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ABSTRACT 

With the threats of climate change, increased penetration of renewable energy on the 

electricity grid is a crucial method to reduce fossil fuel emissions. One of the main issues with 

renewable energy sources, such as wind, is that they produce intermittent power. There are many 

statistical distributions that are used to represent wind speed in a given location. These distributions 

can be used to develop stochastic models of wind power in a power flow simulation. This paper 

seeks to develop a framework for generating stochastic models from four wind speed distributions 

and begin to understand the effects of using a certain model in an electricity grid power flow 

simulation. Results demonstrate that the choice of stochastic wind model can have a noteworthy 

impact on the amount of additional traditional generation required in the system, and therefore 

great effort must be made to ensure that any model used is an accurate representation of the wind 

resources in the study area.
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I. INTRODUCTION 

The threat of climate change is more pressing now than ever. Global temperatures are 

rising, extreme weather events are increasing in frequency, and polar ice caps are melting. Unless 

serious action is taken soon, the future may be bleak for humans and for the millions of other 

species on this planet. One effort to curtail climate change is to reduce emissions by replacing 

electricity generated through burning fossil fuels with clean, renewable sources. A form of 

renewable generation that has shown significant promise is wind energy. In terms of potential 

alone, there is more kinetic energy in the atmospheric boundary layer from wind than the total 

global energy demand.[1] Wind turbines provide a method to capture this energy and convert it into 

electricity that can be used in the same way as any other form of generation feeding into the electric 

grid. Using an aggressive wind turbine deployment strategy could reduce emissions to such an 

extent that the two-degree Celsius warming threshold for dangerous climate change, set by the 

Intergovernmental Panel on Climate Change (IPCC), could be avoided entirely.[1] One of the issues 

with large-scale deployment of wind energy is its intermittency, as fluctuations in wind speed 

result in different, largely unpredictable outputs from wind turbines. In order to have effective 

electricity grids with a large percentage of energy derived from wind, we must understand the 

variation of wind speed so that electricity can be properly dispatched to minimize cost. There are 

several statistical models used to characterize the wind speed, and although much previous work 

compares the fit of these models to the observed wind speed data, the models are not often 

compared side by side in a power flow simulation. This project will compare using four wind speed 

distributions to generate different stochastic wind power models that will be used in an economic 

dispatch model to begin to understand the differences between the models in a power flow. 

 

II. WIND SPEED DISTRIBUTIONS 

The most common wind speed model is the Weibull Distribution. This two-parameter 

model was developed by Waloddi Weibull in 1951 to be applied to a variety of fields, including 

strength of materials.[2] The Weibull Distribution is defined by one shape parameter (𝑘) and one 
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scale parameter (𝑐). The probability density function (pdf) and cumulative density function (cdf) 

are given by 

𝑓𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝑣) =
𝑘

𝑐
(
𝑣

𝑐
)
𝑘−1

𝑒𝑥𝑝 (− (
𝑣

𝑐
)
𝑘

) 

 

𝐹𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝑣) = 1 − 𝑒𝑥𝑝 (−(
𝑣

𝑐
)
𝑘

) 

 

where 𝑣 is the wind speed, as will be the case for all distributions introduced in this section.[3] 

There are several methods for determining the shape and scale parameter from wind speed data, 

but the simplest involves two formulas given as 

 

𝑘 = (𝜎/𝑣̅)−1.086 

 

𝑐 =
𝑣̅

Γ(1 +
1
𝑘
)
 

 

where 𝑣̅ is the average wind speed and 𝜎 is the standard deviation of the data.[3] The Weibull 

Distribution tends to fit typical wind speed distributions very well, as is seen through Figure 1.[4] 

 

 
Figure 1: Weibull pdf overlaid on typical wind speed statistics[4] 
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The Rayleigh Distribution is a simplified version of the Weibull Distribution, in the case 

where 𝑘 = 2 and 𝑐 = 𝜎√2. This results in a simple distribution, which can be solved solely using 

the average wind speed. The pdf and cdf for the Rayleigh Distribution are given by[5] 

 

𝑓(𝑣) =
𝜋

2
(
𝑣

𝑣̅2
) 𝑒𝑥𝑝 [−

𝜋

4
(
𝑣

𝑣̅
)
2

] 

 

𝐹(𝑣) = 1 − 𝑒𝑥𝑝 [−
𝜋

4
(
𝑣

𝑣̅
)
2

]. 

 

Although the Weibull Distribution has become the standard for modeling wind speeds, this 

does not necessarily mean that it is the most accurate. There are other common two-parameter 

distributions, as well as additional distributions with a greater number of parameters used to 

characterize wind speeds.  

The Lognormal Distribution, developed by Francis Galton in 1879, is another two-

parameter statistical distribution that is used to characterize wind speed.[6] This distribution is 

defined by the mean (𝜇) and the standard deviation (𝜎). The Lognormal pdf and cdf are given by 

 

𝑓𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝑣) =
1

𝜎𝑣√2𝜋
𝑒𝑥𝑝 [

−(ln(𝑣) − 𝜇)2

2𝜎2
] 

𝐹𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝑣) =
1

2
+
1

2
𝑒𝑟𝑓 [

ln(𝑣) − 𝜇

𝜎√2
] 

where 𝑒𝑟𝑓() is the error function from the normal distribution.[7] When applied to wind speed data, 

Lognormal distributions typically have better fits when method of moments estimators are 

employed for 𝜇 and 𝜎 as opposed to maximum likelihood estimators. This method will therefore 

be used in this research, with 𝜇̂ and 𝜎̂ being calculated as 

 

𝜇̂ = 𝑙𝑛

(

 
𝑣̅

√1 +
𝑆2

𝑣̅2)
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𝜎̂ = √ln⁡ (1 +
𝑆2

𝑣̿2
) 

 

where 𝑆2 is the variance of the data set.[7] 

The final two-parameter distribution to be considered is the Beta Distribution, which was 

developed by Karl Pearson in 1904.[8] The convention for the Beta Distribution differs from the 

previous distributions as the pdf is not for the wind speed directly, but rather a dimensionless 

version of the wind speed. This dimensionless quantity, 𝑥, is defined as 
 

𝑥 =
𝑣̅

𝑣𝑚𝑎𝑥
 

 

where 𝑣̅ is the average wind speed and 𝑣𝑚𝑎𝑥 is the maximum wind speed for the time interval 

under investigation. It then must be true that the value of 𝑥 must always be between 0 and 1. There 

are two parameters, 𝛼 and 𝛽 that are used to define the Beta Distribution. The pdf is given in terms 

of 𝑥 as 

 

𝑓𝐵𝑒𝑡𝑎(𝑥) = 𝑥𝛼−1(1 − 𝑥)𝜉−1. 

 

The parameters 𝛼 and 𝛽 are defined as 

 

𝛼 =
1

1 + 𝜂
(
𝜂

𝐼
− 1) 

 

𝜉 = 𝜂𝛼 

 

where  

 

𝜂 =
𝑣𝑚𝑎𝑥 − 𝑣̅

𝑣̅
 

 

𝐼 =
𝜎2

𝑣̅2
 

 

and 𝜎 is the standard deviation of the wind speed data.[9] 

The two-parameter statistical distributions typically tend to fit very well for most wind 

speed locations. There are instances, however, when the wind speed data follows an abnormal 
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distribution. One common such distribution occurs when there is a large spike of low wind speeds, 

and then a long tail trailing into the higher wind speeds.[10] Figure 2 displays this abnormal wind 

speed characteristic.  

 

 
Figure 2: Long-tail wind speed data from a site in Croatia[10] 

 

In circumstances such as these, a two-parameter statistical model may result in misleading 

distributions, and it is necessary to use a statistical model with a greater number of parameters.[10] 

The four-parameter Kappa Distribution is one such model. It was developed by J.R.M. Hosking in 

1994 as a variation of the three-parameter Kappa Distribution and has since been applied to 

characterize wind speeds.[11] The distribution is characterized by the parameters 𝜉, 𝛼, 𝑘, and ℎ. The 

pdf and cdf are given by[12] 

 

𝑓𝐾𝑎𝑝𝑝𝑎(𝑣) = 𝛼−1 [
1 − 𝑘(𝑣 − 𝜉)

𝛼
]

1
𝑘−1

𝐹(𝑣)1−ℎ 

 

𝐹𝐾𝑎𝑝𝑝𝑎(𝑣) = {1 − ℎ [1 −
𝑘(𝑣 − 𝜉)

𝛼
]

1
𝑘

}

1
ℎ

. 
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The four parameters are not solved for directly, but rather are estimated by solving relationships 

between the parameters, the sample L-moments (𝜆1, 𝜆2), and the L-moment ratios (𝜏1, 𝜏2). The 

following system of equations must be solved 

 

𝜆1 = 𝜉 +
𝛼̂(1 − 𝑔1)

𝑘̂
 

𝜆2 =
𝛼̂(𝑔1 − 𝑔2)

𝑘̂
 

 

𝜏3 =
−𝑔1 + 3𝑔2 − 2𝑔3

𝑔1 − 𝑔2
 

 

𝜏4 =
−𝑔1 + 6𝑔2 − 10𝑔3 + 5𝑔4

𝑔1 − 𝑔2
 

where 

 

𝑔𝑟 =

{
 
 

 
 

𝑟Γ(1 + 𝑘̂)Γ(𝑟/ℎ̂)

ℎ̂1+𝑘̂Γ(1 + 𝑘̂ + 𝑟/ℎ̂)
,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ ℎ̂ > 0

𝑟Γ(1 + 𝑘̂)Γ(−𝑘 − 𝑟/ℎ̂)

(−ℎ̂)1+𝑘̂Γ(1 − 𝑟/ℎ̂)
, ℎ̂ < 0.

 

 

An iterative process is used to solve for the parameters that can then be input into the pdf to model 

the wind speed characteristics.[12] 

Another model that can capture the long-tail wind speed behavior is the Wakeby 

Distribution. This five-parameter distribution was developed by John C. Houghton in 1978.[13] The 

Wakeby distribution is defined by the parameters 𝜉, 𝛼, 𝛽, 𝛾, and 𝛿.13 It is generally represented by 

the inverse cdf, which is given as[12] 

𝐹𝑊𝑎𝑘𝑒𝑏𝑦
−1 (𝐹(𝑣)) = 𝜉 +

𝛼

𝛽
[1 − (1 − 𝐹(𝑣))

𝛽
] −

𝛾

𝛿
[1 − (1 − 𝐹(𝑣))

−𝛿
]. 

 

As is the case with the Kappa distribution, the parameters in the Wakeby distribution cannot be 

solved for directly. The method to estimate the parameters depends on the sample L-moments. The 

four sample L-moments, 𝜆1, 𝜆2, 𝜆3, and 𝜆4, are given as 
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𝜆1 = 𝜉 +
𝛼̂

1 + 𝛽̂
+

𝛾

1 − 𝛿
 

 

𝜆2 =
𝛼̂

(1 + 𝛽̂)(2 + 𝛽̂)
+

𝛾

(1 − 𝛿)(2 − 𝛿)
 

 

𝜆3 =
𝛼̂(1 − 𝛽̂)

(1 + 𝛽̂)(2 + 𝛽̂)(3 + 𝛽̂)
+

𝛾(1 + 𝛿)

(1 − 𝛿)(2 − 𝛿)(3 − 𝛿̂)
 

 

𝜆4 =
𝛼̂(1 − 𝛽̂)(2 − 𝛽̂)

(1 + 𝛽̂)(2 + 𝛽̂)(3 + 𝛽̂)(4 + 𝛽̂)
+

𝛾(1 + 𝛿)(2 + 𝛿)

(1 − 𝛿)(2 − 𝛿)(3 − 𝛿)(4 − 𝛿)
. 

 

for 𝛿 > 0.[14] The parameters are then estimated by following an algorithm, with the full details 

outlined in Hosking and Wallis.[15] 

There is one uncommon wind speed distribution shape that even the four-parameter Kappa 

and five-parameter Wakeby cannot capture. This is the bimodal wind speed distribution, where 

there are two spikes around two separate wind speeds, as displayed in Figure 3.[10] 

 

 
Figure 3: Bimodal wind speed data from a site in Yemen[10] 

 

In this rare circumstance, a seven-parameter model must be used. The seven-parameter Burr-

Generalized Extreme Value (B-GEV) mixture pdf can accurately depict the bimodal behavior 
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through a statistical distribution. This distribution implements the Burr function as a generalized 

extreme value mixture pdf and was developed by Christopher Jung in 2017 specifically for the 

purposes of characterizing bimodal wind speed distributions. The pdf and cdf are a combination of 

the Burr and Generalized Extreme Value (GEV) pdfs and cdfs. The full B-GEV distribution is 

characterized by the Burr parameters 𝜊, 𝜎, and 𝜒, the GEV parameters 𝜂, 𝜄, and 𝜇, and the B-GEV 

parameter 𝜔. The Burr pdf and cdf are given as 

𝑓𝐵𝑢𝑟𝑟(𝑣) =
𝜊𝜒(

𝑣
𝜎)

𝜊−1

𝜎 [1 + (
𝑣
𝜎)

𝜊

]
𝜒+1 

 

𝐹𝐵𝑢𝑟𝑟(𝑣) = 1 − [1 + (
𝑣

𝜎
)
𝜊

]
−𝜒

. 

 

and the GEV pdf and cdf are given as 

 

𝑓𝐺𝐸𝑉(𝑣) =
1

𝜂
[1 −

𝜄

𝜂
(𝑣 − 𝜇)]

1
𝜄
−1

𝑒𝑥𝑝 {− [1 −
𝜄

𝜂
(𝑣 − 𝜇)]

1
𝜄
} 

 

𝐹𝐺𝐸𝑉(𝑣) = 𝑒𝑥𝑝{− [1 + 𝜄
(𝑣 − 𝜇)

𝜂
]
−
1
𝜄

}. 

 

The full B-GEV pdf and cdf is then given as[10] 

 

𝑓𝐵,𝐺𝐸𝑉(𝑣) = 𝜔𝑓𝐵𝑢𝑟𝑟(𝑣) + (1 − 𝜔)𝑓𝐺𝐸𝑉(𝑣) 
 

𝐹𝐵,𝐺𝐸𝑉(𝑣) = 𝜔𝐹𝐵𝑢𝑟𝑟(𝑣) + (1 − 𝜔)𝐹𝐺𝐸𝑉(𝑣). 
 

Estimation of the B-GEV parameters is achieved by the least-squares estimation method using the 

Levenberg-Marquadt algorithm. The full algorithm details are expanded upon in Marquadt’s 1963 

paper.[15] 

 This is by no means an exhaustive list of statistical distributions used to model wind speeds. 

For this research, the focus will be on the four distributions with one or two parameters, namely 
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the Weibull, Rayleigh, Lognormal and Beta distributions. Though the Kappa, Wakeby, and B-

GEV distributions can prove useful for uncommon wind speed scenarios, the focus of this research 

is to compare the results of an economic dispatch model using various wind speed distributions 

for stochastic modeling, and therefore the addition of the more complex distributions does not add 

much value. Direct comparison of the four common distributions and how they affect a power flow 

system with all other conditions being the same can give insight as to how differences in statistical 

models with similar structures can affect the system. 

III. WIND SPEED TO WIND POWER 

While the statistical distributions give insight into the probability of observing particular 

wind speeds, they do not actually predict the power generated from a wind turbine generator. The 

power produced will vary depending on the wind turbine model, and the resultant power curve can 

be divided into three regions, displayed by Figure 4. The relationship between wind speed and 

wind power is 

𝑃 = {

⁡0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑣 < ⁡ 𝑣𝑐𝑖 ⁡⁡𝑜𝑟⁡⁡𝑣 > ⁡𝑣𝑐𝑜

𝑃𝑟 (
𝑣 − 𝑣𝑐𝑖
𝑣𝑟 − 𝑣𝑐𝑖

),⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑣𝑟 ⁡≤ 𝑣⁡ ≤ 𝑣𝑟

𝑃𝑟 ,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑣𝑟 ⁡≤ 𝑣⁡ ≤ ⁡ 𝑣𝑐𝑜

 

Where 𝑃 is the power produced, 𝑃𝑟 is the wind turbine rated power, 𝑣𝑟 is the rated wind speed, 𝑣𝑐𝑖 

is the cut-in wind speed, and 𝑣𝑐𝑜 is the cut-out wind speed.[16] 

 

 
Figure 4: Wind power curve[16] 
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The wind speed distribution from any statistical model can work in tandem with the manufacturer’s 

power curve for a given wind turbine generator to calculate the probability of producing a given 

power output. 

 

IV. WIND SPEED DATA 

Time series wind speed data is a vital component for carrying out a statistical analysis and 

developing a stochastic power flow model. The model for this research is based on the New 

England power grid, as will be explained in Section V, so wind speed data from New England is 

used. Selecting a data set that is representative of the wind patterns in the entire New England area 

is impossible, however, by selecting several distinct data sets in regions with good wind resources 

and in the general geographic areas where wind farms have been installed, wind patterns can be 

fairly represented. Wind speed data was gathered from the National Renewable Energy 

Laboratory’s (NREL) Wind Prospector Tool. The data set contains the wind speed at 100 meters 

for 5-minute intervals for the years 2007-2012.[17] Figure 5 displays the wind resource from the 

NREL Wind Prospector and Figure 6 displays the installed wind turbines, both for the New 

England area. Four geographic locations were chosen for wind speed data collection. Each location 

has above average resources (with respect to the New England area), is in a general area where 

turbines have been installed, and each of the four locations are distinct in their resources. The 

locations are labeled in Figures 5 and 6 from one to four. 
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Figure 5 and Figure 6: Wind speed resources based on average wind speeds displayed in the colors 

based on the key in meters per second (left) and installed wind turbines with relative density and size of 

the turbine displayed on the key (right).[17],[18] The location of the data used is shown in the blue circles on 

both figures. 

The main takeaway from observing these wind speed data sets is that wind speed is 

extremely variable. Therefore, it is desired to model wind power as stochastic. The variability of 

the data set can be seen in Figure 7, which displays the wind speed and wind power for an example 

2-megawatt (MW) turbine for the beginning of the year 2012 using the aforementioned New 

England data from Location 1. Only Location 1 data is displayed in this figure as it represents the 

variability of wind in a given location. 
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Figure 7: Instantaneous wind speed at 100 meters and power genereated by a 2 MW turbine with 12-hour 

averages for winter 2012. The left axis measures instantaneous wind speed and the right axis measures 

instantaneous wind power generated by a 2 MW turbine. 

It is difficult to gain any insight from the instantaneous values for wind speed and wind 

power, but this data can be used to develop statistical distributions that can be used to help predict 

wind speed. Using all the locations’ data sets, the probability density function is generated for the 

Weibull, Rayleigh, Lognormal, and Beta distributions. Figure 8 displays the four pdfs created from 

the full data set for comparison. 
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Figure 8: Probability density functions for Weibull, Rayleigh, Lognormal, and Beta distributions using 

Location 1 data 

Figure 8 clearly displays the differences in the pdfs for each of these distributions, which can allow 

for insight into their behavior. The Weibull and Beta distributions appear to be the most similar of 

the group, with a leftward peak around five to eight meters per second wind speed and a long tail 

trailing off toward the higher wind speeds. The Beta distribution has slightly higher probabilities 

for the lower wind speeds, slightly lower probabilities for the average wind speeds, and slightly 

higher probabilities for the higher wind speeds when compared to the Weibull, however. The 

Rayleigh distribution, on the other hand, has lower probabilities for the lower wind speeds 

compared to the Weibull and Beta, and it also has a peak at a higher wind speed of nine to ten 

meters per second. The Rayleigh distribution has high probabilities for the average wind speeds, 

and then lower probabilities for the higher wind speeds. Lastly, the Lognormal distribution is the 

most visually dissimilar from the other three. It has a very sharp peak at roughly six meters per 

second wind speed, resulting in very high probabilities for the average wind speeds. As a result, 
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the Lognormal has quite low probabilities for lower and higher wind speeds compared to the other 

distributions. The exception is the Rayleigh distribution, which has even lower probabilities than 

the Lognormal for very high wind speeds above roughly 21 meters per second. 

It is also important to understand the impacts of using these distributions to calculate on 

wind power generated. As a test case, the cumulative power distribution for all locations’ data sets 

using each of the four distributions is displayed in Figure 9.  

 
Figure 9: Cumulative power distribution for a 2 MW turbine using Weibull, Rayleigh, Lognormal, and 

Beta distributions. X-axis displays the proportion of time that the turbine will produce below the 

corresponding power output in terms of proportion of rated power on the Y-axis. 

Figure 9 displays that the Rayleigh and Lognormal distribution have the lowest proportion of time 

producing zero power. This is a result of these distributions having lower probabilities for low 

wind speeds, and higher probabilities for the average speeds. The Rayleigh distribution tends to 

result in a higher power produced for a given proportion of time below that power level when 

compared to the Lognormal distribution, a result of the sharper peak around lower wind speeds for 

the Lognormal. The Rayleigh distribution also has a much higher proportion of time above the 
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rated power output than the Lognormal, with roughly 18% compared to only 12%. This is a result 

of the higher probabilities of the Lognormal for very high wind speeds above the cut-out speed, 

compared to the Rayleigh which has very low probabilities above cut-out. The Weibull and Beta 

distributions again show fairly similar results. They produce zero power approximately 12% of the 

time, and the rated power approximately 20% of the time. The Weibull results in higher power 

produced for a given proportion of time below that power level until the 0.68 proportion, when the 

Beta produces higher power for the remainder of the cumulative power distribution.  

 Through comparing the results from each of these four distributions when given the same 

data set, their behavior with respect to one another is better understood. It is also useful to dive 

slightly deeper into each individual distribution to study how it is affected by changing the 

parameters for each respective distribution. For each distribution, the actual pdf from the Location 

1 data set will be plotted, along with three additional pdfs generated by altering one of the 

parameters and keeping all others constant. Figures 10 and 11 display the effects of changing the 

shape and scale parameters on the Weibull pdf. 

 
Figure 10 and Figure 11: Effect of changing the shape parameter on a Weibull pdf (left) and effect of 

changing the scale parameter on a Weibull pdf (right) 
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Figure 10 displays that as the shape parameter is increased, the peak of the pdf shifts to the right 

and corresponds to higher probabilities. This shifting of the peak results in lower probabilities for 

lower wind speeds and higher wind speeds, as more probability is focused around the average. The 

exception is when the shape parameter equals one and there is no peak. Figure 11 displays that as 

the scale parameter is increased, the entire pdf is “stretched” upward and slightly to the left. This 

results in higher probabilities around the average and lower wind speeds and lower probabilities 

around the higher wind speeds. 

 The Rayleigh distribution, as mentioned in Section II, only depends on the mean wind 

speed. Figure 12 displays the effects of altering the mean wind speed on the Rayleigh pdf. 

 
Figure 12: Effect of changing the mean wind speed on a Rayleigh pdf 

Figure 12 shows that higher mean wind speeds result in peaks that are at lower probabilities and 

higher wind speeds. The result is that Rayleigh distributions with higher mean wind speeds have 
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a larger range of wind speeds, lower probabilities for lower wind speeds, and higher probabilities 

for higher wind speeds. 

 Figures 13 and 14 display the effects of modifying the 𝜇̂ and 𝜎̂ estimators on the Lognormal 

distribution pdf. 

 
Figure 13 and Figure 14: Effect of changing the 𝜇̂ estimator on a Lognormal pdf (left) and effect of 

changing the 𝜎̂ estimator on a Lognormal pdf (right) 

Figure 13 displays that as the 𝜇̂ estimator is increased, the peak of the pdf shifts to the right and 

down. This shifting results in less sharp peaks and corresponding higher probabilities for higher 

wind speeds and lower probabilities for lower wind speeds. Figure 14 displays that as the 𝜎̂ 

estimator is increased, the peak of the pdf moves down and to the right, resulting in higher 

probabilities for lower wind speeds. Increasing the 𝜎̂ estimator also results in a longer tail, 

generating higher probabilities for higher wind speeds as well. The decrease in probability is seen 

around the average wind speeds for an increase in the 𝜎̂ estimator. 

 Lastly, Figures 15 and 16 display the effects of modifying the 𝛼 and 𝜉 parameters on the 

Beta distribution pdf. 
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Figure 15 and Figure 16: Effect of changing the 𝛼 parameter on a Beta pdf (left) and effect of changing 

the 𝜉 parameter on a Beta pdf (right) 

Figure 15 shows that as the 𝛼 parameter is increased, the peak of the pdf becomes less sharp and 

is shifted down and to the left. This results in the distribution looking more like a normal 

distribution having higher probabilities for higher wind speeds and lower probabilities for lower 

wind speeds. The exception is when the 𝛼 parameter equals one and there is no peak. Figure 16 

shows that as the 𝜉 parameter is increased, the pdf is shifted up and to the left. This results in lower 

probabilities for higher wind speeds and higher probabilities for lower wind speeds, as well as 

increased probabilities around the average wind speeds. 

 

V. MODELING THE NEW ENGLAND POWER GRID 

This research uses the New England power grid system as its test case. The IEEE 39 Bus 

Case System is commonly used as a representation of the New England grid with 10 generators 

and 46 lines. The grid system is broken up into eight different load zones which are geographically 

grouped together and represent an aggregate of load nodes used for wholesale electricity market 

pricing. Figure 17 displays the load breakdown. 
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Figure 17: Load Zone Breakdown of IEEE 39 Bus Case System 

Considering that the purpose of this project is to compare the impact of using different stochastic 

methods for wind speed on unit commitment, the penetration of wind generation will need to be 

quite high in order to see any differences between methods. ISO New England (ISO-NE), the New 

England interconnection, holds an annual Forward Capacity Auction (FCA) that breaks down the 

generation type for each of their eight load zones. The results of the FCA #12 are the most up to 

date and are used as a baseline for the generation mix in this research. Figure 18 displays the FCA 

#12 Generation Mix. The generation mix used in this particular model is a variation of the FCA 

#12 mix, as displayed in Figure 19. 
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Figure 18 and Figure 19: FCA #12 Generation Mix Pie Chart (left) and the makeup used in this research 

(right) 

The primary change made to the generation mix is a substantial increase in the penetration 

of wind to approximately 18% of the ISO-NE generation makeup in order to better understand the 

effects of using different wind speed distributions to generate stochastic wind power models. 

Although this is a significant increase from the current amount of installed wind capacity in the 

New England system, it is not unthinkable. Iowa, South Dakota, Kansas, Oklahoma, and North 

Dakota all produce over 20% of their electricity through wind power, with Iowa leading the pack 

by generating 37% of its electricity with wind.[19] Additionally, since the bus case used is not 

designed to handle the actual capacity of the New England grid system, all generation was scaled 

down to 20% of the actual generation. This results in a total installed capacity of approximately 

6,800 MW. This results in about a 9% increase in installed capacity from the FCA #12 Generation 

Mix, which serves as a buffer to account for the intermittency of wind generation. The total wind 

installed capacity was equally divided to the four locations of data sets displayed in Figures 5 and 

6, with 310 MW per location for a total of 1,240 MW of installed wind capacity. To reflect the 

increase in wind penetration, approximately 640 MW of oil generation is taken offline. This is 

based on the trend of the decreasing amount of oil and coal generation in the New England system, 

as seen in Figure 20, which displays the change in the New England grid’s generation since 2000. 

The amount of coal in the FCA #12 mix is already very small and therefore the oil is partially 

displaced in favor of the increased wind power. 
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Figure 20: New England's energy mix changes since 2000[20] 

The costs of generation for the model were taken from the United States Energy 

Information Administration (EIA).[21],[22] The EIA publishes average fossil fuel spot prices, which 

allows for costs to be calculated for all of the traditional generation. For the wind power and 

hydropower in the model, the generation costs were assumed to be zero, as the majority of 

generation cost comes from fuel. Figure 21 displays the average fossil fuel prices from January 

2018 to January 2019. 

 

Figure 21: Average fossil fuel spot prices ($/MWh)[21] 
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As is evidenced by Figure 21, most fossil fuel prices stay relatively constant. The exception is 

natural gas, which spikes during winter. More natural gas is needed in the winter for heating, and 

therefore the price rises accordingly based on increased demand. The winter then represents the 

“worst case scenario” in terms of fuel prices and will therefore be used as the baseline for this 

model. This results in average fuel costs of $60/MWh for natural gas, $120/MWh for oil, 

$30/MWh for coal, and, from a different EIA source, $7.50/MWh for nuclear.[22] 

 The last component that needed to be modeled in the New England power grid, except for 

the stochastic wind element, which will be described in Section VII, is the load. To model the load, 

a profile needs to be created in order to represent the hourly changes in load. ISO-NE provides 

electricity load information, displaying the actual forecasted load in megawatts for each hour of 

the day.[23] For this model, the first day of January 2022 was used as a baseline for modeling the 

loads of the system. One full day, or 24-hour period, is be modeled in this study. The loads were 

scaled appropriately to ensure that the power flow problem would converge. The resulting 24-hour 

load profile in megawatts that is used in the model is displayed in Figure 22. 

 
Figure 22: Scaled Load Profile of New England grid system used in model 
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VI. THE ECONOMIC DISPATCH PROBLEM 

The power flow modeling for this research was achieved with MATPOWER, a MATLAB 

extension used for electric power system simulation and optimization. Much of the framework in 

the model was developed in previous semesters by Trisha Ray, a former researcher in the Anderson 

Lab. This section will summarize the model that was developed. The model was set up as a 

deterministic model, and the changes made to develop a stochastic model will be discussed in 

Section VII. 

Using the MATPOWER Optimal Scheduling Tool (MOST), stochastic, multi-period 

economic dispatch and unit commitment problems can be solved. The input data for a MOST 

problem is loaded into a data struct with six inputs, not all of which are required. The inputs are as 

follows: 

mdi = loadmd (mpc , transmat , xgd , sd , contab , profiles ); 

The only required input is the “mpc” file, which corresponds to the MATPOWER case. The case 

is the IEEE 39 Bus Case to correspond to the New England power grid, with several adjustments. 

The maximum real power output is based on the scaled down generation mix from Section V.[24] 

 For reactive power, it was assumed that all generators would be able to satisfy the typical 

requirement of 0.90 lag and 0.95 lead power factor.[25] This results in the maximum reactive power 

output of each generator being 48% of the maximum real power output and the minimum reactive 

power output being the negative of the 33% of maximum real power output. 

 The real power and reactive power demands are also updated. Real power demand is 

updated to reflect the load profile described in Section V, and reactive power is updated based on 

the assumption that the reactive power at each load bus is 30% of the real power. The final update 

made to the IEEE 39 Bus Case is adjusting the generation costs according to Section V. 

 The “xgd,” or extra generation file, must also be updated. This file contains the 

commitment schedule and commitment key parameters to specify if a generator is available for 

unit commitment, as is the case for traditional fossil fuel generators, or if it must always be running, 

as is the case for nuclear and renewables.  
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 The “profiles” must be included in the inputs to the MOST problem. There are two different 

profiles that must be included for this problem, load and wind. The load profile corresponds to the 

hourly system demand, as explained in Section V, and the wind profile will be discussed in detail 

in Section VII. The “transmat” input must also be included for stochastic MOST problems, and 

this input will be discussed further in Section VII. 

 It is worth noting that additional inputs can be included for more complex power flow 

problems, but they are not included in this model as this research focuses on solving an economic 

dispatch problem. These additional inputs include, but are not limited to, ramp rates for reserves, 

start-up and shutdown costs, minimum up and down times, and ramping constraints. 

 The economic dispatch problem is a short-term optimization problem that determines the 

optimal output from several generation sources to meet the load at the lowest cost. The economic 

dispatch problem ignores line constraints in the network and balances system load and generation 

supply. The formulation for a typical economic dispatch problem with wind generation is 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒⁡∑𝐶𝑖(𝑝𝑖) +∑𝐶𝑤,𝑖(𝑤𝑖)

𝑁

𝑖

𝑀

𝑖

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡⁡𝑡𝑜⁡𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠: 

𝑝𝑖,𝑚𝑖𝑛 ≤ 𝑝𝑖 ≤ 𝑝𝑖,𝑚𝑎𝑥 

0 ≤ 𝑤𝑖 ≤ 𝑤𝑟,𝑖 

∑𝑝𝑖 +∑𝑤𝑖 = 𝐿

𝑁

𝑖

𝑀

𝑖

 

where 𝑀 is the number of traditional generators,  𝑁 is the number of wind generators,⁡𝐶𝑖 is the cost 

function of the 𝑖𝑡ℎ traditional generator, 𝐶𝑤,𝑖 is the cost function of the 𝑖𝑡ℎ wind generator, 𝑝𝑖 is 

the power from the 𝑖𝑡ℎ traditional generator, 𝑝𝑖,𝑚𝑖𝑛 and 𝑝𝑖,𝑚𝑎𝑥 are the minimum and maximum 

outputs for the 𝑖𝑡ℎ traditional generator as previously discussed, 𝑤𝑖 is the scheduled power from 

the 𝑖𝑡ℎ wind generator, 𝑤𝑟,𝑖 is the rated wind power from the 𝑖𝑡ℎ wind generator, and 𝐿 is the total 

system load.[26] This formulation essentially states that the total cost of generation from traditional 

and wind generators shall be minimized subject to the constraints that each traditional generator 
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produces power between its minimum and maximum output, each wind generator produces power 

between zero and its rated output, and the sum of all power produced from traditional and wind 

generators equals the total system load. As mentioned in Section V, the generation cost from wind 

is assumed to be zero.  

 This framework in MOST allows for solving typical economic dispatch problems. For 

solving problems with stochastic wind generation, there must be additional complexity added, 

which is discussed in Section VII. 

 

 

VII. INCORPORATING STOCHASTIC WIND POWER 

The most crucial component of this project was the development of a stochastic wind 

component in the MATPOWER MOST model that could be uniquely generated by each of the 

four wind speed statistical distributions. In order to understand how this component was 

developed, it is first important to recognize how a stochastic wind model behaves in the MOST 

framework. 

The most robust stochastic wind modeling that MOST offers is based on a maximum of 

three wind power trajectories, typically a low, average, and high power trajectory. There is a given 

power output for each of these three trajectories for each period. The stochasticity is introduced 

via a probability matrix that represents the probability of transitioning from one trajectory to 

another for each period studied. These transition probabilities include the probability of staying on 

the same trajectory as well as transitioning to either of the other two trajectories.[27] The result is a 

wind profile with full transition probabilities, a representation of which is displayed in Figure 23. 
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Figure 23: Example wind profiles with full transition probabilities[27] 

The stochastic wind profiles are very dependent on the power produced during each period 

of the simulation. In order to reflect this in the development of the stochastic wind component for 

each model, the wind speed data was separated based on both the hour and the month. This results 

in 24 datasets, one for each hour in the day, for every month in the year. The monthly separation 

allows for any seasonal variation in the wind speed to be represented in the model. Given that this 

simulation is meant to represent a day in January, the 24 datasets for the month of January were 

used to develop the stochastic models. Several MATLAB functions were created that would input 

the hourly wind speed data for January and output the three wind power trajectories, which can be 

broken up into three steps. 

The first step is to calculate the cumulative power distribution of the wind speed for a given 

distribution, and using this as well as the wind speed to wind power calculations presented in 

Section III, a cumulative power distribution of the generated wind power can be created, as seen 

in Figure 9. In order to do this, the parameters of the wind turbine must be known. Since this 

project is meant to represent the entirety of the New England grid and not a specific wind turbine, 

general averages were used, with a cut-in speed of 3 meters per second, a rated speed of 14 meters 

per second, and a cut-out speed of 25 meters per second.[28] The wind power within the cumulative 
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power distribution was represented as a percentage of maximum power such that it can be applied 

to various levels of wind power on the grid as a whole. With the hourly cumulative power 

distribution generated, the probability of producing at least a certain amount of power was modeled 

for all of the 24 hours of the day for the month of January.  

The second step is to set probability cutoffs for the low, average, and high wind power 

trajectories. The choice of these cutoffs is somewhat subjective, but the options of 0.30 for low, 

0.55 for average, and 0.80 for high were ultimately chosen. The reasoning was to allow the high 

cutoff to be at the rated power, the low to be at a fairly low but not unreasonably low level, and 

the average cutoff to fall directly in between. The cutoffs and their corresponding power 

proportions are displayed in Figure 24 for Location 1 using a Weibull distribution. Note that the 

corresponding power proportion will differ for each location and for each distribution used to 

generate the cumulative power distribution, but the cutoffs are the same for each of the four 

statistical distributions. 

 
Figure 24: Probability cutoffs displayed on a cumulative power distribution generated using location one 

data and a Weibull distribution 
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The corresponding power proportions generated for each of these probabilities from the 

cumulative power distributions are then used to generate the wind profile. The result is three 

possible wind power generation levels for each hour of the day, represented as a proportion of the 

maximum installed wind capacity on the New England power grid. Figure 25 displays the 

differences in the profiles generated from each statistical distribution by displaying the average 

profile for each based on location one data. 

 
Figure 25: Average profiles for all four statistical distributions produced using location one wind speed 

data 

The third and final step is to develop the transition probability matrix corresponding to the 

three profiles that were created. This matrix is the “transmat” input from Section VI. For each 

period in the simulation, the matrix is three by three, resulting in probabilities for the full range of 

transitions from each trajectory to each of the three trajectories for the next period. The exception 

is the initial matrix for the first period of the simulation, when the matrix is three by one, as there 

must be a starting point and there is no transition occurring. Calculating the initial period’s three 



 

  xxxiii 

by one matrix relies on the cumulative power distribution. For a given power generation in each 

profile for period one, the corresponding probability from the cumulative power distribution is 

collected. This is completed for the low, average, and high wind power profiles. A probability 

must then be associated with starting in each of the respective profiles. This is achieved by creating 

interval ranges for each of the profiles. The low profile probability range starts at zero and 

continues to the midpoint between its associated probability and that of the average profile. The 

average profile’s range starts at the midpoint between the low profile and average profile 

associated probabilities and continues to the midpoint between the average profile and high profile 

associated probabilities. Lastly, the high profile’s range starts at the midpoint between the average 

profile and high profile associated probabilities and continues to one. The result is three 

probabilities that sum to one. This creates the initial matrix in the full transition matrix, but the 

remainder of the hours are calculated differently since there will be transitions occurring. Figure 

26 displays the interval ranges for each profile using the Weibull cumulative power distribution 

for Location 1. 

 
Figure 26: Interval ranges for the low, average, and high profiles. Low range is displayed in green, 

average in yellow, and high in red. 
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The three by three matrices for the remaining 23 hours in the day are based on the raw wind 

speed data. The average wind power is calculated for each hour of the day based on the wind speed. 

Then a simple counting algorithm is used. For each hour, the starting range is noted as being either 

low, average, or high power. Then, based on the range that the power changes to in the next hour, 

the transition is either recorded as going to the low, average, or high power region. This is done 

for each hour of each day in January for all 6 years of available data, based on the power proportion 

cutoffs for each respective distribution. The probability for each transition is therefore the number 

of times going from one range to another divided by the total number of times starting in that 

range. For example, if there are a total of 65 times that a period three begins in the low power 

range, and a total of 60 times that period four remains in the low range of these 65 instances, the 

probability of transitioning from the low region to the low region from period three to four would 

be 60/65 or 0.923. A sample transition matrix, with the first and second period matrices displayed, 

is shown. The general layout of each individual three by three matrix in the full matrix is displayed 

in the final 24th spot of the example transition matrix. 

 

𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛⁡𝑚𝑎𝑡𝑟𝑖𝑥

= ⁡{[
0.35
0.37
0.28

] , [
0.81 0.08 0.01
0.09 0.87 0.03
0.10 0.05 0.96

] , … , [⁡⁡

𝑙𝑜𝑤⁡𝑡𝑜⁡𝑙𝑜𝑤 𝑎𝑣𝑒𝑟𝑎𝑔𝑒⁡𝑡𝑜⁡𝑙𝑜𝑤 ℎ𝑖𝑔ℎ⁡𝑡𝑜⁡𝑙𝑜𝑤
𝑙𝑜𝑤⁡𝑡𝑜⁡𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒⁡𝑡𝑜⁡𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ℎ𝑖𝑔ℎ⁡𝑡𝑜⁡𝑎𝑣𝑒𝑟𝑎𝑔𝑒
𝑙𝑜𝑤⁡𝑡𝑜⁡ℎ𝑖𝑔ℎ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒⁡𝑡𝑜⁡ℎ𝑖𝑔ℎ ℎ𝑖𝑔ℎ⁡𝑡𝑜⁡ℎ𝑖𝑔ℎ

]

24

} 

Note that the transitions from one region to that same region have the greatest probability. This 

makes sense, as it is less likely that a wind speed will change drastically from hour to hour than it 

is that the speed would remain roughly the same. 

These three steps are completed for either the Weibull, Rayleigh, Lognormal, or Beta 

distribution before conducting a power flow simulation, depending on which distribution is being 

studied. The result is three unique wind power profiles and a unique transition probability matrix 

based on the respective statistical distribution. MOST calculates the expected dispatch based on 

the probability matrix and associated power profiles. With these stochastic elements in place, 
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economic dispatch simulations can be performed in MOST in order to compare the results based 

on which distribution is used to develop the stochasticity of the model. 

 

VIII. RESULTS 

The 24-hour January New England study period simulation was repeated to achieve results 

for each wind speed statistical distribution. The framework of the model was held constant as 

discussed in Section V and VI, with the only variable the stochastic behavior of the wind power 

as developed for each distribution described in Section VII. The expected wind generation for each 

location, expected traditional generation, traditional generator unit commitment, and expected 

generation cost was determined by the MOST simulation using the Weibull, Rayleigh, Lognormal, 

and Beta distributions for wind stochasticity. All results are displayed in this section for the 

Weibull distribution for background and to get an understanding of the general behavior of the 

results, but the traditional generation differences between each simulation will be the focus of 

comparison. Results for distributions absent in this section can be found in the Appendix in Figures 

A1 – A12. The results for the Weibull distribution are displayed in Figures 27 – 29. 

 
Figure 27: Expected wind generation for all locations during the 24-hour study period generated using a 

Weibull stochastic model 
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All locations follow a similar trend in terms of their expected generation, with a fairly 

constant power production until around hour 8 of the simulation when the power drops off during 

the daytime. The power then tends to rise again in the afternoon and into the evening, reaching a 

maximum power output around hour 18 to 20. Location 1 tends to have the least variation during 

the day, while location four has the most. 

 

 
Figure 28: Expected traditional generation for all traditional generation sources during the 24-hour 

study period generated using a Weibull stochastic model 

The traditional generator commitment tends to increase in the afternoon and into the 

evening when load increases, as evidenced by Figure 22. The cheaper forms of generation provide 

the base load (hydropower, nuclear, coal, some natural gas), and more expensive forms of 

generation add additional load during the peak. In this case, this additional generation is solely 

provided by natural gas, as the load increase is accompanied by a wind power increase around the 

same time, so no oil generation is required. This makes sense, as oil is the most expensive 

generation in this model and should therefore be avoided if it can. 
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Figure 29: Expected generation cost in dollars per MW during the 24-hour study period generated using 

a Weibull stochastic model 

The expected generation cost remains fairly low throughout the day due to the high amount 

of wind energy in the system. The generation cost per MW is at its highest in hour 11 during the 

first peak of load in the simulation, displayed in Figure 22, which corresponds to the minimum 

point of wind generation. Though load increases in the afternoon and evening, this corresponds 

with a large increase in wind generation that serves to decrease the cost per MW when averaged 

throughout the system. 
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Figure 30: Expected generator unit commitment during the 24-hour study period generated using a 

Weibull stochastic model 

Each distribution’s stochastic model results in differing traditional generator unit 

commitment results, however there are some striking similarities. First, none of the simulations 

resort to using any oil (the most expensive generation in the model), meaning that the wind, 

nuclear, and hydropower generation, combined with natural gas and one coal generation source 

can alone meet the load requirement of this model. The lone coal generation source is always 

committed in all simulations as a result of its low cost in this model. In each simulation, 

hydropower and nuclear power are always committed as well as a result of them having the lowest 

cost of the traditional generation sources. Due to these similarities, the only difference between 

each distribution’s traditional generation results is the required amount of the natural gas 

generation. Given that natural gas accounts for almost 50% of the installed capacity in the model 

with 10 available generators, this is a significant difference that will be analyzed further. 

Figure 31 displays the total amount of natural gas generation (MW) that was required for 

each of the four simulations with differing stochastic models. 
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Figure 31: Total amount of natural gas generation (MW) required for each of the simulations with 

differing stochastic models 

From Figure 31, the Beta simulation clearly has the most natural gas generation required, whereas 

the Lognormal simulation has the least. The Weibull and Rayleigh simulation results are the most 

similar, sitting in the middle, with the Rayleigh results requiring slightly more natural gas 

generation. Though this result alone gives some insight as to the behavior of each of the 

simulations depending on the stochastic model used, it is beneficial to analyze the natural gas 

generation required on an hour by hour basis throughout the simulation period. The simulation 

period is divided into three segments of eight hours for this analysis. Figure 32 displays hourly 

natural gas generation required for each of the simulations for the first eight hours of the simulation 

period. Table A1 in the appendix also displays numerical values for the hourly natural gas 

generation required for each simulation. 
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Figure 32: Total amount of natural gas generation (MW) required for each of the simulations with 

differing stochastic models for the first eight hours of the simulation period 

For almost all hours in the early hours of the simulation, the Beta simulation requires the most 

natural gas, followed by the Rayleigh, Weibull, and Lognormal. The exception is hour eight, where 

the Rayleigh simulation requires slightly less natural gas than the Weibull. This exception 

coincides with a drop in expected wind generation, as seen in the expected wind power production 

in Figures 26 and A1 – A3. Figure 33 displays the results for the next eight-hour increment. 
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Figure 33: Total amount of natural gas generation (MW) required for each of the simulations with 

differing stochastic models for the middle eight hours of the simulation period 

From Figure 33, there is a shift in the ranking of the simulations based on amount of natural gas 

generation required. For all hours, Beta still requires the most, and Lognormal requires the least 

for four of the hours while Rayleigh requires the least for the other four. The Weibull simulation 

requires more natural gas than Rayleigh for all hours in this simulation other than hour 16, a 

continuation of the trend that began in hour eight of the previous eight hours. This is the period of 

the day when wind power produced is at its lowest, as evidenced by Figures 27 and A1 – A3. There 

are also some hours when the Rayleigh simulation requires less natural gas generation than the 

Lognormal, as is the case in hours 10, 11, 12, and 13. These hours in particular are when wind 

power generation is at its absolute minimum in the simulation period, as seen in Figures 27 and 

A1 – A3. Figure 34 displays the results for the final eight hours of the simulations. 
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Figure 34: Total amount of natural gas generation (MW) required for each of the simulations with 

differing stochastic models for the final eight hours of the simulation period 

In the final eight hours, there are again changes in the ranking of the simulations based on amount 

of natural gas generation required. The Beta simulation still requires the most natural gas for five 

of the eight hours, however, for hours 18, 19, and 20, the Rayleigh simulation requires more than 

the Beta. These three hours are when the wind generation is at its absolute highest point of the day, 

as seen in Figures 26 and A1 – A3. The Lognormal simulation again requires the least natural gas 

generation for all eight hours. In all hours in this segment as well, the Weibull simulation again 

requires less natural gas generation than the Rayleigh. These changes coincide with the amount of 

wind generation being at its highest point of the day, as is evidenced by Figures 27 and A1 – A3. 

 

IX. DISCUSSION 

 From these results, there are some key takeaways. First, the general trend of the amount of 

natural gas required follows the shape of the load curve in Figure 22, however, there are fewer 

sharp changes due to the wind power generation. The Beta simulation consistently requires the 
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highest amount of natural gas generation for most hours, with the exception of hours 18, 19, and 

20. The Lognormal simulation requires the least amount of natural gas generation for all hours 

except hours 10, 11, 12, and 13, when the amount of wind power produced is very low. In these 

hours, the Rayleigh simulation requires even less natural gas. The Weibull simulation requires 

more natural gas than Rayleigh when wind generation is lower, and less natural gas than Rayleigh 

when wind generation is higher. It can therefore be concluded that the Rayleigh simulation’s 

natural gas generation requirements are the least sensitive to changes in expected wind power 

production, resulting in a more flat expected natural gas requirement. For very low wind power 

production, the Rayleigh simulation requires the least amount of natural gas generation as more 

load is met by wind power than the other simulations. For very high wind power production, the 

Rayleigh simulation requires the most amount of natural gas generation as less of the load is met 

by wind power than the other simulations. This is a result of the Rayleigh distribution being a one 

parameter model. It’s predicted wind power is always more near the average than other models, 

which results in these conclusions.  

 The results for the Beta simulation consistently requiring the most natural gas or always 

producing the least wind power are likely a result of it having the highest probabilities for very 

low wind speeds, as is evidenced by the probability density function in Figure 8. The reason that 

the Lognormal simulation almost always requires the least natural gas or produces the most wind 

power is likely a result of the opposite. The Lognormal model results in significantly lower 

probabilities for very low wind speeds compared to other models, as seen in the probability density 

functions in Figure 8. The Weibull simulation tends to sit somewhere in the middle of all these 

distributions in terms of the results for the amount of natural gas required. From the cumulative 

power distribution in Figure 9, this makes sense, as the Weibull distribution generally sits in the 

middle in terms of power production, producing less than some distributions in some cases and 

more in others. 

Overall, these results display that the choice of wind speed statistical distribution used to 

generate a stochastic model in a power flow simulation does impact the results. If these statistical 
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distributions are being used for system planning or even long-term forecasting, close attention 

should be paid to the distribution that most closely models the raw data from the geographic area 

of interest. Using a statistical model that does not model the data well can result in operators being 

unprepared for the amount of dispatchable generation they will need to commit at certain times 

during the day. The goodness of fit for each of the statistical models to the wind speed can be 

analyzed for the January data at each site, as well as for the lumped data across all locations. The 

goodness of fit of the theoretical statistical distribution to the empirical data can be analyzed using 

a Kolmogorov-Smirnov Test or KS Test. The KS Test quantifies a distance between the theoretical 

and empirical cdfs. This test produces a test statistic that can be used to determine the goodness of 

fit for each of the four wind speed statistical distributions to the empirical wind speed data. The 

test statistic is calculated as: 

𝐷 = 𝑠𝑢𝑝𝑥|𝐹𝑛(𝑥) − 𝐹(𝑥)| 

where 𝐷 is the test statistic 𝐹𝑛(𝑥) represents the empirical cdf from raw wind speed data, 𝐹(𝑥) 

represents the theoretical cdf from a certain distribution, and 𝑠𝑢𝑝𝑥 is the supremum of the set of 

distances.[29] Therefore, lower test statistics correspond to a better fit. Tables 1 – 4 display the KS 

Test Statistic for goodness of fit for each location and distribution.  

Table 1: KS Test Statistics for goodness of fit at Location 1 

Location 1 

Distribution KS Test Statistic 

Weibull 0.05942 

Rayleigh 0.08108 

Lognormal 0.11832 

Beta 0.05398 

Table 2: KS Test Statistics for goodness of fit at Location 2 

Location 2 

Distribution KS Test Statistic 

Weibull 0.04883 

Rayleigh 0.10089 

Lognormal 0.12115 

Beta 0.02371 
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Table 3: KS Test Statistics for goodness of fit at Location 3 

Location 3 

Distribution KS Test Statistic 

Weibull 0.04203 

Rayleigh 0.05577 

Lognormal 0.10081 

Beta 0.04350 

Table 4: KS Test Statistics for goodness of fit at Location 4 

Location 4 

Distribution KS Test Statistic 

Weibull 0.02712 

Rayleigh 0.08669 

Lognormal 0.05984 

Beta 0.03169 

Table 5 displays the KS Test Statistic for goodness of fit for all locational data combined. Figures 

A13 – A16 also display graphical comparisons of the empirical and theoretical cdfs for all 

locational data combined. 

Table 5: KS Test Statistics for goodness of fit for all location data combined 

All Locations Combined Data 

Distribution KS Test Statistic 

Weibull 0.01753 

Rayleigh 0.02656 

Lognormal 0.07040 

Beta 0.02765 

Upon analyzing the goodness of fit of each of these distributions, it becomes clear that 

certain distributions have better fits at certain locations. Though the Weibull has the best fit of the 

lumped locational data, as evidenced by Table 5, the Weibull does not have the best fit at each 

individual location. The Beta distribution has the best fit at Locations 1 and 2, and the Weibull 

distribution has the best fit at Locations 3 and 4. Given the variation of the results of natural gas 

generation requirements depending on which statistical distribution was used to generate a 

stochastic model of wind power, this emphasizes the importance of using a statistical model with 

the best fit at a certain location in terms of characterizing corresponding wind speed data. As the 

results in Table 5 display, the distribution that best fits the entirety of a data set may not be the best 
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fit for certain locational components within the data set, so the best fitting model for each location 

should be selected in order to ensure the most accurate stochastic wind power models. For the case 

study presented in this paper, it is therefore most accurate to derive stochastic wind power models 

with a Beta distribution at Locations 1 and 2, and with a Weibull distribution at Locations 3 and 

4. Using worse-fitting statistical distributions to generate stochastic wind power models could 

result in a lower or higher expected traditional generation dispatch when compared to using the 

statistical model determined to have the best fit.  

 

X. CONCLUSION 

The results from this research are useful for long-term system planning in terms of 

estimating the amount of dispatch from various generation sources that will be required. Though 

there becomes less uncertainty with planning in the short-term, a long-term approach such as the 

one used in this research can be made more accurate if a statistical model is used that closely fits 

the raw wind speed data. There are many wind speed statistical models available, and therefore 

choosing the proper one for a given data set is very important for long-term system planning and 

developing an understanding of traditional generator commitment.  

Extensions of this research could involve increasing complexity to develop a more realistic 

understanding of the differences of these stochastic models in the New England power grid. This 

could involve turning the economic dispatch problem into an optimal power flow problem with 

more constraints, such as ramping, minimum time up and down, and startup and shutdown costs. 

More wind resource locations could also be added in order to develop a more distributed reference 

of the behavior of wind power production in the New England power grid. Continued research into 

these stochastic models and their effects on system behavior in the power grid will help to prepare 

for the increasing amount of intermittent wind generation across the globe.  
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APPENDIX 

 

The simulation results for all distributions not displayed in the body of this paper are 

displayed in Figures A1 – A12. Table A1 displays numerical values for the required natural gas 

commitment for each hour and each simulation. Figure A13 – A16 display graphical comparisons 

for goodness of fit of the empirical and theoretical cdfs for all locational data combined. 

 

 
Figure A1: Expected wind generation for all locations during the 24-hour study period generated using a 

Rayleigh stochastic model 
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Figure A2: Expected wind generation for all locations during the 24-hour study period generated using a 

Lognormal stochastic model 

 

 
Figure A3: Expected wind generation for all locations during the 24-hour study period generated using a 

Beta stochastic model 
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Figure A4: Expected traditional generation for all traditional generation sources during the 24-hour 

study period generated using a Rayleigh stochastic model 

 

 

 
Figure A5: Expected traditional generation for all traditional generation sources during the 24-hour 

study period generated using a Lognormal stochastic model 
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Figure A6: Expected traditional generation for all traditional generation sources during the 24-hour 

study period generated using a Beta stochastic model 

 

 
Figure A7: Expected generation cost in dollars per MW during the 24-hour study period generated using 

a Rayleigh stochastic model 
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Figure A8: Expected generation cost in dollars per MW during the 24-hour study period generated using 

a Lognormal stochastic model 

 

 
Figure A9: Expected generation cost in dollars per MW during the 24-hour study period generated using 

a Beta stochastic model 
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Figure A10: Expected generator unit commitment during the 24-hour study period generated using a 

Rayleigh stochastic model 

 

 
Figure A11: Expected generator unit commitment during the 24-hour study period generated using a 

Lognormal stochastic model 
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Figure A12: Expected generator unit commitment during the 24-hour study period generated using a 

Beta stochastic model 

 
Table A1: Total amount of natural gas generation (MW) required for each simulation with differing 

stochastic models for all hours of the simulation period 

 

Hour Weibull Rayleigh Lognormal Beta

1 1,782 1,812 1,756 1,815

2 1,594 1,620 1,568 1,629

3 1,452 1,476 1,424 1,491

4 1,395 1,414 1,366 1,439

5 1,407 1,421 1,377 1,454

6 1,486 1,494 1,456 1,532

7 1,619 1,625 1,590 1,665

8 1,718 1,714 1,686 1,762

9 1,929 1,906 1,896 1,965

10 2,144 2,108 2,112 2,184

11 2,308 2,268 2,278 2,351

12 2,381 2,342 2,354 2,423

13 2,366 2,335 2,340 2,405

14 2,286 2,263 2,262 2,321

15 2,218 2,204 2,195 2,250

16 2,238 2,241 2,217 2,268

17 2,610 2,638 2,590 2,640

18 3,017 3,065 2,993 3,053

19 3,003 3,057 2,974 3,041

20 2,921 2,961 2,889 2,960

21 2,767 2,796 2,733 2,805

22 2,485 2,505 2,450 2,524

23 2,088 2,107 2,056 2,126

24 1,732 1,756 1,702 1,772

Natural Gas Required Per Hour (MW)
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Figure A13: Graphical comparison of the empirical and Weibull cdf for all locational data combined 

 

 
Figure A14: Graphical comparison of the empirical and Rayleigh cdf for all locational data combined 



 

  lvii 

 
Figure A15: Graphical comparison of the empirical and Lognormal cdf for all locational data combined 

 

 
Figure A16: Graphical comparison of the empirical and Beta cdf for all locational data combined 

 


