift. The proposed approach enables reliable neu-

ral decoding under common signal instabilities and could potentially advance

adaptive stimulation control in more complex, home-based therapeutic settings.

Chapter 6 provides a summary of the dissertation while also briefly dis-

cussing potential future directions for on-chip neural decoding.

Appendix A further presents the results of my work on unsupervised do-

main adaptation to enable few-shot, cross-subject epileptic seizure detection.

Using adversarial learning, features from multiple patients are encoded into

a subject-invariant space and a discriminative model is trained on subject-

invariant features to make predictions. We evaluate this approach on the in-

tracranial EEG (iEEG) recordings from 9 patients with epilepsy. Our approach

enables cross-subject seizure detection with a 9.4% improvement in 1-shot clas-

sification accuracy compared to the conventional subject-specific scheme. Ap-

pendix B introduces XTab, a framework for cross-table pretraining of tabular

transformers on datasets from various domains. We address the challenge of

inconsistent column types and quantities among tables by utilizing indepen-
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dent featurizers and using federated learning to pretrain the shared component.

Tested on 84 tabular prediction tasks from the OpenML-AutoML Benchmark

(AMLB), we show that (1) XTab consistently boosts the generalizability, learn-

ing speed, and performance of multiple tabular transformers, (2) by pretraining

FT-Transformer via XTab, we achieve superior performance than other state-of-

the-art tabular deep learning models on various tasks such as regression, binary,

and multiclass classification.
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CHAPTER 2

MIGRAINE CLASSIFICATION USING SOMATOSENSORY EVOKED

POTENTIALS

2.1 Introduction

Migraine is a disabling neurological disorder, characterized by recurrent

headache attacks. Despite its high prevalence, migraine diagnosis is still mainly

based on clinical interviews, patient diaries, and physical examinations. More

advanced diagnostic methods are therefore desired for both clinical and re-

search purposes and can potentially aid in early diagnosis and assessment of

disease progression. Given the lack of consistent structural abnormalities, clin-

ical neurophysiology methods are particularly suited to study the pathophysi-

ology of migraine [27]. The neurophysiological techniques have been recently

used in assessing the clinical fluctuations in migraine [28], and the effectiveness

of emerging neuromodulation therapies such as repetitive transcranial mag-

netic stimulation [29]. Considering that early treatment of migraine headache is

shown to be significantly more effective [30], it is important to predict migraine

early in the course of attack, potentially with automated monitoring techniques.

While wearable sensors and medical devices are increasingly being applied to

the early diagnosis and treatment of neurological disorders, the field is rela-

tively unexplored in migraine treatment. Such devices can detect the neuro-

logical abnormalities in real time and prompt patients to take preventive med-

ications, monitor the progression of disease and effectiveness of medications,

or trigger a therapy such as neuromodulation [15, 31]. Given the potential of

noninvasive electrophysiological techniques recently shown in clinical migraine
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studies [28, 32, 33], particularly the somatosensory evoked cortical potentials,

we aim at assessing their power in classifying various states of migraine and

separating migraine patients from healthy controls. This approach could poten-

tially be used for early diagnosis of migraine attacks in a wearable setting in

future.

According to most electrophysiological studies, migraine patients are char-

acterized by hyper-responsivity in both somatosensory and visual cortices [34],

which can be measured by standard electrophysiological techniques such as so-

matosensory evoked potential (SSEP) and visual evoked potential (VEP). Given

the ease of evoking SSEPs (e.g. using a wristband-type device), our approach

is based on the former. The SSEP correlates of the migraine brain were first re-

ported in 2005 [32]. In particular, a lack of habituation in response to repetitive

stimuli was found in migraine patients in the interictal state, both with (MA) or

without aura (MO). The high-frequency oscillations (HFOs) superimposed on

the median nerve SSEPs are widely reported as indicators of thalamo-cortical

activation [35]. More specifically, the early and late HFO bursts are thought

to be generated by the thalamo-cortical afferents and inhibitory neurons in the

parietal cortex, respectively. A reduction of early HFO between attacks and in-

crease of late HFO during attacks have been previously reported in migraine

patients [33, 34]. In addition to HFOs, some low-frequency components are also

critical in characterizing various states of migraine. For instance, the increased

N20-P25 amplitude of low-frequency SSEP has been associated with the mi-

graine ictal group [33]. Based on the altered SSEP signals in migraine patients,

the associated HFO and low-frequency components could be used as potential

features for our classification task. In other words, despite many unknowns

in pathogenesis and underlying causes of migraine, the associated changes of
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SSEPs allow us to reliably differentiate between the ictal or interictal phases of

migraine, as well as healthy controls.

Although the electroencephalogram (EEG)-based biomarkers have been

widely used in other neurological fields of research, such as epilepsy [36], stud-

ies on SSEP features are very limited. The resting-state EEG complexity was

recently shown to be higher in the migraine preictal compared to the interictal

group. The variations of EEG complexity were subsequently used to classify the

preictal and interictal states of migraine [37]. In addition to complexity, other

relevant biomarkers such as spectral power in different frequency bands and

time-domain variance of EEG were extracted and tested using various machine

learning models, such as support vector machines and neural networks [38, 39].

However, the EEG-based classification systems generally require multiple chan-

nels, which may add to the complexity of data acquisition and processing. Func-

tional magnetic resonance imaging (fMRI) is another effective tool for migraine

analysis, which was further used for classification of migraine from healthy

controls [40]. However, fMRI and other neuroimaging techniques are costly

and cumbersome for routine use and are currently impossible to integrate into

portable devices. The limited temporal resolution of fMRI and computational

overhead of image classification are the other drawbacks of this approach.

Alternatively, we propose to employ SSEP as a practical diagnostic tool and

a sensitive predictor for migraine classification. Our goal is to distinguish mi-

graine patients in different phases (interictal or ictal) from healthy controls, us-

ing state-of-the-art machine learning models and SSEP biomarkers. The pro-

posed system was trained and validated on a dataset of 57 subjects. We further

analyzed the most discriminating features for each classification task. This ap-
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Figure 2.1: Block diagram of the proposed migraine state classification system.
The SSEP signals were recorded using a CEDTM 1401 device with electrical
stimulation at the wrist. After artifact removal and averaging, migraine fea-
tures were extracted in both time and frequency domains. A feature selection
approach was employed to find the optimal feature set for each task. Various
models and classifiers were further tested and optimized to achieve the best
classification results.

proach is the first step toward early detection of migraine attacks, which could

be used in a personalized headache monitoring device.

2.2 Materials and methods

The block diagram of the proposed migraine classification system is shown in

Fig. 2.1. The SSEP signals were recorded from healthy subjects and from mi-

graineurs in the two phases of ictal and interictal. The raw signals are plotted as

time series and their time-frequency distributions are further analyzed to find

the dominant high-frequency components. From the time-frequency graph, we

were able to identify two peaks in the high frequency range, which were later

defined as early and late HFOs. We performed preprocessing on the raw data by

removing artifacts and averaging over multiple SSEP trials. Several biomarkers
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were then extracted using Fourier transform and digital filtering. The evalu-

ated feature set is composed of spectral power in different frequency bands,

low-frequency (LF) features, and HFO-related biomarkers. A wrapper-based

feature selection method was used to select the most discriminative features.

Several machine learning models were then tested on the resulting feature set

and their parameters were carefully optimized. Finally, we compared the clas-

sifier outputs with the actual labels to calculate the prediction accuracy.

2.2.1 Participants

We initially enrolled 50 consecutive migraine patients who attended our

headache clinic. Of the patients initially recorded, eight patients had an attack

between 12 and 72 hours before or after the recording session, and their elec-

trophysiological data were not included in the subsequent analysis. The final

data set comprises a total number of 42 migraine patients, including 29 interic-

tal (15 MA, 14 MO, 17 females, 12 males) and 13 ictal (four MA, nine MO, 11

females, two males). The subjects were recruited among the patients attending

the headache clinic of Sapienza University of Rome. We excluded those patients

who had taken medication regularly, except for the contraceptive pill. For com-

parison, we enrolled a group of 15 age-matched healthy volunteers recruited

among medical school students and healthcare professionals. The patients and

controls were examined at the same time of day, in the same laboratory and by

the same investigators. Patients in the interictal state were recorded at least 72

hours before or after a migraine attack. The ictal group consisted of patients

who had an interval of less than 12 hours between the recording time and a

migraine attack. The study was approved by the Ethics Committee of the Fac-

ulty of Medicine, University of Rome. Informed consent was collected from all

11



Table 2.1: Extracted features from SSEP recordings.
Feature Description

Early, Late HFO Amplitude HFO maximum peak-to-peak value in the early and late bursts [32, 34, 41, 42]
Early, Late HFO RMS HFO root-mean-square value in the early and late bursts [43, 44]
Early, Late HFO Latency Latency of maximum peak in the early and late HFO bursts
Early, Late HFO Peak Number Number of peaks in the early and late HFO bursts
LF N20-P25 Amplitude Low-frequency peak-to-peak amplitude between N20 and P25 [29, 42]
N20 Latency Latency of N20 peak [41, 45]

LF Hjo Act, Mob, Com Hjorth activity, mobility, and complexity of the low-frequency SSEP [46, 47]
HFO Hjo Act, Mob, Com Hjorth activity, mobility, and complexity of HFO [46, 47]
Spectral Power Features Spectral power in ([1–30], [30–80], [80–200], [200–450], [450–750] Hz) bands [48–50]

participants in this study.

Data acquisition The SSEP signals were elicited by electrical stimulation of the

median nerve and recorded using a CED 1401 device (Cambridge Electronic

Design Ltd, Cambridge, UK). Subjects were asked to sit comfortably on a chair

in an illuminated room and keep their eyes open, with their attention focused

on the wrist movement. Electrical stimulation was applied to the right median

nerve at the wrist with a constant-current square-wave pulse (0.2ms width, cath-

ode proximal). The stimulus intensity was set at twice the motor threshold with

a repetition rate of 4.4 Hz. The SSEP signals were recorded over the contralateral

parietal area. The ground electrode was placed on the right arm. A CED 1902

was used to amplify the evoked potentials. The sampling frequency was set to

5000 Hz and the post-stimulus signals were recorded for a duration of 40 ms.

The high sampling rate allowed us to analyze a wide range of frequency bands

in the subsequent feature extraction stage.

Data analysis and feature extraction The SSEP signals were low-pass filtered

at 450 Hz to extract the low-frequency (LF) components. The LF-SSEPs were

then used to identify the latency of various SSEP components (N20, P25) and

the associated peak-to-peak amplitude.
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Figure 2.2: (a) Grand averaged SSEP recordings from migraine patients as well
as healthy controls; (b) The amplitude changes in the N20-P25 peak-to-peak
value of averaged SSEPs and the extracted HFOs from all groups; (c) Statistical
analysis of N20-P25 and early/late HFO amplitude. Early HFO burst of MA
group is significantly lower than healthy controls (p=0.0386). In the MI group,
the low-frequency N20-P25 amplitude and late HFO bursts are higher than HV
group, but it does not reach the significance level. Compared with healthy con-
trols, the interictal MA and MO groups have reduced early HFOs and normal
late HFOs, likely due to the reduced activity of sensory cortices. The early HFOs
tend to normalize in the MI group, while the higher late HFOs differentiate them
from healthy controls.

Prior studies have shown that high-frequency oscillations (HFOs) embed-

ded on the parietal N20 component of SSEPs are significantly different in mi-

graineurs between attacks, compared to healthy volunteers [32, 42, 43]. This in-

dicates that HFO could be an important biomarker to distinguish migraineurs

from healthy subjects. Here, we extracted HFOs using an FIR bandpass fil-

ter (450–750 Hz). Both low-pass and band-pass filters were designed using a

Bartlett-Hanning window with a filter order of 50. Between the early and late

HFO bursts, a clear change in both frequency and amplitude was observed in

the majority of recordings. More specifically, the early burst was in the ascend-

ing slope of the N20 component, while the late burst occurred in the descending

slope of N20, sometimes extending toward the ascending slope of N33 [33]. The
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N20 peak latency was used as a cut-off point to separate early and late HFO

bursts [51], while both HFOs had an approximate duration of 5 ms [44].

Figure 2.2(a) illustrates the average SSEP recordings of individuals from each

group, while Fig. 2.2(b) shows the low-frequency SSEPs and the embedded

high-frequency oscillations. The N20-P25 amplitudes of LF-SSEPs were found

to be larger in the ictal group. The maximum peak-to-peak amplitude of the

late HFO burst was different between the HV and MI groups, while MO and

MA tended to be lower in the early HFOs. Considering the lack of significant

difference in the HFO or LF components between the MO and MA groups, we

combined them into one interictal class for the subsequent feature extraction

and classification process.

The measured SSEPs were composed of 425 to 2000 independently collected

trials. For the purpose of feature extraction, we averaged every 40 consecu-

tive sweeps and labelled the resulting waveform as healthy volunteer (HV), ic-

tal (MI), or interictal (MII), depending on the subject under study. Averaging

over different numbers of trials was tested to find the value that maximized the

classification accuracy. This resulted in a total of 325 MI, 534 MII, and 323 HV

samples that were fed to our classifiers, following feature extraction. In the fea-

ture extraction phase, each sample was independently processed to avoid data

leakage between the train and test sets.

In addition to the features of HFO and LF-SSEP described above, a number

of electrophysiological measures that are widely used in EEG analysis were in-

cluded, such as spectral power in various frequency bands [36, 50], and Hjorth

parameters [46, 47], as listed in Table 2.1. In order to reduce the effect of power

fluctuations among individuals, spectral power features were normalized to
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Figure 2.3: The accuracy measured by 10-fold cross validation score for different
tasks and various machine learning models. The algorithms are trained and
tested on the entire feature set, and the classifier settings are optimized to each
task.

each sample’s total power. The Hjorth parameters, known as activity, mobility,

and complexity, indicate various signal properties in the time domain. Specifi-

cally, Hjorth activity is an indicator of signal variance, while mobility represents

the mean frequency. Moreover, the frequency changes over a given time period

can be represented by complexity.

It should be noted that compared with low-frequency SSEP, the amplitude of

HFO is relatively small, making measurement noise a significant factor in HFO

extraction and analysis. This is a challenge for classification tasks that employ

HFOs as key characteristic features. In this study, we reduced the effect of ran-

dom noise by averaging over a higher number of SSEP sweeps. However, aver-

aging over many sweeps can reduce the number of training samples and make

it impossible to reliably evaluate the classification performance. Therefore, con-

sidering the trade-off between noise and the number of samples, a 40-sweep

averaging was found to be optimal, which resulted in an accuracy of 36% for

HFO features and a total of 1182 training samples.
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Table 2.2: The overall performance of machine learning models for different
tasks measured by accuracy, sensitivity, specificity, and F1 score. All models are
trained and tested on the complete feature set. For the SVM classifier, support
vectors with linear, sigmoid, and RBF kernels were tested, and SVM-RBF was
chosen as it outperformed other kernels in all classification tasks.

Model Task Accuracy Sensitivity Specificity F1 Score Model Parameters

XGB HV vs. MI vs. MII 0.724 0.790∗ 0.916∗ 0.715
Tree count: 105
Maximum depth: 13

Best model HV vs. MI 0.880 0.893 0.903 0.872
HV vs. MII 0.865 0.869 0.878 0.859
MI vs. MII 0.756 0.781 0.715 0.731

RF HV vs. MI vs. MII 0.686 0.814∗ 0.875∗ 0.667
Tree count: 276
Maximum depth: 10

p=0.0335 HV vs. MI 0.844 0.841 0.840 0.841
HV vs. MII 0.822 0.845 0.806 0.798
MI vs. MII 0.744 0.739 0.711 0.698

SVM HV vs. MI vs. MII 0.702 0.778∗ 0.884∗ 0.681

RBF kernel
p=0.1176 HV vs. MI 0.826 0.838 0.814 0.825

HV vs. MII 0.846 0.857 0.858 0.830
MI vs. MII 0.735 0.742 0.752 0.689

KNN HV vs. MI vs. MII 0.619 0.595∗ 0.859∗ 0.601
Number of
neighbors: 5

p=1e-5 HV vs. MI 0.785 0.780 0.782 0.785
HV vs. MII 0.783 0.767 0.793 0.759
MI vs. MII 0.697 0.727 0.612 0.662

MLP HV vs. MI vs. MII 0.684 0.734∗ 0.888∗ 0.661
Hidden layer size:
200

p=0.0003 HV vs. MI 0.815 0.799 0.796 0.822
HV vs. MII 0.833 0.826 0.852 0.809
MI vs. MII 0.738 0.761 0.662 0.723

LDA HV vs. MI vs. MII 0.532 0.528∗ 0.772∗ 0.472
Least squares
solution with auto
shrinkage

p=4e-5 HV vs. MI 0.685 0.692 0.702 0.684
HV vs. MII 0.668 0.609 0.685 0.597
MI vs. MII 0.695 0.693 0.671 0.630

LR HV vs. MI vs. MII 0.512 0.510∗ 0.774∗ 0.461

Default settings
p=4e-6 HV vs. MI 0.697 0.689 0.706 0.696

HV vs. MII 0.660 0.584 0.696 0.604
MI vs. MII 0.681 0.696 0.639 0.622

2.3 Classification

In order to classify the SSEP recordings, we explored both handcrafted feature

methods, where the domain knowledge is used to extract application-specific

features (i.e. migraine biomarkers), and deep learning models such as convolu-

tional neural network (CNN) that do not require prior knowledge and domain

expertise. The classification performance was measured by a 10-fold cross-

validation method for the prediction metrics of accuracy, F1 score, sensitivity

and specificity, and was compared to prior works. For the handcrafted feature

approach, the most critical features in the classification process were determined

using a forward feature selection method, and compared with previous clinical

findings.
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2.3.1 Handcrafted feature methods

In machine learning based on feature engineering, extracting informative, inde-

pendent, and domain-specific characteristics from data is critical. In this work,

we selected a number of discriminating features for migraine based on previous

SSEP studies, as described in the previous section. These features (listed in Table

2.1) form a numerical representation of the disease under study, called a feature

space. Then, machine learning models were built on these features to classify

the data. The effectiveness of features in migraine detection is represented by

the performance of the classification algorithms that utilize them.

Our target classification problem was to distinguish between three groups of

subjects using SSEP features: Migraine interictal (MII), migraine ictal (MI), and

healthy (HV). We tested several state-of-the-art classifiers to achieve an optimal

accuracy. These classifiers were optimized and parameter tuned in scikit-learn

(scikit-learn.org) and include: Random forest (RF), extreme gradient-boosting

trees (XGB), support vector machines (SVMs) with various kernels, K-nearest

neighbors (KNN), mutilayer perceptron (MLP), linear discriminant analysis

(LDA), and logistic regression (LR). We trained these supervised learning mod-

els on a set of labelled SSEP features and the performance of trained models

was then evaluated on a test feature set with unknown labels. We compared

the outputs of classifiers with the actual labels to assess the prediction accu-

racy. The performance of different classifiers was compared to find the optimal

model. We further evaluated the three-class performance (i.e. MI-MII-HV) and

compared it with the binary classification among every two groups of subjects

(i.e. MI-HV, MII-HV, and MI-MII). As expected, the case of binary classifica-

tion results in a higher accuracy. For the actual implementation of a migraine

attack detection device, the transition from healthy to interictal and from inter-
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ictal to ictal are particularly important. This could potentially be monitored in

real time, by training the classifier on the previously recorded SSEP data from a

patient.

2.3.2 Convolutional neural network

A challenge in neural data classification is to identify relevant features (i.e.

biomarkers) that are significantly different among various states of a disease,

or a cognitive or motor task. A patient-specific selection of features may be nec-

essary to accommodate the variability of neural data among subjects. For ex-

ample, in epileptic seizure detection, patient-specific features are widely used

[52]. Alternatively, the convolutional neural network is a typical deep learn-

ing model that does not rely on handcrafted features. For neural signals, the

one-dimensional CNN (1D CNN) has been tested in brain-computer interface

Figure 2.4: The train and test accuracies of the 1D-CNN model for the HV-MI-
MII classification task. The cross validation score for test data converges to
56.3%, which is lower than most studied feature-based models, yet better than
linear models.
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(BCI) and seizure detection applications [53–55]. Unlike handcrafted feature

models, a CNN can be used to automatically learn the critical features from raw

data and subsequently classify it. The independence from prior disease-based

knowledge and human effort for feature design is a major advantage. There-

fore, these models may have the potential to succeed in cases where sufficient

discriminating features are not available.

We implemented a CNN based on the AlexNet architecture in TensorFlow

[56, 57], which is composed of five convolution layers, five max pooling lay-

ers, and a fully connected layer. We preprocessed the data by subtracting the

mean and dividing it by the variance. The inputs to the model are the stan-

dardized SSEP signals after stimulation onset, and during the time segment of

10 ms≤t≤ 40 ms. In each iteration, a batch of 100 samples is fed to the network

and the associated weights are updated via backpropagation. We ran thousands

of iterations until the cross-validation score converged to a stable value. This

score is used as an estimate of accuracy and is compared with the handcrafted

feature methods for model selection.

2.4 Results

2.4.1 Model performance

In order to evaluate the classification performance, we measured the 10-fold

cros-validation scores (averaged through repeated iterations) for all the studied

models (Fig. 2.3), in which varying levels of accuracy were obtained for differ-

ent machine learning models and on different tasks. Among the handcrafted

feature methods, XGB achieves the best three-class discrimination accuracy of

72.4%. It also achieves an accuracy of 88.0% for the binary classification task of
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HV-MI, 86.5% for HV-MII, and 75.6% for MI-MII, respectively. To better assess

the model performance, we separately looked into false positives (the number

of healthy samples classified as migraine) and false negatives (the number of

migraine samples classified as healthy), by reporting the specificity (true neg-

ative rate) and sensitivity (true positive rate) of classifiers. These criteria im-

ply different clinical priorities in practice; for example, in a migraine or seizure

detection system, we may prefer to raise a false alarm rather than missing an

imminent seizure or migraine attack [58]. Table 2.2 presents a comparison of

performance for various machine learning models and each classification task.

XGB outperforms other classifiers not only in terms of accuracy, but also sensi-

tivity, specificity, and F1 score.

A hyperparameter tuning of classifier parameters was performed to achieve

the optimal settings that lead to the highest accuracy. In order to fairly compare

the performance of classifiers and select the best model, we applied one-way

analysis of variance (ANOVA) between XGB and any other model. The signif-

icance level was set to p< 0.05, indicating that the two models perform signif-

icantly differently for a given classification task. From the statistical analysis

presented in Table 2.2, we can conclude that XGB performs significantly bet-

ter than RF, KNN, MLP, LDA, and LR. Compared with SVM-RBF, XGB achieves

higher scores in all the metrics shown in Table 2.2, even though it does not reach

the significance level.

We further examined the CNN to classify migraine states, but the perfor-

mance was not satisfactory. This is likely due to the limited amount of training

data (Fig. 2.4). In general, while deep neural networks achieve state-of-the-

art accuracy in most learning tasks that involve large datasets of unstructured
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data, the application of such techniques may not be beneficial in problems with

limited training sets or under domain-specific test time constraints [59]. With

a cross-validation score of 56.3%, CNN is inferior to most handcrafted feature

methods in this study, yet outperforms the linear models such as LR and LDA.

The XGB classifier is the winning model in our study and is developed based

on the gradient boosting technique [60, 61]. Ensembles of decision trees such as

gradient boosting and random forests have been among the most competitive

methods in machine learning recently [59], particularly in a regime of limited

training data and little need for parameter tuning. In particular, the XGB imple-

mentation has been a winning solution in many machine learning competitions,

such as the intracranial EEG-based seizure prediction contest on Kaggle, and

has been included in our analysis. Gradient boosting exploits gradient-based

optimization and boosting by adaptively combining many simple models (in

this case, binary split decision trees) to get improved predictive performance.

To the best of our knowledge, this is the first study to explore XGB in migraine

signal analysis.

2.4.2 Feature selection

In machine learning, classification with fewer attributes has generally been

favored, as it reduces the number of redundant (i.e. highly correlated) or

marginally relevant features, in addition to reducing the computation time and

hardware complexity. Feature selection and dimensionality reduction are the

two widely used methods for reducing the number of attributes. Dimensional-

ity reduction is commonly achieved by obtaining a set of principal components

of features, whereas feature selection methods choose the most discriminating

attributes without modifying them. Principal component analysis (PCA) is a
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Figure 2.5: The classification performance for HV-MI-MII versus number of fea-
tures for three different feature selection methods. The mean accuracy (Mean)
and standard deviation (STD) are shown as solid line and shaded areas, respec-
tively. The forward feature selection (FFS) approach outperforms the feature
importance and PCA methods.

common approach for dimensionality reduction and has been widely used in

EEG preprocessing and classification [62]. However, due to its unsupervised

nature, the performance of PCA in supervised learning tasks may be subopti-

mal. In contrast, feature selection methods select a subset of relevant features

Figure 2.6: (a) The original confusion matrix; (b) Confusion matrix after fea-
ture selection. Following forward feature selection, the diagonal elements of the
matrix grow larger, indicating that more samples are correctly classified. This
implies that FFS effectively boosts the system performance in migraine states
classification tasks, while reducing the number of redundant features.
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Figure 2.7: The single-feature accuracies of the entire feature set. These scores
represent a measure of effectiveness of individual features in the classification
task. Lat: latency; Amp: amplitude; NoP: number of peaks; NSP: normalized
spectral power.

for model construction, which aids in building an accurate predictive model

while reducing the number of features.

Given the relatively large number of examined features in the current study,

we used a forward feature selection (FFS) method to further enhance the clas-

sification accuracy and remove the redundant features. The algorithm starts by

evaluating all feature subsets which consist of only one input attribute. In each

iteration, the combination of prior subset and a new feature from the pool of re-

maining features is exhaustively explored and evaluated with a cross-validation

score. The algorithm then continues to add the best feature in each iteration and

update the combinational subset until the entire feature set is analyzed [63].

In this study, we compared the forward feature selection method with the

commonly used PCA and feature importance-based selection methods. The lat-

ter approach relies on how useful each feature is in the construction of the clas-

sification model (generally decision trees). As shown in Fig. 2.5, the FFS out-

performs other methods in terms of both accuracy and convergence rate. Using

FFS, we selected an optimal subset consisting of 16 features and achieved an
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accuracy of 73.3% for the three-class detection task. For the binary classification

tasks, an accuracy of 89.7% was achieved for HV-MI (by selecting 11 features),

88.7% for HV-MII (14 features), and 80.2% for MI-MII (12 features), respectively.

To better illustrate this, Fig. 2.6 depicts the confusion matrices prior to and fol-

lowing forward feature selection. The confusion matrix reports the percentage

of successfully classified or misclassified samples. We can see that following fea-

ture selection, the sensitivity and specificity scores have significantly improved.

Overall, this method results in an average improvement of 2.4% in classification

accuracy, and a 37.0% reduction in the number of extracted features.

2.5 Discussion

2.5.1 Migraine biomarkers

To better assess the importance of various SSEP correlates of migraine in the pro-

posed classification system, the top three discriminating features based on the

FFS method are listed in Table 2.3. For the HV-MI detection task, the LF N20-P25

amplitude and RMS value of late HFO stand out, which is consistent with prior

findings [33, 44]. Our study confirms that migraineurs in the ictal state have

higher N20-P25 amplitude and late HFO burst [33]. The HFO mobility charac-

terizes healthy versus migraine interictal, indicating that the mean frequency of

the power spectrum in the HFO band differs between the two groups. For the

case of MI-MII, both early and late HFO bursts play a key role. The other impor-

Table 2.3: The top performing features based on FFS method.
Classification Task Top Features

HV vs. MI vs. MII N20 Latency, Late HFO RMS, Spectral Power in [450–750] Hz.
HV vs. MI LF N20-P25 Amplitude, N20 Latency, Late HFO RMS.
HV vs. MII N20 Latency, Spectral Power in [80–200] Hz, HFO Hjo Mob.
MI vs. MII N20 Latency, Late HFO Latency, Early HFO Peak Numbers.
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tant feature is the latency of the N20 peak. While the N20 latency is not widely

covered in migraine literature, some studies report that it changes during mi-

graine treatment [45]. This motivates the use of N20 latency in our migraine

classification system. Besides, the N20 latency is largely stable over time, even

when averaged over a relatively small number of SSEP recordings. Based on our

results, the N20 latency might be a potentially prominent feature for migraine

classification. We further observe that the broadband gamma (80–200 Hz) as

well as HFO (450–750 Hz) frequency bands are important for HV-MII and HV-

MI-MII classification tasks, respectively.

The single-feature classification accuracy for the studied features is illus-

trated in Fig. 2.7, using a 10-fold cross validation score and XGB classifier. The

single-feature accuracy is obtained in the first step of the feature selection rou-

tine and could be used to estimate the feature importance. However, combining

the top performing features based on single-feature accuracy does not necessar-

ily lead to the most optimal feature set. In contrast, the employed feature se-

lection method accounts for the mutual information and correlation among fea-

tures to find the optimal subset. For instance, there is a high correlation among

features that pertain to similar aspects of a signal, such as HFO amplitude and

RMS. Therefore, the forward selection method is preferred to the single-feature

importance method to build a subset of discriminating features.

For migraineurs during attack, prior studies report that the N20-P25 ampli-

tude of LF-SSEP is higher than healthy controls [33, 64]. This is confirmed by the

superior performance of the N20-P25 feature in MI-HV classification. Moreover,

the primary cortical activation represented by late HFOs is shown to increase in

the ictal state [33]. We also observe that the late HFO RMS is a powerful feature
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Table 2.4: Performance summary and comparison with published works on mi-
graine classification.

Ko et al.[66] Cao et al.[37] Chong et al.[40] This work

Subjects 29 patients, 9 HV 40 patients, 40 HV 58 patients, 50 HV 42 patients, 15 HV
Input Signal Steady-State VEP Resting EEG Resting fMRI SSEP

Channel Count 19 4 – Single
Classifier KNN SVM-RBF – XGB

Classification Task Preictal-MI-Postictal MII-Preictal-HV HV-Patients HV-MI, HV-MII, MI-MII, HV-MI-MII
Accuracy 0.73 0.76 0.861 0.897, 0.887, 0.802, 0.733

in the HV-MI classification task. On the other hand, the reduced amplitude of

the early HFO burst reflects a decrease in somatosensory thalamo-cortical activ-

ity [65]. It is likely that the reduction of pre-activation level in sensory cortices

leads to habituation deficit in the migraine interictal state [32]. This could possi-

bly explain the high single-feature accuracy of early HFO features in the HV-MII

classification task. Another finding in Table 2.3 is that while the interictal group

exhibits reduced early HFOs, the amplitude of early HFO is not a key indicator

of the migraine ictal group. This is further verified by the single-feature perfor-

mance shown in Fig. 2.7. In other words, the features of early HFO are more

effective in separating the interictal group from healthy controls. This is due to

the fact that the thalamo-cortical activation reflected by early HFOs starts to nor-

malize during the ictal state. Yet, the MI group has relatively larger late HFOs

compared to the HV and MII groups.

2.5.2 Comparison to prior works

In Table 2.4, we summarize the performance of the proposed method and com-

pare it to prior works on classification of migraine phases. To the best of our

knowledge, this is the first SSEP-based migraine state classification system. As

shown in this table, various other signal modalities have been previously ex-

plored for detection of migraine states. The resting fMRI in ictal migraineurs
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and healthy controls was recently studied [40]. Compared with fMRI, SSEPs are

easier to collect and analyze in real time. Alternatively, resting-state EEGs and

visual evoked potentials (VEPs) have been previously used for migraine detec-

tion [37, 66]. However, these studies rely on multiple channels of input data,

which can hinder their integration into a low-cost and portable monitoring de-

vice. In this work, the classification tasks are performed using a single-channel

SSEP signal, making the proposed system more effective and convenient for

patient use. We attain a relatively high accuracy of above 88% in migraine ic-

tal or interictal versus healthy discrimination (HV-MI, HV-MII), and above 80%

in classification of two migraine states (MI-MII). Therefore, the proposed algo-

rithm promises the potential to predict migraine attacks in advance, making

early intervention possible for more effective migraine treatment.

2.5.3 Limitations

Despite promising results, our current study has several limitations. While

some of the analyzed biomarkers are supported by prior studies [32, 33, 43], the

reliability of classifiers and statistical significance of the achieved results need

to be verified on more patients and long-term recordings. Limited by the avail-

ability of data, we were not able to separately study the migraine preictal and

postictal states, which could be important in migraine attack prediction. There-

fore, the proposed classification system should be tested on more patients and

various migraine phases in future.

In addition, the individual differences among subjects might affect our anal-

ysis and similar studies that are performed across subjects. For example, N20

latency was reported to correlate with height and brain size [67], which are not

included in our study. A single-subject analysis of different phases of migraine
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is preferred to design a personalized migraine classification system. Here, we

tried to minimize the impact of individual differences by using normalized

spectral power features and standardized SSEPs. Given that the top-performing

features are well consistent with published works, we may conclude that indi-

vidual differences do not play a major role in our analysis. Most importantly,

while this study and previous works in Table 2.4 allow us to assess the sepa-

rability of various migraine states among individuals, the practical design of

a headache monitoring system requires the use of continuous data from a sin-

gle subject. In our future work, we will test a patient-specific classification ap-

proach on the long-term and multistate data from individual patients in order to

predict the transition from one state of migraine to another. This would be sim-

ilar to the patient-specific seizure monitoring systems for medication-resistant

epilepsy [68].

The biomarkers discovered by this work have been implemented on hard-

ware for multiclass migraine detection. Please refer to [69, 70] for more details.

2.6 Conclusion

In this study, we proposed a new SSEP-based system for migraine classifica-

tion. Machine learning approaches were combined with an efficient feature se-

lection method, not only to achieve a decent classification performance, but also

to provide a systematic solution for feature importance assessment. Overall,

we were able to achieve over 88% accuracy in migraine ictal or interictal versus

healthy detection. We tested a recently developed and highly competitive class

of boosting algorithms to classify migraineurs in ictal and interictal states. This

XGB framework outperforms most widely used models in our analysis. Fur-
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thermore, the proper selection of features can reduce the computational com-

plexity by 37% on average, while improving the classification accuracy by 2.4%.

From a clinical perspective, the study of discriminating SSEP biomarkers and

their correlation with migraine phases may further reveal the potential mech-

anisms underlying migraine attacks. The proposed system could be used as a

noninvasive headache monitoring system for early diagnosis and treatment of

underlying migraine headaches.
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CHAPTER 3

RESOT: RESOURCE-EFFICIENT OBLIQUE TREES FOR NEURAL SIGNAL

CLASSIFICATION

3.1 Introduction

Recently, the use of machine learning (ML) techniques has been extended to

emerging challenges in neural data processing, such as early symptom detection

[2, 11, 12, 71–73], brain image classification [74], and motor decoding [75, 76].

With the help of domain-specific biomarkers, ML models have been used to

classify neurophysiological signals with limited training sets [2, 11, 12, 71–

73, 75–78] —typically recorded through invasive or non-invasive electrodes—

while outperforming other conventional methods. However, although modern

machine learning tools have shown promise in neural signal classification, their

deployment on high-channel-count neural interfaces remains a challenge, given

the tight power budget and stringent area and memory constraints for such im-

plants. The alternative approach that consists in transmitting the extracted fea-

tures from neural channels for off-the-body classification [16, 17], has several

drawbacks. First, similar to raw data transmission, this approach suffers from

security and privacy concerns due to transmitting patients’ private data to ex-

ternal servers for processing. Second, while power demands for telemetry may

be relaxed due to lower-dimension feature transmission, the high loop latency

could be problematic for real-time and closed-loop operation of implantable de-

vices (e.g., for closed-loop activation of a therapeutic or sensory stimulation in

the brain). Making local predictions, on the other hand, could enable the device

to work everywhere irrespective of connectivity to external units, and decisions

could be made more quickly [12, 79, 80], with no need for raw data or feature

30



Figure 3.1: On-chip classification of neural signals for epileptic seizure detec-
tion, Parkinsonian tremor detection, or finger movement decoding. Neural
signals are recorded from different regions of the brain. The machine learn-
ing model is trained offline and the parameters are stored on-chip. Decisions
are made in real-time by the on-chip classifier, to predict a disease or classify a
movement.
streaming.

Among the widely-used ML algorithms for neural signal classification (e.g.,

logistic regression, support vector machines, k-nearest neighbours, neural net-

works, and decision trees), the latter is compatible with a lightweight, ‘on-

demand’ feature extraction framework, recently explored in [12]. A test sample

travels through a single root-to-leaf path during inference, thus visiting only a

small proportion of the entire model [12, 81]. The lightweight feature extrac-

tion capability of decision tree (DT) is crucial, considering the large number of

channels and predictive features in applications such as implantable seizure de-

tection. In addition, according to recent studies [79, 82], the model size of DTs

can be largely compressed to operate under extreme memory constraints. Given

their lightweight inference and small model size, tree-based models can be in-

tegrated on chip with state-of-the-art energy and area efficiency [12], and are

therefore favorable for neural and brain-machine interface applications. Fur-
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thermore, through techniques such as gradient boosting [83], decision tree en-

sembles have achieved a high accuracy in classifying time-series neurophysio-

logical data [2, 12, 21, 76, 77], typically outperforming the neural network-based

models [84]. We previously introduced a cost-efficient classification approach to

further reduce the inference overhead of DTs, by adding the feature cost (e.g.,

power dissipation) as a regularization term to the objective function [85]. In

this cost-efficient learning scheme, each feature is associated with a hardware

cost and the model is trained to prioritize the lower-cost features. This led to a

reduction of power dissipation by more than half for both seizure and tremor

detection tasks, with only a marginal loss in performance (0.9%) [85].

However, building optimal binary DTs is essentially an NP-hard problem

[86] and many approaches were recently proposed to optimize the tree structure

[87, 88]. Unlike conventional axis-parallel trees that hold deterministic decision

functions, probabilistic (i.e., soft) trees with oblique boundaries hold a proba-

bility decision leading to the left or right child. Inspired by back-propagation

neural networks, such probabilistic trees with stochastic routing are compatible

with gradient-based optimization [89]. As a result, one may effectively employ

various model compression techniques such as fixed-point quantization [90],

weight pruning, and sharing [91] that are widely used in hardware implemen-

tation of deep neural networks (DNNs). Moreover, these soft DTs still enable a

lightweight inference, by following the most probable path along the tree.

Here, we propose a framework based on soft oblique trees, by coupling

neural networks with decision trees. Therefore, we can exploit the benefits

of both models and compress an oblique tree (OT) with similar techniques as

employed in DNN architectures. In addition, we extend our cost-efficient ap-
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proach [85] to soft oblique trees, as a promising alternative to conventional axis-

aligned DTs. With these techniques, we demonstrate the performance of our sin-

gle cost-aware oblique tree on several neural classification problems including

seizure, tremor, and finger movement detection tasks (Fig. 3.1), and benchmark

it against state-of-the-art models.

Table 3.1: Information on Patients and Neural Recordings

Epilepsy # of Channels/ # of Recording
iEEG Portal ID Sample Rate (Hz) Seizures Duration
I001 P034 D01 47/5000 16 1d8h

Study 004-2 56/500 3 7d18h
Study 022 56/500 7 3d23h
Study 024 88/500 19 8d10h
Study 026 96/500 22 3d3h
Study 029 64/500 3 5d1h
Study 030 64/500 8 5d23h
Study 033 128/500 17 6d17h
Study 037 80/500 8 8d23h
Study 038 88/500 10 3d0h
Parkinson # of Channels/ Recording Duration (min)/

Recording Index Sample Rate (Hz) Side Tremor Prevalence (%)
1 4/2048 R 5.7/81.0
2 4/2048 L 8.3/48.9
3 4/2048 R 6.6/40.9
4 4/2048 L 6.1/95.7
5 4/2048 L 4.9/45.3
6 4/2048 L 5.5/83.4
7 4/2048 R 9.6/52.3
8 4/2048 L 10.0/89.5
9 4/2048 R 10.0/94.0

10 4/2048 L 1.5/53.0
11 4/2048 R 4.5/79.4
12 4/2048 R 6.6/49.3
13 4/2048 L 4.8/96.5
14 4/2048 L 5.9/94.8
15 4/2048 R 5.0/78.0
16 4/2048 L 4.7/83.2

Finger Movement # of Channels/ Recording Array
Subject Index Sample Rate (Hz) Side Location

1 46/1000 L Fronto-Parietal
2 63/1000 R Fronto-Temporal
3 61/1000 L Fronto-Temporal-Parietal
4 58/1000 L Fronto-Temporal
5 64/1000 L Parietal-Temporal-Occipital
6 43/1000 L Fronto-Temporal
7 64/1000 L Fronto-Temporal-Parietal
8 38/1000 R Fronto-Parietal
9 47/1000 L Frontal
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3.2 Neural classification tasks & data description

In this work, our focus is on algorithm development and hardware-algorithm

co-optimization of resource-efficient oblique trees (ResOT) as a promising ap-

proach for neural signal classification. To show the broad application and ef-

fectiveness of the proposed model, we evaluate this approach on three im-

plantable neural applications described below, including epileptic seizure de-

tection, Parkinsonian tremor detection, and finger movement classification, as

depicted in the general block diagram of Fig. 3.1.

3.2.1 Seizure detection

Our first target application is seizure detection for medically refractory epilepsy,

using continuous neural recordings from human subjects. Seizure detection is

a binary supervised classification problem with the aim of classifying between

seizure and non-seizure states of a patient. We applied our model to the in-

tracranial EEG (iEEG) recordings (shown as ECoG on Fig. 3.1) from patients

with epilepsy, publicly available on the iEEG portal [92]. The dataset includes

the iEEG recordings from 10 patients with at least 1 day of uninterrupted record-

ing and 3 seizure events. A total number of 113 seizure events were annotated

by expert neurologists, as detailed in Table. 3.1. The original recordings were

segmented into 1-second windows labeled as seizure or non-seizure.

3.2.2 Tremor detection

In a second study, we analyzed 16 local field potential (LFP) recordings from

12 patients with Parkinson’s disease (PD) who were implanted with 4-channel

deep-brain stimulation (DBS) lead(s), as described in [2, 93]. The statistics of this
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dataset are summarized in Table. 3.1. The LFP signals were recorded from the

subthalamic nucleus (STN) region at a 2048 Hz sampling rate. We labeled the

LFP recordings as tremor or non-tremor based on the simultaneous acceleration

measurements. Our ML model was trained to differentiate between tremor and

non-tremor states, using 3 bipolar LFP channels. The patients were recruited

from the University of Oxford and gave informed consent to participate in the

study that was approved by the local research ethics committee [2].

3.2.3 Finger movement classification

Our third study was focused on a finger movement classification task for brain-

machine interface (BMI) application, using the electrocorticography (ECoG)

data from 9 subjects sampled at 1kHz (Table. 3.1) [94]. During experiments,

subjects were asked to move one of their fingers for 2s, as instructed on a mon-

itor. Overall, each subject performed 30 trials per finger. The finger movement

was captured by a data-glove at 25 Hz. All patients participated in a purely vol-

untary manner after providing informed consent, under experimental protocols

approved by the Institutional Review Board of the University of Washington

(#12193) [94]. Unlike seizure and tremor detection tasks, the finger movement

detection is a 6-class problem. The labels for this study were defined as thumb,

index, middle, ring, and little finger movement plus a rest state.

3.3 Model description and related work

The majority of current on-chip classifiers for neural signal analysis is based on

support vector machines (SVMs). The EEG-based embedded seizure detectors

in [11, 26, 95] achieved energy efficiencies of 2.03, 1.85, and 273 µJ/class, respec-

tively, using SVM classifiers. An incremental-precision algorithm was proposed
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to reduce the energy consumption for on-chip seizure detection [96], replacing

the complex SVM with logistic regression. Compared to SVM, DTs also offer

a lightweight inference and can improve the energy efficiency for implantable

applications, where resource constraints are more critical than EEG-based wear-

able systems. We recently improved the energy efficiency for on-chip seizure de-

tection to 41.2 nJ/class [12], using an ensemble of eight gradient-boosted trees

that required 1kB of memory to store model parameters.

While previous SoCs integrate a small number of trees (e.g., <10 for seizure

detection [12], one for voice activity detection [97]), larger ensembles may be

necessary for reliable detection of more complex symptoms (e.g., 30 trees for

tremor detection [2, 93], 100 for finger movement classification [76], and 105

for migraine ictal vs. interictal detection [77]). However, as shown in [12], the

power consumption and area of the classifier could linearly scale with the num-

ber of trees [12].

To address this challenge and reduce the number of correlated trees, we pro-

pose to employ oblique decision trees in our model, as depicted in Fig. 3.2.

This enables us to further improve the memory, power efficiency, and scala-

bility of our classifier. Oblique trees require fewer splits and learn through

powerful nodes that employ more than one attribute to conduct a split, re-

sulting in reduced number of trees. Such oblique nodes are effective in sep-

arating the highly-correlated features in our neural processing tasks and im-

pose a modest cost in hardware, as later discussed in this chapter. In addition,

through gradient-based training as in neural networks, we are able to employ

weight pruning and sharing techniques to compress the model and generate

resource-efficient oblique trees. In this chapter, we benchmark the ResOT ap-

36



proach against boosted tree ensembles [12, 85], as well as recent models based

on sparse oblique trees, such as TAO [82] and Bonsai [79].

3.3.1 Neural biomarker extraction

Unlike end-to-end learning approaches such as DNN, feature-engineered mod-

els rely on hand-crafted features and generally obtain a superior performance

on small datasets [2, 77]. Here, we extract a set of predictive biomarkers for each

task, followed by ResOT training and classification in a supervised manner.

Based on prior studies on the informative biomarkers of EEG/iEEG to pre-

dict seizures, we extracted the following features for our epilepsy task [12]: line-

length (LLN), total power (Pow), variance (Var), and band power over delta (δ:

1–4 Hz), theta (θ: 4–8 Hz), alpha (α: 8–13 Hz), beta (β: 13–30 Hz), low-gamma

(γ1: 30–50 Hz), gamma (γ2: 50–80 Hz), high-gamma (γ3: 80–150 Hz), ripple (R:

150–250 Hz) and fast ripple (FR: 250–600 Hz) bands, where fast ripples are only

extracted from iEEG with 5 kHz sampling rate.

For the second task, we used a set of predictive biomarkers of tremor in

LFP, based on our recent study on Parkinson’s disease [2, 93]: the power of

beta, gamma, and high-frequency oscillation (HFO) in several sub-bands (β1:

13–20 Hz, β2: 20–30 Hz), (γ1: 30–45 Hz, γ2: 60–90 Hz, γ3: 100–200 Hz), (HFO1:

200–300 Hz, HFO2: 300–400 Hz), the power ratio between low and high HFO

(HFOR), tremor power (TPow), and Hjorth parameters [46]. The Hjorth activity

represents the signal variance, Hjorth mobility indicates the mean frequency,

and the rate of frequency changes is measured by Hjorth complexity [46].

For finger movement classification task, we computed the power of ECoG
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Table 3.2: Computed Features & Normalized Power Cost

Epilepsy Description Power
Line-Length (LLN) 1

d

∑
d |x[n] − x[n − 1]|, d =window size 1

Power (Pow) 1
d

∑
d x[n]2 1.87

Variance (Var) 1
d

∑
d(x[n] − µ)2, µ = 1

d

∑
d x[n] 2.93

Delta (δ) Band power in 1–4 Hz 34.07
Theta (θ) Band power in 4–8 Hz 34.07
Alpha (α) Band power in 8–13 Hz 34.07
Beta (β) Band power in 13–30 Hz 34.07

Low-Gamma (γ1) Band power in 30–50 Hz 34.07
Gamma (γ2) Band power in 50–80 Hz 34.07

High-Gamma (γ3) Band power in 80–150 Hz 34.07
Ripple (R) Band power in 150–250 Hz 34.07

Fast Ripple (FR) Band power in 250–600 Hz (at 5 kHz) 34.07
Parkinson Description Power

Low-Beta (β1) Band power in 13–20 Hz 34.07
High-Beta (β2) Band power in 20–30 Hz 34.07

Low-Gamma (γ1) Band power in 30–45 Hz 34.07
Gamma (γ2) Band power in 60–90 Hz 34.07

High-Gamma (γ3) Band power in 100–200 Hz 34.07
Low-HFO (HFO1) Band power in 200–300 Hz 34.07
High-HFO (HFO2) Band power in 300–400 Hz 34.07
HFO Ratio (HFOR) Low-HFO to High-HFO ratio 68.15

Tremor Power (TPow) Band power in 3–7 Hz 34.07
Hjorth Activity (Act) 1

d

∑
d(x[n] − µ)2, µ = 1

d

∑
d x[n] 2.93

Hjorth Mobility (Mob)
√

Var(x[n]−x[n−1])
Var(x[n]) 6.26

Hjorth Complexity (Com) Mob(x[n]−x[n−1])
Mob(x[n]) 9.62

Finger Movement Description Power
Alpha (α) Band power in 8–13 Hz 34.07
Beta (β) Band power in 13–30 Hz 34.07

Low-Gamma (γ1) Band power in 30–60 Hz 34.07
Gamma (γ2) Band power in 60–100 Hz 34.07

High-Gamma (γ3) Band power in 100–200 Hz 34.07
Local Motor Potential (LMP) 1

d

∑
d x[n] 0.50

Hjorth Activity (Act) 1
d

∑
d(x[n] − µ)2, µ = 1

d

∑
d x[n] 2.93

Hjorth Mobility (Mob)
√

Var(x[n]−x[n−1])
Var(x[n]) 6.26

Hjorth Complexity (Com) Mob(x[n]−x[n−1])
Mob(x[n]) 9.62

over alpha (α: 8–13 Hz), beta (β: 13–30 Hz), low-gamma (γ1: 30–60 Hz), gamma

(γ2: 60–100 Hz) and high-gamma (γ3, 100–200 Hz) bands, local motor potential

(LMP) as the moving average of raw ECoG signal, and the Hjorth parameters

(Act, Mob, Com) [76]. A brief mathematical description of these features is given

in Table. 3.2.

38



3.3.2 Feature cost estimation

To implement a cost-aware ML model, we first analyzed the hardware cost as-

sociated with different features, by simulating the power consumption for each

individual feature. A standard digital implementation with 1.2V supply was

used for circuit simulations. To extract band power features, FIR filters with 30

taps, 8-bit coefficients, and a parallel architecture were implemented. We have

previously shown that 30 taps is a reasonable choice for FIR filters, consider-

ing the trade-off between hardware complexity and classification accuracy [98].

The design was synthesized in a 65nm TSMC LP process and the power con-

sumption (post place and route) is reported in Table 3.2, after normalizing to

the power of line-length, as the lowest complexity feature for the first task.

3.3.3 Oblique trees with probabilistic splits

DTs are among the most powerful ML models that are widely used in practice.

A tree is composed of basic computational units, called internal nodes and leaf

nodes. Characterized by the hierarchical scheme of the nodes, DTs fit into com-

plex nonlinear distributions. We previously implemented a gradient boosting

ensemble of eight axis-aligned trees to detect epileptic seizures [12]. The chip

was implemented in a 65nm TSMC process and achieved state-of-the-art perfor-

mance in terms of energy-area-latency product [12]. Here, we consider a classi-

fication task with an input space of X ⊂ RD and output space of Y = {1, ...,K}.

Alternatively, the goal of this work is to learn a probabilistic tree model that can

map from the feature space (X) to the label space (Y).

As opposed to axis-aligned decision trees, oblique trees use multiple features

to make splits. As shown in Fig. 3.2, two-layer neural networks are used as split
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function to combine multiple features in each internal node. As a result, the hy-

perplane is oblique rather than axis-aligned and can better fit to data with corre-

lated features [99]. Training oblique trees is not a trivial task, as the weights are

not differentiable. In addition, without compressing the tree structure, oblique

trees may grow overly complex and use many features to make splits, increasing

both the model size and node complexity. To tackle these issues, we introduce

the oblique trees with probabilistic splits. Rather than deterministically routing

a decision tree, we send a sample to the left or right subtree based on a probabil-

ity value. With this probabilistic routing, we can derive the objective function

and train oblique trees with gradient-based optimization algorithms, and use

various compression techniques applied to neural networks.

Data We consider a dataset with N instances {(x1, y1), ..., (xN, yN)} ⊂ (X,Y) where

xn is a feature vector of length D and yn indicates the corresponding label.

Internal node In a binary decision tree, each internal node i ⊂ {1, ..., I} has two

child nodes. Generally, the internal nodes compute a binary function leading

to the left or right child. On the other hand, in a probabilistic tree, the internal

nodes make a soft decision which generates the probability of that split going

to the left or right. Since the tree is oblique, we model the decision function as:

σ(di(xn)) =
1

1 + e−xn⊤θi
(3.1)

where θi is the weight vector for the i-th internal node, σ(x) denotes the sig-

moid function, di(xn) is the output of internal node i, and σ(di(xn)) indicates the

probability of leading the feature vector xn to the left child at node i, Fig. 3.2.

Leaf node Leaf nodes are the terminal nodes of a decision tree. Each leaf node

can be reached through a unique path which follows a set of decisions made by

the internal nodes. Here, we use Rℓ ⊂ {1, . . . , I} to represent the internal nodes
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Figure 3.2: Proposed oblique tree, trained with soft decisions. In the inference
phase, the test samples follow the most probable path along the tree. Inside
internal nodes, the decision functions can be represented by a two-layer neural
network, for which we use weight pruning and sharing techniques to create
sparse connections.

which contain leaf node l in the right subtree, andLℓ ⊂ {1, . . . , I} to denote the in-

ternal nodes which contain leaf node l in the left subtree. Hence, the probability

of the feature vector xn reaching leaf node l can be expressed as:

p (l|xn; θ) =
∏
i∈Lℓ

σ (di(xn))
∏
i∈Rℓ

(1 − σ (di(xn))) . (3.2)

3.3.4 Learning procedure

Let us consider a supervised learning problem with N pairs of samples (xn, yn).

Our goal is to maximize the empirical log-likelihood of the training data:

max
θ,ω

N∑
n=1

log p(yn|xn; θ,ω). (3.3)

where ωl,k indicates the probability of leaf l having the class label k. The ωl,k is

normalized so that the sum of probabilities in a leaf is 1, i.e.,
∑K

k=1 ωl,k = 1. In

the probabilistic routing scheme, p(yn|xn; θ,ω) =
∑L

l=1 p(l|xn; θ)ωl,yn . Combining

the empirical loss with the regularization term λΩ (explained in the following
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Section), the optimization objective of our model can be expressed as follows:

O(θ,ω;X,Y) =
N∑

n=1

log
L∑

l=1

p(l|xn; θ)ωl,yn + λΩ. (3.4)

The training process for probabilistic trees is to maximize the above objective

function. A detailed discussion on estimating the optimal parameters (θ∗, ω∗)

can be found in [89]. Intuitively, by maximizing Eq. 5.8, the samples (xn, yn) are

encouraged to reach a leaf node l where the probability of class label ωl,yn is max-

imized. Here, we use the gradient-based Adam optimizer [100] for learning soft

oblique trees. The maximization of O(θ,ω;X,Y) is based on subsets of training

samples for which θ and ω are updated with mini-batches until O(θ,ω;X,Y)

converges.

3.4 Weight pruning, sharing & cost-aware inference

Weight pruning and sharing are model compression techniques that were ini-

tially introduced to reduce the model size for DNNs [91, 101], while a number of

recent studies have focused on hardware-efficient implementation of compres-

sion techniques [102].

Considering that in the training phase of oblique trees we apply a gradient-

based algorithm, each internal node can be viewed as a two-layer fully con-

nected network. Therefore, one may compress the oblique trees through similar

techniques as those used in neural network compression. Moreover, trees are

based on a hierarchical structure which is favored for lightweight inference, as

predictions can be made following a single root-to-leaf path without visiting the

complete model. By employing these techniques, we can significantly reduce

the inference complexity of oblique trees and enable their resource-efficient in-

tegration on chip.
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3.4.1 Regularization

In a general neural network pruning scheme, small weights are considered triv-

ial and set to zero. Regularization essentially penalizes the weights and encour-

ages the values to be small. We explore two types of regularizations in this

work: 1. The conventional ℓ2 regularization; 2. A new power-efficient regu-

larization that attempts to minimize the feature computation cost (i.e., power

consumption) during inference [85].

ℓ2 Regularization: While ℓ1 regularization can generate sparse representations

and has been used to optimize OTs [82], it has been shown that ℓ2 regularization

performs better for weight pruning [91]. Inspired by the efforts on DNN com-

pression, here we combine the ℓ2 regularization and weight pruning to generate

sparse oblique trees. In the following, θi represents the weight vector at the i-th

internal node and the ℓ2 regularization term is expressed as:

Ωℓ2 =

I∑
i=1

|θi|
2. (3.5)

Power-Efficient Regularization In order to design a cost-aware classifier [81],

we propose to include a regularization term that incorporates the hardware cost

for feature extraction. In our previous work [85], we proposed a cost-aware

model based on gradient-boosted tree ensemble to reduce the power consump-

tion, while maintaining the classification accuracy. Here, we extend the cost-

efficient study to oblique decision trees. In the following, β represents the fea-

ture cost vector of length D and pn,i is the probability of instance n going through

internal node i. Therefore, the feature extraction cost for instance n at node i can

be written as:

Ωn,i = pn,iβ
⊤
∥θi∥0. (3.6)
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where ∥θi∥0 is the ℓ0 normalization indicating which features are used to make

decisions. However, the ℓ0 normalization is not differentiable. Thus, it is not

compatible with gradient-based training. Following an approach similar to

[103], we instead approximate it with ℓ1 normalization. The new Ωn,i is ex-

pressed as:

Ωn,i ≈ pn,i

D∑
j=1

β j|θi, j| (3.7)

where β j and θi, j indicate the j-th entry of the vectors β and θi, respectively. Here,

Ωn,i denotes the expected feature extraction cost for a test sample n reaching

the internal node i. By evaluating the cost of mini-batch on the entire tree, the

power-efficient regularization term can be expressed as:

Ωpower−e f f icient =
1
N

N∑
n=1

I∑
i=1

Ωn,i (3.8)

≈
1
N

N∑
n=1

I∑
i=1

pn,i

D∑
j=1

beta j|θi, j| (3.9)

where N and I represent the number of training samples and internal nodes, re-

spectively. This equation essentially introduces a power-dependent regulariza-

tion term for the objective function in Eq. 5.8, by estimating the power consump-

tion for feature extraction based on the probability of visiting each node during

training. The feature costs are averaged over samples to take into account the

frequency of visiting a node during training (e.g., root nodes are visited more

often than those in the deeper layers of a tree).

3.4.2 Weight pruning

The number of weights associated with each internal node equals the number

of attributes. Therefore, the entire weight matrix θ has a size of I × D. Each
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Figure 3.3: The prune-retrain process to generate sparse oblique trees. Weight
pruning happens every 50 epochs. Testing on the MNIST dataset, the number
of parameters is reduced by a factor of 5.7, using weight pruning.

internal node contains a decision function which can be expressed as a fully

connected network with only input and output layers. Here, we follow a train-

prune-retrain process to generate an oblique tree with sparse connections in its

internal nodes. In the pruning phase, small weights below a threshold are set

to zero. Then, we retrain the tree to optimize the remaining weights. We iter-

atively repeat this prune-retrain process until the final performance converges,

as shown in Fig. 3.3.

Following weight pruning, we store the sparse weight matrix including the

values and relative indices of the survived weights. The sparse weight matrix

is stored in a column-first order and delta encoding is used to index the relative

position of non-zero weights [91]. To benchmark our approach against state-of-

the-art oblique tree-based models, we first tested the oblique tree with pruning

on the MNIST dataset. As depicted in Fig. 3.3, we were able to reduce the pa-

rameter count from 11.8k to 2.0k with <0.1% loss in accuracy.
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Figure 3.4: Weight distribution of an oblique decision tree: (a) without weight
sharing, (b) after 8-bit weight sharing, and (c) after 4-bit weight sharing.

Algorithm 1: Learning Resource-Efficient Oblique Trees
Data: T : training set, β: feature cost

1 θ,ω← pretrained by maximizing Eq.(3.4);

2 for i ∈ {1, . . . , nPrune} do

3 θ ← WeightPruning(θ) ;

4 for k ∈ {1, . . . , nEpochs} do

5 update θ,ω by maximizing Eq.(3.4)

6 θ ← WeightS haring(θ)

3.4.3 Weight sharing

The weight sharing process implemented here is similar to the weight quanti-

zation approach proposed in [91]. We first determine the range of the original

weights. The weights are then uniformly separated into k clusters across the en-

tire range and the shared weights are initialized by the average weight of each

cluster. Thus, all weights abandon their original values and take the value of

the shared weight. Following this step, the possible weights are within k shared

values and only ⌈log2k⌉ bits are required to index the weights, which are stored
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Figure 3.5: Histogram of split node outputs. The x-axis indicates the probability
of leading a sample to the left sub-tree. Decisions at the split nodes are mostly
certain (0 or 1). The experiment is conducted on the MNIST dataset.

in memory as floating point numbers (k × 32 bits required for shared weights).

Here, ⌈x⌉ indicates rounding up x to the nearest integer. Lastly, we fine-tune the

shared weights through gradient-based optimization and correct the potential

bias induced by direct weight sharing. Figure 3.4 shows the weight distribution

before and after weight sharing.

3.4.4 Single-path inference

In the common inference scheme for probabilistic trees, a test sample can travel

through multiple paths, while the probability of that sample reaching each leaf

node is calculated. The final prediction is made by averaging the leaf values

based on their probabilities. This is referred to as a multi-path approach as

shown in Eq. 3.2.

Alternatively, we apply a single-path approach to enable lightweight infer-

ence. In the proposed scheme, the test samples choose the most probable path

at each internal node, as shown in Fig. 3.2. This enables us to make predictions
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by only visiting a small portion of the model and extracting fewer features. The

single-path routing scheme is summarized in Eq. 3.10, where ⌊p⌉ denotes round-

ing the probability p to either 0 or 1.

psingle-path(l|xn; θ) =
∏
i∈Lℓ

⌊σ (di(xn))⌉
∏
i∈Rℓ

⌊1 − σ (di(xn))⌉. (3.10)

However, the single-path inference is an approximation method and may result

in information loss. To carefully analyze this, the histogram of all split node

outputs for the proposed soft decision tree is plotted in Fig. 3.5. This distri-

bution shows that samples are routed to the left or right sub-trees with very

low uncertainty. In other words, most available paths will never be visited.

Therefore, only the most probable path needs to be evaluated at the test time.

Similar results were reported in [89, 104] and our experimental results support

this single-path inference scheme.

The algorithmic pseudocode to train ResOT is presented as Algorithm. 1.

We performed the train-prune-retrain process for nPrune rounds, and updated

the parameters for nEpochs epochs using gradient-based learning. By employ-

ing model compression techniques and gradient-based maximization, the algo-

rithm returns a sparse weight matrix θ for an oblique decision tree.

3.5 Results

In this chapter, we propose a framework to generate resource-efficient oblique

trees (ResOT) with model compression, power-efficient learning [85], and

single-path inference. As a result, our approach offers a small model size and

lightweight inference, both requisite for low-power brain implants. In this Sec-

tion, we implemented the ResOT model for several tasks, including a toy digit

recognition task [105] on MNIST dataset and three neural signal classification
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Figure 3.6: (a) The compression ratio of an oblique tree with weight pruning
and sharing. We are able to compress the model by 20× with a marginal ac-
curacy loss (0.3%); (b) Comparison between the single- and multi-path infer-
ence schemes in terms of average number of parameters used during inference.
The single-path inference requires fewer parameters and causes no performance
loss. The experiment is conducted on the MNIST dataset.

problems. The purpose of first task is to benchmark our model against state-of-

the-art algorithms that are all tested on the MNIST dataset, in terms of accuracy

and model compression.

Among these tasks, seizure and tremor detection require binary labels,

whereas digit recognition and finger movement classification involve multi-

ple classes in their label space. A single ResOT was built for both binary and

multi-class tasks. In addition, we compared the ResOT approach with other

DT-based models in terms of classification performance, model size, and power

consumption, particularly for the three neural classification tasks that require a

low-power implementation.

3.5.1 Performance on MNIST dataset

We first tested the oblique tree compression on a toy dataset, MNIST [105], for a

10-class digit recognition task. We used the ℓ2 regularization (Eq. 3.5) for weight
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Figure 3.7: The performance of ResOT on the MNIST dataset compared to other
algorithms based on sparse oblique trees (TAO [82] and Bonsai [79]). Other
machine learning models such as FastGRNN [106], SpArSe [107], MODC [108],
lightGBM [109], logistic regression (linear model), k-nearest neighbors (kNN)
and multilayer perceptron (MLP) were also included. Various model types are
shown with different marker styles, while different colors represent model con-
figurations. Values outside the range are plotted on the boundary.

pruning, since the feature extraction cost was not a concern for this task. Test-

ing on a computer with a 6-core i7-8700K CPU, 178.4 seconds were required

to build a ResOT of depth 4 (pruning rounds: 4, batch size: 128, total epochs:

400). In order to reduce the model size, the tree was pruned to 2048 parameters,

indexed by 4 bits following weight sharing. Compared with the original OT

model, weight pruning and sharing significantly reduced the model size. As

illustrated in Fig. 3.6(a), weight pruning and sharing could reduce the model

size by 20× with only a marginal accuracy loss (0.3%). Moreover, although Re-

sOT is trained with a probabilistic routing scheme, it is still compatible with

lightweight single-path inference. In Fig. 3.6(b), we show that the single-path

inference uses 3.8× fewer parameters while maintaining the classification accu-

racy.

We compared our model with state-of-the-art sparse oblique trees such as
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TAO [82] and Bonsai [79], as well as other ML models including logistic re-

gression, kNN, multilayer perceptron (MLP), lightGBM [109], FastGRNN [106],

SpArSe [107] and MODC [108]. The settings of different models are as fol-

lows (also marked on Fig. 3.7): (1) ResOT-ℓ2(n): the proposed resource-efficient

oblique tree with ℓ2 regularization and a maximum depth of n. (2) lightGBM(n):

a boosted ensemble with n axis-aligned decision trees, where a single tree is a

one-vs-all (ova) binary classifier. (3) Bonsai: the Bonsai model that is based

on sparse-projected trees [79]. (4) TAO(n): the alternating optimized oblique

tree (TAO) with a maximum depth of n; TAO iteratively optimizes the decision

functions of the internal nodes and uses the ℓ1 regularization to generate sparse

connections. (5) linear classifier: one-vs-all logistic regression classifier. (6)

kNN(n): n-nearest neighbor classifier. (7) MLP(n): multilayer perceptron with

single hidden layer and n units. (8) SpArSe and MODC: memory-optimized

convolutional neural networks. (9) FastGRNN: gated recurrent neural network

with optimized model size. In all experiments, the weights were quantized to 4

bits (16 shared weights).

With a shallow ResOT (maximum depth of 4), we achieved a 7.81% test error

with only 2.5kB of memory, which is better than TAO [82] (10.2%) at similar set-

tings (maximum depth of 4). The test error can be further reduced by increasing

the depth. We achieved a 4.94% error with a depth of 7, which is better than

TAO (5.69%) with a deeper tree (depth of 12). We used the single-path inference

scheme to evaluate the test error of ResOT in these experiments. It should be

noted that although deep learning methods based on CNN/RNN (e.g., SpArSe,

MODC, FastGRNN) achieve a good performance with a small model size, they

are likely to suffer from a higher computational complexity compared to DTs,

since single-path inference is not possible in such networks and they typically
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require many multiplications and additions in their multi-layer architectures.

On the contrary, the proposed ResOT inherits the lightweight single-path in-

ference thanks to its hierarchical structure, and outperforms state-of-the-art

oblique tree-based models with low complexity such as Bonsai and TAO.

The decision process of ResOT is interpretable and can be easily visualized.

Figure 3.8 shows the visualization of our oblique tree (max depth of 4) trained

on the MNIST dataset. Both internal and leaf nodes are represented by pie

charts, showing the label distribution of the test data going through those nodes.

The labels are from 0 to 9, indicating which digit the image is belonging to. By

moving deeper in the tree, different digits tend to appear at different leaves. The

leaf nodes are labeled by the dominant class passing through that node. There-

fore, a single ResOT is capable of accurate multi-class separation with a shallow

depth of 4.

Figure 3.8: The visualization of ResOT trained on the MNIST dataset. Both
internal and leaf nodes are represented by pie charts, indicating the class distri-
bution of test samples. We can see that samples with different class labels are
mixed in the root node. Following classification, however, each leaf node has a
dominant class label.
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Figure 3.9: The classification performance on neural tasks. We implemented
5 different DT-based models including lightGBM [109], power-efficient gradi-
ent boosting (PEGB) [85], quantized PEGB (qPEGB) [85], and the proposed
resource-efficient oblique tree with ℓ2 regularization (ResOT-ℓ2, this work) and
with power-efficient regularization (ResOT-PE, this work). The models are com-
pared in classification performance, model size, and feature cost (power), for
each task. The error bars indicate the standard deviation across subjects and the
average values are shown on the bars. The size of memory and feature extrac-
tion cost are reduced with the proposed oblique tree-based models.

3.5.2 Performance on neural tasks

In order to assess the performance of the proposed ResOT model in neural sig-

nal classification, we performed three experiments including epileptic seizure

detection, Parkinsonian tremor detection, and finger movement classification.

We used a block-wise approach to split the data into train and test sets. For

seizure detection, the continuous iEEG recordings were divided into multiple

blocks, where each block consisted of one seizure segment and the preceding

non-seizure segment. For tremor and finger movement detection, the continu-

ous LFP and ECoG recordings for each patient were divided into 5 equal-sized

blocks, without shuffling. A 5-fold cross-validation method was used to report

the classification performance for each task, where 80% of blocks (rounded to
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the nearest integer) were used for training the model in each round and 20% for

testing, and the results of 5 rounds were averaged. For epilepsy patients with

less than 5 seizures, the performance was evaluated based on a leave-one-out

cross-validation (i.e., 2 blocks for training and 1 block for testing in a patient

with 3 seizures). The average training time of ResOT-ℓ2/ResOT-PE for seizure

detection, tremor detection, and finger movement classification was 86.1/144.2,

4.2/5.2 and 36.4/41.6 seconds, respectively.

Figure 3.9 compares different tree-based machine learning models in terms

of classification performance, model size, and feature extraction cost on three

neural tasks. We have previously shown that the ensemble of gradient boosted

trees achieves a higher classification performance on these tasks (i.e., seizure de-

tection [12], tremor detection [2], and finger movement classification [76]), com-

pared to other ML models. Therefore, here we compare our approach against

the lightGBM classifier [109], which is a fast and high-performance implemen-

tation of gradient-boosted trees. The hyperparameters (maximum depth and

tree count) for lightGBM were optimized in a subject-specific basis. Overall,

we trained 4–20 trees for seizure detection, 5–40 for tremor detection, and 30–

60 for finger movement classification, with maximum depths ranging from 2

to 6. The second model, Power-Efficient Gradient Boosting (PEGB), is a modi-

fied version of lightGBM that incorporates the feature power dissipation in the

objective function [85]. In our previous work, we showed that this approach

can reduce the feature computational cost while maintaining the classification

performance for both seizure and tremor detection tasks [85]. However, even

though PEGB can greatly reduce the hardware cost of a conventional gradient

boosting model, its circuit implementation suffers from the large model size

of the ensemble and limited scalability. To partially tackle this issue, quantized

54



PEGB (qPEGB) with fixed-point arithmetic was proposed [85] that improved the

model size compared to PEGB. We quantized the thresholds and leaf weights

with 12 bits for tremor detection, while 3/12 bits were used to quantize the

leaf weights/thresholds for seizure detection and movement classification [98].

Similarly, the maximum depth and number of trees for PEGB and qPEGB were

optimized for each subject and both models were included in this study.

Furthermore, we implemented the proposed ResOT model as described in

Section 3.3.3, with two different settings: (1) oblique tree with ℓ2 regularization

(ResOT-ℓ2), and (2) oblique tree with a power-efficient regularization (ResOT-

PE). Specifically, we regularized the oblique trees by tuning the weight prun-

ing threshold and regularization coefficients (λ). We also limited the maximum

tree-depth, while the final depth was determined by the algorithm under sev-

eral constraints (pruning, regularization, maximum depth). Both ResOT-ℓ2

and ResOT-PE consist of a single oblique tree with a maximum depth of 4,

while 4 bits were used to represent the shared weights. The regularization co-

efficients (λ) and number of parameters (following weight pruning) were op-

timized for each patient. Overall, the size of the weight matrix θ (i.e., I × D)

varies from 15×565 to 15×1409 for seizure detection, is 15×37 for tremor de-

tection, and varies from 15×343 to 15×577 for finger movement classification.

After weight pruning, the weight matrix becomes sparse, with an average of

108.8/121.6, 57/89, and 270.2/455.1 non-zero elements for ResOT-ℓ2/ResOT-PE

on three neural tasks.

We used the accuracy measure to evaluate the classification performance on

finger movement task, Fig. 3.9(c), and F1 score for seizure, Fig. 3.9(a), and

tremor detection tasks, Fig. 3.9(b), due to their highly unbalanced datasets.
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In our experiments, lightGBM achieved an average F1 score of 0.879(±0.069)

on seizure detection, 0.826(±0.131) on tremor detection, and an average accu-

racy of 0.612(±0.077) on finger movement classification task. However, rather

than using an ensemble of boosted trees, we show that a comparable perfor-

mance can be achieved using a single oblique tree with ℓ2 regularization (F1

scores of 0.889(±0.059) for epilepsy and 0.827(±0.131) for PD, and an accuracy

of 0.613(±0.076) for finger movement). The sensitivity and specificity of these

models in seizure and tremor detection are reported in Table. 3.3. With power-

efficient approach (PEGB, qPEGB, ResOT-PE), we made a trade-off between

classification performance and hardware cost. Overall, the proposed ResOT-

PE model achieves a comparable classification performance as lightGBM on all

tasks, while significantly reducing the model size and power consumption, as

later discussed in this Section.

Figures 3.9(d-f) compare the model size for different ML algorithms. As

shown in these figures, ResOT-ℓ2 is the most memory-efficient model, with

0.45(±0.19), 0.12(±0.08), and 0.54(±0.19) kB model sizes for the three performed

tasks, respectively. Compared with lightGBM, ResOT-ℓ2 reduces the model size

by 4.3× for seizure detection, 14.2× for tremor detection, and 24.4× for finger

movement classification. The ResOT-PE has a slightly larger model size com-

pared to ResOT-ℓ2 (memory saving of 3.4×, 10.6×, and 17.6× for seizure detec-

tion, tremor detection, and finger movement classification, compared to light-

GBM), since the power consumption is optimized along with memory. The

model size of PEGB is comparable to lightGBM, while a reduction factor of 2.3×

can be achieved by quantizing the parameters (qPEGB).

As discussed in Section 3.3.2, the power consumption for feature extraction
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Table 3.3: Sensitivity and Specificity for Seizure and Tremor Detection

Models Seizure Detection Tremor Detection
Sensitivity Specificity Sensitivity Specificity

lightGBM 0.881±0.069 0.984±0.016 0.890±0.103 0.281±0.263
PEGB 0.881±0.077 0.974±0.036 0.838±0.171 0.274±0.259

qPEGB 0.881±0.077 0.974±0.036 0.850±0.157 0.262±0.252
ResOT-ℓ2 0.877±0.076 0.986±0.012 0.897±0.097 0.274±0.252
ResOT-PE 0.860±0.084 0.989±0.012 0.901±0.091 0.247±0.260

was minimized through our power-efficient regularization framework. Figures

3.9(g-i) depict the inference power for various models on the three neural tasks.

The power during inference was calculated based on a single-path scheme for

all models, by summing up the power consumption of features visited along the

decision path. For example, for the case of ResOT, the power cost for a test sam-

ple is calculated by summing up the cost of extracted features:
∑I

i=1
∑D

j=1 β jCi, j,

where Ci, j = 0 or 1 indicates whether the internal node i is on the decision path

and feature j is extracted in that node. Compared to the benchmark model

(lightGBM), PEGB achieves an average power reduction of 4.2× on these tasks.

Compared to lightGBM, the ResOT-PE reduces the estimated power by 14.6×

for seizure detection, 6.8× for tremor detection, and 5.1× for finger movement

classification. The ResOT-PE model obtains the lowest feature extraction cost on

average, while offering a considerably smaller model size compared to qPEGB.

3.5.3 Power-efficient inference

To better demonstrate the superior power efficiency of ResOT-PE over ResOT-

ℓ2, we took a closer look into the structure of these models and the extracted

features in the oblique nodes. Figure 3.10 shows the average number of extrac-

tions for each feature, using the ℓ2 and power-efficient regularization schemes.

By adopting the power-efficient regularization term (Eq. 3.8) with the weight

pruning framework, the power-hungry features are assigned smaller weights,
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and as a result, they are less likely to survive during the weight pruning pro-

cess. As depicted in Table. 3.2, each feature is associated with a normalized

power cost, including its static and dynamic power. Taking the seizure detec-

tion task as an example, power, variance, and line-length have a low complexity,

while band power features consume the highest energy due to multiplications

and additions required for FIR filtering. In the power-efficient learning scheme,

hardware-friendly features are favored over costly ones, and the model tends to

use a higher number of these features compared to band powers. Similarly, we

see a smaller number of band power extraction for tremor detection and finger

movement classification, while a higher number of Hjorth activity, mobility, and

LMP features are extracted in these tasks. Compared with ResOT-ℓ2, the ResOT-

PE model reduced the power cost by 17.4×, 1.9×, and 1.7× for these neural tasks,

respectively, as shown in Fig. 3.10.

It should be noted that in this work, we implemented a specialized digital

hardware to measure the power of each feature as a stand-alone block, includ-

ing its dynamic and static power. However, in a full system implementation,

various resource optimization and power reduction techniques (e.g., mixed-

signal design, re-using the common blocks between different features, power

and clock gating) can be employed to further reduce the total energy of the sys-

tem.

3.6 Discussion

The proposed ResOT model could be considered as a combination of decision

trees and neural networks, that is further optimized for low-power implemen-

tation. With the mini-batch gradient descent training, ResOT is also compatible
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Figure 3.10: Illustration of the proposed power-efficient framework in terms of
feature extraction count, by comparing the ℓ2 and power-efficient regularization
schemes. The bars indicate the total number of extractions for each feature along
the decision path, that is averaged over subjects, for (a) seizure detection, (b)
tremor detection, and (c) finger movement classification tasks.

with an online learning framework where the model could dynamically adapt

to the non-stationary nature of neural signal, which is the focus of our future

work. In this Section, we discuss the contributions of this chapter and the bene-

fits of ResOT in terms of memory and power efficiency, as well as the hardware

overhead for implementing oblique splits, with a focus on the above neural clas-

sification tasks.

3.6.1 Hardware improvements

The benefits of the proposed ResOT model for hardware implementation are as

follows: 1. Memory Efficiency; Compared with conventional oblique trees, the

proposed ResOT model is compressed via weight pruning and sharing. The

resulting parameter matrix is sparse and can be efficiently stored in an on-
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chip memory such as SRAM. Compared to our earlier work that integrated 8

gradient-boosted trees with 1kB of memory for epilepsy [12], this work requires

2.2× less memory on average (ResOT-ℓ2), for storing the parameters of a sin-

gle oblique tree. 2. Lightweight Inference; Compared to a neural network

(that could be compressed with similar techniques), our model benefits from

the hierarchical structure of trees. During inference, we only need to follow

a single root-to-leaf path to make predictions, without visiting the rest of the

model. This lightweight inference can potentially improve the energy efficiency

for implantable and edge applications. 3. Cost-Aware Learning; With cost-

aware learning, ResOT learns to prioritize the lower-cost features during infer-

ence. We used the power consumption as a measure of cost in this work, and

ResOT-PE achieved one of the lowest power consumptions among the analyzed

models on all target tasks. The pros and cons of different tree-based models are

summarized in Table. 3.4.

3.6.2 Benefits of oblique splits

Conventional DT-based models such as random forest and lightGBM are com-

posed of axis-aligned trees with one feature-threshold pair in each internal

node. The decision boundaries of axis-aligned trees are parallel to the feature

space axes. As a result, such topologies ignore the correlations between fea-

Table 3.4: Comparison of Different Tree-based Models
Model Cost-aware Model Compression # of Trees Split Type

lightGBM ✗ ✗ > 1 Axis-aligned
PEGB ✓ ✗ > 1 Axis-aligned

qPEGB ✓ ✓† > 1 Axis-aligned
ResOT-ℓ2 ✗ ✓‡ 1 Oblique
ResOT-PE ✓ ✓‡ 1 Oblique
† weight and threshold quantization
‡ weight pruning and sharing
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Table 3.5: The Overhead Cost of Oblique Nodes in ResOT

Task ResOT-ℓ2 ResOT-PE
# Mult. # Add. # Mult. # Add.

Epilepsy 108.8 102.6 121.6 107.1
Parkinson 57 46.8 89 75.5

Finger Movement 270.2 260 455.1 440.1

tures and might be suboptimal for classifying highly correlated data. To tackle

this issue, oblique trees use a linear model as the split function. Thus, multi-

ple features are combined at the internal node and the decision boundary is an

oblique hyperplane that can better adapt to the various distributions of input

data. Therefore, oblique trees perform better on signals with strongly correlated

features [99]. This is typically the case for neural signal classification tasks. For

example, line-length and variance both describe the signal variations and show

a positive correlation during a seizure, although their mathematical definitions

are different. Moreover, the correlation between neural signals recorded by ad-

jacent channels of an electrode array (depending on the spacing of electrodes),

leads to a correlation between corresponding features. Thus, oblique trees pro-

posed here are favored over axis-aligned trees for neural signal classification

tasks (e.g., ResOT-ℓ2/ResOT-PE perform slightly better than lightGBM/PEGB

in terms of F1 score, as shown in Fig. 3.9(a-c)).

Indeed, axis-aligned trees can be considered as a subset of oblique trees and

have the advantage of fast training and easy interpretation. In this chapter, we

show that ResOT is a memory- and power-efficient alternative for large axis-

aligned ensembles, and is particularly useful for neural classification tasks that

may require many trees.
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3.6.3 Hardware complexity of oblique nodes

Axis-aligned decision trees use simple comparators at their internal nodes to

compare a feature with a threshold. Alternatively in this work, we used oblique

trees trained with a probabilistic routing. While a sigmoid function needs to

be calculated in a probabilistic training phase, it is simplified to a comparison

during single-path inference (i.e., x⊤nθi > 0 or ≤ 0), since the test samples only

travel through the most probable path. Thus, similar to gradient-boosted trees

[12], the hardware complexity is dominated by feature extraction process and

comparators can be ignored in total power estimation.

However, oblique trees still require a weighted sum of features as input to

the comparator. These features are associated with the non-zero elements of the

sparse weight matrix θ following weight pruning. In addition to the hardware

cost for features (Fig. 3.9), the overhead cost of implementing the weighted sum

should be considered for an oblique tree. Table. 3.5 summarizes the average

overhead cost of ResOT-ℓ2 and ResOT-PE on three neural tasks, by calculat-

ing the total number of multiplications and additions required to generate the

weighted sum of features in an oblique tree (i.e., calculated for 15 nodes in a

tree of depth 4). Since each non-zero element is associated with a multiplica-

tion, the number of additional multiplications is inversely proportional to the

sparsity of the weight matrix θ. Interestingly, it can be shown that the hardware

cost for oblique node implementation is negligible compared to a single feature

extraction. Here, we consider the case of neural data classification using oblique

trees, where the input signal is sampled at f Hz with a window size of W used

for feature extraction. To implement a band power feature (as a comparison),

the signal is first passed through a digital FIR filter. A total number of t × N

multipliers and (t − 1) × N adders are required to filter the neural signal, where
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Figure 3.11: (a) The architecture of a 256-channel scalable and versatile closed-
loop SoC. The proposed ResOT is implemented on-chip to decode neural activ-
ities. (b) The chip micrograph.

t = 30 represents the number of FIR taps and N = f × W indicates the number

of samples in a window of signal. We then calculate the power of the filtered

signal, which requires an additional N multipliers and N − 1 adders. In total,

the extraction of a band power feature requires (t + 1) × N multiplications and

t × N − 1 additions. Assuming the worst case overhead cost for ResOT-PE ap-

plied to finger movement classification (Table. 3.5) with f = 1kHz and W = 0.2s,

the extraction of a single band power feature requires 6200 multiplications and

5999 additions, whereas the ResOT-PE evaluation only requires 455.1 multipli-

cations and 440.1 additions on average (over subjects) to linearly combine the

features in the oblique nodes. Thus, the overhead cost is lower than feature cost

of a single band power feature by over an order of magnitude. Moreover, in the

single-path inference scheme, a maximum of 4 nodes are sequentially processed

per tree, which could further reduce the complexity of the classifier during infer-

ence. Therefore, the overhead cost of oblique nodes in this single-tree scheme is

marginal and will not burden the resource-efficient implementation of proposed

OT model.
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3.6.4 Hardware implementation

We note that ResOT was implemented on-chip, as presented in [110, 111]. The

System-on-Chip (SoC) was produced using the TSMC 65-nm CMOS process,

resulting in a chip dimension of 4 × 2 mm2. Figure 3.11 displays the chip ar-

chitecture and micrograph. The SoC, encompassing 256 channels, only takes up

an active area of 3.48 mm2 (equivalent to 0.014 mm2 per channel) and, when in

inference mode, consumes 453 µW at a supply voltage of 1.2 V.

3.7 Conclusion

In this chapter, we proposed the ResOT model, a hardware- and memory-

efficient approach for neural signal classification. Weight pruning and sharing

were applied together with power-efficient regularization to compress the tree

and enable cost-aware learning. Being trained with a probabilistic routing, Re-

sOT benefits from a single-path inference scheme, enabling its lightweight im-

plementation. Testing on three neural signal classification tasks with 31 patients,

our model outperformed the state-of-the-art ensemble of boosted trees in both

model size and power consumption. Resource-constrained applications such

as neural implants and IoT devices could benefit from the proposed hardware-

friendly classifier.
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CHAPTER 4

TREE IN TREE: FROM DECISION TREES TO DECISION GRAPHS

4.1 Introduction

Decision trees (DTs) and tree ensembles are widely used in practice, particularly

for applications that require few parameters [79, 112–114], fast inference [82,

115], and good interpretability [116, 117]. In a DT, the internal and leaf nodes

are organized in a binary structure, with internal nodes defining the routing

function and leaf nodes predicting the class label. Although DTs are easy to

train by recursively splitting leaf nodes, the tree structure can be suboptimal for

the following reasons: (1) DTs can grow exponentially large as the depth of the

tree increases. Yet, the root-leaf path can be short even for large DTs, limiting the

predictive power. (2) In a DT, the nodes are not shared across different paths,

reducing the efficiency of the model.

Decision trees are similar to neural networks (NNs) in that both models

are composed of basic units. A possible way to enhance the performance of

DTs or NNs is to replace the basic units with more powerful models. For

instance, “Network in Network” builds micro NNs with complex structures

within local receptive fields to achieve state-of-the-art performances on image

recognition tasks [118]. As for DTs, previous work replaced the axis-aligned

splits with logistic regression or linear support vector machines to construct

oblique trees [82, 87, 112, 113, 119, 120]. The work in [114] further incorporates

convolution operations into DTs for improved performance on image recogni-

tion tasks, while [112] replaces the leaf predictors with linear regression to im-

prove the regression performance. Unlike the greedy training algorithms used

for axis-aligned trees (e.g., Classification and Regression Trees or CART [121]),
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oblique trees are generally trained by gradient-based [113, 119, 120] or alternat-

ing [82, 112] optimization algorithms.

Inspired by the concepts of Network in Network [118] and oblique trees

[82, 87], we propose a novel model, Tree in Tree (TnT), to recursively replace

the internal and leaf nodes with micro decision trees. In contrast to a conven-

tional tree structure, the nodes in a TnT form a Directed Acyclic Graph (DAG)

to address the aforementioned limitations and construct a more efficient model.

Unlike previous oblique trees that were optimized on a predefined tree struc-

ture [112, 114], TnT can learn graph connections from scratch. The major con-

tributions of this work are as follows: (1) We extend decision trees to de-

cision graphs and propose a scalable algorithm to construct large decision

graphs. (2) We show that the proposed algorithm outperforms existing de-

cision trees/graphs, either as a stand-alone classifier or base estimator in an

ensemble, under the same model complexity constraints. (3) Rather than re-

lying on a predefined graph/tree structure, the proposed algorithm is capable

of learning graph connections from scratch (i.e., starting from a single leaf

node) and offers a fully interpretable decision process.

Algorithm 2: Naive decision graph (NDG) [122]

1 G ← initialize graph with a leaf node;

2 for i← 1 to N do

3 for each leaf node (li) ∈ G do

4 Find the maximum gain (gi) if we split li ;

5 for each pair of leaf nodes (li, l j) ∈ G do

6 Record gain (gi, j) if we merge li and l j;

7 Split/merge nodes to maximize gain;

8 Note: The split operation has a model complexity penalty (C) for creating an internal node.
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4.2 Related work

Decision graph (DG) is a generalization of the conventional decision tree algo-

rithm, extending the tree structure to a directed acyclic graph [122, 123]. Despite

similarity in using a sequential inference scheme, training and optimizing DGs

is more challenging due to the large search space for the graph structure. The

work in [122] proposed a greedy algorithm to train DGs by tentatively joining

pairs of leaf nodes at each training step (NDG, Algorithm 2). Alternatively, in

this work, we revisit the concept of decision graphs by exploiting recent ad-

vances in non-greedy tree optimization algorithms [82, 87, 120, 124]. Our pro-

posed Tree in Tree algorithm can construct DGs as a more accurate and efficient

alternative to the widely-used decision trees, both as stand-alone classifiers and

as weak learners in the ensembles.

Conventional decision tree learning algorithms such as CART [121] and its

variations follow a greedy top-down growing scheme. Recent work has focused

on optimizing the structure of the tree [88, 124, 125]. However, constructing an

optimal binary DT is NP-hard [86] and optimal trees are not scalable to large

datasets with many samples and features [88, 124, 125]. Recent studies have fur-

ther developed scalable algorithms for non-greedy decision tree optimization,

with no guarantee on tree optimality [82, 87, 112, 113, 119, 120]. Such scalable

approaches can be categorized into two groups: tree alternating optimization

(TAO) [82, 112] and gradient-based optimization [87, 113, 119, 120].

TAO decomposes the tree optimization problem into a set of reduced prob-

lems imposed at the node levels. The work in [82] applied the alternating op-

timization to both axis-aligned trees and sparse oblique trees. Later, [112] ex-

tended TAO to regression tasks and ensemble methods. Unlike TAO, gradient-
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based optimization requires a differentiable objective function, which can be ob-

tained by different methods. For example, [87] derived a convex-concave upper

bound of the empirical loss. [119] and [113] considered a soft (i.e., probabilistic)

split at the internal nodes and formulated a global objective function. The acti-

vation function for soft splits was refined in [120] to enable conditional inference

and parameter update. Both TAO and gradient-based optimization operate on

a predefined tree structure and optimize the parameters of the internal nodes.

The proposed Tree in Tree algorithm aims to optimize the graph/tree struc-

ture by growing micro decision trees inside current nodes. Compared to the

greedy top-down tree induction [121], Tree in Tree solves a reduced optimiza-

tion problem at each node, which is enabled via non-greedy tree alternating

optimization techniques [82]. Compared to NDG, TnT employs a non-greedy

process to construct decision graphs, which leads to an improved classification

performance (discussed in later sections). Compared to axis-aligned decision

trees (e.g., TAO [82, 112], CART [121]), TnT extends the tree structure to a more

accurate and compact directed acyclic graph, in which nodes are shared across

multiple paths.

4.3 Methods

In this work, we consider a classification task with input and output spaces

denoted by X ⊂ RD and Y = {1, ...,K}, respectively. Similar to conventional

decision trees, a decision graph classifier G consists of internal nodes and leaf

nodes. Each internal node is assigned a binary split function s(·; θ) : X →

[le f t child, right child] parametrized by θ, which defines the routing function of

a graph. For axis-aligned splits, θ indicates a feature index and a threshold. The

terminal nodes (with no children) are named leaf nodes and indicate the class
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labels.

4.3.1 Decision graph

As an extension to the tree structure, decision graphs organize the nodes into

a more generic directed acyclic graph. In this work, we limit our discussion

to axis-aligned binary DTs/DGs in which each internal node compares a fea-

ture value to a threshold to select one of the two child nodes. Similar to the

sequential inference process in DTs, the test samples in a DG start from the root

and successively select a path at the internal nodes until a leaf node is reached.

The main differences between binary DTs and DGs are the following: (1) In

DTs, each child node has one parent node. However, DGs allow multiple par-

ent nodes to share the same child node. Therefore, DG can combine the nodes

with similar behaviors (e.g., similar split functions) to reduce model complexity.

(2) In binary DTs, the number of leaf nodes is always greater than the internal

nodes by one. In DGs, however, #Leaves ≤ #Internals+ 1, since multiple internal

nodes can share the same leaf node. Furthermore, there exists a unique path to

reach each leaf node in a tree structure, which does not hold within DGs. (3)

The model complexity of a DT is often quantified by the number of internal or

leaf nodes. However, we can post-process a DG by merging the leaf nodes with

the same class label. As a result, DGs have a minimum leaf node count equal

to the number of classes. Therefore, we use the number of splits (i.e., internal

nodes) to quantify the model complexity of a DG.
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Figure 4.1: (a) The growing phase of TnT. The micro decision tree (in dashed
box) replaces an internal node (dashed circle). Compared to a single node, the
substitute micro tree can provide a more powerful split function. (b) The merg-
ing phase of TnT. We merge the fitted micro tree into the current structure to
create a directed acyclic graph.

4.3.2 Tree in Tree

We propose a novel algorithm named Tree in Tree as a scalable method to con-

struct large decision graphs. Conventional DT training algorithms (e.g., CART)

are greedy and recursively split the leaf nodes to grow a deep structure, with-

out optimizing the previously learned split functions. The key difference be-

tween the proposed TnT model and conventional approaches lies in the op-

timization of the internal nodes. TnT fits new decision trees in place of

the internal/leaf nodes and employs such micro DTs to construct a directed

acyclic graph. Overall, the proposed TnT model is a novel extension to the con-

ventional decision trees and generates accurate predictions by routing samples

through a directed acyclic graph.

Figure 4.1 shows the high-level procedure for training a decision graph with

the proposed TnT algorithm. Assuming a starting decision graph (e.g., a deci-

sion tree or a single leaf node), our goal is to grow a larger model with improved

predictive power. In the growing phase of TnT (Fig. 4.1(a)), we replace a node

(dashed circle) with a micro decision tree with multiple splits to enable more
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accurate decision boundaries. In the merging phase (Fig. 4.1(b)), the micro de-

cision tree is merged into the starting model to construct a TnT decision graph,

in which a child node (node 2) may have multiple parent nodes (node 4 and 5).

Growing the graph from internal nodes We consider the training of a de-

cision graph as an optimization problem with the aim of minimizing the loss

function on the training data:

min
∑

x,y∈X,Y

L (y,G(x;Θ)). (4.1)

TnT grows the decision graph G(·;Θ) from an arbitrary internal node ni ∈ G

with the split function s(·; θi). θi denotes the trainable parameters of ni including

a feature index and a threshold for axis-aligned splits. The overall goal is to

replace ni with a decision tree ti and minimize the loss function as indicated in

(4.1). All other nodes remain unchanged as we train ti.

Let us consider a subset of samples (Xsubset,Ysubset) that is sensitive to the split

function s(·; θi), as defined by the following expression:

Gni→le f t(Xsubset;Θ\θi) , Gni→right(Xsubset;Θ\θi), (4.2)

where Θ\θi denotes the parameters of all nodes in G excluding ni. Growing the

graph from ni does not change Θ\θi since all other nodes are fixed as we solve

the reduced optimization problem at ni. Gni→le f t sends the samples to the left

child at ni (i.e., s(·; θi) → le f t child) while Gni→right routes the samples to the right

child at ni. With Θ\θi being fixed, the output of decision graph only depends on

θi (i.e., s(·; θi))

G(x;Θ) =


Gni→le f t(x;Θ\θi) if s(x; θi)→ le f t child

Gni→right(x;Θ\θi) if s(x; θi)→ right child.
(4.3)
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Having (4.1) and Equation (4.3), the reduced optimization problem at node ni is

given by

∑
x,y∈X,Y

min(L(y,Gni→le f t(x;Θ\θi)), L(y,Gni→right(x;Θ\θi))). (4.4)

Since L(y,Gni→le f t(x;Θ\θi)) , L(y,Gni→right(x;Θ\θi)) only if the inequality (4.2)

holds, we train the micro decision tree ti(x) based on the subset (Xsubset,Ysubset)

instead of using the entire training set. The optimization problem (4.4) has a

closed-form solution as follows:

t∗i (x) B


le f t child if L(y,Gni→le f t(x;Θ\θi)) < L(y,Gni→right(x;Θ\θi))

right child if L(y,Gni→right(x;Θ\θi)) < L(y,Gni→le f t(x;Θ\θi)).
(4.5)

Equation (4.5) defines the optimal split function at the internal node ni which is

used to fit the micro decision tree ti. With other nodes being fixed, we show that

the overall loss function of G can be minimized by pursuing the optimal spilt

function at an arbitrary internal node ni. Rather than using a simple axis-aligned

split, the proposed TnT algorithm learns a complexity-constrained decision tree

to better approximate the optimal split function (Equation (4.5)).

Growing the graph from leaf nodes Growing from the leaf nodes is a stan-

dard practice in greedy training algorithms, where we recursively split the leaf

nodes to achieve a deeper tree with a better fit on the training data [121]. In

TnT, we replace the leaf predictors with decision trees. Let G(·;Θ) be a decision

graph and nl ∈ G an arbitrary leaf node with a constant class label l(·; θl) = c.

Our goal is to minimize the overall loss function L (Y,G(X;Θ)) by replacing the

leaf predictor l(·; θl) with a micro decision tree tl(x).

Consider the subset of samples (Xsubset,Ysubset) that visit the leaf node nl. Min-
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imization of the loss function (4.1) can be expressed as

min
∑

x∈Xsubset
y∈Ysubset

L (y, tl(x)), (4.6)

where the minimum is simply achieved at t∗l (x) B y for x, y ∈ Xsubset,Ysubset (i.e.,

the ideal leaf predictor). We build a decision tree to approximate the ideal leaf

predictor.

Following the growing phase (Fig. 4.1(a)), the micro decision trees are

merged into the decision graph (Fig. 4.1(b)). The nodes of the TnT decision

graph are similar to those in the decision trees, where an internal node makes a

single axis-aligned split and each leaf node contains a class label. In this chap-

ter, we construct TnT decision graphs using axis-aligned splits. However, we

do not limit the form of split functions (s(·; θ)) or leaf predictors l(·; θ) in the TnT

training process. For example, we could use logistic regression as the split func-

tion of the decision graph and micro trees to construct oblique TnT. In this case,

θ refers to the trainable weights in logistic regression. Therefore, various tree-

based models could potentially benefit from the proposed TnT framework.

4.3.3 Learning procedure

Unlike the learning procedures in [82, 112] which require a predefined tree

structure, our proposed TnT algorithm grows a decision graph from a single

leaf node. The training of TnT decision graphs is an iterative process that fol-

lows a grow-merge-grow- · · · -merge alternation. Algorithm 3 shows the pseu-

docode to train a TnT decision graph. Lines 7-15 find the subset of data samples

Xsubset,Ysubset that is sensitive to the internal split functions or leaf predictors at

each node, and grow micro decision trees. In the internal nodes, Ysubset repre-

sents binary labels for the left or right child (i.e., not the label of the training set).
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Algorithm 3: Tree in Tree (TnT)
Data: Training set X,Y
Result: TnT decision graph G fitted on the training set

1 G ← initialize graph with a leaf node;
2 in f er(nt,Xt) denotes the forward inference of data Xt starting from node

nt ;
3 for i1 ← 1 to N1 do
4 for i2 ← 1 to N2 do
5 for each node (ni) ∈ G do
6 Samples that visit ni: Xi,Yi ⊂ X,Y;
7 if ni is an internal node then
8 Yi,le f t ← in f er(ni.le f t child,Xi);
9 Yi,right ← in f er(ni.right child,Xi);

10 index le f t ← (Yi = Yi,le f t and Yi , Yi,right) ;
11 index right ← (Yi = Yi,right and Yi , Yi,le f t) ;
12 Xsubset,Ysubset ← copy samples from Xi,Yi at

(index le f t or index right);
13 Ysubset[index le f t]← 0, Ysubset[index right]← 1;
14 else if ni is a leaf node then
15 Xsubset ← Xi, Ysubset ← Yi;
16 Grow a micro tree ti on subset Xsubset,Ysubset in place of ni;
17 Merge ti into the current decision graph G for all nodes (ni ∈ G)

Line 16 grows micro decision trees according to the growing phase of the TnT.

Line 17 merges the trees into the graph structure.

Regularization Regularization is critical to limit model complexity and pre-

vent overfitting of a decision tree and it is similarly required for TnT decision

graphs. In the growing phase of a TnT (either from internal or leaf nodes),

the subsets of samples Xsubset,Ysubset at different nodes may have various sizes.

Therefore, we need a robust regularization technique to operate across all nodes

of the TnT and to train the micro decision trees without overfitting on small

subsets. In this work, we propose to use the sample-weighted cost complex-

ity pruning approach [126, 127]. We prune micro decision trees by minimiz-

ing R(ti) + Ci|ti|, where R(ti) is the misclassification measurement and |ti| denotes
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the tree complexity. We calculate R(ti) using Gini impurity and measure |ti| by

counting the number of splits [121]. Ci is the sample-weighted regularization

coefficient calculated by

Ci = C
#X

#Xsubset,i
, (4.7)

where #Xsubset,i is the sample count of subset at node ni. C is a hyperparame-

ter of the TnT and is used to control the pruning strength and tune the model

complexity (# splits). For a smaller subset, we need to apply a stronger cost

complexity pruning to prevent overfitting.

Figure 4.2: Comparison of DT and TnT decision graph on synthetic data; (a) A
toy classification task with desired axis-aligned boundaries. x1, x2 and t1 − t4 de-
note two features and four thresholds, respectively. Different markers represent
binary class labels. (b) A decision tree requires at least six splits to classify the
data. (c) A TnT decision graph only requires four binary splits on the same task.

Fine-tune and post pruning The TnT decision graphs are compatible with

Tree Alternating Optimization (TAO [82]), previously proposed to optimize de-

cision trees. We used TAO to fine-tune the TnT decision graphs, which led to

slight improvements in classification accuracy. A post pruning process is further

applied to TnT decision graphs to remove the dead nodes. A node is pruned if

no training samples travel through that node. Post pruning can result in a more

compact decision graph and reduce the number of splits without affecting the

training accuracy.
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Time complexity Compared to decision trees, decision graphs offer an en-

riched model structure, which increases the complexity of learning the graph

structure. Previous work constructed decision graphs by tentatively merging

two leaf nodes at each training step, with a time complexity of O(N2
l ), where Nl

is the number of leaf nodes [122]. Since the proposed TnT algorithm generates

new splits by growing micro decision trees inside the nodes, the dataset is ini-

tially sorted in O(mklog(m)) for m samples and k features. The time complexity

for creating a new split depends on the dataset (i.e., O(mk)) and not on the size

of the graph. As the graph grows larger, the TnT algorithm optimizes each node

for N1 ∗ N2 times in the worst case (Algorithm 3). Since N1 and N2 are hyperpa-

rameters that were fixed in this work (N1 = 2,N2 = 5, the choice of N1 and N2 will

be discussed in the following section), TnT exhibits a linear time complexity to

the number of nodes, O(nmk+mklog(m)) with n being the number of nodes. Test-

ing our Python implementation on an Intel i7-9700 CPU, it took 325.3 seconds

to build a TnT of 1k splits on the MNIST dataset (60k samples, 784 features, 10

classes).

Synthetic data We first construct a synthetic classification dataset to show

the potential benefits of TnT over conventional decision tree algorithms (e.g.,

CART). Figure. 4.2(a) visualizes the two-dimensional data distribution with

one class on the corners and the other class elsewhere. To achieve optimal de-

cision boundaries, a conventional decision tree requires six splits (Fig. 4.2(b)),

whereas TnT only requires four splits to generate the same decision boundaries

(Fig. 4.2(c)). By sharing nodes among different decision paths in a graph, TnT

enables a more compact model with fewer splits compared to a conventional

DT.
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Table 4.1: Comparison of TnT and CART at optimal split count (#S, determined
by cross-validation). Mean test accuracy (±standard deviation) are calculated
on 5 independent trials.

model MNIST Connect-4 Letter Optical recognition

accuracy #S accuracy #S accuracy #S accuracy #S

TnT 90.87±0.31 600 78.85±0.46 864 86.62±0.02 1.2k 86.32±0.24 174
CART 88.59±0.14 1.1k 77.23±0.01 931 86.26±0.15 1.3k 85.56±0.46 193

model Pendigits Protein SenseIT USPS

accuracy #S accuracy #S accuracy #S accuracy #S

TnT 92.61±0.53 125 57.26 69 80.48±0.42 198 88.76±1.36 31
CART 91.74±0.13 166 55.30 76 79.40 345 87.35±0.15 109

4.4 Experiments: TnT as a stand-alone classifier

We test the TnT decision graph as a stand-alone classifier and benchmark

it against several state-of-the-art decision tree/graph algorithms with axis-

aligned splits, including classification and regression trees (CART [121]), tree

alternating optimization (TAO [82]), and the naive decision graph (NDG [122]).

We also implement the TnT algorithm in two different settings: with or with-

out fine-tuning. We observe that the proposed TnT algorithm consistently

achieves a superior performance under similar complexity constraints on mul-

tiple datasets.

Figure 4.3: (a) The number of splits as a function of the root-leaf path length. The
standard deviation across different samples is shown by shaded areas. (b) The
number of splits vs. regularization coefficient C. (c, d) Test performance using
different hyperparameter settings on the MNIST dataset. The default setting
(N1 = 2,N2 = 5) is plotted in both figures for comparison.

In the worst-case scenario, the number of nodes increases exponentially with
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the depth of a tree, which prevents DTs from growing very deep. However, this

limitation does not apply to TnT decision graphs. Figure 4.3(a) illustrates the

average length of the root-leaf path as a function of model complexity for TnT

and CART. With 1000 splits, the average decision depth of the best-first CART

is 12.3, whereas the TnT decision graph has a mean depth of 27.3. In the best-

first decision tree induction, we add the best split in each step to maximize the

objective [128]. Therefore, TnT can achieve a much “deeper” model without

significantly increasing the number of splits. The regularization coefficient C

is used to control the complexity of decision graphs in TnT. The number of splits

decreases as we increase the pruning strength C (Fig. 4.3(b)). Figures 4.3(c, d)

compare the effect of different hyperparameter settings (N1,N2). We note that

the proposed TnT decision graph is a superset of decision trees and that TnT

can reduce to a DT learning algorithm under certain conditions. With N1 = 1,

Algorithm 3 replaces a single leaf node with a decision tree, which is equivalent

to training a CART with cost complexity pruning. In general, higher values of

N1 and N2 can lead to a better classification performance. In the following exper-

iments, we set the hyperparameters as N1 = 2,N2 = 5. A marginal improvement

in classification performance can be obtained by increasing N1 and N2, at the

cost of increased training time.

Figure 4.4 compares the proposed TnT decision graphs with axis-aligned

decision trees/graphs previously reported. We include the following datasets:

MNIST, Connect-4, Letter, Optical reconstruction, Pendigits, Protein, SenseIT,

and USPS from the UCI machine learning repository [130] and LIBSVM Dataset

[131] under Creative Commons Attribution-Share Alike 3.0 license. The statis-

tics of datasets including the number of train/test instances, number of at-

tributes, and number of classes are shown in Fig. 4.4. If a separate test set is
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Figure 4.4: Model comparison in terms of train and test accuracy on multiple
classification tasks. The following axis-aligned decision trees/graphs are in-
cluded: TnT (this work): We implement the proposed TnT decision graph at
various complexity levels. Hyperparameters are fixed at N1 = 2,N2 = 5 on
all tasks. TnT (fine-tuned): The alternating optimization algorithm is used to
fine-tune the TnT. TAO: The tree alternating optimization algorithm is applied
to axis-aligned decision trees [129]. CART: Classification and regression trees
trained in a best-first manner to assess the optimal tree structure under certain
complexity constraint [121, 128]. NDG: The naive decision graph trained with
Algorithm 2 [122]. The complexity penalty is fixed at C = 3e − 4 on all tasks.
Dataset statistics are indicated on top of each figure with the following format
(# Train/Test samples * # Features, # Classes).
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not available for some tasks, we randomly partition 33% of the entire data as

test set. For all models, we repeat the training procedure five times with differ-

ent random seeds. The mean classification accuracy is plotted in Fig. 4.4 with

shaded area indicating the standard deviation across trials. The proposed Tree

in Tree (TnT) algorithm outperforms axis-aligned decision trees such as TAO

[82, 129] and CART [121], as well as NDG which is also based on axis-aligned

decision graphs [122]. We also present the results for TnT(fine-tuned), which

employs alternating optimization to fine-tune the TnT and slightly improve the

classification performance.

Figure 4.5: Visualization of TnT decision graphs at various complexity lev-
els. (a) TnT with 20 internal nodes and 16 leaf nodes (train/test accu-
racy: 70.41%/71.75% on MNIST classification task). (b) 129 internals and 75
leaves (train/test accuracy: 85.54%/85.49%). (c) 1046 internals and 630 leaves
(train/test accuracy: 96.04%/90.56%). Different node colors represent domi-
nant class labels (more than 50% of samples belong to the same class). Nodes
are shown in blue if no dominant class is found.

Visualization Similar to decision trees, TnT decision graphs enjoy a fully in-

terpretable and visualizable decision process. Figures 4.5(a-c) visualize the TnT

decision graphs with 20, 129, and 1046 splits, respectively. We use different node

colors to indicate the dominant class labels. A node will have a dominant class if

most samples at that node belong to the same class. We show the nodes in blue

if class labels are mixed (i.e., no class label contributes to greater than 50% of the

samples visiting that node). As the graph grows larger, TnT performs better on

the MNIST dataset, achieving improved classification accuracy on both training

80



and testing sets.

4.5 Experiments: TnT in the ensemble

Decision trees are widely used as base estimators in ensemble methods such as

bagging and boosting. Random Forests apply a bagging technique to decision

trees to reduce variance [132], in which each base estimator is trained using a

randomly drawn subset of data with replacement [133]. As opposed to bagging,

boosting is used as a bias reduction technique where base estimators are incre-

mentally added to the ensemble to correct the previously misclassified samples.

Popular implementations of the boosting methods include AdaBoost [134] and

gradient boosting [83, 109]. Both AdaBoost and bagging use classifiers as base

estimators, whereas the gradient boosting methods require regressors [83, 109].

Although we argue that the proposed TnT algorithm can be applied to regres-

sion tasks with a slight modification in the objectives, it is beyond the scope of

this chapter to demonstrate TnTs as regressors.

Here, we used the TnT decision graphs as base estimators in the bagging

(TnT-bagging) and AdaBoost (TnT-AdaBoost) ensembles. Our goal is to re-

place decision trees with the proposed TnT classifiers in ensemble methods

and compare the performance under various model complexity constraints.

The ensemble methods are implemented using the scikit-learn library in Python

(under the 3-Clause BSD license) [135]. We change the ensemble complexity

by tuning the number of base estimators (# E) and the total number of splits

(i.e., internal nodes, # S). Note that TnT has additional hyperparameters that do

not apply to decision trees, such as N1 and N2. We set the hyperparameters as

N1 = 2,N2 = 5 throughout the experiments so that the TnT and tree ensembles

share a similar hyperparameter exploration space.
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Table 4.2: Comparison of TnT-based ensembles with conventional random for-
est and AdaBoost. Mean train and test accuracy (± standard deviation) are cal-
culated across 5 independent trials. We tune the ensemble size (# E, the number
of base estimators) and splits count (# S) to change the complexity of the en-
semble. Dataset statistics are given in the format: Dataset name (# Train/Test
samples * # Features, # Classes).

model # E # S train test # E # S train test

TnT-bagging

M
N

IS
T

(6
0k

/1
0k

*7
84

,1
0)

5 4.8k 97.46±0.16 93.65±0.24

C
on

ne
ct

-4
(4

5.
3k

/2
2.

3k
*1

26
,3

) 5 4.6k 84.42±0.19 80.61±0.18
Random Forest 5 4.8k 96.55±0.36 92.31±0.57 5 4.6k 83.60±0.12 79.21±0.19

TnT-AdaBoost 5 640 90.26 88.38 5 450 77.75±0.16 77.39±0.19
AdaBoost 5 640 89.75 88.61 5 450 77.28 76.74

TnT-bagging 10 9.6k 98.28±0.06 94.92±0.20 10 9.2k 85.11±0.05 81.44±0.14
Random Forest 10 9.6k 97.44±0.18 93.64±0.38 10 9.2k 84.21±0.12 79.85±0.20

TnT-AdaBoost 10 1.4k 95.09±0.09 92.36±0.13 10 940 80.10±0.23 78.94±0.29
AdaBoost 10 1.4k 94.28 91.49 10 940 79.69 78.37

TnT-bagging 20 19.2k 98.64±0.06 95.57±0.14 20 18.3k 85.66±0.12 81.93±0.13
Random Forest 20 19.2k 97.90±0.12 94.36±0.19 20 18.3k 84.57±0.08 80.39±0.09

TnT-AdaBoost 20 2.9k 98.03±0.11 94.49±0.21 20 1.8k 82.46±0.41 80.53±0.50
AdaBoost 20 2.9k 97.70 94.04 20 1.8k 82.77 81.14

Table 4.2 compares the performance of TnT ensembles with that of decision

tree ensembles on two datasets. Since the bagging method can effectively re-

duce variance, we use large models (i.e., TnTs/decision trees with many splits)

as the base estimator. On the contrary, TnTs/decision trees with few splits are

used in the AdaBoost ensemble, given that boosting can decrease the bias error.

According to Table 4.2, TnT-bagging is almost strictly better than Random For-

est under the same model complexity constraints, indicating that TnT decision

graphs outperform decision trees as base estimators. TnT-AdaBoost also out-

performs AdaBoost in most cases, showing the advantage of TnT over decision

trees. However, we observe a few exceptions in the TnT-AdaBoost vs. Ad-

aBoost comparison, as weak learners with high bias (e.g., decision stumps) are

also suitable for boosting ensembles. Overall, the TnT ensembles (TnT-bagging,

TnT-AdaBoost) achieve a higher classification accuracy compared to decision

trees when used in similar ensemble methods (Random Forest, AdaBoost).
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4.6 Discussions

Broader impact Recently, the machine learning community has seen differ-

ent variations of decision trees [82, 87, 112–114, 119, 120]. In this chapter, we

present the TnT decision graph as a more accurate and efficient alternative to

the conventional axis-aligned decision tree. However, the core idea of TnT (i.e.,

growing micro trees inside nodes) is generic and compatible with many existing

algorithms. For example, linear-combination (oblique) splits can be easily incor-

porated into the proposed TnT framework. Specifically, we can grow oblique

decision trees inside the nodes to construct an oblique TnT decision graph. In

addition to oblique TnTs, the proposed TnT framework is also compatible with

regression tasks. As suggested in [112], we may grow decision tree regressors

(rather than DT classifiers) inside the leaf nodes to construct TnT regressors,

which remains as our future work. Overall, our results show the benefits of ex-

tending the tree structure to directed acyclic graphs, which may inspire other

novel tree-structured models in the future.

Limitations The proposed TnT decision graph is scalable to large datasets and

has a linear time complexity to the number of nodes in the graph. However, the

training of TnT is considerably slower than CART. The current TnT algorithm

is implemented in Python. It takes about 5 minutes to construct a TnT deci-

sion graph with ∼1k splits on the MNIST classification task (train/test accuracy:

95.9%/90.4%). Training a CART with the same number of splits requires 12.6

seconds (train/test accuracy: 93.6%/88.3%). TnT has a natural disadvantage in

terms of training time since each node is optimized multiple times (in this work

N1 ∗ N2 = 10), similar to other non-greedy tree optimization algorithms (e.g., 1-4

minutes for TAO [82]). The Python implementation may also contribute to the
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slow training, and we expect that the training time would significantly improve

with a C implementation. We also observe that TnT decision graphs have longer

decision paths compared to CART (Figure 4.3(a)), which may raise a concern on

increased inference time.

Parallel implementation Algorithm 3 presents a sequential algorithm to con-

struct TnT decision graphs by visiting the nodes in the breadth-first order. How-

ever, it is also possible to concurrently grow micro decision trees inside multiple

nodes, which could lead to a parallel implementation of TnT. Specifically, only

those nodes in the graph that are non-descendant of each other can be optimized

in parallel. Parallel optimization is not applicable to the nodes on the same de-

cision path, since the parent node optimization may alter the samples visiting

the child node. The parallel optimization of non-descendant nodes follows the

separability condition of TAO [82, 112]. The separability condition also holds

for the proposed TnT decision graph, enabling a parallel implementation.

4.7 Conclusion

In this chapter, we propose the Tree in Tree decision graph as an effective alter-

native to the widely used decision trees. Starting from a single leaf node, the

TnT algorithm recursively grows decision trees to construct decision graphs,

extending the tree structure to a more generic directed acyclic graph. We show

that the TnT decision graph outperforms the axis-aligned decision trees on a

number of benchmark datasets. We also incorporate TnT decision graphs into

popular ensemble methods such as bagging and AdaBoost, and show that in

practice, the ensembles could also benefit from using TnTs as base estimators.

Our results suggest the use of decision graphs rather than conventional deci-
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sion trees to achieve superior classification performance, which may potentially

inspire other novel tree-structured models in the future.
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CHAPTER 5

UNSUPERVISED TEST-TIME ADAPTATION FOR ROBUST GAIT

DECODING IN PATIENTS WITH PARKINSON’S DISEASE

5.1 Introduction

Neural prostheses with chronic sensing capability have drawn increasing in-

terest for long-term monitoring of brain activity in emerging applications such

as closed-loop stimulation and brain-machine interfacing [136–140]. As a key

component of closed-loop prostheses, neural decoders use the brain activity

to control neurostimulators for treating neurological and psychiatric disorders

(e.g., Parkinson’s disease [2, 110, 141, 142], epilepsy [12, 31], treatment-resistant

depression [143, 144]), to control the movement of exoskeletons in spinal cord

injury [145], and so on. However, while closed-loop prostheses have been well

demonstrated in laboratory settings, achieving a clinically reliable solution for

the daily lives of patients remains a challenge. Closing the gap requires high ac-

cessibility of neural data recorded from fully implantable devices to enable the

design of more advanced neural decoders. Such chronic decoders should be ro-

bust to fluctuations in neural signals without relying on frequent recalibrations.

Deep brain stimulation (DBS) is a well-established neuromodulation therapy

to alleviate cardinal motor symptoms in Parkinson’s disease (PD) and essential

tremor (ET) [142, 146–148]. Recent work further built machine learning (ML)

models for tremor detection and adaptive DBS in PD [2, 93, 110, 149], lower-

limb movement decoding in PD [141], and postural tremor detection in ET [150],

all using local field potentials (LFPs) recorded from DBS leads. Thanks to the

recent advance of implantable neurostimulators, LFP acquisition from patients

86



with PD is becoming more accessible in real-life conditions. For example, the

Percept PC (Medtronic PLC, USA) is capable of wireless streaming of LFPs from

up to 6 channels (2 during stimulation). Chronic LFPs differ from those recorded

via externalized leads in that wirelessly-streamed LFPs are sampled at a lower

frequency due to limited telemetry bandwidth (250 Hz [138] vs. 2048 Hz [2]),

making a critical difference between in-lab demonstrations and practical appli-

cations. The improved access to chronic data also motivates the use of neural

decoders in more complex environments, where patients may receive dopamin-

ergic medications and/or DBS under various conditions. In Parkinson’s disease,

for instance, ML-based neural decoders can predict motor symptoms or STN-

encoded voluntary movements using chronic LFPs recorded via devices such

as Percept PC or Summit RC+S. Next-generation neural decoders must oper-

ate under DBS and typical medications that may alter the dynamics of LFP sig-

nal. Current neural decoders are highly restrictive in the aforementioned aspect,

generally use simple machine learning models, and have only been verified in

acute and highly stable recording conditions. There is a pressing need for more

advanced decoders that could operate reliably on chronic recordings in a variety

of therapeutic settings.

Conventional neural decoders with fixed model parameters are vulnera-

ble to fluctuations in neural signal (i.e., domain shift), including the electrode

movements or dysfunction [151], cross-session/subject variation [152, 153], or

signal drift over time [154]. Some recent works have proposed to alleviate

this issue by employing adaptive decoders capable of online parameter update

[154–156]. However, current methods have made strong assumptions on the

pattern of domain shift, which may not be guaranteed in complicated clinical

settings applied to PD (see Methods). Adaptive neural decoders must handle
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clinical domain shifts, including both abrupt changes (e.g., DBS turned on/off)

and continuous shifts over time (e.g., due to intake of medications). Further-

more, such decoders should ideally cause only marginal computational over-

head compared to fixed decoders. This is critical for both on-device imple-

mentation of decoders to enable low-latency closed-loop operation [157], and

for reduced training complexity in software-based externally-controlled closed-

loop systems. Test-time adaptation of ML models is a completely unsupervised

process and requires no prior knowledge of the target domain during train-

ing [158]. Recent approaches have demonstrated successful image classification

in non-stationary environments by adapting model parameters entirely dur-

ing test-time [159, 160]. While test-time adaptation is an emerging technique

for building domain-invariant computer vision algorithms, to the best of our

knowledge it is not yet explored in neural signal processing applications.

In this chapter, we study the cross-session decoding of movement states in

freely moving patients with Parkinson’s disease. All patients were implanted

with Percept PC neurostimulators, which enabled chronic, wireless monitor-

ing of LFPs. We designed experimental tasks involving sitting, standing and

walking conditions, and recorded LFPs under diverse clinical settings such as

various DBS configurations and medication-based therapies. We show that the

fluctuations in LFP biomarkers induced by PD therapies significantly degraded

the performance of conventional decoders with fixed parameters. To address

this issue, we proposed an adaptive machine learning-based decoder that per-

forms unsupervised adaptation to new therapeutic settings during test time.

We evaluated the proposed model on gait decoding tasks across multiple clin-

ical sessions and found that test-time adaptation could significantly improve

the decoder stability. With the proposed approach, we show the possibility to
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chronically decode gait cycles with high accuracy even in the presence of major

therapy-induced domain shifts.

Figure 5.1: Experimental paradigm and therapy-induced domain shift in pa-
tients with PD. (a) Patients were instructed to perform lower limb movement
tasks during which gait states were identified as stand, walk, and U-turn. Neu-
ral activities in the form of bipolar LFPs were recorded through bilateral DBS
leads. The implantable pulse generator is capable of wireless transmission of
LFP recordings. Wireless EMG and IMU sensors were placed over patients’ legs
(ankle: Tibialis Anterior, Medial Gastrocnemius, Lateral Gastrocnemius; knee:
Vastus Lateralis, Semitendinosus; hip: Rectus Femoris) and feet to annotate the
gait state. (b) Stimulation-induced domain shift during gait tasks (n = 12 pa-
tients). Gamma bands significantly deviate from Stim off after removing the
stimulation artifacts. (c-e) Medication-induced domain shift during gait tasks
(n = 11 patients). Dopaminergic medication significantly reduces patients’ Beta-
band power, whereas Gamma power increases with medication. At 45 minutes
after medication, patients need significantly less time to perform the aforemen-
tioned gait task.
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5.2 Methods

5.2.1 Study design

All experiments were approved by the Ethical Committee of the Canton de

Vaud, Switzerland (Reference PB 2017-00064). Informed consent was obtained

from each participant once the nature and possible consequences of the study

were explained. Patients were predominantly in the off-medication condition

(>12 hours) before the start of the experiments, although patients with high

severity of disease retained some dopamine agonist medication.

5.2.2 LFP recordings

Local field potentials were recorded using the sensing capabilities of the Percept

PC (sampling frequency at 250 Hz). The LFP was recorded in resting condition

(sitting or standing) in the Indefinite Streaming mode, capturing all three bipo-

lar contact pairs per hemisphere. Recordings during motor tasks were obtained

in the Brainsense Streaming mode, which is restricted to one contact pair per

hemisphere. We only used the recordings during motor tasks for gait decod-

ing, whereas recordings in resting condition were used to identify artifacted

channels (see artifact identification below). Prior to the first recording session

for each patient, we performed a Brainsense Survey and visually inspected the

power spectral density (PSD) of each pair. We selected the contact pair with the

highest Beta power and retained that pair for all subsequent experiments of that

patient. This selection was motivated by the fact that not all patients exhibited

other frequency bands systematically (Alpha, Gamma). To ensure minimal bias

in the selection, we verified that adjacent contacts did not exhibit radically dif-

ferent bands and modulations. We further ensured that the selected contact pair

was not labeled as “artifacted” by the system. Synchronization with external de-
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Figure 5.2: Cross-session gait decoding in a PD patient (PD4) using chronic
LFP recordings. The patient received bilateral deep-brain stimulation leads
(Medtronic 3389) and was recorded within five days after the surgery. We
recorded bipolar LFPs from both hemispheres as the patient performed gait
experiments. The patient received various interventional therapies during dif-
ferent recording sessions, including a baseline therapy-free session (Stim off,
Med off), low-frequency DBS (Stim @55 Hz), high-frequency DBS (Stim @125
Hz), and high-frequency DBS with dopaminergic medication (Med @15/30/45
mins). Consecutive sessions were recorded at 15-minute intervals. (a) Spec-
trogram of LFPs from the right (top) and left (bottom) hemispheres. The task
duration reduces after the intake of medication. (b) Beta-band activity under
various therapeutic conditions. Each dot represents a 10-second window, while
the line shows the smoothed curve. PD medication reduced Beta-band activ-
ity in LFP. (c) Cross-session decoding performance. Both fixed (baseline) and
adaptive decoders are trained on the therapy-free session (Stim off, Med off)
and predict gait movements in the subsequent sessions. Compared to the fixed
decoder, our adaptive decoder is more robust against domain drift.
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vices was performed by applying a transient DBS burst (130 Hz, 60 µs, 1 mA) at

the beginning and end of each recording, which induced artifacts in an external

electromyographic sensor placed on the chest of the patient in the vicinity of the

IPG [138]. Recordings were all performed in the Brainsense Survey mode. Stim-

ulation was on at either 0 mA (Stim Off condition), at the therapeutic amplitude

tuned by an expert neurologist (when DBS was delivered at 125 Hz) or at the

same charge delivery when stimulating at 55 Hz.

5.2.3 Artifact identification

Gait-related artifacts affect neural signal predominantly in the low frequencies

but can also spread to higher frequencies, making them difficult to be removed

through standard filtering techniques. Rather than aiming to identify the arti-

facts in the time domain, we reasoned that corrupted channels would exhibit

important differences in the aperiodic (1/f) component of the power densities

(PSDs) between rest and walking. The aperiodic component captures the over-

all baseline power across the spectrum and should not change significantly over

consecutive trials (task-related modulations are expected to be captured in the

activity over periodic frequency bands) [141].

For each patient, we extracted the PSDs of two separate recordings from the

same session, one at rest (sitting) and the other one during walking. We further

applied a fitting algorithm to split the PSDs into task-related modulations and

acyclic (1/f) components that are task-invariant [161]. We then compared their

aperiodic (1/f) components by computing the root mean square error (RMSE) in

the range of 10 to 90 Hz (i.e., region of interest) to ensure that walking did not in-

duce an increase above 50% in the 1/f power compared to sitting (difference of

1.76 dB). All channels exceeding this value were considered corrupted in the re-
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gion of interest and patients with at least one corrupted channel were discarded

from further analyses for decoding purposes. Visual inspection of the spectro-

gram for channels labeled as “artifacted” showed important movement-related

low-frequency spikes, aligned to the timing of foot strikes, which periodically

corrupted the spectrogram and spread to higher frequencies. All retained chan-

nels were also verified by visual inspection of their spectrogram. Overall, N=4

participants exhibited at least one corrupted channel.

For the remaining channels, the stimulation artifacts were further identified

and removed from the LFP recordings. During stimulation therapy, DBS im-

posed a strong artifact at the stimulation band. We removed the stimulation

artifact using a 3rd-order Butterworth filter. To remove DBS artifact at 55 Hz,

we used a band-stop filter with cutoff frequencies of 52-58 Hz and 107-113 Hz.

The 52-58 Hz corresponds to the stimulation band and 107-113 Hz corresponds

to the second harmonic of the stimulation artifact. With DBS at 125 Hz, the filter

was configured as low-pass with a cutoff frequency of 122 Hz.

5.2.4 Biomechanical recordings during gait

Kinematics: Patients were recorded in a gait lab using an optoelectronic motion

capture system (Vicon, UK) that measured the 3D positions of key body joints.

Kinematic data was complemented by bilateral triaxial inertial measurement

unit (IMU) sensors (Delsys, MA, USA) attached to the patient’s shoes, recording

raw gyroscope signals from the right and left feet (sampling frequency: 148Hz).

Electromyographic signals: EMG signals were recorded using a wireless sys-

tem operating at 2 kHz (Delsys, USA). Sensors were placed bilaterally accord-

ing to SENIAM guidelines (Surface Electro-MyoGraphy for the Non-Invasive
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Assessment of Muscles, www.seniam.org) on agonist and antagonist muscles

of the ankle joint (TA Tibialis Anterior, MG Medial Gastrocnemius, LG Lateral

Gastrocnemius), knee joint (VM Vastus Medialis, ST Semitendinosus) and hip

joint (RF Rectus Femoris). EMG sensors were covered using protective tape

(Tegaderm) to prevent them from moving during walking, and to reduce fric-

tion with the suit. For all patients, an additional EMG sensor was placed on the

chest for synchronization purposes.

5.2.5 Feature engineering and epoch annotation

After data preprocessing and artifact removal, we segmented the LFP record-

ings into 1-second overlapping epochs with a step size of 200 ms. Following

our earlier work on PD tremor [2, 93, 149] and lower limb movement decoding

[141] from LFP, we extracted the following features from each epoch: Hjorth pa-

rameters (Activity, Mobility, and Complexity) and spectral power over 10-120

Hz with a bin resolution of 4 Hz. The Hjorth parameters are calculated through

the following equations and represent the statistical characteristics of a signal in

the time domain:

Activity(e) =
1
N

N∑
n=1

(en − µ)2 (5.1)

Mobility(e) =

√
Activity(∆e)
Activity(e)

(5.2)

Complexity(e) =
Mobility(∆e)
Mobility(e)

(5.3)

where e represents an LFP epoch with N samples, µ and ∆e are the mean value

and first derivative of e, respectively. We applied a log transform to all extracted

biomarkers and standardized the feature vectors.

We next annotated each epoch using the gyroscope signals recorded from
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the right and left feet during a walking sequence (an example of a gyroscope

signal is depicted in Fig 5.5). Since the raw gyroscope measurements are contin-

uous, we used a two-level thresholding approach to discretize the gait state into

binary classes of “Stand” or “Move”. The 3D motion capture camera and EMG

signals were used to validate the movement state. Specifically, we first normal-

ized the gyroscope measurements from both feet by removing the mean value

and scaling the signals to their unit variance. We annotated an epoch as “Stand”

if the gyroscope signals from both feet were lower than the mean value (i.e., <0).

Epochs were labeled as “Move” if either foot had a gyroscope signal one stan-

dard deviation above the mean (i.e., >1). Gyroscope signals between 0 and 1

were annotated as “Marginal” since they were caused by small unintentional

movements. The “Marginal” epochs were considered noisy and excluded from

the training process. However, “Marginal” epochs were still used for adaptive

inference since excluding them requires access to ground-truth information (gy-

roscope signals) that are unavailable during test time.

5.2.6 Contextual Meta Adaptation

We propose Contextual Meta Adaptation (CMA) to dynamically update de-

coder parameters at the test time. Compared to previous adaptive neural de-

coders, CMA is unique from the following aspects: First, CMA makes minimal

assumptions on the test domain. Different from conventional online learning

or few-shot learning settings, CMA operates in a purely unsupervised man-

ner. During inference, CMA adapts to an unseen shifted domain by only using

unlabeled LFP recordings. Second, CMA is similar to unsupervised domain

adaptation in that both approaches do not require labeled data from the test do-

main. We further design CMA to adaptively handle a stream of LFP epochs at
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Figure 5.3: Shifted distributions and domain divergence of LFP recordings from
different sessions. (a) The Kullback–Leibler divergence (KL divergence) is used
to quantify the distance of LFP distributions between each pair of recording ses-
sions. We used feature vectors as the representation of epochs and epochs from
the same session were fitted into a multivariate Gaussian distribution. A larger
KL divergence indicates a greater difference in data distributions. (b) t-SNE vi-
sualization of LFP recordings from various sessions. We used colors to represent
different recording sessions (same as in (a)) and each dot indicates an LFP epoch.
Decoders were trained on the baseline gait session with no stimulation or med-
ication (blue). During inference, the epochs were either from the same training
session (within-session inference) or from different sessions (cross-session in-
ference). The contours represent the Gaussian fit and the numbers show the
classification performance (AUC) of the fixed decoder. The performance of the
fixed decoder decreases if the test distribution deviates from the training distri-
bution.

the test time. Compared to unsupervised domain adaptation, CMA uses a more

realistic training setting without making any assumptions on LFP drift due to

PD therapies. Third, CMA is computationally efficient. The adaptation process

does not involve computationally intensive operations such as retraining on the

source data or gradient-based parameter updates. The inference phase of CMA

is relatively lightweight and adds minimal computational overhead to its fixed

counterparts.
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Figure 5.4: The model structure of the proposed Contextual Meta Adaptation
(CMA). We used multiple sessions with different therapeutic settings for train-
ing the decoders. We calculated the contextual embedding Ci to reflect the statis-
tics of each session and to allow us to make predictions using only the current
LFP epoch (xi). The gait decoder ( fθ), parameterized by θ, is initialized using
model-agnostic meta-learning. Similar to conventional gait decoders, CMA
takes LFP epochs as input. Cross-session adaptation is enabled by a separate
adaptation model which adjusts the parameters of the decoders to new, unseen
sessions. We benchmarked CMA with other ML models on the cross-session
gait decoding task, including the current clinical practice with the fixed decoder
trained on the therapy-free session (Baseline), the fixed decoder trained with la-
beled data from the test session (Oracle), a strong multi-task learning baseline
(ERM), and ERM leveraging the test session information (ERM-oracle). CMA
improves the average AUC score by 18.2% compared to the current clinical
practice (p = 2e − 17). CMA even outperforms the “oracle” decoders which
are trained on labeled epochs from the test session (infeasible in practice).

Let x ∈ X and y ∈ Y represent the input and output. We aim to learn an

adaptive decoding model f : Xd → Yd for a shifted domain d. We consider

each recording session as a unique domain. CMA is composed of a decod-

ing model fθ parameterized by θ, and an adaptation model hϕ parameterized

by ϕ. During inference, the decoding model takes in the LFP biomarkers and

predicts the probability of gait movement. The adaptation model takes in the

unlabeled contextual embeddings and adjusts the parameters of the decoding
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model (hϕ(·, θ)→ θ̃).

5.2.7 Model parameter initialization

For simplicity, we first consider the case of few-shot adaptation, where model

parameters are fine-tuned on a few epochs using supervised gradient updates:

θd = θ − α1∇θ
1
T

T∑
t=1

ℓ( fθ(xd
t ), yd

t ), (5.4)

where α is the learning rate and T is the number of epochs used for fine-tuning.

Here, xd
t and yd

t refer to LFP epochs and gait states sampled from the domain d:

xd
t , y

d
t ∼ p(x, y | d). The model parameters change from θ to θd as we adapt the

decoding model fθ on a new domain d. Ideally, θ should be widely suitable for

a number of domains such that fine-tuning on a few epochs would be sufficient

for adaptation to a new domain. On the other hand, the adapted parameters

θd are domain-specific. After adaptation, the new model fθd can enhance the

decoding performance on new recording sessions.

Alternatively, we propose CMA as an unsupervised imitation of few-shot

adaptation methods. We initialize the decoding model fθ on multiple domains

such that it can easily generalize to new domains and recording sessions. Specif-

ically, we train fθ using model-agnostic meta-learning (MAML) [162]. The learn-

ing process can be expressed as follows:

θ ← θ − α2∇θ
1
D

D∑
d=1

1
T

T∑
t=1

ℓ( fθd (xd
t ), yd

t ). (5.5)

where α2 indicates the update rate for meta-learning and θd is derived from
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Eq. 5.4 via gradient optimization. Overall, MAML initializes decoder parame-

ters that can be easily adapted to new domains.

5.2.8 Test-time adaptation

In this work, we replace the supervised fine-tuning steps in MAML with un-

supervised test-time adaptation. In Eq. 5.4, the model parameter adaptation

process (θ → θd) involves supervised gradient updates. Such a process can

not be performed at the test time by leveraging only unlabeled LFP epochs.

In CMA, we introduce a separate adaptation model hϕ to infer θd from the ini-

tialized model parameters θ and the domain-specific contextual embedding Cd.

Indeed, hϕ returns the adapted model parameter θ̃d as an empirical estimation of

θd. The unsupervised adaptation process holds the underlying assumption that

contextual embedding Cd provides predictive knowledge on the test domain

joint distribution p(x, y | d). We will discuss the choice of Cd and its update rule

in the next section. In practice, the adaptation model is trained by minimizing

the following objective:

min
ϕ

1
D

D∑
d=1

1
T

T∑
t=1

ℓ( fθ̃d (xd
t ), yd

t ), (5.6)

where

θ̃d = hϕ(Cd, θ). (5.7)

During inference, the adaptation model hϕ adjusts the parameters of the de-

coding model ( fθ → fθ̃d ), and fθ̃d predicts the movement probability from the

current LFP epoch.

pd
t = fhϕ(Cd ,θ)(xd

t ) (5.8)
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5.2.9 Contextual embeddings

In CMA, we aim to infer the test domain knowledge from contextual embed-

dings. Given that the joint distribution p(x, y | d) explicitly contains the gait

state y (which is not accessible at the test time), we instead use p(x | d) as a

surrogate distribution to adapt the decoder parameters. During the inference

phase of gait decoding, LFP epochs (i.e., x) are collected in a streaming manner.

Therefore, it is infeasible to infer p(x | d) from the entire test dataset. Rather than

computing a static contextual embedding for each domain, we calculate Cd on

a stream of epochs at the test time. We used a moving average filter to update

p(x | d) on-the-fly. The contextual embedding contains a numerical representa-

tion of p(x | d), which includes the mean (M) and variance (Var) of preceding

LFP epochs, and the difference between the mean value and current epoch (δ).

δt = xt −Mt−1, (5.9)

Mt = Mt−1 + (1 − β) · δt, (5.10)

Vart = β
(
Vart−1 + (1 − β) · δ2

t

)
. (5.11)

where β is a hyperparameter that defines the updated momentum of the moving

mean and variance. The contextual embedding at the t-th epoch Cd
t is simply the

concatenation of δt, Mt, and Vart.

5.2.10 Adaptive gait decoding

Given the learning process in Eq. 5.5 and 5.6, both the gait decoder fθ and model

adaptor hϕ are trained with gradient-based optimization. The gait decoder is a

classification model which predicts the probability of gait states, whereas the

model adaptor handles a regression task to adapt the decoder parameters. Both
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fθ and hϕ use neural networks as the backbone model and Adam as the opti-

mizer (learning rate: 0.001).

In CMA, we train a separate model adaptor to compensate for the domain

shift caused by PD therapies such as DBS and medications. As shown in Eq. 5.7,

the model adaptor generates a set of decoder parameters that best suit the test

condition. The output space of hϕ has the same dimensionality as the parame-

ter space of fθ. In the case of large decoding models with numerous trainable

parameters, the model adaptor may suffer from high complexity. In our exper-

iments, we limited the model adaptor to alter only the first (i.e., input) layer of

fθ. Therefore, the output space of hϕ has the same dimension as the LFP feature

vector (x), relaxing the complexity of the model adaptor. We note that adapting

the first layer of fθ is equivalent to adding an offset to the input feature vector.

Let θ and θd denote the first-layer decoder parameters before and after adapta-

tion. Rather than predicting θd directly, the model adaptor can learn an input

offset ∆xd such that θ · (x + ∆xd) = θd · x. This allows us to visualize and compare

the feature distribution with and without test-time adaptation.

In Fig. 5.4, the adaptation model is separate from the gait decoder to com-

pensate for domain shift under various therapeutic conditions. With this archi-

tecture, fθ and hϕ are differentiable models capable of gradient-based optimiza-

tion. An alternative would be to combine all components into one model and

train it in an end-to-end fashion. The combined model is conditioned on the

contextual embedding, and predicts the movement probability out of the cur-

rent LFP epoch. In the framework of CMA, an end-to-end adaptive gait decoder

is trained to fit p(y | x, d) whereas the conventional decoder with fixed parame-

ters simply approximates p(y | x). The training process is simple and similar to
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that of a fixed decoder. Moreover, the end-to-end adaptive decoder enjoys great

flexibility as it is model-agnostic, and in addition, it is compatible with non-

differentiable models such as Gradient Boosted Trees and Random Forests. The

end-to-end adaptive decoder achieved an improved performance compared to

its fixed counterparts. However, the end-to-end training reduces the gait decod-

ing performance by 1% compared to CMA with differentiable components.

5.2.11 Benchmark models

We benchmarked the proposed CMA against various decoder configurations

including Baseline, Oracle, ERM, and ERM-oracle. We provide the implemen-

tation details as follows: Baseline refers to ML decoders trained on recording

sessions with no therapeutic intervention. The current practice is largely based

on the Baseline method where a single training session is recorded in a research

laboratory with little concern on signal fluctuations over time [141]. Oracle fur-

ther assumes that the test domain is accessible, allowing us to train the decoder

on labeled data from the test domain. Specifically, the performance of Oracle

was estimated using 5-fold cross-validation over unshuffled time series within

each test session. We note that the Oracle approach is infeasible in practice,

since the ground-truth gait states are not available during inference. By elim-

inating the domain shift, Oracle greatly improved the decoding performance

over Baseline. However, Oracle is still sub-optimal as it does not leverage the

data collected from other domains. Empirical Risk Minimization (ERM) is a

strong baseline for meta-learning and test-time adaptation [163]. ERM takes ac-

count of various stimulation and medication settings in the training phase and

strives to learn a domain-invariant representation that is robust to unexpected

domain shifts. Compared to Baseline and Oracle, ERM achieved a higher per-
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formance without violating the practical requirements, showing the benefits of

including various training domains. However, as ERM still uses fixed model

parameters, it may require an unnecessarily large training set to cover all pos-

sible changes in the neural signal. ERM-oracle is similar to ERM but it further

assumes the accessibility of the test distribution. In addition to the training ses-

sions used in ERM, we further leveraged a small portion of test data to train

ERM-oracle so that the domain shift between training and test epochs was re-

duced. Similar to Oracle, implementing ERM-oracle is unrealistic in practice.

CMA outperformed all benchmark models by effectively leveraging multiple

training domains and compensating for domain shift during inference. Inter-

estingly, CMA even surpassed the Oracle models, proving its advantage over

decoder realignment methods such as [145], in addition to its simple, fast, and

unsupervised adaptation process. For a fair comparison across benchmarks, we

used a linear model for all the aforementioned methods.

5.2.12 Prediction uncertainty

We used Shannon entropy [156, 164] to measure the uncertainty of gait state

predictions: H = −
∑

t pt log pt. Shannon entropy is minimized (H = 0) when

a decoder makes predictions with high certainty, either as “Move” (pt = 1) or

“Stand” (pt = 0). On the contrary, Shannon entropy increases as decoders make

uncertain predictions on an epoch (e.g., pt = 0.5). Shannon entropy is a good

indicator to quantify the uncertainty level, while increased entropy levels corre-

late with high errors in cross-domain classification [156, 158].
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5.2.13 Feature importance

In Fig. 5.9(d), we measured the importance of each feature using a backward

process. We first calculated the binary cross-entropy loss using the entire feature

set (Lbase). We then removed a feature (i.e., feature #i) and calculated the loss

with the remaining feature subset (L/i). The difference between Lbase and L/i

indicates the loss reduction by including feature i, and was used to quantify the

importance of each individual feature.

5.2.14 Statistical analysis

We performed the data analysis using the statistical toolbox in MATLAB R2021b

(MathWorks). We used one-way repeated measures ANOVA to make compar-

isons across various conditions, and the Mauchly’s sphericity test for validation.

Multiple comparisons with Bonferroni correction were used to report the signif-

icance level with a confidence interval of 95% (p < 0.05).

5.3 Results

5.3.1 Experimental setup and LFP recording with a chronic de-

vice

The objective of this study was to develop neural decoders that could predict

motor states from LFP while automatically adapting to signal changes over

time, particularly those that occur following the intake of medication or DBS

therapies. Sixteen patients with Parkinson’s disease were recruited for the study

and performed gait experiments. N = 4 patients had to be removed due to the

presence of heavily artifacted LFP channels (more details in Methods). Over-

all, 12 patients were retained for the analysis. During locomotor tasks, patients
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were instructed to stand for about 3 seconds before initiating a sustained bout of

walking on a straight line at their comfortable speed. When arriving at the end

of the bout, patients were instructed to stop and stand for another 3 seconds,

before doing a U-turn and starting again (Fig. 5.1(a)).

All participants received bilateral deep-brain stimulation leads (Medtronic

3389) and were recorded within five days following their surgery. Participants

were implanted with a Percept PC stimulator (Medtronic, USA) in the right ab-

dominal area, and recorded using the sensing capabilities provided by the de-

vice (sampling frequency of 250 Hz) [138]. We first recorded the patients in

the off-medication condition, either with the DBS off, high-frequency DBS on

(125 Hz), or low-frequency DBS on (55 Hz). We then recorded them in the on-

medication condition (with high-frequency DBS on) at 15, 30, and 45 minutes

after the medication intake. Not all patients were recorded under all conditions:

N = 1 patient did not take any dopaminergic medication at the time of recording

and could only be recorded under different DBS configurations.

In addition to walking, patients were instructed to perform repeated leg

movements while sitting. Similar to DBS- and medication-induced variabilities,

sitting versus standing or walking introduced cross-session instabilities and de-

graded the decoding performance. All data acquisitions during sitting were

performed in the absence of medication and DBS.

5.3.2 Modulations in brain activity induced by PD therapies

Domain shift in neural signals can be caused by multiple reasons in practice.

For example, recordings from intracortical microelectrode arrays have been

shown to drift over time, making the recalibration sessions necessary for typi-
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cal Brain–Computer Interface (BCI) tasks [151]. The impedance of an implanted

electrode may vary as the scar tissue builds up at the electrode-tissue interface,

altering the statistics of neural data and imposing a critical challenge on sta-

ble long-term decoding. Moreover, domain drift could be induced by the use

of therapeutic interventions [165]. In this work, we primarily focused on the

effects of two common therapies for Parkinson’s disease: dopaminergic phar-

macotherapy and deep brain stimulation.

To study the impact of dopaminergic drug treatment, we looked into pa-

tient LFPs before and after the intake of medication (Fig. 5.1(c-e)). Specifically,

we compared the spectral power over Alpha (8-12 Hz), Beta (13-30 Hz), and

Gamma (30-120 Hz) bands across four recording sessions: before medication,

15, 30, and 45 minutes after medication. Out of the 12 patients with Parkin-

son’s disease, one patient did not take medication on the day of experiment. We

analyzed the impact of medication on the remaining 11 patients. To reduce vari-

ability across patients, we normalized each band power to that of the baseline

session (i.e., the session before the intake of medication). Following medication

intake, we observed a significant reduction of Beta band activity (Fig. 5.1(c))

and a consistent increase in the spectral power over Gamma band (Fig. 5.1(d)).

Furthermore, Fig. 5.2(e) compares the average time to complete the same gait

task at different times after the intake of medication. At 45 minutes after medi-

cation, patients needed statistically less time to perform the instructed walking

sequences (Fig. 5.1(e)). Similarly, we studied the LFP fluctuations following DBS

delivery in all 12 patients. The normalized band power over the Alpha and Beta

bands did not vary significantly at different stimulation settings across patients.

Here, the Gamma power was heavily affected by stimulation artifact. We used

an artifact removal technique to eliminate the effect of stimulation (details in
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the Methods Section), at the cost of losing the original LFP over the DBS band.

As a result, the Gamma power with DBS (at stimulation frequencies of 55 Hz

and 125 Hz) was lower than that without DBS (Fig. 5.1(b)). The normalized task

duration decreased with stimulation, but it did not reach the significance level.

Figure 5.5: Gait state decoding in PD patients. (a) (Top) the LFP spectrogram
from the right and left hemispheres in a patient with PD (PD1) under high-
frequency DBS at 125 Hz and 15 minutes after medication intake; (Middle):
EMG signals recorded from the hip joint (rectus femoris muscle), and Gyro-
scope signals recorded from both feet; The gyroscope signal is used to annotate
the motion state. The“Move” state is indicated by the shaded area and includes
the gait cycle and turning. (Bottom): The predicted movement probabilities
by the fixed and adaptive decoders. (b, c) Confusion matrices of the fixed and
adaptive decoders on the same session as (a). The adaptive decoder outper-
forms the fixed decoder by 12.4% on this movement classification task.

5.3.3 Therapy-induced domain shift and cross-session decod-

ing performance

Traditional machine learning algorithms such as Decision Trees and Neural Net-

works assume that the training and test data are identically and independently

distributed (i.i.d). However, the i.i.d assumption is often violated in practice

where the training and test data are not sampled from the same static distribu-
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tion. The discrepancy between training and test distributions can cause domain

shift and lower the neural decoding performance in various tasks [145, 154, 166].

Here, we primarily focus on therapy-induced domain shift and aim to improve

the decoding stability across consecutive sessions with different therapeutic set-

tings.

Figure 5.2(a) visualizes the LFP spectrograms recorded from the left and

right hemispheres in a patient with PD (PD4). Both DBS and medication mod-

ulated the patient’s brain recordings, albeit the corresponding domain shifts

showed different patterns. DBS induced instant and abrupt changes in LFP,

whereas medication mediated a gradual signal drift over time. In Fig. 5.2(b),

we plot the Beta band power as a function of time in this patient. Overall across

12 patients, we observed a gradual decline of Beta activity in LFP, 15 minutes

after medication. The Beta activity subsequently saturated at a low level (10

µV2), 30 minutes after medication. We trained two decoders to predict the gait

state across sessions. The conventional decoder used constant model parame-

ters upon training, whereas the adaptive decoder leveraged test-time adapta-

tion to update parameters on-the-fly. Given the therapy-induced domain shift,

we trained both decoders on the therapy-free baseline session (Stim Off, Med

Off) and tested them on the subsequent sessions (Stim @55 Hz, @125 Hz, Med

@15 mins, @30 mins, @45 mins). The implementation details of the fixed and

adaptive decoders are presented in the following sections. Figure 5.2(c) shows

the cumulative AUC scores for the conventional (i.e., fixed) and adaptive gait

decoders. Compared to the conventional approach, the adaptive model is more

stable in the presence of domain shifts and achieves a higher cross-session de-

coding performance (15.6% improvement in the AUC score).
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We further quantified the discrepancy between LFPs from different record-

ing sessions using the distance of their distributions. Epochs from each ses-

sion were fitted into a multivariate gaussian distribution. We used the Kull-

back–Leibler (KL) divergence to measure the similarity between each pair of

sessions (Fig. 5.3(a)). Two sessions were considered similar (i.e., small do-

main drift) if they were connected via a dark line, thus showing a low KL di-

vergence. For example, epochs collected from the sitting sessions were close

to those recorded from the therapy-free gait sessions since the leg movements

were similarly performed in the absence of medication or stimulation. Further-

more, sessions with different medication settings were clustered closely, as they

shared the same DBS frequency. However, as the difference in recording times

increases, the corresponding distributions drift apart. For instance, compared

to Med @15 mins or @30 mins, Med @45 mins showed a larger KL divergence

from Med Off. We further demonstrated the exact distribution of LFP epochs us-

ing t-distributed stochastic neighbor embedding (t-SNE, Fig. 5.3(b)). We trained

a fixed decoder on the therapy-free baseline session and calculated the AUC

scores for all other sessions. In the case of within-session inference, the train-

ing and test data were sampled from the same session. We used 5-fold cross-

validation to evaluate the within-session gait decoding performance. On the

other hand, the cross-session performance was reported on the test sessions

other than the baseline session. Therapy-induced domain shifts affected the

cross-session inference, with the classification performance (AUC score) declin-

ing as the discrepancy between training and test distributions grows. Overall,

we conclude that various therapeutic settings in PD may induce significant LFP

variability, and that such therapy-induced domain drift can harm the decoding

performance, urging the need for new algorithms.
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5.3.4 Adaptive neural decoder and model structure

Adaptive neural decoders differ from conventional decoders in that such mod-

els are dynamically re-weighted during inference to account for signal variabil-

ity over time. Therefore, adaptive decoders can learn session-specific model

parameters and fit into neural data with shifted distributions. In this chapter,

we propose Contextual Meta Adaptation (CMA) to compensate for therapy-

induced domain shifts, by enabling an efficient test-time unsupervised adapta-

tion. The proposed algorithm consists of a gait decoder to predict lower limb

movements and an adaptation model to adjust decoder parameters (Fig. 5.4).

We train our adaptive gait decoder to learn generalized representations shared

across multiple training sessions using model-agnostic meta-learning (Meta-

train, Fig. 5.4) [162], whereas the adaptation model aims to capture session-

specific knowledge by observing the LFP statistics and adjusting the parameters

of the gait decoder (Meta-test, Fig. 5.4). Specifically, we extracted contextual

embeddings to represent covariate shift across sessions (details in Methods).

We leveraged contextual embeddings during test time to infer session-specific

knowledge since the calculation only involves an unlabeled stream of incoming

epochs (details in Methods). In Fig. 5.4, contextual embedding is visualized by

the mean and standard deviation for each element in the feature vector. Intu-

itively, contextual embedding carries the knowledge of feature distributions and

measures the statistics of shifted features across sessions. The adaptation model

takes contextual embedding into account to re-weight parameters associated

with shifted features. We compared CMA with various non-adaptive ML mod-

els, including the current clinical practice using a fixed decoder trained on the

therapy-free session (Baseline), the fixed decoder trained with labeled data from

test sessions (Oracle), empirical risk minimization (ERM) which was reported as
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a powerful baseline for multi-task learning [163], and ERM using information

from test sessions (ERM-oracle). Implementation details of the baseline models

are available in the Methods section. With the adaptation block, CMA achieved

a significantly higher performance compared to various fixed decoders (Perfor-

mance, Fig. 5.4).

5.3.5 Online gait decoding with the stream of epochs

We evaluated the performance of CMA in a streaming setting, where a stream of

LFP epochs was processed by the gait decoder on-the-fly (Fig. 5.5). The neural

decoder predicted gait states every 200 ms based on the most recent 1-second

LFP epoch. Spectral power features and Hjorth parameters were extracted from

LFP epochs to construct feature vectors (see Methods, similar to [2]), and were

subsequently fed to the gait decoder. Estimation of LFP statistics at the begin-

ning of test session is infeasible under the streaming setting as only a few epochs

have been observed. To address this challenge, we calculated the contextual em-

bedding using an exponential moving average filter (see Methods). The contex-

tual embedding was updated by only using the current epoch, eliminating the

need to store feature vectors from previous epochs. The continuous update of

contextual embedding is particularly critical for domains that slowly drift over

time. For example, we observed a gradual drift of Beta-band power 15 mins

after medication (Fig. 5.2). Since domain statistics change even within a record-

ing session, a static approach to contextual embedding fails to account for signal

variations throughout a session.
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Figure 5.6: The gait decoding performance of CMA against various baseline de-
coders. (a) The receiver operating characteristic (ROC) curves corresponding
to different approaches. The performance of each patient is shown by trans-
parent lines, while the opaque lines indicate the average decoding performance
across all patients. Baseline refers to the fixed decoder trained on the therapy-
free session, whereas ERM was trained over multiple sessions excluding the test
session. Overall, CMA achieved an average AUC score of 0.757 on 12 PD pa-
tients, outperforming the Baseline decoder and ERM with AUC scores of 0.644
and 0.720, respectively. (b) Comparison of gait decoding performance (AUC)
under different therapeutic conditions. “Oracle” indicates that a subset of test
session data is used for training. By leveraging the test session information,
we observed an increase in the gait decoding performance for both Baseline
and ERM. However, “Oracle” decoders are infeasible in real-world applications.
The widely-used Baseline decoder worked well with the therapy-free session
(Stim Off, Med Off), but failed to maintain a good performance as patients re-
ceived PD therapies. The proposed adaptive decoder, CMA, could compensate
for therapy-induced domain shift and maintain a good decoding performance
across sessions. Overall, CMA outperformed the Baseline decoder over all 6
therapeutic settings and surpass the best “oracle” method (ERM-oracle) in 4
sessions.

5.3.6 Adaptive decoding on unseen PD therapeutic settings

We tested the performance of the proposed adaptive decoder, CMA, on the

cross-session gait decoding task. We employed a leave-one-out approach to

separate the data into training and test sessions. The test session underwent a

unique treatment condition not seen in the training data, thus inducing a distri-

bution shift to the acquired LFPs. Figure 5.5(a) visualizes the predictions from
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the fixed and adaptive decoders. The spectrograms of LFP from the right and

left hemispheres are aligned with the EMG signal that shows the activities of

the rectus femoris muscle, and the gyroscope signal capturing feet movements.

In the LFP spectrograms, we observed a reduction in Beta-band activity during

gait movement [141, 167, 168]. We used gyroscope signals to annotate the gait

state and the EMG for verification (see Methods). Overall, we observed that the

adaptive decoder predicted the gait state with high certainty (i.e., movement

probability equal to 0 or 1), and this was more aligned with the gait annota-

tion. We quantitatively compared the gait decoding performance of the fixed

and adaptive decoders using a confusion matrix (Fig. 5.5(b)). Here, “Move” is

an aggregation of “Walk” and “Turn” states since both states showed similar be-

haviors in neural and EMG recordings. A threshold of 0.5 was set to discretize

the movement probability into either “Stand” or “Move”. The adaptive decoder

improved the accuracy by 12.4% compared to the fixed decoder.

To verify the robustness of CMA against therapy-induced domain shift, we

extensively compared the performance of adaptive and fixed decoders on all

recording sessions. Figure 5.6(a) shows the receiver operating characteristic

(ROC) curves for each individual patient (the transparent lines) as well as the

mean performance (opaque lines) in cross-session gait decoding, where the

adaptive decoder (CMA) achieved a superior performance. We further used

the area under the ROC curve (AUC) as the evaluation metric and compared

the decoding performance under each therapeutic condition (Fig. 5.6(b)). It

can be seen that the adaptive decoder (CMA) outperformed its fixed counter-

parts (Baseline and ERM) on all recording sessions. Importantly, we observed

that the cross-session decoding performance of CMA frequently outperformed

the “Oracle” approaches (implementation details in Methods) which recalibrate
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the decoder by using labeled data from the test session. The “Oracle” meth-

ods measure the ideal gait decoding performance without cross-session domain

shift, and are infeasible for real-world applications where the test data cannot

be fully accessible beforehand. This also violates the fundamental assumption

of test-time adaptation.

Our proposed adaptive decoder outperformed the supervised recalibration

method in 4 out of 6 PD therapeutic conditions (Fig. 5.6(b)). Thus, com-

pared to supervised recalibration, CMA provides a more effective way for uni-

fying the data from multiple recording sessions. ERM-oracle is trained on

recordings from multiple sessions, similar to CMA. However, it lacks a mech-

anism to uncover the shared knowledge across sessions and unify the data

recorded under different stimulation or medication settings. Such a mecha-

nism was introduced to CMA via model-agnostic meta-learning (MAML) to

initialize decoder parameters that can be efficiently adapted to new sessions

[162]. Moreover, even though the “Oracle” approaches are not affected by the

cross-session domain shift, the within-session domain drift may still exist [159],

particularly in the absence of shuffling to ensure leakage-free training [12]. In

CMA, the within-session drift is addressed by updating the contextual em-

bedding on-the-fly. Therefore, the adaptive decoder can account for gradual

changes in neural recordings. We further separated the effects of stimulation-

and medication-induced domain shifts and demonstrated the decoding perfor-

mance on each recording session. In Fig. 5.7(b-c), marker styles indicate the

stimulation/medication settings with colors representing patients. We trained

the fixed decoders (i.e., baseline) on a single stimulation-free (Stim Off, Med

Off, Fig. 5.7(b)) or medication-free (Stim @125 Hz, Fig. 5.7(c)) session. We ob-

served that most sessions lie above the diagonal lines, proving the robustness of
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test-time adaptation against both stimulation- and medication-induced domain

shifts.

Figure 5.7: Comparison of gait decoding performance for the adaptive (CMA)
and fixed (Baseline) decoders. (a) Movement classification performance on each
train-test session pair. The numeric values in the circles indicate the classifica-
tion performance (AUC scores) of adaptive (CMA) decoders. The colors in-
dicate the difference between the performances of the adaptive and fixed de-
coders. Specifically, a red circle implies that the adaptive decoder outperforms
the fixed decoder on the corresponding train-test session pair, whereas a blue
circle indicates that the fixed decoder (Baseline) achieves a higher performance
on that train-test pair. The dashed boxes cluster the tasks according to the type
of domain shift. (b) Comparison of gait decoding performance under various
medication settings (15 mins vs. 30 mins vs. 45 mins). (c) Comparison of gait
decoding performance under various stimulation settings (55 Hz vs. 125 Hz).
Decoders are trained on the “off” sessions for both medication and stimulation
studies. Each marker represents an individual session and different PD patients
are shown by various colors. Sessions above the dashed line (the majority of
sessions in both cases) clearly benefit from using an adaptive decoder.
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Figure 5.8: CMA reduces entropy in cross-session gait decoding. (a) Classifi-
cation loss (i.e., misclassification rate) increases with prediction entropy (i.e., a
measure of uncertainty). Entropy serves as a metric to quantify how well a de-
coder can adapt to new, shifted domains. (b) Adaptive decoder makes predic-
tions with higher certainty. (c) Adaptive decoder leads to a significantly lower
prediction entropy compared to fixed decoders.

5.3.7 Adaptive decoder with micro meta-learning

Meta-learning algorithms train on multiple domains to seek a general repre-

sentation and allow fast adaptation to new domains. As the CMA parameters

are initialized with meta-learning [162], its training phase requires multiple la-

beled recording sessions. However, recording and annotation of neural data

from multiple conditions can be costly, posing a practical concern on our meta-

learning-based approach. Here, we propose a micro meta-learning setting that

can alleviate this issue and perform well even with a single training session.

LFP signals are multi-channel time series that vary from timestamp to times-

tamp in addition to cross-session domain shift. To address within-session vari-

abilities, we considered each epoch as a separate micro-domain and applied

the MAML to these micro-domains. We refer to this approach as micro meta-

learning to distinguish it from the conventional meta-learning trained across

multiple sessions. Therefore, CMA can be trained using the data collected un-

der a single therapeutic condition and still generalize well to new stimulation
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or medication settings. We analyzed the performance of CMA with micro meta-

learning approach. Here, we present the average decoding performance (AUC

score) across all patients for each pair of training and test sessions. The colors

show the difference in performance of the proposed CMA and its fixed counter-

part (Fig. 5.7(a)). A red circle indicates that CMA achieved a superior gait de-

coding performance on the corresponding train-test session pair, whereas fixed

decoders outperform in blue circles. Testing on all combinations of training and

test session pairs, 39 out of 42 (93%) benefited from the proposed test-time adap-

tation, with CMA achieving a significantly improved performance. Similar to

Fig. 5.3, three types of cross-session variability exist in this case: task-induced,

stimulation-induced, and medication-induced domain shift. This diversity en-

sures that the proposed approach is not specific to a particular type of domain

shift and can be easily generalized to other tasks.

Even though CMA can work with a single training session using micro meta-

learning, the performance is lower than the case where CMA is trained on mul-

tiple different domains (Fig. 5.6). This is due to the fact that within-session drift

is much smaller than the cross-session domain shift (Fig. 5.3). Since CMA is

trained on a single session only, it learns to generalize to within-session vari-

ability rather than the more significant shifts across tasks and therapies. Our

results, however, showed that within-session decoding stability is also benefi-

cial for cross-session gait decoding performance. CMA outperformed fixed de-

coders using a single training session (Fig. 5.7(a)), highlighting the advantage

of CMA even in cases with limited training data.
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Figure 5.9: Visualization and interpretation of decoder performance (CMA and
ERM) at different medication settings. (a) t-SNE visualization of epochs cor-
responding to stand and move states. The epochs of fixed and adaptive de-
coders are aligned to the decision boundary. (b) Comparison of decision mar-
gins of CMA and ERM across all patients. We used Kullback–Leibler divergence
to measure the distribution difference between “Stand” and “Move” epochs.
Larger KL divergence indicates that the “Stand” and “Move” states are more
separable from each other, leading to a larger decision margin. The adaptive
decoder achieves a larger decision margin. (c) Comparison of model weights
for the fixed and adaptive decoders. We extracted spectral powers over 4 Hz
frequency bands (x axis) and plotted the trained parameter values associated
with each band. The parameters of ERM do not change with respect to input
features, while adaptive decoders allow the weights to alter during test time.
(d) Comparison of fixed and adaptive decoders in terms of feature importance
distribution. We calculated the feature importance using backward feature se-
lection and sorted the features in descending order. We show the Y-axis as a
logarithmic scale to demonstrate the “long tail” effect of our proposed adaptive
decoder. Compared to fixed decoders like ERM, CMA benefits from a broader
set of features.
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5.3.8 Interpretation of adaptive gait state decoding

By leveraging meta-learning and test-time adaptation, the proposed CMA ap-

proach is expected to make accurate predictions in an unseen, domain-shifted

condition. To understand the behaviors of conventional decoders and CMA, we

asked the question: why decoders with fixed parameters failed to generalize to

a shifted distribution? To this end, we studied the cross-session predictions of

ERM (i.e., the best-performing fixed decoder) on all PD patients. Intuitively, the

predictions were more likely to be inaccurate if the gait decoder failed to recog-

nize the test domain and as a result, decoded the gait state with low certainty.

We used the entropy measure to quantify the level of uncertainty in a decoder’s

predictions. A strong correlation was observed between the prediction entropy

and binary cross-entropy loss (r = 0.952, Fig. 5.8(a)). As shown in Fig. 5.8(b),

CMA predicted the movement probability with high confidence (movement

probability <0.05 for no movement or >0.95 for absolute movement), whereas

ERM made more uncertain predictions (0.05 < movement probability < 0.95).

Here, uncertain predictions with high entropy lead to poor decoding perfor-

mance [156]. On the other hand, we observe that CMA significantly reduces the

prediction entropy in cross-session gait decoding task (p = 3e-10, Fig. 5.8(c)).

The reduced prediction entropy and improved decoding performance of CMA

demonstrate its successful adaptation to shifted test environments.

Furthermore, CMA significantly increased the classification margin in our

cross-session gait decoding experiment (Fig. 5.9(a)). The small classification

margin can be considered as a cause of decision uncertainty since marginal

epochs (i.e., those close to the decision boundary) are predicted with high uncer-

tainty. However, given that uncertainty involves an unsupervised measurement

method, low prediction entropy does not necessarily guarantee the superiority
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of a decoder. Here, we used a more informative metric, the classification mar-

gin, which further involves class labels. Larger margins imply that the classes

are more separable from each other, thereby enhancing the classification perfor-

mance. As shown in Fig. 5.9(a), CMA was able to push away the epochs of

different classes and maximize the distance between them. We quantitatively

measured the classification margin as the KL divergence between the “Stand”

and “Move” epochs. Testing on 12 patients with PD, CMA significantly in-

creased the classification margin between different gait states (p = 0.005, Fig.

5.9(b)), leading to superior performance compared to the best-performing fixed

decoder (ERM). With test-time adaptation, the model parameters are dependent

on the contextual embedding and dynamically vary over time. Figure 5.9(c)

plots the parameters associated with spectral power features when training a

linear model. These adaptive parameters are highly correlated with the param-

eters of a conventional model without test-time adaptation (r>0.8), indicating

that CMA only slightly adjusts the model parameters to compensate for cross-

session domain shift. Another key distinction between CMA and fixed decoders

lies in the distribution of feature importance scores. Machine learning models

relying on only a few features are more prone to domain shift since individual

features can become unstable across sessions. Alternatively, CMA made predic-

tions by leveraging a more diverse portfolio of features rather than relying on a

few critical features only (Fig. 5.9(d)). In our study, CMA led to a reduction of

feature importance variance by 4.0x, 3.9x, and 2.2x for Med @15 mins, @30 mins,

and @45 mins, respectively, compared to the fixed decoder. Consistent results

were also observed at different stimulation settings. Our diverse feature portfo-

lio is highly robust to the corruption of a few features and improves the decoder

stability against therapy-induced domain shifts in PD.
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5.4 Discussion

In this chapter, we introduced CMA, an unsupervised test-time domain adap-

tation approach to reliably decode gait in Parkinson’s disease. Compared to

conventional neural decoders with fixed model parameters, CMA can general-

ize to recording sessions with new stimulation or medication settings. The de-

velopment of stable neural decoders is essential to the upcoming era of chronic

closed-loop devices, where the embedded or external decoders can consider-

ably suffer from changes of environment in patients’ daily life settings. For the

first time, we systematically verified the domain shift in the presence of com-

mon PD therapies and proposed to compensate for such variations by leverag-

ing efficient adaptive decoders. CMA made minimal assumptions on the type

of domain shift and the adaptation process to enable improved generalization

over prior works [151, 152]. We showed the success of adaptation to stimulation

on/off settings which causes abrupt changes in LFP, as well as the medication

effect which alters LFP gradually over time. While we mainly demonstrated the

performance on an LFP-based gait decoding task, the application of CMA can

be extended to other tasks such as epileptic seizure detection.

Closed-loop stimulation paradigms such as adaptive DBS have been recently

explored to improve the efficacy, reduce side effects, and enhance the energy ef-

ficiency of conventional open-loop stimulators [2, 31, 110, 111, 148, 157]. Accu-

rate and stable decoding of movement state (e.g., gait cycle, tremor, voluntary

movements) from chronic brain recordings is critical to enable more effective

adaptive DBS systems. Due to the need for special equipment and electrodes

to record neural and kinematic signals, research on motor decoding has been

largely confined to laboratory settings. As adaptive DBS techniques are start-

ing to move outside the clinic, several recent works have attempted to record
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long-term brain recordings under more realistic conditions such as home envi-

ronment [136, 137]. However, there exist limited efforts to develop models that

can reliably decode chronic brain recordings.

Test-time domain adaptation addressed several key challenges in cross-

session motor decoding including the lack of test-time neural data during train-

ing, the need for unsupervised adaptation, and lightweight parameter update.

While previous works have approached cross-session neural decoding from

one or more aspects, they failed to address all the aforementioned clinical con-

cerns in practice. Recalibration, for instance, can reduce the discrepancy be-

tween training and test samples by frequently retraining the neural decoder.

Despite being widely used in BCIs [145], recalibration is time-consuming and

can cause major inconveniences for both patients and clinical staff. Distribution-

alignment decoding (DAD) is an unsupervised motor decoding approach that

is trained by matching the distributions of neural activity and movement in a

low-dimensional space [169]. DAD does not need to measure both motor tra-

jectory and neural activity simultaneously, but still requires motor statistics for

calibration, making it less favorable compared to CMA.

The work in [151] introduced a stabilization algorithm for BCI applications.

The decoder performed cross-session adaptation to reliably control a cursor by

non-human primates. While the approach in [151] complied with unsupervised

on-the-fly adaptation, it made heavy assumptions over the cause of domain shift

(i.e., instability of electrodes). Artificial instabilities were intentionally gener-

ated by shifting the neural signal or disabling some electrodes. However, such

BCI stabilizers can not generalize to complex therapy-induced domain shifts in

PD. As a popular approach for domain adaptation, generative adversarial net-
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work (GAN) was recently explored to decode hand trajectory from spike trains

in monkeys [152]. Although GAN greatly accelerated cross-domain adaptation,

it still required extensive training data during inference. GAN training is known

to be computationally intensive and potentially unstable (it requires the iterative

training of two networks), thus hindering parameter update in streaming set-

tings [170]. Similarly, GAN augmentation requires labeled test samples for fine-

tuning, which again violates the unsupervised adaptation mechanism [152]. In

another recent effort [154], high-confidence predictions were used as the super-

vision signal to update decoder parameters on a seizure detection task. How-

ever, the pseudo-label-based approach holds the basic assumption that the un-

derlying domain changes asymptotically such that the decoder does not make

incorrect predictions with high confidence. While [154] demonstrated improved

performance on seizure detection from EEG, its effectiveness has yet to be veri-

fied on neural activities undergoing abrupt changes (e.g., LFP with DBS on/off).

In general, cross-domain classification is closely related to several research

topics of interest in machine learning. Transfer learning learns a decoder on

a training domain with the goal of improving the model’s performance on a

different but related test domain. Transfer learning allows domain transfer

across different tasks (e.g., lower-limb to upper-limb movement) but requires

labeled test samples for fine-tuning [171]. Domain adaptation minimizes the

gap between training and test sessions to boost cross-domain performance. Un-

like transfer learning, domain adaptation is an unsupervised learning process.

However, the test session epochs are still required to align the data with the

training session [172, 173]. Test-time domain adaptation further relaxes this

requirement and allows the model to update parameters using the stream of

incoming test samples. Test-time domain adaptation is of particular interest
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for implantable neural devices as it does not involve retraining or realign-

ment on a large training set [156, 158]. Therefore, it achieves a good trade-

off between cross-domain decoding performance and computational overhead.

Meta-learning has been demonstrated to produce generalizable models across

domains, but its success has been limited to few-shot learning settings [162].

As a popular variation of meta-learning, MAML learns from multiple relevant

domains to rapidly adapt to future sessions. Our approach, CMA, is a com-

bination of test-time adaptation and meta-learning, where model parameters

are meta-learned offline using recordings under multiple therapeutic settings

and adapted on-the-fly during test time. Therefore, our model enjoys both gen-

eralizable parameters initialized by meta-learning and a lightweight inference

scheme through test-time adaptation. In addition, we proposed to update the

decoder parameters using a forward pass of a stand-alone adaptation model,

in contrast to backpropagation. Compared to pseudo-label-based adaptation

which involves gradient descent [154], our approach circumvents the need to

compute the loss derivatives and is more suitable for hardware implementa-

tions.

Despite the improved stability, generalizability, and computational effi-

ciency of CMA, its success is still limited by a few factors. First, CMA was

trained on multiple recording sessions with various therapeutic settings. Thus,

the variability of training domains helped the meta-learning algorithm (i.e.,

MAML) to reliably capture test-time neural patterns and obtain a stable model.

Recording multiple training domains, however, can increase the workload dur-

ing training sessions. We relaxed this concern by introducing a novel approach,

micro meta-learning, which considers each timestamp as a unique domain.

While the micro setting improved performance over the baseline model, its per-
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formance is still lower than the case of using multiple training domains. Second,

our approach was developed under the assumption that the contextual distribu-

tion contains valuable information to correctly label epochs in the test domain

(see Methods). While we empirically verified CMA on both abrupt and progres-

sive domain shifts in neural signal, there is still a lack of theoretical guarantee

on the convergence [174, 175].

Recent work suggested that the subthalamic nucleus encodes human gait

via its connections to the brainstem locomotor pathway [141, 176]. Reduced

Beta-band activity was reported in the STN LFP during gait movements [141,

167, 168]. Similar findings were observed in our experiments where patients

demonstrated higher Beta power in the standing state compared to walking

(Fig. 5.5). The separability of standing and walking states allowed us to build

gait decoders based on STN LFP recordings (Fig. 5.9(a)). This could shed light

on novel closed-loop DBS paradigms to treat lower-limb dysfunction in patients

with PD.

In this chapter, we considered therapy-induced domain shifts that hinder the

precise and stable decoding of gait state in PD. The proposed test-time adap-

tation could be of high interest for near-future clinical applications where an

online neural decoder (potentially embedded on the implantable device) inter-

acts with the DBS or other interventional therapies to improve gait deficits. We

showed that conventional decoders with fixed parameters fail to generalize to

various DBS settings, preventing the simultaneous operation of the stimulator

and decoder. As closed-loop DBS aims at the precise control of stimulation de-

livery on a chronic basis, frequent switchings between DBS on/off or other per-

sonalized configurations are expected. In addition to stimulation, we demon-
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strated that dopaminergic medication can significantly modulate neural activity

in the STN. The proposed adaptive decoder is robust against PD medication ef-

fects and generalizes to different periods after the intake of dopamine agonists.

The adaptive decoder, together with the chronic brain monitoring device, could

provide a smart and robust solution for next-generation clinically-viable neural

prostheses.
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CHAPTER 6

CONCLUSION

This dissertation has explored machine learning in the realm of closed-loop

neural prostheses. This concluding chapter aims to elaborate on the key insights

derived, reflecting on the study’s contributions, limitations, and potential direc-

tions for future research.

In conclusion, this dissertation addresses key challenges in the development

of next-generation closed-loop neural prostheses. Initially, we explore a po-

tential application of neural interfaces for migraine state classification using

somatosensory evoked potentials. Recognizing the promising performance of

neural interfaces in treating neurological disorders, we develop a hardware-

friendly oblique tree model characterized by low power consumption and a

small on-chip area. The success of tree-based models with neural data can also

be extended to general tabular datasets. We introduce Tree-in-Tree decision

graphs as a novel, efficient, and accurate alternative to widely-used decision

trees. Lastly, we devise an adaptive decoder to compensate for fluctuations in

neural signals. This adaptive neural decoder is applied to patients with Parkin-

son’s disease in a real clinical setting, where they receive deep brain stimulation

and medication, both of which alter neural activities.

6.0.1 Future directions

In future research, closed-loop neural prostheses can be further enhanced in

terms of efficacy, efficiency and stability.

Firstly, it is crucial to integrate neural decoders with stimulators for con-

trolling neural symptoms. By co-optimizing the on-chip biomarker extractor,
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classifier, and stimulator, we can achieve even greater energy efficiency at a sys-

tem level. Furthermore, the future may see more algorithmic ideas dedicated

to optimizing stimulation parameters with reinforcement learning, an area that

holds immense promise for improving treatment outcomes.

Secondly, adaptive neural decoders are anticipated to maintain stable perfor-

mance in real-world scenarios over multiple years. While our adaptive decoder

demonstrates stable decoding performance in the presence of therapy-induced

variations, its long-term effectiveness in chronic recordings spanning years re-

mains unvalidated due to data limitations. Investigating the drift of neural sig-

nals over extended periods and applying this technique to lifelong neural inter-

faces represent exciting directions for future studies.

Thirdly, the intersection of machine learning and neural prostheses presents

a broad terrain of unexplored possibilities. For instance, Transformer models

have notably excelled in domains such as computer vision and natural lan-

guage processing. These models are exceptionally adept at processing sequen-

tial data, yet their application in the field of neural signal processing remains

relatively uncharted. It is anticipated that forthcoming research endeavors will

endeavor to narrow this gap, thereby further intertwining the disciplines of ma-

chine learning and neural prostheses.

In our research, we selected tree-based models in response to the dominant

methodologies currently prevalent in the field. Traditional models like logistic

regression and multi-layer neural networks have gained considerable traction

in diverse applications. Nevertheless, when faced with neural data, they en-

counter certain limitations. Neural data often exhibit non-linear relationships

between neurological biomarkers and disease symptoms, making linear models
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less than optimal for accurate neural decoding. Conversely, while complex neu-

ral networks may capture the non-linearity in neural signals, the cost associated

with on-chip implementation of these intricate models for efficient processing

of numerous neural recording channels can be prohibitive.

Tree-based models, in contrast, have been recognized for their superior ca-

pacity to decipher complex neural signal patterns, thanks to their inherent flex-

ibility and interpretability. This edge is particularly advantageous in medical

settings where understanding the logic behind model decisions is paramount.

The decision to use tree-based models in neural signal classification was also

informed by their hierarchical structure. This structure enables dynamic infer-

ence, which is beneficial for power efficiency in neural interfaces with a multi-

tude of recording channels.

However, as we have endeavored to underscore the merits of tree-based

models in this thesis, it is equally crucial to note their limitations. Incremental

training of tree-based models, for instance, remains a challenge. Exploring the

deployment of these models in an online learning setting, particularly within a

hardware-friendly framework, presents an intriguing avenue for future study.

Further, tree-based models may occasionally fall short when dealing with ex-

ceptionally complex tasks such as managing sequential or temporal dependen-

cies.

Among our key contributions is the development of an adaptive decoder

aimed at compensating for the variability in neural signals, a vital step in

achieving consistent performance in closed-loop neural prostheses. We have

applied this adaptive neural decoder in a real-world clinical setting for patients

with Parkinson’s disease, undergoing deep brain stimulation and medication,
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thereby demonstrating its effectiveness. Looking forward, the realm of unsu-

pervised domain adaptation, which is the cornerstone of adaptive neural de-

coders, is rapidly evolving. We anticipate seeing a surge in the implementation

of adaptive decoders in neural interfaces. However, the efficient integration of

adaptive approaches on hardware remains a compelling challenge to be tackled

collaboratively by both machine learning researchers and circuit designers.

One of the most significant barriers to progress in this field is the scarcity of

data. Machine learning techniques, particularly those that fall within the do-

main of neural prostheses, require vast, high-quality datasets for both training

and validation of models. The data shortage impedes model performance and

limits our ability to understand the full scope of their potential capabilities. Ad-

dressing the challenges associated with collecting, processing, and interpreting

large volumes of complex neural data will be a critical task. Future efforts will

need to focus on developing strategies for data augmentation, such as synthetic

data generation and transfer learning, to enhance the richness of data available

for model training.
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APPENDIX A

UNSUPERVISED DOMAIN ADAPTATION FOR CROSS-SUBJECT,

FEW-SHOT NEUROLOGICAL SYMPTOM DETECTION

A.1 Introduction

Machine learning (ML) has been an increasingly useful tool in neural engineer-

ing in recent years. ML can be used to analyze and classify invasive or nonin-

vasive electrophysiological recordings, enabling timely and accurate prediction

of neurological symptoms (or events) in epilepsy [12, 113, 177], Parkinson’s dis-

ease [2], migraine [77], and other emerging applications. However, despite the

recent progress and potential of ML in neurological disease detection, the exist-

ing algorithms primarily use a subject-specific scheme, requiring each patient’s

extended neuronal recordings to train the model. Therefore, employing such

algorithms on new patients with limited labeled data has been a challenge. This

is particularly the case for invasive recordings, where the duration of recording

is typically short due to surgical and ethical concerns (several minutes to days).

To tackle this problem, transfer learning aims to transfer the source domain

knowledge to a target domain where labeled data is difficult to acquire [171].

Over the past decade, there has been an extensive literature on domain transfer

learning [172, 178], with the goal of eliminating domain shift for better gen-

erative or discriminative performance. Among transfer learning approaches,

the adversarial domain adaptation introduces an adversarial loss to minimize

domain shift and enforce the learned representations to share a common fea-

ture space [179], and has obtained a promising performance in image-to-image

translation tasks [180, 181]. Although domain adaptation techniques are widely

used in computer vision tasks [180, 181], their application in neural engineer-
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ing and particularly in detecting neurological symptoms is still underexplored

[182].

In this work, we propose a cross-subject seizure detection algorithm based

on adversarial networks [179]. We mapped the features from various subjects

into a subject-invariant space via the proposed unsupervised adversarial do-

main adaptation. Following domain adaptation, we trained an ensemble of

gradient boosted trees in the subject-invariant feature space to generate cross-

subject seizure predictions. The rest of this work is organized as follows. We

describe the classification task and dataset in Section A.2. The adversarial do-

main adaptation is introduced in Section A.3, followed by results in Section A.4.

Section A.5 concludes the work.

A.2 Classification Task and Data Description

In this work, we propose a domain adaptation model for cross-subject seizure

detection. This approach was evaluated on continuous iEEG recordings from 9

patients with epilepsy.

A.2.1 Seizure detection task and iEEG data

Epileptic seizure detection is a supervised classification problem to differentiate

between seizure and non-seizure states of a patient. We studied a total num-

ber of 97 seizure events from 9 patients. The iEEG recordings were sampled at

500Hz and annotated as seizure or non-seizure by domain experts (publicly avail-

able at the IEEG Portal [92]). All included subjects gave written informed con-

sent and the study was approved by the Mayo Clinic and University of Pennsyl-

vania Institutional Review Board. We segmented the iEEG recordings of each
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patient to 1s windows for the subsequent processing.

A.2.2 Feature extraction

A set of predictive biomarkers of seizure activity [12] were extracted from

the segmented iEEG recordings, followed by domain adaptation and classi-

fication. The features and their definitions are as follows: line-length (LLN,

1
d

∑
d |x[n] − x[n − 1]|, d = window size), total power (Pow, 1

d

∑
d x[n]2), variance

(Var, 1
d

∑
d(x[n] − µ)2, µ = 1

d

∑
d x[n]), and band power over delta (δ: 1–4 Hz), theta

(θ: 4–8 Hz), alpha (α: 8–13 Hz), beta (β: 13–30 Hz), low-gamma (γ1: 30–50 Hz),

gamma (γ2: 50–80 Hz), high-gamma (γ3: 80–150 Hz), and ripple (R: 150–250 Hz)

bands.

A.2.3 Train-test split

We split the data into train and test sets using a block-wise approach, in which

each block is comprised of one seizure event and the subsequent non-seizure

segment. To evaluate the performance, we used the first n blocks for training

and the remaining blocks for testing, referred to as ‘n-shot learning’ in the fol-

lowing sections. The block-wise approach is a fair method to evaluate the per-

formance, as we use a number of recorded seizure events to predict a future

unseen seizure [12].

A.3 Adversarial Domain Adaptation

In this section, we consider each subject (i) to be associated with a specific do-

main (Di = {Xi, Pi(X)}), from which features are sampled. Pi(X) denotes the

distribution of the feature vector X. Our goal is to learn a unique encoder for
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each subject and map the features from this subject-specific domain to a subject-

invariant domain.

A.3.1 Model structure

We first consider a simple case with only two patients: one patient from the

source domain (DS = {XS , PS (X)}) where exists abundant labeled data for a

given task, and the other patient from the target domain (DT = {XT , PT (X)})

where data is expensive to acquire for the same task.

As shown in Fig. A.1, the proposed adversarial domain adaptation model

consists of three parts: encoder (source encoder ES , target encoder ET ), decoder

(source decoder DS , target decoder DT ), and subject discriminator (S D). We

used the handcrafted features (X) as input to the encoders. The encoders and

decoders form an autoencoder, which learns a latent representation (dimension:

2048) of the original input. The subject discriminator is a multilayer perceptron,

which takes the latent representations (ES (X) denoted by green squares, and

ET (X) denoted by red squares) as input. The subject discriminator has two hid-

den layers with 512 and 128 nodes, respectively. We trained the S D to predict

whether the latent representations are from the source or target subject.

Adversarial loss The encoders and subject discriminator form a GAN model

[179] for adversarial training. Here, we have encoders for both source and target

domains. Let Ladv(XS ,XT , ES , ET , S D) denote the standard supervised loss of

S D. We train the subject discriminator by minimizing the loss:

min
S D
Ladv (XS ,XT , ES , ET , S D) . (A.1)
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The goal of the encoders is to minimize the distance between the empirical

source and target latent representations ES (XS ) and ET (XT ). Thus, we trained

the encoders to fool the subject discriminator and make the source/target rep-

resentations indistinguishable from each other:

max
ES ,ET

Ladv (XS ,XT , ES , ET , S D) . (A.2)

Overall, the adversarial learning can be formalized as a maximin problem

which can be solved using alternating optimization:

max
ES ,ET

min
S D
Ladv (XS ,XT , ES , ET , S D) .

Reconstruction loss and mode collapse With the adversarial training, we ex-

pect the latent space to be a subject-invariant representation of the inputs. How-

ever, the source and target encoders may simply learn to produce the same out-

put (e.g., all zeros for latent representation), making it impossible for the subject

discriminator to distinguish. In this scenario, the subject-invariant space can-

not represent the inputs. This failure is referred to as mode collapse, which is a

common issue with GAN training [170].

To avoid mode collapse, we reconstructed the inputs from the latent repre-

sentations using a decoding stage. The decoders enforce the latent represen-

tations to preserve similar information as the inputs. We calculated the recon-

struction loss Lrec using the mean squared error (MSE) and L1 norm was used

to regularize the autoencoder.

Lrec(E,D) =
1
N

N∑
n=1

∥X(n) − D(E(X(n)))∥2 + λ(∥E∥1 + ∥D∥1), (A.3)
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Figure A.1: Model structure of the proposed unsupervised adversarial domain
adaptation (top), train and test approaches (bottom). The encoding and decod-
ing stages form an autoencoder for each subject, which learns a latent repre-
sentation of the input feature vectors. The subject discriminator takes the latent
representation as input and is trained to distinguish the data from different sub-
jects. The encoding stages are trained to fool the subject discriminator. Our goal
is to learn encoders that map the input features to a subject-invariant space (de-
noted by green and red blocks). Following domain adaptation, a classifier is
trained with the subject-invariant features to predict seizures on a target sub-
ject.

where N represents the mini-batch size, Xn denotes the n-th sample, and λ is the

regularization coefficient, which was empirically set to 3e-5 in this work. In ad-

dition to maximizing Ladv, we also train the encoders and decoders to minimize

the reconstruction loss. Overall, the encoders and decoders are trained with the

following formula:
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min
ES ,ET ,DS ,DT

−Ladv (XS ,XT , ES , ET , S D) + α(Lrec(ES ,DS ) +Lrec(ET ,DT )), (A.4)

where α controls the trade-off between the adversarial loss and reconstruction

loss.

A.3.2 Multi-subject domain adaptation

Previous literature on domain adaptation has only focused on transferring from

one source domain to the target [172]. However, for cross-subject seizure de-

tection, we need to consider each patient as a unique domain and transfer the

feature vectors from multiple subjects to a subject-invariant domain. Here, we

extended the domain adaptation framework to enable multi-subject seizure de-

tection. The subject discriminator predicts the patient index (rather than only a

single source or target), and patients are alternately considered as target while

others are considered as source. We used the cross-entropy loss for Ladv:

Ladv = −

Ns∑
i=1

EX∼Pi(X)[log(S Di(Ei(X)))], (A.5)

where Ns = 9 is the total number of patients, S D outputs a vector of size Ns, and

the i-th entry of the subject discriminator output (S Di) indicates the probability

that X belongs to subject i.
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Algorithm 4: Multi-Subject Domain Adaptation.

1 E1,...,Ns ,D1,...,Ns , S D← random initialization ;

2 for number of iterations do

3 Sample mini-batches of N samples from all subjects{
X(1)

1 , . . . ,X
(N)
1 , . . . ,X

(N)
Ns

}
;

4 Update the subject discriminator S D by gradient decent:

∇S D
1
N

Ns∑
i=1

N∑
n=1

−log(S Di(Ei(X(n)
i )))

for i ∈ 1, . . . ,Ns do

5 Update encoder and decoder Ei, Di by gradient decent:

∇Ei,Di

1
N

N∑
n=1

[log(S Di(Ei(X(n)
i ))) + α(∥X(n)

i − Di(Ei(X(n)
i ))∥2 + λ(∥E∥i + ∥D∥i))]

6

Learning procedure Eq. A.1-A.4 show the learning objectives for the domain

adaptation with two subjects: a source patient and a target patient. Here, we

introduce the learning procedure for multiple patients. We alternatingly consid-

ered one patient as the target and all other patients as source. The algorithmic

pseudocode is shown in Algorithm. 4. Our goal is to leverage the labeled data

from source patients to make predictions for a target patient. The domain adap-

tation process is essentially unsupervised, mapping different subjects’ data into

a common feature space. A discriminative model was trained on the subject-

invariant features to generate predictions for the target patients. We tested sev-

eral settings. For example, 0-shot learning does not require any labeled record-

ings from the target patient. So we trained the discriminative model only on the

labeled data from source patients. For n-shot learning, n labeled seizure blocks

from the target patient were used for training, in addition to the extensive data

from source patients.
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Convergence Analysis The encoders map the input subject feature distribu-

tion (Pi(X)) to a latent space distribution (Qi(z)). In the cross-subject learning

scheme, we would like Qi(z) to be invariant across patients (i.e., Qi(z) = Q1(z)

for all i ∈ 1, . . . ,Ns). Previous work has proven that adversarial training can

reduce the shift between target and source domains [179]. In this work, the

subject discriminator performs a multi-class classification task and patients

are alternately considered as the target (Algorithm. 4). Following the frame-

work in [179] , we recognize that Algorithm. 4 minimizes the Jensen-Shannon

Divergence (JS D(Q1, . . . ,QNs)) of latent space distributions [183]. Given that

JS D(Q1, . . . ,QNs) is always non-negative and becomes zero if and only if all dis-

tributions are the same (i.e., Qi(z) = Q1(z) for i ∈ 1, . . . ,Ns), Algorithm. 4 will

converge to a subject-invariant space given sufficient capacity.

A.4 Results

We tested the proposed algorithm for seizure detection from iEEG recordings

of 9 epilepsy patients. We first mapped the input feature vectors into a subject-

invariant space, using the proposed unsupervised adversarial training. A dis-

criminative model (gradient boosted trees [109]) was trained in the subject-

invariant space to make predictions for each patient.

A.4.1 t-SNE visualization of data distribution

We used t-SNE [184] to visualize the high-dimensional data distribution by

mapping each data sample to a location in a 2-dimensional space. As shown

in Fig. A.2, we plot the data distribution of two patients before and after do-

main adaptation. We used different colors and markers to show which class
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Figure A.2: t-SNE visualization of the data distribution from two patients; (a)
Visualization of the data distribution before domain adaptation. (b) Visualiza-
tion of the subject-invariant feature space. After domain adaptation, the data
from different patients become indistinguishable.

the points are belonging to (seizure or non-seizure). In Fig. A.2(a), Study 029

has a different distribution from Study 030. The domain adaptation process suc-

cessfully removed the between-subject variation and brought their distributions

closer to each other (Fig. A.2(b)), enables cross-subject classification. Visualiza-

tion was obtained with α = 0.01 (see α in Eq. A.4 or Algorithm. 4), which we

kept for the following experiments.

A.4.2 Cross-subject seizure detection

We first trained the encoders to map the features into a subject-invariant space,

using the domain adaptation process depicted in Algorithm. 4. The size of mini-

batches (N) was set to 32. We used the Adam optimizer [100] (learning rate of 1e-

5) to update both encoders and subject discriminator for 100 epochs. Next, 100

gradient boosted trees with a maximum depth of 4 were trained on the subject-

invariant features to predict the probability of epileptic seizures [109], using

the 0-shot and n-shot learning schemes described above. In the n-shot learn-

ing scheme, we assigned different weights to the data from source and target

patients. The samples from source patients received a weight of 0.01 while the
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Table A.1: Performance of conventional subject-specific (SS) and cross-subject
(CS) seizure detection methods.

Subject # 0-shot 1-shot 2-shot 3-shot
CS SS CS SS CS SS CS

Study 004-2 0.791 ± 0.889± 0.935± 0.947± 0.915± N/A N/A0.091 0.047 0.027 0.033 0.041

Study 022 0.809 ± 0.787± 0.962± 0.910± 0.960± 0.875± 0.915±
0.058 0.056 0.012 0.052 0.007 0.050 0.023

Study 024 0.695 ± 0.874± 0.949± 0.837± 0.944± 0.914± 0.938±
0.124 0.030 0.012 0.061 0.011 0.015 0.012

Study 026 0.715± 0.658± 0.931± 0.931± 0.953± 0.928± 0.957±
0.099 0.158 0.009 0.011 0.009 0.024 0.008

Study 029 0.773± 0.813± 0.785± 0.942± 0.944± N/A N/A0.034 0.059 0.070 0.024 0.022

Study 030 0.793± 0.977± 0.974± 0.983± 0.979± 0.976± 0.990±
0.044 0.005 0.010 0.009 0.003 0.025 0.003

Study 033 0.659± 0.888± 0.901± 0.885± 0.887± 0.920± 0.923±
0.049 0.009 0.002 0.005 0.003 0.004 0.005

Study 037 0.514± 0.631± 0.801± 0.597± 0.751± 0.994± 0.989±
0.145 0.043 0.012 0.071 0.037 0.004 0.004

Study 038 0.596± 0.882± 0.858± 0.896± 0.882± 0.915± 0.929±
0.029 0.019 0.027 0.005 0.027 0.011 0.011

Average 0.705± 0.822± 0.899± 0.881± 0.913± 0.932± 0.949±
0.030 0.031 0.012 0.012 0.007 0.008 0.005

data from target patients had a sample weight of 1. We applied the reweighting

scheme to address the following concerns: (1) In few-shot learning, the training

samples from source patients were more than the samples from target patients

by an order of magnitude. (2) Compared to the data from source patients, the

target patient data is more informative in predicting seizures on that patient.

Given the imbalanced nature of the seizure detection task, we evaluated the

classification performance using the area under the ROC curve (AUC scores).

Table. A.1 compares the classification performance with/without cross-subject

knowledge. In the conventional subject-specific (SS) setting, we trained the clas-

sifiers by only using the data from a target patient (e.g., n seizure blocks in n-

shot). For the cross-subject (CS) setting, we further incorporated the knowledge

from source patients. We ran the proposed domain adaptation approach for 5
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independent trials and reported the average performance (AUC scores) ± stan-

dard deviation. 3-shot learning on two patients (Study 004-2 and Study 029) is

not applicable (N/A), since only 3 seizure events are available in both patients.

As shown in this Table, 0-shot learning achieved an average AUC score of 0.705,

which is much better than the chance level (0.5). For 1-, 2-, 3-shot learning, CS

outperforms the SS in terms of average classification performance. However, as

we used more labeled samples from the target patient (i.e., moved from 1-shot

to 3-shot learning), the difference become less significant. Overall, cross-subject

learning achieved a superior performance compared to the subject-specific set-

ting, which indicates the importance of leveraging cross-subject knowledge. In

addition to seizure detection, the proposed approach has the potential to help

various neurological disorders and symptom detection tasks where training

data is generally limited, which remains as future work.

A.5 Conclusion

In this work, we proposed a novel cross-subject seizure detection framework

based on adversarial domain adaptation, by mapping the features from differ-

ent subjects into a subject-invariant space and applying cross-subject learning.

With unsupervised domain adaptation, we achieved a better performance com-

pared to the conventional subject-specific approach, particularly when the train-

ing data is limited (few-shot learning). The proposed model efficiently incor-

porates the knowledge from previous patients to enable high-accuracy seizure

detection in new patients.
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APPENDIX B

XTAB: CROSS-TABLE PRETRAINING FOR TABULAR TRANSFORMERS

B.1 Introduction

With the increasing number of datasets represented as tables with rows and

columns, tabular machine learning makes the foundation of many real-world

applications. While deep learning has achieved tremendous success in the

fields of computer vision (CV) [185, 186] and natural language processing (NLP)

[187, 188], tabular deep learning models are not used as commonly as tree-based

models [189, 190]. The primary challenge of tabular deep learning is the diver-

sity of tabular tasks. Unlike text, which can be standardized as a sequence of

tokens, tables are highly data-specific. Tabular data can vary in the number and

types of columns. This makes it difficult for tabular deep learning models to

transfer the knowledge learned from one table to another, leading to poor gener-

alization abilities. Therefore, self-supervised learning for tabular data [185, 187],

particularly one that is able to bootstrap the learning on new tables, is still an

open problem.

There is an ongoing effort in migrating self-supervised pretraining tech-

niques from CV [191] and NLP [187] to tabular tasks. With self-supervised pre-

training, tabular deep models have demonstrated improved performance [192–

194]. However, existing methods generally pretrain the tabular model on data

from the same domain as the downstream task. As a result, the data-specific

models cannot generalize to new tables.

Another direction of deep tabular learning aims to leverage Transformers,

which drives the recent progress in NLP [188] and CV [195] for tabular tasks.

Inspired by the success of the attention mechanism, Transformers were adapted
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to tabular data [196–199] and demonstrated strong performance [189]. The core

idea of tabular transformers is to consider the table columns as tokens, similar

to words in a sentence. Therefore, tabular transformers can process tables with

variable numbers of columns, thus making transferable learning [199] feasible.

In this work, we present XTab, a general framework for cross-table pretrain-

ing of tabular transformers. To resolve the issue that tables may vary in the

number and types of columns, XTab decomposed the tabular transformers to

two components: data-specific featurization and projection layers that capture

the characteristics of each table, and a cross-table-shared block that stores the

common knowledge. On a diverse collection of data tables, XTab trains these

data-specific blocks and the shared block jointly via federated learning [200].

Once pretrained, XTab can bootstrap the learning process on a new table by

initializing the shared block with pretrained weights. To verify our design,

we conducted extensive experiments on AutoML Benchmark (AMLB) [190].

Our results show that transformers pretrained and initialized with XTab consis-

tently outperform transformers with random initialization. By pretraining FT-

Transformer [196] with XTab, we outperform the state-of-the-art tabular deep

learning models.

The contributions of the work are summarized as follows:

• XTab offers a framework to account for cross-table variations and enable

cross-table knowledge transfer.

• Given the large diversity of tabular datasets, we propose to pretrain on

tabular datasets with federated learning. This allows us to perform dis-

tributed pretraining across a large collection of tables.

• To the best of our knowledge, we are the first to show that cross-table
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pretraining can boost the learning speed and performance on new tables.

This is different from table understanding tasks [201], the focus of which

is to extract the semantical information from tables.

B.2 Related work

Tabular self-supervised learning. Inspired by the success of pretraining in

CV and NLP, previous papers studied tabular self-supervised learning [192–

194, 197, 199, 202, 203]. Among those works, [192, 202] proposed an auto-

encoder framework with a pretext task to reconstruct the missing part of a table.

[193] used contrastive learning as the pretraining objective and extended the

SimCLR framework [191] to tabular tasks. [199, 203] further incorporated the

label columns of tabular tasks in pretraining and proposed “target-aware” ob-

jectives leading to higher performance. As existing approaches only pretrain on

one [192, 193] or a few relevant tables [199], the pretrained tabular model lacks

generalizability. XTab alleviates this issue by pretraining on a large number of

tables.

Tabular transformers. Transformer models are gaining popularity in the

realm of deep learning for tabular data. For example, FT-Transformer

has demonstrated superior performance on tabular classification/regression

tasks [196]. Saint introduces the row-wise attention and captures the inter-

sample interactions using transformer [197]. Fastformer proposes to use ad-

ditive attention on tabular tasks, which is a lightweight attention mechanism

with linear complexity to the length of input sequences [198]. TransTab features

transfer learning in tabular tasks using transformers [199] and also supports the

cross-table transfer. Our approach is different from TransTab in that TransTab
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has limited ability in generalizing to tables from new domains, while XTab is

able to generalize to new domains.

Cross-table transfer learning. Pretrained vision and text models can be

adapted to a wide range of tasks [204]. One reason is that the sentences and

images share general representations across various tasks. As for tabular learn-

ing, one may question if there is shared knowledge across tables as two different

tables can have totally different numbers of columns and the associated seman-

tic meanings. We argue that different tables share a similar prior given the re-

cent success of zero-shot hyperparameter optimization (HPO) in AutoML [205],

which learns a general hyperparameter configuration applicable to a wide range

of tabular tasks. Unlike pretrained models in NLP [187], XTab does not attempt

to learn a universal tokenizer for all tables, as the meaning and context of each

table varies. Instead, we aim to learn a weight initialization that is generalizable

to various downstream tasks. Concurrent to our work, tabular prior-data fit-

ted networks (TabPFN) [206] learns a prior model on synthetic tabular data and

demonstrated promising results on small numerical tabular classification tasks

with ≤ 1000 samples. Different from TabPFN, the inference complexity of XTab

is irrelevant to the number of training samples. Thus, XTab also works for large

tables.

B.3 Methods

Previous works have proposed various pretraining methods for tabular learn-

ing [192, 193, 197, 203]. However, existing pretrained models are still domain-

specific since they were pretrained on the training set of each individual tabular
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prediction task. As a result, existing pretrained models lack generalizability

and fail to cover downstream tasks on other types of tables. Here, we propose

XTab to pretrain transformer models using the information from multiple tables.

With cross-table pretraining, XTab aims to learn the shareable knowledge that

can boost the performance for various downstream regression and classification

tasks.

Figure B.1: The model structure of XTab. XTab is pretrained on multiple tabular
tasks (Tab. #1, #2, #3). Samples from different tables are featurized and fed into
a transformer model with N blocks. The output of the transformer is further
processed by projection heads to derive the pretraining losses. Featurizers and
projection heads are data-specific since tables may have different input/output
dimensions. The transformer backbone is shared across all pretraining tables to
capture the general knowledge.

B.3.1 Model structure

The model structure of XTab is described in Figure B.1. During the pretraining

phase, we sample mini-batches of rows from different tables (one batch per ta-

ble). The featurizers are data-specific and convert each column of the table to

a token embedding. An additional [CLS] token is appended during this step
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for supervised prediction or contrastive self-supervised pretraining [199]. A

transformer-based backbone is shared across all tabular datasets to process to-

ken embeddings with variable sequence lengths. The output of the shared back-

bone is further processed by projection heads to (1) reconstruct the original table

from a corrupted view; (2) identify the positive/negative pairs of samples as in

contrastive learning; or (3) predict the values in the label column predefined by

each table. The projection heads are not shared across tables since they are spe-

cific to each dataset and the pretraining objectives. Among all pretraining losses,

reconstruction loss and contrastive loss do not require information from the la-

bel column, whereas supervised losses use the groundtruth data in the label

columns of each table. Using groundtruth information during the pretraining

phase is referred to as “target-aware pretraining” [199, 203] or “pre-finetuning”

[207] in previous works.

A key challenge in cross-table pretraining lies in the variations of input ta-

bles. Previous works on transferable tabular learning either require tables to

come from similar domains [208] or use additional information (e.g., column

names) to identify the shared knowledge across tables. XTab is designed to

be applicable to previously unseen tables with no assumption on the domain

or column name format. To this end, XTab contains model blocks that carry

the data-specific information (green blocks in Figure B.1), as well as the shared

backbone that stores the common knowledge (grey blocks in Figure B.1). Once

pretrained, only a shared backbone is kept for all downstream tasks. For each

downstream task, featurizers and projection heads are randomly initialized and

the entire model is finetuned on the downstream training data until a stopping

criterion is met.
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Featurizers The featurizers convert a sample to feature embeddings E ∈ Rc×d.

Here, c denotes the number of columns and d is the embedding dimension.

Each row of a table is considered as an input sample, and each column is a to-

ken. The embedding of [CLS] token is appended to the feature embedding for

prediction stack[E, [CLS]] ∈ Rc+1×d. In this work, we limit our discussion to ta-

bles with numerical and categorical columns. Text cells are treated as categorical

attributes. Our tokenizer is similar to [196]. For numerical features, we multiply

the numerical value xk at the k-th column with a trainable vector Wk ∈ Rd and

add a bias term bk. For categorical columns, XTab learns an embedding matrix

∈ RNcat×d as a lookup table, where Ncat is the total number of categories of the

dataset. During the forward pass, we retrieve the categorical feature embed-

dings from the embedding matrix.

XTab allows tables to have different numbers of columns and arbitrary col-

umn types. Featurizers are data-specific to handle various types and numbers

of columns in the input.

Backbones As the shared component across multiple pretraining datasets,

transformers can handle input sequences with variable lengths. Therefore, it

is possible to pretrain a tabular transformer that can be applied to all tabular

datasets. Compared with other deep learning architectures like multi-layer per-

ceptron (MLP), transformers are favorable for cross-table knowledge transfer

since they can handle variable input sequences [199]. As long as the backbone

can process input sequences of variable lengths, XTab is flexible on the exact

implementation. In this work, we present three backbone variants:

FT-Transformer: Feature Tokenizer Transformer (FT-Transformer) is a sim-

ple yet well-performing transformer model for tabular prediction tasks [196].
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The transformer module in FT-Transformer consists of a Multi-Head Self-

Attention (MHSA) block and a Feed Forward block [188]. Recent work has

found FT-Transformers to beat other deep learning methods on tabular data

[189].

Fastfromer: Conventional Transformer-like architectures have a quadratic

complexity to the length of input sequence [188], making them inefficient for

tables with large numbers of columns. Fastfromer is an efficient transformer ar-

chitecture which uses additive attention in place of MHSA [198]. With additive

attention, Fastformer only considers the interaction between each token and the

global representation, achieving a linear complexity.

Saint-v: Saint has introduced the row-wise attention in addition to the

column-wise attention of FT-Transformer and Fastformer [197]. The original

implementation of Saint is sensitive to the sequence length and can not han-

dle variable-column tables [197]. We present a variation of Saint (Saint-v) to fit

into our cross-table pretraining setting. Saint-v consists of both column- and

row-wise attention blocks.

Projection heads and objectives There exist various pretraining objectives for

tabular prediction tasks [192–194, 199, 202, 203]. Among them, table reconstruc-

tion and contrastive learning are the most popular and effective objectives for

tabular tasks. In addition to the self-supervised pretraining objectives, we also

tested the pre-finetuning setting using supervised loss.

Reconstruction loss: Reconstruction loss is a self-supervised training objec-

tive shown to be effective on various tabular tasks [194, 203]. The reconstruc-

tion objective aims to recover the original sample x from a corrupted view of
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the sample x̃. The reconstruction projection head takes the representation of x̃

as input, and generates an estimate of the original input x̂. The reconstruction

loss is calculated by comparing x and x̂. Specifically, we use Cross-Entropy loss

to measure the reconstruction error of categorical columns and Mean Squared

Error (MSE) for numerical columns.

Contrastive loss: Similar to the reconstruction objective, we also generate x̃

as a corrupted sample. x and its corresponding corruption x̃ are considered as

a positive pair of samples, whereas x and other samples in the batch form neg-

ative sample pairs. In general, contrastive loss aims to minimize the distance

between positive pairs of samples and maximize the distance for negative pairs.

Following [191, 193], we used InfoNCE loss for contrastive cross-table pretrain-

ing. The contrastive projection heads are similar to those used in SimCLR [191],

mapping the representations to the space where we apply the contrastive loss.

Supervised loss: In addition to reconstruction and contrastive losses that do

not require labels in pretraining, one can directly pretrain a model using the su-

pervised objective. With supervised losses, the projection head aims to predict

the values under a certain field (or column), as predefined by each dataset. The

supervised prediction tasks included regression and classification.

In XTab, the projection heads are data-specific. Different pretraining datasets

do not need to share common objectives. For example, we can simultaneously

pretrain XTab on both regression and classification tasks, or a mixture of recon-

struction and contrastive losses. The diversity of pretraining objectives ensures

that the shared backbone is widely adaptable to various downstream tables.
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B.3.2 Federated pretraining

XTab introduces data-specific featurizers and projection heads (green blocks in

Figure B.1) to account for the variations across table columns and pretraining

objectives. During pretraining, both the time and space complexity increase

linearly as we include more tabular datasets. As a result, it is challenging to

quickly pretrain XTab using a single machine on a large collection of tabular

tasks. To alleviate this issue, we fit XTab into the federated learning framework

[209]. With the federated setting, XTab involves only marginal overhead in wall-

clock time with more pretraining tasks. Federated learning makes it feasible to

pretrain XTab on a cluster of commercially available GPUs (NVIDIA T4 GPUs,

16GB memory).

We use the Federated Averaging (FedAvg) algorithm to pretrain XTab

[209, 210]. We have a central server and multiple clients. Each client only hosts

one dataset. Therefore, we can distribute the data-specific components of XTab

across clients such that each client stores one featurizer, one projection head, and

the shared transformer. During pretraining, each client calculates the gradient

using the local dataset:

wk,i+1 ← wk,i − α∇ℓk, (B.1)

where k denotes the client (or table) index and i shows the current iteration. α is

the learning rate and ℓ(k) is the loss function. w represents the trainable param-

eters which contains two components: w(S) for the shareable modules across all

pretraining tasks, and w(NS) for the non-shareable parts (w = stack[w(NS),w(S)]).

All clients operate synchronously during pretraining with the same learning

rate and batch size.

The central server is responsible for aggregating the local gradients from

152



clients. FedAvg allows clients to make multiple local updates before an aggre-

gation step is made on the central server. Let N denote the number of local

updates per aggregation. The central server performs:

w(S)
i+N ← w(S)

i +

K∑
k=1

(w(S)
k,i+N − w(S)

i ). (B.2)

The aggregation is only performed on the shared weights. The term w(S)
k,i+N −

w(S)
i is the gradient learned by client k since the last weight aggregation. The

central server simply accumulates the gradients from all clients. Such unitary

scalarization was recently shown to perform well in multi-task learning [211].

After the aggregation update (i.e., Equation B.2), all clients download w(S)
i+N

from the central server, and apply the weights to the transformer backbone

wk,i+N = stack[w(NS)
k,i+N ,w

(S)
i+N]. Therefore, we force all clients to train on a shared

backbone with data-specific featurizers and projection heads.

The number of local steps N is a key parameter to control communication ef-

ficiency. With N = 1, FedAvg corresponds to the distributed version of stochas-

tic gradient descent (SGD). With N > 1, multiple local updates are performed

between model aggregation steps at the server, thereby reducing the communi-

cation cost between the central server and clients. Unless otherwise specified,

we choose N = 5 throughout the work.

Federated learning was originally proposed as a privacy-preserving ap-

proach to learning from distributed data. The collaboration of multiple clients

to train a single shared model makes a good fit with our goal of cross-table

pretraining. In this work, XTab leverages the distributed nature of federated

learning to scale with a large number of pretraining tasks.
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B.4 Experiments

We evaluate the performance of XTab on supervised tabular learning tasks, in-

cluding binary and multiclass classification and regression. We tested on the

following pretraining settings:

• XTab with various pretraining objectives, including reconstruction loss,

contrastive loss, and supervised loss.

• XTab with various transformer backbones, including FT-Transformer,

Fastformer, and Saint-v.

• XTab with the transformer backbone partially- or fully-pretrained from

other tasks.

• XTab with different numbers of pretraining tasks.

During finetuning, we randomly initialize a new featurizer and projection head

for each downstream task. All downstream tasks use the pretrained transformer

backbone. We finetune all the model components using the training set of each

downstream task. We included two different finetuning settings:

• Light finetuning: finetune XTab for a fixed number of epochs (3 epochs).

• Heavy finetuning: finetune XTab with an early stopping patience of 3

epochs. The maximum number of epochs is set to infinity in this case.

For all finetuning settings, we retrieve the best model checkpoint based on val-

idation scores, and use it to report the performance on the test data. The base-

line models share the same model architecture and finetuning configurations as

XTab, but with randomly initialized parameters instead of using the pretrained

backbones. We find that XTab generally outperforms the baseline models in all

scenarios and beats other deep learning models on tabular tasks.
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B.4.1 Datasets

We use the public OpenML-AutoML Benchmark (AMLB) [190] for pretraining

and evaluation. AMLB is a recently proposed benchmark for automated ma-

chine learning, consisting of 104 tabular tasks (71 classification and 33 regres-

sion). Out of the 104 tabular datasets, we used 52 datasets for pretraining and

the remaining 52 tasks for finetuning and evaluation. We split the pretraining

and finetuning datasets by the alphabetical order of the task names.

Data split: For all downstream (or finetuning) tasks, AMLB reserves 10%

of the tabular data for testing. Over the remaining data, we randomly partition

87.5% (7/8) into the training set and use 12.5% (1/8) for validation. We repeated

5 trials with different test folds for all tabular datasets. All methods use the same

split within the same trial.

Data pre-processing: Following [193, 197, 199], we limit the discussion to ta-

bles with numerical and categorical columns. Each Category is represented by

a distinct integer to index the embedding in the lookup table of the categorical

featurizer (see Section B.3.1 for details). We normalized the numerical features

by subtracting the mean and dividing them by the standard deviation. For re-

gression tasks, we also apply the Standardization to the labels. The normaliza-

tion parameters are calculated using the training set only to avoid information

leakage. Missing entries are filled with the mean values of numerical columns,

or treated as an additional category for categorical columns.

Table corruption: Self-supervised learning objectives, including both con-

trastive and reconstruction losses, require a corrupted view of the input sample.

In this work, we follow [193, 203] to randomly resample features and construct

a corrupted sample. Specifically, we randomly select a fraction of features at
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each row of the table. Those features are corrupted by resampling from the em-

pirical marginal distribution of the column. For all datasets, the corruption ratio

was set to 60% as suggested in [193]. In other words, for each sample x and its

corrupted view x̃, 60% of entries are resampled whereas 40% of features remain

unchanged.

Figure B.2: Tabular prediction performance of XTab using various evaluation
criteria under the light finetuning setting. (a) The win rate of the pretrained
transformer with respect to baseline. (b) The average rank of the models. (c)
The normalized prediction performance. (d) The average error reduction rate
compared to baseline. Each dot indicates a trial of the downstream task (5 trials
per dataset). The error bars show standard deviations in (b) and (c). As the
backbone is pretrained for more steps, we observe an increase in all evaluation
criteria.

B.4.2 Experimental setup

We used a federated pretraining setting as detailed in Section B.3.2. Both pre-

training and finetuning were performed on a cloud cluster of NVIDIA T4 GPUs

(16 GB memory). We used about 30 thousand GPU hours for all experiments.

Model configuration and training: Our default model configuration of

156



Figure B.3: Comparison of different pretraining objectives under the light (a,
c) and heavy (b, d) finetuning settings. We show the win rate of XTab with
different objectives with (a) light and (b) heavy finetuning settings. We also
compared the performance of pretraining objectives in terms of the model rank
with (c) light and (d) heavy finetuning. We observe a consistent improvement
of XTab compared to baseline models with all objectives. The reconstruction
pretraining objective achieves the best performance, with 71.0% win rate under
light finetuning and 56.1% for heavy finetuning at 2000 pretraining steps.

transformer variants is the same as [196], with 3 transformer blocks, a feature

embedding size of 192 and 8 attention heads. The feed forward networks (Fig-

ure B.1) have two layers with the same size as the embedding. We apply a

dropout ratio of 20% to attention layers and 10% for feed forward networks. We

use ReGLU [212] as the activation function and layer normalization [213] in the

feed forward layers. The projection heads are ReLU networks with 2 layers and

a hidden dimension of 192. All model components use Kaiming initialization

[214] with the bias terms fixed at zeros.

The batch size is fixed at 128 for both pretraining and finetuning. Both stages

use AdamW as the optimizer, with a learning rate of 1e-4. Following [196, 203],
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we also apply a weight decay of 1e-5 to all components excluding featurizers,

[CLS] tokens, layer normalization and bias terms.

Evaluation metrics: We choose the evaluation metrics as suggested by

AMLB [190]. We use root mean-squared error (RMSE) for regression tasks, area

under the receiver operating characteristic curve (AUC) for binary classifica-

tion, and log loss for multi-class classification. The same evaluation metrics

are applied to validation sets for early stopping. The efficacy of the pretrained

transformer backbones is estimated by the downstream performance.

B.4.3 Comparison with baseline transformers

Cross-table pretraining improves downstream task performance. As shown

in Figure B.2, we compare the downstream prediction performance of FT-

Transformer before (baseline) and after cross-table pretraining. Reconstruction

objective is used for pretraining and all downstream tasks are finetuned for 3

epochs (light finetuning). We checkpoint the pretrained backbone after a cer-

tain number of pretraining steps and finetune downstream tasks from various

checkpoints (250/500/1000/1500/2000). In Figure B.2(a), we show the win rate

of the pretrained transformer on all downstream tasks with respect to baseline.

Both classification and regression tasks benefit from our proposed cross-table

pretraining. As the backbone is pretrained for more steps, we observe an in-

crease in the win rate. We also calculate the rank of the model for each down-

stream task (Figure B.2(b)). Model rank is an integer from 1 to 6, with a lower

number indicating better performance. Equal values are assigned a rank that is

the average of the ranks of those values. The rank of the model improves with

XTab pretraining. To further validate the advantage of XTab over transformers

158



without cross-table pretraining, we further look into the normalized prediction

performance and error reduction rate (Figure B.2(c, d)). We min-max normalize

the prediction performance of all models, such that the worst model receives a

score of 0 and the best model receives 1. Similarly, errors are also normalized

to the best and worst models. Negative numbers indicate a model with lower

error (1 − AUC scores for binary classification) or loss (log loss for multiclass

classification and RMSE for regression) than baseline. The mean error (or loss)

is indicated by the stars. FT-Transformers pretrained with XTab on average ob-

tain higher normalized performance and reduced error compared to traditional

random initialization.

Figure B.4: XTab with transformer variants including FT-Transformer, Fast-
former, and Saint-v. We use different transformer models as the shared back-
bone in XTab. We calculate the win rate of the pretrained backbone over ran-
domly initialized transformers. (a) shows the results for light finetuning and (b)
represents heavy finetuning. FT-Transformer, Fastformer, and Saint-v all bene-
fit from our proposed cross-table pretraining, achieving >50% win rate in all
experiments.

XTab with different pretraining objectives and finetuning settings. We

extensively test XTab with various pretraining objectives and finetuning set-

tings. Figure B.3 summarizes the downstream performance using reconstruc-

tion, contrastive and supervised objectives as described in Section B.3.1. We

use FT-Transformer as the backbone. Figure B.3(a, b) plot the win rate of XTab

under the light and heavy finetuning settings, respectively. We finetune on all

downstream tasks for 3 epochs with light finetuning, and use an early stopping
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patience of 3 for heavy finetuning. We observe a consistent improvement of

XTab over the baseline with no cross-table pretraining. The advantage of XTab

is more significant in the light finetuning setting compared to heavy finetuning.

For example, XTab with the reconstruction objective achieves a 71.0% win rate

with light finetuning, but only 56.1% with heavy finetuning. The difference is

caused by catastrophic forgetting of deep models [215, 216]. As tabular trans-

formers are relatively small (<1M parameters for the FT-Transformer backbone),

they are more vulnerable to catastrophic forgetting during the finetuning phase.

It is possible to alleviate this issue with additional techniques [215, 216], but this

is outside the scope of the work. Figure B.3(c, d) compare different objectives

by ranking the models with light and heavy finetuning. All approaches are

pretrained for 2000 steps. Each dot in Figure B.3(c, d) represents a trial of down-

stream experiments (5 trials per dataset) and error bars indicate the standard

deviations across trials. The advantage of cross-table pretraining is shown by a

win rate >50% and a model rank value lower than the baseline. We conclude

that XTab consistently enhances the downstream performance of tabular trans-

formers across multiple pretraining objectives and finetuning settings. Among

all pretraining objectives tested, reconstruction loss performs better than con-

trastive or supervised losses.

XTab is applicable to various types of transformers. XTab offers a frame-

work to pretrain the shared model components across tabular tasks. Therefore,

the choice of transformer backbone is flexible, as long as the model can process

tables with variable columns. In Figure B.4, we plug three transformer variants

into XTab including FT-Transformer, Fastformer, and Saint-v. The explanation

of transformer backbones can be found in Section B.3.1. We pretrain all trans-

formers using reconstruction objective, and finetune on the downstream tasks
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with the light and heavy settings, Figure B.4(a, b). We show that XTab is appli-

cable to various types of transformers and all models benefit from the proposed

cross-table pretraining, achieving a higher win rate compared to the baseline.

B.4.4 Performance compared to traditional baselines

To compare the performance of XTab and various tabular models, we run ex-

periments on the full AutoML Benchmark [190]. We split the benchmark into 2

folds, each consisting of 52 tabular datasets. We pretrain on fold #1 and evalu-

ate the downstream performance on fold #2 and vice versa. We pretrain XTab

with the FT-Transformer backbone using reconstruction loss. 20 datasets are

excluded since they could not fit into the GPU memory (16 GB). We report the

performance on the remaining 84 tasks. In addition to XTab, we include the

following methods:

Tree-based models: Tree-based models provide strong performance on tab-

ular tasks [189]. We include Random Forest (RF) and gradient-boosted tree

variants: XGBoost [83], LightGBM [109] and CatBoost [217]. Neural networks:

We include the AutoGluon neural networks implemented on top of PyTorch

[218] and the FastAI tabular model [219]. Transformers: We include the FT-

Transformer which is a direct counterpart of XTab without pretraining. The

finetuning settings of FTT/XTab include light (FTT-l/XTab-l) and heavy (FTT-

h/XTab-h) finetuning as described above. We further introduce FTT-best/XTab-

best, which incorporates an early-stopping patience of 20 and model soup of the

top 3 checkpoints [220] to achieve better performance. TransTab is included for

comparison on classification tasks (regression not enabled yet with TransTab)

under the supervised learning (TransTab-sl) and contrastive learning (TransTab-

cl) settings [199].
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Table B.1: Comparison of tabular prediction performance with default model
configuration and hyperparameter optimization (HPO). Mean training time and
model rank (± standard deviation) are calculated across 84 datasets from Au-
toML Benchmark. We perform 5 independent trials for each task. XTab out-
performs its counterpart FTT in all scenarios thanks to cross-table pretraining,
whereas CatBoost is the overall best model. The best overall method (CatBoost)
and the best deep learning approach (XTab-best) are highlighted in bold.

Methods Time (s) Rank
D

ef
au

lt
hy

pe
rp

ar
am

et
er

RF 66.8† 7.14 ± 3.81
XGBoost 43.1† 5.06 ± 3.08
LightGBM 23.9† 5.23 ± 3.25
CatBoost 322.8† 2.98 ± 2.66

FastAI 89.6 7.24 ± 3.44
NN 188.8 7.40 ± 3.43

TransTab-sl∗ 539.7 11.04 ± 2.75
TransTab-cl∗ 312.0 10.79 ± 3.00

FTT-l 189.2 10.19 ± 2.43
XTab-l 189.8 9.21 ± 2.57

FTT-h 532.5 7.29 ± 2.20
XTab-h 506.3 6.93 ± 2.09

FTT-best 810.9 4.94 ± 2.25
XTab-best 755.9 4.39 ± 2.36

H
PO

RF 1084.4† 5.00 ± 2.40
XGBoost 862.3† 3.69 ± 2.45
LightGBM 285.0† 4.40 ± 1.93
CatBoost 1529.3† 3.25 ± 2.10

FastAI 549.7 5.24 ± 2.38
NN 1163.5 5.32 ± 2.20

FTT 2221.1 4.58 ± 2.08
XTab 2335.3 4.51 ± 2.00

† CPU training time.
∗ Only evaluated on classification tasks.

Table B.1 shows the performance of models with the default hyperparame-

ters and hyperparameter optimization (HPO). With the default hyperparameter,

we pretrain XTab for 2000 rounds, whereas the number of pretraining rounds is
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tuned under the HPO setting. We use the AutoGluon default hyperparameters

for tree-based models as they outperform the official defaults to give a strong

baseline [218]. CatBoost is the state-of-the-art model on tabular tasks, which

agrees with the recent finding in [189]. With cross-table pretraining, XTab im-

proves the performance over FTT under light (FTT-l/XTab-l) and heavy (FTT-

h/XTab-h) finetuning. Using more finetuning time, XTab-best achieves second

place in the benchmark and beats other deep learning models. The success of

XTab using the default configuration ensures that the pretrained backbone is

widely applicable to tabular tasks, without the need for case-by-case tuning.

With HPO, we randomly search for data-specific hyperparameters on the

validation performance. We allow a maximum number of 100 HPO trials within

a 1-hour time budget. Table B.1 shows that gradient-boosted trees (i.e., XG-

Boost, LightGBM, CatBoost) achieve higher ranking with HPO, since they are

generally faster to train. The search space is also smaller for tree models as they

have fewer meaningful hyperparameters and well-known highly performant

search spaces. The ranks are calculated separately for default hyperparameters

and HPO and are not comparable across the two settings. The advantage of

XTab over FTT increases as we allocate less training time for downstream tasks

(XTab-l ← XTab-h ← XTab-best ← XTab with HPO). Therefore, one should use

pretrained foundation models instead of randomly initialized weights for tabu-

lar transformers, especially with a tight training budget.

B.5 Conclusion

In this work, we present XTab to improve the performance of deep tabular mod-

els. XTab pretrains tabular transformers with a diverse collection of data tables,
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and can improve the tabular prediction performance of an unseen table from

arbitrary domains. XTab handles the cross-table variations by separating the

models into data-specific and shared components, and encourages the shared

components to learn general knowledge for tabular prediction. We also propose

to combine self-supervised pretraining with federated learning to improve pre-

training efficiency, where client-side nodes perform table reconstruction tasks

followed by backbone averaging updates at the server. Our results suggest that

finetuning from the pretrained transformer is superior to training tabular trans-

formers from scratch. One limitation of XTab is that it still falls behind CatBoost.

This motivates future works on bridging the gap between pretrained tabular

deep learning models and tree models. Another interesting direction is to com-

bine XTab with language/vision foundation models for improving multimodal

learning.
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