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Extreme events are frequently observed in nature and in human activities; they

tend to have severe and often negative impact. For this reason they are well-

studied, and the underlying body of work is usually referred to as extreme value

theory. The theory often deals with the behavior in the tail of probability dis-

tributions or data sets. A key notation is that of heavy-tailed probability distri-

butions. Univariate heavy-tailed distributions exhibit interesting mathematical

properties practical for modelling purposes. However, many types of univariate

heavy-tailed distributions do not have natural multivariate extensions. Another

area of interest in extreme value theory is that of the clustering of extremes in

stationary sequences. Inference of cluster sizes tends to be difficult, partly due

to the scarcity of data. Clustering also introduces heavy serial dependence in

extremal observations, which in turn influences statistical analysis. This thesis

seeks to address the aforementioned problems and difficulties. Key contribu-

tions include: a multivariate model for a particular class of heavy-tailed dis-

tributions, the subexponential distributions, that allows for the approximation

of ruin probabilities; a multilevel approach to extremal inference that partially

addresses the issue of data scarcity and that improves the variance of extremal

estimators; and an algorithmic method to reduce the impact of serial depen-

dence in extremal inference.
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CHAPTER 1

INTRODUCTION

Extreme events arise frequently in nature. Excessive rainfall, floods and

earthquakes are all examples of extreme events. They also occur in human ac-

tivities in the form of, for example, large files over network traffic, catastrophe

insurance losses and stock market crashes. Due to their severe and often neg-

ative impact, extreme events are heavily studied, and there have been major

efforts to model and predict such events.

Closely associated with concept of extreme events is that of heavy-tailed

probability distributions. There is no universal definition for heavy-tailed dis-

tributions. Some authors use the term to refer to distributions that do not have

finite first or second moments, while others may be referring to distributions

whose (right) tails are not exponentially bounded. Broadly speaking, in the

univariate case, heavy-tailed distributions refer to probability distributions in

which the probability of a large value is relatively big. Heavy-tailed distribu-

tions, along with heavy-tailed phenomena, are extensively studied in [48].

There are many classes of distributions that are considered heavy-tailed.

In one dimension, examples of such classes include regularly varying dis-

tributions, subexponential distributions, long-tailed distributions, dominated

varying tail distributions, etc. Each of these classes of distributions exhibits

many unique and interesting properties, making them powerful instruments for

studying and modelling extreme events. For example, regularly varying distri-

butions are characterized as probability distributions whose (right) tail decays

like a “power law”. Examples of such distributions include Pareto, Cauchy, t

and F distributions. Financial log returns have been observed to exhibit reg-
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ularly varying tail behaviour. Correspondingly, under some mild conditions,

many stochastic processes used to model financial returns, such as the ARCH

and GARCH processes, have regularly varying marginal distributions.

However, despite the fact that univariate heavy-tailed distributions play

a prominent role in modelling extreme events, often times one cannot con-

sider events as a single random variable. A financial portfolio usually consists

of a large number of dependent assets, and should be modelled as a multi-

dimensional vector. In this instance, the concept of multivariate heavy-tailed

distributions come into play. Classes such as regularly varying distributions

have natural multivariate extensions with interesting mathematical character-

izations and properties; see e.g. [3]. Those properties can again be used for

practical purposes such as in [34].

Unfortunately, many types of univariate heavy-tailed distributions do not

have natural multivariate extensions, neither do some of their more useful prop-

erties. A central property that makes univariate heavy-tailed distributions at-

tractive for modelling purposes is that of the single large jump principle. In

broad strokes, the property states that the most likely way for the sum of some

random variables to be large is if one of the summands is large. This property is

very useful in the study of risk theory. Subexponential distributions are a large

class of heavy-tailed distributions that exhibit the single large jump principle.

There has been considerable interest in the study of subexponential distribu-

tions; see e.g. [47], [25], [20]. However, there is no natural multivarite extension

of the subexponential distribution, or of the single large jump principle.

One of the difficulties of transitioning from a univariate to a multivariate

notion of heavy-tailed distributions is that of the “tail”. In one dimension, it is
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very intuitive and clear what is the “tail” of a distribution; in the multivariate

case, it is less obvious what is meant by the notion of a “tail”. In the univariate

sense, heavy-tailed distributions can be thought of as probability distributions

whose tail decays slowly. In order to extend univariate definitions of a heavy-

tailed distribution to a multivariate sense, it may be beneficial to introduce a

rigorous definition of a multivariate “tail”. We tackle this problem in Chapter

2. We will introduce a class of multivariate subexponential distributions that

exhibit the single large jump principle, and showcase an application in ruin

theory.

The study of extreme events, however, is not only restricted to heavy-tailed

distributions. Extreme value theory is an academic discipline that studies the

behavior of extreme events. It is a blend of mathematics, probability theory, and

statistics. Many aspects of extreme value theory are extensively studied in [22].

As extreme events usually only concern the tail behavior of probability distri-

butions and underlying data sets, many approaches and techniques in extreme

value theory differ from those of classical probabilistic and statistical analysis.

As a result, there are many difficulties when devising statistical methods for

extreme events. One of the most notable and challenging problems in extreme

value theory is the scarcity of data. By nature extreme events occur very rarely,

and therefore the size of the available “extreme” data set is usually very small.

This problem is compounded as one often needs to make predictions about oc-

currences outside the range of the available data set.

With the need to make statistical inference using small data sets, the prob-

lem of using data efficiently arises. There are many approaches to tackling this

problem, and in this thesis we will introduce the following techniques.
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Since statistical inference in extreme value theory is often only concerned

with the tail of underlying data sets, data towards the mean, or “center”, of

the data set tend to be ignored. This practice is predicated on the belief that

the largest observations in a data set contain the best and most accurate infor-

mation about the tail of the underlying distribution. While this may be true,

ignoring smaller observations may not be the best practice. For example, by

only using data above some high threshold, inference results usually come with

a high variance. Techniques to lower the variance or overall mean squared error

for specific estimators have been explored, such as in [53] and [12]. We devise

a more general approach. In Chapter 3 we explore the idea of including lower

levels of observations - with the caveat that larger observations receive more

weight - for inference. In particular, we consider stationary sequences that ex-

hibit serial dependence. Those sequences often manifest clusters of large values.

One prominent statistic related to the size of such clusters is the extremal index.

We apply our approach to an estimator of the extremal index.

When a data set comes from an underlying stochastic process, then, as men-

tioned, the data will often exhibit serial dependence. Large observations tend

to come in the form of extremal clusters. Extremal clustering behavior in sta-

tionary sequences has been well-studied; see e.g. [33], [15]. Observations that

come from the same “cluster” can be highly dependent with each other, and can

often “pollute” extremal inference results, in the form of large biases in estima-

tors. Therefore a declustering method is often helpful to ensure that at most one

observation from each “cluster” is used for extremal inference. General declus-

tering methods tend to be difficult, and generally resort to a blocks method or

runs method; see e.g. [31] and [57]. Those methods tend to work for very spe-

cific estimators, and are sometimes difficult to generalize. We again propose
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a more general approach to declustering. Since observations from the same

“cluster” appear close to each other, we propose a distance based declustering

method in Chapter 4. We will establish asymptotic consistency when using this

declustering method in the inference for the index of regular variation.

As a word on notation, in the rest of this thesis we use the standard notation

F = 1− F to denote the tail of a distribution F .
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CHAPTER 2

MULTIVARIATE SUBEXPONENTIAL DISTRIBUTIONS AND THEIR

APPLICATIONS

2.1 Introduction

Subexponential distributions are commonly viewed as the most general class of

heavy tailed distributions. The notion of subexponentiality was introduced by

[9] for distributions supported by [0,∞). If F is a distribution function on the

nonnegative real numbers, and X1, X2 are i.i.d. random variables with the law

F , then F is subexponential if

lim
x→∞

P (X1 +X2 > x)

P (X1 > x)
= 2 . (2.1)

This notion was later extended to distributions supported by the entire real line

(−∞,∞); see e.g. [61]

The best known subclass of subexponential distributions is that of regularly

varying distributions, which have power-like tails; regularly varying distribu-

tions along with the basic information on one-dimensional subexponential dis-

tributions will be reviewed in Section 2.3.

Subexponential distributions exhibit many properties that are desirable for

modelling purposes. The definition (2.1) of subexponential distributions im-

plies that the sum of two i.i.d. random variables with a subexponential distri-

bution is large only when one of these random variables is large. The same turns

out to be true for the sum of an arbitrary finite number of terms and, in many

cases, for the sum of a random number of terms. Theoretically, this leads to the
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“single large jump” structure of large deviations for random walks with subex-

ponentially distributed steps; see e. g. [24]. In practice, this has turned out to be

particularly important in applications to ruin probabilities. In ruin theory the

situation where the claim sizes (often assumed to be independent with iden-

tical distribution) have a subexponential distribution is usually referred to as

the non-Cramér case. The “single large jump” property of subexponential dis-

tributions leads to a well known form of the asymptotic behaviour of the ruin

probability, and to a particular structure of the surplus path leading to the ruin;

see e.g. [22] and [1].

It is desirable to have a notion of a multivariate subexponential distribution.

The task is of a clear theoretical interest, and it is of an obvious interest in ap-

plications. A typical insurance company, for instance, has multiple insurance

portfolios, with dependent claims, so it would be useful if one could build a

model in which claims could be said to have a multivariate subexponential dis-

tribution. Such models and accompanying theory exist in one dimension, when

claims are treated as univariate subexponential random variables; see e.g. [1].

There exists a well developed notion of a multivariate distribution with reg-

ularly varying tails; see e.g. [48]. In comparison, a notion of a multivariate

subexponential distribution has not been developed to nearly the same extent.

To the best of our knowledge, a notion of multivariate subexponentiality has

been introduced twice, in [10] and in [44]. Both of these papers define a class (or

classes) of multivariate distributions that extend the one-dimensional notion of

a subexponential distribution in a natural way. They show that their notions of

multivariate subexponentiality possess multidimensional analogs of important

properties of one-dimensional subexponential distributions. Nonetheless, these
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notions have not become as widely used as that of, say, a multivariate distribu-

tion with regularly varying tails.

With ruin probability applications in mind, we introduce yet another notion

of multivariate subexponential distribution.

This chapter is organized as follows. In Section 2.2 we outline a univari-

ate ruin problem and the challenges of extending the accompanying results

to a multivariate case. In Section 2.3 we review the basic properties of one-

dimensional subexponential distributions, in order to have a benchmark for the

properties we would like a multivariate subexponential distribution to have.

In Section 2.4 we discuss the definitions of multivariate subexponentiality of

[10] and in [44]. Our notion of multivariate subexponential distributions is in-

troduced in Section 2.5. Some applications of that notion to multivariate ruin

problems are discussed in Section 2.6.

2.2 The Ruin Problem

In this section we introduce a univariate version of the ruin problem. We will

present an asymptotic result regarding the univariate problem, and outline a

few differences and challenges faced when extending such a result to a multi-

variate case.

The classical one-dimensional (Cramér-Lundberg) ruin problem can be de-

scribed as follows. Suppose that an insurance company has an initial capital

u > 0. The company receives a stream of premium income at a constant rate

c > 0 per unit of time. The company has to pay claims that arrive according

8



to a rate λ Poisson process. The claim sizes are assumed to be i.i.d. with a fi-

nite mean µ and independent of the arrival process. If U(t) is the capital of the

company at time t ≥ 0, then the ruin probability is defined as the probability

the company runs out of money at some point. This probability is, clearly, a

function of the initial capital u, and it is often denoted by

ψ(u) = P
(
U(t) < 0 for some t ≥ 0

)
.

The positive safety loading, or the net profit condition,

ρ :=
c

λµ
− 1 > 0

says that, on average, the company receives more in premium income than it

spends in claim payments. If the net profit condition fails, then an eventual ruin

is certain. If the net profit condition holds, then the ruin probability is a num-

ber in (0, 1), and its behaviour for large values of the initial capital u strongly

depends on the properties of the distribution F of the claim sizes. Let

FI(x) =
1

µ

∫ x

0

F (y) dy, x ≥ 0

be the integrated tail distribution. Using the “single large jump” principle as

mentioned earlier, one can show that if FI is a subexponential distribution, then

ψ(u) ∼ ρ−1FI(u) as u→∞; (2.2)

see Theorem 1.3.6 in [22].

As mentioned in Section 2.1, a typical insurance company would have mul-

tiple lines of business with dependent claims, it would therefore be beneficial to

be able to model claims as multivariate random vectors, and extend the above

result to a multivariate case. There are, however, challenges to making such an
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extension, as there are many important distinctions between R and Rd that are

relevant to this problem.

The first challenge is the definition of ruin, namely, that of “running out of

money”. In the univariate case, this has a very simple definition of reserves

falling below zero. In the multivariate case, however, there could be several

alternative definitions. If the insurance company’s different lines of business

cannot transfer reserves from one to another, then one can say that the com-

pany runs out of money as soon as the reserves for one line of business falls

below zero. Alternatively, if different lines of business can freely transfer re-

serves amongst each other, then the company is in ruin when the total reserves

amount falls below zero. The company can also have other policies or regula-

tory constraints, leading to various scenarios for ruin. In order to extend the

result (2.2), one must be able to extend the definition of ruin robustly to ac-

commodate a wide range of policies and regulations, but also simply enough to

achieve theoretical results.

A second - related, but more subtle - challenge is that of the geometry in

higher dimensional space. Specifically and more intuitively, we refer to the con-

cept of “directions” in Rd. In the univariate case for an insurance company, there

are only two such directions: the position of the reserves can increase when re-

ceiving premium, or decrease when paying out a claim. In Rd, however, there

are infinitely many such directions that the position of reserves can take. It

would be beneficial to have a similar concept of “increasing” and “decreasing”

of reserves positions in Rd as one does in R.

We will address those challenges in Section 2.5, when we introduce our no-

tion of multivariate subexponentiality.
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2.3 A review of one-dimensional subexponentiality

Many properties of subexponential distributions are critical to the result (2.2). In

this section we review the basic properties of one-dimensional subexponential

distributions. We denote the class of such distributions (and random variables

with such distributions) by S . Unless stated explicitly, we do not assume that

a random variable with a subexponential distribution F is nonnegative; such a

random variable (or its distribution) is called subexponential if the nonnegative

random variable X+ = max(X, 0) is subexponential. Most of the not otherwise

attributed facts stated below can be found in [21].

We first review the implications of the membership in the class S . If a dis-

tribution F ∈ S , then F is long-tailed: for any y ∈ R,

lim
x→∞

F (x+ y)

F (x)
= 1 (2.3)

(implicitly assuming that F (x) > 0 for all x.) The class of all long-tailed dis-

tributions is denoted by L . The class of subexponential distributions S is in

fact a proper subset of L ; see e.g. [20]. The class L of long-tailed distributions

is well-studied. Notably it is closed under convolutions, while the class S of

subexponential distributions is not, see [37].

A distribution F has a regularly varying right tail if there is α ≥ 0 such that

for every b > 0,

lim
x→∞

F (bx)

F (x)
= b−α . (2.4)

The parameter α is called the exponent of regular variation. The class of distri-

butions with a regularly varying right tail is denoted by R (or R(α) if we wish

to emphasize the exponent of regular variation.) The class of regularly varying

distributions is a subclass of subexponential distributions. Namely R ⊂ S .
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In light of the definition (2.4), on can view R as the class of distributions with

“power-like” right tails, in which case all distributions with “power-like” right

tails are subexponential. This statement, however, should be treated carefully;

other classes of distributions can be referred to as having ”power-like” right

tails, and not all of them form subclasses of S . Indeed, consider the class D of

distributions with dominated varying tails, defined by the property

lim inf
x→∞

F (2x)

F (x)
> 0 . (2.5)

One could view a distribution F ∈ D as having a “power-like” right tail. How-

ever, D 6⊂ S . We note, on the other hand, that it is still true that D ∩L ⊂ S ;

see [25]. Namely, if a distribution has a dominated varying tail, and is also long-

tailed, then it is subexponential.

Many distributions that do not have “power-like” right tails are subexpo-

nential as well. Examples include the log-normal distribution, as well as the

Weibull distribution with the shape parameter smaller than 1; see e.g. [47].

Let X1, X2, . . . be i.i.d. random variables with a subexponential distribu-

tion. The defining property (2.1) extends, automatically, to any finite number

of terms, i.e.

lim
x→∞

P (X1 + . . .+Xn > x)

P (X1 > x)
= n for any n ≥ 1. (2.6)

Moreover, the number of terms can also be random. LetN be a random variable

independent of the i.i.d. sequence X1, X2, . . . and taking values in the set of

nonnegative integers. If

EτN <∞ for some τ > 1, (2.7)

then

lim
x→∞

P (X1 + . . .+XN > x)

P (X1 > x)
= EN . (2.8)
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2.4 Existing definitions of multivariate subexponentiality

Before proceeding, let us clarify that we will use F interchangeably to denote a

distribution or a distribution function. Further, in this chapter we will denote

F = 1− F for a distribution function F on Rd.

The first known definition of multivariate subexponential distributions was

introduced by [10]. They consider distributions supported by the entire d-

dimensional space Rd (and not only by the nonnegative orthant). That paper

defines both multivariate subexponential distributions, and multivariate expo-

nential distributions. In our discussion here we only consider the subexponen-

tial case. The definition is tied to a function b(t) = (b1(t), . . . , bd(t)) such that

bi(t)→∞ as t→∞ for i = 1, . . . , d.

One starts with defining the class of long-tailed distributions in Rd, i.e. a

multivariate analog of the class L in (2.3). Let E = [−∞,∞]d \ {−∞∞∞}, and let

ν be a finite measure on E concentrated on the purely infinite points, i.e. on

{−∞,∞}d \ {−∞∞∞}, and such that ν(x ∈ E : xi = ∞) > 0 for each i = 1, . . . , d.

Then a probability distribution F is said to belong to the class L (ν;b) if, as

t→∞,

tF
(
b(t) + ·

) v→ ν (2.9)

vaguely in E (see [51] for a thorough treatment of vague convergence of mea-

sures.) The class of subexponential distributions (with respect to the same func-

tion b and the same measure ν) is defined to be that subset S (ν;b) of distribu-

tions F in L (ν;b) for which

tF ∗ F
(
b(t) + ·

) v→ 2ν

vaguely in E, where ∗ denotes the convolution of distribution functions.
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Corollary 2.4 in [10] shows that F ∈ S (ν;b) if and only if F ∈ L (ν;b) and

the marginal distribution Fi of F is in the one-dimensional subexponential class

S for each i = 1, . . . , d.

It is shown in [10] that the distributions in S (ν,b) possess the natural multi-

variate extensions of the properties of the one-dimensional subexponential dis-

tributions mentioned in Section 2.3. For example, if F ∈ S (ν,b), then for any

n ≥ 1, F ∗n ∈ S (nν,b). More generally, if N is a random variable satisfying

(2.7), and H =
∑∞

n=0 P (N = n)F ∗n, then H ∈ S (ENν,b).

The distributions in S (ν,b) also possess the right relation with the distribu-

tions with multivariate regularly varying tails. Denote the nonnegative quad-

rant Rd
+ = [0,∞)d. A distribution F supported by Rd

+ is said to have regularly

varying tails if there is a Radon measure µ on [0,∞]d \{0} concentrated on finite

points, and a function b as above such that, as t→∞,

tF
(
b(t)·

) v→ µ (2.10)

vaguely in [0,∞]d \ {0}; see [48]. Note that (2.10) allows for different scaling

in different directions, hence also different marginal exponents of regular vari-

ation. This situation is sometimes referred to as non-standard regular variation.

If we denote by R(µ,b) the class of distributions with regularly varying tails

satisfying (2.10), then, as shown in [10], R(µ,b) ⊂ S (ν,b) for some ν.

As mentioned above, this definition of multivariate subexponentiality re-

quires, beyond marginal subexponentiality for all components, only the joint

long tail property (2.9). This property, together with the nature of the limiting

measure, makes this notion somewhat inconvenient in applications, because it

is not easy to see how to use it on sets in Rd that are not “asymptotically rectan-

gular”.
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Another observation worth making is that in probability theory, many well

established multivariate extensions of important one-dimensional notions have

a “stability property” with respect to projections on one-dimensional subspaces

(i.e., with respect to taking linear combinations of the components.) Specifically,

if the distribution of a random vector (X(1), . . . , X(d)) has, say, a property Gd (the

subscript d specifying the dimension in which the property holds), then ideally

the distribution of any (non-degenerate) linear combination
∑d

1 aiX
(i) should

have the property G1. This is true, for instance, for multivariate regular varia-

tion, multivariate Gaussianity, stability and infinite divisibility. Unfortunately,

the definition of multivariate subexponentiality by S (ν,b) does not have this

feature, as the following example shows.

Example 2.4.1. Consider a 2-dimensional random vector (X, Y ) with nonneg-

ative coordinates such that P (X + Y = 2n) = 2−(n+1) for n ≥ 0, with the

mass distributed uniformly on the simplex {(x, y) : x, y ≥ 0, x+ y = 2n} for

each n ≥ 0. It is elementary to check that X, Y ∈ L ∩D ⊂ S . Furthermore, for

2n ≤ x ≤ 2n+1, n = 0, 1, 2, . . . we can compute

P (X > x) = P (Y > x) = 2−(n+1) − x

3
2−(2n+1) = 2P (X > x, Y > x) .

If we define a function b by tP (X > b(t)) = 1 for t ≥ 2, then it immediately

follows that (X, Y ) ∈ L (ν;b) with b(t) = (b(t), b(t)) and

ν =
1

2
δ(−∞,∞) +

1

2
δ(∞,−∞) +

1

2
δ(∞,∞) ,

and the result of [10] tells us that (X, Y ) ∈ S (ν;b). It is clear, however, that

lim inf
x→∞

P (X + Y > x+ 1)

P (X + Y > x)
=

1

2
,

soX+Y does not even have a long-tailed, let alone subexponential, distribution.
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The second existing definition of multivariate subexponentiality we are

aware of is due to [44]. Once again, this definition concerns rectangular regions

on the space Rd. The paper presents 3 versions of the definition. The versions

are similar, and we concentrate only on one of them. Let F be a probability

distribution on Rd with F (0+) = 0. Then one says that F ∈ S(Rd) if for all

x ∈ (0,∞]d with min(xi) <∞,

lim
t→∞

F ∗2(tx)

F (tx)
= 2. (2.11)

This definition, like the definition of [10], has the following property: a dis-

tribution F ∈ S(Rd) if and only if each marginal distribution Fi of F is a one-

dimensional subexponential distribution, and a multivariate long-tail property

holds. In the present case the long-tail property is

lim
t→∞

F (tx− a)

F (tx)
= 1 (2.12)

for each x ∈ (0,∞]d with min(xi) < ∞ and each a ∈ [0,∞)d. This follows from

Theorem 7 and Corollary 11 in [44].

The following statement shows that, in fact, the definition (2.11) of multi-

variate subexponentiality requires only marginal subexponentiality of each co-

ordinate.

Proposition 2.4.2. Let F be a probability distribution supported by the positive quad-

rant in Rd. Then F ∈ S(Rd) if and only if all marginal distributions Fi of F are

subexponential in one dimension.

Proof. By choosing x with only one finite coordinate, we immediately see that if

F ∈ S(Rd), then Fi ∈ S for each i = 1, . . . , d.
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In the other direction, we know by the results of [44], that only the long-

tail property (2.12) is needed, in addition to the marginal subexponentiality, to

establish that F ∈ S(Rd). Therefore, it is enough to check that the long-tail

property (2.12) follows from the marginal subexponentiality. In fact, we will

show that, if each Fi is long-tailed, i.e. satisfies (2.3), i = 1, . . . , d, then (2.12)

holds as well.

Let ε > 0. Fix x = (x1, . . . , xd) ∈ (0,∞)d (allowing some of the components of

x be infinite only leads to a reduction in the dimension), and a = (a1, . . . , ad) ∈

[0,∞)d.

Since Fi ∈ L , i = 1, . . . , d, for sufficiently large t we have

0 ≤ Fi(txi − ai)− Fi(txi) < εFi(txi)

for i = 1, . . . , d. Further, it is clear that

0 ≤ F (tx− a)− F (tx) ≤
d∑
i=1

(
Fi(txi − ai)− Fi(txi)

)
.

Hence for sufficiently large t,

0 ≤ F (tx− a)− F (tx)

F (tx)
≤

d∑
i=1

(
Fi(txi − ai)− Fi(txi)

)
F (tx)

≤
d∑
i=1

(
Fi(txi − ai)− Fi(txi)

)
Fi(txi)

< dε.

Letting ε→ 0 gives the desired result.

Remark 2.4.3. It is worth noting that the above statement and Corollary 11

in [44] show that for any probability distribution F supported by the positive
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quadrant in Rd, such that the marginal distribution Fi of F is subexponential for

every i = 1, . . . , d, we have, for all a ∈ [0,∞)d, x ∈ (0,∞)d and n ≥ 1,

lim
t→∞

F ∗n(tx− a)

F (tx)
= n. (2.13)

Remark 2.4.4. Proposition 2.4.2 was apparently a by-product of Proposition 11

in [2], when the authors were investigating the difference between F ∗n(x) and

nF (x).

Remark 2.4.5. As an extension to long-tailed and subexponential distributions

in one dimension, for γ ≥ 0, one says that F ∈ Lγ if limx→∞ F (x− y)/F (x) = eγy

for all y ∈ R; and F ∈ Sγ if F ∈ Lγ and limx→∞ F ∗2(x)/F (x) = D < ∞. In

[45], the definition of S(Rd) was extended in a similar fashion. One says that

F ∈ L(Rd, ν) if for some real function ν,

lim
t→∞

F (tx− a)

F (tx)
= ν(x, a) (2.14)

for each x ∈ (0,∞]d with min(xi) < ∞ and each a ∈ [0,∞)d. Further, F ∈

S(Rd, α) if some real function α and for all x ∈ (0,∞]d with min(xi) <∞,

lim
t→∞

F ∗2(tx)

F (tx)
= α(x). (2.15)

The authors went on to show in Theorem 3 of the paper, that as long as for

each i = 1, . . . , d, the marginal distribution Fi satisfies Fi ∈ Sγi for some γi ≥ 0,

and that F ∈ L(Rd, ν) for some real function ν, then F ∈ S(Rd, α) for some α.

However, with a proof similar to that of Proposition 2.4.2, one can show that as

long as Fi ∈ Sγi for some γi ≥ 0 for each i = 1, . . . , d, then F ∈ L(Rd, ν) for some

real function ν. So only the first condition is required.

Given Proposition 2.4.2, using (2.11) as a definition of multivariate subexpo-

nentiality is, therefore, equivalent to merely requiring one-dimensional subex-

ponentiality for each marginal distribution. Such requirement, in particular,
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cannot guarantee one-dimensional subexponentiality of the linear combina-

tions, as we have seen in Example 2.4.1. In fact, it was shown in [37] that even

the sum of independent random variables with subexponential distributions

does not need to have a subexponential distribution.

2.5 Multivariate Subexponential Distributions

In this section we introduce a new notion of a multivariate subexponential dis-

tribution. We approach the task with the multivariate ruin problem in mind. We

start with a familyR of open sets in Rd. Recall that a subsetA of Rd is increasing

if x ∈ A and a ∈ [0,∞)d imply x + a ∈ A. Let

R = {A ⊂ Rd : A open, increasing, Ac convex, 0 /∈ A}. (2.16)

Remark 2.5.1. Note that R is a cone with respect to the multiplication by posi-

tive scalars. That is, if A ∈ R, then uA ∈ R for any u > 0. Further, half-spaces of

the form

H = {x : a1x1 + · · ·+ adxd > b} , b > 0, a1, . . . , ad ≥ 0 with a1 + . . .+ ad = 1

(2.17)

are members ofR.

Remark 2.5.2. We can write a setA ∈ R (in a non-unique way) asA = b+G (x ∈

A if and only if x = b + y for some y ∈ G), with b ∈ (0,∞)d and 0 ∈ ∂G (with

∂G being the boundary of G). It is clear that the set G is then also increasing. We

will adopt this notation in some of the proofs to follow.

To see a connection with the multivariate ruin problem, imagine that for a

fixed set A ∈ R we view A as the “ruin set” in the sense that if, at any time, the
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excess of claim amounts over the premia falls in A, then the insurance company

is ruined. Note that, in the one-dimensional situation, all sets in R are of the

form A = (u,∞) with u > 0, so the ruin corresponds to the excess of claim

amounts over the premia being over the initial capital u. The different shapes

of sets in R can be viewed as allowing different interactions between multiple

lines of business. For example, choosing A of the form

A = {x : xi > ui for some i = 1, . . . , d} , u1, . . . , ud > 0

corresponds to completely separate lines of business, where a ruin of one line

of business causes the ruin of the company. On the other hand, using as A a

half-space of the form (2.17) corresponds to the situation where there is a single

overall initial capital b and the proportion of ai in a shortfall in the ith line of

business is charged to the overall capital b. This addresses the first issue raised in

Section 2.2. The connections to the ruin problem are discussed more thoroughly

in Section 2.6.

Before we introduce our notion of multivariate subexponentiality, we collect,

in the following lemma, certain facts about the family R. Note that part (d) is a

general property of convex sets.

Lemma 2.5.3. Let A ∈ R.

(a) If G = A− b for some b ∈ ∂A, then Gc ⊃ (−∞, 0]d.

(b) If u1 > u2 > 0 then u1A ⊂ u2A.

(c) There is a set of vectors IA ⊂ Rd such that

A =
{
x ∈ Rd : pTx > 1 for some p ∈ IA

}
.

(d) Let C be any convex set, and u1, u2 > 0, then u1C + u2C = (u1 + u2)C.
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Proof. (a) Since Gc is closed, it contains the origin. Since G is increasing, Gc

contains the entire quadrant (−∞, 0]d.

(b) This is an immediate consequence of the fact thatAc is convex and 0 ∈ Ac.

(c) Let x0 ∈ ∂A. Since Ac is convex, the supporting hyperplane theorem (see

e.g. Corollary 11.6.2 in [54]) tells us that there exists a (not necessarily unique)

nonzero vector px0 such that pTx0
x ≤ pTx0

x0 for all x ∈ Ac. Since 0 ∈ Ac, we

must have pTx0
x0 ≥ 0. Since A is increasing, the case pTx0

x0 = 0 is impossible, so

pTx0
x0 > 0.

We scale each px0 so that pTx0
x0 = 1. Let IA be the set of all such px0 for all

x0 ∈ ∂A. Since a closed convex set equals the intersection of the half-spaces

bounded by its supporting hyperplanes (see e.g. Corollary 11.5.1 in [54]), the

collection IA has the required properties.

(d) Let x ∈ u1C and y ∈ u2C, then x
u1
, y
u2
∈ C, and by convexity u1

u1+u2
x
u1

+

u2
u1+u2

y
u2

= 1
u1+u2

(x + y) ∈ C, so x + y ∈ (u1 + u2)C, implying that u1C + u2C ⊂

(u1 + u2)C. The other direction is obvious.

Remark 2.5.4. It is clear that, once we have chosen a collection IA for some

A ∈ R, for any u > 0 we can use IA/u as IuA.

We are now ready to define multivariate subexponentiality. Let F be a prob-

ability distribution on Rd supported by [0,∞)d. For a fixed A ∈ R it follows

from part (b) of Lemma 2.5.3 that the function FA on [0,∞) defined by

FA(t) = 1− F (tA), t ≥ 0 ,

is a probability distribution function on [0,∞).
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Definition 2.5.5. For any A ∈ R, we say that F ∈ SA if FA ∈ S , and we write

SR := ∩A∈RSA.

We view the class SR as the class of subexponential distributions. However,

for some applications we can use a larger class, such as SA for a fixed A ∈ R, or

the intersection of such classes over a subset ofR.

We now introduce some useful properties of the class SR. By Remark 2.5.1, if

X is a random vector in Rd whose distribution is in SR, then all non-degenerate

linear combinations of the components of X with nonnegative coefficients have

one-dimensional subexponential distributions. More generally, we have the fol-

lowing stability property. We say that a linear transformation T : Rd → Rk is

increasing if Tx ∈ [0,∞)k for any x ∈ [0,∞)d.

Proposition 2.5.6. Let T : Rd → Rk be an increasing linear transformation. If X is a

random vector in Rd whose distribution is in SR (in Rd), then the same is true (in Rk)

for the distribution of the random vector TX.

Proof. It suffices to show that for any A ∈ R in Rk, the set T−1A is inR in Rd.

We check that T−1A satisfies each of the conditions in (2.16). That T−1A is

open follows from that fact that T is continuous and A is open. To show that

T−1A is increasing, let x ∈ T−1A, and a ≥ 0. In this case Tx = y for some y ∈ A,

and Ta = b for some b ≥ 0. Hence by linearity and the fact that A is increasing,

it follows that T (x + a) = y + b ∈ A. As for convexity of (T−1A)c, notice that

(T−1A)c = T−1Ac. For any x,y ∈ (T−1A)c, then, Tx, Ty ∈ Ac. For λ ∈ (0, 1),

T (λx + (1 − λ)y) = λTx + (1 − λ)Ty ∈ Ac, and convexity of (T−1A)c = T−1Ac

follows. Lastly, notice that T−1A = T−1A, so 0 ∈ T−1A leads to the contradiction

that 0 ∈ A.
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Remark 2.5.7. Note that Proposition 2.5.6 also holds if instead of the entirety

of SR, we restrict the distributions to those in SRH , where RH consists only of

half-spaces of the form (2.17), and SRH := ∩A∈RHSA. This follows easily from

the above proof and the fact that T−1H is still a half-space for any half-space H .

The following lemma is introduces certain useful equivalences.

Lemma 2.5.8. Let A ∈ R, and let X be a random vector with distribution F . Let IA

be as defined in the proof of Lemma 2.5.3. Define YA = sup {u : X ∈ uA}. Then the

following equivalences hold.

X ∈ uA⇔ YA > u⇔ sup
p∈IA

pTX > u. (2.18)

Proof. This follows directly from that fact that for any u > 0, we can write the

event {X ∈ uA} as
{

supp∈IA p
TX > u

}
; see Lemma 2.5.3 and Remark 2.5.4.

In light of Lemma 2.5.8, one can view YA as a projection of X onto R, which

helps address the second issue raised in Section 2.2.

The next lemma is useful and follows quite naturally from Lemma 2.5.8.

Lemma 2.5.9. For any A ∈ R and n ≥ 1,

(FA)∗n(t) ≥ F ∗n(tA). (2.19)

Proof. Let X(1), . . . ,X(n) be independent random vectors with distribution F .

Let Y1, . . . , Yn be one-dimensional random variables defined by

Yi = sup{u : X(i) ∈ uA} = sup
p∈IA

pTX(i), i = 1, . . . , d .
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By Lemma 2.5.8, P (Yi > t) = FA(t). Hence it follows that

F ∗n(tA) = P (X(1) + · · ·+ X(n) ∈ tA)

= P
(

sup
p∈IA

pT (X(1) + · · ·+ X(n)) > t
)

≤ P
(

sup
p∈IA

pTX(1) + · · ·+ sup
p∈IA

pTX(n) > t
)

= P (Y1 + . . .+ Yn > t)

= (FA)∗n(t) ,

as required.

In spite of this result, the two probabilities in (2.19) are in fact asymptotically

equivalent.

Corollary 2.5.10. A ∈ R. Let X,X(1), . . . ,X(n) be independent random vectors with

distribution F . If F ∈ SA for some A ∈ R, then for all n ≥ 1,

lim
u→∞

P (X(1) + · · ·+ X(n) ∈ uA)

P (X ∈ uA)
= n. (2.20)

Proof. It follows from Lemma 2.5.9 that only an asymptotic lower bound needs

to be established. However, since X(1), . . . ,X(n) are all nonnegative, and A is an

increasing set, it must be that if X(1) +· · ·+X(n) ∈ uAc, then each X(1), . . . ,X(n) ∈

uAc. Therefore,

P (X(1) + · · ·+ X(n) ∈ uAc) ≤ P (X(1), . . . ,X(n) ∈ uAc)

= P (X ∈ uAc)n.

It follows that

lim inf
u→∞

P (X(1) + · · ·+ X(n) ∈ uA)

P (X ∈ uA)
≥ lim inf

u→∞

1− P (X ∈ uAc)n

P (X ∈ uA)
= n ,

as required.
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Remark 2.5.11. In [46], the authors investigated the difference between product

and convolutions of distribution functions, as well as the difference between

the tail of the convolution and the sum of tails, for several different classes of

distribution functions on Rd. In particular, one of the object of study was the

tail behavior and convergence rate of the function Rn(x) = F ∗n(x) − nF (x). If

we add the class of functiosn SA for some A ∈ R, we can slightly modify the

definition of this function to R′n(uA) = F ∗n(uA) − nF (uA), and by Corollary

2.5.10, conclude that R′n(uA) = o(1)F (uA).

Remark 2.5.12. We note at this point that the assumption F ∈ SA is NOT equiv-

alent to the assumption that (2.20) holds for all n. In fact, the latter assump-

tion is weaker. To see that, consider the following example. Let X and Y be

two independent nonnegative one-dimensional random variables with subex-

ponential distributions, such that X + Y is not subexponential; recall that such

random variables exist, see [37]. We construct a bivariate random vector Z by

taking a Bernoulli (1/2) random variableB independent ofX and Y and setting

Z = (X, 0) if B = 0 and Z = (0, Y ) if B = 1. Let A = {(x, y) : max(x, y) > 1}.

Since the marginal distributions of the bivariate distribution of Z are, obviously,

subexponential, we see by (2.13) that (2.20) holds for all n ≥ 1. However, for

u > 0,

FA(u) =
1

2
P (X > u) +

1

2
P (Y > u) ,

so the distribution FA is a mixture of the distributions ofX and Y . By Theorem 2

of [20], any non-trivial mixture of the distributions ofX and Y is subexponential

if and only if their convolution is. Since, by construction, that convolution is not

subexponential, we conclude that FA /∈ S and F /∈ SA.

In the next proposition we check that the basic properties of one-dimensional

subexponential distributions extend to the multivariate case.

25



Proposition 2.5.13. Let A ∈ R and F ∈ SA.

(a) If G is a distribution on Rd supported by [0,∞)d, such that

lim
u→∞

F (uA)

G(uA)
= c > 0,

then G ∈ SA.

(b) For any a ∈ Rd,

lim
u→∞

F (uA+ a)

F (uA)
= 1. (2.21)

(c) Let X,X(1), . . . ,X(n) be independent random vectors with distribution F . For

any ε > 0, there exists K > 0 such that for all u > 0 and n ≥ 1,

P (X(1) + · · ·+ X(n) ∈ uA)

P (X ∈ uA)
< K(1 + ε)n . (2.22)

Proof. (a) This is an immediate consequence of the univariate subexponential-

ity of FA and the corresponding property of one-dimensional subexponential

distributions; see e.g. Lemma 4 in [21].

(b) Write A = b + G as in Remark 2.5.2. As in part (b) of Lemma 2.5.3, we

have u1G ⊂ u2G if u1 > u2 > 0. Since G is an increasing set, it follows that there

exists u1 > 0 such that for all u > u1 we have (u + u1)A ⊂ uA + a ⊂ (u − u1)A.

Therefore,

FA(u+ u1) = F ((u+ u1)A)

≤ F (uA+ a)

≤ F ((u− u1)A) = FA(u− u1) ,

and the claim follows from the one-dimensional long tail property of FA.

(c) The claim follows from Lemma 2.5.9 and the corresponding one-

dimensional bound; see e.g. Lemma 3 in [21].
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Remark 2.5.14. In our Definition 2.5.5 of multivariate subexponentiality one can

drop the assumption that a distribution is supported by [0,∞)d. We can check

that both Corollary 2.5.10 and Proposition 2.5.13 remain true in this extended

case.

Our next step is to show that multivariate regular varying distributions fall

within the class SR of multivariate subexponential distributions. The defini-

tion of non-standard multivariate regular variation for distributions supported

by [0,∞)d was given in (2.10). Presently we would only consider the standard

multivariate regular variation, but allow distributions not necessarily restricted

to the first quadrant. In this case one assumes that there is a non-zero Radon

measure µ on [−∞,∞]d \ {0}, charging only finite points, and a function b on

(0,∞) increasing to infinity, such that

tF
(
b(t)·

) v→ µ (2.23)

vaguely on [−∞,∞]d \ {0}. The measure µ is called the tail measure of X; it has

automatically a scaling property: for some α > 0, µ(uA) = u−αµ(A) for every

u > 0 and every Borel setA ∈ Rd, and the function b in (2.23) is regularly varying

with exponent 1/α; see [48]. We say that F (and X) are regularly varying with

exponent α and use the notation F ∈MRV (α, µ).

Proposition 2.5.15. MRV (α, µ) ⊂ SR.

Proof. We start by showing that for any A ∈ R, µ(∂A) = 0. Since for any u > 0,

µ(∂(uA)) = µ(u∂A) = u−αµ(∂A) ,

it is enough to show that for any u > 1, ∂(uA)∩∂A = ∅ (indeed, µ(∂A) > 0 would

then imply existence of uncountably many disjoint sets of positive measure).
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Suppose, to the contrary, that ∂(uA) ∩ ∂A 6= ∅, and let x ∈ ∂(uA) ∩ ∂A. The

set IA in part (c) of Lemma 2.5.3, has, by construction, the property that u−1x, as

an element of u−1∂(uA) = ∂A, satisfies pTu−1x = 1 for some p ∈ IA. But then

pTx = u > 1, which says that x is in A, rather than in ∂A, which is a subset of

Ac.

It follows from (2.23) that for any set A ∈ R,

tP
(
X ∈ b(t)A

)
→ µ(A) ∈ (0,∞)

as t → ∞. Since the function b is regularly varying with exponent 1/α, we

immediately conclude that the distribution function FA has a regularly varying

tail, hence FA is subexponential. Because A ∈ R is arbitrary, it follows that

F ∈ ∩A∈RSA = SR.

We proceed with clarifying the relation between the class SR we have in-

troduced in this section and the classes S (ν;b) and S(Rd) of Section 2.4. We

will also provide several examples of distributions that belong to SR, as well as

sufficient conditions for a distribution to be a member of SR.

Example 2.4.1, combined with Proposition 2.5.6, show that neither S (ν;b)

nor S(Rd) are subsets of SR. We will present an example to show that SR 6⊂

S (ν;b).

We start with presenting a sufficient condition for a distribution F to be a

member of SR. We assume for the moment that F is supported by [0,∞)d.

Let X ∼ F be a nonnegative random vector on Rd such that P (X = 0) = 0.

Denote the L1 norm (the choice of norm is does not matter for the subsequent

28



arguments) of X by

W = ||X||1 =
d∑
i=1

Xi , (2.24)

and the projection of X onto the d-dimensional unit simplex ∆d by

I =
X

||X||1
=

X

W
∈ ∆d . (2.25)

Let ν be the distribution of I over ∆d, and let (Fθθθ)θθθ∈∆d
be a set of regular

conditional distributions of W given I . Notice that, if the law F of X in Rd has a

density f with respect to the d-dimensional Lebesgue measure, then a version of

(Fθθθ)θθθ∈∆d
has densities with respect to the one-dimensional Lebesgue measure,

given by

fθθθ(w) =
wd−1f(wθθθ)∫∞

0
ud−1f(uθθθ) du

, w > 0. (2.26)

Proposition 2.5.16. Suppose X is a random vector on Rd with distribution F , sup-

ported by [0,∞)d, such that P (X = 0) = 0. Suppose the marginal distributions Fi,

i = 1, . . . , d have dominated varying tails as in (2.5). Further, assume that there is a set

of regular conditional distributions (Fθθθ)θθθ∈∆d
of W given I such that Fθθθ ∈ L for each

θθθ ∈ ∆d and for some C, t0 > 0,

Fθθθ1(2t)

Fθθθ2(t)
≤ C (2.27)

for all t > t0 and for all θθθ1, θθθ2 ∈ ∆d. Then F ∈ SR.

Proof. Let A ∈ R be fixed. We first check that if each of the marginal distribu-

tions have dominated varying tails, then FA also has a dominated varying tail.

For simplicity we assume that d = 2, the proof for higher dimensions is simi-

lar. We first take a = (a1, a2) and b = (b1, b2) with a1, a2, b1, b2 > 0, such that
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[0, a1) × [0, a2) ⊂ Ac ∩ [0,∞)2 ⊂ [0, b1) × [0, b2). Since F is supported by [0,∞)2,

it follows that for t > 0, F (ta) ≥ F (tA) = FA(t) ≥ F (tb). Therefore

lim inf
t→∞

FA(2t)

FA(t)
≥ lim inf

t→∞

F (2tb)

F (ta)
≥ lim inf

t→∞

1
2
F1(2tb1) + 1

2
F2(2tb2)

F1(ta1) + F2(ta2)
> 0,

since F1 and F2 have dominated varying tails. By definition FA also has a dom-

inated varying tail.

Since L ∩D ⊂ S , it now suffices to show that FA ∈ L .

For θθθ ∈ ∆d, let

hθθθ = inf {w > 0 : wθθθ ∈ A} > 0 , (2.28)

Note that hθθθ is bounded away from 0. Further, by convexity of Ac, h(e(i)) < ∞

for at least one coordinate vector e(i), i = 1, . . . , d. Since the dominated variation

of the marginal tails implies, in particular, that each coordinate of the vector X

is positive with positive probability, we conclude that

ν
{
θθθ ∈ ∆d : hθθθ <∞

}
> 0 .

We conclude that there is M > 0 and a measurable set B ⊂ ∆d with δ := ν(B) >

0, such that

1/M ≤ hθθθ ≤M for all θθθ ∈ B.

Note that for t > 0,

FA(t) =

∫
∆d

Fθθθ(thθθθ) ν(dθθθ). (2.29)

Therefore,

FA(t)− FA(t+ 1)

FA(t)
=

∫
∆d

(Fθθθ(thθθθ)− Fθθθ((t+ 1)hθθθ)) ν(dθθθ)∫
∆d
Fθθθ(thθθθ) ν(dθθθ)

, (2.30)
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and we wish to show that this quantity goes to 0 as t→∞.

By the assumptions, for any fixed θθθ, Fθθθ ∈ L , hence for any fixed θθθ such that

hθθθ <∞,

lim
t→∞

Fθθθ(thθθθ)− Fθθθ((t+ 1)hθθθ)

Fθθθ(thθθθ)
= 0.

Therefore, for a given ε > 0, there exists tε > 0 such that, for all t > tε, ν(St,ε) < ε,

where

St,ε =

{
θθθ ∈ ∆d : hθθθ <∞ and

Fθθθ(thθθθ)− Fθθθ((t+ 1)hθθθ)

Fθθθ(thθθθ)
> ε

}
.

Let ε < (δ/2)2. Then ν
(
B ∩ Sct,ε

)
>
(
ν(St,ε)

)1/2. By the definition of the set B

and by (2.27), and recalling that hθθθ > 0 for any θθθ ∈ ∆d, for some C1, t̃0 > 0

Fθθθ1(thθθθ1) ≤ C1Fθθθ2(thθθθ2)

for any θθθ1 ∈ St,ε and any θθθ2 ∈ B ∩ Sct,ε, for all t > t̃0. Therefore, for t > tε + t̃0,∫
St,ε

Fθθθ(thθθθ)− Fθθθ((t+ 1)hθθθ) ν(dθθθ) ≤
∫
St,ε

Fθθθ(thθθθ) ν(dθθθ)

<
ν(St,ε)

ν(B ∩ Sct,ε)
C1

∫
B∩Sct,ε

Fθθθ(thθθθ) ν(dθθθ)

< ε1/2C1

∫
∆d

Fθθθ(thθθθ) ν(dθθθ).

Hence, for t > tε + t̃0, the quantity in (2.30) is bounded above by ε + ε1/2C1.

Letting ε↘ 0 gives us the desired result.

We are now ready to give an example showing that SR 6⊂ S (ν;b).

Example 2.5.17. Let 0 < |γ| ≤ 1/12. It is shown in [10] that a legitimate proba-

bility distribution F , supported by the positive quadrant of R2, satisfies

P (X > x, Y > y) =
1 + γ sin(log(1 + x+ y)) cos(1

2
π x−y

1+x+y
)

1 + x+ y
, x, y ≥ 0 . (2.31)
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Then

P (X > x) = P (Y > x) ∼ x−1 as x→∞ ,

but F /∈ S (ν;b); see [10]. Straightforward differentiation gives us the density f

of F , and one can check that it satisfies

2− 4γ − 3γπ − π2/4

(1 + x+ y)3
≤ f(x, y) ≤ 2 + 4γ + 3γπ + π2/4

(1 + x+ y)3
,

so by (2.26), we have

a
w

(1 + w)3
≤ fθθθ(w) ≤ b

w

(1 + w)3
, w > 0,

for some 0 < a < b < ∞, independent of θθθ. It is clear that the conditions of

Proposition 2.5.16 are satisfied and, hence, F ∈ SR.

Proposition 2.5.16 gives us a way to check that a multivariate distribution

belongs to the class SR, but it only applies to distributions that have, marginally,

dominated varying tails. In the remainder of this section we provide sufficient

conditions for membership in SR that do not require marginals with dominated

varying tails. We start with a motivating example.

Example 2.5.18. [Rotationally invariant case] Assume that there is a one-

dimensional distribution G such that Fθθθ = G for all θθθ ∈ ∆d. Let A ∈ R, and

notice that, in the rotationally invariant case, a random variable YA with distri-

bution FA can be written, in law, as

YA
d
= ZH−1, (2.32)

with Z and H being independent, Z with the distribution G, and H = hΘ. Here

h is defined by (2.28), and Θ has the law ν over the simplex ∆d. Recall that

the function h is bounded away from zero, so that the random variable H−1 is

bounded. If G ∈ S , then the product in the right hand side is subexponential

by Corollary 2.5 in [11]. Hence FA ∈ S for all A ∈ R, and so F ∈ SR.
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The rotationally invariant case of Example 2.5.18 can be slightly extended,

without much effort, to the case where there is a bounded positive function(
aθθθ, θθθ ∈ ∆d

)
such that Fθθθ(·) = G(·/aθθθ) for some G ∈ S . An argument similar

to the one in the example shows that we can still conclude that F ∈ SR. In

order to achieve more than that, we note that the distribution FA can be repre-

sented, by (2.29), as a mixture of scaled regular conditional distributions. Note

also that the product of independent random variables in (2.32) is just a special

case of that mixture, to which we have been able to apply Corollary 2.5 in [11].

It is likely to be possible to extend that result to certain mixtures that are more

general than products of independent random variables, and thus to obtain ad-

ditional criteria for membership in the class SR. We leave serious extensions

of this type to future work. A small extension that still steps away from exact

products is below, and it takes a result in [11] as an ingredient. We formulate the

statement in terms of the distribution of a random variable that only in a certain

asymptotic sense looks like a product of independent random variables.

Theorem 2.5.19. Let (Ωi,Fi, Pi), i = 1, 2 be probability spaces. Let Q be a random

variable defined on the product probability space. Assume that there are nonnegative

random variablesXi, i = 1, 2, defined on (Ω1,F1, P1) and (Ω2,F2, P2) correspondingly,

such that X1 has a subexponential distribution F , and for some t0 > 0 and C > 0,

X1(ω1)X2(ω2)− CX2(ω2) ≤ Q(ω1, ω2) ≤ X1(ω1)X2(ω2) + CX2(ω2) (2.33)

a.s. on the set {Q(ω1, ω2) > t0}. Suppose P (X2 > 0) > 0, and let G be the distribution

of X2. Suppose that there is a function a : (0,∞)→ (0,∞), such that

1. a(t)↗∞ as t→∞;

2. t
a(t)
↗∞ as t→∞;
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3. limt→∞
F (t−a(t))

F (t)
= 1;

4. limt→∞
G(a(t))

P (X1X2>t)
= 0.

Then Q has a subexponential distribution.

Proof. Let H denote the distribution of X1X2. It follows by Theorem 2.1 in [11]

that H is subexponential. We show that P (Q > t) ∼ H(t) as t → ∞. This will

imply that Q has a subexponential distribution.

We start by checking that

lim
t→∞

H(t− a(t))

H(t)
= 1, which will imply that lim

t→∞

H(t+ a(t))

H(t)
= 1 (2.34)

when we substitute t + a(t) for t in the limit, since a is increasing. To verify the

limit, suppose first that X2 ≥ 1 a.s., and write

P
(
t− a(t) < X1X2 ≤ t

)
≤ P2(X2 > a(t))

+

∫
Ω2

P1(t/X2(ω2)− a(t)/X2(ω2) < X1 ≤ t/X2(ω2)
)
1
(
X2(ω2) ≤ a(t)

)
P2(dω2)

The first term in the right hand side is o(H(t)) by the assumption (4), while the

same is true for the second term by the assumption (3), since by the assumption

(2), a(t)/y ≤ a(t/y) if y ≥ 1. This proves (2.34) if X2 ≥ 1 a.s. and hence, by

scaling, if X2 ≥ ε a.s. for some ε > 0. An elementary truncation argument then

shows that (2.34) holds if P (X2 > 0) > 0.

Note that for t > t0,

P (Q > t) ≤ P (X1X2 + CX2 > t)

≤ G(a(t)) +H(t− Ca(t)) .

This implies that lim supt→∞ P (Q > t)/H(t) ≤ 1. The statement

lim inft→∞ P (Q > t)/H(t) ≥ 1 can be shown in a similar way.
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Despite a limited scope of the extension given in Theorem 2.5.19, it allows

one to construct a number of examples of multivariate distributions in SR by

choosing, for example, Ω2 = ∆d and X2(θθθ) = 1/h(θθθ), θθθ ∈ ∆d, and selecting a

function Q to model additional randomness in the radial direction.

2.6 Ruin Probabilities

We circle back to the ruin problem. As mentioned in the introduction, the notion

of subexponentiality we introduced in Section 2.5 was designed with insurance

applications in mind. In this section we describe such an application more ex-

plicitly.

Consider the following extension to the ruin problem in Section 2.2, a re-

newal model for the reserves of an insurance company with d lines of busi-

ness. Suppose that claims arrive according to a renewal process (Nt)t≥0 given

by Nt = sup{n ≥ 1 : Tn ≤ t}. The arrival times (Tn) form a renewal sequence

T0 = 0, Tn = Y1 + · · ·+ Yn for n ≥ 1, (2.35)

where the interarrival times (Yi)i≥1 form a sequence of independent and iden-

tically distributed positive random variables. We will call a generic interar-

rival time Y . At the arrival time Ti a random vector-valued claim size X(i) =(
X

(i)
1 , . . . , X

(i)
d

)
is incurred, so that the part of the claim going to the jth line of

business is X(i)
j . We assume that the claim sizes (X(i)) are i.i.d. random vectors

with a finite mean, and we denote their common law by F . We assume further

that the claim size process is independent of the renewal process of the claim

arrivals. The jth line of business collects premium at the rate of pj per unit of
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time. Let p be the vector of the premium rates, and X a generic random vector

of claim sizes.

Suppose that the company has an initial buffer capital of u, out of which

the amount of ubj is allocated to the jth line of business, j = 1, 2, . . . , d. Here

b1, . . . , bd are positive numbers, b1 + · · ·+ bd = 1. Then ub denotes the vector for

the initial capital buffer allocation. With the above notation, the claim surplus

process (St)t≥0 and the risk reserve process (Rt)t≥0 are given by

St =
Nt∑
i=1

X(i) − tp, Rt = ub− St = ub + tp−
Nt∑
i=1

X(i), t ≥ 0 .

The company becomes insolvent (ruined) when the risk reserve process hits

a certain ruin set L ⊂ Rd. Equivalently, ruin occurs when the claim surplus

process enters the set ub − L. We will assume that the ruin set satisfies the

following condition.

Assumption 2.6.1. The ruin set L is an open decreasing (−L is increasing) set

such that 0 ∈ ∂L, satisfying L = uL for u > 0, and such that Lc is convex.

Note that this assumption means that the ruin occurs when the claim surplus

process enters the set uA, with A = b− L ∈ R, as defined in Section 2.5. In fact,

the ruin set L can be viewed as being of the form −G, as defined in Remark

2.5.2. Examples of such ruin sets are, of course, the sets

L =
{
x : xj < 0 for some j = 1, . . . , d

}
and L =

{
x : x1 + . . .+ xd < 0

}
,

discussed in Section 2.5. A general framework was proposed in [35]. In this

framework capital can be transferred between different business lines, but the

transfers incur costs, and the solvency set has the form

Lc =

{
x : x =

∑
i 6=j

vij(πije
i − ej) +

d∑
i=1

wie
i, vij ≥ 0, wi ≥ 0

}
, (2.36)
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where e1, . . . , ed are the standard basis vectors, and Π = (πij)
d
i,j=1 is a matrix

satisfying

(i) πij ≥ 1 for i, j ∈ {1, . . . , d},

(ii) πii = 1 for i ∈ {1, . . . , d},

(iii) πij ≤ πikπkj for i, j, k ∈ {1, . . . , d}.

In the financial literature, a matrix satisfying the above constraints is called a

bid-ask matrix. In our context, the entry πij can be interpreted as the amount of

capital that needs to be taken from business line i in order to transfer 1 unit of

capital to business line j.

We note that each of the above ruin sets is a cone, i.e. it satisfies L = uL for

u > 0, as assumed in Assumption 2.6.1.

We maintain the notation A = b − L ∈ R. Note that we can write the ruin

probability as

ψb,L(u) = P (Rt ∈ L for some t ≥ 0) (2.37)

= P

(
n∑
i=1

X(i) − Yip ∈ uA for some n ≥ 1

)

= P

(
n∑
i=1

Z(i) ∈ uA for some n ≥ 1

)
,

where Z(i) = X(i) − Yip, i = 1, 2, . . .. We let Z denote a generic element of the

sequence (Z(i))i≥1. We will assume a positive safety loading, an assumption that

takes now the form

c = −E[Z] > 0 ,

see e.g. [1]. The assumption of the finite mean for the claim sizes implies that

θ :=

∫ ∞
0

F
(

[0,∞)d + vc
)
dv <∞ ,
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and we can define a probability measure on Rd, supported by [0,∞)d, by

F I(·) =
1

θ

∫ ∞
0

F (·+ vc) dv . (2.38)

Denote

H(u) =

∫ ∞
0

F (uA+ vc) dv , u > 0 . (2.39)

The following is the main result of this section.

Theorem 2.6.2. Suppose that the law F I is in SA. Then the ruin probability ψb,L

satisfies

lim
u→∞

ψb,L(u)

H(u)
= 1. (2.40)

Remark 2.6.3. Notice, for comparison, that in the univariate case, with the ruin

set L = (−∞, 0) (and b = 1) we have A = (1,∞), and

H(u) =

∫ ∞
0

F (u+ vc) dv =
1

c

∫ ∞
u

F (v) dv .

In this case the statement (2.40) agrees with the standard univariate result on

subexponential claims; see e.g. Theorem 1.3.8 in [22]. If the claim arrival process

is Poisson, then this is (2.2) of Section 2.3.

Proof of Theorem 2.6.2. We start by observing that the function H is proportional

to the tail of a subexponential distribution F I
A and, hence, can itself be viewed as

the tail of a subexponential distribution. We can and will, for example, simply

refer to the “long tail property” of H .

We use the “one big jump” approach to heavy tailed large deviations; see

e.g. [62], and the first step is to show that

lim
u→∞

∫∞
0
P (Z ∈ uA+ vc) dv

H(u)
= 1 . (2.41)
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Indeed, the upper bound in (2.41) follows from the fact that A is increasing. For

the lower bound, notice that, by Fatou’s lemma, it is enough to prove that that

for each fixed y,

lim
u→∞

∫∞
0
F (uA+ vc + yp) dv

H(u)
= 1 .

This, however, follows from the fact for sufficiently large u > 0, there exists

some u1 > 0 such that (u+ u1)A+ vc ⊂ uA+ vc+ yp, and the long tail property

of H .

We proceed to prove the lower bound in (2.40). Let Sn :=
∑n

i=1 Z
(i), n =

1, 2, . . .. Let ε, δ be small positive numbers, by the Weak Law of Large Numbers,

we can choose K = Kε,δ so large that

P
(
Sn > −(K + n(1 + ε))c

)
> 1− δ, n = 1, 2, . . . .

Define Mn = sup{u > 0 : Si ∈ uA for some 1 ≤ i ≤ n} and M = sup{u > 0 :

Sn ∈ uA for some n}. For u > 0,

ψb,L(u) = P (M > u) =
∑
n≥0

P (Mn ≤ u, Sn+1 ∈ uA)

≥
∑
n≥0

P
(
Mn ≤ u, Sn > −(K + n(1 + ε))c, Z(n+1) ∈ uA+ (K + n(1 + ε))c

)
≥
∑
n≥0

(1− δ − P (Mn > u))P
(
Z(n+1) ∈ uA+Kc + n(1 + ε)c

)
≥(1− δ − P (M > u))

∑
n≥0

P
(
Z ∈ uA+Kc + n(1 + ε)c

)
.

Rearranging, and using the monotonicity of A, we see that

ψb,L(u) ≥
(1− δ)

∑
n≥0 P (Z ∈ uA+Kc + n(1 + ε)c)

1 +
∑

n≥0 P (Z ∈ uA+Kc + n(1 + ε)c)

∼ 1− δ
1 + ε

∫ ∞
0

P
(
Z ∈ uA+Kc + vc

)
dv

∼ 1− δ
1 + ε

∫ ∞
0

P
(
Z ∈ uA+ vc

)
dv, u→∞ ,
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where the last step is by the long tail property of F I
A. Letting δ, ε to 0, we have,

thus, obtained the lower bound in (2.40). We proceed to prove a matching upper

bound.

Fix 0 < ε < 1. For r > 0, we define a sequence (τn) as follows: we set τ0 = 0,

and

τ1 = inf
{
n ≥ 1 : Sn ∈ rA− n(1− ε)c

}
.

For m ≥ 2, we set τm =∞ if τm−1 =∞. Otherwise, let

τm = τm−1 + inf
{
n ≥ 1 : Sn+τm−1 − Sτm−1 ∈ rA− n(1− ε)c

}
.

If we let γ = P (τ1 < ∞), then for any m ≥ 1, P (τm < ∞) = γm. By the positive

safety loading assumption, γ → 0 as r →∞. Note that for u > 0,

P
(
τ1 <∞, Sτ1 ∈ uA

)
=
∑
n≥1

P (τ1 = n, Sn ∈ uA)

≤
∑
n≥1

P
(
Sn−1 ∈ rAc − (n− 1)(1− ε)c, Sn ∈ uA

)
.

By part (c) of Lemma 2.5.3, Sn ∈ uA if and only if supp∈IA p
TSn > u. Further,

sup
p∈IA

pTSn ≤ sup
p∈IA

pT
(
Sn−1 + (n− 1)(1− ε)c

)
+ sup

p∈IA
pT
(
Z(n) − (n− 1)(1− ε)c

)
.

Let u > r. Recalling Lemma 2.5.8, if Sn−1 ∈ rAc − (n − 1)(1 − ε)c, then

supp∈IA p
T
(
Sn−1 + (n − 1)(1 − ε)c

)
≤ r, so for supp∈IA p

TSn > u to hold, it

must be the case that supp∈IA p
T
(
Z(n) − (n − 1)(1 − ε)c

)
> u − r, implying that

Z(n) ∈ (u− r)A+ (n− 1)(1− ε)c.

Summing up, we see that, as u→∞,

P
(
τ1 <∞, Sτ1 ∈ uA

)
≤
∑
n≥1

P
(
Z(n) ∈ (u− r)A+ (n− 1)(1− ε)c

)
∼
∫ ∞

0

P (Z ∈ (u− r)A+ v(1− ε)c) dv

∼ 1

1− ε
H(u− r) .
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Letting ε→ 0 and using the long tail property of H , we obtain

lim sup
u→∞

P
(
τ1 <∞, Sτ1 ∈ uA

)
H(u)

≤ 1 . (2.42)

Let (V(i)) be a sequence of independent identically distributed random vec-

tors whose law is the conditional law of Sτ1 given that τ1 < ∞. By (2.42), there

is a distribution B on [0,∞) such that B(u) ∼ γ−1H(u) as u→∞ and

P
(
V(1) ∈ uA

)
≤ B(u) for all u ≥ 0.

Note, further, that by the definition of the sequence (τm), for every m ≥ 0, on

the event {τm <∞}, we have, for 1 ≤ i < τm+1, Sτm+i − Sτm ∈ rAc − i(1− ε)c ⊂

rAc − (1− ε)c. If Sτm ∈ (u− r)Ac + (1− ε)c, then we have Sτm+i ∈ uAc. Hence,

for the event {Sn ∈ uA for some n} to occur, we must have

Sτm ∈
(
(u− r)A+ (1− ε)c

)
∪ uA for some m.

Therefore, noting that
(
(u− r)A+ (1− ε)c

)
∪ uA ⊂ (u− r)A, we can use Lemma

2.5.9 to obtain

ψb,L(u) = P (M > u) ≤
∑
m≥1

P
(
Sτm ∈

(
(u− r)A+ (1− ε)c

)
∪ uA

)
≤
∑
m≥1

γmP
(
V(1) + · · ·+ V(m) ∈ (u− r)A

)
≤
∑
m≥1

γmB(m)(u− r).

By the assumption, theH is the tail of a subexponential distribution, and, hence,

B is subexponential as well. This implies that

lim
u→∞

B(m)(u)

B(u)
= m,

and that for any ε > 0, there exists K > 0 such that for all u > 0 and m ≥ 1,

B(m)(u)

B(u)
≤ K(1 + ε)m.
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Since we can make γ > 0 as small as we wish by choosing u and r large, we can

use the dominated convergence theorem to obtain

lim sup
u→∞

ψb,L(u)

γB(u− r)
=
∑
m≥1

γm−1m =
1

(1− γ)2
.

Letting r →∞, which makes γ → 0, we have that

lim sup
u→∞

ψb,L(u)

H(u)
≤ 1 ,

which is the required upper bound in (2.40).

We finish this section by returning to the special case of multivariate reg-

ularly varying claims. Recall that, by Proposition 2.5.15, the distributions in

MRV (α, µ) are in SR. The asymptotic behaviour of the ruin probability with

the solvency set Lc given by (2.36), and multivariate regularly varying claims

with α > 1, was determined by [35]. To state their result, notice that the tail

measure of a random vector X (recall (2.23)) is determined up to a scaling by a

positive constant, and a different scaling in the tail measure can be achieved by

scaling appropriately the function b in (2.23). Let us scale the tail measure µ in

such a way that it assigns unit mass to the complement of the unit ball in Rd.

The norm we choose is unimportant, but for consistency with the notation used

elsewhere in the paper, let us use the L1 norm. With this convention, we can

restate (2.23) as
P (X ∈ u·)
P (‖X‖ > u)

v→ µ (2.43)

vaguely on [−∞,∞]d \ {0}. It was shown by [35] that under the assumption

(2.43) (and with the solvency set Lc given by (2.36)), the ruin probability satisfies

lim
u→∞

ψb,L(u)

uP (‖X‖ > u)
=

∫ ∞
0

µ(b− L+ vc) dv. (2.44)
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We extend the above result to all ruin sets satisfying Assumption 2.6.1. To avoid

a degenerate situation (and the resulting complications in the notation) we will

assume that µ{x : xi > 0} > 0 for each i = 1, . . . , d.

Proposition 2.6.4. Assume that the ruin set L satisfies Assumption 2.6.1. If the claim

sizes satisfy (2.43) with α > 1, then (2.44) holds.

Proof. By Theorem 2.6.2, it suffices to show that

lim
u→∞

∫∞
0
P (X ∈ uA+ vc) dv

uP (‖X‖ > u)
=

∫ ∞
0

µ(A+ vc) dv ,

which we proceed to do. By a change of variables,∫∞
0
P (X ∈ uA+ vc) dv

uP (‖X‖ > u)
=

∫∞
0
P (X ∈ u(A+ vc)) dv

P (‖X‖ > u)
, (2.45)

and for every v > 0,

P (X ∈ u(A+ vc))

P (‖X‖ > u)
→ µ(A+ vc)

as u → ∞. In the last step we use (2.43), and the fact that the tail measure does

not charge the boundary of sets in R, shown in the proof of Proposition 2.5.15.

Therefore, we only need to justify taking the limit inside the integral in (2.45).

However, by the definition of the set A,

P (X ∈ u(A+ vc))

P (‖X‖ > u)
≤

d∑
i=1

P (X(i) > ubi + uvci)

P (X(i) > u)
.

The non-degeneracy assumption on the measure µ implies that eachX(i) is itself

regularly varying with exponent α. Therefore, by the Potter bounds, there are

finite positive constants Ci, i = 1, . . . , d, and a number ε ∈ (0, α − 1) such that

for all u ≥ 1,

P (X(i) > ubi + uvci)

P (X(i) > u)
≤ Ci(bi + vci)

−(α−ε), i = 1, . . . , d .

Since the functions in the right hand side are integrable, the dominated conver-

gence theorem applies.
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CHAPTER 3

ESTIMATING THE EXTREMAL INDEX AND THRESHOLD SELECTION

3.1 Introduction

We now move our attention to the matter of extremal inference. In this thesis

we are mainly concerned with improving and devising techniques involved in

extremal inference. A good place to begin is with the matter of threshold selec-

tion. Many statistical procedures in extreme value theory depend on a choice

of a threshold such that only the observations above that threshold are used for

the inference. In the classical Hill estimator of the exponent of regular variation,

this corresponds to choosing the number of the upper statistics used to con-

struct the estimator, and in the standard “peaks over threshold” procedures, the

term “threshold” even appears in the name; see e.g. [16] and [48]. The inference

results often depend on the threshold in a significant way, so a major effort has

been invested in choosing the threshold “in the right way”; see e.g. [50], [18],

[19], [42]. Many threshold-based extremal inference procedures discard the ob-

servations below the threshold, which in most cases amounts to discarding a

larger part (indeed, often an overwhelmingly larger part) of the sample. This

counterintuitive step reflects the underlying belief that the observations above

the threshold carry information about the “tail” of the distribution, while those

below the threshold carry information about the “center” of the distribution.

It is reasonable to assume that such a binary rule by necessity neglects a part

of the information stored in the original sample that is relevant for extremal

inference. An alternative to using a binary rule would be acknowledging that

larger observations carry more information about the “extremes” than smaller
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observations do, but instead of discarding the latter completely, using them in

the extremal inference, with a smaller weight. This idea can be implemented in

a number of ways, the most natural of which is to use multiple “thresholds” in-

stead of trying to select the “right” threshold. In this case it is more appropriate

to talk about “levels” of observations that are weighted differently, rather than

“thresholds”.

In this chapter we apply this idea to estimating the extremal index (defined

below), but the approach is more general than its application to estimation of

the extremal index. It can, in principle, be used in any extremal estimation

problem, though the actual implementation may depend significantly on the

problem. The chapter is organized as follows. In Section 3.2 we introduce the

blocks estimator for the extremal index and observe its shortfalls, followed by

motivations for possible improvement. We introduce our improved version of

the blocks estimator - the multilevel estimator - using multiple thresholds (lev-

els) and list the assumptions used in the chapter in Section 3.3. Section 3.4 con-

siders the asymptotic behaviour of the various ingredients in our estimator. In

Section 3.5 we prove a central limit theorem for the estimator. In Section 3.6 we

both propose a procedure to reduce the bias of the estimator as well as present

a simulation study and a case study.

3.2 The Blocks Estimator

In the proceeding sections we construct a procedure for estimating the

extremal index, a quantity designed to measure the amount of clustering of the

extremes in a stationary sequence. Suppose that X1, X2, . . . is a stationary se-
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quence of random variables with a marginal distribution function F , and let

Mn = max(X1, . . . , Xn), n = 1, 2, . . .. Suppose there exists θ ≥ 0 with the fol-

lowing property: for every τ > 0, there is a sequence (vn) such that nF (vn)→ τ

and P (Mn ≤ vn) → e−θτ as n → ∞. Then θ is called the extremal index of the

sequence X1, X2, . . . ; it is automatically in the range 0 ≤ θ ≤ 1; see [22]. The

relation of the extremal index to extremal clustering is best observed by consid-

ering the exceedances of the stationary sequence over high thresholds. Let (vn)

be a sequence such that nF (vn) → τ as n → ∞ for some τ > 0. Then under

certain mixing conditions (conditions regulating the dependence relations be-

tween elements in the stationary sequence), the point processes of exceedances

converge weakly in the space of finite point processes on [0, 1] to a compound

Poisson process:

Nn =
n∑
i=1

δi/n1(Xi > vn)
d−→ N =

∞∑
i=1

ξiδΓi , (3.1)

where δx is a point mass at x, the points 0 < Γ1 < Γ2 < . . . constitute a homo-

geneous Poisson process with intensity τθ on [0, 1] which is independent of an

i.i.d. positive integer-valued sequence {ξi}; see e.g. [33]. The latter sequence is

interpreted as the sequence of the extremal cluster sizes, and the extremal index

θ is, under mild conditions, equal to the reciprocal of the expected cluster size

Eξ. We will assume that the latter expectation is finite, and the extremal index

is positive.

The problem of estimating the extremal index parameter is well-known in

literature; references include [32], [57], [23], [43], and [6]. The most common

methods of estimation include the blocks method, the runs method, and the

inter-exceedance method. We focus on the blocks method in order to demon-

strate an application of our idea of using multiple levels of observations.
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The blocks method is based on the interpretation of the extremal index as

the reciprocal of the expected cluster size of extremes. It is based on choosing

a block size rn much smaller than n and a level (or threshold) un. Split the n

observations X1, X2, . . . , Xn into kn = bn/rnc contiguous blocks of equal length

rn. The blocks estimator is then defined as the reciprocal of average number of

exceedances of the level un per block among blocks with at least one exceedance.

If Mi,j denotes max{Xi+1, . . . , Xj} for i < j and Mj = M0,j , then the blocks

estimator has the form

θ̂n =

∑kn
i=1 1

(
M(i−1)rn,irn > un

)∑knrn
i=1 1

(
Xi > un

) . (3.2)

Assuming that rnF (un) → 0 but nF (un) → ∞ as n → ∞, and certain mixing

conditions, this estimator has been shown to be consistent and asymptotically

normal; see [30] and [59].

We observe Monte Carlo approximations to the properties of the blocks esti-

mator to better understand its behavior. We use the ARMAX process for a sim-

ulation study. The ARMAX process (Xi) is defined as follows. Let Z1, Z2, . . . be

a sequence of i.i.d. unit Fréchet random variables. For 0 < θ ≤ 1, let X1 = Z1/θ,

and

Xi = max((1− θ)Xi−1, Zi), i ≥ 2 . (3.3)

It can be shown that the extremal index of such a sequence is θ; see e.g. Chapter

10 of [5].

The blocks estimator (3.2) is applied to 5000 simulated ARMAX sequences

of size n = 10000 with θ = 0.5, using a block size of rn = 200. Varying levels of

the threshold un are used, to include from the largest 100 order statistics, up to

the largest 150 order statistics of each sequence. The estimates using each level

of un, as well as the accompanying standard errors, are plotted in Figure 3.1.
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Figure 3.1: Monte Carlo simulation the estimates using the blocks estimator
(3.2) (top, solid line) and their associated standard errors (bottom, dotted line)
plotted against the number of largest order statistics used in the estimate. Data
are simulated from an ARMAX model with θ = 0.5.

From the figure, several observations can be made. One such observation is

that there seems to be a large bias associated with the blocks estimator. From the

plot of the estimates, even in the best case, there is a bias of around 0.18 when

the true value of θ is 0.5. A further observation is that the estimate (as well as

the associated standard error) seems to decrease linearly with the number of

observations used in the estimator.

We can devise a couple of ideas to improve the blocks estimator using the

above observations. Noting that the estimates using fewer observations tend

to be closer to the true value (namely having a smaller bias), and yet at the

same time, estimates using more observations achieve a smaller variance, we are

motivated to therefore somehow combine the estimates using multiple levels of
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observations, which can lower the overall variance while keeping still keeping

the bias small. Further, we would like to exploit the linearity structure displayed

in Figure 3.1 to correct for the bias in the estimator. We will explore both ideas

in the remainder of the chapter.

Multiple thresholds in extremal inference - especially in the context of the

extremal index - have been used before, such as in [17], [36], and [58]. In [17],

for example, estimates of the extremal index based on multiple thresholds were

combined together in order to minimize the bias of the estimator. Our idea is

different, as we are viewing using multiple levels as a natural means to reduce

the variance of an estimator.

3.3 The Multilevel Estimator

Let X1, . . . , Xn be a stationary sequence of random variables with marginal

distribution F , and an extremal index θ ∈ (0, 1]. We now present a version

of the blocks estimator (3.2) based on multiple levels. With a block size rn

and the number of blocks kn = bn/rnc as before, we select now m levels

u1
n < · · · < umn := un, and we view the highest level umn as corresponding to

the single level un in (3.2). The lower levels usn, s = 1, . . . ,m − 1 are used to re-

duce the variance of the estimator. The levels are chosen in an “asymptotically

balanced” way. Specifically, it will be assumed that, as n→∞,

F (usn)

F (umn )
→ τs

τm
, s = 1, . . . ,m (3.4)

for some τ1 > · · · > τm > 0.

Let f : R+ → R+ be a continuously differentiable positive decreasing func-
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tion. We will use f as a weight function, and we would like to weigh the ex-

ceedances over the level usn by f(τs/τm). The fact that f is decreasing reflects

our belief that higher exceedances provide more reliable information about the

extremes. We will not assume that the numbers τ1, . . . , τm are known ahead of

time, so we will use, in practice, an estimator of the ratio τs/τm. Specifically, we

will use

τ̂s/τm =

∑knrn
i=1 1(Xi > usn)∑knrn
i=1 1(Xi > umn )

, s = 1, . . . ,m . (3.5)

Then our version of the blocks estimator (3.2) based on multiple levels is

θ̂n(f) =

∑m
s=1

[
f
(
τ̂s/τm

)
− f

( ̂τs−1/τm
)]∑kn

i=1 1
(
M(i−1)rn,irn > usn

)∑m
s=1

[
f
(
τ̂s/τm

)
− f

( ̂τs−1/τm
)]∑knrn

i=1 1
(
Xi > usn

) , (3.6)

with the convention that f
(
τ̂0/τm

)
= 0. Note that whenm = 1, (3.6) corresponds

to (3.2).

Consistency and asymptotic normality of this estimator depend, as they do

for all other related estimators, on certain mixing-type assumptions. Different

sets of such conditions are available in literature. We explain next the conditions

that we will use in this chapter. These are based on the setup in [33]. For 1 ≤

i ≤ j ≤ n, and levels wn, w′n, let Bj
i (wn, w

′
n) denote the σ-field generated by the

events {Xd ≤ wn} and {Xd ≤ w′n} for i ≤ d ≤ j. For n ≥ 1 and 1 ≤ l ≤ n − 1

define

αn,l(wn, w
′
n) = max(|P (A ∩B)− P (A)P (B)| :

A ∈ Bk
1 (wn, w

′
n), B ∈ Bn

k+l(wn, w
′
n), 1 ≤ k ≤ n− l)

and write αn,l(wn) = αn,l(wn, wn). Similarly, one uses the maximal correlation

coefficient

ρn,l(wn, w
′
n) = max(corr(X, Y ) : X ∈ L2(Bk

1 (wn, w
′
n)),

Y ∈ L2(Bn
k+l(wn, w

′
n)), 1 ≤ k ≤ n− l) ,
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where L2(F ) denotes the space of F -measurable square-integrable random

variables. Again, we write ρn,l(wn) = ρn,l(wn, wn). Trivially,

ρn,l(wn, w
′
n) ≥ 4αn,l(wn, w

′
n).

The sequence {Xi} is said to satisfy the condition ∆({wn}) if αn,ln(wn)→ 0 as

n → ∞ for some sequence {ln} with ln = o(n). If {pn} is a sequence of integers

and αpn,ln(wn) → 0 as n → ∞ for some sequence {ln} with ln = o(pn), then we

will say that {Xi} satisfies the condition ∆{pn}({wn}).

As mentioned earlier, the condition that rnF (un) → 0 but nF (un) → ∞ as

n → ∞ is usually required for asymptotic consistency results. This implicitly

uses the traditional assumption that rn = o(n) as n → ∞. It will be convenient

to introduce a specific sequence of the integers {pn}, which is an intermediate

growth sequence between the sequence of the block size {rn} and the sequence

of the sample sizes {n}. Specifically, let

pnF (usn)→ τs, s = 1, . . . ,m. (3.7)

According to (3.4) one such sequence is pn = dτm(F (un))−1e, n = 1, 2, . . ..

The following assumptions on the stationary sequence {Xi} will be used

throughout this chapter, not necessarily all in the same place. Some of the as-

sumptions form stronger versions of other assumptions.

Assumption ∆′ There is a sequence ln = o(rn) such that pnr−1
n αn,ln(usn) → 0 as

n→∞ for each s = 1, . . . ,m.

Assumption C1 For each s = 1, . . . ,m,
n∑
l=1

ρn,l(u
s
n) = o(rn)
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as n → ∞, and there is a sequence ln = o(rn) such that pnr−1
n ρn,ln(usn) → 0 as

n→∞ for each s = 1, . . . ,m.

Assumption C′1 For each s = 1, . . . ,m,

n∑
l=1

ρn,l(u
s
n) = o(r1/2

n )

as n → ∞, and there is a sequence ln = o(rn) such that pnr−1
n ρn,ln(usn) → 0 as

n→∞ for each s = 1, . . . ,m.

Assumption C2 For each s, t = 1, . . . ,m,

n∑
l=1

ρn,l(u
s
n, u

t
n) = o(rn)

as n→∞, and there is a sequence ln = o(rn) such that pnr−1
n ρn,ln(usn, u

t
n)→ 0 as

n→∞ for each s, t = 1, . . . ,m.

Assumption C′2 For each s, t = 1, . . . ,m,

n∑
l=1

ρn,l(u
s
n, u

t
n) = o(r1/2

n )

as n→∞, and there is a sequence ln = o(rn) such that pnr−1
n ρn,ln(usn, u

t
n)→ 0 as

n→∞ for each s, t = 1, . . . ,m.

The next group of assumptions deals with convergence of certain counting

processes. Let N (u)
pn be the point process on [0, 1] with points (j/pn : 1 ≤ j ≤

pn, Xj > un). Furthermore, for w > 0 we write Nk(w) =
∑k

i=1 1(Xi > w).

Assumption P N
(u)
pn converges weakly in the space of finite point processes on

[0, 1].

Assumption D1 There exists a probability distribution (πj)j≥1 on the positive
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integers such that for all 1 ≤ s ≤ m,

P (Nrn(usn) = j|Mrn > usn)→ πj, j ≥ 1,

E[N2
rn(usn)|Mrn > usn]→

∞∑
j=1

j2πj <∞.

Assumption D2 There exist probability distributions ($s,t(i, j))i≥1,j≥0 on Z+ ×

Z≥0 such that for all 1 ≤ s < t ≤ m,

P (Nrn(usn) = i, Nrn(utn) = j|Mrn > usn)→ $s,t(i, j), i ≥ j ≥ 0, i ≥ 1,

E
[
Nrn(usn)Nrn(utn)|Mrn > usn

]
→

∞∑
i=1

i∑
j=0

ij$s,t(i, j) <∞.

Remark 3.3.1. It is clear that Assumption ∆′ is implied by AssumptionC1 which

is, in turn, implied both by Assumption C ′1 and by Assumption C2. Further, it

follows by Theorem 4.1 of [33] that the first part of Assumption D1 is implied

by Assumptions ∆′ and P . Note that Assumptions C1, C2 and D1 are identical

to those posed [53].

Remark 3.3.2. Intuitively the mixing conditions ∆′, C1, C ′1, C2, C ′2 only impose

that the size of the blocks rn must be “large enough”. Many models, such as

m-dependent sequences, or geometrically mixing sequences can easily satisfy

those assumptions.

If Assumption ∆′ holds, then it follows from Theorem 5.1 and Lemma 2.3 of

[33] that

P (Mrn > usn) ∼ τsθrn/pn (3.8)

as n→∞ for s = 1, . . . ,m. If we denote

θn(f) = θn(τ1, . . . , τm, f) =
pn
rn
·
∑m

s=1(f(τs/τm)− f(τs−1/τm))P (Mrn > usn)∑m
s=1(f(τs/τm)− f(τs−1/τm))τs

,

(3.9)
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then θn(f)→ θ as n→∞.

Another immediate conclusion from (3.8) is that if Assumptions ∆′, D1 and

D2 hold, then for 1 ≤ s < t ≤ m,

P (Nrn(usn) = i|Mrn > utn)→ τs
τt

(
πi −$s,t(i, 0)

)
, i ≥ 1,

E
[
Nrn(usn)|Mrn > utn

]
→ ψs,t :=

τs
τt

∞∑
i=1

i
(
πi −$s,t(i, 0)

)
. (3.10)

3.4 Preliminary results

The estimator (3.6) is composed of several extremal statistics. In this section we

will take a close look at these and related statistics and derive their asymptotic

variances and covariances. The derivations are similar to those in [53]. Let

mn → ∞ be any arbitrary sequence of positive integers such that mnrn ≤ n for

all n. For each level usn, s = 1, . . . ,m, denote

M̂n,mn(usn) =
mn∑
i=1

1(M(i−1)rn,irn > usn) (3.11)

and

τ̂n,mn(usn) =
mnrn∑
i=1

1(Xi > usn) . (3.12)

Note that the estimator (3.6) uses these statistics withmn = kn. For convenience,

we denote

M̂n(usn) =
kn∑
i=1

1(M(i−1)rn,irn > usn) (3.13)

and

τ̂n(usn) =
knrn∑
i=1

1(Xi > usn) . (3.14)

We first consider the asymptotic variance of M̂n,mn(usn).
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Proposition 3.4.1. Let {Xi} be a stationary sequence with extremal index θ. Let (pn)

be as in (3.7), and suppose that Assumption C1 holds. Then for 1 ≤ s ≤ m, as n→∞,

pn
mnrn

var(M̂n,mn(usn))→ τsθ. (3.15)

Proof. Fix 1 ≤ s ≤ m and write out the variance:

var(M̂n,mn(usn)) =
mn∑
i=1

var(1(M(i−1)rn,irn > usn))

+ 2
∑

1≤i<j≤mn

cov(1(M(i−1)rn,irn > usn),1(M(j−1)rn,jrn > usn))

=mnP (Mrn > usn)(1− P (Mrn > usn))

+ 2(mn − 1)
(
P (Mrn > usn,Mrn,2rn > usn)− (P (Mrn > usn))2

)
+ 2

mn−1∑
v=2

(mn − v)cov(1(Mrn > usn),1(Mvrn,(v+1)rn > usn))

:=I1,n + I2,n + I3,n .

It follows from (3.8) that

pn
mnrn

I1,n → τsθ

as n→∞. Furthermore,

pn
mnrn

I3,n ≤2
pn
rn

var(1(Mrn > usn))
mn−1∑
v=2

ρn,(v−1)rn(usn)

≤2
pn
rn

var(1(Mrn > usn))
1

rn

n∑
l=1

ρn,l(u
s
n)→ 0

by (3.8) and Assumption C1, so it remains to consider I2,n. By (3.8) we only need

to show that

pnr
−1
n P (Mrn > usn,Mrn,2rn > usn)→ 0.
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Note that

P (Mrn > usn,Mrn,2rn > usn)

≤P (Mrn−ln > usn,Mrn,2rn > usn) + P (Mln > usn)

≤P (Mrn−ln > usn)P (Mrn > usn) + αn,ln(usn) + P (Mln > usn)

≤P (Mrn > usn)2 + αn,ln(usn) + P (Mln > usn).

Since ln = o(rn), and pnr
−1
n αn,ln(usn) → 0, there is an intermediate sequence l′n

with ln = o(l′n) and l′n = o(rn), such that pn(l′n)−1αn,ln(usn)→ 0. Then as in (3.8),

pn(l′n)−1P (Ml′n > usn)→ τsθ,

so we have both

pnr
−1
n P (Mln > usn) ≤pn(l′n)−1(l′nr

−1
n )P (Ml′n > usn)→ 0

and

pnr
−1
n αn,ln(usn)→ 0 .

Therefore, the result follows.

The asymptotic covariance of M̂n,mn(usn) and M̂n,mn(utn) for s 6= t can be ob-

tained in an identical way (with a slightly different assumption). The proof is

omitted.

Proposition 3.4.2. Let {Xi} be a stationary sequence with extremal index θ. Let (pn)

be as in (3.7), and suppose that Assumption C2 holds. Then for 1 ≤ s < t ≤ m, as

n→∞,

pn
mnrn

cov(M̂n,mn(usn), M̂n,mn(utn))→ τtθ. (3.16)
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Now we find the variance and covariance of τ̂n,mn(usn) and τ̂n,mn(utn) for 1 ≤

s < t ≤ m. We start with the variance.

Proposition 3.4.3. Let {Xi} be a stationary sequence with extremal index θ. Suppose

that Assumptions C1 and D1 hold. Then as n→∞, for 1 ≤ s ≤ m,

pn
mnrn

var(τ̂n,mn(usn))→ τsθ

∞∑
j=1

j2πj . (3.17)

Proof. We proceed as in Proposition 3.4.1. Using the notation Na,b(w) =∑
a<i≤b 1(Xi > w) for integers 0 ≤ a < b, we obtain for a fixed 1 ≤ s ≤ m,

var(τ̂n,mn(usn)) =var(Nmnrn(usn))

=
mn∑
i=1

var
(
N(i−1)rn,irn(usn)

)
+ 2

∑
1≤i<j≤mn

cov
(
N(i−1)rn,irn , N(j−1)rn,jrn

)
=mnvar(Nrn) + 2(mn − 1)cov

(
Nrn , Nrn,2rn

)
+ 2

mn−1∑
v=2

(mn − v)cov
(
NrnNvrn,(v+1)rn

)
:=I1,n + I2,n + I3,n .

It follows from (3.8) and Assumption D1 that

pn
mnrn

I1,n ∼
pn
rn
P (Mrn > usn)E[N2

rn(usn)|Mrn > usn]

−pn
rn

(
P (Mrn > usn)

)2(
E[Nrn(usn)|Mrn > usn]

)2

→ τsθ
∞∑
j=1

j2πj

as n→∞. Furthermore,

pn
mnrn

I3,n ≤2
pn
rn

var(Nrn)
mn−1∑
v=2

ρn,(v−1)rn(usn)

≤2
pn
rn
P (Mrn > usn)E[N2

rn(usn)|Mrn > usn]
1

rn

n∑
l=1

ρn,l(u
s
n)→ 0
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by Assumptions C1 and D1. As far as I2,n is concerned, we only need to show

that

pnr
−1
n E

(
NrnNrn,2rn

)
→ 0.

However,

E
(
NrnNrn,2rn

)
=E
(
Nrn−lnNrn,2rn

)
+ E

(
Nrn−ln,rnNrn,2rn

)
≤(ENrn)2 + E(Nrn)2ρn,ln(usn) + E

(
Nrn−ln,rnNrn,2rn

)
.

By Assumptions C1 and D1 and the above calculation, both kn(ENrn)2 → 0 and

knE(Nrn)2ρn,ln(usn)→ 0 as n→∞. Furthermore, by stationarity it is clear that

E(Nrn)2

E(Nln)2
≥ brn/lnc → ∞

as n→∞. Therefore,

knE
(
Nrn−ln,rnNrn,2rn

)
≤kn

(
E(Nln)2

)1/2 (
E(Nrn)2

)1/2

≤knE(Nrn)2

(
E(Nln)2

E(Nrn)2

)1/2

→ 0

as n→∞. This completes the proof.

The asymptotic covariance between τ̂n,mn(usn) and τ̂n,mn(utn) for 1 ≤ s < t ≤

m can be found in the same way. Once again, we omit the proof.

Proposition 3.4.4. Let {Xi} be a stationary sequence with extremal index θ. Suppose

that Assumptions C2 and D2 hold. Then as n→∞, for 1 ≤ s < t ≤ m,

pn
mnrn

cov(τ̂n,mn(usn), τ̂n,mn(utn))→ τsθ
∞∑
i=1

i∑
j=0

ij$s,t(i, j). (3.18)

We now address the asymptotic covariances between τ̂ and M̂ . We start with

the “diagonal” case.
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Proposition 3.4.5. Let {Xi} be a stationary sequence with extremal index θ. Suppose

that Assumption C ′1 holds. Then as n→∞, for 1 ≤ s ≤ m,

pn
mnrn

cov(M̂n,mn(usn), τ̂n,mn(usn))→ τs. (3.19)

Proof. Fix 1 ≤ s ≤ m, we have

cov(M̂n,mn(usn), τ̂n,mn(usn)) =
mn∑
i=1

mnrn∑
j=1

cov(1(M(i−1)rn,irn ≤ usn),1(Xj ≤ usn)).

We split the sum into two pieces, I1,n+I2,n, depending on whether (i−1)rn <

j ≤ irn or not. By stationarity,

pn
mnrn

I1,n ∼
pn
rn

rn∑
i=1

cov(1(Mrn ≤ usn),1(Xi ≤ usn))

∼pnP (X1 > usn)P (Mrn ≤ usn)→ τs

by (3.7) and (3.8).

Furthermore, we can bound I2,n as follows:

|I2,n| ≤2mn

√
var(1(Mrn ≤ usn))var(1(X1 ≤ usn))

n∑
l=1

ρn,l(u
s
n),

and the fact that (pn/(mnrn))I2,n → 0 as n → ∞ follows from (3.7), (3.8) and

Assumption C ′1.

The asymptotic behaviour of cov(M̂n,mn(usn), τ̂n,mn(utn)) with 1 ≤ s < t ≤ m is

similar to the “diagonal” case. The proof of the next proposition is similar to the

argument in Proposition 3.4.5 (once we use the appropriate assumption), and is

omitted.

Proposition 3.4.6. Let {Xi} be a stationary sequence with extremal index θ. Suppose

that Assumption C ′2 holds. Then as n→∞, for 1 ≤ s < t ≤ m,

pn
mnrn

cov(M̂n,mn(usn), τ̂n,mn(utn))→ τt. (3.20)
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Finally, we consider the asymptotic behaviour of cov(M̂n,mn(utn), τ̂n,mn(usn))

with 1 ≤ s < t ≤ m.

Proposition 3.4.7. Let {Xi} be a stationary sequence with extremal index θ. Suppose

that Assumptions ∆′, D1 and D2 hold. Then as n→∞, for 1 ≤ s < t ≤ m,

pn
mnrn

cov(M̂n,mn(utn), τ̂n,mn(usn))→ τtθψs,t, (3.21)

where ψs,t is defined in (3.10).

Proof. As before,

cov(M̂n,mn(utn), τ̂n,mn(usn)) =
mn∑
i=1

mnrn∑
j=1

cov
(
1(M(i−1)rn,irn > utn),1(Xj > usn)

)
.

Once again we split the sum into two pieces, I1,n + I2,n , depending on whether

(i− 1)rn < j ≤ irn or not. By stationarity,

pn
mnrn

I1,n ∼
pn
rn

rn∑
i=1

cov(1(Mrn > utn),1(Xi > usn))

=
pn
rn

rn∑
i=1

P (Mrn > utn, Xi > usn)− pnP (Mrn > utn)P (X1 > usn)

=
pn
rn
E[Nrn(usn)|Mrn > utn]P (Mrn > utn)− pnP (Mrn > utn)P (X1 > usn)

→τtθψs,t

as n → ∞ by (3.7), (3.8) and (3.10). Since I2,n → 0 as before, the proof of the

proposition is complete.

3.5 A Central Limit Theorem for the Multilevel Estimator

In this section we establish the asymptotic normality of our multilevel estima-

tor (3.6). We start by checking the consistency of the estimator. For notational
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convenience, recall the following two definitions.

M̂n(usn) = M̂n,kn(usn) =
kn∑
i=1

1(M(i−1)rn,irn > usn) (3.22)

and

τ̂n(usn) = τ̂n,kn(usn) =
knrn∑
i=1

1(Xi > usn) . (3.23)

Proposition 3.5.1. Let {Xi} be a stationary sequence with extremal index θ. Suppose

that Assumptions C1 and D1 hold. Then as n→∞,

θ̂n(f)→P θ. (3.24)

Proof. Note that for 1 ≤ s ≤ m, by (3.8),

E
(pn
n
M̂n(usn)

)
=
knpn
n

P (Mrn > usn)→ τsθ

as n → ∞. Since var
(
(pn/n)M̂n(usn)

)
→ 0 by Proposition 3.4.1, it follows that

(pn/n)M̂n(usn)→P τsθ as n→∞.

Similarly, by (3.7) and Proposition 3.4.3 we have (pn/n)τ̂n(usn) →P τs as n →

∞ for 1 ≤ s ≤ m. In particular,

τ̂s/τm →P τs/τm for 1 ≤ s ≤ m,

and the result follows.

The next theorem is the main result of this section. It establishes asymp-

totic normality of the estimator (3.6). It requires an assumption on the rate of

convergence in (3.8). We assume that, as n→∞,

√
n/pn

[
(pn/rn)P (Mrn > usn)− τsθ

]
→ 0, 1 ≤ s ≤ m. (3.25)
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Such an assumption is sometimes associated with a sufficiently large block size

rn; see e.g. [53].

Under the notation of Assumptions D1 and D2 we denote

µ2 :=
∞∑
j=1

j2πj,

µs,t :=
∞∑
i=1

i∑
j=0

ij$s,t(i, j), 1 ≤ s < t ≤ m.

Theorem 3.5.2. Let {Xi} be a stationary sequence with extremal index θ. Assume that

Assumptions C ′1, C2, C ′2, D1 and D2 hold. Assume further (3.25). Then as n→∞,√
n/pn

(
θ̂n(f)− θ

)
→d N (0, σ2), (3.26)

where σ2 = hTΣΣΣh, with a (2m) × (2m) covariance matrix ΣΣΣ and a 2m-dimensional

vector h defined as follows: for 1 ≤ s ≤ t ≤ m,

σs,t = τtθ,

σm+s,m+t = τsθµs,t,

σs,m+t = τt,

σt,m+s = τtθψs,t ,

where µs,s is taken to be µ2 for each s, while ψs,t is defined by (3.10) for s < t and taken

to be 1/θ if s = t. Furthermore,

hs =
f
(
τs/τm

)
− f

(
τs−1/τm

)∑m
t=1

(
f
(
τt/τm

)
− f

(
τt−1/τm

))
τt
, 1 ≤ s ≤ m,

hm+s = −
(
f
(
τs/τm

)
− f

(
τs−1/τm

))
θ∑m

t=1

(
f
(
τt/τm

)
− f

(
τt−1/τm

))
τt
, 1 ≤ s ≤ m,

where we set τ0 =∞ and f(∞) = 0.

Proof. The argument is similar to that used in Theorem 4.2 of [53]. Notice that

θ̂n(f) = h
(
(pn/n)M̂n(u1

n), . . . , (pn/n)M̂n(umn ), (pn/n)τ̂n(u1
n), . . . , (pn/n)τ̂n(umn )

)
,

θ = h
(
τ1θ, . . . , τmθ, τ1, . . . , τm

)
,

62



where h : [0,∞)m × (0,∞)m → [0,∞) is defined by

h(x1, . . . , xm, y1, . . . , ym) =

∑m
s=1

(
f(ys/ym)− f(ys−1/ym)

)
xs∑m

s=1

(
f(ys/ym)− f(ys−1/ym)

)
ys
.

Here and for the remainder of the proof we use the convention y0 = ∞ and

f(∞) = 0. Since

∇h
(
τ1θ, . . . , τmθ, τ1, . . . , τm

)
= h ,

by the delta method we only need to prove that

√
n/pn



(pn/n)M̂n(u1
n)− τ1θ

...

(pn/n)M̂n(umn )− τmθ

(pn/n)τ̂n(u1
n)− τ1

...

(pn/n)τ̂n(umn )− τm


→d N (0,ΣΣΣ) . (3.27)

We will, actually, prove the statement

√
n/pn



(pn/n)
[
M̂n(u1

n)− knP (Mrn > u1
n)
]

...

(pn/n)
[
M̂n(umn )− knP (Mrn > umn )

]
(pn/n)τ̂n(u1

n)− τ1

...

(pn/n)τ̂n(umn )− τm


→d N (0,ΣΣΣ) . (3.28)

By (3.25) this will imply (3.27).

We present an argument for the case m = 2. The argument for larger values

of m is only notationally different. Denote by Zn,i, i = 1, 2, 3, 4 the 4 entries in

the vector in the left hand side of (3.28). By the Cramér-Wold device it suffices

to show that for any a = (a1, a2, a3, a4)T ∈ R4, as n→∞,

a1Zn,1 + a2Zn,2 + a3Zn,3 + a4Zn,4 →d N (0, aTΣΣΣa). (3.29)
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Denote mn = bn/pnc and let hn = bkn/mnc and write

Zn,1 =

√
pn
n

hn∑
i=1

I i(u
1
n) + op(1), Zn,2 =

√
pn
n

hn∑
i=1

I i(u
2
n) + op(1)

Zn,3 =

√
pn
n

hn∑
i=1

J i(u
1
n) + op(1), Zn,4 =

√
pn
n

hn∑
i=1

J i(u
2
n) + op(1),

where

I i(u
1
n) =

imn−1∑
j=(i−1)mn

(
1(M(j−1)rn,jrn > u1

n)− P (Mrn > u1
n)
)
,

I i(u
2
n) =

imn−1∑
j=(i−1)mn

(
1(M(j−1)rn,jrn > u2

n)− P (Mrn > u2
n)
)
,

J i(u
1
n) =

imnrn−1∑
j=(i−1)mnrn

(
1(Xj > u1

n)− τ1/pn
)
,

J i(u
2
n) =

imnrn−1∑
j=(i−1)mnrn

(
1(Xj > u2

n)− τ2/pn
)
.

Let h∗n → ∞ be a sequence of integers with (h∗n)2 = o(hn), hn = o
(
(h∗n)3

)
. Par-

tition the set {1, . . . , hn} into subsets of length h∗n of consecutive integers, with

two adjacent such subsets separated by a singleton. The number of subsets of

length h∗n is then qn = b(hn + 1)/(h∗n + 1)c. We have√
pn
n

hn∑
i=1

I i(u
1
n) =

√
pn
n

qn∑
j=1

j(h∗n+1)−1∑
i=(j−1)(h∗n+1)+1

I i(u
1
n) (3.30)

+

√
pn
n

qn−1∑
j=1

Ij(h∗n+1)(u
1
n) +

√
pn
n

hn∑
i=qn(h∗n+1)

I i(u
1
n).

The variance of the second term is bounded by

pnqn
n

var(I1(u1
n)) +

pnq
2
n

n
ρn,h∗nrn(u1

n)var(I1(u1
n)) .

By Proposition 3.4.1 the first entry above does not exceed a constant multiple of

pnqn
n

mnrn
pn
∼ 1

h∗n
→ 0
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since h∗n →∞. Since Assumption C1 is in force,

ρn,h∗nrn(u1
n) =

1

h∗nrn
h∗nrnρn,h∗nrn(u1

n) ≤ 1

h∗nrn

n∑
l=1

ρn,l(u
1
n) = o

(
1

h∗n

)
.

Therefore, the second entry above does not exceed a constant multiple of

pnq
2
n

n

1

h∗n

mnrn
pn
∼ hn

(h∗n)3
→ 0

by the choice of h∗n. Hence it follows that the variance of the second term in

(3.30) converges to zero. Further, the variance of the third term in (3.30) is, apart

from a multiplicative constant, bounded by

pn(h∗n)2

n
var(I1(u1

n)) ∼ pn(h∗n)2

n

mnrn
pn
∼ (h∗n)2

hn
→ 0,

once again by the choice of h∗n. Therefore, we can write

Zn,1 =
1
√
qn

qn∑
j=1

√pnqn
n

j(h∗n+1)−1∑
i=(j−1)(h∗n+1)+1

I i(u
1
n)

+ op(1) =:
1
√
qn

qn∑
j=1

ξn,j,1 + op(1).

Similarly,

Zn,2 =
1
√
qn

qn∑
j=1

√pnqn
n

j(h∗n+1)−1∑
i=(j−1)(h∗n+1)+1

I i(u
2
n)

+ op(1) =:
1
√
qn

qn∑
j=1

ξn,j,2 + op(1),

Zn,3 =
1
√
qn

qn∑
j=1

√ qn
hn

j(h∗n+1)−1∑
i=(j−1)(h∗n+1)+1

J i(u
1
n)

+ op(1) =:
1
√
qn

qn∑
j=1

ξn,j,3 + op(1),

Zn,4 =
1
√
qn

qn∑
j=1

√ qn
hn

j(h∗n+1)−1∑
i=(j−1)(h∗n+1)+1

J i(u
2
n)

+ op(1) =:
1
√
qn

qn∑
j=1

ξn,j,4 + op(1).

Writing ξn,j = a1ξn,j,1 + a2ξn,j,2 + a3ξn,j,3 + a4ξn,j,4, we conclude that

a1Zn,1 + a2Zn,2 + a3Zn,3 + a4Zn,4 =
1
√
qn

qn∑
j=1

ξn,j + op(1).
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Notice that for fixed n the elements of the stationary sequence defining each

pair of ξn,i and ξn,j , i 6= j, are separated by at least h∗nrn entries. Furthermore, by

Assumptions C1 and C2,

ρn,h∗nrn(u1
n, u

2
n) = o(1/hn) = o(1/qn) .

Since for any real θ∣∣∣∣∣E exp

{
iθ

1
√
qn

qn∑
j=1

ξn,j

}
−

qn∏
j=1

E exp

{
iθ

1
√
qn
ξn,j

}∣∣∣∣∣
≤

qn∑
k=1

∣∣∣∣∣E exp

{
iθ

1
√
qn

qn−k+1∑
j=1

ξn,j

}

−E exp

{
iθ

1
√
qn

qn−k∑
j=1

ξn,j

}
E exp

{
iθ

1
√
qn
ξn,qn−k+1

}∣∣∣∣∣
≤ qnρn,h∗nrn(u1

n, u
2
n)

up to a multiplicative constant, the statement (3.29) will follow once we prove

that
1
√
qn

qn∑
j=1

Yn,j →d N (0, aTΣΣΣa) , (3.31)

where for each n, Yn,j, j = 1, . . . , qn are i.i.d. random variables with the same

law as ξn,1. Since Propositions 3.4.1 - 3.4.7 tell us that var(ξn,1) → aTΣΣΣa as n →

∞, by the Lindeberg-Feller central limit theorem the convergence in (3.31) will

follow once we check that for any ε > 0,

E
(
ξ2
n,11(|ξn,1| > εq1/2

n )
)
→ 0

as n→∞, which reduces to showing that

E
(
ξ2
n,1,i1(|ξn,1,j| > εq1/2

n )
)
→ 0 (3.32)

for each ε > 0 and each pair i, j = 1, 2, 3, 4. We will check (3.32) for i = j = 1. All

other combinations of i, j can be treated in a similar way. If M̂∗
n(u1

n) is defined
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by (3.11) with mn replaced by mnh
∗
n, then we have to check that

pnqn
n

E
(

(M̂∗
n(u1

n))2
1
(
|M̂∗

n(u1
n)| > ε

√
n/pn

))
→ 0 .

While proving Proposition 3.4.1 we decomposed the variance of M̂∗
n(u1

n) into a

sum of two terms, the second of which is of a smaller order than the first one.

Therefore, we only need to prove that

pnqn
n

mnh∗n∑
i=1

E

[(
1(M(i−1)rn,irn > u1

n)− P (Mrn > u1
n)
)2

1

(∣∣∣∣∣
mnh∗n∑
j=1

(
1(M(i−1)rn,irn > u1

n)− P (Mrn > u1
n)
)∣∣∣∣∣ > ε

√
n/pn

)]
→ 0

and , since n/pn →∞, by changing ε > 0 to a smaller positive number, we only

need to show that

pnqn
n

mnh∗n∑
i=1

P (M(i−1)rn,irn > u1
n,∣∣∣∣∣∣

∑
|j−i|≥2

(
1(M(i−1)rn,irn > u1

n)− P (Mrn > u1
n)
)∣∣∣∣∣∣ > ε

√
n/pn

→ 0 .

Note that the expression in the left hand side above can be bounded by

pnqn
n

mnh∗n∑
i=1

P
(
M(i−1)rn,irn > u1

n

)
× P

∣∣∣∣∣∣
∑
|j−i|≥2

(
1(M(i−1)rn,irn > u1

n)− P (Mrn > u1
n)
)∣∣∣∣∣∣ > ε

√
n/pn


+
pnqn
n

mnh
∗
nαn,rn(u1

n) .

The first term above converges to zero as n → ∞ by Proposition 3.4.1, while

the second term converges to zero as n→∞ by Assumption C1. Therefore, the

convergence in (3.31) has been established.

Remark 3.5.3. Note that without the assumption (3.25) what Theorem 3.5.2

proves is that √
n/pn

(
θ̂n(f)− θn(f)

)
→d N (0, σ2).
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The difference θn(f)− θ is then responsible for the bias of our estimator.

3.6 Testing the estimator

This section is devoted to testing the multilevel estimator (3.6) both on sim-

ulated data and real data. As in many cases of extremal inference, we should

address the question of the bias of the estimator; see, in particular, Remark 3.5.3.

One approach of tackling the bias is to build a simple model for it and then es-

timate it from the data. Following [17], and further to account for the effect of

block size rn, we assume that the main terms in the bias of M̂n(usn)/τ̂n(usn) as

an estimator of θ are linear in τs/kn and 1/rn, s = 1, . . . ,m. Since we estimate

τs by a scaled version of the statistics τ̂n(usn), it is natural to use the following

bias-corrected version of the multilevel estimator:

θ̂bn(f) =

∑m
s=1

[
f
(
τ̂s/τm

)
− f

( ̂τs−1/τm
)]

(M̂n(usn)− β̂1
τ̂n(usn)2

kn
− β̂2

τ̂n(usn)
rn

)∑m
s=1

[
f
(
τ̂s/τm

)
− f

( ̂τs−1/τm
)]
τ̂n(usn)

, (3.33)

where β̂1, β̂2 are coefficients estimated from the data. We simply use linear re-

gression as follows.

Use the m levels u1
n, . . . , u

m
n and l values of block sizes r1

n, . . . , r
l
n to com-

pute the values of M̂n(usn, r
i
n), τ̂n(usn, r

i
n) and θ̂n(usn, r

i
n) = M̂n(usn, r

i
n)/τ̂n(usn, r

i
n)

for s = 1, . . . ,m, i = 1, . . . , l, where M̂n(usn, r
i
n), τ̂n(usn, r

i
n) respectively denote

the quantities M̂n(usn) and τ̂n(usn) evaluated using block size rin. Now fit are re-

gression plane to the response variables θ̂n(usn, r
i
n) using the predictor variables(

τ̂n(usn, r
i
n)/kin , 1/r

i
n

)
, s = 1, . . . ,m, i = 1, . . . , l, where kin = b n

rin
c. Specifically, we

use the least squares coefficients

(
β̂0, β̂1, β̂2

)T
= (XTX)−1XT θ̂θθn , (3.34)
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where

θ̂θθn =
(
θ̂n(u1

n, r
1
n) . . . θ̂n(umn , r

l
n)
)T

,

and

X =


1 1 . . . 1

τ̂n(u1
n, r

1
n)/k1

n τ̂n(u2
n, r

1
n)/k1

n . . . τ̂n(umn , r
l
n)/kln

1/r1
n 1/r1

n . . . 1/rln


T

,

where θ̂θθn is a vector of length ml and X is a matrix of dimension ml× 3. We use

β̂1, β̂2 in (3.34) as desired coefficients in (3.33). Alternatively, one could estimate

that coefficient using different levels from the collection u1
n, . . . , u

m
n .

Remark 3.6.1. Simulation results support the assumption that the main terms

in the bias of M̂n(usn)/τ̂n(usn) as an estimator of θ are linear in τs/kn and 1/rn,

s = 1, . . . ,m.

Remark 3.6.2. Note that β̂0 in (3.34) is itself an estimator for θ. We have not

studied its statistical properties, but it performs well on simulated data.

In the sequel we test the multilevel estimator (3.6) and its bias-corrected ver-

sion (3.33) on simulated data and on S&P 500 Daily Log Returns.

3.6.1 Simulation Study

We have drawn samples from ARMAX processes and the MA(q) process. The

ARMAX process (Xi) is defined as follows. Let Z1, Z2, . . . be a sequence of i.i.d.

unit Fréchet random variables. For 0 < θ ≤ 1, let X1 = Z1/θ, and

Xi = max((1− θ)Xi−1, Zi), i ≥ 2 . (3.35)
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It can be shown that the extremal index of such a sequence is θ; see e.g. Chapter

10 of [5].

The MA(q) process (Xi) is defined as

Xi = pqZi−q + pq−1Zi−q+1 + · · ·+ p1Zi−1 + Zi, i ≥ 1 , (3.36)

with 0 < p1, . . . , pq < 1, and the noise sequence consisting of i.i.d. Pareto ran-

dom variables Z−(q−1), . . . , Z0, Z1, . . . with

P (Z0 > x) =


1, if x < 1

x−α, if x ≥ 1,

(3.37)

for some α > 0. It is elementary that for this sequence the extremal index is

θ =
1

1 + pα1 + · · ·+ pαq
,

see e.g. [55].

We first test the effect of the estimators (3.6) and (3.33) on the ARMAX model

using values of θ = 0.25, 0.5, 0.75, and a finite sample length of n = 10000. For

the estimator, we have chosen a block size of rn = 200, and a weight function

of f(x) = e−x. We run the experiments for m = 1, . . . , 20, and for each fixed m

we choose usn to be equal to the (101 + 2(m − s))-th largest order statistic of the

sequence, 1 ≤ s ≤ m. That is, each level incorporates 2 more observations above

it than the level immediately higher does. When computing coefficients for the

bias-reduced estimator (3.33), we usem′ = 12, with ūsn being the (91+5(m′−s))-

th largest order statistic of the sequence, 1 ≤ s ≤ m′, and l = 25, with rin = 10i,

1 ≤ i ≤ l.

We compare the estimators θ̂(f) and θ̂b(f) on the basis of their bias, standard

error, and root mean squared error. The results computed from 5000 simulated
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Figure 3.2: Bias (left column), standard error (center column), and root mean
squared error (right column) for the naive blocks estimator (3.2) (dot-dash line),
the multilevel estimator θ̂(f) (dotted line) and the bias-corrected multilevel esti-
mator θ̂b(f) (solid line) plotted against the choice of m, number of levels used in
the estimators. Data are simulated from ARMAX models with θ = 0.25, 0.5, 0.75
(top to bottom).

sequences are displayed in Figure 3.2. Looking from the top row to the bottom

row along the varying values of θ = 0.25, 0.5, 0.75, we see that the plots tell a

similar story. As expected for the multilevel estimator θ̂(f), the magnitude of the

bias increases while the standard error decreases as more levels of observations

are incorporated into the estimator. The bias of the bias-corrected version of

the estimator, θ̂b(f), seems to be largely insensitive to the choice of m, with a

decreasing trend both in the standard error and in the root mean squared error.

Overall, θ̂b(f) achieves a much better root mean squared error compared to θ̂(f),
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for all levels m considered. It also outperforms the plain block estimator in the

sense of an improved root mean squared error.

We have performed the same analysis for other models, for different values

of the highest threshold and for different block sizes. We have also analyzed the

non-clustering case θ = 1. Invariably, the qualitative structure seen on Figure

3.2 remained the same. In the remaining experiments in this section we will,

therefore, focus on the best performing bias-corrected estimator θ̂b(f) that uses

the largest amount of data (m = 20 levels).

Our next experiment addresses the effect of the choice of block size rn on

the performance of the estimator θ̂b(f). We again use the ARMAX model with

θ = 0.25, 0.5, 0.75 as before. We test the performance of θ̂b(f) using block sizes

of rn = 40, 50, . . . , 200. The root mean squared errors from 5000 simulated se-

quences are displayed in Figure 3.3. We see that the choice of the block size does

not have a major effect on the root mean squared error.
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Figure 3.3: Root mean squared error for the estimator θ̂b(f) for true values of θ
being 0.25 (dotted line), 0.5 (dot-dash line), and 0.75 (dash line) plotted against
the choice of rn, the size of the blocks used in the estimator. Data are simulated
from ARMAX models with θ = 0.25, 0.5, 0.75.

We have also looked at the effect of the block size on the bias and standard
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error separately in Figure 3.4. Once again, the standard error is largely insensi-

tive to the choice of the block size. The bias does vary with the block size, but

remains invariably small in the absolute value, leading to the root mean squared

errors displayed in Figure 3.3.
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Figure 3.4: Absolute bias (dotted line) and standard error (solid line) for the
estimator θ̂b(f) plotted against the choice of rn, the size of the blocks used in the
estimator. Data are simulated from an ARMAX model with θ = 0.5.

In the next experiment we fix the the block size to rn = 200 and study the

effect of the choice of the weight function. In the setting of the previous exper-

iments we use a second weight function, f1(x) = 1/x20 along with the original

weight function f . In the relevant range f1 decreases at a much faster rate than

f . We compare the performance of the estimators θ̂b(f) and θ̂b(f1). The results

are presented in Figure 3.5.
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Figure 3.5: Bias (left), standard error (center) and root mean squared error (right)
for the bias corrected multilevel estimators θ̂b(f) (solid line) and θ̂b(f ′) (dotted
line) plotted against the choice of m, number of levels used in the estimators.
Data are simulated from an ARMAX model with θ = 0.5.

As in Figure 3.2 the magnitude of the bias, the standard error, and the root

mean squared error of the estimators are all decreasing when m, the number of

levels used in the estimator, increases. The phenomenon displayed in Figure 3.5

demonstrates that the faster decay of the weight function f1 compared to f leads

to smaller contributions from additional levels to the efficiency of the estimator.

However, the exact overall effect of the weight function on the estimator is a

topic not studied in detail in this paper. It warrants further investigation.

In the previous experiments we have used samples of size n = 10000. Some-

times extremal inference has to be performed on data sets of a smaller size,

so we have repeated our experiment leading to Figure 3.2 for samples of size

n = 5000. We only display the results for the ARMAX model with θ = 0.5. We

use rn = 100, and f(x) = e−x. Once again, we experiment with m = 1, . . . , 20

levels, and for each fixedmwe choose usn to be equal to the (51+m−s)-th largest
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order statistic of the sequence, 1 ≤ s ≤ m. When computing coefficients for the

bias-reduced estimator, we use m′ = 12, with ūsn being the (41 + 3(m′ − s))-th

largest order statistic of the sequence, 1 ≤ s ≤ m′, and l = 15, with rin = 10i,

1 ≤ i ≤ l. The results from 5000 simulated sequences are displayed, in Fig-

ure 3.6. As expected, the smaller sample size leads to some deterioration in the

quality of the estimation in comparison with the large sample size used in Fig-

ure 3.2, but the comparison of the estimators and the lessons derived from both

figures remain the same.
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Figure 3.6: Bias (left), standard error (center), and root mean squared error
(right) for the naive blocks estimator (3.2) (dot-dash line), the multilevel esti-
mator θ̂(f) (dotted line) and the bias-corrected multilevel estimator θ̂b(f) (solid
line) plotted against the choice of m, number of levels used in the estimators.
Data are simulated from an ARMAX model with θ = 0.5.

Finally, we experiment with constructing a multiple threshold version of an

estimator different from the plain block estimator. We have chosen the sliding

blocks estimator of [53]. We use the ARMAX models with θ = 0.25, 0.5, 0.75. For

each simulated sequence, we first compute the optimal threshold as described in

[53], then choosem = 1, . . . , 20, where umn corresponds to the level of the optimal

threshold, and for each 1 ≤ s ≤ m, the level corresponding to usn incorporates

10 more observations than the level immediately above it. The results from 5000

simulated sequences are displayed in Figure 3.7. Once again we see that the root
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Figure 3.7: Bias (left column), standard error (center column), and root mean
squared error (right column) for the sliding blocks estimator (dot-dash line),
the multilevel sliding blocks estimator (solid line) plotted against the choice of
m, number of levels used in the estimators. Data are simulated from ARMAX
models with θ = 0.25, 0.5, 0.75 (top to bottom).

mean squared error is almost invariably decreasing with increasing number of

levels m.

3.6.2 S&P 500 Daily Log Returns

We now use the estimators developed in this paper to estimate the extremal

index of the losses among the daily log returns for S&P 500 during the ten-

year period between 1 January 1990 and 31 December 1999. The log returns
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themselves are plotted in Figure 3.8.
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Figure 3.8: Daily Log Returns for S&P 500 from 1980 - 1999

There are n = 5055 returns in this data set, and the negative of their values

form our sample. We choose m = 1, . . . , 20 and usn to be the 51 + (m − s)-th

largest order statistic, 1 ≤ s ≤ m. We choose the block size rn = 40, resulting in

kn = 126 blocks. For the weight function we use f(x) = e−x. When computing

the bias-corrected estimator we use (3.34) with m′ = 12 levels, ūsn being the

41 + 3(m′ − s)-th largest order statistic in the sample, 1 ≤ s ≤ m′, and set l = 15,

with rin = 10i, 1 ≤ i ≤ l.
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Figure 3.9: The values of the multilevel estimator θ̂(f) (‘x’ marker) and the
bias-corrected multilevel estimator θ̂b(f) (diamond marker) plotted against the
choice of m, number of levels used in the estimators, for the negative daily log
returns of S&P 500.
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The plots of the two estimators are shown above as a function of the number

of levels m. We have also evaluated the variability of the estimators by per-

forming a block-level bootstrap. We have not presented the resulting pointwise

1-standard error confidence intervals on Figure 3.9 since this makes the struc-

ture of the pointwise estimators harder to see, but the order of magnitude of

these intervals is [0.5, 0.8].
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CHAPTER 4

A DISTANCE BASED DECLUSTERING METHOD FOR EXTREMAL

INFERENCE

4.1 Introduction

In this chapter we approach the problem of extremal inference under depen-

dence. Many extremal estimators implicitly or explicitly assume the indepen-

dence of input variables. When estimating the parameters of the generalized

extreme value distribution, for example, one often uses the maximum likeli-

hood estimator, which requires the inputs to be independent and identically

distributed to obtain a tractable likelihood function. In the classical Hill esti-

mator for the exponent of regular variation, one often selects a number of up-

per statistics for inference, whereby the method of selecting such an “optimal”

number of observations often assumes that the input observations are indepen-

dent; see e.g. [42] and [41]. As a result, when dependence exists among the

observations, many such estimators become inapplicable or intractable, such as

ones using the maximum likelihood method. Alternatively, for example, in the

case of the Hill estimator, one can still guarantee asymptotic consistency under

certain conditions; see e.g. [31]. However, in this case, methods of selecting the

number of upper statistics in the i.i.d. case can no longer guarantee “optimality”

when dependence is present.

We focus on cases when data exhibits serial dependence. Specifically, we will

assume that our data X1, X2, . . . is a stationary sequence. Some methods have

been proposed to overcome the issue of serial dependence. However, many

such methods often make specific model assumptions and are therefore diffi-
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cult to generalize; see e.g. [49] and [29]. Such methods usually use all the data

above a certain threshold. We believe that there is room for improvement when

applying such methods: as seen in Chapter 3, large observations in a stationary

sequence tend to cluster together. By taking all values above a certain thresh-

old for an estimator, one may end up using observations within the same clus-

ter, which are highly dependent with each other, and thereby “polluting” the

estimator. Our approach, therefore, is to attempt to select observations from

different clusters so as to minimize the clustering among the inputs used for

inference.

We will apply our approach to the Hill estimator for the index of regular

variation. Recall that a distribution function F is regularly varying with index

or exponent α if for any t > 0,

lim
x→∞

F (tx)

F (x)
= t−α . (4.1)

Data displaying heavy-tailed or regular variation behavior are encountered

in many fields such as hydrology, finance, and network traffic. A number of

estimators exist for estimating the regular variation index. The best known es-

timator among those is the Hill estimator, introduced by [28]. It is defined as

follows. For 1 ≤ i ≤ n, let Xi,n denote the i-th smallest order statistic from the

sequence {Xi}. Then the Hill estimator based on the k largest order statistics is

defined as

Hk,n =
1

k

k−1∑
i=0

log
Xn−i,n

Xn−k,n
. (4.2)

When X1, . . . , Xn are i.i.d., and k = o(n) as n→∞, then it is known that Hk,n is

an asymptotically consistent estimator of γ = 1/α; see e.g. [38]. It is also shown

that under suitable mixing conditions, the Hill estimator is also asymptotically

consistent for dependent sequences; see e.g. [26], [13], [12].
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In practice, the problem of choosing an appropriate number k of upper or-

der statistics is quite difficult. The Hill estimator is usually plotted against a

range of k, resulting in a “Hill plot”, and the value around which the plot sta-

bilizes is chosen to be the Hill estimate. The procedure is difficult use due to

high sensitivity of the estimator to the choice of k, and often even the Hill plot is

visually difficult to interpret. Many efforts have been put into finding a system-

atic way of selecting an “optimal” number of upper order statistics k for the Hill

estimator; see e.g. [27], [18], [42]. However, those methods all work under the

assumption that the input variables are i.i.d., and the “optimality” conditions

fail when serial dependence is introduced. In [42], the authors devise a proce-

dure to sequentially test the samples {log
Xn−i,n
Xn−k,n

: i = 0, 1, . . . , k − 1} for the null

hypothesis of exponential distribution, in order to determine the number k of

upper order statistics. We will apply our approach to select observations from

different clusters, and use the method in [42] on those observations.

This chapter is organized as follows. We build intuition and propose an

algorithm for selecting observations, and list the assumptions used in the chap-

ter in Section 4.2. In Section 4.3 we apply this algorithm in conjunction with

the method proposed in [42], and show that asymptotic consistency results still

hold. In Section 4.4 we present a simulation study.

4.2 The Selection Algorithm

In this section we propose our algorithm for data selection. First let us let us

take a look at a couple of point processes. Suppose X1, X2, . . . is a stationary

sequence of random variables with marginal distribution F . For two observa-

81



tions Xi, Xj , we will refer to |i− j| as the distance between the two elements. For

notational convenience, for the rest of this chapter we will use the simplifying

assumption that F is supported by [0,∞). The case when F is supported by

(−∞,∞) is similar. Let (vn) be a sequence such that nF (vn)→ 1 as n→∞.

Recall from Chapter 3 that under certain mixing conditions, the point pro-

cesses of exceedances converge weakly in the space of finite point processes on

[0, 1] to a compound Poisson process:

Nn =
n∑
i=1

δi/n1(Xi > vn)
d−→ N =

∞∑
i=1

ξiδΓi , (4.3)

where δx is a point mass at x, the points 0 < Γ1 < Γ2 < . . . constitute a homoge-

neous Poisson process with intensity θ on [0, 1] which is independent of an i.i.d.

positive integer-valued sequence {ξi}.

Now let us look at a slightly different point process. Let Ñn be the point

process on R− {0} define as

Ñn =
n∑
i=1

δXi/vn . (4.4)

Note that the state space is R−{0} in order to avoid a buildup of mass at 0 as n→

∞. Then, assuming that the marginal distribution F of X1 is regularly varying

with some index α, and again under some general mixing conditions, as n→∞,

the point process Ñn converges weakly to a point process with representation
∞∑
i=1

∞∑
j=1

δPiQij , (4.5)

where
∑∞

i=1 δPi is a Poisson process on (0,∞) with intensity measure ν, where

for x > 0, ν([x,∞)) = θx−α with θ being the extremal index of the sequence

{Xi}; and
∑∞

j=1 δQij , i ≥ 1 are i.i.d. point processes on (0, 1] also independent of

the Poisson process, with the property that maxj Qij = 1 for all i ≥ 1; see e.g.

[15] and [40].
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The above results, along with results from Chapter 3, give a few important

pieces of information that will be useful to us. There are two types of point pro-

cesses associated with the convergence of Ñn in (4.5). The first type the Poisson

point process
∑∞

i=1 δPi on (0,∞). Note that this point process has mean measure

ν([x,∞)) = θx−α for x > 0. This is a key ingredient in the procedure proposed

in [42]: if X1, . . . , Xn are i.i.d. and regularly varying, then the largest observa-

tions among the sequence resemble the largest points of a Poisson process with

power intensity. The other type of point process resulting from the convergence

of Ñn is of the form
∑∞

j=1 δQij for i ≥ 1. The properties relevant to us from this

set of point processes are that
∑∞

j=1 δQij are i.i.d., and that maxj Qij = 1 for each

i ≥ 1. In light of this, one can view the convergence of Ñn as follows. For each

n and each i ≥ 1, there is a “cluster” of exceedances within the point process∑n
i=1 δXi/vn , such that as n → ∞, such a “cluster” converges in distribution to∑∞
j=1 δPiQij . In turn, since maxj Qij = 1 for each i ≥ 1, P1, P2, . . . also corre-

spond to the distributional limits of the largest observations within each “clus-

ter”. Therefore by extracting the largest observation within each “cluster”, one

hopes to produce points that resemble the largest points of a Poisson process

with power intensity. This will be the goal of our selection algorithm. Note that

in the above discussion, the concept of a “cluster” is not clearly defined. How-

ever, from (4.3) we observe that as n tends to infinity, the distances between

such “clusters” of exceedances also tend to infinity. Therefore, our algorithm

does not need to be able to identify “clusters”, but instead, intuitively, it should

attempt to select large observations with large distances between each other.

Let X1, X2, . . . , Xn be n contiguous observations from a stationary sequence

of random variables with marginal distribution F . Let (un) be a sequence of

thresholds. Recall the blocks estimator (3.2). It is based on choosing some block
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size rn, and dividing the n observations into kn = bn/rnc contiguous blocks of

equal length rn. Again denoting Mi,j to be max{Xi+1, . . . , Xj} with the conven-

tion of Mj = M0,j , the blocks estimator is

θ̂n =

∑kn
i=1 1

(
M(i−1)rn,irn > un

)∑knrn
i=1 1

(
Xi > un

) .

Let ∆n denote the set of Xi among the kn blocks such that Xi > un. Namely,

∆n = {Xi | Xi > un, 1 ≤ i ≤ knrn}. (4.6)

Further, let recall from Chapter 3 that for w > 0, Nk(w) =
∑k

i=1 1(Xi > w). We

can denote the size of the set ∆n,

Nknrn(un) =
knrn∑
i=1

1
(
Xi > un

)
= |∆n|. (4.7)

We interpret ∆n as all the observations that form clusters of exceedances. In

this case we wish to select from ∆n the largest observation of each cluster. We

proceed as follows.

Algorithm 1 Distance Data Selection
1: for l = 1, 2, . . . do
2: while ∃Xi, Xj ∈ ∆n, such that Xi < Xj, |i− j| = l do
3: Take such a pair Xi, Xj with the minimal min(i, j)

4: if |∆n| > bθ̂nNknrn(un)c then
5: ∆n ← ∆n \ {Xi}
6: else
7: return ∆n

To avoid confusion, unless otherwise specified, we will use ∆n to refer to the

set returned from Algorithm 1, and ∆n to refer to the original set of exceedances

over un as in (4.6).
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First let us note that bθ̂nNknrn(un)c is the number of elements remaining in

the set ∆n, the output of the algorithm. Intuitively, if one interprets the extremal

index θ as the reciprocal of the expected extremal cluster size as mentioned in

Chapter 3, and Nknrn(un) as a finite sample approximation to the extremal ex-

ceedances, bθ̂nNknrn(un)cwould be an approximation to the number of extremal

clusters in the sample. Given the behavior that the distances between extremal

clusters tend to infinity as the sample size n → ∞, and the distance-based se-

lection method in Algorithm 1, ∆n should be retaining one point from each

extremal cluster approximated from ∆n.

The above discussion only offers intuition, and we will need mixing assump-

tions to guarantee the result. Many of those assumptions will be in a similar vein

to those presented in Chapter 3. For completeness’ sake we will list them here.

In the next section we will apply the above algorithm in the case of the Hill

estimator. Certain assumptions will need to apply for asymptotic consistency

results. We list those assumptions here as well.

Recall the α-coefficient. For a value un > 0, and 1 ≤ i ≤ j ≤ n, let Bj
i (un)

denote the σ-field generated by events {Xt ≤ un} for i ≤ t ≤ j. For n ≥ 1 and

1 ≤ l ≤ n− 1, the α-coefficient is defined as

αn,l(un) = max(|P (A ∩B)−P (A)P (B)| :

A ∈ Bk
1 (un), B ∈ Bn

k+l(un), 1 ≤ k ≤ n− l).

Again we will say that the sequence {Xi} satisfies the condition ∆({un}) if

αn,ln(un) → 0 as n → ∞ for some sequence {ln} with ln = o(n). If pn is a se-

quence of integers and αpn,ln(un) → 0 as n → ∞ for some sequence {ln} with

ln = o(pn), then we will say that {Xi} satisfies the condition ∆{pn}({un}).
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We introduce another mixing coefficient, the β-coefficient. For the assump-

tions involved in this chapter, we will define them over slightly different σ-

fields. For a value un > 0, and 1 ≤ i ≤ j ≤ n, let C j
i (un) denote the σ-field

generated by random variables Xt1(Xt > un) for i ≤ t ≤ j. For n ≥ 1 and

1 ≤ l ≤ n− 1, the β-coefficient is defined as

βn,l(un) = max
k

sup
1

2

I∑
i=1

J∑
j=1

|P (Ai ∩Bj)− P (Ai)P (Bj)|, (4.8)

where the supremum is taken over all finite partitions {A1, . . . , AI} and

{B1, . . . , BJ} of the probability space, such that Ai ∈ C k
1 (un) for each 1 ≤ i ≤ I

and Bj ∈ C n
k+l(un) for each 1 ≤ j ≤ J , and the maximum is taken over all

1 ≤ k ≤ n− l.

One can show that for all 1 ≤ l ≤ n − 1, 2αn,l(un) ≤ βn,l(un). For a more

comprehensive review and comparison of mixing coefficients, see the survey

paper [8].

Similarly to Chapter 3, we would like to ensure the asymptotic consistency

of the blocks estimator θ̂n. For such consistency results we will require that

rnF (un) → 0 and nF (un) → ∞. This implicitly assumes that rn = o(n) as

n→∞. Again we introduce a sequence {pn} of integers with

pnF (un)→ τ (4.9)

for some τ > 0. This will imply that rn = o(pn) as n → ∞. The following as-

sumptions on the stationary sequence {Xi}will be used throughout this chapter.

Assumption ∆′′ There is a sequence ln = o(rn) such that knαn,ln(un)→ 0 as n→

∞. Further assume that un is large enough that knln = o(pn) and r2
nkn/p

2
n → 0 as

n→∞.

86



Assumption B There is a sequence ln = o(rn) such that knβn,ln(un) → 0 as

n→∞.

In Chapter 3 we have already gone over a set of mixing conditions that

ensure the asymptotic consistency of the blocks estimator. In particular, we

showed that with proper scaling, the numerator and the denominator in the

blocks estimator converge “in the right way”; see Proposition 3.5.1. In this chap-

ter, we are not concerned with specific conditions ensuring the asymptotic con-

sistency. Rather, we just require that the ingredients of the blocks estimator are

consistent as follows,

Assumption E We assume that

pn
n
Nknrn(un)→P τ,

pn
n

kn∑
i=1

1(M(i−1)rn,irn > un)→P τθ.

The next group of assumptions deals with convergence of N (u)
pn , the point

process on [0, 1] with points (j/pn : 1 ≤ j ≤ pn, Xj > un).

Assumption P N
(u)
pn converges weakly in the space of finite point processes on

[0, 1].

Assumption D There exists a probability distribution (πj)j≥1 on the positive

integers such that as n→∞,

P (Nrn(un) = j|Mrn > un)→ πj, j ≥ 1,

E[Nrn(un)|Mrn > un]→
∞∑
j=1

jπj <∞.

Lastly, we will be using the notion of second order regular variation in the

next section. We assume that the marginal distribution F of the stationary se-
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quance {Xi} is regularly varying with exponent α. Let U =
(

1
1−F

)← be the

generalized inverse function.

Assumption R There exists ρ < 0 and a function A regularly varying at infinity

with exponent ρ such that

lim
r→∞

U(rx)
U(r)
− xγ

A(r)
= xγ

xρ − 1

ρ
, (4.10)

where γ = 1/α. We also assume, without loss of generality, that A is continuous

and |A| is eventually decreasing.

Remark 4.2.1. Assumption B implies the first part of Assumption ∆′′. Assump-

tion P is the same as that in Section 3.3. Assumption D is a weaker version of

Assumption D1 in Section 3.3. Assumption E implies that θ̂n →P θ. Aside from

those listed in Chapter 3, there are several sets of mixing conditions through

which this holds; see e.g. [31], [53], [59].

Remark 4.2.2. The mixing conditions in ∆′′ mainly concern the block size rn,

which must be “large enough”, and the threshold un, which must be “low

enough”. Sequences such that βn,ln(un) → 0 are called absolutely regular se-

quences, and the mixing condition in B dictate that the block sizes must be

“large enough”. Many models that satisfy the assumptions in Chapter 3 - in

which the mixing coefficients decay quickly (e.g. m-dependent sequences, geo-

metrically mixing sequences) - also satisfy the assumptions posed here.

Based on some of the above assumptions, we can make a claim regarding

the minimum distance between the elements of the set ∆n.

Proposition 4.2.3. If Assumptions ∆′′, P , and D are satisfied, then as n→∞,

P ( min
Xi,Xj∈∆n

|i− j| > rn)→ 1.
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Proof. We divide X1, . . . , Xn into kn contiguous blocks of size rn. If there exist

some Xi, Xj ∈ ∆n with |i − j| ≤ rn, then either Xi, Xj are in the same block,

or they are in neighboring blocks. First let us look at the possibility that they

are in neighboring blocks. If Assumptions ∆′′, P , and D are satisfied, then by

Theorem 5.1 and Lemma 2.3 of [33],

P (Mrn > un) ∼ τθrn/pn. (4.11)

So the probability that there are exceedances over un in two neighboring blocks

is

P (Mrn > un,Mrn,2rn > un) ≤P (Mrn−ln > un,Mrn,2rn > un) + P (Mln > un)

≤P (Mrn−ln > un)P (Mrn,2rn > un)

+ P (Mln > un) + αn,ln

≤P (Mrn > un)2 + P (Mln > un) + αn,ln .

Hence the probability that there exists two neighboring blocks with ex-

ceedances over un is bounded above by

knP (Mrn > un,Mrn,2rn > un) ≤kn(P (Mrn > un)2 + P (Mln > un) + αn,ln)

∼kn(τθrn/pn)2 + knP (Mln > un) + knαn,ln .

By Assumption ∆′′, the first and third terms of the above converge to 0 as n →

∞. And the second term is bounded above by

knlnP (X1 > un) ∼knln
τ

pn
,

which again converges to 0 as n → ∞, since knln = o(pn) by Assumption ∆′′.

We conclude that the probability that there are two consecutive blocks with ex-

ceedances over un converges to 0.
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Now let us consider the probability that there are no two consecutive blocks

with exceedances over un, but ∆n contains two elements in the same block.

For notational convenience, for 1 ≤ i ≤ kn, let Bi denote the block (set)

{X(i−1)rn+1, . . . , Xirn}. By definition of θ̂n and Algorithm 1, it follows that

|∆n| = bNknrn(un)×
∑kn

i=1 1(maxBi > un)

Nknrn(un)
c =

kn∑
i=1

1(maxBi > un).

(Note here that maxBi = M(i−1)rn,irn .) So if there are two elements Xi, Xj ∈ ∆n

in the same block, then by pigeonhole there must be some block Bk such that

maxBk > un, and Bk ∩∆n = ∅. Therefore there must be some element Xm ∈ Bk

with Xm > un such that Xm was removed from ∆n during Algorithm 1. Let

Xm be the last such element from block Bk that was removed. Then it must be

that there was some Xm′ ∈ ∆n that was “paired” with Xm during the algorithm

that resulted in the removal Xm. This implies that |m′ −m| was the minimum

distance between any two elements that were still in the set ∆n. Since there are

no consecutive blocks with exceedances over un, and Xm is the last element to

be removed from block Bk, it must be that |m′ −m| > rn. However, Xi, Xj are

never removed and in the same block, so |i − j| < rn < |m′ − m|. This is a

contradiction. Hence the situation that there are no two consecutive blocks with

exceedances, but ∆n contains two elements in the same block cannot occur.

Combining the two scenarios above, it follows that P (minXi,Xj∈∆n |i − j| >

rn)→ 1 as n→∞.

In light of Proposition 4.2.3, let us consider the following algorithm.
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Algorithm 2 Block Data Selection

1: ∆̃n ← ∅
2: for i = 1, 2, . . . , kn do
3: if M(i−1)rn,irn > un then
4: ∆̃n ← ∆̃n ∪ {M(i−1)rn,irn}
5: return ∆̃n

To avoid confusion, we will use ∆n to denote the output of Algorithm 1, and

∆̃n to denote the output of Algorithm 2. The following result is immediate from

the proof of Proposition 4.2.3.

Corollary 4.2.4. If Assumptions ∆′′, P , and D are satisfied, then as n→∞,

P (∆n 6= ∆̃n)→ 0.

4.3 The Hill Estimator

In this section we will use our selection algorithm in the inference of the regular

variation index α of F , the marginal distribution function of the sequence {Xi}.

We base our procedure on that proposed in [42]. In the paper, the authors ob-

serve that if V1 > V2 > · · · > Vk are the largest points of a Poisson process on

(0,∞) with mean measure µ∗(x,∞) = x−α, then the set {Vi/Vk, i = 1, . . . , k − 1}

forms an i.i.d. sample from the Pareto distribution with tail x−α, x > 1, and

therefore taking the logarithms of the elements in the set would result in an

i.i.d. sample of exponential random variables with mean γ = 1/α. Further,

if the sequence of random variables X1, . . . , Xn are i.i.d. and exhibit regular

variation, then the largest order statistics should resemble points of a Pois-

son process with power intensity. It is therefore logical to test the samples
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{log
Xn−i,n
Xn−k,n

: i = 0, . . . , k − 1} for the null hypothesis of exponential distribu-

tion, and select the largest k at which the null hypothesis is not rejected as the

choice of sample fraction k used in the Hill estimator.

When the sequence {Xi} exhibits serial dependence, we modify the above

procedure. Recall the set ∆n, the output of our selection algorithm, from Section

4.2. For notational convenience, letLn denote the number of elements in ∆n, and

let X̄1, . . . , X̄Ln denote the random variables in the set ∆n. Further let X̄1,Ln ≤

· · · ≤ X̄Ln,Ln denote the order statistics from ∆n. Set

Qk,n =

√
k

2

 1
k

∑k−1
i=0

(
log

X̄Ln−i,Ln
X̄Ln−k,Ln

)2

(
1
k

∑k−1
i=1 log

X̄Ln−i,Ln
X̄Ln−k,Ln

)2 − 2

 . (4.12)

This is the moment statistic for the test of exponentiality. It can be shown that

its large sample distribution under the null hypothesis of exponentiality is the

standard normal distribution; see [14]. The authors in [42] then set an increasing

series of critical values for the test statistic, and we will do so here similarly. Set

ω to be some critical value, e.g. a 99% quantile with respect to the limiting

standard normal distribution. And let φn → ∞ be an increasing sequence as

n→∞. Set

Un = min(inf

{
k : 1 ≤ k ≤ Ln, |Qk,n| ≥ ω

√
φn
k

}
, Ln). (4.13)

We then use the Un upper order statistics from ∆n to estimate γ = 1/α using

the Hill estimator:

HUn,n =
1

Un

Un−1∑
i=0

log
X̄Ln−i,Ln

X̄Ln−Un,Ln
. (4.14)

We will show that under mild conditions, HUn,n →P γ. Many of the argu-

ments will be similar to those in [42]. We proceed as follows. For n ≥ 1, j = 1, 2,
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define

M j
φn,n

(t) =


0, if 0 ≤ t ≤ 1

φn

1
bφntc

∑bφntc−1
i=0

(
log

X̄Ln−i,Ln
X̄Ln−bφntc,Ln

)j
, if 1

φn
≤ t ≤ Ln

φn

1
Ln

∑Ln−1
i=0

(
log

X̄Ln−i,Ln
X̄1,Ln

)j
, if t > Ln

φn
.

We will be working with spaces of type D[0,∞), D2[0,∞), D[δ,∞), and

D2[δ,∞) for δ > 0. The D2 spaces will be endowed with the J1 topology. See

e.g. [60] for a comprehensive review of the J1 topology.

Theorem 4.3.1. Suppose Assumptions ∆′′, B, E, P , D, and R are satisfied. Let {φn}

be an increasing sequence with φn →∞ and φn = o(n
2|ρ|

1+2|ρ| ), φn = o(n/pn) as n→∞,

then

√
φnt

 M1
φn,n

(t)

γ
− 1

M2
φn,n

(t)

γ2
− 2

⇒
 W1(t)

W2(t)


in D2[0,∞), where ((W1(t),W2(t)), t ≥ 0) is a two-dimensional zero mean Brownian

motion with covariance matrix 1 4

4 20

 .
Proof. Since we are only dealing with elements Xi of X1, . . . , Xn such that

Xi > un, we can without loss of generality replace X1, . . . , Xn with X11(X1 >

un), . . . , Xn1(Xn > un).

We begin by using another sequence X ′1, . . . , X ′n that is somewhat “coupled”

to X1, . . . , Xn.

By Berbee’s Lemma (see e.g. Theorem 5.1 of [52]), for a sequence Y1, . . . , Yn ≥

0, and for each 1 ≤ i ≤ kn − 1, there exists a sequence Ỹ i
1 , . . . , Ỹ

i
n with the same
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joint distribution as Y1, . . . , Yn that is independent of Y1, . . . , Y(i−1)rn , and

P (Yk 6= Ỹ i
k for some k > irn) ≤ βYn,rn(0),

where in this case βYn,rn(0) is the β-coefficient defined with respect to the se-

quence Y1, . . . , Yn as in (4.8). We will call such a sequence Ỹ i
1 , . . . , Ỹ

i
n a coupling

sequence of Y1, . . . , Yn independent of Y1, . . . , Y(i−1)rn . Note here we only as-

sumed that Y1, . . . , Yn ≥ 0 for notational convenience.

In light of Berbee’s Lemma, we claim that there exists a sequence X ′1, . . . , X ′n

such that for i = 2, . . . , kn, X ′(i−1)rn+1, . . . , X
′
n is independent of X ′1, . . . , X ′(i−1)rn

,

and P (Xk 6= X ′k for some k) ≤ knβn,rn(un).

In fact, if for any arbitrary sequence Y1, . . . , Yn and for any 1 ≤ i ≤ kn − 1,

such a coupling sequence in Berbee’s Lemma can be constructed, then one can

construct X ′1, . . . , X ′n as follows.

1: for i = 1, 2, . . . , kn − 1 do
2: Construct a coupling sequence X̃ i

1, . . . , X̃
i
n of X1, . . . , Xn independent of

X1, . . . , X(i−1)rn

3: (X1, . . . , Xn)← (X1, . . . , Xirn , X̃
i
irn+1, . . . , X̃

i
n)

4: return (X1, . . . , Xn)

We denote the output of the above algorithm byX ′1, . . . , X ′n. By construction,

for i = 2, . . . , kn, X ′irn+1, . . . , X
′
n is independent of X ′1, . . . , X ′(i−1)rn

. Further, if

Xk 6= X ′k for some k, it must be that on some iteration i in the above algorithm,

the elements X̃ i
irn+1, . . . , X̃

i
n used for “replacements” differ from those that they

are replacing, and hence

P (Xk 6= X ′k for some k) ≤
kn−1∑
i=1

P (Xk 6= X̃ i
k for some k > irn) ≤ knβn,rn(un).

Now consider performing Algorithm 1 on the sequence X ′1, . . . , X ′n, and de-

note the output set of the algorithm by ∆′n. Also perform Algorithm 2 on the
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sequence X ′1, . . . , X ′n, and denote the output set of the algorithm by ∆̃′n.

Denote Jn the event that ∆n = ∆̃′n and that no two elements of ∆n come from

neighboring blocks of size rn. Note that by construction, conditioned on Jn, the

elements in ∆̃′n are independently and identically distributed.

Now, with straightforward algebra one sees

P (∆n = ∆̃′n) ≥ 1− P (∆n 6= ∆̃n)− P (∆̃n 6= ∆̃′n).

Note that by Corollary 4.2.4, P (∆n 6= ∆̃n) → 0 as n → ∞. Further, the

event ∆̃n 6= ∆̃′n is a subset of the event that there are new exceedances over the

threshold un in the sequence X ′1, . . . , X ′n that are not in the sequence X1, . . . , Xn,

or vice versa. Hence P (∆̃n 6= ∆̃′n) ≤ P (Xk 6= X ′k for some k) ≤ knβn,rn(un) → 0

as n → ∞ by Assumption B. It follows that P (∆n = ∆̃′n) → 1 as n → ∞.

Combined with Proposition 4.2.3, one sees that P (Jn)→ 1 as n→∞.

Now, defineM ′j
φn,n

(t), j = 1, 2, with respect to the set ∆̃′n similarly toM j
φn,n

(t),

j = 1, 2. First note that as n→∞,

P (M ′j
φn,n

(t) 6= M j
φn,n

(t) for some t ≥ 0) ≤ P (∆n 6= ∆̃′n)→ 0.

Hence as n→∞,

M ′j
φn,n

(t)−M j
φn,n

(t)→P 0 (4.15)

uniformly for t ≥ 0.

Conditioned on the event Jn, denote the elements of ∆̃′n as X̃ ′1, . . . , X̃ ′Ln .

The rest of this proof and the remaining proofs are very similar to those in

[42] with a few nuances. We will present them for the sake of completeness.
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Fix 0 < ε < |ρ|. Conditioned on Jn, as in Lemma 3.5.5 in [16], there are

i.i.d. Pareto(1)-like random variables Y1, . . . , YLn (specifically X̃ ′i = U(Yi) for

1 ≤ i ≤ Ln, hence Yi’s are Pareto(1) conditioned on Xi > un), a function A0 ∼ A,

and r0 > 0 with the property that

log

(
YLn−i,Ln
YLn−k,Ln

)
+ A0(YLn−k,Ln)

1

ρ

((
YLn−i,Ln
YLn−k,Ln

)ρ
− 1

)
(4.16)

− ε|A0(YLn−k,Ln)|1
ρ

(
YLn−i,Ln
YLn−k,Ln

)ρ+ε

≤1

γ
log

(
X̃ ′Ln−i,Ln
X̃ ′Ln−k,Ln

)

≤ log

(
YLn−i,Ln
YLn−k,Ln

)
+ A0(YLn−k,Ln)

1

ρ

((
YLn−i,Ln
YLn−k,Ln

)ρ
− 1

)
+ ε|A0(YLn−k,Ln)|1

ρ

(
YLn−i,Ln
YLn−k,Ln

)ρ+ε

if YLn−k,Ln > r0.

Hence for fixed T > 0 and again conditioned on ∆n = ∆̃′n, eventually for

large n, we have

bφntc√
φn

(
M ′j

φn,n
(t)

γ
− 1

)
≤ 1√

φn

bφntc−1∑
i=0

(
log

YLn−i,Ln
YLn−bφntc,Ln

− 1

)

+
1

ρ

√
φnA0(YLn−bφntc,Ln)

1

φn

bφntc−1∑
i=0

((
YLn−i,Ln

YLn−bφntc,Ln

)ρ
− 1

)

+
1

ρ

√
φn|A0(YLn−bφntc,Ln)| 1

φn

bφntc−1∑
i=0

((
YLn−i,Ln

YLn−bφntc,Ln

)ρ+ε
)

for every t ∈ [0, T ]. Note that all the terms on the right hand side above (which

we interpret as 0 for 0 ≤ t ≤ 1
φn

) are in D[0, T ]. Let us denote the second and

third terms by W (2)
n (t) and W

(3)
n (t), respectively. We start with showing that as

n→∞,

sup
0≤t≤T

|W (2)
n (t)| →P 0. (4.17)
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Since A0(YLn−bφntc,Ln )

A(YLn−bφntc,Ln )
→ 1 almost surely uniformly in t ∈ [0, T ], we will replace

A0 by A in this calculation. Further, |A| is eventually decreasing by Assumption

R, so far large enough n,

|A(YLn−bφntc,Ln)| ≤ |A(YLn−bφnT c,Ln)|

for all relevant t. Per Lemma 2.2.3 in [16], if U1,m ≤ · · · ≤ Um,m are the order

statistics from i.i.d. uniform random variables, then

m

lm
Ulm+1,m →P 1

as m → ∞ for some sequence lm → ∞, lm = o(m). Now, considering X̃ ′i =

U(Yi) for 1 ≤ i ≤ Ln, we can interpret Yi’s as i.i.d. Pareto(1) random variables

conditioned on the corresponding X̃ ′i > un. Hence writing F ′ as the distribution

of Y1, . . . , YLn , for large x, it follows that

F ′(x) =
1/x

F (un)
.

Further, we have that for k ≥ 0,

YLn−k,Ln =d (F ′)←(1− Uk+1,Ln).

Namely, for k ≥ 0,

1

F (un)YLn−k,Ln
=d Uk+1,Ln .

Since φn = o( n
pn

) as n→∞, which implies that φn/Ln →P 0 as n→∞, hence

bφnT cF (un)

Ln
YLn−bφntc,Ln →P 1.

Since A is regularly varying,

A(YLn−bφntc,Ln)

A( Ln
bφnT cF (un)

)
→P 1.
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Putting everything together, we see that in order to show (4.17), it is enough the

prove that for any ζ > 0, as n→∞,

P

 sup
0≤t≤T

∣∣∣∣∣∣√φnA(
Ln

bφnT cF (un)
)

1

φn

bφntc−1∑
i=0

((
YLn−i,Ln

YLn−bφntc,Ln

)ρ
− 1

)∣∣∣∣∣∣ > ζ

→ 0.

Combining the fact that pn
n
Nknrn(un) →P τ , θ̂n →P θ, pnF (un) → τ , and

Ln ≤ θ̂nNknrn(un), we have that√
φnA(

Ln

bφnT cF (un)
)→P 0

as n → ∞, by the growth assumption on the sequence {φn}. Now, let Z repre-

sent a generic Pareto(1) random variable. Let µρ = 1/(1− ρ) = EZρ. Then

P

 sup
0≤t≤T

∣∣∣∣∣∣√φnA(
Ln

bφnT cF (un)
)

1

φn

bφntc−1∑
i=0

((
YLn−i,Ln

YLn−bφntc,Ln

)ρ
− 1

)∣∣∣∣∣∣ > ζ


≤P

 sup
0≤t≤T

∣∣∣∣∣∣√φnA(
Ln

bφnT cF (un)
)

1

φn

bφntc−1∑
i=0

((
YLn−i,Ln

YLn−bφntc,Ln

)ρ
− µρ

)∣∣∣∣∣∣ > ζ/2


+ P

(
sup

0≤t≤T

∣∣∣∣√φnA(
Ln

bφnT cF (un)
)

1

φn
bφntc

ρ

1− ρ

∣∣∣∣ > ζ/2

)
.

By above, it follows that for large enough n,

P

 sup
0≤t≤T

∣∣∣∣∣∣√φnA(
Ln

bφnT cF (un)
)

1

φn

bφntc−1∑
i=0

((
YLn−i,Ln

YLn−bφntc,Ln

)ρ
− 1

)∣∣∣∣∣∣ > ζ


≤P

 sup
0≤t≤T

∣∣∣∣∣∣√φnA(
Ln

bφnT cF (un)
)

1

φn

bφntc−1∑
i=0

((
YLn−i,Ln

YLn−bφntc,Ln

)ρ
− µρ

)∣∣∣∣∣∣ > ζ/2

 .

Now, the process above is a step function with jumps at multiples of 1
φn

, so

the largest value of the process occurs at one of those steps. Therefore, the above

probability does not exceed

bφnT c∑
j=1

P

(
sup

0≤t≤T

∣∣∣∣∣√φnA(
Ln

bφnT cF (un)
)

1

φn

j−1∑
i=0

((
YLn−i,Ln

YLn−bφntc,Ln

)ρ
− µρ

)∣∣∣∣∣ > ζ/2

)
.
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Since F (un)Yi =d Z for 1 ≤ i ≤ Ln, by the Renyi representation, for fixed j,{
YLn−i,Ln
YLn−j,Ln

}
i

=d {Zj−i,j}i, where Z0, . . . , Zj−1 are i.i.d. Pareto(1) random vari-

ables. Hence by Chebyshev’s inequality,

bφnT c∑
j=1

P

(
sup

0≤t≤T

∣∣∣∣∣√φnA(
Ln

bφnT cF (un)
)

1

φn

j−1∑
i=0

((
YLn−i,Ln

YLn−bφntc,Ln

)ρ
− µρ

)∣∣∣∣∣ > ζ/2

)

≤
bφnT c∑
j=1

(√
φnA(

Ln

bφnT cF (un)
)

)2
4

ζ2φ2
n

E

[
j−1∑
i=0

((
YLn−i,Ln

YLn−bφntc,Ln

)ρ
− µρ

)]2

=

bφnT c∑
j=1

(√
φnA(

Ln

bφnT cF (un)
)

)2
4

ζ2φ2
n

(jVar(Zρ))

=

(√
φnA(

Ln

bφnT cF (un)
)

)2
4

ζ2
Var(Zρ)

1

φ2
n

bφnT c∑
j=1

j → 0

as n → ∞, by the growth assumption of the sequence {φn}. This proves (4.17).

Similarly one can show that as n→∞,

sup
0≤t≤T

|W (3)
n (t)| →P 0. (4.18)

Similarly applying the corresponding lower bounds, and taking note of (4.15),

we have that

bφntc√
φn

(
M1

φn,n
(t)

γ
− 1

)
− 1√

φn

bφntc−1∑
i=0

(
log

YLn−i,Ln
YLn−bφntc,Ln

− 1

)
→P 0

for t ∈ [δ,∞) for any δ > 0, uniformly on compact intervals. Next, re-

call that F (un)Y1 is distributed as a Pareto(1) random variable, and there-

fore log(F (un)Y1) is a standard exponential random variable, so the differences

log YLn−i,Ln − log YLn−i−1,Ln , i = 0, . . . , Ln are independent exponential random

variables with means 1/(i+1), i = 0, . . . , Ln. Therefore, denoting the ith of those

exponential random variables by Ei/(i+ 1), we see that for k = 1, . . . , Ln,

k−1∑
i=0

log
YLn−i,Ln
YLn−k,Ln

=
k−1∑
i=0

Ei.
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Therefore,

bφntc√
φn

(
M1

φn,n
(t)

γ
− 1

)
− 1√

φn

bφntc−1∑
i=0

(Ei − 1)→P 0

for t ∈ [δ,∞), uniformly on compact intervals. Squaring (4.16) and repeating

the argument also gives us

bφntc√
φn

(
M2

φn,n
(t)

γ
− 1

)
− 1√

φn

bφntc−1∑
i=0

(
E2
i − 2

)
→P 0

for t ∈ [δ,∞), uniformly on compact intervals.

By Theorem 12.6.1 and Remark 12.6.2 in [60], the statement of the proposi-

tion will follow once we check that

1√
φn

 ∑bφntc−1
i=0 (Ei − 1)∑bφntc−1
i=0 (E2

i − 2)

⇒
 W1(t)

W2(t)


in D[δ,∞), where ((W1(t),W2(t)), t ≥ δ) is a two-dimensional zero mean Brow-

nian motion with covariance matrix1 4

4 20

 .
This is, however, an immediate consequence of the multivariate version of

Donsker’s theorem; see e.g. Theorem 4.3.5 in [60].

Now, with the above theorem, and recalling that

Un = min(inf

{
k : 1 ≤ k ≤ Ln, |Qk,n| ≥ ω

√
φn
k

}
, Ln),

we have the following result.

Theorem 4.3.2. Suppose Assumptions ∆′′, B, E, P , D, and R are satisfied. Let ω > 0

and {φn} an increasing sequence with φn → ∞ and φn = o(n
2|ρ|

1+2|ρ| ), φn = o(n/pn) as

n → ∞. Then Un
φn
⇒ τω, where τω is the first time a standard Brownian motion hits

±ω.

100



Proof. We begin by showing that for any δ > 0,

√
tQ∗n(t)⇒ 1

2
(W2(t)− 2W1(t)) (4.19)

in D[δ,∞), where ((W1(t),W2(t)), t ≥ δ) is the two-dimensional Brownian mo-

tion from the proposition above, and

Q∗n(t) =


Qbφntc,n, if δ ≤ t ≤ Ln

φn

QLn,n, if t > Ln
φn
.

By Theorem 16.7 of [7], we have to prove convergence in D[δ, T ] for each δ <

T <∞. Fix T > δ. Straightforward algebra shows that

√
tQ∗n(t) =

√
φnt

2

(M2
φn,n

(t)/γ2 − 2)− 4(M1
φn,n

(t)/γ − 1)

(M1
φn,n

(t))2/γ2

−
√
φnt

(M1
φn,n

(t)/γ − 1)2

(M1
φn,n

(t))2/γ2
:= V (1)

n (t)− V (2)
n (t),

δ ≤ t ≤ T , while for 0 ≤ t ≤ 1/φn, we define both V (1)
n (t) = V

(2)
n (t) = 0. Call

D(1)
n (t) =

√
φnt

2

[
(M2

φn,n(t)/γ2 − 2)− 4(M1
φn,n(t)/γ − 1)

]
, δ ≤ t ≤ T.

Since the limiting process in Theorem 4.3.1 is continuous, the weak convergence

holds also in the uniform topology on [δ, T ], and addition is continuous in the

topology. By Proposition 4.3.1 and the continuous mapping theorem,

D(1)
n (t)⇒ 1

2
(W2(t)− 4W1(t))

in D[δ, T ]. Furthermore by Proposition 4.3.1,

M1
φn,n(t)/γ →P 1

uniformly on [δ, T ]. By Theorem 3.1 in [7] we can conclude that

V (1)
n (t)⇒ 1

2
(W2(t)− 4W1(t))
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in D[δ, T ]. Similarly we can show that

V (2)
n (t)→P 0

uniformly on [δ, T ]. So we can once again apply Theorem 3.1 in [7] to obtain

(4.19).

For fixed 0 < x < bLn/φnc, and we can write

P (Un ≤ φnx) = P

(
|Qk,n| ≥ ω

√
φn
k

for some 1 ≤ k ≤ φnx

)
.

Therefore for 0 < δ < x we have

P

(
|Qk,n| ≥ ω

√
φn
k

for some φnδ ≤ k ≤ φnx

)
≤ P (Un ≤ φnx)

≤ P

(
|Qk,n| ≥ ω

√
φn
k

for some φnδ ≤ k ≤ φnx

)

+ P

(
|Qk,n| ≥ ω

√
φn
k

for some 1 ≤ k ≤ φnδ

)
.

We will show that for any 0 < δ < x,

lim
n→∞

P

(
|Qk,n| ≥ ω

√
φn
k

for some φnδ ≤ k ≤ φnx

)
(4.20)

=P

(
sup
δ≤t≤x

|B(t)| ≥ ω

)
,

where (B(t), t ≥ 0) is a standard Brownian motion, while

lim
δ→0

lim sup
n→∞

P

(
|Qk,n| ≥ ω

√
φn
k

for some 1 ≤ k ≤ φnδ

)
= 0. (4.21)

It will following from above relations that

P (Un ≤ φnx)→ P

(
sup

0≤t≤x
|B(t)| ≥ ω

)
= P (τω ≤ x),

with φn = o(n/pn), and therefore φn/Ln →P 0, the above holds for all x > 0,

which is what we need for the statement of the theorem.
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Observe that for any δ > 0,

P

(
|Qk,n| ≥ ω

√
φn
k

for some φnδ ≤ k ≤ φnx

)

= P

(
|
√
tQ∗k,n| ≥

√
tω

√
φn
bφntc

for some δ ≤ t ≤ x

)

= P
(
|
√
tQ∗k,n| ≥ ω(1 + o(1)) for some δ ≤ t ≤ x

)
(with the same o(1) for all relevant t). Now (4.20) follows from (4.19) and the

continuity of the supremum distribution of the Brownian motion.

Now, for a fixed n and k, choose some t such that bφntc = k, and write

M j
k,n := M j

φn,n
(t)

for j = 1, 2. In order to show (4.21), we start with showing that, for any δ > 0,

both

inf
1≤k≤φnδ

M1
k,n is stochastically bounded away from 0, and (4.22)

sup
1≤k≤φnδ

M1
k,n is stochastically bounded away from∞.

To see this, recall that in the proof of Proposition 4.3.1,

(M1
k,n, 1 ≤ k ≤ φnδ) = (M1,Y

k,n γ +Wk,n, 1 ≤ k ≤ φnδ),

where ((M1,Y
k,n ) is composed of Pareto-like random variables while

sup
1≤k≤φnδ

|Wk,n| →P 0.

Further, we’ve also verified that

(M1,Y
k,n , 1 ≤ k ≤ φnδ) =d (

1

k

k∑
i=1

Ei, 1 ≤ k ≤ φnδ),

where E1, E2, . . . are i.i.d. standard exponential random variables. Hence (4.22)

follows from the law of large numbers.
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We continue by writing

P

(
|Qk,n| ≥ ω

√
φn
k

for some 1 ≤ k ≤ φnδ

)

= P

(
k

∣∣∣∣∣M2
k,n − 2(M1

k,n)2

2(M1
k,n)2

∣∣∣∣∣ ≥ ω
√
φn for some 1 ≤ k ≤ φnδ

)
.

Hence using (4.22), in order to prove (4.21), it is enough to show that

lim
δ→0

lim sup
n→∞

P
(
|Rk,n| ≥ ω

√
φn for some 1 ≤ k ≤ φnδ

)
= 0, (4.23)

where

Rk,n = k
M2

k,n − 2(M1
k,n)2

2(M1
k,n)2

, k = 1, . . . , n.

Straightforward algebra shows that the above probability is

P

(
k

2

∣∣∣∣(M2
k,n

γ2
− 2

)
− 4

(
M1

k,n

γ
− 1

)
−2

(
M1

k,n

γ
− 1

)2
∣∣∣∣∣ · γ2

(M1
k,n)2

≥ ω
√
φn for some 1 ≤ k ≤ φnδ

)
.

Now from the proof of Proposition 4.3.1,

γ2

(M1
k,n)2

→P 1

uniformly in k = 1, . . . , n. And by (4.22), we can write

P
(
|Rk,n| ≥ ω

√
φn for some 1 ≤ k ≤ φnδ

)
≤P

(
k

2

(∣∣∣∣M2
k,n

γ2
− 2

∣∣∣∣+ 4

∣∣∣∣M1
k,n

γ
− 1

∣∣∣∣) (1 +Kn) ≥ ω
√
φn for some 1 ≤ k ≤ φnδ

)
,

where Kn →P 0 as n→∞. So

lim
n→∞

P

(
k

2

(∣∣∣∣M2
k,n

γ2
− 2

∣∣∣∣+ 4

∣∣∣∣M1
k,n

γ
− 1

∣∣∣∣) (1 +Kn) ≥ ω
√
φn for some 1 ≤ k ≤ φnδ

)
= lim

n→∞
P

(
k

2

(∣∣∣∣M2
k,n

γ2
− 2

∣∣∣∣+ 4

∣∣∣∣M1
k,n

γ
− 1

∣∣∣∣) ≥ ω
√
φn for some 1 ≤ k ≤ φnδ

)
.
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Lastly, by Proposition 4.3.1,

P

(
k

2

(∣∣∣∣M2
k,n

γ2
− 2

∣∣∣∣+ 4

∣∣∣∣M1
k,n

γ
− 1

∣∣∣∣) ≥ ω
√
φn for some 1 ≤ k ≤ φnδ

)
= P

(
sup

0≤t≤δ

√
φnt

(∣∣∣∣∣M
2
bφntc,n

γ2
− 2

∣∣∣∣∣+ 4

∣∣∣∣∣M
1
bφntc,n

γ
− 1

∣∣∣∣∣
)
≥ 2ω

)

→ P ( sup
0≤t≤δ

|B(t)| > 2ω),

where (B(t), t ≥ 0) is some Brownian motion, and (4.21) follows. This completes

the proof.

Now we can present the main theorem of this section. Recall that γ = 1/α,

the reciprocal of the regular variation index α.

Theorem 4.3.3. Suppose Assumptions ∆′′, B, E, P , D, and R are satisfied. Let ω > 0

and {φn} be an increasing sequence with φn → ∞ and φn = o(n
2|ρ|

1+2|ρ| ), φn = o(n/pn)

as n→∞. Let Un be given as in (4.13). Then the Hill estimator based on the Un upper

statistics is consistent, namely,

HUn,n =
1

Un

Un−1∑
i=0

log
X̄Ln−i,Ln

X̄Ln−Un,Ln
→P γ

as n→∞. Furthermore,

√
φn

(
HUn,n

γ
− 1

)
⇒ G

(τω)1/2
, (4.24)

where G is a standard normal random variable indepedent of the first hitting time τω.

Proof. The idea is to use a random stopping technique in a weak convergence

context. The formulation we will use is the one given in Theorem 2.2.1 in [56].

If, for each n, (Xn(t), t ≥ 0) is a càdlàg process, and τn is a nonnegative random
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variable, such that for all 0 ≤ a < b <∞,(
τn, sup

t∈[a,b)

Xn(t)

)
⇒

(
τ0, sup

t∈[a,b)

X0(t)

)
, (4.25)(

τn, inf
t∈[a,b)

Xn(t)

)
⇒
(
τ0, inf

t∈[a,b)
X0(t)

)
for some continuous process (X0(t), t ≥ 0) and a nonnegative random variable

τ0, then Xn(τn)⇒ X0(τ0).

Note that it is enough to prove the weak convergence (4.24) as the consis-

tency result follows automatically. Note that (4.24) is equivalent to

√
φn

1

Un

Un−1∑
i=0

(
1

γ
log

X̄Ln−i,Ln

X̄Ln−Un,Ln
− 1

)
⇒ G

(τω)1/2
. (4.26)

We will show that for any δ > 0,

√
φn

1

Un ∨ φnδ

bUn∨φnδc−1∑
i=0

(
1

γ
log

X̄Ln−i,Ln

X̄Ln−bUn∨φnδc,Ln
− 1

)
⇒ G

(τω ∨ δ)1/2
. (4.27)

Then (4.26) will follow from (4.21).

Note that the expression in the left hand side of (4.27) results from a substi-

tution of the random time

τn = max

(
δ,
Un
φn

)
into the càdlàg process

Vn(t) =
√
φn

1

φnt

bφntc−1∑
i=0

(
1

γ
log

X̄Ln−i,Ln

X̄Ln−bφntc,Ln
− 1

)
, t ≥ δ.

According to (4.25) and to self-similarity of the Brownian motion, it is enough

to check that for all δ ≤ a < b <∞,(
max

(
δ,
Un
φn

)
, sup
t∈[a,b)

Vn(t)

)
⇒

(
τω ∨ δ, sup

t∈[a,b)

B(t)

t

)
, (4.28)
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where τω is as before, the first hitting time of a standard Brownian motion, in-

dependent of another standard Brownian motion B. The proof for the analogue

statement where the suprema is replaced by the infima is similar.

In order to show (4.28), it is enough to show that for any x ≥ δ and y ≥ 0,

P

(
Un ≤ φnx, sup

t∈[a,b)

Vn(t) ≤ y

)
→ P

(
τω ≤ x, sup

t∈[a,b)

B(t)

t
≤ y

)
.

This statement will follow once we check that for every 0 < δ′ < x,

P

(
φnδ

′ ≤ Un ≤ φnx, sup
t∈[a,b)

Vn(t) ≤ y

)
→ P

(
sup
δ′≤t≤x

|B1(t)| ≥ ω, sup
t∈[a,b)

B(t)

t
≤ y

)
,

where B and B1 are independent standard Brownian motions, which, in turn,

will be implied by the statment

P

(
sup
δ′≤t≤x

|
√
tQ∗n(t)| ≥ ω, sup

t∈[a,b)

Vn(t) ≤ y

)
(4.29)

→P

(
sup
δ′≤t≤x

|B1(t)| ≥ ω, sup
t∈[a,b)

B(t)

t
≤ y

)
.

To this end note that

Vn(t) =
1

t

[√
φnt

(
M1

φn,n
(t)

γ
− 1

)]
,

and the map (f(t), t ≥ δ) → (f(t)/t, t ≥ δ) is continuous on D[δ,∞). Therefore,

the argument leading to (4.19) applies, and it gives joint convergence √tQ∗n(t), t ≥ δ′

Vn(t), t ≥ δ′

⇒
 1

2
(W2(t)− 4W1(t)), t ≥ δ′

W1(t)
t
, t ≥ δ′

 ,
whereW1 andW2 are as in Proposition 4.3.1. Computing correlations shows that

W1 and (W2 − 4W1)/2 are independent standard Brownian motions. Therefore

(4.29) follows and the proof of the theorem is complete.
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4.4 Testing the Estimator - Simulation Study

In this section we will test the estimator (4.14) on simulated data. For conve-

nience we will refer to (4.14) as the distance based modified Hill estimator. Now,

instead of using the distance based selection Algorithm 1, one can use the blocks

based Algorithm 2; replacing the elements of ∆n in (4.14) by elements of ∆̃n, one

can produce a different estimator. We will call this the blocks based modified

Hill estimator. One can see from the previous chapter that the asymptotic con-

sistency results still hold for the blocks based modified Hill estimator. We will

test the properties of both the above estimators, denoted Modified HillD and

Modified HillB, respectively, for distance based and blocks based.

It is difficult to find a benchmark against which the performance of (4.14)

can be measured. This is due to the fact that, in practice, the choice of the num-

ber k of upper statistic is often found through visual inspection of the Hill plot.

Further, we are not able to find any systemic approaches in literature to deter-

mine the choice of k when data exhibits serial dependence. In light of this, for

benchmarking purposes, we will use k =
√
n upper order statistics for the Hill

estimator. Again for convenience we will refer to this benchmark estimator as

the regular Hill estimator, or just the Hill estimator.

We have drawn samples from the ARCH(1) process and the MA(q) process.

Recall that the MA(q) process (Xi) is defined as

Xi = pqZi−q + pq−1Zi−q+1 + · · ·+ p1Zi−1 + Zi, i ≥ 1 , (4.30)

with 0 < p1, . . . , pq < 1, and the noise sequence consisting of i.i.d. Pareto ran-
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dom variables Z−(q−1), . . . , Z0, Z1, . . . with

P (Z0 > x) =


1, if x < 1

x−α, if x ≥ 1,

(4.31)

for some α > 0. In this case the regular variation index of the sequence is α, and

the extremal index is

θ =
1

1 + pα1 + · · ·+ pαq
.

The ARCH(p) process is defined by the equations

Xi = σiZi i ≥ 1 , (4.32)

where {Zi} is a sequence of i.i.d. standard normal random variables, and σi

obeys the relation

σ2
i = β +

p∑
j=1

λiX
2
i−j. (4.33)

We will focus on the ARCH(1) process, whose index of regular variation can be

numerically determined from the parameters. Some of those numerical solu-

tions can be found in [22].

The extremal index of an ARCH(1) process can be computed as follows. First

we look at the absolute value process (|Xi|). Its extremal index is

θ|X| = lim
k→∞

E

|Z1|α − max
j=2,...,k+1

∣∣∣∣∣Z2
j

j∏
i=2

Ai

∣∣∣∣∣
α/2


+

/
E|Z1|α ,

where α is the index of regular variation, Ai = λ1Z
2
i−1 for i ≥ 1, and x+ denotes

max(x, 0) for x ∈ R. The extremal index for the sequence (Xi) is

θ = 2θ|X|(1− Π̃(0.5)) ,
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where Π̃ is the probability generating function of the compounding probabilities

of a compound Poisson process; see e.g. [39].

We test the effect of the estimator (4.14) against different values of α using

different types of processes. We used a finite sample length of n = 10000. For

the estimator (4.14), we choose un to correspond to the (b
√
nc + 1)-th largest

observation in the sample. Namely, our selection algorithm chooses observa-

tions from the benchmark set of upper order statistics. Note that in this case
√
n = 100, meaning we are using the top 1% of the data. We choose a block

size of rn = 50 when computing the blocks estimator for the extremal index. We

choose ω to correspond to the 95% quantile of a standard normal distribution,

and finally, set φn = (log n)2. The Monte Carlo mean and root mean squared

error of 10000 simulated instances of the estimators are presented below.

Method Hill Modified HillB Modified HillD
Process α Mean RMSE Mean RMSE Mean RMSE
ARCH 1.08 1.18 0.264 1.15 0.228 1.14 0.200
ARCH 2.0 2.07 0.324 2.04 0.304 2.02 0.268
ARCH 2.3 2.35 0.341 2.31 0.326 2.29 0.295

MA 1.0 1.04 0.148 1.02 0.153 1.01 0.132
MA 2.0 2.22 0.362 2.13 0.325 2.12 0.288
MA 2.5 2.87 0.523 2.74 0.450 2.71 0.404

Table 4.1: Mean and root mean squared error of the regular Hill estimator and
the modified Hill estimators. Data are generated using ARCH and Moving Av-
erage models with different values of α and a sequence length of n = 10000.

We see that in each instance the distance based modified Hill estimator out-

performs both the blocks based modified Hill estimator as well as the regular

Hill estimator, in terms of having both a smaller bias and a smaller root mean

squared error. Compared to the regular Hill estimator, the blocks based mod-

ified Hill estimator produces a smallr bias in every case. However for smaller
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values of α for the moving average process, the blocks based modified Hill es-

timator produces too large of a standard error, resulting in a higher root mean

squared error than the regular Hill estimator. Simulated sequences with sizes

n = 5000 and n = 20000 are also used to test the estimators, with results having

the same qualitative structure. Those results are presented in Appendix B. This

suggests that our distance based selection algorithm that systemically removes

clustered observations does indeed help improve the Hill estimator, and in some

cases significantly so. Further, even though asymptotically, the distance based

and the blocks based selection algorithms produce the same set with probability

1, the distance based modified Hill estimator still outperforms the blocks based

Hill estimator in finite samples.

Next let us test the sensitivity of our estimators with respect to the threshold

un. For this we will focus on an ARCH(1) process with α = 2. We keep the same

setup as the previous exercise, but vary the threshold un to correspond to the

(bi% · nc + 1)-th largest observation in the sample, for i = 0.5, 0.6, . . . , 1.5. Note

that the previous exercise corresponds to the case when i = 1.

0.5% 0.6% 0.7% 0.8% 0.9% 1.0% 1.1% 1.2% 1.3% 1.4% 1.5%

0.25

0.30

0.35

0.40

0.45

0.50

Figure 4.1: Root mean squared error for the distance based modified Hill esti-
mator (solid line), the blocks based modified Hill estimator (dotted line), and
the regular Hill estimator (dot-dash line) plotted against percentage of largest
order statistics used for estimation. Data are simulated from an ARCH(1) model
with α = 2.
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The Monte Carlo root mean squared error of 10000 simulated instances of

the estimators are presented above. One sees that again, the distance based

modified Hill estimator outperforms the other two estimators at all levels of

thresholds; whereas the blocks based modified Hill estimator outperforms the

regular Hill estimator when more data is used. For all three estimators, the

general trend of the root mean squared errors is decreasing as the threshold un

decreases. However, (not shown) the trend reverses and the root mean squared

errors start to increase as the threshold un continues to decrease, due to the

increasing magnitude of the bias. Similar graphs for the bias and the standard

errors of the estimators are included in Appendix B.

Lastly we will test the sensitivity of the estimators with respect to the block

size rn. We again use the ARCH(1) process with α = 2. Keeping the same

setup as our first exercise, we vary the block size rn = 20, 30, . . . , 80. The Monte

Carlo root mean squared error of 10000 simulated instances of the estimators

are presented below.

20 30 40 50 60 70 80

0.26

0.28

0.30

0.32

Figure 4.2: Root mean squared error for the distance based modified Hill esti-
mator (solid line), the blocks based modified Hill estimator (dotted line), and
the regular Hill estimator (dot-dash line) plotted against rn, the block size used
for extremal index estimation. Data are simulated from an ARCH(1) model with
α = 2.

We see that there is no discernable trend in the relationship between the

112



modified Hill estimators and the changing block sizes. In fact, the estimators

seem significantly less sensitive to the varying block sizes rn than they are to

the varying choice of threshold un. Similar graphs for the bias and the standard

errors of the estimators are included in Appendix B.
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APPENDIX A

LIMITING THEORY FOR THE BIAS-CORRECTED ESTIMATOR (3.33)

Here we present the limiting theory for the estimator (3.33). The chief con-

cern is the asymptotic form of the bias term for the blocks estimator (3.2). We

will adopt the same notations as in Chapter 3. Recall that the blocks estimator

has the form

θ̂n =

∑kn
i=1 1

(
M(i−1)rn,irn > un

)∑knrn
i=1 1

(
Xi > un

) =
M̂n(un)

τ̂n(un)
. (A.1)

It suffices to show that as n→∞, the bias of the estimator θ̂n is

E[θ̂n]− θ =c1
τ

kn
+ c2

1

rn
+ o(

1

kn
) + o(

1

rn
) (A.2)

for some c1, c2 ∈ R. Then through straight forward algebra, and ignoring the

o( 1
kn

)+o( 1
rn

) terms, one can correct for the bias and arrive at the estimator (3.33).

Let us first introduce some assumptions we will use in this appendix.

Note that there is some sequence pn → ∞ such that pnF (un) → τ for some

τ > 0. We would like a more direct finite-sample relationship between the quan-

tities pn, F (un) and τ . In this case we will assume

τ

pnF (un)
= 1 + ξn, (A.3)

where ξn = ξn(un) = op(1) represents the “error” ratio between τ and pnF (un).

Further, we note that a part of the bias, E[θ̂n] − θ, comes from the fact that

the expected value of a function (in this case the binary function representing

division) is often not equal to the function applied to the expected value of its

arguments. This difference can be found and bounded using Taylor’s theorem.
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In order to properly bound the remainder term, we must assume the following

p2
n

n2
(M̂n(un)− E[M̂n(un)])3 →P 0,

p2
n

n2
(τ̂n(un)− E[τ̂n(un)])3 →p 0, (A.4)

as n→∞.

We will also need to make some slightly stricter assumptions in conjunction

with those in Chapter 3. We assume that there exists some sequence {ln} such

that

ln/rn → 0, (pn/rn)2αn,ln(un)→ 0. (A.5)

In this case, we can devise another sequence {sn} such that

ln/sn → 0, sn/rn → 0, (pn/sn)2αn,ln(un)→ 0. (A.6)

Remark A.0.1. Similarly to assumptions made in Chapter 3, this assumption

only requires that the block sizes rn to be “large enough”, and the examples

given in Chapter 3 still satisfy the above assumption.

We will break down the bias E[θ̂n]− θ into two parts. Let us denote

θn =
E[M̂n(un)]

E[τ̂n(un)]
=
knP (Mrn > un)

knrnF (un)
= (1 + ξn)

pn
rn

P (Mrn > un)

τ
. (A.7)

Now we can write the bias as

E[θ̂n]− θ =(E[θ̂n]− θn) + (θn − θ)

=(E[θ̂n]− θn) + bn, (A.8)

where bn = θn − θ.
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For the first part of the above sum, we will approximate using the same

technique as that in Section 6 of [53]. Namely, one notes that the difference

E[θ̂n]− θn stems from the fact that the mean of a function of a random vector is

in general different from this function applied to the mean of the random vector.

To approximate this difference we use the multivariate Taylor expansion. Recall

that for a function f in two variables x and y, the Taylor expansion to the second

order about the point (a, b) is

f(x, y) ≈f(a, b) + (x− a)fx(a, b) + (y − b)fy(a, b)

+
1

2

(
(x− a)2fxx(a, b) + 2(x− a)(y − b)fxy(a, b) + (y − b)2fyy(a, b)

)
.

We now use the above formula on the function f(x, y) = x
y
, about the point(

pn
n
E[M̂n(un)], pn

n
E[τ̂n(un)]

)
. Recalling the definitions of θ̂n and θn, and setting

x = pn
n
M̂n(un) and y = pn

n
τ̂n(un), then taking expectations,

E[θ̂n]− θn ≈−
E[(M̂n(un)− E[M̂n(un)])(τ̂n(un)− E[τ̂n(un)]]

E[τ̂n(un)]2

+
E[M̂n(un)]E[(τ̂n(un)− E[τ̂n(un)])2]

E[τ̂n(un)]3

=− cov(τ̂n(un), M̂n(un))

E[τ̂n(un)]2
+
E[M̂n(un)]

E[τ̂n(un)]3
var(τ̂n(un)).

We note that there is a remainder term, εn, associated with the Taylor expan-

sion. However by Taylor theorem and Assumption A.4, εn = oP (pn
n

) as n→∞.

Using asymptotic results from Chapter 3, it follows that

E[θ̂n]− θn ∼
pn
n
· (θ

2µ2 − 1

τ
+ εn), (A.9)

where εn = oP (1) as n→∞.

Let us introduce another quantity that approximates θ. Let

θ̃n(un) := P (X1 ≤ un, X2 ≤ un, . . . , Xsn ≤ un|Xsn+1 > un). (A.10)
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We will use the relationship between P (Mrn > un) and θ̃n to arrive at an

asymptotic expression for the bias term bn.

Proposition A.0.2. Let {Xi} be a stationary sequence with extremal index θ. Assume

∆′, (A.5) and (A.6) hold. Then as n→∞, θ̃n(un)→ θ.

Remark A.0.3. Note that the above has been shown in literature under various

different conditions. We use (A.5) and (A.6) to be able to get a handle on the

bias term.

Proof. By (3.8), we already have that as n→∞,

P (Mrn > un)

rnP (X1 > un)
→ θ.

Now write

P (Mrn > un) =P (X1 > un) + P (X1 ≤ un, X2 > un)

+ P (X1 ≤ un, X2 ≤ un, X3 > un)

+ · · ·+ P (X1 ≤ un, X2 ≤ un, . . . , Xsn−1 ≤ un, Xsn > un)

+
rn∑

i=sn+1

P (Xi−sn ≤ un, Xi−sn+1 ≤ un, . . . , Xi−1 ≤ un, Xi > un)

− P (An), (A.11)

where An denotes the event that there exist some 1 ≤ i < j ≤ rn with j − i >

sn, such that Xi, Xj > un, and Xi+1, . . . , Xj−1 ≤ un. Namely, that Xi, Xj are

exceedances over un, with no inter-exceedances in between.

Since sn = o(rn) as n→∞, and each of the the first sn terms of the sum is at
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most P (X1 > un), it follows that as n→∞,

P (Mrn > un)

rnP (X1 > un)
∼
∑rn

i=sn+1 P (Xi−sn ≤ un, Xi−sn+1 ≤ un, . . . , Xi−1 ≤ un, Xi > un))

rnP (X1 > un)

− P (An)

rnP (X1 > un)

∼P (X1 ≤ un, X2 ≤ un, . . . , Xsn ≤ un|Xsn+1 > un)− pnP (An)

rnτ
.

So it just remains to show that pn
rn
P (An) → 0 as n → ∞. We do so by showing

that as n→∞, P (An) ∝ (rn/pn)2.

Write tn = brn/snc. We divide the first rn observations into tn contiguous

blocks of size sn. Let Bn denote the event that exactly two of those blocks of size

sn have exceedances over un, and that the two blocks are not consecutive. More

specifically, Bn denotes the even that there exist some 1 ≤ i < i + 1 < j ≤ tn,

such that M(i−1)sn ≤ un, M(i−1)sn,isn > un, Misn,(j−1)sn ≤ un, M(j−1)sn,jsn > un,

Mjsn,tnsn ≤ un.

Let Cn denote the even that at least two of those blocks (we will include the

block that comes after the first tnsn observations) of have exceedances over un.

More specifically, Cn denotes the event that there exist some 1 ≤ i < j ≤ tn + 1,

such that M(i−1)sn,isn > un, M(j−1)sn,jsn > un.

It is not hard to see that Bn ⊂ An ⊂ Cn. We will show that P (Bn) ∼ P (Cn) as

n→∞, and obtain the asymptotic form for P (An).
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Let us look at P (Bn).

P (Bn) =
∑

1≤i<i+1<j≤tn

P (M(i−1)sn ≤ un,M(i−1)sn,isn > un,Misn,(j−1)sn ≤ un,

M(j−1)sn,jsn > un,Mjsn,rn ≤ un)

≥
∑

1≤i<i+1<j≤tn

P (M(i−1)sn ≤ un,M(i−1)sn+ln,isn−ln > un,Misn,(j−1)sn ≤ un,

M(j−1)sn+ln,jsn−ln > un,Mjsn,rn ≤ un)

≥
∑

1≤i<i+1<j≤tn

P (M(i−1)sn ≤ un)P (M(i−1)sn+ln,isn−ln > un)

P (Misn,(j−1)sn ≤ un)P (M(j−1)sn+ln,jsn−ln > un)P (Mjsn,rn ≤ un)

−O(t2nαn,ln(un)) (A.12)

We will show that the sum in the above expression is asymptotically equivalent

to t2n
2
P (Msn > un)2 as n → ∞. Let us first show that the expression in the big

O notation is asymptotically negligible by comparison. By condition (A.6), it

follows that P (Msn > un) ∼ rn
pn

τθ
tn
∼ sn

pn
τθ as n→∞. Therefore as n→∞,

O(t2nαn,ln(un))
t2n
2
P (Msn > un)2

∼ O
(
(pn/sn)2αn,ln(un)

)
→ 0, (A.13)

where the limit is by assumption (A.6).

Now, since P (Mrn ≤ un) → 1 as n → ∞, it follows that P (M(i−1)sn ≤

un), P (Misn,(j−1)sn ≤ un), P (Mjsn,rn ≤ un) → 1 as n → ∞. Further, because

ln = o(sn) as n→∞, it follows that P (Msn−2ln > un) ∼ P (Msn > un) as n→∞.

Therefore by stationarity, as n→∞,

∑
1≤i<i+1<j≤tn

P (M(i−1)sn ≤ un)P (M(i−1)sn+ln,isn−ln > un)P (Misn,(j−1)sn ≤ un)

P (M(j−1)sn+ln,jsn−ln > un)P (Mjsn,rn ≤ un)−O(t2nαn,ln(un))

∼ t2n
2
P (Msn > un)2. (A.14)
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But since P (Msn > un) ∼ rn
pn

τθ
tn

as n→∞, we have

t2n
2
P (Msn > un)2 ∼ t2n

2

(rnτθ)
2

(pntn)2
=

(rnτθ)
2

2p2
n

. (A.15)

Hence, combining (A.12), (A.13), (A.14) and (A.15), it follows that

lim infn→∞ P (Bn)/ (rnτθ)2

2p2n
≥ 1.

Similarly one can show that lim supn→∞ P (Cn)/ (rnτθ)2

2p2n
≤ 1. Then, since Bn ⊂

An ⊂ Cn, it follows that P (An) ∼ (rnτθ)2

2p2n
as n→∞. This completes the proof.

From the expression (A.11) of P (Mrn > un), we notice the first sn terms are

different. We claim that this contributes partly to the bias term bn. By stationar-

ity, and using (A.10) and (A.11), the term P (Mrn > un) can be written as

P (Mrn > un) =rnθ̃(un)P (X1 > un) + Tn(un)− P (An), (A.16)

where

Tn(un) =P (Xsn+1 > un,Msn > un) + P (Xsn+1 > un, Xsn ≤ un,Msn−1 > un)

+ · · ·+ P (Xsn+1 > un, Xsn ≤ un, . . . , X2 ≤ un, X1 > un).

Denote T ′n(un) = Tn(un)
/
P (X1 > un), so we can write

T ′n(un) =P (Msn > un|Xsn+1 > un) + P (Xsn ≤ un,Msn−1 > un|Xsn+1 > un)

+ · · ·+ P (Xsn ≤ un, . . . , X2 ≤ un, X1 > un|Xsn+1 > un)

= [P (Xsn > un|Xsn+1 > un) + P (Xsn ≤ un, Xsn−1 > un|Xsn+1 > un)

+ · · ·+ P (Xsn ≤ un, . . . , X2 ≤ un, X1 > un|Xsn+1 > un)]

+ [P (Xsn ≤ un, Xsn−1 > un|Xsn+1 > un)

+ · · ·+ P (Xsn ≤ un, . . . , X2 ≤ un, X1 > un|Xsn+1 > un)]

+ . . .

+ P (Xsn ≤ un, . . . , X2 ≤ un, X1 > un|Xsn+1 > un),
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where the last sum is just an expansion of each of the terms. By [4], as long as the

sequence {Xi} (with indices from −∞ to∞) is regularly varying, the sequence

{x−1Xi|X0 > x} converges in distribution to a tail process as x→∞. Therefore,

each term in the last sum for T ′n(un) converges, independently of un. Here we

will assume that the sum T ′n(un) converges. Under this assumption, let

lim
n→∞

T ′n(un) = c. (A.17)

Remark A.0.4. Note that the above assumption is not very restrictive. We have

T ′n(un) =
Tn(un)

P (X1 > un)
=

(1 + ξn)pn
τ

Tn(un)

≤(1 + ξn)pn
τ

(P (Xsn+1 > un,Msn > un) + P (Xsn+1 > un,Msn−1 > un)

+ · · ·+ P (Xsn+1 > un, X1 > un))

≤(1 + ξn)pn
τ

P (Xsn+1 > un)P (Msn > un) + P (Xsn+1 > un)P (Msn−1 > un)

+ · · ·+ P (Xsn+1 > un)P (X1 > un) +
sn∑
l=1

αn,ln(un))

≤snP (Msn > un) +
(1 + ξn)pn

τ

sn∑
l=1

αn,ln(un)

Since P (Msn > un) ∼ sn
pn
τθ as n→∞, we just require

s2
n = O(pn), lim sup pn

sn∑
l=1

αn,l(un) <∞

for T ′n(un) to be finite and hence convergent. This works for, for example,

αn,1(un) = O( 1
pn

), and {Xi} geometrically ergodic.

The last of our assumptions will require that the block sizes rn is “large

enough”. We make sure that we choose rn so that the convergence in Propo-

sition A.0.2 is fairly quick, so that as n→∞,

θ̃(un)− θ = o(
rn
pn

). (A.18)
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Note that this assumption can always be satisfied: for any sn so that (A.5) and

(A.6) hold, we can always choose rn to be larger, which does not affect the value

of θ̃(un), until we have that θ̃(un)− θ = o( rn
pn

).

Under those assumptions, we have the following result about the bias.

Proposition A.0.5. Let {Xi} be a stationary sequence with extremal index θ. Assume

∆′, (A.5), (A.6), (A.17) and (A.18) hold. Then as n→∞,

bn = −(1 + ξn)
rn
pn

θ2

2
τ +

c

rn
+ o(

rn
pn

) + o(
1

rn
). (A.19)

Proof. By definition, we have

bn = θn − θ = (1 + ξn)
pn
rn

P (Mrn > un)

τ
− θ.

Combining (A.3) and (A.16),

bn = (1 + ξn)
pn
rn

rnθ̃(un)P (X1 > un) + Tn(un)− P (An)

τ
− θ

= (1 + ξn)
pn
rn

rnθ̃(un)P (X1 > un) + Tn(un)

(1 + ξn)pnP (X1 > un)
− (1 + ξn)

pn
rn

P (An)

τ
− θ

= θ̃n(un) +
Tn(un)

rnp(X1 > un)
− (1 + ξn)

pn
rn

P (An)

τ
− θ

= (θ̃n(un)− θ) +
1

rn
T ′n(un)− (1 + ξn)

pn
rn

P (An)

τ

= o(
rn
pn

) +

(
c

rn
+ o(

1

rn
)

)
−
(

(1 + ξn)
rn
pn

θ2

2
τ + o(

rn
pn

)

)
.

This completes the proof.

Now, combining (A.9) and (A.19), it follows that the bias of the estimator θ̂n

is

E[θ̂n]− θ =
pn
n
· (θ

2µ2 − 1

τ
+ εn)− (1 + ξn)

rn
pn

θ2

2
τ +

c

rn
+ o(

rn
pn

) + o(
1

rn
) + o(

pn
n

)
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Note that this form is different from the desired form, (A.2), for the bias.

Instead of the terms τ
kn

and 1
rn

, the above form has the terms pn
τn

, τrn
pn

, and 1
rn

.

However, the value of pn is unknown in practice, and this presents a problem.

Here we take note of several things. Since we are running regression on

a finite sample of data, we have a fixed value of n. Further, even though the

inputs to the linear regression incorporates varying levels of τ1, . . . , τm, the ratios

between the chosen values τ1, . . . , τm is fixed in the finite sample case. In this

case, we can think of pn as a “fixed” value, and therefore the value rn
pn

will be a

constant multiple of 1
kn

for varying block sizes rn (and therefore varying values

of kn). Further, this will also imply that the term pn
n

can be treated as a constant

in the finite sample case.

Lastly, there is the term 1
τ
. Through simulation study, we have found that

the effect of this term is negligible for sample sizes of n = 10000 or n = 5000.

In fact, including this term as a predictor variable often leads to poor regression

results. We therefore chose to not include this term in our approximation for the

bias. (However, for much larger sample sizes such as n = 100000, the term 1
τ

does have an effect and helps improve the bias reduction.)

Taking all of the above into account, we arrive at the desired form of the bias

(A.2).
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APPENDIX B

ADDITIONAL SIMULATION STUDY FOR THE MODIFIED HILL

ESTIMATORS

Method Hill Modified HillB Modified HillD
Process α Mean RMSE Mean RMSE Mean RMSE
ARCH 1.08 1.21 0.320 1.18 0.274 1.16 0.233
ARCH 2.0 2.10 0.392 2.05 0.337 2.01 0.289
ARCH 2.3 2.37 0.410 2.31 0.371 2.27 0.321

MA 1.0 1.06 0.183 1.04 0.176 1.03 0.150
MA 2.0 2.27 0.446 2.17 0.381 2.16 0.334
MA 2.5 2.94 0.633 2.79 0.527 2.77 0.468

Table B.1: Mean and root mean squared error of the regular Hill estimator and
the modified Hill estimator. Data are generated using ARCH and Moving Av-
erage models with different values of α and a sequence length of n = 5000.

Method Hill Modified HillB Modified HillD
Process α Mean RMSE Mean RMSE Mean RMSE
ARCH 1.08 1.15 0.223 1.13 0.191 1.12 0.168
ARCH 2.0 2.05 0.275 2.02 0.259 2.02 0.235
ARCH 2.3 2.34 0.292 2.30 0.280 2.29 0.251

MA 1.0 1.03 0.122 1.01 0.128 1.01 0.115
MA 2.0 2.17 0.296 2.11 0.274 2.10 0.250
MA 2.5 2.82 0.436 2.70 0.380 2.70 0.355

Table B.2: Mean and root mean squared error of the regular Hill estimator and
the modified Hill estimator. Data are generated using ARCH and Moving Av-
erage models with different values of α and a sequence length of n = 20000.
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Figure B.1: Bias for the distance based modified Hill estimator (solid line), the
blocks based modified Hill estimator (dotted line), and the regular Hill estima-
tor (dot-dash line) plotted against percentage of largest order statistics used for
estimation. Data are simulated from an ARCH(1) model with α = 2.
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Figure B.2: Standard error for the distance based modified Hill estimator (solid
line), the blocks based modified Hill estimator (dotted line), and the regular Hill
estimator (dot-dash line) plotted against percentage of largest order statistics
used for estimation. Data are simulated from an ARCH(1) model with α = 2.
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Figure B.3: Root mean squared error for the distance based modified Hill esti-
mator (solid line), the blocks based modified Hill estimator (dotted line), and
the regular Hill estimator (dot-dash line) plotted against rn, the block size used
for extremal index estimation. Data are simulated from an ARCH(1) model with
α = 2.
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Figure B.4: Root mean squared error for the distance based modified Hill esti-
mator (solid line), the blocks based modified Hill estimator (dotted line), and
the regular Hill estimator (dot-dash line) plotted against rn, the block size used
for extremal index estimation. Data are simulated from an ARCH(1) model with
α = 2.
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