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Introduction 

In recent years, financial researchers have gradually accepted the notion that stock returns are 

partially predictable (Cochrane, 1999). Most often, the extent of return predictability is assessed from a 

statistical perspective, with the t-statistics and R2’s of predictive regressions guiding conclusions.1 

Statistical ‘evidence’ of predictability, however, does not necessarily imply economic significance. 

In this paper, we assess the significance of predictor variables within an asset allocation 

framework. Recent research shows that the optimal allocation to risky stocks is horizon dependent if 

stock returns are predictable.2 The extent of horizon effects, therefore, is a convenient metric of return 

predictability and our results are presented as plots of the optimal allocation to the risky asset as 

investment horizon increases. If a variable is useful for predicting stock returns, knowledge of that 

variable’s value will cause a utility-maximizing investor to alter her optimal allocation. Thus, the 

importance of predictor variables is judged from an economic perspective, not a statistical one. 

We approach the asset allocation problem using Bayesian decision theory as a unified 

framework for portfolio choice under uncertainty. At time T, an investor chooses weightings in a 

portfolio comprising one risky asset and one riskless asset, then holds this portfolio until time T+K. 

Portfolio weights are chosen to maximize the expected utility of terminal wealth. The key factor in the 

optimization problem is the distribution of forecasted cumulative returns to the risky asset over the K-

period investment horizon, which is estimated using a predictive regression. 

The Bayesian approach also allows the estimation risk surrounding the parameters of the 

predictive model to be incorporated into the density of cumulative returns. Intuitively, the more 

uncertain the investor is about the true degree of predictability, the less confidence she has about the 

model’s prediction of future returns. It follows that this uncertainty (‘estimation risk’) is a potentially 

important factor in asset allocation decisions.3 



Several prior studies have examined optimal asset allocation decisions within a Bayesian 

framework. Klein and Bawa (1976) compute one-period-ahead optimal allocations to one risky and one 

riskless asset. Since their focus is on the effect of estimation risk on portfolio decisions, they do not 

model return predictability, but merely assume an i.i.d. return-generating process. Klein and Bawa find 

that estimation risk causes the investor to allocate less heavily to the risky asset. However, as the 

sample size over which parameters are estimated increases, portfolio allocations converge to those of a 

classical approach that ignores estimation risk. 

Kandel and Stambaugh (1996) extend this one-step-ahead problem to incorporate return 

predictability. Using a single predictor (dividend yield), they show that optimal allocations are highly 

sensitive to the most recently observed value of dividend yield even after accounting for estimation risk. 

Kandel and Stambaugh conclude that classical statistical tests understate the economic importance of 

return predictability, with p-values of 0.30 and low R2s still containing useful information. Barberis 

(2000), also using dividend yield as the sole predictor, examines the optimal allocation decision of a 

long-horizon investor. He finds that stock returns are sufficiently predictable to induce heavier 

allocations to the risky asset at longer horizons. These horizon effects remain even after incorporating 

estimation risk. 

This paper differs from prior work in several respects. First, in addition to dividend yield, our 

predictive regression includes two other variables which have been shown to have some predictive 

ability; namely, the term spread and the relative bill rate.4 The inclusion of multiple predictors serves to 

highlight the potential for divergence between classical statistical significance and economic 

significance. It also raises the question of how to assess the significance of each predictor. Our second 

contribution, therefore, is to illustrate how the economic significance metric within the asset allocation 

framework allows a meaningful comparison of the relative importance of each predictor. We assess the 

relative importance of each predictor by measuring the sensitivity of optimal allocations to the last 

observed value of the predictor variable. If a variable can predict stock returns, the optimal asset 

allocation will be sensitive to the variable’s most recent value. Finally, we document the economic 

significance of predictability for Australian equity returns. In light of the results of Barberis (2000) for US 

data, we compare and contrast the degree of predictability across the two markets, and document some 

interesting differences. 

Our major findings can be summarized as follows. Ignoring estimation risk, there is sufficient 

return predictability to induce a risk-averse investor to allocate 9% more to risky stocks for a 10-year 

investment horizon compared to a 1-year horizon. These horizon effects are notably smaller than those 



reported by Barberis (2000) for US data, despite the fact that he uses only a single predictor. After 

incorporating estimation risk, the additional dimension of uncertainty negates the horizon effects from 

predictability. In fact, a long-horizon investor allocates slightly less to risky stocks than his short-horizon 

counterpart. This finding contrasts with Barberis, who reports that estimation risk dampens, but does 

not eliminate, the positive horizon effects. 

Of our three predictors, dividend yield is easily the most important for optimal portfolio 

allocations. The allocation to risky stocks is highly sensitive to the most recent value of dividend yield. 

While this finding accords with classical inference, the same cannot be said for the other predictors. The 

t-statistics imply the term spread and the relative bill rate have no predictive ability. Our results, 

however, show that classical statistical significance fails to capture the economic importance of these 

variables – over short to medium term investment horizons, optimal portfolio allocations are sensitive 

to the most recent value of term spread, and to a lesser extent, the relative bill rate. 

The remainder of this paper is structured as follows. Section 2 outlines the asset allocation 

decision facing our investor and discusses how estimation risk can be either ignored or incorporated 

depending on the method of constructing the density of future cumulative stock returns. Section 3 

presents a multivariate regression in which stock returns are predicted using three variables. The 

horizon effects induced by predictability, both with and without estimation risk, are documented. The 

relative impact of each predictor on the asset allocation decision is examined in Section 4 by measuring 

the sensitivity of the optimal portfolio allocation to ‘shocks’ in the most recent value of the predictors. 

Finally, Section 5 concludes the paper. 

The Optimal Investment Problem 

Following Barberis (2000), the asset allocation framework is characterized by the choice 

between two assets. The investor allocates w to a risky stock portfolio and (1-w) to a riskfree asset. With 

a buy-and-hold investment horizon of K months and preferences given by a constant relative risk 

aversion utility function, the investor’s optimal portfolio allocation  maximizes the expected utility of 

terminal wealth: 

 
where ϒ is the investor’s coefficient of relative risk aversion, rf is the continuously-compounded return 

on the riskfree asset (assumed constant over the holding period), rT+t is the excess continuously-



compounded return on the stock portfolio in month T+t, and the K-period cumulative excess stock 

return is 𝑅𝑇+𝐾 = ∑ 𝑟𝑇+𝑡𝐾
𝑡=1  

The only unknown in (1) is the K-period excess stock return RT+K. To solve the optimization 

problem, the investor forms an expectation over the distribution of RT+K using a predictive model of 

stock returns. For expediency in this section, we use general notation for the predictive model and 

present the specific parameterization in Section 3. Excess stock returns in month T+1 are modelled as a 

function of the information set zT and a parameter set θ: 

 
The distribution of K-period cumulative excess stock returns follows from iterating (2) forward 

to the desired forecast horizon. The process of iteration requires an estimate of the parameter set θ and 

this paper adopts a Bayesian approach. The posterior density of the parameters p(θ|z) is obtained by 

combining the investor’s prior beliefs about the parameter set p(θ) with the likelihood function of the 

predictive model L(θ|z) using Bayes’ rule: p(θ|z)α(θ|z) p(θ). The posterior density of model parameters 

is central to the estimation of the density of future cumulative stock returns RT+K. 

Following Barberis (2000), two approaches to obtaining this density are analyzed. First, the 

predictive model of stock returns (2) is iterated forward using point estimates from p(θ|z).5 Treating 

these point estimates as the true population parameters, the investor forms an expectation of the 

distribution of future returns conditioned on the fixed parameter estimates p(RT+K|𝜃�, 𝑧).6 Note that this 

approach to the optimal investment problem fails to account for estimation risk. By merely using point 

estimates from p(θ|z), the investor is oblivious to the dispersion of posterior mass around 𝜃�. This 

estimation risk, however, is a potentially important source of uncertainty in the asset allocation 

decision. This is especially true for the predictive regression employed in Section 3 which involves a 

multivariate system of equations each with several explanatory variables. 

The second approach to obtaining the density of future returns allows the investor to 

incorporate the uncertain nature of parameter estimates, as summarized by the posterior density 

p(θ|z). By numerically integrating the predictive likelihood from (2) over the posterior density of the 

parameters, the density of future returns is conditioned only on data and not on any fixed parameter 

estimates. We refer to this as the Bayesian predictive density and denote it by p(RT+K|z). 



Assessing Return Predictability 

Model Parameterization and Relevant Posterior Densities 

Our predictive model for excess stock returns uses three predictors (Section 3(ii) details each 

predictor). Since the time T+1 excess stock return is forecasted using time T values of the predictors, we 

must also model the dynamics of each predictor in order to generate forecasts of stock returns two or 

more periods forward. Accordingly, we use a multivariate regression system that captures not only the 

time-series nature of excess stock return rt, but also the stochastic evolution of the predictor variables 

and their contemporaneous relationships: 

 
Let xt=(DYt, TSt, RBt) and zt=(rt, xt)´. Given a time-series of T observations, the regression model 

can be stacked into the form Z=XC+E, where Z=(z2,…., zT)´, X is the data matrix with rows (1 x1), . . . , (1 xT-

1), and C≡(a, B) is the matrix containing regression estimates of the intercepts and slopes of each 

equation in (3). Along with the covariance matrix of the regression equations ∑ , the parameter set to 

be estimated is θ≡ (𝐶,∑ ). 

The posterior density of the parameters p(θ|z) is estimated using a Markov chain Monte Carlo 

(MCMC) sampling scheme. Given noninformative priors, Zellner (1971) shows that the 

conditional/marginal densities of the parameters are: 

 

where S=(Z-X𝐶̂)´ (Z-X𝐶̂ˆ) and𝐶̂=(X´ X)-1X´Z. The MCMC sampling scheme proceeds as follows. We draw an 

iterate ∑−1[𝑖]] from the Wishart density p(∑ |𝑧−1 __1jz), then conditioning on its inverse ∑[𝑖] , draw 

an iterate C[i] from the multivariate Normal density p(C|∑ , 𝑧[𝑖] ). Cycling through this process many times, 

the iterates (∑ ,𝐶[𝑖][𝑖]  converge to draw from the joint posterior p(C,∑ |𝑧)= p(θ|z). In this paper, 

numerical estimation of all posterior densities is based on 1,000,000 MCMC iterates. 

Having obtained the posterior density of parameters, the distribution of forecasted excess stock 

returns is estimated. Following Barberis (2000), the multivariate regression is transformed into a vector 

autoregression. Iterating forward K periods, an expression is obtained for the mean (µk) and variance 



(∑k) of the K-month cumulative stock return. Given the investment horizon K, the last observed value of 

the predictors zT, and the posterior density p(θ|z), the density of future cumulative stock returns RT+K 

can be constructed. 

As outlined in Section 2, we consider two alternative ways of estimating the distribution of 

future returns using the posterior density of the parameters. First, estimation risk is ignored by taking 

the mean values of p(θ|z) as fixed point estimates 𝜃� = (𝐶̂,∑)� . Inserting these point estimates into the 

expressions for µK and ∑K, a large sample is drawn from the multivariate Normal density with mean µK 

and variance-covariance matrix ∑K. Alternatively, estimation risk surrounding the parameters is 

incorporated into the predictive density. For each iterate (C[i], ∑[i]) from p(θ|z), we draw once from the 

multivariate Normal with the iterate substituted into µK and ∑K. This produces the Bayesian predictive 

density p(RT+K|z) that is conditioned only on data and is independent of θ. 

Finally, to control for the effect that the last observed value of the predictors may have in the 

asset allocation decision, we set zT in the expression for µK equal to the sample mean of the predictor 

variables. Section 4 explores the impact of the most-recently observed value of zT more fully. 

Data and Results 

The data are from the Australian Graduate School of Management (AGSM) monthly stock file 

from January 1975 to December 1998 (a 288-month time-series). We adopt the AGSM value-weighted 

market portfolio as our risky stock portfolio. Following Barberis (2000), the riskfree rate used in the 

asset-allocation decision is set to the December 1998 continuously-compounded return on the 13-week 

Treasury Note. 

Three independent variables are included in the predictive regression. The dividend yield (DY) 

on the market portfolio is constructed for each month t as the sum of all dividends paid by stocks in the 

AGSM index from month t-11 to the end of month t divided by the price level of the stocks at the end of 

month t. The term spread (TS) is the difference between yields on 10-year Australian Government Bonds 

and 13-week Treasury Notes. Finally, the relative bill rate (RB) is the annualized return on the 13-week 

Treasury Note less its 12-month moving average. 

The point estimates for 𝜃 ≡ (𝑎,𝐵,∑) are shown in Table 1. The top panel reports the mean of 

the posterior densities for the regression intercepts (a) and slope coefficients (B), with the standard 

deviation of the MCMC iterates in parentheses. The bottom panel reports variances from the diagonal of 

∑, while off-diagonal elements have been converted to correlations. Examining the top row of B, one-

step-ahead excess stock returns are positively related to dividend yield (0.8948), and negatively related 



to the term spread (-0.1439) and the relative bill rate (-0.2570). If we were to compare the point 

estimates to their standard deviations and conduct a classical test of the hypothesis that each estimate 

equals zero, we are likely to conclude that only dividend yield has predictive ability. In contrast, Section 

4 documents the extent to which each predictor impacts on an investor’s optimal asset allocation 

decision. 

The second point to note from Table 1 is that all the predictors are highly persistent but mean-

reverting. This is evident from the autoregressive coefficients of 0.9191 for the dividend yield, 0.9151 for 

the term spread, and 0.9039 for the relative bill rate. The mean-reverting nature of the predictor 

variables has important implications for the analysis in Section 4.7 Finally, examining the correlation of 

the predictors with contemporaneous excess stock returns indicates that the dividend yield works in the 

opposite direction to the relative bill rate and the term spread. The former induces negative serial 

correlation in excess stock returns – a positive shock to the dividend yield forecasts an increase in future 

excess returns, while the negative correlation is related to a decrease in current excess stock returns. 

The latter would appear to induce positive serial correlation in excess stock returns – positive shocks to 

the term spread and the relative bill rate forecast lower future returns while also being related to lower 

current excess stock returns. Although simplified because it negates the correlation between the 

predictor variables, it remains to be seen which of these effects dominates the investor’s asset 

allocation decision. 

In assessing the economic significance of return predictability, we adopt as our benchmark the 

optimal allocation of an investor who assumes returns are unpredictable (i.e. an i.i.d. return model is 

utilized to forecast the distribution of K-period cumulative returns). In this case, Barberis (2000) shows 

numerically that the optimal allocation is independent of the investment horizon K. Thus, the extent to 

which the optimal allocation using the predictive regression (3) differs from the constant allocation 

indicates the economic significance of return predictability. 



 
Figure 1 reports the optimal portfolio allocation of an investor using the dividend yield, term 

spread, and relative bill rate to predict excess stock returns, both with and without estimation risk. To 

provide a benchmark (dash-dot lines), the constant allocation of an unpredictable return investor with 

ϒ=5 (10) is 46% (23%) in the risky stocks. Ignoring estimation risk (solid line), when an investor uses the 

three variables to predict excess stock returns, the optimal allocation to risky stocks is a positive 

function of her investment horizon. For example, an investor with ϒ=5 and a 10-year investment horizon 

allocates 55% to stocks. This result indicates that the negative serial correlation induced by the dividend 

yield dominates the effect of the term spread and the relative bill rate in the asset allocation decision. 

Negative serial correlation in forecasted stock returns slows the evolution of the conditional variance of 

cumulative excess stock returns. As a result, the standard deviation of the distribution of future returns 

at a 10-year investment horizon is 45% for the predictable return investor compared to 60% for the 

unpredictable return investor, leading to a higher allocation to risky stocks when the predictive model is 

employed. 



 
An interesting comparison can be made between the results in Figure 1 and those for US data 

reported by Barberis (2000). The horizon effects using Australian data are notably smaller. While 

Australian return predictability induces an investor with ϒ=5 and a 10-year horizon to allocate 9% more 

to stocks, her US counterpart allocates 30% more to stocks. There are two possible explanations for this 

result. First, Barberis (2000) uses only the dividend yield to predict, while this paper uses three 

predictors in the asset allocation decision. Results (not reported) which replicate Barberis (2000) by 

using dividend yield as the sole predictor produce horizon effects virtually identical in magnitude to 

those reported in Figure 1. The more likely explanation is that Australian correlation between current 

excess stock returns and dividend yield is much smaller than in Barberis (2000). This has the effect of 



decreasing the magnitude of negative serial correlation in the excess stock return series, leading to a 

higher forecast of the variance of cumulative returns, and thus reducing the horizon effects. 

When estimation risk surrounding the estimates from the predictive model is incorporated 

(dotted line), the results are very different – the investor allocates less to stocks at longer horizons 

(35%). This finding differs considerably from Barberis (2000), who reports that, while estimation risk 

causes the investor to reduce her allocation to stocks at longer investment horizons, the allocation for 

predictable returns remains well above the allocation for the i.i.d. returns case. 

At first glance, negative horizon effects may appear counterintuitive. Barberis (2000) argues 

that, if returns are predictable, the variance of long-horizon returns grows slower than linearly with 

investment horizon, making stocks look relatively less risky at longer horizons leading to higher 

allocations. However, there are many parameters to estimate in the multivariate prediction model (3), 

introducing a considerable degree of estimation risk. When accommodated in the asset-allocation 

decision, the perceived riskiness of the stock investment grows faster than linearly with the investment 

horizon and the optimal allocation to stocks decreases. In addition, the negative horizon effect may be 

exacerbated by the modelling of buy-and-hold investments. The consequences of incorrectly assessing 

the degree of predictability are more severe when the investor is locked-in for long horizons. 

In summary, examining the horizon effects induced by return predictability produces two main 

results. When an investor ignores estimation risk, the degree of predictability in Australian returns 

appears sufficient to cause the investor to allocate more heavily to stocks at longer investment horizons. 

These horizons effects, however, are much smaller than reported for US data. When the additional 

uncertainty induced by estimation risk is incorporated into the asset allocation decision, the evidence of 

predictability disappears. This finding contrasts sharply with Barberis (2000), who reports that while 

estimation risk diminishes the horizon effects, the predictability is sufficiently strong to leave some 

positive effects. The uncertainty over the true parameters of the predictive model seems so severe that 

the investor allocates about the same as under the i.i.d case.8 Using this metric, it would appear that 

return predictability has little impact on the investor’s optimal investment decision. This conclusion 

should be interpreted with caution, however, given that the analysis to date has set the predictor 

variables zT at their sample means. This issue is explored further in the next section. 

Assessing the Importance of Each Predictor 

The previous section assessed the economic significance of return predictability by examining 

the horizon effects induced by all three variables jointly. This section measures the relative importance 



of each predictor. Specifically, the impact of each predictor variable on the asset allocation decision is 

documented. 

Recall that we have a predictive model of excess stock returns using three predictors – dividend 

yield on the market portfolio, the term spread and the relative bill rate. In the classical framework, it is 

common to run a series of regressions involving combinations of the predictors and judge relative 

importance using t-statistics and R2’s. Table 2 presents such an analysis. This approach is strictly 

statistical in nature. The economic implications of the predictors, however, are somewhat more 

ambiguous. For example, the t-statistics on term spread (model b) and relative bill rate (model c) are 

insignificant; does this mean these variables are of no value to investors? Similarly, moving from model 

(a) to model (d) by including term spread increases R2 by 0.0022 (but decreases adjusted R2 by 0.0013); 

does this mean term spread is useful to investors? Finally, while dividend yield appears to have some 

predictive ability, would a buy-and-hold investor with a 1-year investment horizon assign the same 

degree of importance to dividend yield as an investor with a 10-year horizon? Statistical analysis does 

not answer these questions. 

The asset allocation framework provides an ideal setting to answer such questions. Irrespective 

of its statistical importance, a predictor is economically important if its observed value affects an 

investor’s optimal asset allocation. Our approach follows Kandel and Stambaugh (1996) who measure 

the sensitivity of the investor’s optimal portfolio to the most-recently observed value of each predictor. 

Intuitively, if a variable cannot predict excess stock returns, the optimal allocation will be insensitive to 

its last observed value. 

The optimal asset allocations in Section 3 were derived by setting the last observed value of the 

predictors xT=(DYT, TST, RBT) equal to their sample mean over the January 1975 through December 1998 

estimation period. Current values of the predictors xT enter the allocation decision through the 

predictive density of future returns RT+K, since the mean of this density µK is a function of zT=(rT, xT). 

Hence, changing xT affects the mean of the distribution of future returns. 

To assess the sensitivity of the optimal portfolio to the last observed value of each predictor, we 

‘shock’ one predictor variable (one or two standard deviations above or below its mean), while holding 

the other predictors at their means. In essence, we measure the investor’s response to hypothetical 

values of the predictors. The divergence between the optimal portfolio conditioned on the shocked 

value of the predictor and the optimal portfolio when all predictors are set at their mean highlights how 

economically important that variable is to the investor. 



 
Figure 2 displays the optimal portfolio allocations when the dividend yield, term spread, and 

relative bill rate are set to ∓1 or ∓2 standard deviations from their sample mean, while holding the 

other predictors at their sample means. Solid (dotted) lines indicate that the predictor has been set one 

(two) standard deviations from its sample mean, with the sign of the shock indicated by the plus and 



minus signs. Dash-dot lines indicate that all predictors are at their sample means (exactly the same 

results shown in Section 3). In the left (right) panels, the investor ignores (incorporates) estimation risk 

into the allocation decision. The investor has ϒ=5 in all diagrams. 

The most striking result from Figure 2 is that, at short to medium investment horizons, the 

optimal allocation to stocks is highly sensitive to the most-recent value of each predictor. This is most 

evident for the dividend yield (top panels), where a two standard deviation increase (decrease) causes 

the investor to allocate all (none) of her wealth to stocks for horizons of up to three years. Likewise, 

shocks to term spread (middle panels) impact on allocations out to at least the medium term. Shocks to 

the relative bill rate (bottom panels) only affect asset allocations over very short investment horizons. 

Values of the predictors two standard deviations from their means are not unrealistic. Although 

uncommon, such shocks do fall within the maximum and minimum values observed during the 288-

month sample (summary statistics are not reported). Regardless, the sensitivity of allocations remains 

evident for shocks of one standard deviation, although the magnitude is reduced. 

With respect to distinctions between statistical and economic significance, shocks to term 

spread (middle panels) are particularly interesting. In Table 2, the t-statistic on term spread is clearly 

insignificant, possibly leading a classicist to conclude that the term spread has no predictive ability and 

therefore is of no value to investors. In stark contrast, Figure 2 reveals that when term spread is two 

standard deviations above (below) its sample mean, an investor will allocate 25% (70%) to equities at a 

1-year investment horizon, compared to 48% when term spread is set at its sample mean. Clearly, 

knowledge of the term spread is relevant information to short-horizon investors. 

Another feature of these figures is the insensitivity of the optimal allocation to initial values of 

the predictor variables at the 10-year horizon (especially when estimation risk is incorporated). As 

investment horizon increases, the lines tend to converge suggesting that a current shock to a predictor is 

relatively unimportant for long-horizon investors. This result is appealing because it indicates that the 

predictor variables come from stationary times-series processes – shocks to the times-series do not have 

permanent effects. This result differs from Barberis (2000) who finds that shocks to the dividend yield 

imply investment allocations that do not converge at long investment horizons. 

One set of results that is difficult to explain is the sensitivity of asset allocations to the relative 

bill rate in Figure 2 (bottom panels). Given the negative relationship between the relative bill rate and 

one-step-ahead excess stock returns (see Table 1), the direction of these plots is as expected – an 

increase (decrease) in the relative bill rate decreases (increases) the mean of the distribution of future 

returns causing the investor to allocate less (more) heavily to the risky asset. The puzzling result, 



however, is that the optimal allocation following a decrease in the relative bill rate is a non-monotonic 

function of the investment horizon – after the initial shock, the optimal portfolio initially decreases then 

increases with investment horizon. Although this result is difficult to explain, an examination of the 

bottom-right plot in Figure 2 indicates that the optimal allocation for an investor who accounts for 

estimation risk converges for investment horizons beyond two years. The main conclusion we can draw 

is that the investor’s optimal allocation is somewhat sensitive to the relative bill rate, but this sensitivity 

is very short lived. 

The final result to come from Figure 2 is that, although estimation risk dampens the impact of a 

shock to a predictor, the investor’s optimal allocation is still sensitive to the most recently observed 

value of each predictor (refer to the right side plots). This result is quite intuitive – when the investor 

incorporates estimation risk into her allocation decision, they are acknowledging the uncertain nature of 

the predictive evidence. If the investor is less certain about the predictive ability of the variables, the 

optimal allocation will be less sensitive to the last observed values of the variables. 

Kandel and Stambaugh’s (1996) metric for examining the economic significance of return 

predictability also serves as a useful way of thinking about the relative importance of each predictor to 

an investor. Examining the change in the optimal portfolio for a standard change in each predictor gives 

an indication of the relative weight the investor places on the predictive ability of each variable. The 

larger the change in the optimal portfolio, the more importance the investor assigns to that variable’s 

predictive ability. 

Figure 3 represents in a single plot the optimal asset allocations for shocks of positive one 

standard deviation to each variable separately while holding the other predictor variables at their 

sample means. The dotted, dash-dot, and dashed lines indicate shocks to the dividend yield, term 

spread, and relative bill rate respectively. The solid line indicates the optimal allocation when all 

predictors are set at their sample means. The left (right) panel ignores (incorporates) estimation risk. 

Again, the investor has ϒ=5. 

The clear result to come from Figure 3 is that the dividend yield has the largest impact on the 

asset allocation decision. This coincides with the statistical evidence on the issue, with the dividend yield 

being the only statistically significant variable in the predictive regression (model g). To conclude that 

the statistical approach and the asset allocation approach yield identical results is, however, premature. 

Using statistical analysis, the term spread and the relative bill rate would both be considered 

insignificantly different from zero and hence, not of importance to investors. Within an asset allocation 



framework, Figure 3 shows that the term spread has far greater impact than the statistical evidence 

suggests. 

 

Conclusions 

This paper draws a distinction between the statistical significance of return predictability and 

the influence that predictor variables have on a risk-averse investor’s actions. Classical statistical 

inference does not necessarily capture the economic importance with which investors regard various 

predictors. Instead, we use a unified framework for portfolio choice under uncertainty to examine the 



extent to which investors value the evidence of return predictability. If a variable is useful in predicting 

stock returns, knowledge of that variable will have an impact on the portfolio allocation of a utility-

maximizing investor. Thus, the evidence on return predictability is judged from an economic 

perspective, not a statistical one. 

This paper builds on prior asset allocation studies in several directions. Our predictive model is a 

multivariate system of equations involving one risky asset and three predictors. The extent of 

predictability is judged by the horizon effects induced by the three variables jointly. We are also able to 

assess the relative importance of each predictor by the sensitivity of optimal asset allocations to shocks 

in the most-recent value of each predictor in turn. While studies such as Avramov (2002) have included 

multiple predictors into an asset allocation decision, the relative impact of each predictor is not 

measured. Finally, we utilize a dataset which has not been used before in the asset allocation literature. 

Some notable differences between our results and those of Barberis (2000) are documented, leading us 

to caution against generalizing findings on predictability too broadly. 

Our results can be summarized as follows. First, classical statistical inference can belie the 

economic importance of predictor variables. The term spread and, to a lesser extent, the relative bill 

rate show no sign of statistical significance, yet optimal portfolio allocations are sensitive to their most-

recently observed values. Dividend yield has the largest impact on allocation decisions, a fact also 

detected by classical inference. Second, estimation risk is an important component of the total 

uncertainty facing an investor. Ignoring estimation risk, a risk-averse investor using the multivariate 

model to predict stock returns allocates around 9% more to stocks at an investment horizon of 10 years 

as compared to a 1-year investment horizon. When estimation risk is taken into account, the horizon 

effects induced by predictability disappear. In fact, the investor allocates around 10% less to stocks at 

the 10-year investment horizon. 

Reporting results for US data, Barberis (2000) finds much larger horizon effects from return 

predictability, despite the fact that dividend yield is the sole predictor. At a 10-year investment horizon, 

a US investor allocates 30% more to stocks perhaps indicating that US returns are more predictable than 

Australian returns. Unlike the current findings, Barberis reports that the incorporation of estimation risk 

only reduces the magnitude of the horizon effects. This difference may be due to the different sample 

sizes – Barberis estimates a predictive model using 44 years of data; our estimation uses only 25 years. It 

follows logically that our model is estimated with less precision, introducing a higher degree of 

estimation risk. Issues such as these are likely to be relevant if the economic significance metric is 

adopted to assess return predictability in other countries. 



There are several avenues for further research on this topic. Perhaps the most important is the 

incorporation of periodic portfolio rebalancing into the allocation framework. With dynamic 

rebalancing, portfolio allocations will incorporate a component that hedges against changes in the 

opportunity set. The asset allocation framework could also be generalized to allow the choice between 

multiple stochastic assets, rather than just the market portfolio and a (constant) riskfree asset. For 

example, adding an international stock portfolio would allow the investor to diversify and hedge 

internationally. 
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1 See, for example, Keim and Stambaugh (1986), Campbell (1987 and 1991), Fama and French (1988 and 1989) and 
Hodrick (1992). 
2 See, for example, Barberis (2000), Brennan et al. (1997), Campbell and Viceira (1999 and 2001) and Lynch (2001). 
3 Bawa, Brown and Klein (1979) provide a comprehensive discussion of the importance of recognizing estimation 
risk in a variety of decision contexts. 
4 See Fama and French (1989), Campbell (1991) and Hodrick (1992). 
5 Where point estimates are required, we take the mean of the posterior density p(θ|z) and denote it 𝜃�. 
6 This is very similar in nature to the maximum likelihood approach taken in asset allocation papers such as Lynch 
(2001). 
7 Note that the equations in (3) which model the dynamics of the predictors have lagged values of all three 
variables. While we could impose a prior restriction on the B matrix that each predictor is a first-order 
autoregressive process (i.e. off-diagonal coefficients are zero), Table 1 shows that the off-diagonal coefficients are 
close to zero anyway. 
8 At the 10-year horizon, the allocation to stocks after incorporating estimation risk (dotted line) is almost identical 
for the predictive model (35%) and the i.i.d model (37% dashed line). 


