
3D SCENE UNDERSTANDING: FROM SEGMENTS
TO VOLUMES

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Zhaoyin Jia

January 2014

© 2014 Zhaoyin Jia

ALL RIGHTS RESERVED

3D SCENE UNDERSTANDING: FROM SEGMENTS TO VOLUMES

Zhaoyin Jia, Ph.D.

Cornell University 2014

Segmentation is one of the fundamental computer vision problems and has been

investigated over years. In this thesis, we present algorithms for RGB-D image

segmentation, and more importantly, the additional information that can be in-

ferred from segmentations: depth ordering, 3D surfaces, occlusion boundaries

and volumes of objects. All these clues lead to a more comprehensive 3D un-

derstanding of the scene as well as a higher level RGB-D interpretation. Also

in return some of these clues can provide important feedbacks and improve the

final scene segmentation performance.

We start by performing 3D depth interpretation from 2D color images only.

We discover that the segment shapes enable us to learn the depth orderings of

the objects. Specifically, from the initial segmentation we develop features to en-

code the information captured in boundaries and junctions. After a supervised

learning procedure, our algorithm is able to produce a 3D depth ordering map

from a single 2D color image.

Secondly, we proceed to 3D scene understanding using RGB-D images. The

recent development of the depth sensors improves the performance of the tra-

ditional computer vision algorithms by a margin. Therefore, besides using one

single image, we incorporate depth information along with it, and parse the

scene based on 3D interpretation. We aim at the applications such as 3D point

interpolation, boundary detection and scene segmentation. In detail, we pro-

pose algorithm for 3D surface segmentation, and show that combining this 3D

surface information with 2D color image achieves better performance for 3D

interpolation. After that, we use both 2D color and 3D depth channels to find

the occlusion and connected boundaries given a RGB-D scene. This serves as

an extended 3D scene interpretation with a better understanding of occlusions

between objects.

Finally we perform a 3D volumetric reasoning of the RGB-D image with

support and stability. Objects occupy physical space and obey physical laws.

To truly understand a scene, we must reason about the space that objects in it

occupy, and how each objects is supported stably by each other. In other words,

we seek to understand which objects would, if moved, cause other objects to

fall. This 3D volumetric reasoning is important for many scene understanding

tasks, ranging from segmentation of objects to perception of a rich 3D, physi-

cally well-founded, interpretations of the scene. In this thesis, we propose a new

algorithm to parse RGB-D images with 3D block units while jointly reasoning

about the segments, volumes, supporting relationships and object stability. Our

algorithm is based on the intuition that a good 3D representation of the scene

is one that fits the depth data well, and is a stable, self-supporting arrangement

of objects (i.e., one that does not topple). We design an energy function for

representing the quality of the block representation based on these properties.

Our algorithm fits 3D blocks to the depth values corresponding to image seg-

ments, and iteratively optimizes the energy function. Our proposed algorithm

is the first to consider stability of objects in complex arrangements for reasoning

about the underlying structure of the scene. Experimental results show that our

stability-reasoning framework improves RGB-D segmentation and scene volu-

metric representation.

THESIS COMMITTEE

Prof. Tsuhan Chen

School of Electrical and Computer Engineering,

Cornell University

Dr. Yao-Jen Chang

Siemens Corporation, Corporate Technology,

Princeton, NJ

Prof. Anthony P. Reeves

School of Electrical and Computer Engineering,

Cornell University

Prof. Ashutosh Saxena

Department of Computer Science,

Cornell University

Prof. Noah Snavely

Department of Computer Science,

Cornell University

5

Dedicated to Jing.

6

ACKNOWLEDGEMENTS

First and foremost, I thank my advisor, Prof. Tsuhan Chen, for his guid-

ance over the past five years during my Ph.D. I am thankful for the abilities in

academic research he taught me, but more importantly, the very little details

and influences he provided every day: he showed me how to initiate a research

idea, how to think critically over the literature, and how to present the story to

the audience. He has always been very patient and supportive throughout my

PhD, as well as provided me the freedom to explore. He provided me a perfect

blend of big research pictures, small smart topics and practical guidance. I am

extremely fortunate to have the opportunity to work with him, and proud of

the accomplishments we have achieved.

I am also grateful to Dr. Andrew Gallagher, who I have closely worked with

over years since 2007, when I was still an exchange undergraduate student in

Carnegie Mellon University. He was the inspiration for directions, the support

for difficulties, and a sincere friend in daily life. I am thankful for having the

chance to work with him.

I thank Prof. Ashutosh Saxena, and Dr. Yao-Jen Chang, who taught and

guided me in proceeding research projects. They have provided key insights

into my research, and valuable suggestions that accomplish the work. Besides,

they give me crucial supports in my PhD progress in every detail from coding

to writing. I feel grateful to have the chance to collaborate with them.

I also thank my other committee members, Prof. Noah Snavely and Prof.

Anthony Reeves, for giving me advises and suggestions for my research all over

the years.

I owe very much to my other collaborators, friends, and all the AMP (Chen

Lab) lab members in Cornell University, including Adarsh Kowdle, Amandi-

7

aneze Nwana, Amir Sadovnik, Congcong Li, Henry Shu, Kuan-chuan Peng,

Ruogu Fang, Yimeng Zhang, and other friends. I enjoy the free and friendly

environment in our Ward Lab, first floor. I will always miss the fun we have

during every gathering, and the intense time before every deadline.

I thank my parents, Xiaoxia Zhao and Xiangdong Jia, for their many years of

support, understanding and love.

Finally, I thank my wife, Jing Xia. She completes me.

8

TABLE OF CONTENTS

Dedication . 6
Acknowledgements . 7
Table of Contents . 9
List of Tables . 11
List of Figures . 12

1 Introduction 1
1.1 Depth Ordering . 3
1.2 RGB-D Segmentation . 6
1.3 Block, Support and Stability . 10
1.4 Organization of this Thesis . 13
1.5 First Published Appearances of Described Contributions 14

2 2D Features: Depth Ordering 15
2.1 Overview . 15
2.2 Related work . 19
2.3 Local depth ordering . 21

2.3.1 Junction feature . 21
2.3.2 Boundary feature . 23
2.3.3 Combined features . 24

2.4 Towards global depth reasoning 25
2.5 Occlusion boundary with closed loops 28
2.6 Experiments . 30
2.7 Summary . 36

3 3D Surface Segmentation 41
3.1 Overview . 41
3.2 Related works: . 43
3.3 Surface segmentation and fitting 44
3.4 Combining with color . 47
3.5 Experiments . 50
3.6 Summary . 54

4 3D Occlusion Boundaries 55
4.1 Overview . 55
4.2 Related Work . 58
4.3 Color and Depth Features . 60

4.3.1 Color features . 60
4.3.2 Depth features . 62

4.4 Conditional Random Field . 66
4.4.1 Unary potential . 66
4.4.2 Pairwise potential . 66

9

4.5 Active Learning . 69
4.6 Experiments . 70

4.6.1 Depth order dataset . 71
4.6.2 NYU dataset . 74

4.7 Summary . 77

5 3D Volumetric Reasoning 78
5.1 Introduction . 78
5.2 Related work . 81
5.3 Approach Overview . 85
5.4 Single box fitting . 86

5.4.1 Minimum surface distance 87
5.4.2 Visibility . 88

5.5 Pairwise box interaction . 89
5.5.1 Box intersection . 89
5.5.2 Box supporting relation . 91

5.6 Global stability . 94
5.6.1 Integrating box-based features for segmentation 96

5.7 A Learned Energy Function . 97
5.7.1 Single and pairwise potentials 99
5.7.2 Minimizing through splitting and merging 102

5.8 Experiments . 107
5.8.1 Block dataset . 107
5.8.2 Supporting object dataset 110
5.8.3 Grocery dataset . 114
5.8.4 NYU indoor dataset . 116

5.9 Summary . 119

6 Conclusion and Discussion 120

A Related Publications 123

10

LIST OF TABLES

2.1 Average depth ordering accuracy (in %) of different methods on
synthetic dataset (syn), occ dataset (occ), and our new depth
order dataset (d). “-gt” : depth ordering is performed on the
ground-truth segmentation. “-auto”: the segmentation is auto-
generated by the occlusion boundary detection. 36

2.2 Average precision (in%) for the occlusion boundary detection on
occ dataset (occ-ap) and our depth order dataset (d-ap). 36

3.1 Interpolation error (in mm) on Make3D dataset (upper row) and
on ITRI dataset (lower row). We also experiment with the down-
sampled modeling set, from 100% to 50% of the total modeling
3D points. 51

5.1 Features based on volumetric and stability reasoning. B: the fea-
ture before a merge; A the feature after a merge; D: the difference
of the feature before and after a merge. 98

5.2 Features for single potentials. The “relative” feature values are
the features divided by the volume of the box, instead of the
absolute value. 100

5.3 Features for pairwise potentials. The “relative” feature values
are the features divided by the volume of the box, instead of the
absolute value. 101

5.4 Average angle error on the bounding box orientation. 108
5.5 Pixel-wise segmentation score. 111
5.6 Supporting relation accuracy for different dataset. 115

11

LIST OF FIGURES

1.1 Exemplar input for image segmentation. 1
1.2 Human is able to understand the depth ordering of abstract

shapes without any semantic meanings 3
1.3 Depth ordering from a single image: from the boundary and

junction features of the color image on the left, we want to infer
the depth ordering of each segment on the right, which is color
coded in a way that the more bright the segment is, the further
way it is in depth. 5

1.4 A exemplar pair of RGB-D images: the color image on the left
and its corresponding depth information on the right. 6

1.5 We analyze the depth data by finding the surfaces (shown on the
left in different pixel colors), and occlusion (in green edges) and
connected (in red edges) boundaries in the RGB-D image. 7

1.6 Incorrect segmentation leads to unstable boxes of the scene, e.g.
the red ones. 10

1.7 A volumetric representation of the object segments, and the sup-
port relations between the objects 11

2.1 (a) Given one image, humans can infer the depth ordering of
each object, and even with (b) very abstract line-drawing seg-
ments. Motivated by how humans reason about the depth or-
dering from junctions and boundaries, we develop an algorithm
to do that. Our algorithm produces the depth ordering that rep-
resented in the form of a graph as in (c), where each node cor-
responds to one segment, and the directed edge means one seg-
ment is in front of another. The depth is colored in a way that
the closer an object is, the darker it appears. 16

2.2 (a) The Escher Waterfall shows that local reasoning cannot en-
sure the global consistency. (b) The same is true for depth order-
ing: although we can determine the pairwise relation between
any two segments, it is difficult to decide the global depth order,
and the corresponding depth order graph (c) forms a loop. 17

2.3 (a) One T-junction includes three segments (A, B,C) and three
boundaries (e1, e2, e3, in dashed blue line). One segment is in
front of the other two (A is in front of B and C), and correspond-
ingly, one edge is behind the other two (e2 is behind e1 and e3).
(b) A vector ~v(e3) pointing outwards is fit to the boundary e3.
Then an oriented-SIFT descriptor is computed in align with ~v(e3). 22

12

2.4 The boundary convexity feature: (a) one occlusion boundary
(e.g., e) lies in between two segments (e.g., A, B). Boundary e
bends towards segment B, indicating that more likely A is in
front of B. (b) A base vector lb can be set by connecting the two
ends ps and pe. For each point pi on the boundary, we link ps and
pi to create a new vector li, and record the angle between lb and
li. We histogram these angles as new features for e. 24

2.5 (a) Global depth reasoning example. (b) Each junction produces
three directed edges in the depth order graph, e.g. junction α
produces the directed edges A → B,B → D, and A → D. (c) We
use MRF to encourage the global consistency. Each node corre-
sponds to one junction, and is connected with its neighbors. (d)
The edge potential in our MRF gives high penalties (solid) if the
segments’ orders contradict between two nodes. (e) The depth
ordering is assigned by the longest path in the final depth order
graph (shown in solid arrow), from which we retrieve the depth
ordering, such as A→ B→ C → D. 26

2.6 (a) The local occlusion boundary detection result (best viewed in
color). Heat map indicates the beliefs for the occlusion boundary,
and the redder the higher. (b) We gradually examine the edges
with high beliefs and retrieve the loop. (c) We lower the beliefs
of the edges that connected inside to this loop. 29

2.7 Examples of our synthetic dataset: color images are on the left
and the ground truth depth orders are on the right, colored as
the front segments are darker. 32

2.8 (a) Result from Com. Combined features can correctly label the
depth order (darker segments are in front). (b) Results from pJF.
(c) Results from pBF. Segments are marked by x if incorrectly
labeled in the depth ordering. 32

2.9 Our global reasoning algorithm can provide better depth order-
ing especially in complicated scenarios. (a) The ground truth
depth ordering. (b) Result from Com. (c) Result from Global.
Incorrectly labeled segments are marked by x. 33

2.10 Results from occ datasets with ground-truth segmentation (top
row), auto-segmentation (middle row), and from our depth or-
der dataset with ground-truth segmentation (bottom row). (a)
Input image. (b) Ground-truth segmentation and depth. (c) to
(h) are results from different methods: (c) BF. (d) JA. (e) pBF.
(f) pJF. (g) Com. (h) Global. Incorrectly labeled segments are
marked by a red x. 38

2.11 Example images from our depth order dataset 39

13

2.12 Occlusion boundary detection result (best viewed in color): (a)
the ground-truth occlusion boundary. (b) Depth image from
Kinect. (c) Occlusion boundary detection result from bfeat. Red
in color indicates higher beliefs for the occlusion boundary. (d)
to (f) are results from (d) pfeat, (e) graph. and (f) loop. 39

2.13 Depth orderings from auto-segmentation. (a) to (f) are results
from (a) BF, (b) JA, (c) pBF, (d) pJF, (e) Com, (f) Global. 40

3.1 (a) the 3D point clouds scanned from a laser range sensor. (b) the
scene image associated with the 3D point clouds 42

3.2 (a) Linear interpolation will introduce large errors when the
depth changes within local region. In this figure the 3D points
are presented in color by the fitting errors to the ground truth
(error bar is on the right: the more blue, the lower error. (b)
When projecting each 3D point to its corresponding 2D pixels,
it shows that the 3D points are quite sparse compared to the
number of pixels. (Color represents a preliminary 3D surface
segmentation) (c) 2D segmentation can help identifying the real
neighbor of each 3D points. (d) Using an MRF, we can infer the
actual 3D geometry information of each pixel, and thus achieve
better 3D point estimation. 43

3.3 (a) we filter out the unstable points, e.g. the points between sur-
face boundaries (points in red). (b) the surface segmentation re-
sult after iteratively fitting the surface and filtering out the un-
stable points. 48

3.4 Some sample images for the experiments. (a): ITRI dataset, in-
cluding 73 indoor and outdoor scenes. (b): Make3D dataset [1] . 50

3.5 (a) the input image. (b) the surface segmentation result. (c) in-
ferencing MRF on the image (segmentation in the color space is
for efficiency). (d) MRF inference result. 51

3.6 3D-point interpolation error using different methods. The error
is mapped in color, and the unit is mm. We show the result of
Linear interpolation (LP) in (a), color-based MRF (cMRF) in (b),
and the proposed algorithm (Prop) in (c). 52

14

4.1 Boundary examples: (a) the color image and (b) the depth im-
age from the structured light depth sensor (Kinect). (c) We ex-
tract all the possible edges by densely segmenting the color im-
age, and label the following three types of boundaries: homoge-
neous boundary (cyan), occlusion boundary (green), and con-
nected boundary (red). Directly using the depth data to extra
the boundaries may fail because of the noisy in the boundary re-
gion. (d) is a typical Canny edge detector result performed on
the depth image. It shows inaccurately detected edges due to
noise. (e) presents the result when naively applying the depth
edge detection result to label the occlusion boundary. However,
using our learning based framework, we can better detect the
occlusion boundary (f), and the connected boundary (g) , where
the color indicates the classification beliefs for the labeling (more
red→ higher belief). 56

4.2 (a) left: initially, we densely over-segment color images to ex-
tract all the possible boundaries. The cyan edges are produced
by the over-segmentation, and the green ones are the ground-
truth occlusion boundaries. right: Each edge lies between two
segments, e.g. the red edge is between segment A and B. Fea-
tures are computed based on the edge and its two segments. (b)
The depth image. (c) The surface segmentation result from the
depth data. 61

4.3 (a) Occlusion boundaries labeled from the surface segmentation
algorithm (section: Surface segmentation label). (b) Surface la-
bel distribution on each edge. (c) Surface fitting errors on each
pixel. 63

4.4 Additional pairwise features for edge i and j in the color image
for learning pairwise potentials. Edge i and j are in solid black
lines, and the edge directions are plotted with red arrows. The
meeting junction p jun is the red dot at center. (a): angle difference
θi, j (blue half circle) between two edges. (b) and (c): oriented SIFT
features aligned with the direction of each edge direction. 67

4.5 Example images of the kinect depth order dataset. 72
4.6 Average precision (y-axis) for different approaches (x-axis) on

our kinect depth order dataset: (a) connected boundary. (b) oc-
clusion boundary. (c) occlusion boundary detection result on
NYU depth dataset. Red: color only feature set. Blue: adding in-
dividual depth feature sets. Green: the final combined approach
(all and crf). 73

4.7 Boundary detection result using the proposed algorithm. It re-
liably detects the connected (left two) and occlusion (right two)
boundaries in different scenarios.The color indicates the confi-
dence in classification. The more red it is, the larger the belief. . . 74

15

4.8 Active learning results. X-axis: step from 1 to 20. Y-axis: the av-
erage precision of detection for testing. Blue lines: the proposed
active learning scheme. Red lines: randomly selecting the train-
ing instances. (a) to (c) are different tasks: (a) connected bound-
ary on the depth order dataset. (b) occlusion boundary on the
depth order dataset. (c) occlusion boundary on the NYU depth
dataset. 76

4.9 Experiment results on NYU dataset. Ground-truth labels are on
the left, with red indicates the occlusion boundaries, and cyan
indicates the homogenous boundaries. The testing results are
shown on the right. Heat map indicates the belief: the more red
an edge is, the more likely it is an occlusion boundary. 77

5.1 (a) The input RGB-D image. (b) Initial segmentation from RGB-D
data. (c) A 3D bounding box is fit to the 3D point clouds of each
segment, and several features are extracted for reasoning about
stability. Unstable boxes are labeled in red. (d) The segmentation
is updated based on the stability analysis and produces a better
segmentation and a stable box representation. 79

5.2 An overview of our algorithm. 85
5.3 (a) A bounding box fit based on minimum volume may not be

a good representation for RGB-D images, where only partially
observed 3D data is available. (b) A better fit box not only occu-
pies a small volume, but also has many 3D points near the box
surface. Data points are projected to 2D for illustration. 86

5.4 (a) To fit the 3D points, we use RANSAC to find the first plane
S 1. (3D points are projected on 2D for a simpler illustration, and
the plane S 1 is presented as red line). (b) For the 3D points that
do not belong to S 1, we fit another plane S 2 to them, enforcing
that S 2 is perpendicular to S 1. 87

5.5 Given the camera position and a proposed bounding box, we de-
termine the visible surfaces of the box, shown as a solid parallel
black line to the box surface. (a) This box may give a compact
fit, but most of the points lie on the hidden surfaces. (b) With a
better box fit, most of the points lie on the visible surfaces of the
two boxes. 89

5.6 (a) Well-fit boxes should not intersect much with neighboring
boxes. (b) If two segments are merged incorrectly, e.g., the two
books in the image, then the new box fit to the segment is likely
to intersect with neighboring boxes, e.g., the box shown in red. . 90

16

5.7 Separating Axis Theorem in 2D: (a) in order to separate two
boxes, we rotate the axis perpendicular to any of the edge, and
project all the vertices to this rotated axis. (b) If two bounding
boxes are separate, there exists an axis that has a zero overlap
distance (D in the image). We examine all the possible axis ro-
tations (in this case four possibilities), and choose the minimum
overlap distance. This gives the orientation and the minimum
distance required to separate two boxes. 91

5.8 (a) to (c): three different supporting relations: (a) surface on-top
support (black arrow); (b) partial on-top support (red arrow); (c)
side support (blue arrow). Different supporting relations give
different supporting areas as plotted in red dashed circles. (d) to
(e): stability reasoning: (e) considering only the top two boxes,
the center of the gravity (in black dashed line) intersects the sup-
porting area (in red dashed circle), and appears (locally) stable.
(e) When proceeding further down, the new center of the grav-
ity does not intersect the supporting area, and the configuration
is found to be unstable. (f) to (g) supporting area with multi-
support: (f) one object can be supported by multiple other ob-
jects. (g) The supporting area projected on the ground is the con-
vex hull of all the supporting areas. 92

5.9 (a) Near-touching objects, e.g., objects A and C do not necessarily
support one another. (b) After stability reasoning, we find that
object A can be fully supported by object B beneath it through
a surface on-top support. Therefore, we delete the unnecessary
side support between A and C. (c) 3D oriented bounding boxes
can be ill-fit because of noise, and this may lead to incorrect sup-
port relation inference. For example, between object A and B, a
partial on-top support is proposed, although it should have been
a surface on-top support. (d) After stability reasoning, we adjust
the higher box if it is only supported from beneath, and then cor-
rect the support relation accordingly. 95

5.10 (a) Input image. (b) Mid-step segmentation during testing. (c)
and (d) are exemplar testing results for (c) single potential φ(si)
and (d) pairwise potential ψ(si, s j). The color of the boxes and
boundaries is coded as the better quality the segments are, the
more blue the boxes and boundaries are, with lower potential
values. Our proposed features capture the quality of each seg-
ment and boundary. 103

5.11 (a) We pre-compute all the possible boundaries given RGB-D im-
age. (b) The selected segment before splitting. (c) The selected
segment after splitting. The splitting move is constrained to split
one segment into two. 104

17

5.12 Examples of the RGB-D Block Dataset with color (left) and depth
(right) images. 107

5.13 Fitting results on the block dataset. (a): Min-vol. (b): Min-surf.
(c): Supp-surf. Blocks with large fitting error in orientation are
labeled as a red “x”. 108

5.14 The predicted supporting relations on block dataset. Three dif-
ferent types of the supporting relations are colored in black
(surface-top), red (partial-top), and blue (side). The ground
plane center is plot as a green dashed circle. 109

5.15 Our supporting object dataset (SOD) includes (a) the color im-
age, (b) the depth image, and (c) manually labeled segments. . . 110

5.16 Segmentation and box fitting results of our proposed algorithm
on the Support Object Dataset (SOD) testing images. 111

5.17 Segmentation and box fitting results of our proposed algorithm
on the Grocery Dataset (GD) testing images. 112

5.18 We qualitatively show our box fitting algorithm (left) on daily
objects with ground-truth image segmentation and the support-
ing relation prediction after stability reasoning (right). Boxes for
large surfaces (like the back wall and the ground) are not dis-
played for better visualization. The ground plane is plotted as a
green dashed circle for showing the support inference results. . . 113

5.19 Our grocery dataset (GD) extended on support object dataset
(SOD) also includes (a) the color image, (b) the depth image, and
(c) manually labeled segments. 114

5.20 Segmentation results of our proposed sampling algorithm
(MCMC) over each iteration on the SOD dataset (a), GD dataset
(b) and NYU-2 dataset (c). As the energy value decreases
through the minimization steps, the accuracy of the segmenta-
tion increases. 116

5.21 The segmentation results improve along with more iterations of
the proposed algorithm MCMC. Given the color image (a), and
the depth image (b), the initial segmentation (c) may have some
mistakes. Some of these mistakes are corrected during middle
steps as iteration goes on, shown in (d). In the final iteration,
the segmentations are corrected into more reasonable ones, pre-
sented in (e). 117

5.22 Qualitative result of box fitting (left) and supporting relation in-
ference (right) on indoor scenes. For better visualization, boxes
that are too large (wall, ground) or too small are not displayed. . 118

5.23 Segmentation results of our proposed algorithm on NYU-2 in-
door scene dataset. 118

18

CHAPTER 1

INTRODUCTION

Figure 1.1: Exemplar input for image segmentation.

Image segmentation is one of the traditional computer vision problems, and

many algorithms have been proposed for it. The input is usually one image,

or a color and depth image pair, and the output is a set of pixel groups, where

each group corresponds to one object in the scene. Segmentation on 2D color

image involves computing color, texture or depth clue of each segment, and

in some scenarios even combining algorithms such as object recognition and

detection. Usually segmentation serves as the initial steps for a higher level

scene understanding, and thus it is by all means an important problem and a

core computer vision task to be solved. [2] [3] [4] [5] [6] [7] [8].

Many different criteria can be applied for image segmentation. One example

is shown in Fig. 1.1. For the box placed in the center with “3D Vision” text, even

for human beings, people will most likely have different proposals to segment

1

this particular object: one may label the frontal green surface and the top black

surface as separate segments, because they have very different colors and sur-

face normals. However, the others may group them as one segment, since these

two surfaces are combined as a box, which supports the camera and the book

in the image. Previous literatures also discussed that the image segmentation

is generally an ill-posed problem, and many algorithms have been applied to

meet the needs from different situations [3] [9].

In this thesis, in addition to produce an image segmentation, we also aim

to investigate the information generated from the segmentation. Traditional

segmentation algorithm relies on the continuity in color, texture and depth

domains. However, we extend these concepts with more semantic meanings.

Specifically, we ask questions to get a more comprehensive 3D understanding,

e.g., what are the depth information generated from the segmentation? Can we

infer occlusions between segments? What are volumes and support relations

between segments?

We propose algorithms to learn this information from boundaries and seg-

ments that generated by the segmentation algorithms (sometimes with the help

of the depth image). Further, these extra clues can also be used to improve

the segmentation results. For instance, once we reason the occlusion between

objects and find the occlusion boundaries, enforcing the continuity in these

boundaries will lead to better segments, and thus we can encourage loops in the

boundary map to enclose a full object [10]; surface segmentation in 3D space can

help 2D color segmentation performance [11] [12]; the support and stability of

each individual segment also indicates the quality of the overall segmentation

[13]. In the later chapters, we present our proposed algorithms for these tasks

2

in detail, and use some of the features as feedback for RGB-D segmentation.

1.1 Depth Ordering

First we examine the information in a single color image, and find the depth

ordering from its segmentation. For example, given the image shown in Fig. 1.1,

we as human have no difficulty in telling the depth ordering of each object, and

the occlusion relations between them: we can identify that all the books occlude

the wall in the behind, and the objects are all supported from bottom by the

ground.

Human can achieve this 3D depth ordering understanding even without a

semantic object representation, e.g. with pure abstract objects. One example is

presented in Fig. 1.2. In this case, all the objects are presented as abstract shapes

in rectangles or circles. However even in this situation, it is still quite easy for a

human to tell the depth orderings, such as that segment B is on top of segment

C, and all the segments are on top of the segment E, etc.

Figure 1.2: Human is able to understand the depth ordering of abstract
shapes without any semantic meanings

This observation inspires us to design the features that can encode the depth

3

relation between the objects. We consider this serves as an extra 3D understand-

ing of the scene and moves one step beyond segmentation. In the previous ex-

ample with abstract objects, all the texture and semantic information becomes

invalid, and the only clues left are the junctions and the boundaries between the

segments. They are critical information for inferring the depth ordering in one

image: for example, given a T-junction a in Fig. 1.2, it is more likely the parallel

edges indicate the object in the front, i.e. segment B is in front of segment A and

E.

However, simply applying this rule-based reasoning will fail in many cases.

One counter example is presented at junction b. Applying the same junction

rule to T-junction b gives an incorrect prediction: the segment E is beside the

parallel edges, but appears to be the behind segment of A and C.

The similar situation also holds for the boundaries too. Usually the concave-

ness of a boundary indicates the depth ordering between the two segments: for

example, edge e intrudes segment E from segment C, therefore it is more likely

that segment C is on top of segment E. However this rule fails at edge f , where

the boundary is a straight line. Thus more complicate procedure needs to be

applied to find the correct depth ordering of segment C and F.

When dealing with real-world images, shown in Fig. 1.3 on the left, the

scenario becomes more complicated. Given the segmentation, along with the

boundaries (shown in red edges in Fig. 1.3, left) and the junctions (shown in blue

circles in Fig. 1.3, left), we aim to identify the depth ordering of each object seg-

ment, shown in the right of Fig. 1.3. The boundary and junction features heav-

ily rely on the quality of segmentation, therefore a reliable segmentation needs

to be identified at the initial step in order to retrieve a more reasonable depth

4

Figure 1.3: Depth ordering from a single image: from the boundary and
junction features of the color image on the left, we want to infer
the depth ordering of each segment on the right, which is color
coded in a way that the more bright the segment is, the further
way it is in depth.

ordering result. Besides, the images capturing the objects in the real world pro-

vides more complex junctions and boundaries, therefore it is almost impossible

to apply simple rules to infer the depth ordering.

In this thesis, we propose a learning based approach: we extract features

from junctions and boundaries, and supervisely learn a classification model to

predict the depth ordering of each segment. As long as the features are descrip-

tive and training data are enough, this learning based process can deal with the

variant situations of irregular shapes in the boundaries and junctions, which are

often produced from the automatic segmentation of real world images.

Further, two additional aspects are also studied in this thesis: a) the poten-

tial loop in the depth ordering that are infeasible in real-world configuration:

the loop in the depth ordering map is a special topic arise in this problem, and

we propose a Markov Random Field based algorithm to encourage the solutions

with no cycles. b) We improve of the segmentation quality by enforcing the clo-

sure of the boundaries. Segmentation results largely affect the depth ordering

5

Figure 1.4: A exemplar pair of RGB-D images: the color image on the left
and its corresponding depth information on the right.

performance. Therefore we also improve this step by incorporating the conti-

nuity and closeness of the boundaries. In the later chapters, we show that the

features proposed for depth ordering can be also applied for other applications,

e.g. finding the occlusion and connected boundaries of RGB-D images.

1.2 RGB-D Segmentation

With the recent development of the depth sensors, e.g. laser scanners or infrared

depth sensors, computer vision algorithms are becoming to take advantage of

this additional information. Many vision tasks, such as human pose estima-

tion, object placement, 3D scene modeling and object recognition, have been

benefited by using both color and depth channels [14] [15] [16] [17] [18] and the

experiments show that incorporating this extra depth information usually helps

these vision tasks improve a considerate amount.

In this thesis, we use the depth sensor as an another channel to perform the

3D scene understanding from the segmentation. One exemplar pair of images

are presented in Fig. 1.4. In many ares the color channel has a large variance,

6

Figure 1.5: We analyze the depth data by finding the surfaces (shown on
the left in different pixel colors), and occlusion (in green edges)
and connected (in red edges) boundaries in the RGB-D image.

e.g. the texture of the books and the ground plane, but the depth channel gives

clean and continuous pixel regions and thus is very useful for segmentation as

well as 3D scene understanding.

However, directly using the depth information as another channel and ap-

plied the same algorithms in the color domain will not work very well. The

depth image has its internal and different meaning other than a single gray

scale image: it captures the 3D structure of the scene, usually from a single

view. Therefore we propose features and semantically parse the RGB-D images

with surfaces as well as occlusion/connected boundaries, presented in Fig.1.5.

Surfaces contribute one important element in analyzing depth data. Neigh-

boring pixels and 3D points may belong to two different but close objects. The

surface segmentation enable us to identify neighboring pixels and 3D points as

different objects. In detail, we estimate the normal of each pixel and 3D point,

and if there is abrupt change in this normal space, these points more likely be-

long to different objects. If points have similar normal directions, we group

them into the same object region.

7

For example, in Fig. 1.5, the book covers have quite complex textures. Using

the color channel only, any reasonable segmentation algorithm will separate

these textures into many smaller segments, leading to an over-segmentation.

However, from the depth image we observe that all the 3D points on the book

share similar normal vectors, and they lies on one smooth surface. This provides

us a very important clue for segmentation and RGB-D image understanding.

On the left of Fig. 1.5, we present our surface segmentation result of this image:

it shows that by using the depth only, we can reach reasonable segmentation

and group the 3D points on the same surface into one segment.

In this thesis, we propose a surface segmentation algorithm based on the ef-

ficient graph cut [19] [11] [20]. Furthermore, we separate different types of 3D

points, and only investigate the ones that affect the quality of the surface seg-

mentation: for example, the normal vectors of the 3D points lie between the two

surfaces are hard to estimate, and these points become noise when performing

the surface segmentation. We propose a heuristic algorithm to filter out this 3D

points, and reconstruct the plane and quadratic surface with only the reliable

ones.

To combine the 3D surface segmentation with the 2D color information, we

first propose an algorithm that merges two segmentation proposals through a

Markov Random Field. This combination propagates the 3D surface labels to

all the pixels in the color image, which usually has a higher resolution than the

depth image. We apply this algorithm to some applications such as 3D interpo-

lation, and experiments show that reasoning the 3D scene through the surfaces

enables us to achieve better interpolation performance.

Furthermore, we extend the 3D scene understanding on RGB-D images into

8

occlusion and connected boundaries. Traditional object segmentation algo-

rithms only provide the segment of each object as output. However, there are

rich information between the objects that resides in the boundaries. One ex-

ample is shown in Fig. 1.5 on the right. We group the object boundaries into

two different categories: a) the occlusion boundary, which indicates that the

two segments it lies in between has a drastic change in depth, and one object

occludes the other in 3D space; b) the connected boundary, which indicates that

two objects are connected with each other, and most likely one supports another.

Occlusion and connected boundary inference is one important part for 3D scene

understanding, and the building blocks for higher level object reasonings, e.g.

object support and stability.

Although provided depth information, it is not trivial to estimate the occlu-

sion and connected boundaries from RGB-D images. One major challenge is

that the depth image does not usually has the same quality as its correspond-

ing color image: it usually has a lower resolution, and becomes very shaky and

noisy in the boundary area, where our task is focused. One example is shown

in the Fig. 1.4, on the right. Therefore simply thresholding the depth image will

produce poor result in finding boundaries, and thus not preferable.

We rely on a learning based approach to find the occlusion and connected

boundaries. We incorporate features in the literature on color space, [12], and

propose new features based on our surface segmentation. In addition, we con-

sider the depth ordering as another hint for finding the segmentation as well as

the occlusion and connected boundaries, and thus incorporate the features de-

scribing the junctions and boundaries into this learning framework. The overall

algorithm is formed as a Conditional Random Field. The experiments show that

9

Figure 1.6: Incorrect segmentation leads to unstable boxes of the scene, e.g.
the red ones.

our proposed algorithm reliably detects the occlusion and connected bound-

aries in different testing scenarios, and provides a better 3D understanding of

the scene.

1.3 Block, Support and Stability

Depth ordering, surfaces, occlusion and connected boundaries are all very infor-

mative tools for 3D scene understanding, but there are still unsolved problems.

For example, in the example shown in Fig. 1.1, in the middle there is a box with

text “ 3D vision” on it, which is composed of two surfaces with one green and

one black in color. Also the two surfaces of the boxes are completely differ-

ent with perpendicular normal vector directions, and therefore for any segmen-

tation algorithm, either from color channel or the depth information, this box

should be separated into two objects for their distinct features.

10

Figure 1.7: A volumetric representation of the object segments, and the
support relations between the objects

However, we human can still reason that this is one box and the two surfaces

of them are hinged together. We are interested in why this happens. One clue

would be, if the surface on the top is a separate object, the whole scene would

not be stable, and many objects would topple.

The exemplar segmentation is shown in Fig. 1.6, which describes the stabil-

ity of the 3D scene. We represent each segment as a 3D oriented bounding box.

Given the segmentation, many 3D boxes would not be stable, and can not sup-

port the objects on top. These boxes are presented in red in Fig. 1.6. Therefore,

we consider this stability information of each segment an extra and important

clue for 3D scene understanding.

We propose to reason the 3D scene through 3D oriented blocks. Based on

this block representation, we find the support relation between the objects, and

infer the stability of each block. One example is shown in Fig. 1.7.

11

The RGB-D image enables us to estimate the block representation of the seg-

ments using the depth channel. The block world provides us important volu-

metric information: we can estimate the space each object possesses, and where

are the free spaces in the 3D scene.

However, estimating the volume of each object is not trivial: the depth im-

ages have lower resolutions and are usually noisy. More importantly, it is only

a single shot of the scene from one view, and therefore the objects are usually

only partially observed. Thus we propose a novel 3D block fitting algorithm to

overcome this limitation in the depth channel, and it leads to a better volumetric

representation of the object orientation in 3D space.

Given this volumetric representation in blocks, we estimate the support rela-

tions and the stabilities of objects. Further, we incorporate the block properties,

support relations and stability of the scene into a learning framework, and use

these additional features as feedback to improve the RGB-D segmentation.

Finally, the potential segmentation candidates of one RGB-D image images

are huge in number. It is intractable to explicitly explore the whole segmen-

tation space and reason through the block, support and stability of each seg-

mentation configuration. Therefore we propose a sampling algorithm to reach

a more reasonable segmentation by combining the clues from the volumetric

representation. We supervisely learn a potential function incorporating the vol-

umetric features on both individual box and pairwise boxes, and minimize this

energy function through a random sampling process. Experiment results show

that our proposed learning algorithm and sampling methods improve the RGB-

D segmentation, and achieve a better 3D scene understanding.

12

1.4 Organization of this Thesis

The rest of this thesis is organized as follows: in Chapter 2, we first describe our

proposed 2D features on boundaries and junctions in color image, and propose

a novel algorithm for inferring the depth on it. Then in Chapter 3, we introduce

our 3D surface segmentation algorithm, and the 3D interpolation application

based on it. Chapter 4 describes our algorithm for detecting occlusion and con-

nected boundaries in RGB-D images. Chapter 5 presents our final combined

algorithm on RGB-D reasoning with volumetric blocks, support and stability

features based on them. Finally, we conclude this thesis in Chapter 6.

13

1.5 First Published Appearances of Described Contributions

Most of the contributions presented in this thesis have appeared as publications

as follows:

• Chapter 2: Z. Jia, A. Gallagher, Y. Chang and T. Chen [10].

• Chapter 3: Z. Jia, Y. Chang, T. Lin and T. Chen [20], and Z. Jia, Y. Chang, T.

Lin and T. Chen [11].

• Chapter 4: Z. Jia, A. Gallagher and T. Chen [12].

• Chapter 5: Z. Jia, A. Gallagher, A. Saxena and T. Chen [13], and Z. Jia, A.

Gallagher, A. Saxena and T. Chen [21].

Other contributions are not discussed in this thesis because of the scope,

including the following publications: Z. Jia, A. Gallagher and T. Chen [22], Z.

Jia, A. Saxena and T. Chen [23], Z. Jia, A. Saxena and T. Chen [24], Y. Zhang, Z.

Jia and T. Chen [25], Z. Jia, Y. Chang and T. Chen [26], and Z. Jia and Y. Chang

and T. Chen [27].

14

CHAPTER 2

2D FEATURES: DEPTH ORDERING

2.1 Overview

Depth estimation is instrumental for a variety of vision tasks, such as segmen-

tation [5] [28], object recognition [7] [29], and scene understanding [8] [30] [1].

For some purposes, instead of estimating the exact depth value, it may suffice to

derive the relative depth ordering of the objects in an image. Humans are adept

at this task: in Fig. 2.1 (a), we may not exactly know how far these objects are,

but we can understand the depth ordering of the objects: the mouse is on the

top, then the book, and the laptop is deeper in the pile, supported by the table.

The depth ordering not only gives us a coarse interpretation of the 3D geometry

of the objects, but also enables us to interact further with the scene, e.g. we need

to remove the mouse and the stapler in order to manipulate the book.

Humans have no trouble inferring the depth order even when the image is

extremely abstract with only line drawings [31], such as Fig. 2.1 (b). We still

understand that segment B is in front of segment A and C, segment D is in front

of segment C, C is in front of F and so on. If we use “→” to indicate the “in

front of” relation, then we have D → C; B → C → F → A → E. Early works

from Barrow et al. [32] and Waltz et al. [33] present rule-based algorithms to

understand 3D geometry in abstract images.

These examples inspire us to investigate the features that determine how we

perceive the image depth ordering. Line drawings take out all the color, texture,

and semantic high-level interpretation of the image. Clearly in this situation,

15

(a) (b)

(c)

Figure 2.1: (a) Given one image, humans can infer the depth ordering of
each object, and even with (b) very abstract line-drawing seg-
ments. Motivated by how humans reason about the depth or-
dering from junctions and boundaries, we develop an algo-
rithm to do that. Our algorithm produces the depth ordering
that represented in the form of a graph as in (c), where each
node corresponds to one segment, and the directed edge means
one segment is in front of another. The depth is colored in a
way that the closer an object is, the darker it appears.

only two types of information are available, i.e., boundaries and junctions, such

as e1, e2, j1, j2 in Fig. 2.1 (b). However, depth ordering based on this information

is not easily captured by hand-crafted rules, particularly in complex scenarios.

Therefore, we adopt a data-driven approach to handle its complexity. We design

new features on boundaries and junctions, and use them as the basis to learn

depth ordering.

Inferring the depth order from junction or boundary individually has some

natural flaws, however. For example in Fig. 2.1 (b), junction j1 and j2 have the

same T-shape, but imply inverse depth orders. Boundary e2 is a straight line and

provides little information by itself. Therefore, we must combine these different

16

(a) (b) (c)

Figure 2.2: (a) The Escher Waterfall shows that local reasoning cannot en-
sure the global consistency. (b) The same is true for depth or-
dering: although we can determine the pairwise relation be-
tween any two segments, it is difficult to decide the global
depth order, and the corresponding depth order graph (c)
forms a loop.

features to form a better feature set.

Furthermore, having inferred local depth orders from the combined feature

sets, we need to ensure the global consistency across the segments. Simply ag-

gregating the local decisions can lead to an invalid understanding of the scene,

as the famous Escher Waterfall in Fig. 2.2 (a) vividly illustrates for height percep-

tion. This point carries over to depth ordering, and Fig. 2.2 (b) gives one similar

example: locally, we can easily determine the relative depth order between any

two segments, such as D → C, C → B, B → A and A → D. However, when ag-

gregated, it is not a valid depth ordering, i.e. it forms a depth order graph with

a loop, as shown in Fig. 2.2 (c). Therefore, to ensure global consistency in the

depth ordering, we propose a Markov Random Field based algorithm to infer a

likely depth ordering and penalize an invalid ordering of segments. With this

algorithm, global consistency is encouraged through message passing, which in

turn enables better performance.

17

In addition, a reliable segmentation is an essential preparation for depth or-

dering. For natural images, we follow [34] to detect occlusion boundaries and

generate object segments. We discover that, in many scenarios, the occlusion

boundaries are not only locally continuous, but also form a closed loop to en-

close the object. At the same time, the edges connected to and inside of this

loop are less likely to be actual occlusion boundaries. Enforcing this constraint,

which is a more global enforcement than local continuity, leads to a better object

segmentation for depth ordering.

We collected a new depth order dataset with over a thousand images dis-

playing different arrangements of various objects. Each image is manually seg-

mented and includes depth information from Kinect. We tested different al-

gorithms on this and two other datasets: one synthetic dataset and one with

natural images [34]. Experiments proved the effectiveness of our proposed new

features, and show that our proposed algorithm reliably outperforms the base-

lines.

To summarize, our major contributions are:

1. New features (on junctions and boundaries) and a learning-based frame-

work for the depth ordering task.

2. A novel approach to globally encourage the depth order consistency

through a graphical model.

3. A new depth ordering dataset including more than 1000 images with hu-

man segmentation and depth information.

4. A new approach that favors closed loops for occlusion boundary detec-

tion.

18

2.2 Related work

Reasoning about the 3D structure from a single image has been studied since

Barrow et al. [32] and Waltz et al.[33]. They present the work of understand-

ing line drawings and converting them into 2.5D images. These works show

the first attempts to solve the depth reasoning with rule-based algorithms, and

demonstrate the ability of 3D understanding from low level features in abstract

images. [35] learns the depth information by T junction from video. These

works demonstrate the ability of 3D understanding from the low level features

in both real and abstract image.

Our work assumes that the scene is composed of objects in distinct depth

order, and is closely related to the works from Dimiccoli et al. [36] and Palou

et al. [37], which infer the depth ordering from an elaborate set of rules on

T-junctions. Our work differs and improves upon previous works in the fol-

lowing aspects: a) in past works, the rules of inferences are designed without

any learning process. They work in certain settings, but may not adapt to new

environments. On the contrary, our approach is a learning-based framework

and is data-driven. b) Their algorithms focus only on the angles in T-junctions,

while we show that combining boundary features with junctions is necessary

and achieves better results. c) When aggregating local decisions to produce a

global ordering, these works handle contradictions by dropping orders with the

lowest predicted beliefs. We formulate this task as a graph inference problem,

which achieves global consistency more accurately with the help of graphical

model optimization.

Depth ordering is related to the boundary ownership or the figure and

19

ground assignment problem [34] [38] [39] [40]. However we believe that

these tasks are non-trivially different and produce different results. Figure and

ground assignment is usually based on each edge as presented by Ren et al.

[39], while depth ordering is based on segments. As a result, their work places

more focus on features from edges, while we use a complementary feature set

of junctions and boundaries. Depth ordering also introduces new problems,

such as global consistency in depth, that may not exist for the figure/ground

assignment problem. In addition, depth ordering requires reliable segmenta-

tion, and we propose a new approach for occlusion boundary detection in order

to generate object segments for depth ordering.

Another approach is to infer depth based on high-level understanding of the

scene, as in Hoiem et al. [34] and Liu et al. [30]. They parse an image into dif-

ferent semantic labels, such as “ground”, “sky”, etc., upon which they infer the

depth mainly based on the connecting edge between the object and the ground

plane. In their works, usually there is no need for encouraging the global consis-

tency. The semantic labels can largely solve this problem, e.g., “ground” always

supports “vertical surfaces”, and these are placed before “sky”. However, these

geometric contexts may not always be applicable, such as shown in Fig. 2.1.

In particular, these algorithms excel in natural scenes but fall short with mi-

cro objects or plan views, or may have difficulty in estimating the depth when

“ground” falls outside of the image. Our algorithm complements this shortage

well and aims to achieve reliable depth ordering from low-level features with-

out specific context.

When this geometric context labels becomes unavailable, then the problem

of contradictory in the depth ordering will appear, and we enforce the global

20

consistency through our graph-based approach.

Saxena et al. [1] propose a regression for depth based on super-pixel fea-

tures, and produce a continuous depth estimation. In contrast, our problem is

based on occluded segments. The tasks and the approaches are significantly

different. We believe we are able to achieve more meaningful depth relation

between objects from reasoning about segment occlusions.

2.3 Local depth ordering

We first detect the occlusion boundaries in one image, and based on them we

transform this image into segments. Then we compute features for depth or-

dering, build the depth order graph and assign a discrete depth value to each

segment. We mainly rely on two sets of features for depth ordering: features on

the T-junction (pJF) and on the boundary (pBF).

2.3.1 Junction feature

A T-junction is where three boundaries and three segments meet, illustrated in

Fig. 2.3 (a), and we aim to identify which segment is in front of the other two.

Note that classifying which segment is in front is identical to classifying which

one out of the three boundaries is occluded by the foreground segment, because

the segments that are attached to this “behind boundary” are also behind (see

Fig. 2.3 (a)). We will first classify this behind boundary, and then convert the

result to the segment depth ordering.

21

(a) (b)

Figure 2.3: (a) One T-junction includes three segments (A, B,C) and three
boundaries (e1, e2, e3, in dashed blue line). One segment is in
front of the other two (A is in front of B and C), and corre-
spondingly, one edge is behind the other two (e2 is behind e1

and e3). (b) A vector ~v(e3) pointing outwards is fit to the bound-
ary e3. Then an oriented-SIFT descriptor is computed in align
with ~v(e3).

Angle: An ideal T-junction will include one 180◦ angle between two bound-

aries, indicating the segment within is in front, and two 90◦ angles, indicating

the segments are behind. We include these angles as our features. First, for each

boundary e inside a junction, we fit a boundary vector ~v(e) to calculate its direc-

tion, shown in Fig. 2.3 (b), and calculate the angles from ~v(e) to the other two

boundary vectors: θ1, θ2 ∈ [0, π]. We record them as a two-dimension feature

fa(e) for boundary e within in this junction.

Texture: Junctions have different appearances in natural images, and thus using

angles alone can be unreliable, so we also capture the texture information of a

junction using an oriented SIFT descriptor [41]. SIFT descriptors can record the

edge distributions within a junction, while tolerating some appearance varia-

tion by using histograms. The SIFT descriptor is centered at the junction, and

aligned with every boundary vector ~v(e) pointing outwards, as shown in Fig. 2.3

(b). The size of the descriptor is determined with respect to the boundary length

and limited to 40 pixels.

22

In order to learn the intrinsic appearance of a junction, we use two types

of images for this feature: the original image fo(e) and the binary edge image

fb(e). The binary edge image is a blank image with only the occlusion bound-

aries labeled in white. While fo(e) can capture a junction’s appearance in the

natural image, fb(e) excludes all the luminance and texture information from

the environment, focusing on the boundary distribution within a junction.

We concatenate the above three sets of features as the final junction feature

set: f j(e) = [fa(e), fo(e), fb(e)]. Within one junction, the boundaries in front are

labeled as y = 1 and the boundary behind is labeled as y = −1. Then a SVM clas-

sifier h j is trained. During testing, as there is one and only one behind boundary

in a valid junction, we enforce this constraint by choosing the behind boundary

as the one with the smallest predicted cost.

2.3.2 Boundary feature

In addition to junctions, boundaries are also important for depth ordering.

Hoiem et al. [34] proposes local features fd(e) to encode many edge attributes,

and we include them as a subset of our boundary features 1.

Additionally, we consider the boundary convexity an informative clue. Take

Fig. 2.4 (a) as one example, the convexity of boundary e implies that segment A

occludes segment B, and thus determines the depth ordering.

Therefore, we design features to explicitly capture the boundary convexity.

First, we connect the starting point ps and the ending point pe of a boundary,

1To follow the convention in this thesis, we exclude the high-level geometric context features,
which are not applicable for the settings.

23

(a) (b)

Figure 2.4: The boundary convexity feature: (a) one occlusion boundary
(e.g., e) lies in between two segments (e.g., A, B). Boundary e
bends towards segment B, indicating that more likely A is in
front of B. (b) A base vector lb can be set by connecting the two
ends ps and pe. For each point pi on the boundary, we link ps

and pi to create a new vector li, and record the angle between lb

and li. We histogram these angles as new features for e.

and form the base vector lb. The distribution of each point pi on the boundary

with respect to lb provides the convexity information. We connect every point pi

along the boundary to ps, and form a new vector li. We record the angle between

li and lb: θi = arccos(li · lbase) ∈ [−π, π], as shown in Fig. 2.4 (b). After getting {θi}

for all {pi}, we quantize [−π, π] into 36 bins and histogram {θi}, and append this

histogram as the new feature fc(e) in addition to fd(e): fb = [fd, fc]. Since now the

boundary is directed from ps to pe, for training we label the boundary y = 1 if

its left segment is in front of its right segment, and y = −1 otherwise. Following

the same rule, we retrieve the depth ordering of segments during testing.

2.3.3 Combined features

Junction and boundary features alone have their own strengths and weaknesses,

and we combine them together to complement each other. Since the features in

each junction f j(e) are already computed on the basis of the boundary within it,

24

we can append fb(e) to f j(e) to form the combined feature fc(e) = [f j(e), fb(e)].

Accordingly, the learning process on the junction now becomes a ranking

problem on the three boundaries/segments. We use a structured SVM [42]

hc(fc(e)) to solve it. For example, in Fig. 2.3, we can first associate each bound-

ary with the segment on its left. Suppose the ground truth depth order is

A → C → B. Then for boundaries: e3 → e2 → e1. During training, the

constrains become hc(A) > hc(C) and hc(C) > hc(B), i.e. hc(e3) > hc(e2) and

hc(e2) > hc(e1). (We omit fc for brevity, and in the following we use segment

instead of boundary to indicate the depth order, since they are identical.) Dur-

ing testing, xi = { fc(A), fc(B), fc(C)} is the combined feature on junction i , and

yABC
i indicates the segment order A → B → C. We define the likelihood li of

assigning the depth order yABC
i from the SVM margin:

li(yABC
i |xi) =

∑
(M,N)

hc(fc(M)) − hc(fc(N)), (2.1)

where (M,N) ∈ {(A, B), (B,C), (A,C)}.

2.4 Towards global depth reasoning

D-order graph: After the local inference for depth ordering, a depth order graph

is built (d-order graph), shown in Fig. 2.5 (b), and we assign the depth order for

each segment according to this graph. One node in the d-order graph repre-

sents one segment in the image. The directed edge indicates one segment is in

front of another. With the combined feature fc, each junction will order its three

segments in depth. For example, junction α in Fig. 2.5 (a) may infer the depth

ordering A → B → D, and produce three directed edges in the d-order graph:

A→ B, A→ D and B→ D.

25

(a) (b) (c)

(d) (e)

Figure 2.5: (a) Global depth reasoning example. (b) Each junction pro-
duces three directed edges in the depth order graph, e.g. junc-
tion α produces the directed edges A → B,B → D, and A → D.
(c) We use MRF to encourage the global consistency. Each node
corresponds to one junction, and is connected with its neigh-
bors. (d) The edge potential in our MRF gives high penalties
(solid) if the segments’ orders contradict between two nodes.
(e) The depth ordering is assigned by the longest path in the fi-
nal depth order graph (shown in solid arrow), from which we
retrieve the depth ordering, such as A→ B→ C → D.

However, relying solely on local decisions can lead to invalid configuration

of d-order graph. Take Fig. 2.5 (a) as one example: if junction γ incorrectly

predicts the order as D→ B→ C, while the others have the correct classification,

a contradiction is introduced. This results in a loop of nodes B,C,D in the depth

order graph, and makes it impossible to determine the depth order. To solve

this problem, we propose a new approach using a Markov Random Field to

encourage a more global consistency.

26

Global: We treat each junction in the image as one node in our MRF graph,

shown in Fig. 2.5 (c). The label space for each node yi is the possible order

permutation of the segments, e.g. for junction α, its yα will have 6 possible

labels of the segment orders: ABD,ADB,...,DBA. The node potential φ(yi|xi) is

calculated by taking the negative of Eq.2.1. The edge in our MRF is defined by

the boundary. We link two junctions if they are connected by a boundary in

the image. Also, if two junctions are connected by a boundary, they must share

at least the two segments that this boundary separates. Therefore, the edge

potential ψ(yi, y j) is defined as the consistency between the segments’ orders.

For instance, in Fig. 2.5 (a), junction α and β are linked by boundary e1 (in

light blue), and thus α and β share segment B and D that e1 separates. Accord-

ingly, the segment order on both junctions must be consistent, e.g. the order

A→ B→ D on junction α is consistent with the order B→ C → D on junction β,

but the same order for α is inconsistent with the order C → D→ B on β, because

the relative orders of B and D contradict. We build the edge potential ψ(yi, y j)

following this intuition: we assign zero penalties for the consistent orders, and

high penalties for the inconsistent ones. Fig. 2.5 (d) gives an example of the po-

tential matrix on the edge between node α and β in the MRF, with solid squares

representing high penalties.

We use Tree Reweighted Decomposition (TRW) to minimize the total energy

function E =
∑
i
φ(yi|xi) +

∑
i, j
ψ(yi, y j) for this MRF. Because of the penalties for the

inconsistent orders, this optimization process encourages the consistent orders

in a more globally optimized manner. Beliefs from other segments are passed

through messages to help local decisions. In practice the inference process usu-

ally produces a consistent depth ordering, which enables us to trim the loop in

27

the depth order graph more safely. After that, we find the longest path in the

depth order graph (now acyclic), and use this path as the skeleton for depth or-

dering, as shown in Fig. 2.5 (e). All the other nodes that are not in this skeleton

path are assigned with depth values according to this path.

2.5 Occlusion boundary with closed loops

Segmentation is a necessary preparation for the depth ordering task, and we rely

on the occlusion boundary detection to generate it: first a dense segmentation

using watershed is performed to extract all the possible edges. Then each edge

is classified as an occlusion boundary or not. After that the object segmentation

is achieved by merging the regions between non-occlusion boundaries. Our

detailed approach is presented as follows:

BoW features: In addition to [34], we propose new features based on bag-of-

words [29] for occlusion boundary detection, for they effectively capture the

texture information. Each edge from the initial segmentation lies in between

two segments. We compute the dense SIFT words within these segments, and

histogram them as the new features. Besides, the edge appearance itself pro-

vides rich information. If the edge is shaky or non-smooth, it is unlikely to be an

occlusion boundary. Therefore, we also histogram the dense SIFT words along

each edge. Together, these histograms form the new features for the occlusion

boundary detection.

Enforcing the closed loop: Furthermore, occlusion boundaries are not indepen-

dent. They usually enclose one object and form a closed loop, even when the

object is occluded by others. For example, in Fig. 2.5 (a) segment C is enclosed

28

by edge e2 and e3, which together form a closed loop, even though e2 belongs

to segment B. Also the edges inside a loop are less likely to be actual occlusion

boundaries.

(a) (b) (c)

Figure 2.6: (a) The local occlusion boundary detection result (best viewed
in color). Heat map indicates the beliefs for the occlusion
boundary, and the redder the higher. (b) We gradually examine
the edges with high beliefs and retrieve the loop. (c) We lower
the beliefs of the edges that connected inside to this loop.

We explicitly model this property as follows: first we classify each edge and

get its belief for the occlusion boundary, shown in Fig. 2.6 (a). Since each edge

connects two junctions at its two ends, we gradually group these junctions to

retrieve the loop: initially, each junction in the image forms an individual group.

Then we sort all the edges by their predicted beliefs for the occlusion boundary

in descending order. After that, we examine each edge from the top belief and

its two junctions: if they belong to different groups, we merge them. Otherwise,

we find a closed loop with the current maximum predicted belief. If the loop

has the size L larger than a minimum requirement Lmin, we set the beliefs for all

the edges l that form the loop as bnew =
∑

l bl/L, and lower beliefs by T of the

edges connected inside to this loop. The algorithm stops until we examine all

the edges with beliefs larger than Bmin. We also encorage the long edges in a

similar way: we group the neighboring edges if they share similar directions,

and enhance their beliefs for the occlusion boundary if the group size is large

29

enough.

2.6 Experiments

We experiment on three different datasets: a synthetic dataset (syn), the occlu-

sion boundary dataset provided in [34] (occ), and our depth order dataset (d-

order). Quantitatively we evaluate the depth ordering results by the ordering

accuracy: for any two neighboring segments in the image, we examine whether

their depth orders are correctly labeled comparing to the ground truth. We

compare our final depth ordering algorithm (Global) with the following ap-

proaches:

BF: uses the boundary features proposed in [34].

JA: We re-implement the algorithm proposed in [37] that orders the depth

mainly by angles within a junction.

pBF: uses the proposed boundary features.

pJF: uses the proposed junction features.

Com: uses the combined the features. The above methods share the same depth

reasoning in [37] that deletes the loop in the depth order graph by the

lowest local predicted belief.

Global: This is our full algorithm. We use the combined features in Com and the

proposed MRF graph model to ensure the global depth consistency.

We color each segment by its depth order in the image to visually display the

results. Segments in front are darker (more black), and occlude the segments

that are brighter (more white). Note that since we don’t estimate the absolute

30

depth, but the relative depth order, the absolute color value does not hold a

specific meaning. The relative color between segments is more important. Seg-

ments are marked by a red “x” if incorrectly labeled in the depth ordering2.

Generating the object segments is a key step that precedes depth ordering.

Since we rely on the occlusion boundary detection to generate the segmenta-

tion, we also quantitatively evaluate the average precision for different occlu-

sion boundary detection algorithms. We compare our proposed algorithm loop

with the following approaches:

bfeat: uses the low-level boundary features from [34] 3.

pfeat: uses the proposed BoW features in addition to bfeat.

graph: uses pfeat and a graph model (MRF) to enforce the continuity of occlusion

boundaries, similar to [34].

loop: This is our full algorithm that uses pfeat and explicitly enforces closed-

loops and long edges.

Synthetic dataset: We synthetically create a dataset to evaluate the depth order-

ing algorithms. For this dataset, we randomly place 6 to 10 abstract segments

in a image, including rectangles, circles, ellipses etc., with different colors and

sizes. Shapes placed later will overlay the previous ones, and in this way we

know the ground-truth ordering. Examples are shown in 2.7. We generate 2000

synthetic images, and use half of them for training the depth ordering algo-

rithms, and the other half for testing.

2In some cases, “incorrect depth” is a relative term between two segments, and we arbitrarily
mark one of them.

3To follow the convention in this thesis and make a fair comparison, in this step we do not
compare with the result from the high-level geometric context labels, which are also often inap-
plicable in the settings.

31

Figure 2.7: Examples of our synthetic dataset: color images are on the left
and the ground truth depth orders are on the right, colored as
the front segments are darker.

(a) (b) (c)

Figure 2.8: (a) Result from Com. Combined features can correctly label the
depth order (darker segments are in front). (b) Results from
pJF. (c) Results from pBF. Segments are marked by x if incor-
rectly labeled in the depth ordering.

This dataset has perfect segmentation, which enables us to directly compare

the performance of different depth ordering algorithms. The depth ordering

accuracies are presented in Table 2.1. The new features on boundaries (pBF) and

junctions (pJF) improve around 3% in accuracy over the baseline feature sets (BF

and JA), showing the effectiveness of our proposed features. Also combining

them together (Com) achieves better performance over the individual feature

set (10% over pBF and 4% over pJF). Our final algorithm (Global) has a clear

advantage comparing to all the baselines. Overall Global achieves around 10%

improvement over the previous works BF and JA.

Fig. 2.8 illustrates the advantage of the combined features. With only junc-

tion features, we cannot infer the depth order between the two rectangles, since

32

(a) (b) (c)

Figure 2.9: Our global reasoning algorithm can provide better depth or-
dering especially in complicated scenarios. (a) The ground
truth depth ordering. (b) Result from Com. (c) Result from
Global. Incorrectly labeled segments are marked by x.

their potential junction that can give the right depth order has been blocked, and

the result is shown in Fig. 2.8 (b). On the other hand, using only boundary fea-

tures makes it impossible to determine the depth order between the ellipse on

the top and the rectangle below it, since the boundary in between is a straight

line, and the result is shown in Fig. 2.8 (c). However, when combining these

two features, we can correctly label the depth ordering of this image, as shown

in Fig. 2.8 (a).

Our proposed Global algorithm outperforms the baselines, especially in the

complicate cases when a segment interacts with multiple neighbors. Fig. 2.9

shows one example that when Global (shown in (c)) gives in a better depth

ordering than Com (shown in (b)). The incorrectly labeled segment has four

junctions with the segment behind it, and they produce inconsistent predictions.

However after using the proposed model to enforce the consistency, we can

produce a corrected depth order graph.

Occ dataset: We also experiment on the occlusion boundary dataset from [34].

This dataset includes 100 outdoor images with human-labeled segments and

their quantized depth. For these natural images, object segmentation is the first

33

step before depth ordering. Therefore, two types of experiments are conducted:

1) we order the depth of manually-labeled ground-truth segments (-gt). 2) We

automatically segment the image by using the occlusion boundary detection

result, and then perform depth ordering (-auto)4 5. We use 50 for training the

occlusion boundary classifier and the depth ordering algorithms, and the other

50 for testing.

Table 2.1 shows the accuracies in depth ordering on the occ dataset, and ex-

ample results are presented in Fig. 2.10. Since the variance in this dataset is large

comparing to the limited number of training samples (only 50), the margins of

the proposed algorithms over the baselines are smaller. However, still pBF and

pJF outperform the baseline features BF and JA by 1.5% and 3%. Com further

improves the result by 1%, and Global produces the best result.

For generating the segmentation, we show the average precision of the oc-

clusion boundary detection in Table 2.2. The proposed BoW features give a 5%

boost in detecting the occlusion boundary. Enforcing the closed loop (loop)

marginally outperforms the baseline that uses the graph model (graph) and

locally enforces the continuity. We believe the small increase is because this

dataset is quite challenging. The output occlusion boundary result from the

low-level feature pfeat is not reliable enough, and thus enforcing the loop may

not be significantly better.

D-order dataset: Furthermore, to evaluate the depth ordering algorithms on

natural images, we collect a new depth order (d-order) dataset. Various daily

objects are placed to occlude each other in different configurations and scenar-

4The ground truth depth of each segment from the auto-segmentation is achieved by aver-
aging the depth value over all the pixels in the segment.

5for this experiment only, geo-context information provided in [34] is necessary in order to
generate usable segmentation.

34

ios. The dataset includes 1087 images. Each object is manually segmented, and

its depth is acquired by using the Kinect sensor. Exemplar images are shown in

Fig. 2.11.

We also use half of them for training and the other half for testing, and con-

duct two experiments: depth ordering on the ground-truth segmentation (-gt),

and automatically generated segmentation from the occlusion boundary detec-

tion (-auto). The ground-truth depth order of each segment (from either human-

labeled or auto-generated) is achieved by averaging the depth values within this

segment.

Table 2.1 shows the depth ordering accuracy. The new features improve the

performances from 1% to 3% over the baselines, and the combined features

(Com) additionally boosts at least 4% in accuracy. Global gives the best per-

formances in all the scenarios, achieving 10% improvement over the previous

works in some cases. Fig. 2.10 and Fig. 2.13 show the ordering results.

Table 2.2 presents the average precision of the occlusion boundary detec-

tion, and Fig. 2.12 shows the example results. Our proposed new features out-

performs the previous work by 7%, and our final algorithm (loop) produces

additional 3% higher average precision comparing to the conventional graphi-

cal model (graph). More importantly, since our algorithm explicitly encourages

the loop, it generates more reliable object segmentation for depth ordering.

35

Table 2.1: Average depth ordering accuracy (in %) of different methods on
synthetic dataset (syn), occ dataset (occ), and our new depth
order dataset (d). “-gt” : depth ordering is performed on the
ground-truth segmentation. “-auto”: the segmentation is auto-
generated by the occlusion boundary detection.

BF JA pBF pJF Com Global

syn 81.0 86.6 83.0 89.9 93.7 95.4

occ-gt 70.9 63.3 72.4 66.9 73.2 73.3

occ-auto 66.4 58.2 69.5 64.5 69.4 71.9

d-gt 82.3 72.5 83.4 75.5 89.2 91.7

d-auto 75.0 62.2 75.3 68.3 79.3 80.3

Table 2.2: Average precision (in%) for the occlusion boundary detection on
occ dataset (occ-ap) and our depth order dataset (d-ap).

bfeat pfeat graph loop

occ-ap 51.7 57.0 58.3 58.6

d-ap 65.5 73.0 75.7 78.3

2.7 Summary

We present a learning-based framework for depth ordering. We exploit new

features on boundaries and junctions, and integrate them to form a better fea-

ture set for depth ordering. Furthermore, we propose a graph-based algorithm

to encourage the global consistency in the depth ordering. We modify occlusion

boundary detection algorithms to favor closed loops so that it is better suited

for the ordering task at hand. We also collected a new dataset for the depth

ordering task. Experiments in various scenarios show our proposed algorithms

achieve better performances than the baselines.

36

For future work, we can further study how the depth ordering helps with

segmentation and iteratively perform segmentation and depth ordering to see

whether the interaction improves performances on both tasks. Additionally, we

can employ our algorithm in tasks such as object recognition and scene under-

standing.

37

(a) (b) (c) (d)

(e) (f) (g) (h)

(a) (b) (c) (d)

(e) (f) (g) (h)

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.10: Results from occ datasets with ground-truth segmentation
(top row), auto-segmentation (middle row), and from our
depth order dataset with ground-truth segmentation (bottom
row). (a) Input image. (b) Ground-truth segmentation and
depth. (c) to (h) are results from different methods: (c) BF. (d)
JA. (e) pBF. (f) pJF. (g) Com. (h) Global. Incorrectly labeled
segments are marked by a red x.38

Figure 2.11: Example images from our depth order dataset

(a) (b) (c)

(d) (e) (f)

Figure 2.12: Occlusion boundary detection result (best viewed in color):
(a) the ground-truth occlusion boundary. (b) Depth image
from Kinect. (c) Occlusion boundary detection result from
bfeat. Red in color indicates higher beliefs for the occlusion
boundary. (d) to (f) are results from (d) pfeat, (e) graph. and
(f) loop.

39

(a) (b) (c)

(d) (e) (f)

Figure 2.13: Depth orderings from auto-segmentation. (a) to (f) are results
from (a) BF, (b) JA, (c) pBF, (d) pJF, (e) Com, (f) Global.

40

CHAPTER 3

3D SURFACE SEGMENTATION

3.1 Overview

Dense 3D points become increasingly helpful for many different tasks, such as

scene understanding and applications in robotics[1, 43, 44]. To get this 3D infor-

mation, a laser scan is usually utilized. This method can generate thousands of

3D points in very good precision (shown Fig. 3.1 (a)).

However, the 3D points from the laser scan are still sparse when compared

with a normal image, which may contain pixels in the scale of million (shown

in Fig. 3.1 (b)). Therefore one may want to get a denser 3D map by interpolating

the 3D location of every pixel in the image. To do this, during the laser scan, an

image is taken and paired to the laser scan data. Each 3D point can be registered

and projected back to the image using the simple geometry of the camera. For

the pixel that lacks its corresponding 3D point, we can use its 2D pixel neighbors

who have their corresponding 3D points to interpolate the 3D position of the

target pixel. This is called “3D-interpolation” or “3D-superresolution”, and can

be done by linear interpolation, or using the pixel color as a clue to weigh the

neighbors [45, 46].

In this work, additional aspects are considered as contributions: we estimate

the underlying 3D surfaces hidden behind the 3D point clouds, and combine

them with the color information for 3D-interpolation. The proposed algorithm

is inspired by the following intuitions: first, 3D points can be better segmented

in addition to the color. In 3D we can pick better neighbors for the target pixel

41

(a) (b)

Figure 3.1: (a) the 3D point clouds scanned from a laser range sensor. (b)
the scene image associated with the 3D point clouds

for interpolation. Take Fig. 3.1 as an example: pixels near the corner of the

building are close in 2D space and have similar colors, but in 3D space they

lie on different surfaces with changes in depth. Using only the pixel location

and color will result in wrong neighbor points for interpolation. However, a

clustering in 3D space based on surface can better solve this problem and lead

to a lower interpolation error.

Second, estimating the 3D surface function will result in better interpolating.

Previous works of 3D-interpolation are usually done in a local region. How-

ever, fitting larger surfaces to the 3D point clouds can produce better model.

Also high-order surfaces with curvatures may fit the 3D points better, such as

the cylinder structure of the building shown in Fig.3.1 (b). Therefore we pro-

pose an algorithm to segment the 3D points based on their underlying surfaces,

and interpolate using these surface functions. The overview of our proposed

algorithm is presented in Fig. 3.2

42

(a) (b)

(c) (d)

Figure 3.2: (a) Linear interpolation will introduce large errors when the
depth changes within local region. In this figure the 3D points
are presented in color by the fitting errors to the ground truth
(error bar is on the right: the more blue, the lower error. (b)
When projecting each 3D point to its corresponding 2D pix-
els, it shows that the 3D points are quite sparse compared to
the number of pixels. (Color represents a preliminary 3D sur-
face segmentation) (c) 2D segmentation can help identifying
the real neighbor of each 3D points. (d) Using an MRF, we
can infer the actual 3D geometry information of each pixel, and
thus achieve better 3D point estimation.

3.2 Related works:

Dense Interpolation on 3D data using an image have been studied in [45] and

[46]. [46] puts the color distance between the pixels into Markov Random Field.

43

This method initializes a bi-linear interpolation, and then iteratively updates the

3D result using the colors of the pixels. [45] comprehensively examines the ex-

isting methods for 3D-interpolation. However, previous algorithms rarely uti-

lize the geometry information within the 3D points. We compare our method

to these baselines and experiments show the improvement when using the 3D

surface information. [1] proposes a pure vision-based approach for depth esti-

mation, but the goals are different from us since they only estimate the depth of

each pixel rather than the full 3D location. Thus the results are not comparable.

[43] combines the 2D color image and the 3D laser scan data to find a salient

region in the scene. Their underlying idea is similar to ours in combining the

image and the dense 3D point clouds together. However we are targeting at

two different tasks and the approaches are significantly different. We focus on

building a more precise 3D model, while they want to detect the saliency.

3.3 Surface segmentation and fitting

There are some related works of surface segmentation on triangle-meshes [47].

For 3D point clouds, surface-based segmentation has been used in the area of

range image processing in [48] [49], and reverse-engineering in [50]. Generally

there are three approaches: Split-and merge, region growing and clustering. In

this thesis, we implement a new way of region growing using efficient graph-

based method [19].

Surface segmentation: Surface segmentation is to group the 3D-points that: 1)

are close to each other in Euclidean distance; 2) lie on one smooth surface. For

surface segmentation, the normal vector of the latent surface that each 3D point

44

lies on becomes important. We cluster the 3D points by the angles of this normal

vector.

The normal of a 3D-point is initially estimated by using its neighborhood.

For each 3D point Pi = [x, y, z, 1]1), we calculate the normal vector ~n(Pi) by

solving the following equation:

[Pi1, Pi2, . . . , Pin][~n(Pi), d]T = 0 (3.1)

for Pi j ∈ Neighbor(Pi) with the constraint that |n(Pi)| = 1. The neighborhood of a

3D point Pi can be determined by choosing the N nearest neighbors.

After estimating the normal vector ~n(Pi) of Pi, segmentation is performed

based on surface. The intuition is that if the angles of two normal vectors are

too different, then the corresponding two points may belong to different 3D

surfaces. We use the efficient graph-based method [19] to generate the initial

segmentation base on the normal vector. It returns a set of 3D segments {Ci} .

Incorporating the idea introduced in [19], we modify this efficient graph-

based method to generate surface segmentation S as follows:

Surface fitting: We discover that generally most objects are not composed of

complex surfaces, especially for structured and man-made things, such as build-

ings, cars, roads etc. Therefore we propose to use only the first and the second

order surfaces (plane and quadratic surfaces) for fitting. Practically they pro-

vide very good approximation.

For each segment Ci, we solve Eq.(3.1) for the points {Pi = [x, y, z]T } ∈ Ci to

estimate the normal vector ~n of Ci, then apply a rotation matrix R to align ~n to ~z

1the fourth dimension is set to 1 to follow the convention in Structure from Motion

45

Algorithm 1: Surface segmentation on 3D points

Initialize {Pi} as one individual group Ci, set li = 0 for each Ci. S 0 =

(C1,C2, . . . ,Cn). Calculate ~n(Pi) by Eq.(3.1)

Link Pi with its neighbor Pi j to form an edge ei j = arccos(~n(Pi) · ~n(Pi j)). Sort all

the m edges in ascending order {eq}.

for q=1 to m do

if eq < min(li +
k
|Ci |
, l j +

k
|C j |

) then

Form a new segmentation S q by

a) merging Ci and C j into a new group Ch;

b) updating lh = eq for Ch

end if

end for

direction. This enables us to model the plane surface by,

fip(x, y, z) = z − [x, y, 1]θp, θp = [cx cy 1]T

and the quadratic surface by,

fiq(x, y, z) = z − [x2 y2 xy x y 1]θq,

θq = [cxx cyy cxy cx cy 1]T

θp and θq can be calculated by least square fitting on the 3D points {Pi} ∈ Ci.

Classifying the plane from the quadratic surface is a necessary step to pre-

vent potential over-fitting. We adopt two methods for this classification: cal-

culating the principal curvatures on the estimated surfaces [47], and testing the

distribution of the fitting errors [48]. The details are omitted for brevity.

46

Unstable points: 3D points that lie on the boundary between the surfaces in-

troduce errors in estimating the normal vector, and thus they make the surface

segmentation unreliable. We call these points “unstable points”. We note that

compared with their neighbor points, these points have drastic changes in the

normal vector or the fitting error, so we can classify these points as follows: first

we calculate several criteria S (Pi) of each point Pi to its neighbor points N(Pi):

S (Pi) =
n∑

j=1

|X(Pi) − X(P j)|, P j ∈ N(Pi)

X can be the previously estimated normal vector, the fitting error or the 3D loca-

tion of each point. We calculate the average S̄ and the standard deviation std(S)

of S value for all the points, and choose those points with S value larger than

S̄ + 3std(S) as the unstable points. The selected result is shown in Fig. 3.3 (a).

Then we repeat surface segmentation/fitting on the remaining stable points,

and filter out the unstable points iteratively. After two to three iterations the

algorithm will produce reliable 3D surfaces {Ci} with their surface functions, as

shown in Fig. 3.3 (b).

3.4 Combining with color

Since the 3D laser scan data is sparser than its corresponding 2D image, only a

subset of pixels in the image will have their corresponding 3D locations. After

previous steps, these pixels are associated with their estimated surfaces {Ci}. We

treat each surface as a label, and inference the latent surface label {Ci} on every

pixel in the image through Markov Random Field (MRF) [51], shown in Fig 3.5

(c).

47

(a) (b)

Figure 3.3: (a) we filter out the unstable points, e.g. the points between
surface boundaries (points in red). (b) the surface segmentation
result after iteratively fitting the surface and filtering out the
unstable points.

Forming MRF: MRF uses two terms in modeling: the smoothness-term (defined

on each edge) and the data-term (defined on each node (i.e. pixel)). In this

work we connect 4-grid neighborhood of each pixel to form the edges. For the

smoothness-term, the Potts model is applied on the edge between the pixel pi

with label Ci and the pixel p j with label C j:

V(Ci −C j) =

0, Ci = C j

d, Ci , C j

The data-term defines the potential on each pixel node. We use the RGB color

feature to model this potential. Note that one 3D surface may possess of several

different color mixtures. One example is shown in Fig. 3.1 (b), where green

windows and grey walls are the two main colors for the building. Therefore,

for the pixels {pCi} that belong to the surface Ci in 3D, we estimate k Gaussian

Mixture Models in color space, NCi,1,(µ1,σ1), ...,NCi,k,(µk ,σk). Then the probability of

assigning the pixel pi (with RGB color I(pi)) to the surface Ci is determined by

the maximum likelihood of the pixel pi assigning to each color mixture model

48

of the surface Ci:

Dpi(Ci) = P(pi|Ci) = max
j

NCi, j(I(pi))

Dpi(Ci) is used as the data-term.

In sum, the inference on MRF is achieved by minimizing the following en-

ergy function:

E(C) =
∑

pi

Dpi(Ci) +
∑

(pi,p j)∈N

V(Ci −C j)

where N represents the four-edge connected graph. Loopy Belief Propagation

is implemented for the inference.

Efficiency: We improve the efficiency for MRF inference by reducing the possi-

ble surface labels for each pixel. First we segment the color image2 and generate

a set of super-pixels {gi}. We prune the surface labels as follows: if within one

super-pixel gi, the pixels with known 3D points lie on T surfaces {Ci1,Ci2, . . . CiT },

then all the pixels within this super-pixel are limited to these T possible la-

bels. This significantly decrease the number of possible labels for each pixel,

and leads to a shorter inference time which is within minutes. Also the edge

consistency in the color image produced by the segmentation algorithm can be

better preserved.

3D-point interpolation: Having the surface label for each pixel, the dense 3D-

interpolation is achieved by using the surface function fi of each surface label Ci.

For each pixel pi with label Ci, its 2D location [u, v]T is related to its 3D location

P = [x, y, z]T by:

[uw, vw, w] = M[x, y, z, 1]T (3.2)

where the projection matrix M can be easily estimated using the pixels with

known 3D points. w is the only unknown variable and can be calculated by
2we use mean-shift algorithm [52]

49

using the surface function: fi(x(w), y(w), z(w)) = 0. Then the 3D location [x, y, z]T

is obtained by substituting the value of w into Eq. 3.2.

3.5 Experiments

Figure 3.4: Some sample images for the experiments. (a): ITRI dataset,
including 73 indoor and outdoor scenes. (b): Make3D dataset
[1]

.

We experiment on two dataset: Make3D dataset and ITRI dataset.

Make3D[1] is a public dataset with well calibrated 3D laser scan data and im-

ages available. We use dataset [1] in Make3D, with 239 sets of images and laser

scan data available (the others are missing the full 3D information, where only

the depth is available). In addition, we manually collect another ITRI 3D dataset

(Fig. 3.4), focusing on structured outdoor buildings and indoor environments.

73 indoor and outdoor scenes (Fig. 3.4) were scanned by the Sick laser range

scanner LMS-291. Images were taken simultaneously and 3D points were man-

ually calibrated with the image. For the parameter setting, the images are re-

sized to 480 pixels in width for efficiency. We use 20 nearest points as the neigh-

borhood for Pi. For MRF inferencing, we set k = 10 for GMM, d = 10 and λ = 1

for the energy function.

Two baseline methods are implemented for comparison: linear interpolation

(LP): we linearly combine 20 nearest neighbor pixels whose 3D data are avail-

50

(a) (b) (c) (d)

Figure 3.5: (a) the input image. (b) the surface segmentation result. (c)
inferencing MRF on the image (segmentation in the color space
is for efficiency). (d) MRF inference result.

Table 3.1: Interpolation error (in mm) on Make3D dataset (upper row) and
on ITRI dataset (lower row). We also experiment with the down-
sampled modeling set, from 100% to 50% of the total modeling
3D points.

percent 100% 90% 80% 70% 60% 50%

LP 63.0 67.9 70.1 73.4 77.2 80.7

cMRF 54.7 60.0 60.4 62.9 66.0 67.8

Prop 37.8 37.9 38.0 38.1 39.7 44.1

LP 164.7 170.4 180.5 190.4 199.4 211.1

cMRF 159.0 164.5 172.3 181.4 189.3 199.7

Prop 117.7 117.8 118.7 122.0 124.2 132.3

51

(a) (b)

(c)

Figure 3.6: 3D-point interpolation error using different methods. The error
is mapped in color, and the unit is mm. We show the result of
Linear interpolation (LP) in (a), color-based MRF (cMRF) in (b),
and the proposed algorithm (Prop) in (c).

able, and weigh them by their 2D distance to interpolate the target pixel; and

interpolation using the color-based MRF (cMRF) [45, 46]. We evenly divide the

3D points into two sets, and each one includes around 7000 3D points. The first

set is used for modeling; the other set is used as the ground truth for the inter-

polation testing. The average interpolation error of the testing points is reported

in the first column of Table 3.1. On average our method (Prop) achieves more

than 25% improvement over the baselines.

52

Furthermore we test the robustness of the proposed algorithm. We down-

sample the 3D points in the modeling set until only 50% of the original points

are used, and keep the testing set constant. Table. 3.1 shows that the proposed

algorithm still gives lower interpolation errors in all the cases.

Fig. 3.5 and Fig. 3.6 show one complete experiment example. The perfor-

mance of our method is improved in the following cases: 1) between the bound-

ary of the surfaces. In this case the propose algorithm can identify a better neigh-

borhood for the target pixel, especially when the surfaces has similar color, but

have a depth change in 3D. Baseline method will result in a high error between

the surface boundaries, shown in (a) and (b), while our method is more reliable,

shown in (c); 2) in the large and structured regions. Our algorithm makes use

of a larger group of the 3D points to estimate the surface function, therefore the

fitting error is lower than locally interpolating.

To test the robustness of our method, we also down-sample the estimation

group. We start only using 20% of the original 3D points to build the model/for

interpolation, and increase 10% each step until 100%, while keeping the testing

group the same all the time. The overall error should be decreasing when more

points are given for modeling/interpolation, as shown in Fig. 3.6 (g). However,

the average fitting error is of our method is lower than the baseline method in all

these tests, which indicates that even in the case of smaller samples, our method

can still give robust modeling of the environment.

53

3.6 Summary

In this part of the thesis we propose an algorithm for the dense 3D point inter-

polation based on the 3D surface and the color information. We first perform

the surface segmentation and fitting, and then combine the surface labels with

color through MRF Framework. The experiments on various indoor/outdoor

scenes show that our method has a better performance over the baselines, and

is robust even with fewer modeling points.

Future works can be done on classifying different objects and interpolating

the 3D map accordingly, e.g. trees are better segmented into small regions while

buildings are better segmented into large surfaces. This may lead to a better

model and lower interpolation errors.

54

CHAPTER 4

3D OCCLUSION BOUNDARIES

4.1 Overview

Object boundaries in images are important clues towards the high level inter-

pretation of the scene [53] [8]. In general, three types of boundaries exist: (a)

occlusion boundaries, which are the edges produced by one object occluding

the other; (b) connected boundaries, which refer to the touching edges of two

connecting objects; and (c) homogenous boundaries, which are produced by the

texture from the object. One exemplar image of different boundaries is shown

in Fig. 4.1. In this part of the thesis, we learn to detect boundaries on color and

depth image pairs.

Occlusion and connected boundaries are important edges for understanding

the geometry of a scene as well as the layout of objects within the scene. Occlu-

sion boundaries can provide a segmentation of the image [54] and the depth

ordering between objects [36]. Connected boundaries, which indicate the sup-

porting relation between surfaces, are important for scene understanding [53]

[30]. For example, in Fig. 4.1, once the occlusion boundaries (f) and connected

boundaries (g) are known, it is easier to segment the objects and analyze sup-

porting planes. This understanding in turn makes further applications possible,

such as object manipulation or object placement [15].

Although these boundaries are important, identifying them in a robust man-

ner is not an easy task. In some cases, prior semantic knowledge of the scene

(e.g. “ground”, “sky” or geometric context) has to be introduced for occlusion

55

(a) (b) (c)

(d) (e) (f) (g)

Figure 4.1: Boundary examples: (a) the color image and (b) the depth im-
age from the structured light depth sensor (Kinect). (c) We ex-
tract all the possible edges by densely segmenting the color im-
age, and label the following three types of boundaries: homo-
geneous boundary (cyan), occlusion boundary (green), and
connected boundary (red). Directly using the depth data to ex-
tra the boundaries may fail because of the noisy in the bound-
ary region. (d) is a typical Canny edge detector result per-
formed on the depth image. It shows inaccurately detected
edges due to noise. (e) presents the result when naively ap-
plying the depth edge detection result to label the occlusion
boundary. However, using our learning based framework, we
can better detect the occlusion boundary (f), and the connected
boundary (g) , where the color indicates the classification be-
liefs for the labeling (more red→ higher belief).

boundary recovery [53] [2]. This additional knowledge may not be applicable

for generic and complex scene images, as in [55], or images of objects at a macro

view, as shown in Fig. 4.1. This is where the depth can play an important role

and help most [56].

3D depth data are increasingly popular as a help for many different vision

tasks, such as object recognition, scene understanding, and vision for robotics

[8] [1]. A laser scanner or structured-light sensor, like Kinect, is usually used

to retrieve the depth information, along with a regular color camera for RGB

images. Dataset combined with color and depth become quite available online

56

[55] [1]. Specifically, in this thesis we focus on the depth data from Kinect-like

sensors. Compared with a laser scanner, they are inexpensive, widely available,

and have higher resolution and faster speed in retrieving depth images.

However, to identify the occlusion and connected boundaries, simply

“adding” the Kinect depth data may not solve the problem, because these depth

information are quite noisy, especially in the region of the object boundaries [57]

[58]. Fig. 4.1 (d) and (e) provide exemplar images. The depth image contains

noisy boundaries, or even false ones because of the holes created by the non-

reflected region. In general, depth images fail to produce the sharp edges com-

mon in color images, which are the regions that are most vital to our problem

of reasoning about occlusion and connected boundaries. Therefore, we propose

our learning-based framework and develop novel 3D features to address this

problem. We use a 3D surface-based segmentation to overcome the noisiness

of the depth data. This segmentation step can avoid local decision pitfalls, and

forms a better joint interpretation of the surfaces.

Meanwhile, we also generate features in the color domain, and concatenate

all the features to supervise a Support Vector Machine (SVM). The output of the

SVM is used as the unary node in our graphical model. For a joint inference, we

propose a Conditional Random Field (CRF) based framework, where pairwise

potentials are learned by using the features computed on each junction of the

boundaries.

Labeling the boundaries for learning is usually an intensive and laborious

work for human, because there can be many occlusion and connected bound-

aries in a single image, and the human needs to label each one. This step largely

restricts the size of the dataset for learning. For example, in [1], only 50 im-

57

ages were used for training, probably because of the labor involved. Therefore,

we incorporate an active learning method with our new feature set to identify

which boundaries would be most useful for training our model. In this way, we

use fewer labels for training and achieve similar testing performances.

Our extensive experiments on two different datasets prove the effectiveness

of our new features, and the proposed CRF framework improves the inference

accuracy compared to solely local decisions. In addition, the active learning

approach decreases the number of images required to label, while achieving a

high level of testing accuracies.

In sum, our contributions are as follows:

1. We introduce mid-level features for boundary inference from color and

depth images that are based on surface segmentation.

2. We propose a learning-based framework for both occlusion and connected

boundary inference, and allow for active learning.

3. We propose a shared CRF model for occlusion and connected boundary

inference.

4.2 Related Work

Our work is primarily related to two topics in the literature: boundary detection

and depth imaging.

Image-based boundary detection and segmentation has a long history. In

Martin et al [3] [59], low-level color and texture features are proposed for

58

learning the segmentation of natural images, using a proposed human-labeled

dataset [9]. Hoiem et al. [53] then extended this learning-based segmentation

algorithm to the area of occlusion boundary detection and scene understanding.

[53] showed that by detecting the occlusion boundary and the geometric label-

ings of the scene, it is easy to estimate the depth of the testing image through

analyzing the occlusion boundary between the object and the ground. Later

[8],[30] and [7] demonstrated that this information can further help other high-

level interpretation of the scene, such as the object recognition. In this work, we

further explore the occlusion and connected boundary detection with the help

from both depth and color image.

As a mass-market depth sensor, Kinect has received wide interest from the

computer vision community. Since its introduction, the color and depth infor-

mation from this sensor have been applied to a wide range of computer vi-

sion tasks, such as environmental reconstruction [60], object recognition [61]

[62] [63], object segmentation [55], and robotics [15]. In estimating human pose,

[56] completely ignore the color information and exclusively relies on simple

depth features for recognition.

The Kinect depth image relies on infrared projection, and tends to have a

limited depth range (about 5 meters), and has noise at object boundaries. To im-

prove the depth map, [57] and [58] propose 3D denoising and interpolation al-

gorithms. Further, by merging multiple depth images, highly clean depth maps

can be produced [64]. In our work, we are interested in a scenario with single

static color and depth images for boundary inference. We use surface segmen-

tation and fitting [11] [49] for a higher-level interpretation of the 3D data. This

process decreases the depth noise by forming larger surfaces from the surface-

59

fitting step. More importantly, this step produces a rough object segmentation,

and can approximately locate the occlusion and connected boundary for the

task. However, as we will show, this analysis, by itself, is not sufficient to ac-

curately locate occlusion boundaries and infer their type. Our proposed new

feature set captures the information from this surface segmentation to learn dif-

ferent boundaries.

4.3 Color and Depth Features

Our algorithm mainly follow the flow from [53] for detecting boundaries. First,

the depth sensor is calibrated with the color camera, which enables us to retrieve

the 3D depth of each color pixel. Initially, we densely over-segment a color im-

age into super-pixels using watershed algorithm, shown in Fig. 4.1 (c). Then the

task is to classify each small edge into one of the three boundary categories. We

propose a set of color features xc and depth features xd, and training a Support

Vector Machine based on them.

4.3.1 Color features

base features: we use the edge and segment features proposed in [53] as our

base feature set in the color image. This set includes color, probability of bound-

ary [3], segment position and others. The high-level geometric labeling is dis-

carded because it is usually not applicable for the indoor scenarios in out testing

and training sets.

Edge curvature: the curvature of each edge gives a strong clue for identifying a

60

(a)

(b) (c)

Figure 4.2: (a) left: initially, we densely over-segment color images to ex-
tract all the possible boundaries. The cyan edges are produced
by the over-segmentation, and the green ones are the ground-
truth occlusion boundaries. right: Each edge lies between two
segments, e.g. the red edge is between segment A and B. Fea-
tures are computed based on the edge and its two segments.
(b) The depth image. (c) The surface segmentation result from
the depth data.

reliable boundary. In an indoor scene, most man-made objects have structured

boundaries. Homogenous boundaries are usually produced by the texture or

noise, and they can be shaky and irregular, while the actual occlusion or con-

nected boundaries are composed of sharp straight lines. Examples are shown in

Fig. 4.2 (a).

For each small edge from the over-segmentation, we explicitly describe its

curvature as follow: first we connect its starting pixel ps and ending pixel pe,

61

and form a vector ~ve = pe − ps. Then each pixel pi along the edge is connected to

the starting pixel ps, which forms a vector ~vi = pi − ps. We calculate the angles θi

between ~ve and ~vi. We assign a positive angle value if ~vi lies on the right side of

~ve, and then θi has the range from −π to π. We form a histogram of these angles

with 36 bins from −π to π, and use this histogram as the feature that describe the

edge curvature. In general, homogenous boundaries show more uniform angle

histograms than occlusion or connected boundaries.

4.3.2 Depth features

We first perform the surface segmentation on the depth data, and then introduce

our 3D features xd computed based on surface segmentation and fitting.

Surface segmentation and fitting: We applied the surface segmentation and

fitting algorithm proposed in [11]. The intuition is to cluster the sparse point

clouds by their Euclidean distance and estimated surface normals, and then ap-

ply surface fitting to refine the segmentation result. Exemplar results are shown

in Fig. 4.2 (c). After this step, for each pixel pi and its 3D points Pi, we have ac-

quired its 3D surface group Ci, and the corresponding surface function fCi(x, y, z).

Surface segmentation can give a rough prediction for occlusion boundaries:

if one edge lies between two different surfaces or on the edge of a surface in 3D,

it is more likely to be an occlusion or connected boundary. However, some new

issues emerge: the clustering step can also introduce errors from over/under

segmentation. Therefore, we propose a set of depth features based on this sur-

face segmentation result.

62

(a) (b)

(c)

Figure 4.3: (a) Occlusion boundaries labeled from the surface segmenta-
tion algorithm (section: Surface segmentation label). (b) Sur-
face label distribution on each edge. (c) Surface fitting errors
on each pixel.

Surface segmentation label: this simply uses the result from surface segmenta-

tion algorithm [11] to predict boundaries: for each edge e and its two segments

Ae, Be, we find the most frequent surface labels of the pixels within each seg-

ment, C(Ae) and C(Be). If edge e lies on two different surfaces, we mark it as

positive to indicate an occlusion or connected boundary, otherwise we label it

negative to indicate a homogenous boundary. Fig. 4.3 (a) shows the labeling re-

sult from this method. In our experiments, although this method gives a better

performance compared to the naive edge detection in the depth image, in com-

plex scenes, many boundaries are still mistakenly labeled. Because of this, we

treat this labeling as one-dimension feature for boundaries classification.

63

Surface distribution: for the segment Ae, Be that edge e lies in between, we also

retrieve the 3D surface label distribution for each segment, and include this as

another feature.

For one segment, we calculate the ratio between the occurrence of the most

frequent surface label Cmax and the total number pixels. For example, if in seg-

ment Ae, 90% of its pixels belong to surface C1, then the feature value for this

segment will be sd(Ae) = 0.9. This feature effectively measures the confidence

of the previous surface segmentation algorithm. We compute this feature on an

edge basis by taking the average of the surface distribution value of each edge’s

two segments: sd(e) = (sd(Ae) + sd(Be))/2. Fig. 4.3 (b) gives an example of the

surface distribution value for each edge: the more red an edge is, the smaller

its surface distribution value is, which indicates less confidence in the surface

segmentation.

Fitting error: for each 3D point P, we also retrieve its surface function fC that P

lies on and compute the fit error, measured in 3D space. One example of the fit

error distribution is shown in Fig. 4.3 (c), in which the red color indicates higher

fitting errors, and the blue color indicates lower ones.

The surface segmentation errors usually occur at occlusion or connected

boundaries, where a clear segmentation is harder and the surface function has

a worse fit. Thus, the distribution of the fit errors gives a strong clue about the

type of the boundary, e.g. for occlusion boundaries, the 3D points may have

larger fitting errors than the points that lie on a connected boundary, because

there is a large depth change from the occlusion. A connected boundary indi-

cates the place where two surfaces are touching, and thus may have a smaller

fit error for its 3D points. For a homogenous boundary, the fit errors of its 3D

64

points should be still lower.

We compute two types of fitting error for each edge e and its surfaces Ae

and Be: the pixel-wise fit errors along the edge and within each segment. We

histogram the error distribution into 40 bins with equal intervals in log space

from 0 to 10 centimeters, and use this as one of the depth features.

Neighboring surface difference: we compute two types of differences between

edge e’s segment Ae and Be: (a) average depth difference, and (b) angle between

the surface normals.

The average depth difference is straight forward: we first compute the aver-

age depth of segment Ae and Be, and then calculate their difference. This value

can help boundary classification, because occlusion boundaries may result in

higher depth difference between their two sides, while connected and homoge-

nous boundaries may expect lower values.

Furthermore we compute the angle between the surface normals for seg-

ments Ae and Be. Since the segment here are super-pixels from a dense over-

segmentation, we approximately fit a plane locally for the 3D points with each

segment, and calculate the angle between their normals. The intuition is as

follows: the two segments of a connected boundary may have an orientation

difference around 90◦. However, the occlusion and homogeneous boundaries

tend to have their neighboring segments facing similar directions. Therefore

the orientation difference of the neighbor surfaces can also help us for bound-

ary classification.

65

4.4 Conditional Random Field

We propose a Conditional Random Field for a joint inference of boundaries.

Given the initial over-segmentation, oo classify each edge e we define the unary

potential, φ(yi|xi), and the pairwise potential ψ(yi, y j|xi, j). y indicates the edge

labels, e.g. homogenous or occlusion/connected boundaries, and x indicates

the feature vector. i and j refer to the neighboring edges. Then the task is to

minimize the following energy function E:

E =
∑

i

φ(yi|xi) +
∑

i, j

ψ(yi, y j|xi, j). (4.1)

4.4.1 Unary potential

Since our color and depth features are computed on edge basis, we can con-

catenate them into one feature vector x = [xc, xd], and train a Support Vector

Regression fu for the local prediction. We use linear SVM regression for fast

training and testing speed. After that, we retrieve the probability P(y|x) of the

edge label y given the feature x, using the regression fu, and use the negative log

likelihood of this probability as the unary potential φ(y|x) in our CRF.

4.4.2 Pairwise potential

We learn the pairwise potential ψ for any two neighboring edge i and j that

connected in the color image, meeting at a junction with position p jun. First, we

concatenate both color and depth features from edge i and j: xi = [xc,i, xd,i] and

x j = [xc, j, xd, j]. This serves as the basic feature set to learn the pairwise potential.

66

(a) (b) (c)

Figure 4.4: Additional pairwise features for edge i and j in the color image
for learning pairwise potentials. Edge i and j are in solid black
lines, and the edge directions are plotted with red arrows. The
meeting junction p jun is the red dot at center. (a): angle dif-
ference θi, j (blue half circle) between two edges. (b) and (c):
oriented SIFT features aligned with the direction of each edge
direction.

Furthermore, we develop additional features to describe the neighboring edge

relation.

Edge direction: first, we estimate the direction of an edge by fitting a line to the

pixels along this edge, and form a vector pointing outwards from the meeting

junction p jun. Fig. 4.4 (a) gives an illustration of this estimation, and the edge

directions are plotted with red arrows.

Angle difference: we calculate the angle difference θi, j between the direction

of neighboring edge i and edge j, shown in Fig. 4.4 (a) as a blue half circle.

The intuition is that if one occlusion boundary meets another occlusion bound-

ary, it is very likely that they lie on a straight line, especially for man-made

structured objects. This should follow a continuous boundary of the object. It

is the same case for two connected boundaries as neighbors. However, if one

occlusion/connected boundary meets a homogenous boundary, then the angle

difference can be of arbitrary value.

Oriented SIFT: different types of boundaries will give different texture shapes

67

at the meeting junction, and we compute a SIFT descriptor at the junction to cap-

ture such information. The underlying idea is as follows: if two edges are both

occlusion/connected boundaries, then the SIFT descriptor will have a consistent

large value along the boundary direction. In contrast, homogenous boundaries

produce texture of random and irregular patterns, and lead to a more uniform

distribution for each bin value in the SIFT descriptor. Therefore this descriptor

can provide additional texture information at the junction where edges meet.

Besides that, In computing the features, SIFT descriptors use a histogram ap-

proach, which can tolerate some the noise in the boundary as well as a little

mis-alignment of the depth image.

We compute this feature as follows: the SIFT descriptor is centered at the

meeting junction position p jun, and aligned with the direction of each edge. Then

we compute a fixed size (5 pixels per bin) SIFT descriptor for each edge on both

the color (converted into gray scale to follow the convention of SIFT) and depth

image. After that, we concatenate the descriptors on different image domains.

This forms the oriented SIFT feature xs to learn pairwise potentials.

Training and testing pairwise potentials: we combine all the previous features

including the color and depth features for each individual edge, xi, x j, the angle

difference between two edges, θi, j, and the Oriented SIFT feature at the meeting

junction xs, and form them into one feature vector xi, j. We use this final feature

to train the pairwise potential ψ(yi, y j|xi, j).

For training, we simplify the learning phase of CRF by training an individ-

ual classifier for each pair of labels. For example, given any two neighboring

edge i and j, suppose their ground-truth labels are yi = 1, and y j = 0 (1 in-

dicates the occlusion boundary, and 0 the homogenous boundary). Then their

68

feature xi, j is used as a positive training instance for the pairwise label (1, 0), and

a negative training instance for all the other label pairs. If we limit our labeling

space to occlusion boundaries 1 and homogenous boundaries 0, this gives four

pairwise potentials regressions: fp,(0,0), fp,(0,1), fp,(1,0), and fp,(1,1). During testing,

we feed the pairwise feature xi, j to all the regressions, convert the outputs into

pseudo-probabilities, and use the negative log values as the pairwise potentials

ψ(yi, y j|xi, j) between two neighboring edges i and j.

4.5 Active Learning

We use an active learning approach to decrease the amount of the labeling work.

In this step, we initialize the learning framework with very few training in-

stances, and update the classifiers by wisely selecting additional training in-

stances. In this way, we can achieve the same performance with fewer training

data, and thus decrease the workload of labeling the ground-truth.

Initially, we have the training set Xtr = {xi, xi, j}without their ground-truth la-

bels Ytr, and want to actively pick out the training instances for a human to label.

First, we randomly use a subset X0 ⊂ Xtr and retrieve their ground-truth labels

from human. Then the training set Xtr is decreased into a remaining training set

Xtr,0 = Xtr−X0. At each step t, we select K training instances out of the remaining

set Xtr,t and merge them to form the new training set Xt+1.

Training instances selection is made based on the classification margin. We

apply the current classifiers to the remaining training set Xtr,t, and select the least

confident ones for a human to label. For our CRF model, there are two types of

classifiers to update: the unary potential fu, and the pairwise potential fp. For

69

the unary potential, we test fu on the current remaining set Xtr,t, and find the

instances with the least margin (close to 0.5 probability for a binary occlusion

boundary classification). We sort the margin in increasing order, pick out the

top K instances as the least confident instances, and ask for the ground-truth

labels. After that, we merge them with the previous training instance to re-train

fu.

For the pairwise potential, we have a set of classifiers fp. We use the entropy

as the criteria to actively select the training instances. At step t, for each instance

xi, j in the remaining set Xtr,t, we apply the current pairwise classifiers fp and

compute the probability for all the possible pairwise labels: P(yi, y j|xi, j). Then

the entropy is computed as:

S (xi, j) = −
∑

i, j

P(i, j|xi, j) log(P(i, j|xi, j)). (4.2)

We sort all the entropies in decreasing order, and select the instances with top K

large entropies to retrieve the human labels and update the pairwise classifiers.

4.6 Experiments

To evaluate the effectiveness of our proposed feature set and learning frame-

work, we compare our final proposed approach (crf) with the following algo-

rithms:

base: uses the color and texture features proposed in [53]. This serves as the

basic feature set for color image boundary detection (no depth). For the

following algorithms, we add different feature sets to this base approach,

e.g. the following approaches are feature set in addition to base.

70

ec: (edge curvature) in addition to base, we add the edge curvature feature.

Also this method is solely RGB features (no depth).

The following variants incorporate depth features:

sl: (surface label) this directly uses the surface segmentation algorithm pro-

posed in [11] in addition to base. We incorporate the surface segmentation

label as one additional depth feature.

sd: (surface distribution) we add the surface distribution feature set.

se: (segment fitting error) the histogram of the the fitting errors within each

segment.

ee: (edge fitting error) the histogram of the fitting errors along each edge.

nd: (neighbor difference) the neighboring surface difference features.

all: we combine all the previous feature sets into one feature vector for bound-

ary classification.

crf: final CRF that uses both the unary potential learned from the feature set

all, and the pairwise potential learned from the proposed pairwise fea-

tures.

We experiments on two different datasets: Kinect depth-order dataset col-

lected by ourselves, and the public NYU Knect dataset of indoor scenes [55].

4.6.1 Depth order dataset

To produce this dataset, we place different objects in a distinct depth order, and

on a supporting surface like a table or the ground. Color and depth images

71

are collected using Microsoft Kinect Sensor. In total there are 200 image pairs

including four different scenes with various common objects. Examples are

shown in Fig. 4.5. We manually label all the occlusion and connected bound-

aries in the scene. This dataset and the ground-truth boundary labels will be

released to the public. We split the dataset into two halves for separate training

and testing.

We evaluate different algorithm by comparing the average precision of de-

tecting boundaries, and present the results in Fig. 4.6 (a) and (b). Overall, it

proves that our proposed framework works for both occlusion and connected

boundary detections. Without depth information, using the base features from

[53] provides a lower bound on performance, and our edge curvature feature

still improves by around 3% performance in average precision.

Figure 4.5: Example images of the kinect depth order dataset.

Adding depth features definitely help the tasks. Directly using the surface

segmentation in [11] sl gives 6% boost for classifying connected boundaries,

and 8% for occlusion boundaries. Besides, our proposed depth feature sets

(sd,se,ee,nd) also help and generate better result than base, giving around 70%

to 80% average precisions. When combining all the feature sets (all), it out-

performs the individual feature set by a large margin, leading to an average

precision of nearly 90% for both occlusion and connected boundary detection.

Compared to the individual depth features (blue columns from sl to nd), the

combined one (all) achieves at least a 10% improvement.

72

(a) (b)

(c)

Figure 4.6: Average precision (y-axis) for different approaches (x-axis) on
our kinect depth order dataset: (a) connected boundary. (b) oc-
clusion boundary. (c) occlusion boundary detection result on
NYU depth dataset. Red: color only feature set. Blue: adding
individual depth feature sets. Green: the final combined ap-
proach (all and crf).

Finally, our proposed CRF model still improves the performance 2% com-

pared with all, and gives the best result of all the approaches, because it encour-

ages continuity between boundaries. Some example images of our boundary

detection results using crf are shown in Fig. 4.7. It shows that our learning

framework reliably identify both occlusion and connected boundaries in differ-

ent scenarios.

We report the performance of our active learning approach by comparing

with the baseline of randomly selecting the training instances. The results for

73

Figure 4.7: Boundary detection result using the proposed algorithm. It re-
liably detects the connected (left two) and occlusion (right two)
boundaries in different scenarios.The color indicates the confi-
dence in classification. The more red it is, the larger the belief.

this depth order dataset are shown in Fig. 4.8 (a) and (b). We keep the same test-

ing set as the previous experiment, but use only 5% training instances initially,

and add 5% at each step. This leads to 20 steps in training instances selection.

We can see that for detecting occlusion and connected boundaries, the proposed

active learning approach reaches the maximum plateau with less than 4 steps,

using only around 20% of total training instances. This proves the effectiveness

of our feature set and the active learning approach.

4.6.2 NYU dataset

We also experiment on the public NYU depth dataset [55]. This dataset only

provides the object segmentation, and we approximately use it as the occlusion

boundary to fit our task.

74

This dataset contains 2284 frames of Kinect image pairs with some human

labeled object boundaries. However, many of them are of the same scene and

near consecutive frames in a video. Therefore, we sample the dataset into 600

images, ensuring the remaining images are not too similar to each other. After

that, we follow the same settings as the previous experiments. The NYU depth

dataset is split into two halves for separate training and testing.

For this dataset, we compare with the baseline approaches and quantita-

tively evaluate the average precision in Fig. 4.6 (c). Our proposed edge curva-

ture feature can improve the performance over the baseline color feature. The

proposed depth feature sets (blue columns) show the benefit of bringing the

depth information. They achieve around 55% in average precision, and all out-

perform the color-only scheme by 2% to 6%. The final combined CRF model

gives the best performance, achieves near 10% absolute boost from 51% to 61%

comparing to base, and has 5% improvements in average precision to the indi-

vidual depth feature sets.

The overall performance in this dataset is lower. We believe this is due to

the complexity of the scene in this dataset. Our feature sets are computed quite

locally, and may not be able to well capture too many different structures. How-

ever the relative contribution of our CRF model is larger, and overall the detec-

tion results agree with the ground-truth in general. Some results are shown in

Fig. 4.9.

We compare our active learning approach with random selection on this

dataset in Fig. 4.8 (c), with the same experiment setting as before. Once

again, our proposed approach also gives a better detection result with the same

amount of training instances, and reaches the maximum performance using

75

(a) (b)

(c)

Figure 4.8: Active learning results. X-axis: step from 1 to 20. Y-axis: the
average precision of detection for testing. Blue lines: the pro-
posed active learning scheme. Red lines: randomly selecting
the training instances. (a) to (c) are different tasks: (a) con-
nected boundary on the depth order dataset. (b) occlusion
boundary on the depth order dataset. (c) occlusion boundary
on the NYU depth dataset.

around 20% of the selected training instances.

76

Figure 4.9: Experiment results on NYU dataset. Ground-truth labels are
on the left, with red indicates the occlusion boundaries, and
cyan indicates the homogenous boundaries. The testing results
are shown on the right. Heat map indicates the belief: the more
red an edge is, the more likely it is an occlusion boundary.

4.7 Summary

As the types of imaging modalities increase, it will be important to combine var-

ious types of data to solve vision problems. This part of the thesis demonstrates

a solution for classifying image boundaries from color and depth that is signif-

icantly improved over using one or the other type of information exclusively.

We first perform surface segmentation on the depth data, and generate a set of

novel depth features based on the surface. After that, we propose a CRF frame-

work for a joint inference on boundaries, and an active learning scheme for se-

lecting the training instances. Experiments show that our proposed feature sets

and the learning framework outperform the baselines. For further work, one

possible approach can be a hierarchical multi-level CRF model, which incorpo-

rates features on larger region after merging segments. Other applications, such

as scene understanding and object recognition, can also be built on top of this

work.

77

CHAPTER 5

3D VOLUMETRIC REASONING

5.1 Introduction

3D reasoning is a key ingredient for scene understanding. A human perceives

and interprets a scene as a collection of 3D objects. Rather than groups of ‘flat’

color patches, we perceive objects in space with perspective. In static scenes,

we understand that objects occupy volumes in space, are supported by other

objects or the ground, are typically stable (i.e., not falling down or toppling), and

occlude farther objects. These physical properties are usually not considered in

traditional object recognition.

In this thesis, we propose a framework for 3D segmentation and scene rea-

soning with volumetric blocks that incorporates the physical constraints of our

natural world. Our algorithm takes RGB-D data as input, performs 3D box fit-

ting of proposed object segments, and extracts box representation features (such

as box intersection and stability inference) for a physically-based scene reason-

ing. Our final output is the object segmentation of the scene, and its block rep-

resentation (shown in Fig. 5.1 (d)).

Past works for producing 3D interpretations represent the world as a “pop-

up” model [65], as point-wise depth-grid [66], as piece-wise planar segments [1,

67], or as blocks constrained to rest on the ground [68]. However, inferring a 3D

interpretation is only part of the picture, a good scene interpretation should also

follow physical rules: assuming the image captures a static scene, objects should

be placed stably. If we attempt to segment the scene purely based on appearance

78

(a) (b) (c) (d)

Figure 5.1: (a) The input RGB-D image. (b) Initial segmentation from RGB-
D data. (c) A 3D bounding box is fit to the 3D point clouds of
each segment, and several features are extracted for reasoning
about stability. Unstable boxes are labeled in red. (d) The seg-
mentation is updated based on the stability analysis and pro-
duces a better segmentation and a stable box representation.

or shape, we may end up with segmentations that do not make physical sense,

as shown in Fig. 5.1 (b). Reasoning about stability brings physics into our model,

and encourages more plausible segmentations and block arrangements, such as

the example presented in Fig. 5.1 (d).

The challenge is that objects can be arranged in complicated configurations.

While some recent work considers notions of support (e.g., [15, 18, 68]), they

are limited to single support or isolated objects on a flat surface. Although these

methods work well on larger structures such as furniture and buildings, they do

not apply to more complicated stacking arrangements of objects that can occur,

for example, on desks or other cluttered situations.

In our algorithm, we first fit a 3D box to the point-cloud of each segment, and

then extract several features for further reasoning about the scene: 1) we define

the box fitting error based on the 3D points and box surfaces; 2) we ensure that

3D points lie on the visible surfaces of the boxes given the camera position; 3)

we find space violations when neighboring boxes intersect one another; 4) we

propose supporting relations and the stability of the scene given the boxes. This

79

evaluation of the box representation allows us to refine the segmentation based

on these box properties through a process whose parameters are learned from

labeled training images.

The block representation provides us many useful features, such as the box

fitting error and the object stability, and we learn the importance of each fea-

ture through supervised learning. We design an energy function to describe

the quality of the segmentation given the RGB-D image pairs. By minimizing

this energy function value, we achieve a better scene segmentation and volu-

metric block representation. For minimization, we use a sampling algorithm

that incorporates randomized moves including splitting and merging current

segments.

We experiment on several datasets, from a synthetic block dataset to the

NYU dataset of indoor scenes. We also propose a new Supporting Object

Dataset (SOD) with various configurations and supporting relations, and a Gro-

cery Dataset (GD) extended on SOD in order to demonstrate more application

scenarios. Experimental results show that our algorithm improves RGB-D seg-

mentation. Further, the algorithm produces a 3D volumetric model of the scene,

and high-level information related to stability and support.

To summarize, our major contributions are:

1. A volumetric representation of the RGB-D segments using blocks.

2. The use of physics-based stability for modeling an RGB-D scene.

3. A learning-based framework for inferring object segmentation in an RGB-

D scene.

4. New supporting objects datasets including human segmentation labels

80

and support information.

The rest of the thesis for this topic is organized as follows: we discuss the

related work in Section 5.2. An overview of the approach is presented in Sec-

tion 5.3. After that, we present our approach for single box fitting in Section 5.4,

and the features to model the pairwise box relations in Section 5.5. The stability

reasoning process is presented in Section 5.6. We introduce our energy function

for segmentation in Section 5.7, including the sampling algorithm with split-

ting and merging. The experimental results are presented in Section 5.8. We

conclude the this part in Section 5.9.

5.2 Related work

3D Understanding from Color Image: Object segmentation on a single color

image is one of the most studied computer vision problems, and many methods

have been proposed, for example, [69], [70], [71], [19] and [72]. These methods

group pixels into objects by clues such as color, texture or semantic classification

results. They operate on a 2D image, but it is natural next step to incorporate

the 3D understanding into object segmentation.

The first attempts for geometric inference from a single color image were

proposed in [1, 66] and [67] for estimating the depth of each segment using only

color features. Usually, a ground plane is detected, and then the depth of a seg-

ment that stands on the ground can be estimated by the touching position. The

results appear either as “pop-up images” [65]: segments stand like billboards

in different depth layers and have empty space behind them, as a point-wise

81

depth-grid [66] or as piecewise planar segments [1]. The limitation is obvious:

these models do not align with our understanding of the scene, where each ob-

ject actually occupies a volume in 3D, which we explore in this work (Fig. 5.1

(d)).

To overcome this limitation, Gupta et al. [68] propose a block-world repre-

sentation to fit 2D color segments. Segments in outdoor scenes are represented

by one of eight predefined box types representing a box viewed from various

positions. Although buildings in these outdoor scenes often fit nicely into one

of the block categories, this assumption is not true for general images of stacked

objects, where the orientations of objects are not limited to eight. Zheng et

al. [73] also use blocks representation for objects, but required interactive hu-

man labelings for non-box objects. Xiao et al. [74] detect 3D cuboids with arbi-

trary orientations solely in RGB images, Bleyer et al. [75] show box fitting for

improved stereo, and Jiang et al [76] propose a linear programming for fitting

cubiods in depth images. In this work, we use RGB-D data and fit boxes with

depth information for volumetric and stability reasoning.

In addition, researchers have studied indoor environment reasoning on color

images, where the 3D geometric inference can be approximated as a Manhattan

World [77] [78] [79] [80]. Further, the 3D structure of indoor scenes has been

studied through affordances, as in [81] [82] and [83]. Indoor images have the

strong clues of lines and planes as well as a fixed composition of ceiling, wall

and ground. These approaches posit that indoor spaces are designed by hu-

mans, so furnature items and objects are arranged in ways to facilitate useful-

ness of these spaces by humans. These approaches are complementary to ours.

RGB-D Scene Understanding: Previous work has shown that integrating depth

82

with color information improves the performances of many vision tasks, such

as segmentation (in [18]), contour detection (in [84]), object recognition (in [17],

[85], and [16]), scene labeling (in [55], [63], [86] and[87]), and activity detec-

tion (in [88], [14] and [89]). These algorithms usually treat depth as another

information channel without explicitly reasoning about the space that an object

occupies. For example, when an object is partially observed from a single view-

point, it remains hollow inside. In this way, segmentation and supporting infer-

ence are transformed into a classification problem in a 2.5D space. In contrast,

we explicitly reason about full 3D models by fitting boxes to objects. This leads

to a more natural interpretation of the scene, facilitated by better segmentation

and support inference.

Support and Stability: Grabner et.al. [90] analyze the interaction between hu-

mans and objects such as chairs in 3D space. The algorithm finds object support,

and shows that a 3D model can predict well where a chair supports the person.

This also helps chair detection. However, in this thesis, we perform a more

general analysis of the 3D objects in the scene through box fitting and stability

reasoning.

Jiang et al. [15] [91] reason about stability for object arrangement, but their

task is different from ours: given a few objects, their goal is to place them in the

environment stably.

In other recent work, Silberman et al. [18] identify which image segments

support which other segments. However, reasoning about support and stability

are two different things. Past work on support pre-supposes that segmentations

are already stable, and implicitly assumes that all regions need only one region

to support them, without checking any physics-based model of stability. We

83

use stability reasoning to verify whether a given volumetric representation of a

scene could actually support itself without toppling, and adjust the segmenta-

tion accordingly.

In concurrent work, Zheng et al. [92] reason about stability in a depth image.

They use geometric primitives, including voxels, to represent object volumes,

and merge together neighboring voxels until stability is achieved. Their ap-

proach focuses only on the depth domain. In contrast, our work fuses both color

and depth features. We model each object with cubic volumes and combine this

representation with color information for reasoning about support, stability and

segmentation in one framework.

We use a simple model for evaluating the stability of our block arrange-

ments, although more complicated physics-based simulators [93] could be em-

ployed. One approach could be to consider all possible reasonable segmenta-

tions, and plug each into a simulator. However, this would result in an expo-

nential number of evaluations, and would still be susceptible to noise and other

unknown physical parameters (e.g., coefficients of friction). Our approach for

stability evaluation is based on a simple Newtonian model: the center of grav-

ity of each adjacent object subset must project within its region of support. This

simple model is justified by the ideas of intuitive physics [94] that humans even

have a sense of stability at a glance. Our algorithm is not a perfect reflection of

the physical world, but it is accurate enough to achieve our goal of improving

parsing 3D scenes.

84

Figure 5.2: An overview of our algorithm.

5.3 Approach Overview

Our input is an initial RGB-D segmentation, generated from an algorithm pro-

posed in the literature [18]. First, we fit a 3D bounding box to the 3D point-

cloud points corresponding to each segment. Next, we compute features for

single boxes and between pairs of boxes and propose supporting relations, per-

form stability reasoning, and adjust the box orientation based on the supporting

surfaces. Finally, we model the segmentation with an energy function based on

learned regressors that are trained using these features. The segmentation is

optimized by minimizing this energy function using randomized splitting and

merging. The output is the segmented RGB-D image along with volumetric rep-

resentation using the fitted boxes and support information. See Fig. 5.2 for an

overview.

85

(a) (b)

Figure 5.3: (a) A bounding box fit based on minimum volume may not be
a good representation for RGB-D images, where only partially
observed 3D data is available. (b) A better fit box not only oc-
cupies a small volume, but also has many 3D points near the
box surface. Data points are projected to 2D for illustration.

5.4 Single box fitting

In this section, we describe the procedure for representing a segment from an

RGB-D image with a box. RGB-D data is observed from only one viewpoint,

and fitting 3D bounding boxes with minimum volumes [95] may fail to produce

box representations that align well with the actual objects in the scene. Fig. 5.3

(a) gives an illustration. A minimum volume box covers all the data points but

might not give the correct orientation of the object, and fails to represent the

object well. A well-fit box should have many 3D points near box surfaces, as

shown in Fig. 5.3 (b).1 We propose a RANSAC-based algorithm (details below)

to fit boxes to the point cloud.

1Recent related work [96] considered cylinder fitting of 3D points to the surface but also did
not consider visibility.

86

(a) (b)

Figure 5.4: (a) To fit the 3D points, we use RANSAC to find the first plane
S 1. (3D points are projected on 2D for a simpler illustration,
and the plane S 1 is presented as red line). (b) For the 3D points
that do not belong to S 1, we fit another plane S 2 to them, en-
forcing that S 2 is perpendicular to S 1.

5.4.1 Minimum surface distance

The orientation of a 3D bounding box is determined by two perpendicular nor-

mal vectors (the third normal is perpendicular to these two vectors). The idea

is to find the two principle orientations of the 3D bounding box so that the 3D

points are as close as possible to the box surfaces. Given a set of 3D points {Pi}

and a proposed 3D box, we calculate the distance of each point to the 6 surfaces

of the box, and assign each point to its nearest-face distance {Dmin(Pi)}. The ob-

jective for our box fitting algorithm is to minimize this sum for all the 3D points:∑
i Dmin(Pi).

The input to this step is the 3D points within one segment. First, we use

RANSAC to find a plane to fit all the 3D points, providing the first surface S 1,

shown in Fig. 5.4 (a). Next, we collect the outlier 3D points that do not belong

to S 1, and then fit a plane, S 2, to them also using RANSAC. We constrain that

the surface orientation of S 2 is perpendicular to S 1, shown in Fig. 5.4 (b).

The above steps give the orientations that align with many points. The mini-

87

mum volume is determined by finding the extent of the 3D points given the box

orientation. Note that there are usually noisy depth points: If a segment mis-

takenly includes a few points from other segments in front or behind, a large

increase of the box volume can occur. Therefore, we allow for up to 5% outliers

in the 3D points, requiring that ≥ 95% of a segment’s 3D points are enclosed

within its box.

With the final 3D bounding box, the sum of the minimum surface distance

of the point,
∑

i Dmin, is calculated. The whole process is repeated several times

and the best fitting box (smallest distance
∑

i Dmin) is chosen.

5.4.2 Visibility

We identify the box surfaces that are visible to the camera. If the objects in

the scene are mostly convex, then most 3D points should lie near visible box

surfaces instead of hidden faces.

Fig. 5.5 illustrates the visibility feature for our box fitting. Surface visibility

is determined by the position of the camera center and the surface normal. We

define the positive normal direction of a surface as the normal pointing away

from the box center, and then a surface is visible if the camera center lies at its

positive direction. Each box has at most three visible surfaces. We compute

the percentage of the points that belong to visible surfaces, and use this as the

feature for later processing.

88

(a) (b)

Figure 5.5: Given the camera position and a proposed bounding box, we
determine the visible surfaces of the box, shown as a solid par-
allel black line to the box surface. (a) This box may give a com-
pact fit, but most of the points lie on the hidden surfaces. (b)
With a better box fit, most of the points lie on the visible sur-
faces of the two boxes.

5.5 Pairwise box interaction

We examine two pairwise relations between nearby boxes: box intersection and

box support. These features are important because they encode agreement be-

tween neighboring segments and provide additional clues for refining the box

representation.

5.5.1 Box intersection

Box intersection gives an important clue for volume reasoning. Ideally, a box

fit to an object should contain the object’s depth points, and not intrude into

neighboring boxes. If a proposed merging of two segments produces a box that

intersects with many other boxes, it is likely an incorrect merge. An example is

shown in Fig. 5.6.

89

(a) (b)

Figure 5.6: (a) Well-fit boxes should not intersect much with neighboring
boxes. (b) If two segments are merged incorrectly, e.g., the two
books in the image, then the new box fit to the segment is likely
to intersect with neighboring boxes, e.g., the box shown in red.

We explicitly compute the box intersection, and the minimum separation

distance between box pairs and direction. Since 3D bounding boxes are convex,

we apply the Separating Axis Theorem (SAT) [97], used in computer graphics

for collision detection. We present a 2D illustration for finding the distance of

the box intersection in Fig. 5.7. The distance D shown in Fig. 5.7 (b) is the mini-

mum moving distance to separate two intersecting boxes.

Extending this algorithm to 3D bounding boxes is straight-forward: since

three surface orientations of a box are orthogonal to one another, we examine

a plane parallel to each surface, and project the vertexes of the two boxes to

this plane. We compute the convex hull of the projection of each box, checking

whether the two convex hulls intersect to find the minimum separating distance

D.

This process gives both separating distance and the orientation θsep to sepa-

rate the two boxes with the minimum distance. θsep is used when determining

the pairwise supporting relations between boxes. For non-intersecting boxes,

we choose the orientation and the distance that maximally separate the two

90

(a) (b)

Figure 5.7: Separating Axis Theorem in 2D: (a) in order to separate two
boxes, we rotate the axis perpendicular to any of the edge, and
project all the vertices to this rotated axis. (b) If two bounding
boxes are separate, there exists an axis that has a zero overlap
distance (D in the image). We examine all the possible axis rota-
tions (in this case four possibilities), and choose the minimum
overlap distance. This gives the orientation and the minimum
distance required to separate two boxes.

boxes as their intersection features.

5.5.2 Box supporting relation

In order to address various object-object support scenarios, we define three sup-

porting relations between the boxes: 1) surface on-top support (an object is sup-

ported by a surface from below); 2) partial on-top support (an object is tilted and

only partially supported from below); 3) side support. Examples are shown in

Fig. 5.8 (a) to Fig. 5.8 (c).

To classify supporting relations, we detect the ground and compute the

ground orientation following [18]. We define the 3D axis as the follows: the

91

(a) (b) (c)

(d) (e) (f) (g)

Figure 5.8: (a) to (c): three different supporting relations: (a) surface on-
top support (black arrow); (b) partial on-top support (red ar-
row); (c) side support (blue arrow). Different supporting rela-
tions give different supporting areas as plotted in red dashed
circles. (d) to (e): stability reasoning: (e) considering only the
top two boxes, the center of the gravity (in black dashed line)
intersects the supporting area (in red dashed circle), and ap-
pears (locally) stable. (e) When proceeding further down, the
new center of the gravity does not intersect the supporting
area, and the configuration is found to be unstable. (f) to (g)
supporting area with multi-support: (f) one object can be sup-
ported by multiple other objects. (g) The supporting area pro-
jected on the ground is the convex hull of all the supporting
areas.

xz-plane is parallel to the ground plane, and y = −1 is the downward gravity

vector. We align the point-cloud with this axis.

Given the box representation of the scene, we classify pairwise supporting

relations with the following set of rules: 1) we use the separating orientation

θsep to distinguish between “on-top” support and the “side” support: an “on-

top” support has a separating direction nearly parallel to y axis (< 20◦), while

92

the “side” support has a separating direction close to parallel to the xz-plane

(ground plane); 2) for “on-top” supporting relations, there are two possibilities:

an even on-top support, shown in Fig. 5.8 (a), and a tilted on-top support, shown

in Fig. 5.8 (b). We distinguish these two types by examining the two closest

surfaces of the pairwise boxes. If these two surfaces have a large angle difference

(> 20◦) with each other, and have different orientations to the ground plane,

then it is classified as a partial “on-top” support, i.e., the object on top is tilted.

Otherwise it is a “surface on-top” support.

Reasoning about stability requires that we compute centers of mass for ob-

ject volumes, and determine areas of support (i.e., regions or points of the object

that are supported, either on side or beneath). Stability requires that the projec-

tion of the center of mass of the object along the gravity vector falls within the

region of support. We use an object’s supporting relation to find the supporting

area projected on the ground, and different supporting relations provide dif-

ferent supporting areas. For “surface on-top” support, we project the vertexes

of the two 3D bounding box to the ground, compute the convex hull for each

projection, and use their intersection area on the ground plane as the support-

ing area. For “partial on-top” and “side” support, we assume there is only one

edge touching between two boxes, and project this touching edge on the ground

plane as the supporting area. Examples of the supporting areas are shown as

red dashed circles in Fig. 5.8 (a) to Fig. 5.8 (c).

93

5.6 Global stability

Box stability is a global property: boxes can appear to be fully supported locally,

but still be in a globally unstable configuration. Fig. 5.8 (d) and Fig. 5.8 (e)

provide an illustration.

We perform a top-down stability reasoning by iteratively examining the cur-

rent gravity center and supporting areas. This process is shown in Fig. 5.8. For

simplicity we assume each box has the same density. This assumption is usually

valid for daily objects, e.g. books, boxes, or bottles. They have similar densities,

and can either support other objects or be supported.

We begin with the top box by finding the box center of mass, and check

whether its gravity projection intersects the supporting area. If so, we mark the

current box stable, and proceed to another box beneath for reasoning, this time

finding the center of mass of the set of boxes already found to be stable with

the one under consideration. Assuming constant density, the center of mass

Pc = [x, y, z] for a set of boxes is calculated by averaging the volume Vi of each

box i:

Pc =

∑
i

Pc,i · Vi

 /∑
i

Vi (5.1)

We iteratively update the center of mass by adding the boxes from top to

bottom until the ground is reached. If we found that the current supporting

area does not support the center of mass, we label the current box (or collec-

tion of boxes) unstable, shown in Fig. 5.8 (e). For the set of boxes with multiple

supports, we compute the convex hull of the multi-supporting areas as the com-

bined supporting area, shown in Fig. 5.8 (f) to Fig. 5.8 (g).

94

(a) (b) (c) (d)

Figure 5.9: (a) Near-touching objects, e.g., objects A and C do not neces-
sarily support one another. (b) After stability reasoning, we
find that object A can be fully supported by object B beneath
it through a surface on-top support. Therefore, we delete the
unnecessary side support between A and C. (c) 3D oriented
bounding boxes can be ill-fit because of noise, and this may
lead to incorrect support relation inference. For example, be-
tween object A and B, a partial on-top support is proposed,
although it should have been a surface on-top support. (d) Af-
ter stability reasoning, we adjust the higher box if it is only
supported from beneath, and then correct the support relation
accordingly.

Support reasoning: Stability reasoning helps delete unnecessary supports. For

example, side-to-side nearly touching objects do not necessarily support one an-

other. We trim these unnecessary supporting relations by examining the sup-

port relations in the order: surface on-top, partial on-top and side support. If

the object has a “surface on-top” support and the configuration can be stable,

then additional support relations are unnecessary and can be trimmed. If not,

we find a minimum combination of the on-top supports (both surface and par-

tial) and at most two side supports examine whether the object can be stable. If

so, all other support relations for the object are deleted. One example is shown

in Fig. 5.9 (a) to (b).

Box fitting: Stability reasoning and supporting relations are used to refine the

orientation of a box. If the box is fully supported through a “surface on-top”

relation, then we re-fit the 3D bounding box of the top object, confining the

95

rotation of the first principle surface S 1 to be the same as the supporting surface.

One example is illustrated in Fig. 5.9 (c) to (d). We perform this adjustment on

box fitting every time after inferring the supporting relation and stability. This

improves the box representation and support interpretation of the scene.

5.6.1 Integrating box-based features for segmentation

To incorporate all the box-based features, one baseline we implement is to start

with an over-segmentation, and merge the pairwise segments based on learn-

ing 2. We begin with initial segments generated with features from [18]. Dur-

ing training we use the ground-truth segmentation and label the segments that

should be merged as y = 1, and the others as y = 0. We extract a set of features x

based on the box fitting, pairwise box relation, and the global stability, shown in

Table 5.1. For example, to compute one type of features (surface distance) for a

merge, we record the minimum surface distances of two neighboring boxes be-

fore merging (2 dimensions, noted as B), and the minimum surface distance of

the box after merging (1 dimension, noted as A), as well as the difference of this

criterion before and after merging (1 dimension for each box before merging, 2

dimensions in total, denoted as D).

For this baseline model (labeled as Stability in the following sections), we

train an SVM regression y = wT
svmx based on the features x and labels y. During

testing, we greedily merge the neighboring segments based on the output pre-

diction of the regression f , fit a new bounding box for each newly merged seg-

ment, recompute the stability reasoning, and re-extract the features for regres-

2Another possible implementation would be to start with an under-segmentation and per-
form splitting on each segment.

96

sion. We repeat the above steps until the classifier does not classify any pair of

segments as a pair that should be merged. Note that this baseline merges pairs

of segments, has no backtracking, and must begin with an over-segmentation

of the image.

5.7 A Learned Energy Function

In this section, we improve the baseline model (Stability) from the previous

section by introducing an energy function with unary and pairwise terms based

on the volumetric boxes, their support relations, and stability (this method is la-

beled as MCMC in the following sections). This model provides the framework

for exploring the space of an energy function that represents the goodness-of-fit

of a particular box representation and corresponding segmentation for a scene

with the corresponding RGB-D input. We define two different moves, splitting

to split a segment, and merging to merge two adjacent segments. These moves

allow us to traverse the space over which the energy function is defined. We

explore the space with a partical-based filter to discover a local minimum that,

hopefully, corresponds to a good segmentation and box representation of the

scene.

We use si to represent one individual segment in a segmentation, and denote

a segmentation as S = {s1, ..., sN} with N segments and M pairs of neighboring

segments. We define a pool of segmentations as {S }, which includes a set of pos-

sible different segmentations given the RGB-D input. {S }all indicates the space

of all possible segmentations. Given one particular segmentation S , we define

the energy function:

97

Table 5.1: Features based on volumetric and stability reasoning. B: the feature
before a merge; A the feature after a merge; D: the difference of the
feature before and after a merge.

Single/Pairwise features dim

Box orientation with respect to the

ground (B, A)

3

mean of the minimum surface distance

(B, A, D)

5

Percentage of the visible points (B, A) 3

Percentage increase in the invisible points

after a move

1

Number of intersecting boxes (B, A, D) 5

Average intersecting distance of the

boxes (B, A, D)

5

Average intersecting distance of the

boxes (B, A, D) with respect to volume

5

Pairwise supporting relations 1

Stability features dim

Global stability (B, A, D) 3

Stabilities of the objects (B, A) 3

Distance of the projected gravity center to

the supporting area center (B, A, D)

5

Difference for the three supporting rela-

tions

3

Average over number segments of the

three supporting relations (B, A)

6

98

E(S) =
1
N

∑
i

φ(si) +
1
M

∑
i, j

ψ(si, s j), (5.2)

where φ(si) is a regression score of a segment si describing the quality of this

segment, and it is learned using single box features including box fitting errors,

volumes, and stability, described as xi in Table 5.2. Formally, φ(si) is defined as:

φ(si) = wT
s xi, (5.3)

where ws is the learned regression parameters.

Similarly, ψ(si, s j) is a regression score of two neighboring boxes. It is learned

using pairwise box features including box intersection distance, pairwise sup-

port relations, and pairwise box features, xi j, described in Table 5.3. ψ(si, s j) is

formally defined as:

ψ(si, s j) = wT
p xi j, (5.4)

where wp represents the learned regression parameters.

5.7.1 Single and pairwise potentials

In the following section we further explain the training and testing processes

for our single and pairwise potentials that comprise our energy function. The

input at this step is a mid-step segmentation S , including N segments and M

pairs of neighboring segments. This initial segmentation can be generated using

the algorithm proposed in the literature, e.g. [18], or the previously proposed

algorithm Stability.

99

Table 5.2: Features for single potentials. The “relative” feature values are the fea-
tures divided by the volume of the box, instead of the absolute value.

Single potential φ(si) features xi dim

Box orientation with respect to the

ground

1

Mean and variance of the minimum sur-

face distance

2

Mean and variance of the relative min-

imum surface distance (divided by box

volume)

2

3D point density over volume 1

Percentage of the visible points 1

Number of intersecting boxes 1

Global Stability 1

Stabilities of the objects 1

Average (and relative) intersecting dis-

tance of the boxes

2

Distance (and relative distance) of the

projected gravity center to the supporting

area center

2

Distance (and relative distance) of the

projected gravity center to the projected

vertexes

16

100

Table 5.3: Features for pairwise potentials. The “relative” feature values are the
features divided by the volume of the box, instead of the absolute value.

Pairwise potential ψ(si, s j) features xi j dim

Number of intersection of each box 2

Relative of collision of each box (divided

by each box volume)

2

Stability of each box 2

Pairwise supporting relations 1

Is one supporting another 1

Pairwise volume center distance 1

Projected gravity center to the supporting

area center (if supported)

1

RGB-D features proposed in [18] 51

First, we learn the quality of each single segment si through a SVM regres-

sion as the single box potential φ(si). This is done through a supervised learning

process on a held-out training set, and we generate the positive and negative

training samples as follows: in the training images, we first use the ground-truth

segmentation from human labeling as the positive training samples. We also

make some random modifications from these ground-truth segmentations by

splitting and merging, providing more positive and negative training instances.

Then, we compute the segmentation score (the intersection-over-union ratio) of

each segment si to the ground-truth segment s j,gt:

score(si) = max
s j,gt

Intersect(si, s j,gt)
Union(si, s j,gt)

, (5.5)

and consider a segment si as positive training sample if score(si) ≥ 90%, other-

wise this segment is a negative training sample. After getting the training label,

a 3D bounding box is then fit to this segment, and then the proposed box-related

101

features xi are computed for training.

During testing, we fit a 3D bounding box to each segment si, compute the

features xi, and perform the regression in Eq. 5.3 to calculate the single box po-

tential value φ(si). Fig. 5.10 (c) presents one example of our single box potentials

during testing. The boxes of the segments are color-coded in a way that the

lower potential value φ(si) of segment si is, the more blue its corresponding box

is. It shows that our proposed single box potential value captures the segment

quality and classifies the ill-fit boxes, e.g., the boxes with yellow and red colors.

The pairwise potential is trained and tested following the similar manner:

multiple randomly generated segmentations as well as the ground-truth ones

are processed during training. A boundary is considered a positive training in-

stance if the two segments it lies between both have segmentation scores (pro-

posed in Eq. 5.5) larger than 90%. During testing, 3D bounding boxes are also

first fit to all the segments, and then the pairwise features described in Table 5.2

and Table 5.3, bottom part, are computed. We perform regression ψ(si, s j) on the

pairs of the segments sharing a boundary. Fig. 5.10 (d) presents one example

of pairwise potentials ψ(si, s j). This potential gives a good indication of which

pairs of segments, if merged, might produce a reduction to the global energy

function.

5.7.2 Minimizing through splitting and merging

During testing, our goal is to minimize this energy function and find the optimal

segmentation S ∗ that has the minimum energy value:

102

(a) (b) (c) (d)

Figure 5.10: (a) Input image. (b) Mid-step segmentation during testing.
(c) and (d) are exemplar testing results for (c) single potential
φ(si) and (d) pairwise potential ψ(si, s j). The color of the boxes
and boundaries is coded as the better quality the segments
are, the more blue the boxes and boundaries are, with lower
potential values. Our proposed features capture the quality of
each segment and boundary.

S ∗ = arg min
S

E(S). (5.6)

Note that this energy function is non-convex, and the space of possible seg-

mentations {S }all is very large, therefore it is infeasible to perform an exhaustive

search to find the global minimum.

To explore the space, we adopt a Markov-Chain-Monte-Carlo (MCMC) [98]

approach to this problem, where we design appropriate moves to explore the

space. We start with an initial segmentation, and move to a new set of seg-

mentations by either: (a) splitting one segment into two smaller segments, or

(b) merging two neighboring segments into one segment. We use the potentials

φ(si) and ψ(si, s j) to indicate which segments should be split or merged while

designing the MCMC moves. We keep a pool of possible segmentations as the

particles to explore this energy space, and keep track of the ones with the mini-

mum energy values as we iterate for optimization.

Splitting: The single box potential φ(si) indicates the quality of each individual

103

(a) (b) (c)

Figure 5.11: (a) We pre-compute all the possible boundaries given RGB-
D image. (b) The selected segment before splitting. (c) The
selected segment after splitting. The splitting move is con-
strained to split one segment into two.

segment. This value guides the splitting moves so that we explore the segmen-

tation space in a more efficient manner.

We calculate the single box potential for all the segments in the current seg-

mentation, and then randomly choose one segment si to split based on its poten-

tial φ(si): the higher φ(si) is, the more likely si is going to be selected for splitting,

because it represents a worse segmentation quality for si, and thus si needs to

be modified. The final likelihood of selecting one segments is linearly mapped

from φ(si) by converting φ(si) into probabilistic prediction [99].

Specifically, we split one segment si as follows: we pre-compute a boundary

map of all the possible edges given the RGB-D images using [18]. One example

is shown in Fig. 5.11 (a): all the possible boundaries are presented in this bound-

ary map, including the false ones. This map provides us the basis for splitting

one segment. Then given the selected segment si, this segment is forced to be

split into two segments based on the boundary map, as illustrated in Fig. 5.11

(b) and Fig. 5.11 (c). The boundaries within si are merged from lower values to

higher values based on the pre-computed boundary map, until only two seg-

104

ments remain in si.

Merging: We merge the segments with a similar principle: first we compute

all the pairwise potentials ψ(si, s j) given the current segmentation, and then we

randomly sample a pair of segments based on their pairwise potential value:

if two segments si and s j have a higher pairwise potential ψ(si, s j), they have

a higher chance to be selected for merging, because ψ(si, s j) indicates a worse

quality boundary between two segments. After the boundary and its pair of

segments are chosen, we merge the neighboring two segments by deleting the

boundary between them and group all the pixels into one segment.

Minimization: The energy function in Eq. 5.2 is devised in the way that the

smaller the value is, the better segmentation is. We find a better segmenta-

tion with a lower energy value by maintaining a segmentation pool {S }, and re-

peatedly finding the segmentations with smaller energy values within this pool.

Splitting and merging compose our basic moves for minimization. Given one

initial segmentation, we propose 2N (we use N = 5) new segmentations by N

splitting moves and N merging moves, and then re-evaluate all segmentations

using Eq. 5.2. We take the K (we use K = 5) segmentations with the smallest en-

ergy values for the next iteration, and discard the remaining segmentations. We

repeat this step again, so that the top K segmentations will branch, producing

KN new moves, and then be evaluated together to choose the top K segmenta-

tions for the next step. We repeat this sampling step until we reach the maxi-

mum number of iterations M. In practice, this algorithm optimizes our energy

function to a reasonable local minima in about 10-15 iterations. The details of

the algorithm are presented in Alg. 2.

105

Algorithm 2: Energy Minimization

Given constants N, K, and M.

Initialize segmentation pool {S }with initial segmentation S init.

for i=1 to M do

for each segmentation S t in the pool {S } do

Compute φ(si) and ψ(si, s j) for S t.

for j=1 to N do

Sample one segment si by φ(si) and split it, producing new segmenta-

tion S j

Add S j to {S }

end for

for j=1 to N do

Sample one pair of segments by ψ(si, s j) and merge them, producing

new segmentation S j

Add S j to {S }

end for

end for

Evaluate the energy function E for all the segmentations in {S }.

Keep top K segmentations in {S }with smallest E(S).

end for

Output S ∗f inal with the minimum energy value E(S) in the {S }.

106

5.8 Experiments

We perform experiments on four different types of datasets: a block dataset,

a supporting object dataset (SOD), a grocery dataset, and a public dataset of

indoor scenes proposed in [18]. We evaluate the box fitting accuracy, the support

relation prediction, and the segmentation performance.

5.8.1 Block dataset

We apply our algorithm to a toy block dataset. This dataset has 50 RGB-D im-

ages of blocks, shown in Fig. 5.12. For each block, we manually provide the

ground-truth segment labels, as well as the orientations of two perpendicular

surfaces3. Ground-truth surface orientations are labeled by manually clicking

at least 8 points on the same surface, and fitting a plane to these labeled 3D

points. Supporting relations of each block are also manually labeled.

Figure 5.12: Examples of the RGB-D Block Dataset with color (left) and
depth (right) images.

First, we evaluate our box fitting algorithm. The following algorithms are

compared:

3The third surface orientation is perpendicular to the first two, and thus determined after
providing the first two surface orientations.

107

Table 5.4: Average angle error on the bounding box orientation.

Block Dataset

Min-vol 15.41◦

Min-surf 9.75◦

Supp-surf 7.02◦

(a) (b) (c)

Figure 5.13: Fitting results on the block dataset. (a): Min-vol. (b): Min-
surf. (c): Supp-surf. Blocks with large fitting error in orienta-
tion are labeled as a red “x”.

Min-vol: the baseline algorithm from [95] of fitting minimum volume bounding

box.

Min-surf: the proposed box fitting algorithm of finding the minimum surface

distance.

Supp-surf: use our proposed algorithm Min-surf to find the initial boxes, and

adjust the orientation of the box based on the supporting relations and stability.

We compare the orientation of the bounding box from each algorithm to the

ground-truth, and calculate the average angle difference. Table 3 shows that

our proposed minimum surface distance provides a better box fitting compared

108

Figure 5.14: The predicted supporting relations on block dataset. Three
different types of the supporting relations are colored in black
(surface-top), red (partial-top), and blue (side). The ground
plane center is plot as a green dashed circle.

to the minimum volume criteria, reducing the errors in angle from 15.41◦ to

7.02◦, a 40% improvement. With stability reasoning, the fitting decreases error

by another 2◦ in absolute value, a 15% improvement.

We then analyze the performance of our stability reasoning. We compare

with the ground truth supporting relations, and count an object as correct if

all its supporting objects are predicted. We compare our proposed algorithm

(Stability Reason) that reasons about the stability of each block and deletes the

false supporting relations with the baseline (Neighbor) that assumes one block

is supported by its neighbors, i.e., the initialization of the supporting relations.

Table 5.6, left column reports the supporting relation accuracy for this block

dataset. Since the segments in the dataset are perfect blocks, the neighboring

rule gives a high accuracy at over 80% for predicting support. However, our

proposed stability reasoning improves the supporting relation accuracy by an

absolute 10%, achieving over 90% of accuracy. Exemplar images of the predicted

supporting relations are shown in Fig. 5.14.

109

5.8.2 Supporting object dataset

(a) (b) (c)

Figure 5.15: Our supporting object dataset (SOD) includes (a) the color im-
age, (b) the depth image, and (c) manually labeled segments.

Many of the daily objects can be approximated as 3D volumetric blocks with

similar densities, following our stability reasoning assumption. Thus we collect

a new Supporting Object Dataset (SOD) composing of 307 RGB-D images. Var-

ious daily objects are randomly placed in scenes in different configurations of

support. For each object, we manually label the segment and the objects sup-

porting it. Fig. 5.15 gives one exemplar RGB-D image pairs and ground-truth

segmentation labeling of our supporting object dataset.

First, we measure the prediction of the supporting relations with the ground

truth segmentation. The results of using the baseline Neighbors and our sta-

bility reasoning Stability Reason are shown in Table. 5.6, right column. In this

dataset with irregular shaped objects and complicated support configurations,

using the touching neighbors to infer supporting relations has an accuracy of

52%. Stability reasoning gives an absolute 20% boost, reaching over 72% ac-

curacy. Fig. 5.18 presents the exemplar results of our box fitting and support

prediction from the supporting object dataset.

We also evaluate the segmentation performance with our proposed features

110

Table 5.5: Pixel-wise segmentation score.

SOD GD NYU

[18] 60.2% 65.9% 60.1%

S/P 64.7% 68.1% 60.8%

Stability 66.7% 69.2% 61.0%

MCMC 70.0% 72.3% 61.7%

Figure 5.16: Segmentation and box fitting results of our proposed algo-
rithm on the Support Object Dataset (SOD) testing images.

based on box properties. We randomly choose half of the images for training,

and the other half for testing. We follow the procedure in [18] and use their

color and depth features as the baseline. Then we add our features using the

single and pairwise box relations (S/P), and our full feature set with stability

reasoning (Stability) with the model proposed in Section 7. Finally we perform

our final model based on the energy function with MCMC sampling allowing

111

Figure 5.17: Segmentation and box fitting results of our proposed algo-
rithm on the Grocery Dataset (GD) testing images.

both merging and splitting (MCMC).

The segmentation accuracy is scored by pixel-wise overlapping with the

ground-truth segments, proposed in [67] and [18]. Table 5.5, first column,

shows the performance comparison with different feature sets for our pro-

posed dataset (evaluating only on the object segments because the background

is shared across the images). Reasoning about each object as a box gives around

4% boost in segmentation accuracy, and adding the stability features further im-

proves the performance by 2%. Our final energy model with MCMC sampling

gives the best results with another 3% improvement. Testing results with block

fitting are presented in Fig. 5.16.

The final algorithm (MCMC) performs better as we further iterate the sam-

pling steps. For this dataset, the overall average segmentation performance

over the iteration steps are presented in Fig. 5.20 (a), in blue curve. At the same

112

Figure 5.18: We qualitatively show our box fitting algorithm (left) on daily
objects with ground-truth image segmentation and the sup-
porting relation prediction after stability reasoning (right).
Boxes for large surfaces (like the back wall and the ground)
are not displayed for better visualization. The ground plane
is plotted as a green dashed circle for showing the support
inference results.

time, the average energy function is minimized, shown in Fig. 5.20 (a) as a green

curve. It shows that the accuracy of the segmentation increases as we minimize

the energy function through our MCMC sampling process. Therefore, it pro-

vides evidence that our energy function accurately represents the quality of the

segmentation.

Fig. 5.21, top row, presents one particular sequence of the top segmentations

(smallest energy values) at each step as we minimize energy function. The ini-

tial segmentation input is displayed in Fig. 5.21 (c). In detail, the top part of

the camera is mistakenly merged with the book underneath it initially. Dur-

ing the middle step, our splitting moves successfully separate these two objects

into individual segments, however the book is still over-segmented. In the final

step our merging moves correctly group the book lying on the ground, and the

113

overall segmentation improves.

5.8.3 Grocery dataset

(a) (b) (c)

Figure 5.19: Our grocery dataset (GD) extended on support object dataset
(SOD) also includes (a) the color image, (b) the depth image,
and (c) manually labeled segments.

One possible application scenario of our proposed algorithm is a super-

market, where many objects are contained in regular boxes. We collect an

extended Grocery Object dataset (GD) based on the Support Object Dataset

(SOD) to demonstrate this application. This dataset mimics the environment

of a grocery store, and includes a variety of common grocery objects, such as

cereal boxes, shampoo bottles, etc. The dataset contains 609 RGB-D images

with human-labeled ground-truth segmentation. Some exemplar RGB-D im-

ages with ground-truth segmentation are presented in Fig. 5.19.

We evaluate the segmentation accuracy on this dataset, and compared it with

the baseline algorithm proposed in [18]. Full quantitative results of different

algorithms are presented in Table 5.5, middle column. The results show that

our proposed new feature set increases the segmentation accuracy, and the final

sampling algorithm (MCMC) with merging and splitting moves gives the best

114

result. Some example testing images with final block representations are pre-

sented in Fig. 5.17. Our final algorithm produces more reasonable segmentation

results as well as the volumetric block representations. This provides a richer

interpretation of the object in the scene.

For this dataset, the average segmentation accuracies of our sampling algo-

rithm (MCMC) over the iteration steps are presented in Fig. 5.20 (b), along with

the energy function values, in blue and green curves respectively. It presents

a similar pattern that as we minimize the energy function, the overall perfor-

mance of segmentation improves.

We show two particular testing examples in Fig. 5.21, middle and bottom

rows, to illustrate the iteration steps of mixed merging and splitting. The initial

segmentation includes errors of both incorrect over segmentations and under

segmentations. During our steps of MCMC sampling, some mistakes in the

initial segmentations are corrected, while the other new errors arise, e.g., the

book (in the middle row) and the mouse (in the bottom row) are merged to the

ground. However, in the final step our proposed minimization method tend to

find better overall segmentations.

Table 5.6: Supporting relation accuracy for different dataset.

Block SOD

Neighbor 80.59% 52.88%

Stability Reason 91.68% 72.86%

115

(a) (b)

(c)

Figure 5.20: Segmentation results of our proposed sampling algorithm
(MCMC) over each iteration on the SOD dataset (a), GD
dataset (b) and NYU-2 dataset (c). As the energy value de-
creases through the minimization steps, the accuracy of the
segmentation increases.

5.8.4 NYU indoor dataset

We evaluate segmentation performance on the newly released RGB-D NYU-

2 indoor dataset [18], and report the performance in Table 5.5, right column.

This dataset is proposed for scene understanding, rather than object reasoning,

116

(a) (b) (c) (d) (e)

Figure 5.21: The segmentation results improve along with more iterations
of the proposed algorithm MCMC. Given the color image (a),
and the depth image (b), the initial segmentation (c) may have
some mistakes. Some of these mistakes are corrected during
middle steps as iteration goes on, shown in (d). In the final it-
eration, the segmentations are corrected into more reasonable
ones, presented in (e).

and many large surfaces, such as counters and drawers, and are sometimes la-

beled as two or more distinct objects, i.e., one for each surface, instead of one

for the entire object. Although these conditions limit the evaluated performance

of our proposed algorithm, adding the proposed features still improves the seg-

mentation performance. The performance of our sampling algorithm (MCMC)

gives the best results, also the performance improves throughout iteration steps.

The detailed segmentation accuracy of each step, as well as the energy function

value, are presented in Fig. 5.20 (c), in blue and green curves. Some examples of

the segmentation results are shown in Fig. 5.23.

We find that although proposed for modeling small object interactions, this

block representation and stability reasoning framework can also be extended to

117

some indoor scenarios, e.g., for furniture sitting on the ground or supported on

the wall. We qualitatively present the box fitting and supporting inference result

with ground-truth segmentation for a indoor bedroom scenario in Fig. 5.22.

Figure 5.22: Qualitative result of box fitting (left) and supporting relation
inference (right) on indoor scenes. For better visualization,
boxes that are too large (wall, ground) or too small are not
displayed.

Figure 5.23: Segmentation results of our proposed algorithm on NYU-2 in-
door scene dataset.

118

5.9 Summary

In this thesis, we propose analyzing RGB-D images through physically-based

stability reasoning. We begin with box fitting on partially observed 3D point

clouds, and then introduce pairwise box interaction features. We explore global

stability reasoning on proposed box representations of a scene. Segmentations

associated with unstable box configurations are not physically possible and are

subsequently modified for consideration in later iterations. Stability reasoning

produces better estimates of supporting relations (by requiring enough support

to provide stability for each object) and improved box orientation estimates (by

knowing when objects are fully or partially supported from below). Exper-

iments show that our proposed algorithm works for both synthetic and real

world scenes, and leads to improvements in box fitting, support detection, and

segmentation.

119

CHAPTER 6

CONCLUSION AND DISCUSSION

In this thesis we presented a complete framework to reason RGB-D images from

segments to volumes. We started from 2D color images, and inferred depth

ordering using clues from boundary shapes and junction textures. After that,

we incorporated 3D information from depth sensor, such as laser scan data or

consumer inferred sensors. Additional 3D data provided us further geometry

understanding, such as surfaces, occlusion and connected boundaries. Finally,

we combined all the inferences and clues to achieve a complete 3D volumetric

understanding of the scene. This higher level interpretation allows us achieve

more semantic 3D understanding, such as support and physical stability be-

tween objects, and gives better performance in the task of RGB-D segmentation.

We believe that physics-based stability reasoning in segmentation could be

useful in several applications with RGB-D data, for example, activity detection,

object detection and tracking, scene modeling, and so on. We mention a few

possible future directions that can be extended based on the algorithm proposed

in this thesis.

3D oriented block fitting with color image: The current block fitting algorithm

in this thesis solely relies on the 3D point clouds. However as presented in con-

temporary work [74], color channel provides informative edge clues, which can

also be incorporated for fitting the bounding box. It is possible to combine the

color features with our proposed 3D point-cloud based algorithm and improve

the 3D bounding box fitting.

120

Extending primitive shapes: Although blocks are good approximations for

many convex objects, there are cases when they limit the performance of scene

reasoning. For example, a basketball may be failed to be presented as a 3D ori-

ented bounding box, and therefore its stability cannot be correctly estimated

using the simple blocks that we propose. Extending the primitive shapes from

blocks to cylinders (e.g., [96]) spheres, or non-parametric shapes, along with

corresponding advancements to the stability reasoning module, may improve

the support and stability reasoning, as well as the final object segmentation.

Combining with semantic classification: Previous work has shown that com-

bining different tasks improves performance of individual vision tasks [100,

101]. We believe that combining the block representation with semantic clas-

sification will further improve the 3D scene understanding. Concave objects,

such as chairs, are not well represented by a single box. In these situations, we

can use multiple boxes to build the objects. However, to prevent the system

from over-fitting, prior knowledge is helpful, e.g., the categories or the seman-

tic labels of the objects. Therefore, we could detect objects as a pre-processing

step, and then propose potential category hypothesis for the target objects. Af-

ter that, we can choose the correct number of blocks to approximate the object,

and produce an improved scene parsing.

Different block densities: Semantic classification can also be performed on

other attributes, for example, to estimate the densities of the blocks. Future

work can relax the even density assumption used in this thesis, and classify

the weight of one block. This will enable us to adjust the block representation

accordingly, allowing only the heavy boxes support the light ones, and thus

making the scene more stable.

121

Hidden support: In this work we assume all the support relations are visible in

the scene. However it is possible to analyze the hidden supports that are invisi-

ble or occluded, and only use the assumption that the scene is static. There are

possible clues that enable us infer these hidden supports: for example, if one

box is tilted with no other neighboring support, it is likely that the object is sup-

ported by an invisible object, e.g., a glass, or the supporting object is completely

occluded. Analyzing the hidden support will unify the stability reasoning with

the concept of occlusion.

Completing the physical model: For reasoning about stability, our model

makes broad assumptions about objects in the scene. We assume objects are

constant density and that objects are supported when their center of gravity

projects into the convex hull of support, effectively ignoring friction. Further,

we only reason about stability in a top-to-bottom fashion. Other, more sophisti-

cated physical modelers (e.g., [93], Bullet [102] or Open Dynamics Engine [103]),

though computationally more expensive, could be also explored. We expect

they would provide a more complete analysis of the physics in the scene and

lead to better RGB-D segmentations.

122

APPENDIX A

RELATED PUBLICATIONS

• Zhaoyin Jia , Andrew Gallagher, and Tsuhan Chen,”Camera and Gravity: Es-

timating Planer Object Orientation” IEEE International Conference on Image

Processing (ICIP), 2013.

• Zhaoyin Jia , Andrew Gallagher, and Tsuhan Chen,”Learning Boundaries

with Color and Depth” IEEE International Conference on Image Processing

(ICIP), 2013.

• Zhaoyin Jia , Andrew Gallagher, Ashutosh Saxena and Tsuhan Chen,”3D-

Based Reasoning with Blocks, Support, and Stability” IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2013.

• Zhaoyin Jia , Andrew Gallagher, Yao-Jen Chang and Tsuhan Chen,”A Learn-

ing Based Framework for Depth Ordering” IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2012.

• Zhaoyin Jia , Ashutosh Saxena and Tsuhan Chen,”Sharing Utility Between

Objects for Active Recognition” Workshop on Fine-Grained Visual Cate-

gorization, IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2011.

• Zhaoyin Jia , Yao-Jen Chang, Tzung-Han Lin and Tsuhan Chen,”Dense Inter-

polation of 3D Points Based on Surface and Color” IEEE International Con-

ference on Image Processing (ICIP), 2011.

• Zhaoyin Jia , Ashutosh Saxena and Tsuhan Chen,”Robotic Object Detection:

Learning to Improve the Classifiers using Sparse Graphs for Path Planning”

International Joint Conferences on Artificial Intelligence (IJCAI), 2011.

• Yimeng Zhang, Zhaoyin Jia, and Tsuhan Chen,”Image Retrieval with

Geometry-Preserving Visual Phrases” IEEE Conference on Computer Vision

123

and Pattern Recognition (CVPR), 2011.

• Zhaoyin Jia , Yao-Jen Chang, and Tsuhan Chen,”A general boosting-based

framework for active object recognition” British Machine Vision Conference

(BMVC), 2010.

• Zhaoyin Jia , Yao-Jen Chang, and Tsuhan Chen,”Active View Selection for Ob-

ject and Pose Recognition” Workshop on 3D Representation for Recognition,

International Conference on Computer Vision (ICCV), 2009.

• Zhaoyin Jia , Yao-Jen Chang, and Tsuhan Chen,”Dense 3D-Point Estimation

based on Surface Fitting and Color Information”, Western New York Image

Processing Workshop (WNYIP), 2009.

124

BIBLIOGRAPHY

[1] A. Saxena, M. Sun, and A. Y. Ng, “Make3D: Learning 3D scene structure

from a single still image,” PAMI, 2009.

[2] D. Hoiem, A. Efros, and M. Hebert, “Geometric context from a single

image,” in ICCV, 2005.

[3] D. Martin, C. Fowlkes, and J. Malik, “Learning to detect natural image

boundaries using local brightness, color, and texture cues,” PAMI, 2004.

[4] S. Maji, N. Vishnoi, and J. Malik, “Biased normalized cuts,” in CVPR,

2011.

[5] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “From contours to re-

gions: An empirical evaluation,” in CVPR, 2009.

[6] J. Tighe and S. Lazebni, “Finding things: Image parsing with regions and

per-exemplar detectors,” in CVPR, 2013.

[7] D. Hoiem, A. Efros, and M. Hebert, “Putting objects in perspective,” IJCV,

vol. 80, no. 1, 2008.

[8] D. Hoiem, A. A. Efros, and M. Hebert, “Closing the loop in scene inter-

pretation,” in CVPR, 2008.

[9] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human seg-

mented natural images and its application to evaluating segmentation al-

gorithms and measuring ecological statistics,” in ICCV, 2001.

[10] Z. Jia, A. Gallagher, Y. Chang, and T. Chen, “A learning based framework

for depth ordering,” in CVPR, 2012.

125

[11] Z. Jia, Y. Chang, T. Lin, and T. Chen, “Dense interpolation of 3d points

based on surface and color,” in ICIP, 2011.

[12] Z. Jia, A. Gallagher, and T. Chen, “Learning boundaries with color and

depth,” in ICIP, 2013.

[13] Z. Jia, A. Gallagher, A. Saxena, and T. Chen, “3d-based reasoning with

blocks, support, and stability,” in CVPR, 2013.

[14] H. Koppula, R. Gupta, and A. Saxena, “Learning human activities and

object affordances from rgb-d videos,” IJRR, 2013.

[15] Y. Jiang, M. Lim, C. Zheng, and A. Saxena, “Learning to place new objects

in a scene,” IJRR, vol. 31, no. 9, 2012.

[16] K. Lai, L. Bo, X. Ren, and D. Fox, “A large-scale hierarchical multi-view

RGB-D object dataset,” in ICRA, 2011.

[17] A. Janoch, S. Karayev, Y. Jia, J. T. Barron, M. Fritz, K. Saenko, and T. Dar-

rell, “A category-level 3-D object dataset: Putting the kinect to work,” in

ICCV workshop, 2011.

[18] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “Indoor segmentation

and support inference from RGBD images,” in ECCV, 2012.

[19] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based image

segmentation,” IJCV, 2004.

[20] Z. Jia, Y. Chang, T. Lin, and T. Chen, “Dense 3d-point estimation based on

surface fitting and color information,” in WNYIP, 2009.

[21] Z. Jia, A. Gallagher, A. Saxena, and T. Chen, “3d reasoning from block to

stability,” in In submission to PAMI, 2013.

126

[22] Z. Jia, A. Gallagher, and T. Chen, “Camera and gravity: Estimating planer

object orientation,” in ICIP, 2013.

[23] Z. Jia, A. Saxena, and T. Chen, “Sharing utility between objects for ac-

tive recognition,” in Workshop on Fine-Grained Visual Categorization, CVPR,

2011.

[24] Z. Jia, A. Saxena, and T. Chen, “Robotic object detection: Learning to

improve the classifiers using sparse graphs for path planning,” in IJCAI,

2011.

[25] Y. Zhang, Z. Jia, and T. Chen, “Image retrieval with geometry-preserving

visual phrases,” in CVPR, 2011.

[26] Z. Jia, Y. Chang, and T. Chen, “A general boosting-based framework for

active object recognition,” in BMVC, 2010.

[27] Z. Jia, Y. Chang, and T. Chen, “Active view selection for object and pose

recognition,” in Workshop on 3D Representation for Recognition, ICCV, 2009.

[28] B. Packer, S. Gould, and D. Koller, “A unified contour-pixel model for

figure-ground segmentation,” in ECCV, 2010.

[29] F. F. Li and P. Perona, “A bayesian hierarchical model for learning natural

scene categories,” in CVPR, 2005.

[30] B. Liu, S. Gould, and D. Koller, “Single image depth estimation from

predicted semantic labels,” in CVPR, 2010.

[31] F. Cole, K. Sanik, D. DeCarlo, A. Finkelstein, T. Funkhouser,

S. Rusinkiewicz, and M. Singh, “How well do line drawings depict

shape?,” ACM Transactions on Graphics, 2009.

127

[32] H. Barrow and J. Tenenbaum, “Retrospective on ”interpreting line draw-

ings as three-dimensional surfaces”,” AI, vol. 59, 1993.

[33] D. Waltz, “Generating semantic descriptions from drawings of scenes

with shadows,” Tech. Rep. AI271, MIT, 1972.

[34] D. Hoiem, A. Efros, and M. Hebert, “Recovering occlusion boundaries

from an image,” IJCV, vol. 91, no. 3, 2011.

[35] N. Apostoloff and A. Fitzgibbon, “Automatic video segmentation using

spatiotemporal T-junctions,” in BMVC, 2006.

[36] M. Dimiccoli and P. Salembier, “Exploiting T-junctions for depth segrega-

tion in single images,” in ICASSP, 2009.

[37] G. Palou and P. Salembier, “Occlusion-based depth ordering on monocu-

lar images with binary partition tree,” in ICASSP, 2011.

[38] X. Ren and C. Gu, “Figure-ground segmentation improves handled object

recognition in egocentric video,” in CVPR, 2010.

[39] X. Ren, C. Fowlkes, and J. Malik, “Figure/ground assignment in natural

images,” in ECCV, 2006.

[40] P. Sundberg, T. Brox, M. Maire, P. Arbelaez, and J. Malik, “Occlusion

boundary detection and figure/ground assignment from optical flow,” in

CVPR, 2011.

[41] D. Lowe, “Distinctive image features from scale-invariant keypoints,”

IJCV, 2004.

[42] T. Joachims, “Making large–scale SVM learning practical,” in Advances in

Kernel Methods — Support Vector Learning. 1999, MIT Press.

128

[43] G. Kim, D. Huber, and M. Hebert, “Segmentation of salient regions in

outdoor scenes using imagery and 3-D data,” in WACV, 2008.

[44] Y. Q. Ma, Z. Wang, M. Bazakos, and W. Au, “3D scene modeling using

sensor fusion with laser range finder and image sensor,” in Applied Im-

agery Pattern Recognition Workshop, 2005.

[45] R. Triebel H. Andreasson and A. Lilienthal, “Non-iterative vision-based

interpolation of 3d laser scans,” in Autonomous Robots and Agents, Studies

in Computational Intelligence, 2007.

[46] J. Diebel and S. Thrun, “An application of markov random fields to range

sensing,” in NIPS, 2005.

[47] S. Petitjean, “A survey of methods for recovering quadrics in triangle

meshes,” ACM Computing Surveys, 2002.

[48] P.J. Besl and R.C. Jain, “Segmentation through variable-order surface fit-

ting,” PAMI, 1988.

[49] T. Yoshimi, Y. Kawai, and Fumiaki Tomita, “Range data segmentation

with principal vectors and surface types,” in MVA, 1996.

[50] P. Benkö and T. Várady, “Segmentation methods for smooth point regions

of conventional engineering objects,” Computer-Aided Design, 2004.

[51] R. Chellappa and A. K. Jain, Markov Random Fields: Theory and Applications,

Academic Press, 1993.

[52] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward feature

space analysis,” PAMI, vol. 24, no. 5, pp. 603–619, 2002.

129

[53] D. Hoiem, A. N. Stein, A. A. Efros, and M. Hebert, “Recovering occlusion

boundaries from a single image,” in ICCV, 2007.

[54] I. Endres and D. Hoiem, “Category independent object proposals,” in

ECCV 2010, 2010.

[55] N. Silberman and R. Fergus, “Indoor scene segmentation using a struc-

tured light sensor,” in ICCV Workshops, 2011.

[56] J. Shotton, A. W. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore,

A. Kipman, and A. Blake, “Real-time human pose recognition in parts

from single depth images,” in CVPR, 2011.

[57] B. Huhle, T. Schairer, P. Jenke, and W. Strasser, “Robust non-local de-

noising of colored depth data,” in Workshop of Time of Flight Camera based

Computer Vision, CVPR, 2008.

[58] I. Reisner-Kollmann and S. Maierhofer, “Consolidation of multiple depth

maps,” in ICCV Workshops on Consumer Depth Cameras for Computer Vision,

2011.

[59] E. Borenstein and S. Ullman, “Learning to segment,” in ECCV, 2004.

[60] H. Du, P. Henry, X. Ren, M. Cheng, D. B. Goldman, S. M. Seitz, and D. Fox,

“Interactive 3D modeling of indoor environments with a consumer depth

camera,” in UbiComp, 2011.

[61] L. Bo, K. Lai, X. Ren, and D. Fox, “Object recognition with hierarchical

kernel descriptors,” in CVPR, 2011.

[62] A. Janoch, S. Karayev, Y. Jia, J. T. Barron, M. Fritz, K. Saenko, and T. Dar-

130

rell, “A category-level 3-D object dataset: Putting the kinect to work,” in

ICCV Workshops on Consumer Depth Cameras for Computer Vision, 2011.

[63] H. Koppula, A. Anand, T. Joachims, and A. Saxena, “Semantic labeling of

3D point clouds for indoor scenes,” in NIPS, 2011.

[64] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. A. Newcombe, P. Kohli,

J. Shotton, S. Hodges, D. Freeman, A. J. Davison, and A. W. Fitzgibbon,

“Kinectfusion: real-time 3D reconstruction and interaction using a mov-

ing depth camera,” in UIST, 2011.

[65] Hoiem D, A. A. Efros, and M. Hebert, “Recovering surface layout from

an image,” IJCV, vol. 75, no. 1, pp. 151–172, 2007.

[66] A. Saxena, S. H. Chung, and A. Y. Ng, “Learning depth from single

monocular images,” in NIPS, 2005.

[67] D. Hoiem, A. N. Stein, A. A. Efros, and M. Hebert, “Recovering occlusion

boundaries from a single image,” in ICCV, 2007.

[68] A. Gupta, A. A. Efros, and M. Hebert, “Blocks world revisited: Image un-

derstanding using qualitative geometry and mechanics,” in ECCV, 2010.

[69] P. Arbelaez, B. Hariharan, C. Gu, S. Gupta, L. Bourdev, and J. Malik, “Se-

mantic segmentation using regions and parts,” in CVPR, 2012.

[70] P. Arbelaez, M. Maire, C. Fowlkes, and J Malik, “Contour detection and

hierarchical image segmentation,” PAMI, 2011.

[71] S. Maji, N. Vishnoi, and J. Malik, “Biased normalized cuts,” in CVPR,

2011.

131

[72] J. Shi and J. Malik, “Motion segmentation and tracking using normalized

cuts,” in ICCV, 1998.

[73] Y. Zheng, X. Chen, M. Cheng, K. Zhou, S. Hu, and N. J. Mitra, “Interac-

tive images: cuboid proxies for smart image manipulation,” ACM Trans.

Graph, vol. 31, no. 4, pp. 99, 2012.

[74] J. Xiao, B. C. Russell, and A. Torralba, “Localizing 3D cuboids in single-

view images,” in NIPS, 2012.

[75] M. Bleyer, C. Rhemann, and C. Rother, “Extracting 3D scene-consistent

object proposals and depth from stereo images,” in ECCV, 2012.

[76] H. Jiang and J. Xiao, “A linear approach to matching cuboids in rgbd

images,” in CVPR, 2013.

[77] E. Delage, H. Lee, and A. Y. Ng, “A dynamic bayesian network model

for autonomous 3d reconstruction from a single indoor image,” in CVPR,

2006.

[78] A. Flint, D. W. Murray, and I. Reid, “Manhattan scene understanding

using monocular, stereo, and 3D features,” in ICCV, 2011.

[79] V. Hedau, D. Hoiem, and D. A. Forsyth, “Recovering free space of indoor

scenes from a single image,” in CVPR, 2012.

[80] D. C. Lee, A. Gupta, M. Hebert, and T. Kanade, “Estimating spatial layout

of rooms using volumetric reasoning about objects and surfaces,” in NIPS,

2010.

[81] D. Fouhey, V. Delaitre, A. Gupta, A A. Efros, I Laptev, and J Sivic, “People

132

watching: Human actions as a cue for single view geometry,” in ECCV

(5), 2012.

[82] Y. Jiang, M. Lim, and A. Saxena, “Learning object arrangements in 3d

scenes using human context,” in ICML, 2012.

[83] A. Gupta, S. Satkin, A. Efros, and M. Hebert, “From 3D scene geometry

to human workspace,” in CVPR, 2011.

[84] X. Ren and L. Bo, “Discriminatively trained sparse code gradients for

contour detection,” in NIPS, 2012.

[85] Y. Jiang, H. Koppula, and Saxena A, “Hallucinated humans as the hidden

context for labeling 3d scenes,” in CVPR, 2013.

[86] A. Anand, H. Koppula, T. Joachims, and A. Saxena, “Contextually guided

semantic labeling and search for 3d point clouds,” IJRR, 2012.

[87] X. Ren, L. Bo, and D. Fox, “RGB-(D) scene labeling: Features and algo-

rithms,” in CVPR, 2012.

[88] H. Koppula and A. Saxena, “Learning spatio-temporal structure from

rgb-d videos for human activity detection and anticipation,” in ICML,

2013.

[89] H. Koppula and A. Saxena, “Anticipating human activities using object

affordances for reactive robotic response,” in RSS, 2013.

[90] H. Grabner, J. Gall, and L. J. Van Gool, “What makes a chair a chair?,” in

CVPR, 2011.

[91] Y. Jiang and A. Saxena, “Infinite latent conditional random fields for mod-

eling environments through humans,” in RSS, 2013.

133

[92] B. Zheng, Y. Zhaoy, J. C. Yuy, K. Ikeuchi, and S.C. Zhu, “Beyond point

clouds: Scene understanding by reasoning geometry and physics,” in

CVPR, 2013.

[93] D. Baraff, “Physically based modeling: Rigid body simulation,” Tech.

Rep., Pixar Animation Studios, 2001.

[94] M. McCloskey, “Intuitive physics,” Scientific American, vol. 248, no. 4, pp.

114–122, 1983.

[95] C. Chang, B. Gorissen, and S. Melchior, “Fast oriented bounding box op-

timization on the rotation group SO(3,R),” ACM Transactions on Graphics,

vol. 30, no. 5, 2011.

[96] D. Ly, A. Saxena, and H. Lipson, “Co-evolutionary predictors for kine-

matic pose inference from rgbd images,” in GECCO, 2012.

[97] S. Gottschalk, “Separating axis theorem,” Technical Report, 1996.

[98] J. Chang and J. W. Fisher, “Efficient MCMC sampling with implicit shape

representations,” in CVPR, 2011.

[99] R. C. Weng C. Lin, “Simple probabilistic predictions for support vector

regression,” in Tech Report, 2004.

[100] L.J. Li, R. Socher, and L. Fei-Fei, “Towards total scene understand-

ing:classification, annotation and segmentation in an automatic frame-

work,” in CVPR, 2009.

[101] C. Li, A Kowdle, A. Saxena, and T. Chen, “Towards holistic scene un-

derstanding: Feedback enabled cascaded classification models,” PAMI,

2012.

134

[102] “http://bulletphysics.org,” in Bullet.

[103] “http://www.ode.org/,” in Open Dynamics Engine.

135

