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Abstract

“Cloud-native” container platforms, such as Kubernetes,
have become an integral part of production cloud
environments. One of the principles in designing cloud-
native applications is called “Single Concern Principle”,
which suggests that each container should handle a single
responsibility well. Due to the resulting change in the
threat model, process isolation within the container becomes
redundant in most single-concerned containers, and inter-
container isolation becomes increasingly important. In this
paper, we propose a new exokernel-inspired architecture
called X-Containers that improves both the security and
the performance of cloud-native containers. We show that,
through relatively minor modifications, the Xen hypervisor
can serve as an exokernel, and Linux can be turned into
a LibOS. Doing so results in a highly secure and efficient
LibOS platform that, unlike other available LibOSes, supports
binary compatibility and multicore processing. X-Containers
have up to 27× higher raw system call throughput compared
to Docker containers, while also significantly outperforming
recent container platforms such as Google’s gVisor, Intel’s
Clear Containers, as well as Library OSes like Unikernel and
Graphene on web benchmarks.

1. Introduction
An important recent trend in cloud computing is the rise of
“cloud-native” container platforms, such as Kubernetes [30],
which have become an integral part of production
environments. Such platforms support applications designed
specifically for cloud infrastructures that consist of loosely-
coupled microservices [51] running in containers, with
distributed management and orchestration. Cloud-native
platforms offer support for automated elastic scaling and agile
DevOps practices [26], which allow companies to bring new
ideas to market faster, respond quickly to customer demands,
and handle failures more transparently.

In cloud-native platforms, container design is similar to
object design in object-oriented (OO) software systems: each
container should have a single responsibility and handle that
responsibility well [31]. By focusing on a single concern,
cloud-native containers are easier to scale horizontally, and
replace, reuse, and upgrade transparently. Similar to the
Single Responsibility Principle in OO-languages, this has
been termed the “Single Concern Principle” [39], and is
recommended by Docker [3].

From a security perspective, single-concerned containers
change the threat model of the container architecture,
presenting both a challenge and an opportunity. Process
isolation, which separates different applications in traditional

operating systems, becomes redundant in most single-
concerned containers. On the other hand, inter-container
isolation becomes increasingly important, and raises many
concerns because containers share a monolithic OS kernel
with a large Trusted Computing Base (TCB), as well as a large
attack surface in terms of the number of kernel interfaces.

There have been several proposals to address the issue
of container isolation. Virtualization-based solutions, such
as Clear Containers [8], Kata Containers [9], and Hyper
Containers [6], wrap containers with a dedicated OS kernel
running in a virtual machine (VM). These platforms require
native hardware virtualization support to reduce the overhead
of adding another layer of indirection. However, most
public and private clouds, including Amazon EC2, do not
support nested hardware virtualization. Even in clouds
such as Google Compute Engine where nested hardware
virtualization is enabled, its performance overhead is high
(see Section 5 and [15]). LightVM [49] wraps a container in a
paravirtualized Xen instance without hardware virtualization
support. Unfortunately, it introduces a significant performance
penalty in x86-64 platforms (see Sections 4.1 and 5). Finally,
Google gVisor [5] is a user-space kernel written in Go that
supports container runtime sandboxing, but it only offers
limited system call compatibility [13] and incurs significant
performance overheads (see Section 5).

The trend of running a single application in its own
VM for enhanced security has led to a renewed interest
in Library Operating Systems (LibOSes), as suggested by
the Unikernel [46] model. LibOSes avoid the overhead of
security isolation between the application and the OS, and
allow each LibOS to be carefully optimized for the application
at hand. Designing a container architecture inspired by the
exokernel+LibOS [34] model can improve both container
isolation and performance. However, existing LibOSes, such
as MirageOS [46], Graphene [58], and OSv [41], lack features,
such as full binary compatibility or multicore support. This
makes porting containerized applications very challenging.

In this paper, we propose a new LibOS platform called X-
Containers that improves both the security and performance of
containers without requiring hardware virtualization support.
We demonstrate that Xen’s paravirtualization architecture [25]
can be modified to serve as a highly secure and efficient LibOS
platform that supports both binary compatibility and multicore
processing. An X-Container can support one or more user
processes that all run at the same privilege level as the LibOS.
Different processes inside an X-Container still have their own
address spaces for resource management and compatibility,
but they no longer provide secure isolation from one another;



in this new model processes are used for concurrency, while
X-Containers provide isolation between containers.

Without hardware virtualization support, system calls are
expensive, as they are first handled by the exokernel and
then redirected to the LibOS. The X-Container platform
automatically optimizes the binary of an application during
runtime to improve performance by rewriting costly system
calls into much cheaper function calls in the LibOS. As a
result, X-Containers have up to 27× higher raw system call
throughput compared to native Docker containers running in
the cloud, and are competitive to or even outperform native
containers for other benchmarks.

The X-Container platform also outperforms other LibOS
architectures for specialized services, such as serverless
compute, which are gaining traction for short-running, user-
driven online services with intermittent behavior. We compare
X-Containers, Unikernel, and Graphene, using NGINX [12],
a stateless front-end webserver driven by the wrk workload
generator. We show that X-Containers have comparable
performance to Unikernel, and twice the throughput compared
to Graphene. Moreover, when running PHP and MySQL,
X-Container achieves approximately 3× the performance of
Unikernel.

This paper includes the following contributions:
• We demonstrate how the Xen paravirtualization

architecture and the Linux kernel can be turned into a
secure and efficient LibOS platform that supports both
binary compatibility and multicore processing.

• We present X-Containers, a new exokernel-based
container architecture that is designed specifically for
cloud-native applications. X-Containers are compatible
with Linux containers, and to the best of our knowledge,
they are the first architecture to support secure isolation of
containers in the cloud, without sacrificing compatibility
or performance.

• We present a technology for automatically changing
system calls into function calls to optimize applications
running on a LibOS.

• We evaluate the efficacy of X-Containers against Docker,
gVisor, Clear Container, and other LibOSes (Unikernel
and Graphene), and demonstrate competitive or superior
performance and isolation.

2. Background and Motivation
2.1. Single-Concerned Containers

Cloud-native applications are designed to fully exploit
the potential of cloud infrastructures. Although legacy
applications can be packaged in containers and run in a
cloud, these applications cannot take full advantage of the
automated deployment, scaling, and orchestration offered
by systems like Kubernetes, which are designed for cloud-
native platforms [24, 23]. The shift to single-concerned
containers is already apparent in many popular container
clouds, such as Amazon Elastic Container Service (ECS),
and Google Container Engine, both of which propose different

mechanisms for grouping containers that need to be tightly
coupled, e.g., using a “pod” in Google Kubernetes [16], and
a “task” in Amazon ECS [2]. It is important to note that
single-concerned containers are not necessarily single-process.
Some applications might spawn multiple worker processes for
concurrency [3], such as NGINX, or Apache webserver. The
key is that all processes within a single-concerned container
belong to the same service, thus they are tightly coupled and
mutually trusting.

2.2. Application Isolation

In traditional operating systems, processes are used for both
multiprocessing and security isolation between applications.
Due to the coarse granularity of the process model,
applications often implement their own security properties
in the application logic, isolating different users within the
same application. In single-concerned cloud-native containers,
process isolation within the container is unnecessary.

Indeed, an informal survey of popular containers shows
that multi-client applications rarely rely on processes for
isolating mutually-untrusting clients by dedicating a process
to each client—many do not even use multiple processes at
all. All the top 10 most popular containerized applications [1]
(NGINX, Redis, ElasticSearch, Registry, Postgres, MySQL,
etcd, Fluentd, MongoDB, and RabbitMQ) use either a single-
threaded event-driven model or multi-threading instead of
multiple processes. NGINX and Fluentd can be configured
to use a process pool to improving concurrency, similar to
Apache webserver—each process has multiple threads that
can be used to serve different clients. These applications
implement client isolation inside the application logic through
mechanisms such as a strongly-typed language runtime, role-
based access control, authentication, and encryption.

On the other hand, inter-container isolation remains
important, and depends on enforcement by the OS kernel.
Unfortunately, modern monolithic OS kernels, such as Linux,
have become a large code base with complicated services,
device drivers, and extensive system call interfaces. New
vulnerabilities are continually being discovered. For example,
the recently-disclosed Meltdown attack [45] breaks isolation
between containers sharing the same kernel. In addition, there
are still more than 500 security vulnerabilities in the Linux
kernel [11]. Due to such security concerns, containers are
typically run in separate VMs, which sacrifices scalability,
performance, and resource efficiency in favor of improved
security isolation between containers.

2.3. Challenges of Running Containers with LibOSes

The trend of running a single application in its own VM for
enhanced security has led to a renewed interest in the LibOS
paradigm, as exemplified by the Unikernel model. However,
there are two features that are necessary for supporting
containers, but are particularly challenging for LibOSes:

• Binary compatibility: A container packages an
application with all dependencies including third-party
tools and libraries. A LibOS without binary level
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Figure 1: Comparison of different container architectures.

compatibility can make the porting of many containers
infeasible. Even for containers that have the source code
of all dependencies, any code change or re-compilation
can potentially introduce security or compatibility issues
that are not acceptable in production environments.

• Multicore Processing: While binary compatibility
ensures support for spawning multiple processes,
multicore processing refers to the capability of running
multiple processes concurrently. As an example of the
distinction, user-space kernels, such as Google gVisor [5]
and User Mode Linux (UML) [33], support spawning
multiple processes, but they can only run a single process
at a time even when multiple CPU cores are available.
Without multicore processing, the performance of many
applications would be dramatically impacted due to the
reduced concurrency.

To the best of our knowledge, no existing LibOS, except X-
Containers, provides both these features. Unikernel [46] and
related projects, such as Dune [27, 28], EbbRT [55], OSv [41],
and ClickOS [50], only support single-process applications,
and involve substantial source code and compilation changes.
Graphene [58] supports concurrent multiprocessing, but
provides only one third of the Linux system calls.

3. X-Container Design
The X-Containers architecture is different from existing
container architectures, as shown in Figure 1. gVisor [5] has
a user-space kernel isolated in its own address space. Clear
Container [8] and LightVM [49] run each container in its own
virtual machine (using KVM and Xen-PV resp.). In the X-
Container architecture, each (single-concerned) container runs
with its own LibOS called X-LibOS. Inter-container isolation
is guarded by by the X-Kernel, a virtual machine monitor
acting as an exokernel. The X-Kernel ensures both a small
kernel attack surface (i.e., a small number of well-documented
system calls) and a small TCB.

3.1. Compatibility vs. Efficiency

In the design of X-Containers, we make a specific trade-
off between compatibility and efficiency. Here compatibility
includes not only the Application Binary Interface (ABI)
support for running existing applications without change, but
also the ability to work with existing software development,
profiling, debugging, and deploying tools. Most LibOSes
require substantial changes to the application’s source code,
or even require re-implementing the application from scratch.
Their development and debugging support is also far behind

the corresponding toolsets available for ordinary systems. As
a result, although these LibOSes can be highly optimized for
efficiency by design, they sacrifice compatibility, and hence
the opportunity to leverage existing, mature infrastructure that
has been optimized and tested for years.

3.2. Why Use Linux as the LibOS?

We believe that the best way to develop a LibOS that is
fully compatible with Linux is to leverage Linux itself for
the primitives needed in the LibOS. Starting from the Linux
kernel when designing the LibOS enables binary compatibility
and multiprocessing. Additionally, although the Linux kernel
is widely referred to as a “general-purpose” OS kernel, in
fact it is highly customizable and supports different layers
of abstraction [40]. It has hundreds of booting parameters,
thousands of compilation configurations, and many fine-
grained runtime tuning knobs. Since most kernel functions can
be configured as kernel modules and loaded during runtime,
a customized Linux kernel can be very small and highly
optimized. For example, for single-threaded applications, such
as many of the popular event-driven applications, disabling
multi-core and Symmetric Multi-Processing (SMP) support
can eliminate unnecessary locking and TLB shoot-downs,
which greatly improves performance. Depending on the
workload, applications can set different policies in the Linux
scheduler. Many applications do not currently reach the Linux
kernel’s full potential, either because of lack of control over
kernel configurations, or because the kernel is shared across
multiple diverse applications, complicating the process of
tuning its many configuration parameters. Turning the Linux
kernel into a LibOS and dedicating it to a single application
can unlock its full potential.

3.3. Why Use Xen as the Exokernel?

There have been previous attempts to turn an existing feature-
rich monolithic OS kernel into a LibOS [53, 54]. However,
these projects also use a monolithic OS kernel to serve as the
host kernel. For example, the Linux Kernel Library (LKL)
project [54] compiles the kernel code into an object file that
can be linked directly into a Linux application. However, LKL
does not support running multiple processes. This technical
obstacle comes from the design choice of relying on the
host kernel, instead of the LibOS itself, to handle page table
mapping and scheduling. The same design choice was made
by Drawbridge [53], which turns the Windows 7 OS kernel
into a LibOS running on Windows and only supports single-
process applications.

Graphene [58] is based on Linux, and addressed the
challenge of supporting multiple processes by having
processes use IPC calls to maintain the consistency of
multiple LibOS instances, at a significant performance penalty.
In addition, it is difficult for Graphene to support full
compatibility with all Linux interfaces, such as shared memory,
due to lack of control over memory mapping.

Rather than trying to run the Linux kernel as a LibOS inside
a Linux process, X-Containers leverage the already mature
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support for running Linux in Xen’s paravirtualization (PV)
architecture [25] (see Section 4.1). There are four reasons
that make Xen ideal for implementing a LibOS with binary
compatibility and multicore processing.

• Xen provides a clean separation of functions in kernel
mode (Xen) and user mode (Linux). In the Xen PV
architecture, all operations that require root privileges are
handled by Xen, while the Linux kernel is re-structured
to run with fewer privileges. This clean separation
eliminates the requirement of any hardware virtualization
support.

• Xen supports portability of guest kernels. Xen hides the
complexity of the underlying hardware, so that guest
kernels only need to provide PV device drivers, which
are portable across different platforms.

• Multi-processing support is implemented in guest kernels.
Xen only provides facilities for managing page tables
and context switching, while memory and process
management policies are completely implemented in
the guest kernel. This makes it much easier to support
multicore processing when turning the guest kernel into
a LibOS.

• There is a mature ecosystem around Xen infrastructures.
The Linux community maintains support for Xen PV
architectures, which is critical for providing binary
compatibility even for future versions of Linux. In
addition, there are many mature technologies in Xen’s
ecosystem enabling features such as live migration, fault
tolerance, and checkpoint/restore, which are hard to
implement with traditional containers.

3.4. Threat Model
We focus on single-concerned containers, which correspond
to either single-process applications, or applications that use
multiple processes for concurrency. Processes within the same
X-Container are mutually trusting, and additionally trust the X-
LibOS, and underlying X-Kernel. The most significant threat
in this case comes from external probes designed to corrupt
the application logic. This threat is countered by application
and OS logic and is identical for standard containers and X-
Containers. Another class of external threat may attempt to
break through the isolation barrier of a container. In the case
of standard containers, this isolation barrier is provided by the
underlying general purpose OS kernel, which has a large TCB,
and due to the large number of system calls, a large attack
surface. X-Containers, in contrast, rely on a small X-Kernel
that is specifically dedicated to providing isolation. The X-
Kernel has a small TCB and a small number of hypervisor
calls that lead to a smaller number of vulnerabilities in practice.
This allows X-Containers to provide better protection to
external threats than standard containers isolated by a Linux
kernel.

Running an application over a LibOS removes security
isolation between a process and the kernel, but it does
not affect other security mechanisms implemented in the
application logic. For example, internal sand-boxing and

protection are also possible by leveraging programming
language type safety and verification tools for isolation, similar
to Software-Isolated Processes [38], Software-based Fault
Isolation [59], Nooks [57], and SPIN [29]. Programming
bugs, inadvertent design flaws, denial of service attacks, and
side-channel attacks are outside our threat model since their
mitigation involves solutions orthogonal to our design, which
can additionally be integrated in X-Containers.

4. Implementation
We have implemented a prototype of the X-Containers
platform based on Xen and Linux. We leveraged Xen-
Blanket [60] drivers to run the platform efficiently in public
clouds. We focused on applications running in x86-64 long
mode. The modifications to the kernel are in the architecture-
dependent layer and transparent to other layers in the kernel. In
this section, we present the implementation of X-Containers.

4.1. Background: Xen Paravirtualization
The Xen PV architecture enables running multiple concurrent
Linux VMs (PV guests or Domain-Us) on the same physical
machine without support for hardware-assisted virtualization,
but it requires guest kernels to be modestly modified to
work with the underlying hypervisor. Below, we review key
technologies in Xen’s PV architecture and its limitations on
x86-64 platforms.

In the PV architecture, Xen runs in kernel mode, and both
guest kernels and user processes run with fewer privileges.
All sensitive system instructions that could affect security
isolation, such as installing new page tables and changing
segment selectors, are executed by Xen. Guest kernels request
those services via hypercalls, which are validated by Xen
before being served. Exceptions and interrupts are virtualized
through efficient event channels. For device I/O, instead of
emulating hardware, Xen defines a simpler split driver model.
The Domain-U installs a front-end driver, which is connected
to a corresponding back-end driver in the Driver Domain
which gets access to real hardware, and data is transferred
using shared memory (asynchronous buffer descriptor rings).
Importantly, while Domain-0 runs a Linux kernel and has the
supervisor privilege to control other domains, it does not run
any applications, and can effectively isolate device drivers in
unprivileged Driver Domains. Therefore, bugs in Domain-0
kernel are much harder to exploit, and in their majority do not
affect security isolation of other VMs.

Xen’s PV interface has been supported by the mainline
Linux kernel—it was one of the most efficient virtualization
technologies on x86-32 platforms. However, the PV
architecture faces a fundamental challenge on x86-64
platforms. Due to the elimination of segment protection in
x86-64 long mode, we can only run the guest kernel and user
processes in user mode. To protect the guest kernel from user
processes, the guest kernel needs to be isolated in another
address space. Each system call needs to be forwarded by the
Xen hypervisor as a virtual exception, and incurs a page table
switch and a TLB flush. This causes significant overheads,
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and is one of the main reasons why 64-bit Linux VMs opt to
run with hardware-assisted full virtualization instead of PV.

4.2. Eliminating Kernel Isolation

We modified the ABI of the Xen PV architecture so that it no
longer provides isolation between the guest kernel (i.e., the
X-LibOS) and user processes. X-LibOS is mapped into user
processes’ address space with the same page table privilege
level and segment selectors, so that kernel access no longer
incurs a switch between (guest) user mode and (guest) kernel
mode, and system calls can be performed with function calls.

This leads to a complication: Xen needs to know whether
the CPU is in guest user mode or guest kernel mode for correct
syscall forwarding and interrupt delivery. Since all user-kernel
mode switches are handled by Xen, this can easily be done via
a flag. However, in X-LibOS, with lightweight system calls
(Section 4.4) guest user-kernel mode switches do not involve
the X-Kernel anymore. Instead, the X-Kernel determines
whether the CPU is executing kernel or user process code by
checking the location of the current stack pointer. As in the
normal Linux memory layout, X-LibOS is mapped into the
top half of the virtual memory address space and is shared
by all processes. The user process memory is mapped to the
lower half of the address space. Thus, the most significant
bit in the stack pointer indicates whether it is in guest kernel
mode or guest user mode.

In the Xen PV architecture, interrupts are delivered as
asynchronous events. There is a variable shared by Xen and the
guest kernel that indicates whether there is any event pending.
If so, the guest kernel issues a hypercall into Xen to have
those events delivered. In the X-Container architecture, the
X-LibOS can emulate the interrupt stack frame when it sees
any pending events and jump directly into interrupt handlers
without trapping into the X-Kernel first.

To return from an interrupt handler, an iret instruction
is typically used to reset code and stack segments, flags,
and the stack and instruction pointers. Interrupts can also
be enabled atomically. To guarantee atomicity and security
when switching privilege levels, Xen provides a hypercall
for implementing iret. In the X-Container architecture,
this hypercall is not necessary, and we implement iret

completely in user mode by pushing registers temporally into
the kernel stack and resuming the context with the ordinary
ret instruction. Similar to iret, the sysret instruction,
which is used for returning from a system call handler, is
optimized without trapping in the kernel.

4.3. Multicore Processing Support

X-Containers inherit support for multicore processing from
the Xen PV architecture. Xen provides an abstraction of
paravirtualized CPUs, and the Linux kernel can leverage
this abstraction in the architecture-dependent layer using
customized code for handling interrupts, maintaining page
tables, flushing TLBs, etc. The Linux kernel has full control
over how processes are scheduled with virtual CPUs, and Xen

determines how virtual CPUs are mapped to physical CPUs
for execution.

For security isolation, in paravirtualized Linux the “global”
bit in the page table is disabled so that switching between
different processes causes a full TLB flush. This is not needed
for X-LibOS, thus the mappings for the X-LibOS and X-
Kernel both have the global bit set in the page table. Switching
between different processes running on the same X-LibOS
does not require a full TLB flush, which greatly improves the
performance of address translation. Context switches between
different X-Containers do trigger a full TLB flush.

Because the kernel code is no longer protected, kernel
routines would not need a dedicated stack if the X-LibOS
only supported a single process. However, since the X-LibOS
supports multiple processes, we still need dedicated kernel
stacks in the kernel context, and when performing a system
call, a switch from user stack to kernel stack is necessary.

4.4. Automatic Lightweight System Calls
In the x86-64 architecture, user mode programs perform
system calls using the syscall instruction, which transfers
control to a routine in kernel mode. The X-Kernel immediately
transfers control to the X-LibOS, guaranteeing binary level
compatibility so that existing applications can run on the X-
LibOS without any modification.

Because the X-LibOS and the process both run in the
same privilege level, it is more efficient to invoke system call
handlers using function call instructions. X-LibOS stores a
system call entry table in the vsyscall page, which is mapped
to a fixed virtual memory address in every process. Updating
X-LibOS will not affect the location of the system call entry
table. Using this entry table, applications can optimize their
libraries and binaries for X-Containers by patching the source
code to change system calls into function calls, as most
existing LibOSes do. However, this significantly increases
deployment complexity, and it cannot handle third-party tools
and libraries whose source code is not available.

To avoid re-writing or re-compiling the application, we
implemented an online Automatic Binary Optimization
Module (ABOM) in the X-Kernel. It automatically replaces
syscall instructions with function calls on the fly when
receiving a syscall request from user processes, avoiding
scanning the entire binary file. Before forwarding the
syscall request, ABOM checks the binary around the syscall
instruction and sees if it matches any pattern that it recognizes.
If it does, ABOM temporarily disables interrupts and the
write-protection bit in the CR-0 register, so that code running
in kernel mode can change any memory page even if it is
mapped read-only in the page table. ABOM then performs the
binary patch with atomic cmpxchg instructions. Since each
cmpxchg instruction can handle at most eight bytes, if we need
to modify more than eight bytes, we need to make sure that
any intermediate state of the binary is still valid for the sake of
multicore concurrency safety. The patch is mostly transparent
to X-LibOS, except that the page table dirty bit will be set for
read-only pages. X-LibOS can choose to either ignore those
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00000000000eb6a0 <__read>:   
eb6a9:       b8 00 00 00 00          mov $0x0,%eax   
eb6ae:       0f 05                   syscall

00000000000eb6a0 <__read>:   
eb6a9:       ff 14 25 08 00 60 ff callq *0xffffffffff600008   

0000000000010330 <__restore_rt>:   
10330:       48 c7 c0 0f 00 00 00    mov $0xf,%rax   
10337:       0f 05                   syscall

0000000000010330 <__restore_rt>:   
10330: ff 14 25 80 00 60 ff callq *0xffffffffff600080 
10337: 0f 05                   syscall 

7-Byte	Replacement	(Case	1)

9-Byte	Replacement	(Phase-1)

0000000000010330 <__restore_rt>:   
10330: ff 14 25 80 00 60 ff callq *0xffffffffff600080 
10337: eb f7 jmp 0x10330

9-Byte	Replacement	(Phase-2)

000000000007f400 < syscall.Syscall>:   
7f41d:       48 8b 44 24 08 mov 0x8(%rsp),%eax   
7f422:       0f 05                   syscall

000000000007f400 < syscall.Syscall>:
7f41d:       ff 14 25 08 0c 60 ff callq *0xffffffffff600c08   

7-Byte	Replacement	(Case	2)

Figure 2: Examples of binary replacement.

dirty pages, or flush them to disk so that the same patch is not
needed in the future.

Figure 2 illustrates three patterns of binary code that ABOM
recognizes. To perform a system call, programs typically set
the system call number in the rax or eax register with a mov
instruction, and then execute the syscall instruction. The
syscall instruction is two bytes, and the mov instruction
is 5 or 7 bytes depending on the size of operands. We
replace these two instructions with a single call instruction
with an absolute address stored in memory, which can be
implemented with 7 bytes. The memory address of the entry
points is retrieved from the system call entry table stored in
the vsyscall page. The binary replacement only needs to be
performed once for each place.

With 7-byte replacements, we merge two instructions into
one. There is a rare case that the program jumps directly to the
location of the original syscall instruction after setting the
rax register somewhere else. After the replacement, this will
cause a jump into the last two bytes of our call instruction,
which are always “0x60 0xff”. These two bytes cause an
invalid opcode trap into the X-Kernel. To provide binary level
equivalence, we add a special trap handler in the X-Kernel to
fix the trap, by moving the instruction pointer backward to
the beginning of the call instruction. We have only seen this
triggered during the boot time of some operating systems.

9-byte replacements are performed in two phases, each one
generating results equivalent to the original binary. Since the
mov instruction takes 7 bytes, we replace it directly with a
call into the syscall handler. We leave the original syscall
instruction unchanged, in case the program jumps directly to
it, and we further optimize it with a jump into the previous
call instruction. The syscall handler in X-LibOS will check
if the instruction on the return address is either a syscall or
a specific jmp to the call instruction again. If it is, the syscall
handler modifies the return address to skip this instruction.

Our online binary replacement solution only handles the

case when the syscall instruction immediately follows a
mov instruction. For more complicated cases, it is possible to
inject code into the binary and re-direct a bigger chunk of code.
We also provide a tool to do this offline. For most standard
libraries, such as glibc, the default system call wrappers
typically use the pattern illustrated in Figure 2, making our
current solution sufficient for optimizing most system call
wrappers on the critical path (see evaluations in Section 5.2).

4.5. Current Limitations

In this paper, we address the key challenges of designing a
lightweight and performant container technology, by turning
the Xen PV architecture into a LibOS platform for supporting
unmodified application containers. There are some remaining
challenges that are not the focus of this paper, and for which
previously-proposed solutions can be applied. We discuss
these limitations below.

Memory management: In our prototype, each X-Container
is configured with a static memory size. Linux containers
are able to adjust memory allocation dynamically. Dynamic
memory allocation and over-subscription of Xen VMs have
been studied in literature [37, 52], leveraging mechanisms
such as ballooning. In addition, Xen provides native
Transcendent Memory (tmem) support [47], which can be
leveraged by Linux kernels in different VMs for efficiently
sharing the page cache and RAM-based swap space [48].

Spawning speed of new instances: An important benefit
of containers is that they can be spawned much faster than an
ordinary VM. The current implementation of X-Containers
places a penalty on the startup cost of a container, but
we are taking measures to reduce this startup time. For
example, to support Docker containers, we implemented a
Docker Wrapper. To bootstrap an X-Container, the Docker
Wrapper loads an X-LibOS with a Docker image and a special
bootloader. The bootloader spawns the processes of the
container directly without running any unnecessary services,
significantly reducing the start-up cost compared to starting an
ordinary VM. In spite of this, still some instantiation overhead
remains. For example, we can boot an X-LibOS with a
single bash process in 180ms, but the overhead of Xen’s “xl”
toolstack brings the total instantiation time up to 3 seconds.
LightVM has proposed a solution to reduce the overhead of
the toolstack to 4ms [49], which can be also applied to X-
Containers. The delay in bootstrapping a Linux kernel can be
reduced by leveraging VM cloning [42, 43].

5. Evaluation
In this section, we address the following questions:

• How effective is the Automatic Binary Optimization
Module (ABOM)?

• What is the performance overhead of X-Containers, and
how does it compare to Docker and other container
runtimes in the cloud?

• How does the performance of X-Containers compare to
other LibOS designs?
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Application Description Implementation Benchmark Syscall Reduction
memcached Memory caching system C/C++ memtier_benchmark 100%
Redis In-memory database C/C++ redis-benchmark 100%
etcd Key-value store Go etcd-benchmark 100%
MongoDB NoSQL Database C/C++ YCSB 100%
InfluxDB Time series database Go influxdb-comparisons 100%
Postgres Database C/C++ pgbench 99.80%
Fulentd Data collector Ruby fluentd-benchmark 99.40%
Elasticsearch Search engine JAVA elasticsearch-stress-test 98.80%
RabbitMQ Message broker Erlang rabbitmq-perf-test 98.60%
Kernel Compilation Code Compilation Various tools Linux kernel with tiny config 95.30%
Nginx Webserver C/C++ Apache ab 92.30%
MySQL Database C/C++ sysbench 44.60% (92.2% manual)

Table 1: Evaluation of the Automatic Binary Optimization Module (ABOM)

• How does the scalability of X-Containers compare to
Docker Containers and VMs?

• How can kernel customization benefit performance?

5.1. Experiment Setup

We conducted experiments on VMs in both Amazon Elastic
Compute Cloud (EC2) and Google Compute Engine (GCE).
In EC2, we used c4.2xlarge instances in the North Virginia
region (4 CPU cores, 8 threads, 15GB memory, and 2×100GB
SSD storage). To make the comparison fair and reproducible,
we ran the VMs with different configurations on a dedicated
host. In Google GCE, we used a customized instance type in
the South Carolina region (4 CPU cores, 8 threads, 16GB
memory, and 3×100GB SSD storage). Google does not
support dedicated hosts, so we attached multiple boot disks to
a single VM, and rebooted it with different configurations.

We used the Docker platform on Ubuntu-16 and gVisor
as baselines for our evaluation. In Google GCE, we
enabled nested hardware virtualization and installed Clear
Containers in Ubuntu-16 with KVM. We also implemented
Xen-Containers, a platform similar to LightVM [49] that
packages containers with a Linux kernel in para-virtualized
Xen instances. Xen-Containers use exactly the same software
stack (including the Domain-0 tool stack, device drivers,
and Docker wrapper) as X-Containers. The only difference
between Xen-Containers and X-Containers is the underlying
hypervisor (unmodified Xen vs. X-Kernel) and guest kernel
(unmodified Linux vs. X-LibOS). Xen-Containers are similar
to Clear Containers except that they can run in public clouds
that do not support nested hardware virtualization, such as
Amazon EC2.

Due to the disclosure of Meltdown attacks on Intel CPUs,
both Amazon EC2 and Google GCE provision VMs with
patched Linux kernels by default. This patch protects the
kernel by isolating page tables used in user and kernel
mode. The same patch exists for Xen and we ported it
to both Xen-Container and X-Container. These patches
can cause significant overheads, and ultimately new Intel
hardware will render them unnecessary. It is thus important
to compare both the patched and unpatched code bases. We
therefore used ten configurations: Docker, Xen-Container,

X-Container, gVisor, and Clear-Container, each with
an -unpatched version. Due to the threat model of single-
concerned containers, for Clear-Containers only the host
kernel is patched; the guest kernel running in nested VMs is
unpatched in our setup.

The VMs running native Docker, gVisor, and Clear
Containers had Ubuntu 16.04-LTS installed with Docker
engine 17.03.0-ce and Linux kernel 4.4. We used Linux kernel
4.14 as the guest kernel for Clear Containers since its current
tool stack is no longer compatible with Linux 4.4. The VMs
running Xen-Containers had CentOS-6 installed as Domain-0
with Docker engine 17.03.0-ce and Xen 4.2, and used Linux
kernel 4.4 for running containers. X-Containers used the same
setup as Xen-Containers except that we modified Xen and
Linux as described in this paper. All configurations used
device-mapper as the back-end storage driver.

For each set of experiments, we use the same Docker image
for all configurations. When running network benchmarks, we
use separate VMs for the client and server. Unless otherwise
noted we report the average and standard deviation of five runs
for each experiment.

5.2. Automatic Binary Optimization

To evaluate the efficacy of ABOM, we added a counter
in the X-Kernel to calculate how many system calls were
forwarded to X-LibOS. We then ran a wide range of popular
container applications with ABOM enabled and disabled. The
applications include the top 10 most popular containerized
applications [1], and are written in a variety of programming
languages. For each application, we used open-source
workload generators as the clients.

Table 1 shows the applications we tested and the reduction
in system call invocations that ABOM achieved. For all
but one application we tested, ABOM turned more than
92% of system calls into function calls. The exception is
MySQL, which uses cancellable system calls implemented in
the libpthread library that are not recognized by ABOM.
However, using our offline patching tool, two locations in
the libpthread library can be patched, reducing system call
invocations by 92.2%.
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Figure 3: Relative performance of macrobenchmarks.

5.3. Macrobenchmarks

We evaluated the performance of X-Containers with three
macrobenchmarks: NGINX, Memcached, and Redis. The
corresponding Docker images we used were nginx:1.13,
memcached:1.5.7, and redis:3.2.11, with the default
configurations. For X-Containers the applications were
optimized only by ABOM, without any manual binary
patching. Since Amazon EC2 and Google GCE do not
support bridged networks natively, the servers were exposed to
clients via port forwarding in iptables. We used a separate
VM as the client for generating workloads. For NGINX
we used the Apache ab benchmark which benchmarks
webserver throughput by sending concurrent requests. For
Memcached and Redis, we used the memtier_benchmark

which simulates multiple clients generating operations to the
database with a 1:10 SET:GET ratio.

Figure 3 shows the relative performance of the
macrobenchmarks normalized to native Docker (patched).
gVisor performance suffers significantly from the overhead of
using ptrace for intercepting system calls. Clear Containers
suffers a significant performance penalty for using nested
hardware virtualization (also measured by Google [15]). X-
Containers outperformed Docker, gVisor, Xen-Containers,
and Clear Containers. Notably, X-Containers improved
throughput of Memcached from 134% to 208% compared
to native Docker. For NGINX, X-Containers achieved 21%
to 50% throughput improvement over Docker. For Redis,
the performance of X-Containers was comparable to Docker,
but note that this was achieved with stronger inter-container
isolation. Note that Xen-Containers performed worse than
Docker in most cases, thus performance gains achieved by
X-Containers are due to our modifications to Xen and Linux.

5.4. Microbenchmarks

To better understand the effect of changing system calls
into function calls, we also evaluated performance with a
set of microbenchmarks. We started with an Ubuntu-16
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Figure 4: Relative system call throughput (higher is better).

Docker image, and ran UnixBench and iperf on it. The
System Call benchmark tests the speed of issuing a series of
nonblocking system calls, including dup, close, getpid,
getuid, and umask. The Execl benchmark measures the
speed of the exec system call, which overlays a new binary
on the current process. The File Copy benchmarks test the
throughput of copying files with a 1KB buffer. The Pipe
Throughput benchmark measures the throughput of a single
process reading and writing in a pipe. The Context Switching
benchmark tests the speed of two processes communicating
with a pipe. The Process Creation benchmark measures the
performance of spawning new processes with the fork system
call. Finally, iperf tests the performance of TCP transfer. We
ran our tests both in Google GCE and Amazon EC2. We
ran tests both isolated and concurrently. For concurrent tests,
we ran 4 copies of the benchmark simultaneously. For each
configuration, we see similar trends.

Figure 4 shows the relative system call throughput
normalized to Docker. X-Containers dramatically improve
system call throughput (up to 27× compared to Docker,
and up to 1.6× compared to Clear Containers), because
system calls are converted to function calls. The throughput of
gVisor is only 7 to 9% of Docker due to the high overhead of
ptrace, so can be barely seen in the figure. Clear Containers
achieved much better system call throughput than Docker
because the guest kernel is highly optimized by disabling most
security features within a Clear container. Also, note that the
Meltdown patch does not affect performance of X-Containers
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Figure 5: Relative performance of microbenchmarks (higher is better).

and Clear Containers because for X-Containers the system
calls did not trap into kernel mode, and for Clear Containers
the guest kernel was always unpatched.

Figure 5 shows the relative performance for other
microbenchmarks, also normalized to native patched Docker.
Similar to the system call throughput benchmark, the
Meltdown patch did not affect X-Containers and Clear
Containers. In contrast, patched Docker containers and
Xen-Containers suffer significant performance penalties. X-
Containers has noticeable overheads compared to Docker
in process creation and context switching. This is because
process creation and context switches involves page table
operations, which must be done in the X-Kernel.

5.5. Unikernel and Graphene

We also compared X-Containers to Graphene and Unikernel.
For these experiments, we used four Dell PowerEdge R720
servers in our local cluster (two 2.9 GHz Intel Xeon E5-
2690 CPUs, 16 cores, 32 threads, 96GB memory, 4TB disk),
connected to one 10Gbit switch. We ran the wrk benchmark
with the NGINX webserver, PHP, and MySQL. Graphene
ran on Linux with Ubuntu-16.04, and was compiled without
the security isolation module (which should improve its
performance). For Unikernel, we used Rumprun [17] because
it can run the benchmarks with minor patches (running with
MirageOS [46] requires rewriting the application in OCaml).

Figure 6a compares throughput of the NGINX webserver
serving static webpages with a single worker process. As there
is only one NGINX server process running, we dedicated
a single CPU core for X-Containers and Unikernel. X-
Containers achieved throughput comparable to Unikernel, and
over twice that of Graphene.

For Figure 6b, we ran 4 worker processes of a single
NGINX webserver. This is not supported by Unikernel, so we
only compared with Graphene. X-Containers outperformed
Graphene by more than 50%, since in Graphene, processes
use IPC calls to coordinate access to a shared POSIX library,
which incurs high overheads.

For Figure 6c we evaluated the scenario where two PHP
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Figure 6: Throughput comparison for Unikernel (U), Graphene
(G), and X-Container (X).
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Figure 7: Alternate configurations of two applications that use
MySQL.

CGI servers were connected to MySQL databases. We
enabled the built-in webserver of PHP, and used the wrk

client to access a page that issued requests to the database
(with equal probability for read and write). Graphene does
not support the PHP CGI server, so we only compared to
Unikernel. As illustrated in Figure 7, the PHP servers can
either share the database or have dedicated databases, so there
are three possible configurations for this setup depending
on the threat model and security requirements. Figure 6c
shows the total throughput of two PHP servers with different
configurations. All VMs are running a single process with
one CPU core. With Shared and Dedicated configurations,
X-Containers outperformed Unikernel by over 40%. We
believe that this is because the Linux kernel outperforms
the Rumprun kernel for this benchmark. Furthermore, X-
Container supports running PHP and MySQL in a single
container (the Dedicated&Merged configuration), which is
not possible for Unikernel (which only supports a single
process). Using this setup, X-Container throughput was about
three times that of the Unikernel Dedicated configuration.
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Figure 8: Throughput scalability as the number of containers
increases.

5.6. Scalability
We evaluated scalability of the X-Containers architecture by
running up to 400 containers on one physical machine. For
this experiment, we used an NGINX server with a PHP-FPM
engine. We used the webdevops/PHP-NGINX Docker image
and configured NGINX and PHP-FPM with a single worker
process. We ran the wrk benchmark to measure the total
throughput of all containers. Each container had a dedicated
wrk thread with 5 concurrent connections—thus the total
number of wrk threads and concurrent connections increased
linearly with the number of containers.

Each X-Container was configured with 1 vCPU and
128MB memory.1 We also evaluated Xen HVM and Xen PV

configurations that ran Docker containers in regular Xen HV
and PV instances respectively. Each Xen VM was assigned
1 vCPU and 512MB memory (512MB is the recommended
minimum size for Ubuntu-16). However, because the physical
machine only had 96GB memory, when starting more than
200 VMs, we changed the per-VM memory size to 256MB.
We found that the VMs could still boot but the network started
dropping packets. We were not able to boot more than 250 PV
instances, or more than 200 HV instances on Xen.

Figure 8 shows the aggregated throughput of all bare-
metal configurations. We can see that Docker containers
achieved higher throughput for small numbers of containers.
This is because context switching between Docker containers
is cheaper than between X-Containers and between Xen
VMs. However, as the number of containers increased,
the performance of Docker containers dropped faster. This
is because each NGINX+PHP container ran 4 processes:
with N containers, the Linux kernel running Docker
containers was scheduling 4N processes, while X-Kernel
was scheduling N virtual CPUs, each running 4 processes.
This hierarchical scheduling turned out to be a more scalable
way of co-scheduling many containers, and, with N = 400,
X-Containers outperformed Docker by 18%.

5.7. Benefits of Kernel Customization
The X-Containers platform enables applications that require
customized kernel modules to run in containers. For example,
X-Containers can run software RDMA (both Soft-iwarp and

1X-Containers also work with 64MB memory, but for this experiment
128MB is sufficiently small to boot 400 X-Containers.
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Figure 9: Kernel-level load balancing.

Soft-ROCE) applications. In Docker environments, such
modules require root privilege and expose the host network to
the container directly, raising security concerns.

In this section, we present a case study of kernel
customization in X-Containers that illustrates a performance
benefit not easily achievable on Docker platforms. We tested
a scenario with three NGINX webservers and a load balancer.
The NGINX webservers are each configured to use one worker
process. Docker platforms typically use a user-level load
balancer, such as HAProxy. HAProxy is a single-threaded,
event-driven proxy server widely deployed in production
systems. X-Containers supports HAProxy, but can also use
kernel-level load balancing solutions, such as IPVS (IP Virtual
Server). IPVS requires inserting new kernel modules and
changing iptable and ARP table rules, which is not possible in
Docker without root privilege and access to the host network.

In this experiment, we used the HAProxy:1.7.5 Docker
image. The load balancer and NGINX servers were running on
the same physical machine. We configured each X-Container
with a single vCPU. We used the wrk workload generator and
measured total throughput.

Figure 9 compares various configurations. X-Containers
with HAProxy achieved twice the throughput of Docker
containers. With IPVS kernel level load balancing using NAT
mode, X-Containers further improve throughput by 12%. In
this case the load balancer was the bottleneck because it served
as both the web front-end and NAT server. IPVS supports
another load balancing mode called “direct routing.” With
direct routing, the load balancer only needs to forward requests
to backend servers while responses from backend servers are
routed directly to clients. This requires changing iptable rules
and inserting kernel modules both in the load balancer and
NGINX servers. With direct routing mode, the bottleneck
shifted to the NGINX servers, and total throughput improved
by another factor of 2.5.

6. Related Work
The X-Container architecture is a LibOS platform designed
specifically for cloud-native systems. Below we discuss work
on containers and LibOSes related to X-Containers.

6.1. Application Containers
OS-level virtualization [56] provides a lightweight mechanism
of running multiple OS instances. Docker [4], LXC [10],
OpenVZ [14], and Solaris Zones [18] are different
implementations of OS-level virtualization. Generally, these
solutions provide poor kernel customization support, and
application isolation is a concern due to the sharing of a large
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OS kernel. Although there are mitigations such as seccomp
and SELinux which allow specification of system call filters
for each container, in practice it is extremely difficult to define
a policy for arbitrary, previously unknown applications [5].

Various runtimes have been proposed to address the problem
of security isolation in containers. Clear Containers [8],
Kata Containers [9], Hyper Containers [6], VMWare vSphere
Integrated Containers [19], and Hyper-V containers [7] all
leverage hardware virtualization support to wrap containers
with a dedicated OS kernel running in a VM. However,
deploying these platforms in virtualized clouds requires
nested hardware virtualization support, which is not available
everywhere, and can cause significant performance penalties
even when it is available. Google gVisor [5] is a user-
space kernel written in Go that supports container runtime
sandboxing, but it provides limited compatibility [13] and
incurs significant performance overhead.

LightVM with TinyX [49] creates minimalistic Linux VM
images targeted at running a single application container.
Similar to X-Containers, LightVM leverages the Xen
hypervisor to reduce the TCB running in kernel mode, and can
leverage Xen-Blanket [60] to run in public clouds. However,
this can introduce significant performance overheads, as we
saw in Section 5. LightVM focuses on improving Xen’s
toolstack for scalability and performance, which can be
integrated with X-Containers.

SCONE [22] implements secure containers using Intel
SGX, assuming a threat model different from X-Container’s
where even the host OS or hypervisor cannot be trusted. Due
to hardware limitations, SCONE cannot provide full binary
compatibility to existing containers, and cannot run multiple
processes within a container.

6.2. Library OS

The insight of a Library OS [34, 53, 21, 32, 44] is to keep
the kernel small and link applications to a LibOS containing
functions that are traditionally performed in the kernel. Most
Library OSes [34, 20, 36, 53, 54] focus exclusively on
single-process applications, which is not sufficient for multi-
process container environments, and cannot support more
complicated cloud applications that rely on Linux’s rich
primitives. Graphene [58] is a Library OS that supports
multiple Linux processes, but provides only one third of the
Linux system calls. Moreover, multiple processes use IPC
calls to access a shared POSIX implementation, which limits
performance and scalability. Most importantly, the underlying
host kernel of Graphene is a full-fledged Linux kernel, which
does not reduce the TCB and attack surface.

Unikernel [46] and related projects, such as EbbRT [55],
OSv [41], ClickOS [50], and Dune [27, 28], proposed
compiling an application with a Library OS into a lightweight
VM, using the VM hypervisor as the exokernel. These systems
also only support single-process applications, and require
re-writing or re-compiling the application. In contrast, X-
Containers supports binary level compatibility and multiple

processes. In addition, X-Container supports all debugging
and profiling features that are available in Linux.

Usermode Kernel [35] is an idea similar to X-Containers
that runs parts of the Linux kernel in userspace in VM
environments. However, some parts of the Usermode
Kernel still run in a higher privilege level than user mode
processes, and it is not integrated with application container
environments. Moreover, Usermode Kernel currently only
works for x86-32 architectures.

As a final point, none of the previous work on containers
and LibOSes are specifically designed for cloud-native
applications, either incurring high performance overheads, or
sacrificing security and isolation. As more applications switch
from monolithic designs to large graphs of loosely-coupled
microservices, it is important for container technologies to also
evolve to fully exploit the potential of cloud-native systems.

7. Conclusion
Exokernels are an ideal abstraction for single-concerned
cloud-native containers: minimal kernels can securely isolate
mutually untrusting containers, and Library OSes allow for
customization and can run containers efficiently. However,
current Exokernels and Library OSes do not support both
binary-level compatibility and multicore processing. The X-
Containers platform uses the Xen hypervisor as an exokernel
and a modified Linux as an excellent LibOS that can be
deployed in clouds without specific support from underlying
cloud providers. The paper shows that X-Containers can
significantly outperform other container and Library OS
platforms.
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