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Abstract

We consider the problem of triangulating a d-dimensional region.
Our mesh generation algorithm, called QMG, is a quadtree-based algo-
rithm that can triangulate any polyhedral region including nonconvex
regions with holes. Furthermore, our algorithm guarantees a bounded
aspect ratio triangulation provided that the input domain itself has
no sharp angles. Finally, our algorithm is guaranteed never to over-
refine the domain in the sense that the number of simplices produced
by QMG is bounded above by a factor times the number produced by
any competing algorithm, where the factor depends on the aspect ra-
tio bound satisfied by the competing algorithm. The QMG algorithm
has been implemented in C+4 and is used as a mesh generator for
the finite element method.

1 Introduction

The finite element method refers to a family of numerical methods for solv-
ing boundary value problems and is used extensively in electromagnetics,
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thermodynamics, structural analysis, acoustics, chemistry and astronomy. A
crucial preprocessing step is mesh generation. A mesh generator is an al-
gorithm for subdividing a finite subset of IR? or IR into small convex cells,
typically triangles or quadrilaterals in 2D and tetrahedra or hexahedra (brick
shapes) in 3D.

We propose a mesh generation algorithm called QMG for nonconvex poly-
hedral regions in any dimension. QMG takes as input a representation of a
polyhedral region in IR? and produces as output a simplicial complex that is a
subdivision of the input region. QMG uses a quadtree technique: the domain
is covered with a large d-dimensional cube, and then cubes are recursively
split into 2¢ subcubes until each subcube is triangulated.

For good accuracy bounds in the finite element method, it is necessary
that the tetrahedra have bounded aspect ratio. The aspect ratio of a simplex
is defined as its maximum side-length divided by its minimum altitude. For
an analysis of the accuracy of the finite element method, see Johnson [9].

The mesh produced by QMG is guaranteed to have good aspect ratio. Let
pomc be the worst aspect ratio among all simplices in the QMG triangulation
of a particular input polyhedron P. Let ps be the worst aspect ratio among
all simplices in any other triangulation § of P, where § is produced by some
other competing algorithm. Then Theorem 6 says that pqug < c¢ps, where
¢ is a universal constant, in the case d = 2 or d = 3. The technique used to
prove this theorem is as follows. First, a lower bound is proved stating that
any triangulation § of P must have at least one simplex with aspect ratio at
least as large as ¢/6(P), where §(P) denotes the sharpest angle of P and ¢
is some other constant. Then we prove that QMG’s aspect ratio is bounded
above by ¢/0(P). In the case d > 3, a weaker version of this result is proved.

Our second main theorem is that the number of simplices generated by
QMG is the smallest possible, i.e., the mesh is as coarse as possible, in the
following sense. Let nqgma be the number of simplices produced by QMG
when applied to a particular polyhedral domain P, and let ns be the number
of simplices in some other triangulation S of P. Then nqua < f(d,ps) - ns,
where f is some function of d, the dimension and of ps, the aspect ratio
bound satisfied by the competing triangulation. In other words, nqug is
much larger than ng only in the case when & has simplices with poor aspect
ratio. The precise values of the constants present in these two main results
are not worked out explicitly in this paper but are expected to be quite large.

The importance of bounding the number of tetrahedra is as follows. The
running time of the finite element method is a function of the number of



nodes and elements in the triangulation. In particular, if n is the number
of nodes (or elements—for bounded aspect ratio triangulations, the number
of nodes and elements are within a constant factor of each other), then the
running time of the finite element method is O(n®), where « is at least 1 and
depends on the method used for solving the sparse linear equations. Thus,
there is a significant penalty for meshes with too many elements. On the other
hand, small elements are necessary for high accuracy with the finite element
method. Practitioners usually address this tradeoff by using meshes with
varying degrees of refinement: such a mesh has small elements in the part of
the domain of interest where high accuracy is desired, and larger elements
are used elsewhere. Because QMG generates the coarsest mesh possible (up
to the multiplicative factor f(d,ps)), it can be used as the starting point
for further refinement. Indeed, the implementation of QMG allows a user-
specified refinement function to control the degree of refinement.

Our work is closely related to earlier work by Bern, Eppstein and Gilbert
[4] who solved the corresponding problem for two-dimensional polygonal do-
mains. These authors also used a quadtree approach, but the extension of
their technique to higher dimensions is far from straightforward; the QMG
algorithm differs in many ways from that earlier paper.

Other work on triangulation problems with optimality guarantees is the
result of Baker, Grosse and Rafferty [1], whose algorithm triangulates 2D
polygons with nonobtuse angles and Chew’s [7] triangulation of 2D with
guaranteed aspect ratio using a Delaunay approach. Chew’s work was ex-
tended by Ruppert [14] to handle varying degrees of refinement (and thus
establishing the Bern et al. optimality properties), and later by Chew also
[8] to curved surfaces.

In three dimensions, no work previous to ours guaranteed bounded aspect
ratio triangulations, although Chazelle and Palios [6] developed an algorithm
with the best possible bound (up to a constant factor) on the cardinality of
the triangulation in terms of reflex angles.

Our triangulation uses Steiner points, meaning that it introduces new
vertices into the domain not present in the original input. Indeed, as shown
by Schoenhardt, Steiner points are necessary for triangulating nonconvex
polyhedra in dimensions 3 and higher. For additional background on the
optimal triangulation literature, we refer the reader to the excellent surveys
of Bern and Eppstein [3] and Bern and Plassmann [5]. Note that, because of
the importance of mesh generation, there is a vast body literature on mesh
generation algorithms. We do not attempt to survey this literature here



because the majority of these papers are not concerned with mathematical
quality guarantees.

The remainder of this paper is organized as follows. In Section 2 we
describe the class of allowable input domains for QMG. In Section 3 and
Section 4 we present a high-level description of the QMG algorithm. In
Section 5—Section 7 we provide more details about the algorithm. In Section 8
and Section 9 we define aspect ratio formally and sharp angles, and establish
some results about them. In Section 10—-Section 17 we provide the analysis of
QMG, including the proofs of the two main optimality properties mentioned
above. In Section 18, we consider the asymptotic running time of QMG, and
in Section 19 we briefly describe the implementation.

We remark that this paper has a companion paper [12] that describes how
to triangulate a grid of uniform boxes cut by a k-affine space. The method
in that paper is used as a subroutine in this paper, and we need some of the
results of the analysis in that other paper for the analysis in Section 10.

Besides the QMG algorithm and its analysis, the other main contribution
of this paper is a series of new bounds that apply to any possible triangu-
lation of a polyhedral domain (see Section 9) and other results that apply
to any possible bounded-aspect ratio triangulation of a polyhedral domain
(see Section 16). The results in these sections act as lower bounds for prov-
ing QMG’s optimality, but they would be useful for the analysis of other
triangulation algorithms.

This paper, along with the companion [12] supersedes our earlier work
[13]. We briefly summarize the difference between this paper and the ear-
lier work for the reader familiar with that work. First, this work applies
to d-dimensional regions for any d whereas the earlier work was limited to
three dimensions. A consequence of this generalization is that we have dis-
carded the case-based proofs used in [13] in favor of more uniform treatment
here. The notion of enforcing a “balance” condition in the quadtree has been
dropped. The idea of “warping” has been replaced by the approach in the
companion paper, together with the “alignment” procedure described in this

paper.

2 Nonconvex polyhedra

Recall that the input to our algorithm is a nonconvex polyhedron P in R?.
Mathematically, a nonconvex polyhedron is the set resulting from a finite



number of union and intersection operations applied to halfspaces. We as-
sume P is compact. We assume that P is presented via a boundary rep-
resentation; in fact, from now on, we refer to polyhedra as “b-reps.” The
boundary representation of P consists of a lattice of faces: zero-dimensional
faces are called vertices, one-dimensional faces edges, and the d-dimensional
face is P itself. Each face of dimension 1 or higher has boundaries that are
faces of one lower dimension. Thus, a brep is stored as a layered directed
acyclic graph with one node for each face, and arcs to indicate the “is-a-
boundary-of” relation. Nodes at level 0 (vertices) have coordinates stored
with them.

Finally, we assume that P is a d-manifold with boundary to simplify our
presentation, although the implementation of QMG allows many nonmani-
fold features such as internal boundaries.

3 Boxes

The main data structure of QMG is a box. A box is a d-dimensional cube em-
bedded in an axis-parallel manner in IR?. Our algorithm is a quadtree-based
algorithm, meaning that it starts with a single d-cube, and then subdivides
into 27 equal-sized smaller cubes. The subdivision continues recursively.

Boxes of dimension less than d occur as separate data items. These lower-
dimensional boxes are discussed in more detail in Section 7. We ignore the
existence of these lower-dimensional boxes until Section 7 to allow a simplified
presentation of QMG’s quadtree generation in the next three sections.

Initially, there is one large d-dimensional box, called the top box, which
contains all of P and also a neighborhood around P. This box is considered
active. Other boxes are generated from the top box by applying one of three
operations recursively. First, an active box may be splif, meaning that it is
replaced by 2¢ smaller boxes each of equal size, as mentioned above. Second,
a box may be duplicated, meaning that it is replaced by two or more boxes
with the same size and position as the original box. A final operation on
an active box is protecting it, in which case it is no longer active and no
longer available for splitting or duplicating. The collection of boxes is called
a quadtree.

The data items stored with a box are as follows. QMG stores its position
and size. Because of the dyadic nature of the quadtree, the position and
size are both represented exactly (as integers). As mentioned in the last



paragraph, boxes are either active or protected. An active box B has stored
with it its content which is denoted co(B). The definition of content is
as follows. Let ex(B) denote a cube in IR? which is concentric with B but
has a diameter larger by a constant factor 1 + v, where v is defined below.
Note that P Nex(B) is a polyhedral region. If P Nex(B) is connected (in
the topological sense), then we define co(B) = P Nex(B). If P Nex(B) is
not connected, then QMG makes duplicates of B, one for each component
of P Nex(B), and assigns one component to each duplicate. Thus, co(B) is
always a connected polyhedral region. More details are given in Section 5.

A protected box is always associated with a particular face F' of P, and
F must meet ex(B). Thus, a protected box has stored with it a reference to
F and also a close point. The close point is a point in IR? lying in Fnex(B).
The coordinates of the close points are stored in an auxiliary table, and
the protected box stores an index into this table. (This is because several
protected boxes can share the same close point.) The collection of close
points make up the vertices of the final triangulation.

4 High level description of the quadtree gen-
eration

The mesh generation algorithm has two parts: quadtree generation and tri-
angulation. See Fig. 1-2 for the high-level outline of quadtree generation.
Triangulation is described in Section 7. Not all the terms in these figures
have been defined yet.

Quadtree generation is divided into d + 1 phases numbered 0, ..., d. We
use k throughout the paper to denote the current phase. Phase k& works
primarily with the k-dimensional faces of P. (Thus, in phase d we look at P
itself.) Each phase is subdivided into two stages, the separation stage and the
alignment stage. During the separation stage, active boxes are split. There
is also splitting of active boxes during the alignment stage. The alignment
stage also turns some active boxes into protected boxes.

5 Separation stage

In this section we describe the separation stage of phase k£ in more detail.
At the start of the phase there is a list of active boxes [}, and the (initially



/* Quadtree generation */.
Initialize I := {top_box}.
Initialize J := {}.
for k:=0,...,d do
Initialize Iy :={}.
Initialize Op := {} for each k-dimensional P-face F.
/* Phase k separation stage. */
while I is nonempty do
Remove an active box B from I}.
if B is crowded or too big for the size function then
Split B into By, ..., Bya; duplicate as necessary.
Delete B;’s with empty content.
Put remaining B;’s into [j.
elseif co( B) contains a (necessarily unique) k-face F' of P then

Or :=Or U {B}
else
[k-l-l = [k-l-l U {B}
end if
end while

Figure 1: High-level description of QMG’s quadtree generation (continued in
Fig. 2).



/* Phase k alignment stage. */
for each k-dimensional P-face F' do
while O is nonempty do
Remove the highest-precedence box B from Op.
Find the highest priority subface B’ of B that is close to F.
if B has no such close subface then
[k-}-l = [k-}-l U {B}
elseif the alignment condition is satisfied for B then
Protect B; its associated P-face is F.
Find the close point on F' for B (near B’).
J:=JU{B}.
else
Split B into By, ..., Bya; duplicate as necessary.
Delete the B;’s with no content.
Put remaining B;’s into Op.
end if
end while
end for

end for /* end of k loop */

Figure 2: High-level description of QMG’s quadtree generation (continued
from Fig. 1).



empty) idle list Izy1. During the phase we repeatedly remove one active
box, say B, from [} and test it for crowdedness (defined below). If B is
crowded, then it is split. Let us use the term “children” to denote the boxes
on the next deeper level resulting from the split. All the children with a
nonempty content are inserted back into [. Box B itself is deleted, and the
children with empty content are deleted. (Boxes with empty content that
arise during splitting for alignment are also deleted.) On the other hand, if
B is not crowded, then we check whether it has a P-face of dimension k, say
F.in its content. If so, the box is transferred to orbit Op. If not, the box is
transferred to the idle list. In this manner [ is eventually emptied.

We now explain the terms “content” and “crowdedness.” First, we define
ex(B) for an active box B to be a d-dimensional cube in IR? concentric with B
but expanded in each dimension by a multiplicative factor 1 4+ v. Parameter
~ must satisfy v > ¢ for each P-face F', where ¢y is the tolerance for
alignment described in Section 6. For instance, v = 0.5 is acceptable.

The content of an active box B is a b-rep and is typically P Nex(B).
However, if P Nex(B) has more than one connected component, we identify
the components of P Nex(B), say C1,...,C, and we replace B with p copies
of itself, say Bi,..., B,. Then we define co(B;) = C; fori =1,...,p.

Say B is split, and say B’ is one of the child boxes. We compute co(B’)
by intersecting co(B) with ex(B’). (Notice that our definition of ex(B) guar-
antees that ex(B’) is a proper subset of ex(B).) In particular, we do not
compute co(B’) by intersecting the original b-rep P with ex(B’). This is
because this latter approach could reintroduce connected components that
were duplicated into a box different from B at some earlier level of splitting.

We say that a box B is crowded if (1) co(B) meets any P-face of dimen-
sion k — 1 or less, or (2) co(B) meets a P-face F' of dimension k, and co(B)
meets another P-face (G that is not a superface of F.

Thus, a box B is not crowded during phase k if either (1) co(B) does
not meet any P-faces of dimension & or lower or (2) co(B) meets exactly
one P-face F' of dimension k, no P-faces of dimension less than k, and every
P-face of dimension higher than & in co(B) is a superface of F'. A box that
is not crowded is either transferred to [x4; if (1) holds, or it is transferred to
Opr if (2) holds. Some examples of crowdedness are given in Fig. 3.

Another rule used in the separation stage is that we split boxes if their
side-length is greater than the user-specified mesh refinement function that
was mentioned in the introduction. We do not say any more about this here,
since the analysis in subsequent sections does not involve a user-specified



Figure 3: Suppose we are in the separation stage of the phase 0 in the case
d = 2. In the above figures, solid lines indicate boxes, dotted lines indicate
ex(B) for these boxes, dashed lines indicate the boundary of P, and shading
represents the interior of P. All boxes in the top row are uncrowded. The
first box would be placed into O,. The second box would be placed into I;.
The third box in the top row must be duplicated, and then one duplicate
would go into O, and the other into O,. Both boxes in the bottom row are

crowded and must be split.
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mesh refinement function.

The reader may notice that there appears to be a potential infinite loop:
if an active box B in phase k has a P-face of dimension k& — 1 or less in its
interior, then this will cause an infinite recursion of splitting because there
will always be a crowded subbox. Fortunately, this situation can never occur.
The reason is that a box whose interior meets a P-face of dimension k£ —1 or
less would have had a close subface identified in an earlier phase and would
have become protected, or would have been crowded in an earlier phase. (See
the next section for a description of close subfaces.) Therefore, it could never
end up in [;. It is possible however, for a box in [, to have a face of dimension
kE — 1 or less inside ex(B) but outside B. This can happen because, in the
previous phase, a (k — 1)-face F' could lie in the content of B and yet not
be close enough to come close to a subface of B. In this case the box will
be split until the d-cubes ex(B) have shrunk enough that they do not meet
the low-dimensional P-face. The number of times that a box can be split is
analyzed in subsequent sections.

The computation of co(B) (that is, computing the geometric intersection
co(B")Nex(B), where B’ is the parent of B, and then checking whether this
intersection is connected) is among the most computationally intensive tasks
of QMG. We carry out the search for connected components with a ray-
shooting algorithm that we do not describe here. The worst-case running
time of this ray-shooting algorithm is O(n?), where n is the total geometric
complexity of co(B) (i.e., the total number of boundary faces), but in practice
the running time will usually be closer to O(n).

In the case d = 2, it is possible to find connected components of co(B)
via a plane sweep in O(nlogn) operations. In the case d = 3, an O(nlogn)
plane sweep can also be used provided that P is preprocessed with O(N?)
preprocessing steps, where N is the combinatorial complexity of the original
P. This efficient algorithm for d = 3 is described in our earlier paper [13].
We have not implemented a plane-sweep procedure for either d = 2 or d = 3.

6 Alignment

In this section we describe the alignment stage. Recall that the alignment
stage processes each orbit independently. For this section, assume we are in
phase k and are processing orbit Op of P-face F' whose dimension is k.

11



First, a sequence of parameters
0 <é€gprp <€iopar < - <er <05

is chosen for F. The method for choosing these parameters is described in
n [12], but must be slightly modified to take into account the containment
relationship between P-faces of different dimensions. These parameters have
upper and lower bounds depending only on d and k.

We now process boxes in O in a precedence order to be described below.
Let B be the high-precedence box in the orbit. Let B’ be any subface of B.
We construct the oo-norm neighborhood of radius €, r around B’, denoted
N(B'), where r stands for the dimension of B’. Thus, this neighborhood is
an axis-parallel parallelepiped (which could be degenerate if €, p = 0). If F
passes through N(B’), then F'is said to be close to B’. The close subface
of B is the box subface of lowest dimension that is close to F'. If there is a
tie (i.e., there are several faces of the same lowest dimension all close to F),
then we break the tie with a priority rule, which is described below. A box
with no close subface is transferred to [541.

Because v > € r, if F' is close to B (i.e., if B has a close subface), then F
must pass though ex(B). Thus, we can check whether B has a subfce close to
F' by examining co(B). Indeed, it is important that we query co(B) rather
than the original P, because it might be difficult to determine from queries
on P whether the P-face in question is associated with B or with a duplicate
of B.

Next we claim a partial converse: if F' meets ex(B), then B has a subface
close to F'. We define €x(B) to be a cube concentric with B and expanded
by €4—k—1,F in each dimension; thus B C &x(B) C ex(B). It follows from
Lemmas 1 and 2 of [12] that if any P-face F' passes through ex(B), then B
has a subface close to F'. The cube €x(B) is not used in our algorithm, but
it plays a role in the analysis below.

Once every box in the orbit has chosen its close subface, we now test the
alignment condition. The alignment condition is as follows. Define the
extended orbit of F' to be Op united with protected boxes from earlier
phases that are associated with proper subfaces of F'. For every active box
B in the orbit, the close subface of B must be completely covered by boxes
in the extended orbit (either active or protected) that are the same size or
larger. For an example of the alignment condition, see Fig. 4. We provide
motivation for the alignment condition in Section 7

12



Let us now comment further on the alignment condition. First, we have to
explain what is meant by “completely covered.” We say that a box subface B’
is completely covered by some collection of boxes { By, ..., B, } provided that
for any point p in the relative interior of B’, there exists an open neighbor-
hood N of p such that N C B;U---UB,. (Note that if B’ is a 0-dimensional
box subface, i.e., a vertex, then its relative interior is B’ itself.)

With these definitions of “extended orbit” and “completely covered,” we
can now state the priority rule for choosing a close subface. Recall that the
close subface of B is the box subface of lowest dimension close to B. Let [
be the dimension of this subface. If there is a tie (i.e., there is more than one
face of B of the dimension [ close to F'), then we favor the subfaces that are
completely covered by boxes the same size or larger in the extended orbit,
i.e., those close subfaces of dimension [ for which the alignment condition
holds. If there is still a tie, then we use a lexicographic tie-breaking rule.

Recall that boxes can get duplicated during the separation stage, and
thus several active boxes can cover the same geometric region in IR%. We
claim that two boxes with overlapping geometric regions in IR? cannot end
up in the same orbit. (This fact simplifies the sorting necessary to check the
alignment condition.) The reason is as follows. Suppose B and B’ are two
boxes whose interiors have a common point in IR?, and suppose both co(B)
and co(B’) contain a point of P-face F'. By the tree-nature of the quadtree,
two boxes that share a common interior point must have the property that
one is contained in the other.

We claim that co(B) and co(B’) must both meet a proper subface of F'.
If not, then co(B) would have to contain the intersection of ex(B) with the
entire affine hull of F' (because no boundaries of F are in co(b)). Similarly,
co(B’) would also contain the intersection ex(B’) with the hull of F. (See
Section 8 for definition of “affine hull” and other mathematical terminology.)
Since one box contains the other, this means that one box contains points
from F' that the other box also contains. But then there could not be two
distinct connected components of P in co(B) and co(B’), so duplication
would not have taken place.

Thus, co(B), co(B’) each contain proper subfaces of F. But in this case,
the boxes could not end up in Op (i.e., if they were still active in phase
dim(F'), they would be crowded).

As mentioned earlier, a box is protected if the alignment condition holds
for its close subface. We make the following claim: if the alignment condition
holds for B at the time it is protected, then the condition continues to hold for

13



Figure 4: In this figure we illustrate the alignment condition in the case
d =2,k =1. The boxes in this figure are the extended orbit of a P-edge F,
which is the dashed line. The two large boxes at the ends are protected boxes
for the endpoints of E, protected from phase 0. In this figure, box a must
be split because the alignment condition does not hold for this box. Its close
subface, which could be either its lower left-hand corner or upper right hand
corner, is contained by another box smaller than a. All other boxes satisfy
the alignment condition. For example, box b does not have to be split; its
close subface could be either its bottom edge or right edge. The right edge
will have higher priority since the alignment condition holds for that edge.

14



the remainder of the algorithm. In other words, the following situation cannot
occur: A box B with close subface B’ is deemed to satisfy the alignment
condition and protected. Later a neighboring box B also containing B’ as a
subface gets split because the alignment condition does not hold for B, thus
causing the alignment condition to be violated for B.

In order to prove the claim in the last paragraph, we must describe the
order in which QMG processes the boxes in an orbit Op. “Process” means
that QMG determines whether the box satisfies the alignment condition; if
so, then protect it, and if not, then split it. The correct order is to start with
the largest boxes in the orbit, working down to the smallest. Within the set
of boxes of the same size, we process those with the lowest-dimensional close
subfaces first, working towards highest-dimensional close subfaces.

We claim that this order assures the claim that if the alignment condition
holds for a box B at the time it is processed, then the alignment condition
holds for B for the remainder of the algorithm. Suppose we are at the step
when B is processed and the alignment condition is satisfied. Let B’ be the
close subface of B, and let [ be the dimension of B’. Let By,..., B, be the
boxes in the extended orbit that cover B’. Some of By, ..., B, will be larger
than B’ and hence already protected. Protected boxes are not split again,
so they will continue to cover B’ for the rest of the algorithm. Consider a
box B; that is the same size as B. If B; has a close face of dimension less
than [, then B; is already protected (because we process boxes with lower-
dimensional close faces first). The dimension of the close face of B; cannot
be greater than [, because B’ is a subface of B; and has higher priority than
any subface of B; of dimension [ + 1 or more. Therefore, the only remaining
possibility is that B; is the same size as B and that the close subface of B;
has dimension exactly . But then this subface, if it is not B’, must also be
completely covered by boxes in the orbit because otherwise B’ would have
higher priority. (Recall that faces that are completely covered have higher
priority.) So we see that B; will become protected as well and cannot be
split.

When a box B is protected, as mentioned above, we have identified a
close subface B’ of B. This subface has the property that F' passes through
an oo-norm neighborhood of B’. We now select a point lying on F' in this
neighborhood (see our other paper [12] for more details on selecting the close
point). The rule used for choosing the close point has the property that any
other box B that is the same size as B and also has B’ as its close subface
will choose the same close point. Thus, several adjacent boxes that are in

15



the same orbit and are the same size might share a close point.

The alignment stage continues until there are no boxes left to process;
every box is either protected or has been moved to the idle list. When Op
is empty, the alignment moves onto a different orbit. Once the orbits of all
dimension-k faces of P are empty, the phase is over.

7 Triangulation

After phase d of quadtree generation, QMG triangulates the quadtree. In
the triangulation procedure, the collection of protected boxes is triangulated
into a simplicial complex.

In order to describe the triangulation procedure, we must first bring lower-
dimensional boxes into the picture. In this section, we revisit some of the
concepts from earlier sections and revise some of the algorithm steps to take
into account lower dimensional boxes. The lower dimensional boxes serve
two purposes: first, they simplify the data structures needed for checking the
alignment condition and second, they serve as the basis for generating the
final triangulation.

In QMG, boxes can have dimension 0 up to d. Initially, there is only
one active box of dimension d, namely, the top box. Lower dimensional
boxes get created each time a box is protected by QMG. At the moment an
i-dimensional active box B is changed from active to protected during the
alignment stage for orbit Op, all its faces of dimension ¢ — 1 are launched
as new active boxes (there are 2i such faces). Let B’ be one of these new
active boxes. It is dealt with in a manner analogous to the way QMG handles
subboxes after a split. We compute co(B’) as the intersection co( B)Nex(B’).
We determine the disposition of B’ using the same rules as before: If co(B’)
is empty, then we delete B’. If co(B) N ex(B’) has more than connected
component, then we duplicate B’. If co(B’) does not meet F' (and hence
meets only P faces of dimension k + 1 and higher) then we place B’ in [j4;.
If co(B’) meets F', then we place B’ in Op.

It is possible that B’ will also become immediately protected; this hap-
pens, for instance, when the close subface of B is also a subface of B’.

The same operations are performed on an i-dimensional box as on a
full-dimensional box: such a box can be tested for crowdedness, split for
separation, protected and so on. When an i-dimensional box is split, 2! new
subboxes are created. If B is i-dimensional, then it is said to extend over

16



1 of the possible d coordinate axes, and it is flat over the remaining d — ¢
coordinate axes.

The definition of ex(B) for a box of dimension less than d is as follows.
Every box B has associated with it a number called its size, which we denote
size( B) and which is the side-length of B in a dimension over which it extends.
The size of every box is equal to the size of the top box multiplied by a factor
277 where p is the number of times the top box was split to reach this box.
If B is a box, then ex(B) is an axis-parallel full-dimensional rectangle in
IR? centered at the center of B, with side-lengths (1 + ) size(B) for axes
over which B extends, and side-length v size( B) for the axes in which B is
flat. This choice ensures that all properties of ex(B) asserted earlier are still
valid, namely, if B has a subface close to F', then the subface passes through
ex(B). Also, if B is split, then ex(B;) for each subbox B; is contained in
ex(B). Finally, if subfaces of B are launched as new active boxes when B
is protected, then each new subface B; also satisfies ex(B;) C ex(B). Note
that for consistency, even zero-dimensional boxes must have a size. When a
zero-dimensional box B is split, there is only one child, but splitting still has
significance because the size is halved, which diminishes ex(B) and therefore
co(B).

Earlier, when describing the alignment condition, we introduced the terms
“extended orbit” and “completely cover.” Recall that we defined extended
orbit to be the union of the orbit O of a face F' united with the protected
boxes for all proper subfaces of F' from previous phases. In fact, QMG never
forms extended orbits; instead, the lower-dimensional active box faces of
protected boxes act as proxies for the protected boxes. A system of weights
is used to determine the complete coverage condition. In particular, every
active box in QMG stores a weight associated with each of its subfaces.
Thus, an i dimensional active box has 3" weights stored with it. Each weight
is a number between 0 and 1 that indicates what fraction of the subface is
“owned” by that active box. Initially, the top box owns all of its subfaces.
When a box is split, the weights are divided up among children. We omit
the details of how the weights get split up, but the upshot is that QMG can
test whether a box subface is completely covered by boxes in its orbit by
adding up the weights associated with that subface contributed by all the
boxes containing it; complete coverage is indicated by a weight sum of 1.0.

Although many details are omitted, we do mention one key point that
reduces the amount of searching and sorting in QMG. When testing the
complete coverage rule, it is necessary to look only at boxes of a single size.
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This means that the complete coverage condition can be tested with a simple
hash-table. Consider the example in Fig. 5.

It can be shown that these more complicated rules introduced in this sec-
tion are equivalent to the definitions in the previous sections in the following
sense. For a given input P, the quadtree generation procedure produces the
same sequence of full-dimensional boxes whether we follow the rules of this
section or preceding sections.

The protected boxes are linked together by pointers; in particular, a pro-
tected box of dimension ¢ has pointers to all the protected boxes of dimension
1+ 1 of which it is a subface. This data structure serves as the basis for tri-

angulation.
The triangulation algorithm is based on our other paper [12] and is as
follows. Let a chain be a sequence of nested boxes By, ..., By such that the

dimension of B; is 1. “Nested” means that, for each 7, B; is a face or subset
of a face of B;y1. Let vg,..., v, be the close points of By, ..., By. Then the
simplex whose vertices are v, ...,v, is put in the triangulation. Thus, the
triangulation has one simplex for each chain. The only exception is when a
close point is repeated in this chain; in this case, the simplex is said to be
null and is not included in the triangulation. QMG enumerates all possible
chains with a stack-based search algorithm. An example of the triangulation
algorithm is presented in Fig. 6.

We can now explain the importance of the alignment condition in Fig. 7.
As is seen from the figure, if the alignment condition were not enforced, then
the triangulation algorithm described in the previous paragraph would be
invalid.

8 Aspect ratio

In our analysis of QMG, which begins in Section 10, we demonstrate two
optimality properties: the triangulation generated by QMG has optimal as-
pect ratio, up to a certain factor, and also optimal cardinality (compared to
all other bounded-aspect ratio triangulations), up to a certain factor. Before
demonstrating these properties, we must provide the definitions aspect ratio,
sharp angle, and so. This mathematical background material is the topic of
this section and the next section.

First, we provide some standard definitions from linear algebra. An affine
set X is the solution to a system of linear equations, that is, X = {2 € IR? :
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Figure 5: This figure revisits the alignment condition taking into account
lower dimensional boxes. Focus on the lower left-hand box B, which is pro-
tected in phase 0 for the vertex u of P in its interior. The right edge of this
box—call it B’—becomes a new active box; it is uncrowded and its associated
P-face is F (F is the dashed segment), and its close subface is the whole box
B’. During the alignment phase 1, this 1-dimensional box is split because
the weight of B’ associated with B’ itself is only 0.5. Once B’ is split in half,
its lower half no longer meets £ and hence is placed into [I,. Its upper half
together with the full dimensional active box labeled B” completely cover
the upper half of B’ so the alignment condition is satisfied.
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Figure 6: An example of the triangulation procedure in the case d = 2. All
six full-dimensional protected boxes in this figure are associated with P-edge
E. The dotted lines are boundaries of boxes that are not present in the final
triangulation. The solid segments are all part of the triangulation. The close
point for the two small boxes on the left is the point near (0,2) marked in
the figure. An example of a non-null chain in this figure would be starting
from the vertex (0,0) (whose close point is at (0,0) and is associated with
the two-dimensional face P itself), then the edge {0} x [0,2] containing it,
whose close point is the marked point on F near (0,2), and finally the box
[0,4] x [0,4], whose close point is the marked point near (4,4) on E. An
example of a null chain would be the vertex at (4,0) (whose closepoint is at
(4,0)), the edge {4} x [0,4] (whose close point is on F near (4,4)), and finally
the box [4,8] x [0,4], which has the same close point near (4,4). This figure
shows a triangulation on both sides of K for illustrative purposes, although if
E were a boundary edge, in fact only one side of £ would be triangulated. As
mentioned in the introduction, however, the actual implementation of QMG
allows internal boundaries so the above situation of triangulating both sides

of an edge does occur with QMG.
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Figure 7: The above figure shows an inconsistency that would result during
triangulation if the alignment condition were not enforced. In particular,
the close point of box B is point p, which lies on P-face F' and also on
the right edge of box B. Thus, the close face for B is this edge. The
alignment condition does not hold, i.e., the close face of B is covered by
smaller boxes on the right. Note that we obtain an illegal triangulation.
For instance, the close point of edge F is one of its endpoints, say endpoint
v. Then the chain consisting of w, then £ (whose close point is v), and
then B (whose close point is p) is a flat simplex, i.e., a triangle whose three
points are collinear. Such a simplex has infinite aspect ratio and must not
be allowed in a triangulation. Note that a degenerate simplex like this is
not a null simplex defined in Section 7: this degenerate simplex does not
have any repeated vertex and hence it cannot be legally dropped from the
triangulation.
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Ax = b} for some m x d matrix A with linearly independent rows and some
m-vector b. The dimension of this affine set is d —m. Let Y be any subset of
IR?. The affine hull of Y is defined to be lowest-dimensional affine set that
contains Y and is denoted aff(Y'). It can be shown that aff(Y") is uniquely
determined by this definition. In particular, it can be shown that aff(Y’) is
the set of all points that can be written in the form ayy, +- - -+ a,y,, where s
is an arbitrary positive integer, y,,...,y, € Y, and oy, ..., as is an arbitrary
sequence of real number that add up to 1. Let F' be a face of P. Since P is
polyhedral, aff(#') and F' have the same dimension.
We now define define aspect ratio.

Definition. Let T be a d-simplex in IR? with vertices vy, ...,vq. Then the
altitude of T' at v; is defined to be dist(v;,aff(vo, -+, 021,041, -+, 04)).
The minimum altitude of T, denoted minalt(T'), is the minimum altitude
over all choices of v; for1=10,...,d.

Definition. The aspect ratio of a simplex T is defined to be
asp(7) = maxside(T")/ minalt(T").

Thus, the aspect ratio is always at least 1, and large aspect ratios indicate
poor quality elements.

In the remainder of this section, we characterize aspect ratio in terms of
matrix norms. Given a d-simplex T', we define its associated matrix M7 to be
the d x d matrix whose ith column,: =1,...,d, is v;—vg. Thus, M7 depends
on the numbering of the vertices, and in particular, vg plays a distinguished
role. However, we note the following: if we define M. according to a different
numbering of the vertices, then the columns of M7} can be obtained from the
columns of Mt by subtracting pairs of columns in M7 and then permuting.
In linear algebra terms, there exists a d x d matrix L all of whose entries
are zeros except for possibly one ‘1” and one ‘=1’ in each column such that
M}, = MrL, and such that L™! has the same properties (all zeros except for
possibly one ‘1’ and one ‘=1’ per column).

The following two results hold for any numbering. These lemmas use
the following well-known linear algebra fact. The norm of a d x d matrix is
bounded above and below by constant multiples (where the constant depends
on d) of the maximum norm among its columns, and also above and below by
constant multiples of the maximum norm among its rows. In the remainder
of this paper ¢; denotes a constant depending only on d that may change
from formula to formula.
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Lemma 1 Let o denote maxside(T). Then
cio < ||Mr| £ Cho
where ¢y, Cy are two constants depending only on d.

Proof. There are two cases, depending on whether ¢ is the length of a side
adjacent to vg or not. In the first case, say that ¢ = ||v; — vg||. Then both
inequalities are easy because o is the norm of the first column of Mr, and
all the other columns of M7 have norm bounded above by o.

The other case is that o is the length of a side not adjacent to vy. Then
we can reduce to the first case by renumbering the vertices and noting that
the norms of the transformation matrices mentioned above, || L] and ||L7}],
are bounded above by constants depending only on d. §

Lemma 2 Let p = minalt(7). Then
ca/p < |MzH|| < Ca/pe

where cq, Cy are two constants depending only on d (not necessarily the same
constants as in the previous lemma,).

Proof. Let 4T be the ith row of M7'. Then MJu is a column of the the
identity matrix. (The superscript T denotes transpose. The subscript T
indicates the association of M with simplex T'.) Geometrically, this means
that w is orthogonal to d — 1 columns of M7p; in particular, w is orthogonal
to the plane aff (vo, ..., v;—1, Vi1, ..., v4). Thus, w is parallel to the altitude
from vertex . Its length is chosen so that its inner product with v; —vg is 1,
i.e. its inner product with the true altitude vector is 1. Thus, the ith row of
Mz! is parallel to the altitude vector from wv; but is scaled so that its length
is the reciprocal of the altitude.

Then we see that the rows of M7' have lengths equal to reciprocals of
altitudes from vy, ..., vy, with the shortest altitude being the reciprocal of
the norm of the largest row. This proves the lemma, provided that the min
altitude is not from vg. The case when the min altitude is adjacent to vq is
handled by renumbering as in the previous proof. B

We conclude from these two lemmas that asp(7") is within a constant
factor of ||Mz| - ||M7"||, that is, the condition number x(Mr). Combining
these lemmas with the Hadamard inequality yields the following well-known
result:

Cq minalt(T)d <vol(T) < Cy maxside(T)d. (1)
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9 Angles and PL paths

In the previous section, we defined “aspect ratio.” It turns out that we
can show that QMG produces triangulations whose aspect ratio is bounded
above in terms of the sharpest angle of the input domain P. In this section,
we provide the definition of “sharpest angle” and a theorem stating that
any possible triangulation of P has aspect ratio bounded below in terms of
the sharpest angle. Thus, the theorem in this section is the lower bound
necessary to prove that the QMG triangulation is optimal.

Let @,y be two points in P. A piecewise linear path Il from @ to y is
a path composed of a finite number of line segments. The endpoints of the
segments are the breakpoints of II. For the rest of the paper, we use “PL”
to stand for “piecewise linear.” Suppose that ® € F and y € (&, where I
and GG are two faces of P. We will say that 1l is contractible if there exists
a point z such that the segment ®z lies in F', the segment yz lies in G, and
for all v € II, the segment vz lies in P. Note that this definition forces z to
lie in both I and G. Thus, a necessary condition for contractibility is that
F and G have a nonempty common subface.

Note that we should really apply this term “contractible” to a triplet
(I, F, ), since the definition depends on the specification of F and G as
well as on the path II. When we use the term, the choice of F' and G will be
understood from context. The opposite of contractible is incontractible.

Let T be an arbitrary triangulation of P (not necessarily the triangulation
produced by QMG). If a path II is contractible, then we can obtain a lower
bound the aspect ratios of simplices of 7 that meet II. On the other hand,
if II is incontractible, then we can obtain an upper bound on the minimum
altitude of simplices that meet II. The remainder of this section is devoted
to stating and proving these two results.

We start with the definition of the “angle” between two P-faces F' and
(G, which is defined by contractible paths.

Definition. Let F, G be two faces of P, and suppose ® € F andy € G. Let 11
be a contractible PL path from @ to y. Let A be the affine set aff(F))Naff(G).
The angle determined by (,y, F,G,11) is

Ith(IT)
B min(dist(x, A), dist(y, A)) (2)

We say that the sharpest angle formed by F' and G in the infimum of

24



Figure 8: In the d = 2 case, F' and (G are two boundary segments meeting
at boundary vertex z. The polygon has a square hole in it: the interior of P
is shaded. The PL path II; connects a point @ € F to y € G. This path is
contractible to z. On the other hand, path Il, is incontractible.

(2) over all contractible paths from F' to G (assuming that at least one con-
tractible path from F to G exists). Finally, we say that the sharpest angle in
P is the infimum over all angles.

In the denominator of (2), “dist” denotes ordinary Euclidean distance.
Note that z, the base of the contraction, does not appear in (2). An example
of a contractible path is given in Fig. 8. We are concerned about the case
when this angle is small, so large angles have no significance. Thus, the de-
generate case when the denominator of (2) is 0 (which happens, for instance,
if F'is a superface of (G or vice versa) is not relevant for our analysis.

In the case d = 2, the previous definition is within a constant factor of
the ordinary notion of an angle between two edges of a polygon, since only
the case dim(F') = dim(G) = 1 matters when d = 2.

Now for the first main result of this section: we show that if there is a
contractible path II forming an angle 6, then §=' is a lower bound on the
aspect ratio of at least one simplex in every possible triangulation of P.

Theorem 1 Let F,G be two P-faces, and assume there is a contractible
path from F to G. Let 0 be the value of the sharpest angle between F' and G.
Let T be an arbitrary triangulation of P. Then there is a simplex T in the
triangulation with a vertex lying on F' N G such that asp(T') > ¢q/0.

25



Proof. Let (x,y,II) be the triple defining the sharpest angle # between F
and (¢, and let z be the point in F'N G to which we can contract II. (Stating
this more carefully, since sharpest angle is defined as an infimum, we should
say that (x,y,Il) defines an angle of size (1 + €)#, where € > 0 is arbitrarily
small. But the 1 + € factor can be absorbed by the ¢, factor.) Let H be the
P-face contained in F'N G that contains z. (If there is more than one P-face
H satisfying z € H C F NG, choose any such H.) Let A = aff(F) N aff(G).
Note that H C A since H C FFNG.

In the triangulation of P, restrict attention to simplices of 7 that have at
least one vertex on H. Call this collection of simplices 7'. Since T is a finite
set, there is an € > 0 such that every point in v € P satisfying dist(v,z) <€
and vz C P is contained in a simplex from 7’. Then we can contract
(z,y,1l) toward z (i.e., replace & by (1 — XNz + Ae, y by (1 — M)z + Ay,
and each point v € Il by (1 — A)z + Av for some fixed A € (0,1]) so that,
without loss of generality, all of 11 is covered by simplices in 7'. Note that the
contraction operation does not affect the value of  because the numerator
and denominator of (2) scale by the same amount when we contract toward
z.

Without loss of generality, dist(x, A) > dist(y, A); define o = dist(y, A).
Define 3 = Ith(Il). Thus, § = (/a is the sharpest angle. Now define a
continuous piecewise linear function f : P — IR as follows. We first define f
on the vertices of T as follows. For each T-vertex v € G we define f(v) =
dist(v, A) where distance is measured in the ordinary Euclidean sense. Since
H C A, this fixes f(v) = 0 for vertices v € H. For all other vertices v of T
we define f(v) = 0. Notice that all vertices v of F' have f(v) = 0 because
the intersection of F' and (G is contained in A. Now extend f to all of P by
linearly interpolating over each simplex. This yields a uniquely determined
piecewise linear function f: P — IR. Notice that f is identically 0 on F.

Next, we claim that f(y) > «. Notice that for points on G, f is a
linear interpolation of the function w — dist(w, A). This latter function is
a convex function because A is convex. A linear interpolant of a convex
function is always greater than or equal to the function value itself, thus
f(y) = dist(y, A) = a.

On the other hand, f(&) = 0 because @ € F. Let f|n be the restriction
of f to II; then f|g is PL and continuous, and increases by a. The length
of Il is 3. Therefore, there is a point « where the directional derivative of
[ at w parallel to II is at least o/ in magnitude. Let 7" be the simplex of
T containing w (if there is more than one such 7', choose arbitrarily). Note
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that T' € T' because we are assuming Il is covered by 7'. On this simplex
T, since the gradient is constant, |V f]| > /3.

There is an analytic expression for V f on T' as follows. Let us number the
vertices of T' with vy, ..., v, so that vg is a vertex on H. (Recall that every
simplex in 7" has at least one vertex on H.) Let r; = f(v;) for i =0,...,d.
Thus, ro = 0 because f is zero on H as noted above. Then one checks that
f(w) on T is given by the linear mapping f(u) = »T M5! (u — vy), where M7
was defined earlier, and T denotes (r1,...,7r4). Then we see that Vf on T
is given by M7 "7, so

IVA < M- Il < e - (max|ri])/ minalt(T).

Notice that max|r;| is the maximum distance of a vertex of 7" from A, but
this is at most maxside(7") since T' has an edge from each of its vertices to

vg, which lies on A. Thus,

IVl < cigmaxside(T)/ minalt(7)
= cqasp(T).

On the other hand, we showed in the previous paragraph that |V f|| > a/3
which is the reciprocal of #. Thus, we have proved that the aspect ratio of

T is bounded below by the reciprocal of the sharpest angle between F' and
G.o 1

The previous result shows that the presence of a contractible path gives
a useful bound that is applicable to any triangulation 7. On the other hand,
the presence of an incontractible path also gives a useful bound. We start
with a lemma, and then prove the main result.

Lemma 3 Let Il be an incontractible path from ® € F toy € G. Let T be
an arbitrary triangulation of P. Let Fy, ..., F,, be an enumeration of all the

faces (of all dimensions including d) of T that meet 11. Then FiN---NF,, = (.

Proof. Suppose that Fy,...,F,, have a common point z. Since the tri-
angulation is boundary-conforming, z lies on a common subface of F' and
(¢ (because the lowest dimensional triangulation face meeting @ must be a
subface of F', and similarly for the lowest dimensional face meeting y). Fur-
thermore, every point v on Il is covered by a simplex that also covers z.
Since simplices are convex, this simplex also covers the segment vz. Thus,
II is contractible to z, contradicting the assumption. Nl
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Theorem 2 Let F,G be two P-faces, and let 11 be an incontractible path
fromax € F loy € G. Let T be an arbitrary triangulation of P. Then T
contains a simplex T meeting Il such that

minalt(7") < ¢g1th(II).

Proof. Let Fi,..., F,, be an enumeration of faces of 7 meeting II. By the
preceding lemma, Fy N --- N F, = (. Let the vertices of F; be denoted
Vg, ..., Vs, where s < d. Since Il meets F, there is a point, say z, on Il that
can be written as a convex combination of the vertices of F:

z = XUg + -+ + A0,

where each )\; is nonnegative, and Ao 4 --- + A; = 1. Therefore, for some 1,
Ai > 1/(s+1) > 1/(d+1). Without loss of generality, say that A\g > 1/(d+1).
Note that since the F;’s are disjoint, there is some F; that does not contain
vo. Let this other face be denoted F3.

Let f : P — IR be a piecewise linear continuous function defined as
follows. We set f(vo) = 1. For all other vertices v of T, set f(v) = 0. Now
extend f to all of P by linear interpolation over the simplices in 7. Note
that f(z) = Ao f(vo) + -+ 4+ Asf(vs), and hence f(2z) > 1/(d +1). On the
other hand, let w be the point where II meets Fy; note that f(w) = 0 since
f is identically zero on F, (because f is defined to be zero on all vertices of
F).

We now conclude the proof using the same technique as in Theorem 1.
Along path II, f is PL. and continuous and decreases by at least 1/(d+1) (from
z to w). Therefore, there is a point w on II such that f is has a directional
derivative at w parallel to Il whose magnitude is at least (1/(d+ 1))/ 1th(II).
Let T' be the simplex containing «. Then on this simplex T', since the gradient
is constant, |V f]| > 1/((d + 1) Ith(1I)).

We obtain analytic expression for V f on T" as follows. Let us number the
vertices of T' with wvg,...,vq. Let r; = f(v;) — f(vo) for e = 0,...,d. Thus,
Ir;| <1 for each i. As earlier, Vf on T is given by M7 "#, so

IVAI < M7 - 7]l < eaf minalt(T).

Combining this inequality with the inequality proved in the previous para-
graph proves the theorem. M
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10 QMG aspect ratio in terms of neighboring
box sizes

In this section we begin our analysis of the aspect ratio bound for QMG. In
general, we cannot establish a universal constant upper bound on the aspect
ratio of the triangulation produced by QMG because if P has sharp angles,
then any possible triangulation, including QMG, will have poor aspect ratio
near the sharp angle as proved by Theorem 1. Thus, we want to show that
the sharpest angle of any simplex generated QMG is very sharp only if the
input polyhedron itself has a sharp angle.

In this section we argue that the worst-case aspect ratio produced by
QMG is bounded in terms of the ratio of sizes of neighboring boxes. This
section requires an understanding of the analysis in our other paper [12].
In subsequent sections, we then bound this box-size ratio in terms of the
sharpest angle. From now on, we denote the sharpest angle in P by 0(P).
Thus, the combination of these arguments bounds the aspect ratio of QMG
in terms of 9(P).

Let B be a box. As above, we define size(B) to be the length of a side of
B. Let B, B' be two neighboring protected boxes such that co(B) and co(B’)
have a common point. (Here, co(B) refers to the content of B at the time it
became protected. The contents of two neighboring boxes might not have a
common point if the boxes’ common subface is completely outside P because
of boundaries that cut through the boxes, or because of duplication.) Suppose
size(B) > size(B’). These boxes have boz-size ratio size(B)/size(B’). Let
r be the maximum box-size ratio in the whole triangulation produced by
QMG. We argue in this section that the worst aspect ratio in QMG is at
most cyr.

Consider a simplex T' generated by QMG. As in [12], this simplex comes
from a chain of d + 1 nested box subfaces. Unlike [12], these box subfaces
can have different sizes; in particular, the subfaces in the chain can grow in
size as the dimension of the box face increases.

A consequence of the alignment condition presented in Section 6 is as
follows. Let B;, Biy1 be two boxes in a chain, so that dim(B;) = ¢ and
dim(B;+1) = ¢ + 1. Let the close points of these boxes be v;,v,41. Then
either v; = v;41 or else

dist(v41,aff(B;)) > cqsize(Biy1). (3)
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The reason for this is as follows. Let C' be the close face of B;y;. Let B* be
the i-dimensional face of B;y; that contains B;. If C' is a subface of B*, then
the alignment condition implies that B* must also be protected, and hence
B* = B; and v; = v;;1. Else C is not a subface of B*, which means that
v; is bounded away by ¢, size(B;41) from B* as argued in [12], because the
neighborhoods N(-) defined earlier create an exclusion zone around B*.

Let Mt be the d x d matrix associated with T defined above, with columns
ordered according to the chain order. Because of (3), My, when scaled to
unit box size, satisfies analogs of the inequalities that were developed in [12]
in the case of unit box size.

In particular, let St be the d x d diagonal matrix whose ith entry is the
box side length of the ith box face in the chain defining 7'. Then the matrix
N = M7S;' has its columns rescaled so that each column corresponds to a
difference between two vertices in a unit-size cube. Slight generalizations of
the bounds proved in [12] apply to N (actually, that paper considered the
transpose NT). In particular, the bounds in our other paper imply that || V||
and || N~!|| are at most ¢g.

Since k(M) < k(N)k(ST), we have from the last paragraph that x(Mr) <
cqk(St). Note that all the box faces in a chain come from mutual neighboring
cubes, so k(S7) < r. Therefore, kK(Mr) < ¢gr. This argument has established
the following theorem.

Theorem 3 Let poua(FP) denote the worst-case aspect ratio produced by
QMG when applied to polyhedral domain P. Then there exist two neighboring
protected bozes B, B" such that co(B) Nco(B') # (0 and such that

poma(P) < ¢q - size( B)/ size( B').

In subsequent sections, we bound the maximum box size ratio in terms
of the sharpest angle 8(P). The ultimate goal is Theorem 5 which bounds
paoua(P) in terms of 6(P).

11 A bound on splitting for alignment

As we saw in the preceding section, the aspect ratio of QMG can be bounded
if we can bound the number of times boxes are split. The following is the key
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theorem about how many times a box can be split. The proof of Theorem 4
will be the topic of this and the next few sections.

Theorem 4 Let P be the input polyhedral region, whose sharpest angle is 6.
Let B be a protected box produced by QMG. Then there exists an active box
B, that is an ancestor of B such that

size(B,) < ¢y max(1, Q(P)_(b(d)) size(B) (4)

where the exponent ¢(d) is defined by (6) below, and such that co(B,) contains
an incontractible path 11 satisfying 1th(Il) < ¢;size(B,). We call B, the
anchor of B.

Recall that QMG splits boxes in both the separation and alignment
stages. The purpose of this section is to show that the amount of splitting for
alignment is bounded by ¢4, which is one step in the proof of Theorem 4. We
start with two preliminary lemmas, which lead to the main result Lemma 6
at the end of this section. That lemma is one step in the proof of Theorem 4.

Lemma 4 Let B be a box with a neighbor B' such that co(B) N co(B') # 0.
There is a constant ¢q such that if size(B') < ¢gsize(B), then co(B') C co(B).

Proof. Let s = size(B) and s’ = size(B’). Then ex(B) extends out by
vs from all sides of of B. Hence ex(B) contains any point within oo-norm
distance vs from B. In particular, if (1 4+ v)s" < vs, then ex(B’) would be
completely contained in ex(B); let ¢; in the lemma be this factor v/(1 4 v),
Let @ be a point in co(B’) N co(B). Then every point in co(B’) is reachable
by a PL path in co(B’) from «. This means that all of co(B’) is contained
in the component of P N ex(B) that contains @, which must be co(B). §

Lemma 5 Let B be a box that is split for alignment: in particular, say B is
split during processing of O in phase k for some face F'. Then there exists
another active box B* created by QMG such that (1) size(B*) = size(B), (2)
B* was split before the phase k alignment stage (i.e., B* was split during
phases 0,..., k—1 orin the phase k separation stage), and (3) there is a PL
path in P from co(B) to co(B*) of length al most cqsize(B).
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Proof. Let us first prove the lemma for the simplified version of QMG in
which all the boxes are full dimensional. In this case, the alignment condition
was described in Section 6 as follows: B is split for alignment because its
high-priority close face, say C, is not completely covered by (full-dimensional)
boxes in the extended orbit of F' the same size or larger when B is processed.

Consider the collection of boxes obtained by taking all boxes produced
by any step of simplified QMG that are same size as B. Consider also all
those boxes larger than B that are leaf boxes (i.e., protected). Notice that
this collection of boxes, say (), completely covers the input domain; there
could some parts of IR double-covered because of duplication.

Let the enumeration of all boxes in () that cover C' be denoted By, ..., B,,:
exclude B itself from this enumeration. Since F' is close to C', F meets N(C)
and hence also co(B). Let & be a point where F' meets N(C). Among
By, ..., B, consider only those B; such that & € co(B;). The case when
x ¢ co(B;) could only occur because of duplication; there could be duplicates
of neighbors of B that do not contain @.

Rename the remaining boxes again as By,..., B,,; note that these boxes
together with B must cover C'. Since the alignment condition does not hold
for B, one of them, say B;, is already split at the time B is processed. The
box that is already split must have the same size as B (i.e., it cannot be one
of the larger boxes in @), because those boxes are all protected). Without
loss of generality, B; is the earliest box among By, ..., B,, to be split.

Case 1 1s that this box B; was split during a phase 0,....k— 1, or during
phase k& separation. In this case the lemma is proved with B* = B;; note
that the two boxes contain @ in their content so that condition (3) of the
lemma is trivial.

The remaining case, Case 2, is that B; is split during the phase k align-
ment stage before B is processed. Rename B; as B’. Note that since co(B’)
meets I, then B’ must be in Op. Since B’ is the first box among By, ..., B,
to be split during phase k alignment, C' is still covered by boxes in the orbit
of the same size or larger at the time the alignment condition is checked for
B’. Let C’ be the close face of B’. Note that C’ is not covered by boxes
in the orbit of the same size or larger, since we are assuming B’ is split for
alignment in phase k. It is not possible that dim(C”) > dim(C') because then
C' would have higher priority than C’ and hence C’ would not be selected
as the close face of B’. (Recall that the priority rule favors faces of lower

dimension, and among faces of the same dimension, favors faces completely
covered by boxes in the orbit.) Thus, dim(C’) < dim(C'). Start the proof of
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this lemma over again with B’ and C’. In other words, consider the boxes
in the quadtree at the level of B’ that cover C'. Either for B’ we will “exit”
this argument in Case 1 (i.e., we find a box B* that satisfies the lemma for
B'), or we will have to restart the argument another time.

But note that each time we restart the above argument, the dimension of
the close face in question decreases by 1. Thus, we can repeat the argument
at most d times before terminating at Case 1. Let the sequence of boxes
constructed by repeating this argument be B, B’, B”, ..., B"). B*, where B*
is a box split before phase k£ alignment. Note that r < d as just mentioned.
Also, all boxes in this sequence are the same size, and B is adjacent to
BU+Y for each i. Furthermore, co(B{")) has a common point with co(B*),
and all of B, ...  B") are in Or. This means that we can find a PL path
in P from B to BU") by traversing F' through each box. (Recall that a box
in O cannot meet any boundaries of F' in its content.) The length of the
PL path constructed in this manner is at most ¢;size(B). This proves the
lemma.

If we wanted to extend this proof to the case of the complete version
of QMG (including lower dimensional boxes), then we would use the same
proof as above, except that we have to restate the meaning of “completely
covered” in terms of the weight system mentioned in Section 7. Because
we have incompletely described the weight system and skipped the lemmas
showing that lower-dimensional boxes do indeed act like proxies for the full-
dimensional boxes that contain them, we do not have enough machinery to
prove this lemma in the general case so we merely assert it.

The preceding lemma now leads to the main result of this section, which
says that during splitting for alignment, boxes can become only a constant
factor smaller.

Lemma 6 Let B be a box that results from splitting for alignment during the
processing of O for some k-face F'. Then B is descended from an active box
B’ at the start of the phase k alignment stage such that size(B") < ¢ysize( B).

Proof. Let By be a parent of B, so that By was split for alignment during
the processing of O and so that size(By) = 2size(B). By the preceding
lemma, there is another box B* that was either protected from an earlier
phase or was split for separation, such that there is a PL path II in P from
co(B*) to co(By) of length at most ¢gsize(By).
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Let B’ be the ancestor of By at the beginning of phase & alignment in Op.
Observe that there is a constant x4 depending on d such that if B’ satisfied
size(B') > xqsize(By), then co(B’) would contain co(B*) as a subset. This
follows from the same proof technique used for Lemma 4; in particular, if B’
were sufficiently larger than By, it would contain the whole path Il and also
co( B*).

On the other hand, it is impossible that co(B’) contains co(B*). This
is because B* was split for separation in phase k& or was split in a phase
earlier than k. Whatever P-faces caused B* to be split would cause B’ to be
crowded, and hence B’ could not end up in Op.

Thus, we conclude size(B’) < xqsize(Bg), which proves the lemma. [}

This lemma shows that all splitting for alignment can be lumped into the
factor ¢q in (4).

12 Splitting boxes for weak crowding

Recall that a box is split for separation if and only if it is crowded. Recall
also that there are two ways that B can be crowded in phase k: (1) co(B)
contains a P-face of dimension k — 1 or lower, or (2) co(B) contains a P-face
F' of dimension k, and another P-face G of dimension k or greater that is
not a superface of F.

We call the former “weak crowding” and the latter “strong crowding.” In
this section we show that all splitting for weak crowding can also be lumped
into the factor ¢; in (4), which is another step toward proving Theorem 4.

Lemma 7 Let B be a box that is split for weak crowding, that is, in the
phase k separation stage, co(B) meets a P-face of dimension k—1 or lower.
Then B has an ancestor By that is an active box at the beginning of phase k
such that size(B) > ¢4 size(By).

Proof. The assumption implies that the P-face I’ of dimension £—1 or lower
passes through ex(B). Let By be the ancestor of B from the beginning of
phase k. We claim that By can be at most a constant factor ¢; larger than
B. This is because the expansion factors for ex(B) and €x(B) are off by a
constant ¢q. Recall that ex(B) was defined in Section 6 and is applied here
with respect to face F'. Therefore, the ancestor of By, if it is much larger than
B, would contain this P-face F' in ex(By). Recall that if ' meets ex(By),
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then By has a subface close to F'. Hence By would have been protected in
phase dim(F') which is less than &, or would have been split for separation.
Thus, By is at most ¢g larger than B. 1

Thus, all splitting for weak-crowding can also be lumped into the factor
cq in (4).

13 Splitting for strong crowding

In this section we analyze splitting for strong crowding and finally prove
Theorem 4. Recall that “strongly crowded” means that there is a P-face F'
of dimension k in co(B), and another P-face (G of dimension [ > k in co(B)
that is not a superface of F. From now on, we say that G is “foreign” to F
if G is not a superface of F. We say that two points @ and y are “visible”
to each other with respect to P if segment &y lies in P. We start with two
lemmas about visibility.

Lemma 8 Let P be a k-dimensional polyhedral domain in RY, and let C be
a convex subset of R®. Suppose PNC' is not empty, and let U be a component
of PN C. Suppose that U meets a P-face F', and that U does not meet any
faces of P that are foreign to . Then every point in U is visible to every
point in F'N U, where “visibility” is with respect to U.

See Fig. 9 for an illustration of this lemma.

Proof. Let & be a point in FNU and y a point in /. Consider the segment
L = xy; suppose that this segment is not contained in /. We will derive a
contradiction. Since y € U and U is closed, there must some point z € L
different from @ such that z is in U/, but there is a sequence of points 2y, 2, . ..
lying on L and converging to z that are not in /. Note that all of these points
lie in C' because C' is convex and L joins two points in . Thus, since these
points are not in PNC', we conclude that they are not in P. This means that
there is at least one facet H of P (where “facet” refers to a face of dimension
k — 1) passing through z such that aff( H) does not contain L as a subset.

But this is impossible, because every facet of P meeting U in this compo-
nent is a superface of F' by assumption. This means in particular that for H
in the last paragraph, @ € aff(H). But since aff(H) is convex and contains
x and z, it also contains L. 1
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Figure 9: This figure illustrates Lemma 8 in the case k = d = 2. Face F'is a
single vertex. The boundary of P is the solid line. The convex set ' is the
dashed square in the figure. The shaded region is U/. Notice that every point
in U is visible to F.

Lemma 9 Let P be a k-dimensional polyhedral domain in RY, and let C be
a convex subset of R®. Suppose PNC' is not empty, and let U be a component
of PN C'. Suppose that U meets a P-face F, and suppose that U also meets
a face G of P foreign to F'. Then for any point @ € F NU, there is a point
y € U that is visible to & (with respect to U) such that y lies on a P-face
foreign to F (which may or may not be ().

See Fig. 10 for an illustration.

Proof. For A € [0,1], let C'(X) denote the contraction by A of C' toward
x (e, v e Ciff \v+4 (1 —XNa € C(X)). Let U(N) be the component of
C(A)N P that contains . Find the parameter value \* > 0, such that U(\*)
still meets a foreign face, but U(X* — ¢) meets no faces for to F for all small
¢ > 0. By the preceding lemma, every point in U(A* — €) is visible to .
Since the set of points visible to @ is closed, this means that every point in
U(X*) is also visible to @, and this set includes a point from a foreign face.

We now conclude the proof of Theorem 4. Let B be a protected box that
is produced by QMG. Write down its sequence of ancestors By, By,..., B,
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Figure 10: This figure illustrates Lemma 9 for d = 2. Face F'is a single
vertex. The convex set (' is the dashed square in the figure. The shaded
region is . Note that there is a vertex GG of P that is foreign to F. This
means that there is a face, namely vertex H in U, that is also foreign to F
but is visible to F N U.

where B, = B and By is the top box. This sequence is not necessarily
unique if B, is not full dimensional, in which case any sequence of ancestors
will do. Now, delete boxes B; in this sequence such that B;;; arises from
B; via subface launching. Denote the new list By,..., B, again. Each box
is now a factor 2 smaller than its predecessor. From this list, delete boxes
that are split either for alignment or for weak crowding, and denote the new
list again as By, By, ..., B.. This new list contains boxes that are split only
for strong crowding, as well as the protected box B, which is not split. By
Lemma 6 and Lemma 7, in this new sequence of boxes, each box differs from
its predecessor in size by a factor at most ¢,.

Each box By,...,B._1 is split during some phase 0 to d — 1. (There
cannot be any strong crowding in phase d by definition of strong crowding.)
Therefore, mark the location where each phase begins and ends in the se-
quence By, ..., B,_;. This divides the sequence By, ..., B._; into “periods,”
where the kth period consists of boxes split during phase k.

Now we will subdivide each period into subperiods, using the following
procedure. Focus on one particular period k, and suppose it starts at B; and
ends with B,, (i.e., By is the first box of the sequence split in phase k, and
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By, is the last). Since B,, is strongly crowded, there is a k-face of P, say F|,
meeting co(B,,), and there is another face G foreign to F' meeting co(By,).
Pick a point @ € F' N co(B,,). Without loss of generality, by Lemma 9, we
can assume that there is a segment in co(B,,) from @ to a point y € GG (else
choose a different (7). Similarly, without loss of generality, y is not in any
proper subface of GG. (If y is in a proper subface of (G, simply reselect G to
be the subface: because (G is foreign to F, every subface of (& is also foreign
to F).

We will construct a PL path Il in co(B,,). The first segment of the path
is #y. Consider whether (G has any boundary faces that meet co(B,,). If
not, then the construction of Il is complete, i.e., we let 1l = @y. The other
case is that a boundary of G meets co(B,,). By Lemma 9, there is a segment
in co(B,,) from y to a boundary face of GG. (In this application of Lemma 9,
the “polyhedral domain” in the lemma is G itself. Note that a boundary of
(i is foreign to G, i.e., it is not a superface.) Append this new segment to
IT. We can continue in this manner until we reach a point which we will now
be reassigned the name y, such that y lies on P-face foreign to F', which we
rename (7, such that G does not have any boundaries that meet co(B,,). Note
that Ith(II) is at most d - \/3(1 + ) size( By,). The factor \/3(1 + ) size( By)
is the diameter of ex(B,,) (in the worst case, when B,, is full-dimensional)
and hence is the maximum length of any segment in co(B,,), and the factor
d comes from the fact that II has at most d segments in it. This is because
in the preceding construction of II, each time a new segment is added, the
dimension of the boundary face in question decreases by at least 1. Thus,
1th(I1) < ¢ size( Byy).

Note that IT C co(B;) for each ¢ = [,...,m since co(B,,) C co(By_1) C
-+ C co(By). On the other hand, in an ancestor of B,,, it might be possible
to extend Il with one or more additional segments so that it reaches a lower-
dimensional boundary face of . Find the lowest numbered box B, (largest

in size) in the period By,..., By, such that it is not possible to extend II to
a P-face of lower dimension that is a boundary of G. We will say that the
subsequence By, Byt1,..., B, is one subperiod of period k. Each box in

this subperiod is associated with the quintuple (@, y, F, G, 1) defined in the
last paragraph. If ¢ = [, then we are done; this is the only subperiod of
period k.

Else suppose not; suppose ¢ > [. Then in B,_; it is possible to extend
IT to reach a face of lower dimension than what was reached in B,. Extend
IT with one or more additional segments, yielding a path I’ to a face G’
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that is a proper subface of (G. Now we repeat the above argument to find
the predecessor of B,_;, say By such that II cannot be extended in B, but
can be extended in By _; (or else ¢' = [), and we let By, Byt1,..., By—1 be
another subperiod of period k, associated with (x,y’, F, G’ 1I"). Continue
in this manner until we finally get back to B;. The maximum number of
subperiods in period k is seen to be d — k. The reason is that each time we
back up to a new subperiod, the dimension of the face reached by Il decreases
by at least 1. The maximum possible dimension of G initially is d — 1, and
the minimum possible dimension is k& (because no box among By, ..., B, is
weakly crowded).

Thus, we have divided the sequence of boxes Bg,..., B,._; into at most
d periods numbered 0, ...,d — 1, and period £k is divided into at most d — &
subperiods. We have also associated with each box a choice of (@, y, F, G, 11).

Now we can classify each box in the sequence according to whether its
associated path II is contractible or not. Let B, be the highest numbered
(smallest) box in By, ..., B._1 such that its associated path is incontractible.
(Notice that B, exists because By certainly satisfies this condition.) Thus,
B, satisfies the conditions of Theorem 4 that it contains an incontractible
path of length at most ¢;size( B, ), and that it is an ancestor of B. All that
remains is to establish (4). Note that the anchor box must be the last one
in its subperiod, because all boxes in a subperiod have the same associated
path. From now on, we consider only the portion B,,..., B, of the original
sequence and forget about By,..., B,_1.

We start with the following intermediate result. Let B,, be a box in the
sequence with m > a, and suppose it is contained in a subperiod beginning
with B, (so a < ¢ <m). Then we claim

size( By,) > ¢q - min(0(P), 1) - size( B,). (5)

Let us assume that B,, is a proper descendent of B, because when m = ¢,
(5) is trivially true. Let (@,y, F,G,II) be the quintuple associated with
B,.; by definition of subperiod, the same quintuple is associated with B,.
Since II is contractible (by choice of B,), F'N G is nonempty. Let A denote
aff(F') Naff(G). We claim that A does not meet ex(B,). See Fig. 11 for an
illustration of the items constructed in the proof of this claim. Note that no
boundary face of F' meets co(B,), because co(B,) does not meet any P-faces
of dimension k — 1 or less (because it is not weakly crowded.) Thus, co(B,)
must contain all of aff(F') Nex(B,). Similarly, co(B,) does not contain any
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Figure 11: This is an illustration of the items @, y, F, G, 11, A arising in the
proof of (5). The boundaries of ex(B,) and ex(B,,) are the dashed lines. In
this figure A is zero-dimensional and is equal to F'N G, but in general A will
be a superset of F'NG.

boundary faces of GG by construction of 11 (else II could be extended). Thus,
co(B,) also contains all of aff (G) Nex(B,). Suppose that aff(F') Naff (G) met
ex(B,); then co(B,) would have to contain all of aff(F') N aff(G) Nex(B,) =
ANex(B,) by the foregoing argument. In particular, F' and G would meet
in co(B) at all points in A Nex(B,). But this is impossible, because neither
has any boundaries in co(B,).

Since A does not pass through ex(B,), there is a lower bound of the
form ¢ysize(B,) on the distance from A to ex(B,,). This is because ex(B,)
extends a small fraction ¢; multiplied by size(B,) beyond ex(B’) for any
proper descendant B’ of B,. In particular, this means dist(a, A) > ¢;size(B,)
and dist(y, A) > cgsize(B,). On the other hand, Ith(Il) < ¢4size(B,,) as
argued above. Thus, in the definition of sharp angle (2) applied to (@, y, 1),
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we see that F' and (¢ make an angle less than or equal to ¢, size(B,, )/ size(B,).
Since 0(P) is the sharpest angle,

O(P) < cqsize(B,,)/ size(By).

This equation proves (5).

We now deduce (4) from (5). If B, is the beginning of a subperiod with
q > a, and B,, is its end, then size(B,) < ¢gmax(1,0(P)™!)size(B,,) from
(5). Thus, if ¢ stands for the total number of subperiods between B,y
and B,, then size(B,) < (cqmax(1,0(P)))~?size(B,), where c;(b accounts
for the factor in box size shrinkage between the end of one subperiod and
the beginning of the next, and #(P)~? accounts for box shrinkage within the
¢ subperiods. Since there are at most d — k subperiods in period k, the
total number of subperiods ¢ can be bounded ¢(d) = d(d 4+ 1)/2. Thus,
size(B,) < ¢4 max(l,H(P)_d(d+1)/2) size(B,) (where we have renamed c;qﬁ(d)
as ¢g).

In fact, we can immediately improve this estimate on ¢(d) with the fol-
lowing observation. Note that if B; is in period 0, then its path II constructed
above cannot be contractible. This is because F' in phase 0 is a vertex and
hence is disjoint from any foreign face G. Thus, the anchor box B, is either
the last box of period 0 or is in a later period. This means that the only
subperiods that matter are in period 1 or later. Thus, we can improve the
estimate to ¢(d) = (d — 1)d/2.

We can further improve the estimate to (6) below with the following more
complicated analysis. We claim that in period 1, a single subperiod suffices.
The proof is as follows. Assume that the anchor box is in period 0 or 1 (else
we would not need to include subperiods of period 1 in the count of ¢, so
(6) holds already). Let us review why we constructed subperiods in the first
place. Let B, be the box at the end of a subperiod, let (x,y, F, G, II) be its
associated quintuple such that II is contractible, and let B, be the first box in
the subperiod ending at B,,. In the above derivation of (5), we used the fact
aff(F') Naff(G) cannot pass through ex(B,). To derive this fact, we needed
to know that G does not have any boundaries in co(B,). The above method
of constructing subperiods indeed assures that GG does not have boundaries
in co(By).

But consider the special case of period 1, so that dim(aff(F)) = 1. Let
B,, be the last box in period 1, and redefine B, to be the first box of period
1, or the child of the anchor B,, whichever comes later. Let (@,y, F, G, 1)
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be the quintuple for B,,. Since dim(F) = 1, dim(aff(F) N aff(G)) is either 0
or 1. The case when dim(aff(F') N aff(G))) = 1 cannot occur by the way we
construct II. In particular, if dim(aff(F) Naff(G)) = 1 then aff(F) C aff(G),
which means that either (G is a superface of F' (contradicting the choice of G
as foreign face) or that G has a boundary in co(B,,) (contradicting the fact
that I reaches a face of minimal dimension).

The other case is that dim(aff(F) Naff(G)) =0, i.e., aff(F)) Naff(G) is a
single point {v}. Since Il is contractible, F' and G have a common subface
which must therefore be {v} itself. Thus {v} is a face of P. But since
B, is not weakly crowded, co(B,) cannot contain a 0-dimensional face of
P. Thus, without making any assumption about whether G has boundaries
in co(B,), we have determined that aff(F') N aff(G) does not pass through
ex(B,). Therefore, a single subperiod suffices for period 1.

Thus, finally, we have the following improved estimate for ¢, which is the
total number of subperiods after B,:

¢(d) = (d—=1)(d = 2)/2 + 1. (6)

This concludes the proof of Theorem 4.
Notice that by combining Theorem 2 and Theorem 4 we immediate obtain
the following corollary.

Corollary 1 Let B be a protected box generated by QMG. Then there exists
an ancestor B, of B such that (4) holds and such that for any triangulation T
of P, there is a simplex T meeting co(B,) such that minalt(7T") < ¢qsize(B,).

In fact we can strengthen Corollary 1 (though not Theorem 4) in the case
d = 2. The strengthened version of Corollary 1 asserts that

size(B,) < csize(B), (7)

holds when d = 2, in place of (4) (i.e., the factor of §( P)~" goes away). The
argument for this strengthening is as follows. In the following argument,
¢ denotes an absolute constant whose value may change from formula to
formula.

Consider how the factor §(P)~! arises in the first place. Let B be a
protected box and B, its anchor. This factor comes when anchor B, is from
period 0, and then in period 1 we split a strongly crowded box that has a
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Figure 12: In this figure, we show that faces arising in the proof of the
strengthened version of Corollary 1 when d = 2. Box B and path II are not
depicted; both are enclosed in B/ in the figure.

contractible path that defines a sharp angle 6. Since (4) and (7) are equivalent
when (P) is large, let us assume that § < 0.1. Let B! to be the last box that
is split for strong crowding at the end of period 1. Clearly (7) holds for this
choice of B! (since splitting for alignment, as well as all splitting in phase 2,
incurs only an additional factor ¢). The contractible path I in B! is from @
to y. See Fig. 12. We now must prove that for an arbitrary triangulation 7,
there is a simplex T' meeting II satisfying minalt(7") < ¢;size(BY).

In the figure, By denotes a protected box for v, the common subface
of F' and G. Note that there must be an incontractible path from v to a
foreign face H whose length at most a factor ¢ more than size(By) by the
preceding analysis. Thus,  and y must both be separated from v by at least
cqdist(v, H). There are two possible ways to choose H; either it is a subface
of one of F' or (G, which is (a) in the figure, or it is does not meet F and G,
which is (b) in the figure.

Let 7 be an arbitrary triangulation. Let Ti,...,Ts be the triangles of
T that meet II. Take two cases. In the first case, suppose that at least
one of Ty,...,Ts, say T, meets the segment denoted by ¥ in (a) or that
it meets the PL path ¥; U X3 in (b). Since X, ¥, ¥ are all incontractible,
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this means by Theorem 2 that minalt(7}) < ¢lth(X) for (a) or minalt(7}) <
clth(¥; U Xy) for (b). But now it is clear that 1th(X),1th(X,),1th(X;) are
all at most cfdist(v, H), that is, less than or equal to csize(B’). Thus,
minalt(7}) < csize(B.), proving the corollary.

The other case is that none of T4,...,Ts meet ¥ in (a) or ¥; U ¥y in
(b). But this means all of T4,..., T, are contained in the polygonal region
bounded by FUGU X in (a) or FUG U X; UXy in (b). The width of
this polygonal region is at most ¢size(B’), so any triangle in this region has
minalt at most esize(B.). This concludes the proof that Corollary 1 may be
strengthened in the case d = 2.

14 Maximizing the minimum altitude

In this section we consider the problem of computing a triangulation that
maximizes the minimum altitude. Although this is not the problem for which
QMG is intended, we nonetheless can obtain an interesting consequence from
Corollary 1. Suppose we want to compute the triangulation of P that max-
imizes the minimum altitude. In other words, for a triangulation 7 of P,
define

pr(P) = min{minalt(T") : T € T}

and then consider the triangulation 7* that solves
pu(P) = max{usr(P): T is a triangulation of P}.

It follows from Corollary 1 that QMG solves this problem to within a factor
ch(P)_¢(d) for d > 2 and within a factor ¢ (a universal constant) when d = 2.
This is because the minimum altitude among all triangles produced by QMG
is within a factor ¢4 of the smallest protected box generated by QMG. But
the smallest protected box is within a factor of cdH(P)_¢(d) of the minimum
altitude of any possible triangulation by the corollary.

Thus, in the case d = 2, pqua(P) > cu(P), and for d = 3, poua(P) >
emin(1,8(P)*)u(P). In the case d = 2, more is known about this problem.
In particular, the algorithm of Bern, Dobkin and Eppstein [2] produces a
triangulation 7 also satisfying u7(P) > cu(P), and also T has an optimal
(linear) number of triangles.

In the case d = 3, much less is know. For instance, we do not know
whether the bound ¢f(P)~? is tight for QMG. We have constructed an ex-
ample where the minimum altitude of the triangulation produced by QMG
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is off from u(P) by a factor ¢f(P)~', but we have not found an example
attaining the bound cf(P)~%

Another open question concerns a geometric characterization of u(P). It
follows from the optimality of QMG in case d = 2 that u(P) is within a
constant factor of the minimum geodesic distance between P-faces that do
not meet each other. Is there a similar simple geometric characterization of
p(P) for d = 37 For any d, Theorem 2 implies that the minimum geodesic
distance between two non-meeting faces of P is an upper bound on u(P) (to
within a constant ¢;), but it is not known whether this bound is tight.

15 A bound on the QMG aspect ratio

This section establishes the optimality of the QMG aspect ratio using The-
orem 4 and Corollary 1.

Theorem 5 Let poua(P) denote the worsl-case aspect ratio produced by
QMG when applied to polyhedral domain P. Then

pouc(P) < egmax(1,0(P)~*@),

Proof. Let By, By be two neighboring protected boxes such that co(B;) and
co(Bz) have a common point. Assume that B; is protected in phase k and
lies in Op, and B, is protected in phase [ with [ > k and lies in Og, and
assume size(B;) > size(Bz). By Theorem 3, it suffices to obtain an upper
bound on size(By)/ size( Ba).

We can assume that co(Bz) C co(By). If this relation did not hold, then
by Lemma 4 we could immediately conclude that there is a bound of the
form ¢q on size( By)/ size( Ba).

By Theorem 4, B, has an anchor B, containing an incontractible path
such that

Cq maX(H(P)_é(d), 1) size(By) > size(B,). (8)
Because Bj is protected, every point in co(Bj) is visible to every point in
F N co(By) by Lemma 8, and this includes co(Bz) as well. Therefore, any
PL path inside co(B;) is contractible to any point of F' N co(By). Since
co(B,) contains an incontractible path, it cannot be a a subset of co(By).
This means that size(B,) > ¢4 size( By). Combining this with (8) shows that
size( By)/ size(Bz) < ¢q maX(H(P)_¢(d), 1). 1
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When d = 2, Theorem 5 shows that QMG is optimal because we already
know that for any triangulation 7, p7(P) > cf(P)~' by Theorem 1, and
$(2) = 1.

When d = 3, Theorem 5 shows that QMG has an aspect ratio bound of
cf(P)~2, whereas the lower bound from Theorem 1 is ¢f(P)~'. In fact, a
more complicated analysis of QMG for the d = 3 case establishes an upper
bound of cf(P)~! on pqua(P). Here is a sketch of this analysis. Recall that
the only case that needs attention is the case of a large protected box B
next to a much smaller protected box Bz, such co(Bz) C co(By). Suppose,
for instance, that B; is protected in phase 0 (a similar argument applies to
the case when B is protected in phase 1), and suppose that By is protected
in phases 1 or 2. Find the largest ancestor B* of By with the property that
co(B*) C co(By); as above, size(By)/size(B*) < ¢. Consider the chain of
strongly crowded boxes from B* down to B;y. Let P’ be the intersection of P
with the facet of By separating it from B*. Observe that splitting strongly
crowded boxes in phases 1 and 2 of 3-dimensional QMG running applied to
the chain of boxes B* down to B, is very similar to phases 0 and 1 of 2-
dimensional QMG running on the polygon P’. In other words, with a correct
modification to the definition of ex(B) in two dimensions, whenever a 3D
box on the boundary of Bj is split for strong crowding, the corresponding
two-dimensional box would be split for strong crowding of P’.

Since 2-dimensional QMG is optimal with respect to maximizing the min-
imum altitude, we conclude that size(By) is bounded below by the minimum
geodesic distance ¢ in P’ between two faces that do not meet. But now it is
easy to see that §/size(B;) is bounded above by the sharpest angle 6 at v.
Thus, size( By )/ size(By) < c(P)~".

It is likely that this line of reasoning extends to higher dimensions, al-
though we do not know the exact improvement to Theorem 5 possible with
this analysis. Furthermore, we do not know whether our lower bound Theo-
rem 1 on the best attainable aspect ratio is tight in dimensions higher than
3.

We can summarize the conclusions of this section with the following the-
orem.

Theorem 6 Let T be an arbitrary triangulation of P with worst case aspect
ratio denoted pr(P). Then

poua(P) < cq- (pr(P))*?

46



where Y(d) =1 for d = 2,3 and ¥(d) < ¢(d) for higher dimensions.

16 Bounded aspect ratio triangulations

In the previous section we showed that the QMG triangulation has an aspect
ratio bound. In the next section we will show that, among all triangulations
with bounded aspect ratio, QMG has the minimum cardinality, up to a con-
stant factor. This requires some preliminary results that apply generally to
any triangulation with bounded aspect ratio.

We have the following preliminary lemma.

Lemma 10 Let T be a triangulation of a polyhedral region P whose aspect
ratio is at most p. Let T1, Ty be two simplices that share a common vertex v.
Then minalt(Ty) < (i(p, d) minalt(7y), where the function (i(-,-) is defined

below.

We omit the proof of this lemma, which is contained in [10]. Here is a sketch.
Two simplices S1, 52 of T that share an edge vyvy satisfy minalt(S;) <
pminalt(Sy) by the chain of inequalities:

minalt(S;) < |lvg — vy
< maxside(S)
= asp(.Sz) minalt(S;)
< pminalt(Ss). (9)

Two simplices T, T, that share a vertex v are connected by a chain of sim-
plices Si(= T1),S,,...,5,(= Ty) that all share v and such that S; and S;4;
have a common edge. This is because T is a triangulation of P, which is a
manifold with boundary. Then it can be shown that the number of simplices
p that can share a common vertex is bounded above in terms of p because
the solid angle of each S; at v is bounded below in terms of p. Thus, p is
bounded above in terms of p: it turns out that p < ¢zp?~!. Thus, the lemma
is true with ¢;(p, d) = p°ar™".

Now for the first result of the section. This lemma bounds the rate at
which simplices can grow in a bounded aspect ratio triangulation.

Lemma 11 Let T be a triangulation of P whose aspect ratio bound is p. Lel
IT be a PL path in P from @ to y. Suppose that © is contained in a simplex
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T. Then every simplex T containing y salisfies

minalt(7") < ¢q(i(p, d) max(minalt(7'), 1th(II)). (10)

Proof. Let F,..., F, be an enumeration of the faces of 7 met by II. Let F}
be the lowest dimensional face of T containing y.

Case 1, F; has a vertex in common with T'. Since every simplex containing
y also contains F, then 7" has a common vertex with 7T'. In this case the
lemma is true with the first term of the max in (10) by the preceding lemma.

Case 2, Fs does not have a vertex in common with T. In this case,
define a PL continuous function f : P — IR that is 1 on vertices of Fj,
zero on all other vertices, and is linearly interpolated by 7. Then, as in
the proof of Theorem 2, there must be a simplex S that meets II such that
the gradient of f on S is at least 1/1th(Il), and hence this simplex satisfies
minalt(S) < ¢g1th(Il). Notice that S and Fy must have a common vertex
because if not, then the gradient of f on S would be 0. Since S and T” have
a common vertex, we apply the preceding lemma to bound minalt(7") by the
second term of the max in (10), proving the lemma. W

Here is our other main result about bounded aspect ratio triangulations.

Lemma 12 Let C be a cube in R? of side length s. Let Ty, ..., T, be a set
of n simplices with pairwise disjoint interiors, satisfying minalt(7;) > p and
asp(T;) < p for each i. Suppose each T; meets C'. Then

n < cdpd—l—cdsd/,ud. (11)

Proof. For each T}, identify a point &; € T;NC. Now contract each T; about
x; until we obtain a new simplex 77 such that minalt(7!) = p. Since T} C T;,
the set T, ..., T/ still enjoys the property that interiors are pairwise disjoint.
Since &; € T!, each T! still meets C'. Finally, contraction affects maxside and
minalt by the same scale factor, so asp(7}) = asp(T;).

We know that maxside(T!) = asp(7!) minalt(7}) < pp. Therefore, for
every point y in T/, dist(y, ®;) < pu. Let &g be the centroid of C. Then we
have for each i that dist(@;, &) < ¢gs. Combining these inequalities yields
the bound that for every point y € T/ for each ¢, dist(y,@o) < pu + cys.
Thus, all of 7], ..., T} are contained in a ball B of radius py + ¢4s around «,.
The volume of this ball is at most cq(p?u? 4+ s?). Each simplex has volume
at least cgu? by (1). Since the simplices have disjoint interiors, their number
is bounded above by vol(B)/(cqu?), which proves the lemma. §
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17 A bound on the cardinality of QMG

In this section we show that the cardinality of the triangulation produced
by QMG is always within a constant factor of optimal among all bounded
aspect ratio triangulations, where the constant depends on the aspect ratio.
We start with the following lemma.

Lemma 13 Let @ be an arbitrary point in P, and let T' be the simplex gen-
erated by QMG that contains . (If there is more than one, the resull holds
for any choice of T.) Let S be some other triangulation of P with aspect
ratio bound ps, and let S be the simplex in S that contains . (If there is
more than one, then the result holds for any choice of S.) Then

minalt(S) < ¢i(i(ps, d) - maX(H_(2d+2)¢(d), 1) - minalt(7"). (12)

Proof. Recall that each simplex generated by QMG is associated with a full-
dimensional protected box, namely the last box in its chain. Furthermore,
each full-dimensional protected box is associated with a full-dimensional an-
chor box as in Theorem 4. Therefore, transitively, each simplex generated
by QMG is associated with an anchor box.

Let T' be such a simplex, and B, its anchor box. Clearly

minalt(7) < ¢gsize( B,) (13)

since T lies in ex(B,). On the other hand, there is also an inequality in
the other direction. The reason is as follow. Let B be the full-dimensional
protected box containing 7'. Then, as argued in Section 10, minalt(7") is
bounded below by the size of the smallest neighbor of B, which, by the proof
of Theorem 5, is bounded below by ¢;min(1,8(P)*?)size(B). There is a
lower bound on size(B) in terms of size(B,) given by (4). Combining these
bounds yields

minalt(7") > ¢gmin(1, 0(P)2¢(d)) size( By). (14)

Let @ be the arbitrary point in P specified by the lemma. Let T be
the simplex generated by QMG that contains @, let B be the protected
box associated with T', and let B, be the anchor of B. In the next few
paragraphs we will construct a PL path ¥ from & to a simplex S € S
satisfying minalt(S) < size(B,), and such that 1th(X) is bounded above in
terms of size(B,).
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Observe that co(B,) contains an incontractible path II; by definition of
“anchor.” Therefore, let S; be the simplex in & that meets II; and satisfies
minalt(S;) < ¢gsize(B,) as specified in Theorem 2. Let y be a point in
I, N'S;. Construct the shortest PL path (the geodesic path) from @ to y
lying in co(B,), and call it ¥;. Note that there is no a priori upper bound
on 1th(X) in terms of size( B,) because co(B,) could contain geodesic paths
possibly much longer than size(B,).

Let Ty,T5,...,T, be an enumeration of the QMG simplices met by X,
listed in the order they are encountered starting with . Note that no simplex
can appear twice in this enumeration; this is because ¥ is a geodesic path
and therefore would not return to the same simplex more than once.

Let T}, be the first simplex in the sequence that fails to satisfy (14). If
there is no such ¢, then take ¢ = p+1. Thus, T4,...,T,_; all satisfy (14). We
claim that ¢ — 1 < ¢gmax(6=2%(9) 1), This follows from (11). Observe that
Ti,...,T,—1 is a set of simplices with disjoint interiors all meeting ex(B,).
We use (14) as a lower bound on the minimum altitudes of Ti,...,T,_1,
casize(B,) as the size of ex(B,), and Theorem 5 to get upper bounds on
aspect ratios. In this use of (11), the second term dominates the first on the
right-hand side.

Suppose that ¢ = p 4+ 1, i.e., every simplex in the enumeration satisfies

(14). Then define ¥ = ¥;; we claim that
Ith(¥) < ¢q max(0_2d¢(d), 1) size(B,). (15)

This is because ¥ passes through ¢—1 simplices, and the length of its segment
in each simplex is at most ¢q size(B,). This choice of ¥ has all the properties
named above: it connects & to a point on a simplex S; (which satisfies
minalt(S1) < ¢gsize(B,)) and satisfies (15).

The other case is that ¢ < p— 1. In this case, we truncate ¥; at the point
where it enters T, which we denote ; call the truncated path ¥{. Clearly
¥ satisfies (15) by the same argument as in the last paragraph. Now notice
that the anchor box for T}, cannot be B, because T, does not satisfy (14) by
choice of q.

Therefore, identify the anchor of T,, which we will call By, and start
the construction anew from ;. In other words, find the incontractible path
Iy in co(Bs), find the simplex Sy of & that meets the incontractible path
and has altitude at most ¢;size(By) and let ¥5 be the path @; to a point
in Sy N 1lz. Note that size(By) < size(B,)/2, because B, must be smaller
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than B, so that (14) can be satisfied for the new anchor. Find the first
simplex in this new path that fails to satisfy (14) for B, and so on. Notice
that X, the truncation of ¥, satisfies (15) with size(B;) taking the place of
size( B,) on the right-hand side. Therefore, the upper bounds given by the
right-hand side of (15) on Ith(X]),1th(X%),... form a series decreasing by a
factor of 2 each time. Eventually the procedure terminates at ¥; because
there is a finite lower bound on the smallest protected box in QMG. When
the procedure terminates, concatenate ¥{,3), ..., ¥ |, ¥; into a PL path ¥.
(This concatenation is possible because ¥] ends at @;, which is where X
begins, and so on.)
This path ¥ has the following properties. It satisfies (15) with the original
B, on the right-hand side, multiplied by an additional factor of 2 that arises
from summing a decreasing geometric series. It connects @, the given point
in P contained in a simplex 7" of QMG anchored at B,, to a point y that is
in a simplex S; in triangulation & and that satisfies minalt(.S;) < ¢ size(B,).
This is exactly the setup we need to apply Lemma 11. Let S be the
simplex in § that contains . From Lemma 11 applied to ¥ we conclude
that
minalt(S) ciCi(ps,d) - max(1th(X), minalt(.5;))

<
< eaCi(ps,d) - max(9_2d¢(d), 1) size(B,). (16)

The second line was obtained by substituting the bound (15) for Ith(X), and
then noting that this bound dominates the upper bound of ¢, size(B,) that
applies to minalt(5;).

Now finally, the lemma is proved, because we combine (16) with the bound
on size(B,) in terms of minalt(7T') given by (14). 1§

Theorem 7 Let nqua(P) be the number of simplices in the triangulation
produced by QMG. Let S be some other triangulation of P with aspect ratio
bound ps, and let the cardinality of S be ns. Then

noua(P) < caGi(ps, d)’ps - max(0~CHIWED 1) - pg, (17)

Proof. Let foug : P — IR be the piecewise constant function defined as
follows. Let T" be a simplex generated by QMG. The value of fomg on 7' is
defined to be 1/vol(T'). On boundaries of simplices, a measure-zero set, we
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leave fomg undefined. Function fs: P — IR is defined similarly in terms of
S. Note that

nQMG :/ foua(z) dz
zeP

because the value of the integral over each individual simplex is exactly 1. A
similar expression holds for ng.

Define piecewise constant functions gqug : P — IR to be 1/ minalt(T)?
on T, where T is a simplex in QMG, gs similarly for §. Finally, define hs
to the piecewise constant function that is 1/ maxside(S)? on S, as S ranges
over simplices in S.

Then we have the following chain of inequalities.

QMG = /EP foma (@) de
< cd/ goma(z) de
zeP
< ciCilps, d)* - max(9~ @D 1) /
<

EP
ciCi(ps, d)*pl - max(0~CHHDID 1) / hs(x) da

< caGi(ps, d)dpg . max(ﬂ_(2d+2)d¢(d)’ 1)-

= ci(i(ps,d)?pd - max(f=FFDD 1)y
In these inequalities, we used (1) to obtain the second line, (12) for the third
line, the aspect ratio bound for S for the fourth line, and (1) again for the
fifth line. This proves the theorem.

Note that this theorem allows the ratio nqma/ns to be arbitrarily large
if the competing triangulation & has bad aspect ratio. This is not merely
an artifact of our analysis but is actually a feature of bounded aspect-ratio
triangulations, as illustrated by the following example. Consider a p x 1
rectangle with p > 1. On such a domain, QMG would require O(p) triangles
(as would any algorithm guaranteeing bounded-aspect ratio), but this domain
can be triangulated with just two triangles by inserting a diagonal. This
latter triangulation has aspect ratio of Q(p).

Note also that ps > cg0~! by Theorem 1. Thus, the entire right-hand side
of (17) can be bounded above with the more compact formula f(ps,d) - ns.
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18 Running time analysis

In this section we briefly discuss the running time of QMG. The running
time for the separation stages is proportional to the number of boxes created
multiplied by the time per box. There is no prior upper bound on the number
of boxes in terms of the input. There is also no prior upper bound on the
number of boxes in terms of the output, that is, in terms of the number of
simplices produced, which we denote s. However, a modification to QMG
would allow us to claim that the total number of boxes is bounded above
by a multiple of s. The modification would be an additional operation to
short-circuit a series of splitting operations that make no progress. More
specifically, the modification is as follows. When we split a box, we check if
only one of its children has nonempty content. If so, we discard the other
children, and we immediately shrink that box by a power-of-two factor, until
it is sufficiently small that we can be guaranteed that the next split will
produce more than one child with nonempty content.

The amount of time to process a box depends on the combinatorial com-
plexity of its content. A crude upper bound is that the complexity of the
content is bounded by O(N), where N is the complexity of the input domain
P. Processing the content requires a connected component computation;
the time for this computation in higher dimensions is O(N?), although, as
mentioned in Section 5, more efficient algorithms are available for 2 and 3
dimensions.

Thus, an estimate for the separation stage running time, using the modi-
fication mentioned above, is O( N?s) operations. The operations in the align-
ment stage (checking complete coverage) can be done with a hash table as
mentioned in Section 7. Thus, alignment requires O(s) operations. Finally,
the triangulation part of the algorithm also requires O(s) operations. Thus,
the total running time is O(N?s).

19 Implementation

A two-dimensional version of QMG called “tripoint” was implemented by S.
Mitchell in C++ and is available on the web [11]. A full version of QMG
has been implemented in C++ by S. Vavasis; the implementation QMG1.1
is more general than the version described in this paper because it can also
handle nonmanifold features, including several kinds of internal boundaries.
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QMGI.1 is available on the Worldwide Web [16] and has a number of users
in several countries. It is slated to be the main mesh generator in a future
release of //Ellpack. The implementation is slightly different from the algo-

rithm described in this paper; in particular, the alignment procedure uses an
adaptive method for selecting tolerances, and a different rule for choosing a
close face. Computational experiments will be described elsewhere.

20

Open questions

Some of the open questions raised by this work include:

1.

Is there a triangulation algorithm with stronger optimality properties?
For instance, the QMG aspect ratio is optimal (up to a constant factor)
only in dimensions 2 and 3.

. Several open questions were posed in Section 14. For instance, is there

a characterization of the maximal value of the min-altitude in a trian-
gulation of 3D polyhedra?

Can this work be extended to curved boundaries? It appears that
the main bottleneck is a solution to the subproblem of triangulating a
uniform grid of boxes posed in the companion paper [12].

. Is there a mesh generation algorithm for three-dimensional domains

that guarantees dihedral angles bounded by 7/2?7 Such a bound is
important for some finite element problems [15]. It is known [3] how
to solve the corresponding problem in two dimensions.

Can the running time bound be improved?

The optimality properties demonstrated here all involve constant fac-
tors which are apparently very large. The QMG implementation in
practice often produces meshes that are factors of 50 off from mini-
mum number of tetrahedra, and also factors of 50 off from the best
aspect ratio. This leads to the following practical open question: Is
there a mesh generation algorithm with theoretical guarantees compa-
rable to QMG’s, and yet with better theoretical constants or better
performance in practice?
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