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or 

THE MECHANICS 

or 

MACHINERY AND ENGINEERING. 

SECTION I. 

PHORONOMY; OR, THE PURE MATHEMATICAL SCIENCE OF MOTION. 

CHAPTER I. 
SIMPLE MOTION. 

§ 1. Rest and Motion.-Every body occupies a certain position 
in space; a body is at rest when it does not change its position; and 
is in motion, on the other hand, when it successively passes from one
position into others. The rest and motion of a body are either abso­
!ute or relative, accordin� as we refer its position to a space which 
itself is at rest or in motion, or considered to be in either state. 

Upon the earth there is no rest, for all bodies upon the earth share
in its motion about the sun, and about its own axis; but if we suppose
the earth to be at rest, then all those terrestrial bodies are at rest which, 
with reference to the earth, do not change their position.

§ 2. Kinds of Motion.-The continual succession of positions which
a body in its motion gradually occupies, forms a space which is called 
the trajectory, or path of the moving body. The path of a moving
�int is a l�ne; that of a geometrical body, is �nother b�y; b!lt by
this latter is generally understood that line which a certain point of 
the body, viz. the centre, describes in its motion.

When the path is a straight line, the motion is rectilinear; when a 
curved line, the motion is curvilinear . . With reference to time, motion is uniform or variable.
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= c t 

(c) and the time (t). 

t e following 1s arrived at: 
The spaces are s = c t and s therefore their ratio is � 1 1, 

26 UNIFORM MOTION. 

. § 3. A motion is uniform, when equal spaces are described by it 
1n equal and arbitrarily small times; and variab)e, when this equality 
does not take place. When the spaces, described in equal times,
increase continuously with the time, a variable motion is called­
accelerated; and when the spaces decrease,-retarded.

Periodic differs from uniform motion in this, that equal spaces are 
described within certain intervals only, which are called periods.

The apparent diurnal revolution of the fixed stars, and the progres­
sive motion of the hands of a watch are instances of uniform motion. 
Falling and upward)y projected bodies, the sinking of the surface of 
water by its flow from ,·essels are instances of variable motion. The 
oscillations of a pendulum, the play of the piston of a steam engine,
&.c., are illustrations of periodic motion. 

§ 4. Uniform Motion.-Ve)ocity is the rapidity or magnitude of a 
motion. The greater the space is which a body describes in a gi,·en
time, the more rapid is its motion, and the. greater is its velocity. 
In uniform motion, the velocity is invariable; and in a variab)e one,
it changes at every instant. The measure of the velocity at any de­
terminate point of time, is the path which a body actually describes, 
or would describe in a unit of time or second, if from that moment the 
motion were to become uniform, and the velocity to remain invariable. 
In general this measure is called simply-velocity. 

§ 5. When a body describes the path a at each particle of time,
and a second consists of very many (n) such particles; the path dur­
ing one second is the velocity, or rather the measure of tht velocity:

C = n. '1. 
After a time, t (seconds) n . t particles have elapsed, but in each 

a space a has been described; the whole space, therefore, which cor­
responds to the time t is : 

s = n . t . a= n . a • t, i. e. 
I. s = ct. 

so that in uniform motion, the space (s) is a product of the velocity 

Inversely 
s s

II. c = t and III. t = c. 

Example 1. A locomotive, going with a velocity of 30 feet per second, passes over in 2 
hour�= 120 min.= 7200 seconds, a space (s) 30 X 7200 = 216000 feet.-2. If a time,
3½ minutes= 210 seconds, be required to raise up a ton weight from a shaft 1200 feet 

. . 1200 40deep, its mean velocity (v) must be taken= -- = - = 5f = 5,714 ... feet.-3210 7 
A horse, moving with a velocity of 6 feet per second, requires to perform 24,000 feet a 
. 24000time = 4000 seconds.6 

h 
§ 6. If _two_different uniform motions be compared with each other, 
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§ 8. Any change in the strength or magnitude of the velocity of a 

. . . 

§ 10. Unifonnly accelerated Motion..-The velocity of every motion 
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ct s · c . s t= 
t • If t = t, then - =-,or 1f c1 = c,then - = -, , 1last y

1 
cl 1 S1 cl 81 1 

C tl
"f S1 = s, - = -t •l 

Cl
The spaces described in different uniform motions in equal times 

are to each other as the velocities; the spaces described with equal
velocities are as the times; and lastly, the velocities corresponding to 
equal spaces are inversely proportional to the times. 

§ 7. Uniformly variable Motion.-A motion is uniformly variable
when its velocity either increases or diminishes by a certain amount
in equal and arbitrarily small times. It is .either uniformly accele­
rated or uniformly reta·rded, according as in the first a gradual in(!rease, 
or in the second a gradual dimin�tion of ve!ocity;takes place, 

In vacuo, the motion of a falhng body 1� uniformly accelerated; 
were the air to exert no influence upon it; the motion of a body verti• 
caJly projected would be u�iformly retarded.a . . . _ 
body is called acceleration; it is either positive or negati�e,accord­
ing as there is increase or diminution of the velocity. The greater 
this increase or diminution within a given time, the greater is the
acceleration. In uniformly variable motion, the acceleration is inva­
riable, and may be measured by the increase or diminution of velo­
city which· takes place in a second of time. In every other motion, 
th� �easure of the acceleration is the increase or diminution which. 
a bo<ly would acquire if, from the moment in which the acceleration 
begins,it lose its variability and the motion pass into a uniformly· 
variable one. Diminution of velocity is termed retardation. .·The measure is very commonly called the velocity. · 

§ 9. If the velocity of a uniformly accelerated motion increase (•) 
in infinitely small particles of time, and a second of time is made up 
of such particles, the increment of velocity, or the acceleration, in 
one second is: · p = n ., . 
and the increment after t seconds = n t. s = n •· t =pt.

If the initial velocity (the moment f�m which the time is counted) = c, the terminal velocity, i. e. the velocity acquired after the time
(t) is: V = C + pt.

For motion,commencing without velocity, c == 0, therefore v ==p t,. 
and for uniformly retarded motion, having a negative acceleration (p),, 
V = c-p t. 

�ampk 1. The acceleration of a body falling freely in vacuo = 32 . 2 feet; it ac 
quires, the�efore, after 3 seconds, a velocity ., =zpt =z 32 . 2 X 3 = 96 . 6 feeL72• !',
�pbere rolling down an inclined plane, with an initial velocity c = 25 feet, acquir� 10 
its oouree, at each second, 5 feet additional velocity; its velocity, therefore, after 21
�nds: ., == 25 + 6 X 2.5 s= 26 + 12.6 == 37.5 feet, &c.; procei,dinl DO"! �e 1:­po�nt uniformly, it will pass over 3,7.5 feet in every eeoond.-3. A looorW,Obve If>� .
with a 30 feet velocity is eo retarded, that in each second it loees 3.5 feet of velocity; 111
acceleration is - 3.5; its velocity, therefore, after 6 8"00Dd1 is ., - 30 ..,.. 3.� X 6 = 

.30 - 21 i:a: 9 feeL 
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may be regarded as invariable within a small particle of time "'· We 
may, therefore, put the space .described in such time " = v • "' , and 
we obtain the whole space in the finite time t, by the measurement 
of these small spaces. Now for all these small spaces, the time "' is 
one and the same; this sum, therefore, may be put equal t� the pro­.
duct of these particles of time, and the sum of the veloc1t1es corre-

In uniformly accelerated motion, the sum (0 + v) of the veloc1hes, 
in the first and last moment, is as great as the sum p-t + ( v - p ") of 
the velocities in the second and last but one; also, equal to the sum 
2 p " + ( v - 2 p ") of the velocities in the third and last but two; 
and this sum is equal to the terminal velocity v. Here, therefore, 

50 X 4 e en w1 a ve oc1ty "= 2_25 = 9 = 22.22. 

of the velocity by twice the acceleration. 
magnitudes contained have been separated, eight other formulre. 

Exampl.e 1. A body moving with an acceleration of 15,625 feet, describes in 1 ½ second 

UNIFORMLY ACCELERATED MOTION. 

sponding to equal intervals. . . 

the sum of all the velocfties is equal to the product (v . ;) of the 
tenpinal velocity v, and half the number of all the particles of time. 
The space described is the product (v • ; • ") of the terminal velocity 

v,and half the number and magnitude of the particles. Now the 
magnitude (") of such a particle, multiplied by the number, gives the 
time t; the space, therefore, described in the time t with a uniformly 

. . Vt
I d •acce erate motion 1s s = 2

The space, therefore, described in uniformly accelerated motion is 
as in uniform motion when, in the latter case, its velocity is half as 
great as the terminal velocity of the former. 

Example 1. If a body in 10 seconds has acquired a velocity" by uniformly accelerated
26 X lO=motion of 26 feet, the space described in that time is ,= 130 feet.-2. A 

2
carriage which, in its accelerated motion, goes over 25 feet in 2¼ seconds, proceeds at

2 X 25d "th l .th 

§ 11. The two fundamental formulre of uniformly accelerated mo­
tion: 

vt
I. v = p t and II. s == 

2
, 

which express that the velocity is a product of the acceleration and
the time; and the space, half the velocity and the time ; include two 
other principal formulre which are obtained, if from both equations v
be eliminated once, and t t,vice. It follows that : 

pt2 v2
III. s = 

2 
and IV. s = 

2 
· 

From this, the space described is a product !r half the acceleration, 
and the square of the time; and it is also the quotient of the square 

Th�se four formulre give, by inversion, after one or other of the 



arn ve at the folJowing: 

k 

(16 . 5)• 
2 . 4, 

• 

UNIFOllML T .A.CCELKR.ATED MOTION. 

a space 15·62!'> X {l.5)•s:: 15.625 X _.!.. = 17.578 feet-2. A body transported with 
2 8 

an acceleration p = 4.5 into a velocity ti = 16.5 feet, has described a apace • = 
5 == 30.25 feet. 

� 12. By a comparison of two uniformly accelerated motions, we 
The velocities p1t1, the spaces on the other 

from this it follows: 
are v =pt and v1 = 

Ptl pt Ihand are s = _!_!.. ; and s1 a:_
2 2 

.!_ = P t and � = P 11 
as " .t = VJ11.

"1 P 1t1 81 P1t1' "1t1 V17 

If we put t1 
=t, we have !__ .. ..!. == I!__; the spaces described are 

11 111 Pito each other as the terminal velocities; or, as the acceleration-. · 
If fiurther, we ta e p1 

. . V t . d 8 fl '11 =p, 1t gives -= - an - = 2 = 1; so 
Vl tl Sl tl t,lthat, in like accelerations, and ·also in one and the same uniformly

accelerated motion, the terminal velocities are proportional to the times ·and the spaces described to the squares of the times, as also to the squares of the terminal velocities. 
Further, 1·r · P t1 d -=s t · v ·toc1 le& · v1 = v gives-=-, an -; 1n equa1 el P i t 81 tl·the •�elerations are inversely, and the spaces directly proportional to the times. 

t,Ip t I 

Lastly, s1 = s gives - = ...!.... == -; with equal spa_ees, the ac'!' 
p ti VI

celerations are inversely �s the square1s of the times, and directly as
the squares of the terminal velocities. · 
. § 13. For a uniformly accelerated motion commencing with a vel� city (c) we have § 9: 

I. v = c+ pt, 
and as the space ct beJongs to the invariable velocity (c), and the 

pt'J space to the acceleration p:2 

fl. S .. ·CI +
p
2 
t'• 

·If we eliminate p from both equations� we have : 
C + 1'Ill. , == 2 t, 

and substituting the value oft,· . 
"'...... ct 

IV.'== 2p • 
&ampk 1. A body propelled with an initial Telooity e = 3 feet, and with an aecele• 

·122.5·=ration p == � c-, deecribe, in 7 eeconds, ·a spaee 1 =-3. 7+ 6. 71 
·- ·21 + 

. 2 - . - . , - . s• 
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IV. '=-c----, 

31,25 Prussian feet. 
If either of these Yalu es of g be substituted in the formula :  

FREE DESCENT OF BODIES. 

143,5 feet.-2. Another body which in 3 minutese= 180 seconds, changes its velocity 
from 2½ feet into 7j feet, performs in this time a distance 

2
·e ·e = 900 feet.
5+ 7 5 

• 180
2 

§ 14. For a uniformly retarded motion with an initial velo�ity c,
these formulre are applicable: 

I. v = c-p t, 
p F

II. s=ct- -,
2 

c + v
III. S= -- • t,

2
c2-v2 

!hey �re derived from the forll?-er §,!ten p is made negati_a _st 
1n uniformly accelerated motion, the velocity increases without bm1t,
in a uniformly retarded one, the velocity at a certain point of time . b�coll?-es null, and afterwards negative,i. e. it goes on in an inverse
d1rect1on. 

If in the first formula we put v = O, pt= c, the time at which the 
velocity becomes null is, t = c ; if we substitute this value of t in 

the second equation, we have 1he space ,vhich the body has described 
at the point of time = c2 •2p 

If the time be greater than c, the space is less than .!__; if it be 
p 2p

2c=-, the space becomes null, and the body returns to the point 

from 
p 

which it set out. If the time be greater than 2c, then s becomes
p

negative,and the body is on the opposite side of its initial point• 
.Example. A body which rolls up an inclined plane with an initial velocity of 40 ft., by 

which it suffers a retardation of 8 feet per second, ascends only 40 = 5 seconds and 40•
8 2.8 = 100 feet in height, then rolls back and returns after 10 seconds with a velocity of 40 

feet to its initial point; and after 12 seconds, arrives at a di�tance 40 X 12 -4 X (12)1= 96 feet below this point if the plane extend itself backwards. 

§ 15. Free Descent ef Bodies.-The _free or vertical descent of 
bodies in vacuo, offers the most important example of uniformly ac­
celerated motion. The acceleration of this motion brought about by 
gravity is designated by the letter g,and has the mean value of: 

9,81 metres
30,20 Paris feet. 
32,22 English feet. 
31,03 Vienna feet. 

�hilve. 

. 

t1 v•v = gt, s = g - and s = -, v =2 2g ✓ 2gs, 
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all questions,with reference to the free descent of bodies, may be 
answered. For the English measure : 

V =a 32,2a. t -=  8,02 ✓ s; S - 16,1a. fJ == .0155 1'2 

and t .. 0,031 v == 0,249 ✓ s• 
.&ampk 1. A body acquires in its free descent of 4 seconds a velocity 11 = 32.2 X 4 = 128.8 feet, and describes in  this time a spacee, =  15.625 X 41 = 250 feet.-2. A 

body falling from a height , = 9 feet, bas a velocity 11 = 8.02 ,,./ 9 = 24.06 feeL-3'. A 
body projected vertically with a velocity of 10 feet ascends to a heighte• ;=  0.016 X IOI = 1.6 feet, and requires for it a time t =0.031 X 10 =0.3, or about one-third of a second. 

§ 16. The fo1lowing table will show the relations of the motion to
the time in the free descent of bodies. 

I 

Time in 
6 7 8 9 1042 3seconds. 0 1 

Velocity. 0 lg 2g 3g 4g 5g 6g 1g Sg 9g 10 

22 
36K.. 49�64-. 81�'1

2 2 2 2
0 4� 9.[_ 16K_

22 2
Space_. 

Ditference. 0 1� · aL ·a5K_ 7..i_ 9� 11K.. 1aK.. 15K.. 17� 1.2 .2 .2 2 2 2 2 2 2 

The last horizontal column of this table gives the spaces which the 
freely falling body describes in the single seconds. We see that these 
spaces are to each other as the odd numbers I,3, 5, 7, &c., whilst
the times and velocities are as the natural numbers 1,2, 3, 4, &c., 
and the spaces fallen through as their squares 1, 4, 9, 16, &c. For
example, the velocity after six seconds, is 6 g = 193,2 feet,that is, 
the body would, if 1t proceeded from this time uniformly upon an 
horizontal plane, offering no impediment, pass over in each second a 
space 6g = 193,2 feet. This space it describes in the course of the 
following and seventh second, but not in reality, for according to the 
last column it amounts to 13. g =- 13 x 16,1 == 209,3 feet, in the . .2 

eighth second it is 15. !== 15 . 16,I =- 241 feet, &e. 

. &mark . .,.-Many writers designate the space of 16 feet, .which a bod1 freely deeoe� 
1ng will detcribe in one eeoond, by g, and term it  properly the acceleration of granty.' 
They have then for the free descent of bodies, the following formula : 

., _ 2,i - 2 ,,.; , ,,  .,. 
•-gtt -.,, 

9 I
, -- -- ✓-2g I ,_IAfl d · mThia custom, which ia met with. in German:, only, is disappearing �1 dega� � . 

consequence of its being fr equently misundentood, and the man:, miaeakes whic anse 

therefiom, this is much to be desired. 
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,v = c + gt =  c + 32,2 t ;  also v == ✓ cJ + 2 g s  = ✓ c3 +64 4.s; 

If, on the other hand, the body be projected verticaJly to a height 

2( ) 

This is also but the 

;= �d P� of the �me, which would be necessary fo rising and falling if the bod� were r 
�se a? 

�all ununpeded. This fall finds its application in the forging of hot iron, e 
k1mtlual cooling of that metal it is desirable that the blows of the hammer _

as quic Y as possible in a short time. When the hammer is thrown back by an 

10 

thrice the nu be / 
wi give in IC arrangement, "t ·u . th e same time, in the proportions above laid down, . . r O blows

� what 1t would give were its rise umimpeded. &mark 1 Th · e transformation of the velocity into height due to velocity, and the reverse 

FREE DESCENT OF BODIES. 

§ 17. If the free descent of a body go on with a certain initial -relo­
city ( c) the formulre are of the following kind : 

t2 ( 2= ct + g - == ct + 16.1 t',also s = == 0,0155 v -&).
2 2g 

with the velocity c, then : 
- 64,4s ;  

s 

c2-vO,0155 

v = c-gt = c- 32,2 t ;  also v == ✓ c2 - 2 g s = ✓ c3 
t' ct-vi 

ct - g
2 = ct - 16,1 t2 ; also s == == .- 2gs 

If we consider a given velocity c as the terminal velocity acquired
cia free descent, then the corresponding space fallen through -by 2g

= 0,0155 . c2 is called the height due to the velocity. By the introduc­
tion of this quantity, some of the foregoing formulre may be expressed 
more simply. If the heighte(;;) due to the initial velocity c be put 

2 = h, and that due to the terminal velocitye!!._= h
i
, we have the fol-

2g
lowing for faHing bodies : 

kl = " + s' s = hl - h;  
and for ascendinge: h1 == h - s, s = h - h1•

The space of fall or ascent is, therefore, equal to the difference of
the heights due to velocity. 

&ample. The velocities are 5 and 11 feet, the heights due to velocitye= 0,0155· (5 )2 = 
0,3875 feet, and 0,0155 . 111 = 1,875 feet ;  the space which is described during the pas• 
sage from one velocity to the other: , = J,8755 - 0,3875 = 1,4880 feet. 

§ 18. From the formulaes =  h - h it also follows that a body ver­1
tically projected has at each point that velocity ,vhich it would have,
but in an inverse direction, were it to ha¥e fallen from the height still 
remaining to that point, and which it then actually possesses in its 
following descent. 

Example. A body is thrown up with a 15 feet velO<.'ity, and strikes in its rise against 
an elastic impediment, which for the moment throws it back with the same velocity with 
which it struck.. How great then is this velocity, and the time of ascending and de­
scending 1 To the velocity (c = 15 ft.) corresponds the height of ascent h = 3,49 ft. ;
the height due to velocity at the moment of impact is h1 = 3,49 - 2,00 = 1,49, and con­
sequently this velocitye= 8,02 .,./ 1,49 = 9,652 ft. The time to attain the whole height 
(3,49 ft.) is t = 0,032. v = 0,032. 15 = 0,480", for the height 1,49 ft. t1 = 0,032 . 10 
=:= 0,32<Y' ;  there remains then for the time required to rise to the height of 2 ft., or the 
time from the commencement to impact : t - t1 0,160'', and the 0,480 - 0,320 == 

ti" . . e me of rising and falling = 2 . 0,160 = 0,320''. 
0,320w·hol h.

t
0 960 

se

follo�
elast. 
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other descents, as will hereafter be shown. 

4. V = ­

of the element of space to that of the time. 

if t increase by " and a by <1, a +  <1 = a (t + -t)'. Now (t + -t)2 = t" 
s + o = at + 2 at ", or o = 2 at -, ;  lastly, v = - = 2 at. Y 
the same hypotheses, "'e learn from the last formula v + • = 2 a 

plied by the time ( t). 
While a handle turns uniformly in a circle, the load attached to it, 
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is very often required in practical mechanics, and especially in hydraulics. A table 
where this is set down is of great use to the practical man. 

Remark 2. The foregoing formula, are only strictly correct for a free descent in vacuo; 
they may be used with tolerable accuracy for a fall in air, if the falling bodies have a 
weight great in proportion to their volume, and if the velocities do not come out very 
great. For the rest, they are also used under other cireumstances and relations in many 

§ 19. Variable Motions in Particular.-For variable. motions espe­.cially, in which the periodic are also included, the formulre ·1. " = p -r, and
2. <I = V <t 

�old good:a- the increment of velocity {a) acquired in a very small
t!me -, ( element of time), is a product of the acceleration p and this
time; and the space <1 described in the element of time " is a pro­
duct of the velocity (v) and the timea"· By inversion : 

3.p = � and 
(S 

'tAcceleration is the quotient of the increment of velocity by the
element of the time -, in which it is acquired. Velocity is the ratio 

The.two last formulre may be used for the measurement of the ac­celera�on and !elocity. Ez. From the motioa given by the formula 
� = at when a is the space described after the first second, it follows: . 
+ 2t "  + -t1 , or because " is small == t' + 2t ", it therefore foJlows 

. , o 
. " B 

"( t + ") = 2 a t + 2 a ", so that = 2 a -, and the acceleration p = 

� = 2 a. We have, therefore, in this way found from the fonnulre 
't

for the spaces, formulre for the velocity and acceleration. 
. . 

§ 20. The velocity c =- .!_ differs from the velocity v = _!__ of an t " 
element of time, and is given when the space, which in a certain t!me 
?r period of a periodic motion is described, is divided by the time 
itself. This is called the mean velocity, and may be also re�ed as
!hat velocity which a body must have in order· to describe un1fo�mly
in � given time (t) a given space (s), which, in reality, is descn�ed 
vanably. So, for example, in uniformly variable motion, the velocity
is equal to half the sum (c ! ") of the initial and terminal velocities �  

for, according to § 13, the space is equal to this sum (c . ! ") multi-

· . 
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load = y· The handle 1n this time descnbes ; s 

lateral figure A B C D Fig. 2, which has , 

co_ncave or con,·ex to"yards the base. But in every case the area of 
this figure must be put equal to the variably described space (s); for each area of space .11. B C D, Fig. 3, may be considered as decom.: 

3-i GRAPHICAL R &PRESENTATION. 

the piston of an air or water-pump, for instance, moves variably up 
and down ; the velocity of this at its lowest and highest point is at a 
minimum, viz., null ; at half the height a maximum, viz., equal to 
the velocity of the handle. In half a revolution, the mean vel<?city 
equals the whole height of ascent, i. e., the diameter of the c1!cle 
which the handle describes, divided by the time of half a revolution.
The diameter = 2 r and the time = t, then the mean velocity of the 

2 r . . th . .
e sem1c1rcle ,c r ·t1 

velocity, therefore, = �r
, and consequently the mean velocity of the 

2 2 ·load = ;; = · ble ve o-· 1= 0,6366 times as great as the 1nYaria3_ 141
city of the handle. 

§ 21. Graphical Representation.-The la,vs of motion found above 
may be expressed by geometrical figures, or, as it is said, graphically 
represented. Graphical representations especially facilitate the con­
ception, sustain the thoughts, pre\'ent mistakes, and ser\·e not unfre­
quently for the discovery of a quantity, and on that account are of 
great use in mechanics. 

In uniform motion the space (s) is the product (ct) of the velocity 
and the time, and in geometry the area of a 

Fig. 1.  rectangular figure is the product of the 
_ N height and base. We can, therefore, repre­
.Dr- - c-;:.-------; sent the space (s) uniformly described by a 

rectangle .A B C  D, Fig. 1,  whose base .fl B 
is the time (t) and whose height (.fl D = B 
C) is the velocity ( c), provided that the time A'----__.x____ IJl_, be expressed in the same unit of length as 
the velocity, and that the second of time 

and the foot be represented by one and the same line. 
§ 22. Whilst, in uniform motion, the velocity (MN) at any other 

time (A M) of the motion is one and the same, it differs at every in­
stant in a variable one; this motion, there­
fore, can only be represented by a quadri-Fig. 2. 

__...:.Nr-_--,c 
__a .fl B the time for base, and for the other 

limits, three lines A D, B C, CD, of which
the first two are equal to the initial and ter­
minal velocities, and the last is determined 

A :a by the extremity ( N) of the different velo-x 
. . cities at the intervals (.M). The line C D
is e1the� straight or curved, according to the different kinds of varia­
ble motion from the commencement, ascending or descending, or lastly 
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§ 24. The mean velocity of a variable motion is the quotient of the 

THE MEAN VELOCITY. 

�osable into many small rectangular strips, Fig. 3.
hke M O P N, of which each is a product 

--�N�P -,c,--of a part (M 0) of the base, and its corre­
sponding height (M N or O P), and the 
spaces described in a certain time com­posed of particles of which each is a pro-
duct of that particle and its corresponding
velocity. A x. o B 

. § 23. In uniformly variable motion, the1�crease or diminution (v-c) of the velocity (=pt, § 13) is propor­
tional to the time. If in the Figures 4 and 5, the line D E  be drawn 

Fig. 4. Fig. 5. 

»-------------�--------,Z
• 

I
I 

I•• 
I 
I 

'C 

A----�..-----':IIM A,________, ---w 

parallel to the base ./1 B, and B E  and M O = to the initial velocity
.11 D be cut off frpm the lines M N and B C, there remain the lines 
C E and N O for the increase or diminution of the velocity, for whic�
from the above we have the proportion 

N O : C E = D O : D E.

Such a proportion requires that N as well as each point of the line 
C D lie in the straight line connecting C and D, and also that the
line C D limiting the different velocities (M N) be a right line.

In consequence of this, the uniformly accelerated and uniformly
retarded space described may be represented by the area of a trape­
zium ./1 B C D, which has for the height ./1 B, the time (t), and for
the parallel bases the initial and terminal velocities .fl D and B C. 
The formula of § 13, s = c!v . t is in perfect accordance with this. 
In uniformly accelerated motion, the fourth side D C ascends from its
initial point, and in uniformly retarded motion descends. In a uni­
formly accelerated motion beginning with a velocity null, the trape­
zium becomes a triangle whose area is l B C x .IJ B == i ct. 
space divided by the time; multiplied, there- Fig.NG.fore by the time, it gives as a pr<><Juct the
trajectory, and consequently may be also 7�,,c:.:______:�
considered as the height .IJ F = B E of the .,
parallelogram ./J. B E  F Fig. 6, whicJi has
the time (t) for the base ./1 B, and an area 
equal to the four-sided figure .fl B C ND
which measures the trajectory or space A! 
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passed through. The mean velocity is, therefore, likewise obtained 
by transforming the four-sided figure jJ B C N D  into a parallelo• 
gram .11 B E F of the same length. Its determination is of import•
ance, particularly in periodic motions, which occur in nearly all 
machines. The law for these motions is represented by a curved
line C D E F G H K, Fig. 7. If the line L M running parallel 

Fig. 7• 

.A.'---'ii.----Jr---ir----,r------lJJ 

with .11. B cuts off the same space ·as the curved line, and is, as 
it were, the axis round which C D E F . . . .  coils itself, then the 
distance .11 L = B M between the two parallel lines .11 B and L M 
is the mean velocity of the periodic motion, whilst .11 C, 0 E, B K, 
&c., is the maximum, and N D, P F, &c.e, the minimum �elocity of a 
period .fl O, 0 Q, Q B, &c.

§ 25. The acceleration also, or the increase of velocity during a
second of time may be easily shown in the figure. In the case of
uniformly variable motion it remains unchangeable ;  it is hence the 
difference P Q, Figs. 8 and 9, between two velocities O P  and M N, 

Fig. 8. Fig. 9. 

N 
D---

C 
' 

A
'--

---'x ...... A.----=Jll-=---=--·�,,_..0--�B o

the one of which appertains to a longer time by one second (M 0) than 
the other. If the motion is not uniformly variable, and the line of 
velocity C D therefore a curve, then for each second of time ( M) the
acceleration varies, and is, consequently, not the real difference P Q
between the two velocities O P and M N = 0 Q Figs. 10 and 11  ; 
but it is the increase R Q of the velocity M N, which would occur if 
commencing at the moment M the motion became uniformly accele­
rated, and the curved line of velocity N C passed into the straight_
l!ne �E. No,v the tangent or line of contact NE, is that straight
hne 1_n thE: direction of which a curve D N proceeds, when from a 
�erta1n po1n� (N) it ceases to change its direction ; hence the new 
hne of v�loc1ty c?in�ides with the tangent, and the perpendicular line 
0 R which cuts 1t, 1s accordingly the velocity which would take place 
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imagined to be made up. 

§ 27. When simple motions occur in the direction of one and the 

COMPOUND MOTION. 

after the lapse of a second, supposing the motion to have become uni­
formly accelerated from the commencement of that period, and lastly, 

Fig. 10. Fig. 11.  

1) 

A.A --.c,,,_..-l-----­
K o 

the difference R Q between this velocity and the primary velocity 
(M N) is the acceleration for that moment which is determined by
the point .M. in the time line ./1 B. 

C H A P T E R  I I . 

C O M P O U N D  M O T I O N .  

. § 26. Compound Motion.-One and the same body mar at the 
same time have two or more motions; every (relative) motion con­
sists of the motion within a certain space, and of the motion of this 
space within, or in relation to, a second space. Each point upon the 
surface of the earth has thus two motions, for it revolves daily once 
round the axis of the earth, and simultaneously with the earth once 
yearly round the sun. A person walking on board a ship has two 
motions in relation to the shore, his own motion and that of the water;
water flowing from a hole in the bottom or side of a vessel, whilst 
the latter is moving along in a carriage, has two motions, the motion
from the vessel and the motion with the vessel, &.c. 

Hence we distinguish simple and compound motion. Those re��­.hnear motions are called simple, of which other rectilinear or cumb­
!1ear _motions, consequently called compound, are made up, or may be 

. The combination of several simple motions to form one singl� mo­
tion, and the resolution of a compound motion into several Simple 

· · 

motions, will be treated of in the sequel. 

• 
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, are c1 t1, ci t , 1, p1 2 1 p2 2

ent kinds, viz.! the one, uniform, and the other uniformly increasing, . t�en _the direction ,vill vary in every part of the motion, and the mo-hon Itself become curvilinear. 
" Th� pla� 0, Fig. 12, which a body moving simultaneously in the direchons X and .11 Y will occupy after a certain time ( t), is found 

PARALLELOGRAM OF THE VELOCITIES. 

same straight line, their sum or difference gives the resulting com­
pound motion, the former, when the motions take place in the same 
direction ; the latter, when their directions are opposite. The truth 
of this axiom becomes directly obvious, when the contemporary spaces 
of the simple motions are united into one. The contemporary spaces 
c1 t and c, t correspond with the uniform motions and their velocities 
c1 and c2 ; if these motions go on in the same direction, then after t
seconds the space becomes s = c1 t + c2 t = ( c1 + c2) t, an� conse­
quently the resulting velocity with which the cotnp�und motion pro­
ceeds is the sum of the velocities of the simple motions. When the 
directions of both motions are opposite, then s = t - c2 t :=(c1 - cs)c1 

t, here, therefore, the resulting velocity is equal to the difference of 
the simple velocities. 

Example 1. To a person moving with a velocity of four feet upon the deck of a ship,
in the same direction with the motion of the ship itself, which has a velocity of six feet, 
the objects on the shore appear to pass by with a velocity of 4 + 6 = 10 feet.-2. The 
water which flows from the lateral opening of a vessel with a velocity of 25 feet, whilst 
the vessel containing it is moved in an opposite direction with a velocity of 10 feet, has, 
in relation to the other objects at rest, only a velocity of 25 - 10 =15 feet. 

§ 28. The same relations obtain with variable motions. If one
and the same body have, in addition to the primary velocities, c1 and 
c2 the constant accelerations p1 and p2, then the corresponding spaces 

t2 t2 
·r h . .1t e ve oc1hes an .d h I .t e acce erahons are 1n 

the same direction, the whole space corresponding to these simple 
motions, will be : 

es 
s = ( c + c2) t + (P1 + P2) -.1 t 

. t2If c1 + ci = c and p1 + p2 = p, we then obtain s = ct + p -, and 
2 

it follows, consequently, that not only the velocity of the resulting or
compound motion is made up of the sum of the simple velocities, but 
that also the sum of the accelerations of the simple motions gives the
resulting acceleration. 

Example. A magnet falls more quickly to the earth than another body, when a m88S 

of iron is immediately below it. The acceleration which the magnet experiences, in 
consequence of this iron, may be considered invariable when the height from which it 
fillls is small and the mass of iron very considerable, viz., an extensive layer of mag­
netic iron ore. If this acceleration were 5 feet, then the magnet would fall with an 
increased velocity of 31,25 + 5 = 36,25 feet in the first second, therefore i t  would fall 
18i feet instead of 15f feet . 

§ 29. Parallelogram of the Velocities.-!£ a body has at the same.
time t�o m�tions differing from each other in direction, it will assume 
a me�1um d!rection bet,veen them ; and if these motions are of differ­
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the direction of .11. Y, therefore in a line M Z parallel to .11. Y, or the 

body corresponding to both motions x and y simultaneously, which, in 
accordance with the construction, is the fourth corner of the parallelo­
gram .11. M O N. We may likev.ise imagine that the space .fl .M = x 

, x = .fl B
= c1 t · .fl D == .fl D . t. 

t), �e motion ( ra ectory in the diagonal is proportional to the time ! J
itself consequently uniform, and the diagonal .fl D its velocity. 

The diagonal, therefore, of a parallelogram formed hy two velocities,. . 
, 

PARALLELOGRAM OF THE VELOCITIES. 

when the fourth corner of the parallelogram .fl M O N, determined 
by the contemporaneous trajectories .fl M 

Fig. 12• = x and .11. N = y, as well as by the 
angle X .11. Y, or the distance by which 
the directions of motion deviate from each
other, is known. The correctness of this 
mode of procedure becomes evident when 
the trajectories x and y are supposed de­
scribed one after the other, and not at the 
same time. In compliance with the one 
motion, the body describes the trajectory 
.IJ M = x; and in compliance with the ----tr--­

. x 
other,the trajectory proceeding from M in 

A"--

If M O = .11. N, then O is the position of thetrajectory .11. N = y. 

is passed over in a line .11. X, which with all its points proceeds at 
the same time in the direction .11. Y, and therefore carries with it M 
in a parallel direction to .11. Y, and causes this point to perform the 
trajectory M O = .11. N = y.

§ 30. If both the motions in the directions .11. X and .fl Y take place
uniformly and with the velocities c1 and cs,then the spaces will be­
come after a certain time (t): x = c1 t and y = cs t; their relationship 
'!I = 5.. is, therefore, the same at all times, a peculiarity which is only 
X 

proper 
C1

to the straight line ./1 O, Fig. 13. Hence it follows that the 
�ompound �otion proc��ds in a straight
hne. If, with the velocities .fl B = c1 and Fig. 13. 

.11. C = c,, the parallelogram .fl B C D is 
c?�struct�d, its fourth corner gives the po­.sition D, 1n which the body v.·ill be placed 7
after the lapse of one second. But as the 
resulting motion is rectilinear, it follows 
that it must always occur in the direction
?f the diagonal of that parallelogram which 
is constructed by the velocities. If the X
trajectory .fl O which is actually passed 
through in the time t be s, then, on 

A .s M 
=

account of the similarity of the triangles .11 M O and .flB D, we have:
s .fl D :r. • .11 D

and it consequently follows that this trajectory s === .fl D

In accordance with the last equation, the
•• Cl 
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and tM angle which tMy make with each other, gives the direction and
magnitude of the actually resulting motion. This parallelogram is 
called the parallelogram of velocities, the simple velocities are called 
the components, and the compound velocity the resultant. 

§ 31. By the use of trigonometrical formulre, the direction and mag­
nitude of the mean velocity may be ascertained by calculation: The 
resolution of one of the equal triangles, viz., .fl B D, of w�1ch the 
parallelogram of velocities .fl B D C  (Fig. 14) is composed, gives the 

mean velocity .fl D = c by means of the com­
Fig. 14. ponents .fl B = c and .fl C = c2, and the1 

angle B .fl C= a. formed by their directions by
Ii the formula : c = ✓ c/ + c 2 + 2 c1 c2 cos. a., 

and the angle B .fl D = t, 
2 

included by the 
mean velocity, and the velocity c1 is expressed 

•
• C2 sin. a,by the formula sin. t = , or tang. 

c2 si
•n. a. 

C 

t = • If the velocities andc1
C1 + C2 COS. a, 

c2 are equal, and their parallelogram conse­
quently a rhombus, then we obtain in a more simple form, in con­
sequence of the diagonals being at right angles to each other : 

c = 2 c1 cos. ½ a. and t = ½a.. 
Lastly, if the velocities enclose a right angle, then likewise we ob­

tain more simply: 
c = ✓ c 2 +c 2 and tang. t = 2-.

1 2 
Cl 

Exampk 1. The water flowing from a vessel or a machine has a velocity c1 = 25 ft.,
whilst the vessel is moved with a velocity c2 = 19 feet in a direction forming an angle
a0 = 130° with the direction of the flowing water. What is the direction and magni• 
tude of the resultant, or as it is also called, the absolute velocity1

The required resulting velocity is c = ✓252 + 192 + 2 . 25e. 19 co,. 130° = 
v625 + 361-50.19 COi. 50° =✓986-950 COi, 50° = ✓986-610,7 = ✓375,3 = 
19,37 feet. 

19 nn. 130° 

Moreover, ain. t - = 0,9808 nn. 50° = 0,7513, and consequently the
19 37 ,

angle by which the resultant differs from the velocity c1 t = 4S0 
, 42' and the angle 

which it makes with the direction of motion of the vessel : 1&-i' =81°18'. 
2. If the former velocities were acting at right angles to each other, then co,, 1& =co,.

9o0 = 0, thence the mean velocity c = ✓986 = 31,40 feet; for its direction we should 

have tang. t 
1 9  

0.76, and consequently, its deviation from the first velocity : t= 
25 = 

§ 32. Any given velocity may be supposed to consist of two com­
�nents, and can consequently be resolved into them, in accordance 
with certain conditions. If, for instance, the angles D .11 B = t and 
D .fl C = _4-, Fig. 14, are giYen, and enclose the velocities required
to�ether �•th the mean velocity .fl D = c, then draw through the ter­
minal point D other lines which represent the degrees corresponding 
to. c, parallel to the directions .IJ X and .fl Y: the points of section 
will then cut off the required velocities .11. B = c1 and .fl C= c2

• 

http:361-50.19
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Trigonometry expresses these velocities by the formula c1 = 
• c 7n c sin. . In the usual practical cases, the t,vo . . c2= , . .a, ♦ + .i, ) sinsin. , . 

( t + .a,)= 1, and it follows: 

&ample. Suppose velocity c = 10 feet is to be resolved into two components which 
deviate from its direction by the angle t a:: 65° and .,, = 70°. These velocities will be: 

Velocities.-By repeated ap­
plication of the parallelogram of velocities, any number of velocities 
may be reduced to one. By constructing the parallelogram .fl. B D C, 

is obtained; by con­Fig. 15, the mean velocity .fl. D to c1 and c2 

,,,,--�:>?' 

of the .JJ.ccelerations . - 0 ------3 -,�::/---�::;;·\ § 34. �omp osition 

c,. 

in a straight line. If the accelerations of these motions, proceeding 

COMPOSITION OF THE ACCELERATIONS. 

sin. (♦+.i,)
velocities are at right angles to each other, and then t + .a,= 90°

= c cos. t and c = c sin. •·c1 ,Therefore, with one component ( c1) an.d its angle of direction (t ), 
the direction and magnitude of the other component may be estimated. 
Lastly, from the velocities c, c1 and c2 alone their angles of direction 
may be determined, as the three angles of a triangle may be com­
puted by the three sides. 

JO lin. 70 ° 9,397 10 ,i,.. 65° 9,063 
'1 = An. 1350 = lin. 450 = 13,29 feet and '2 = lin. 1350- = 0,7071 = 12,81 ft. 

§ 33. Composilion and Resolution of 

structing the parallelogram .fl. D F E, 
Fig. 15. ,ve get the mean velocity .fl. F to 4, D

and .IJ. E == c3 ; and in like manner by H
constructing the parallelogram ./1. F HG  ,the mean velocity .IJ. H = c to .IJ. F and
.fl. G = c is obtained, and thus the 

,. mean of c1, c,, c3, and c . 
The simplest method �f obtaining the 

mean velocity in question, is by the con­
struction of a polygon .fl. B D F H, the
sides of which .11 B, B D, D F, and F H,
are d��wn parallel and equal to the given 
velo�1t1es c1, c2, c3, and c,. ; the last side
.IJ.H 1s then always the resnltantvelocity. 

In the case, also, in which the velocities are not in the same plane,
the mean velocity may be ascertained by repeated application of the 
parallelogram of velocities. The mean velocity .fl. F = c (Fig.16) of 
three velocities .fl. B = c1, .fl. C == c and 

Fig. J6. -!' E = c3, which are not in the same piane, 
is the diagonal of a parallelepipedon B C

�he sides of which are equal to these 
_,:-: 

G H, _v�loc1!1es. The parallelqnpedon.
cities 1s, therefore, also a term in generaluse. 

of velo- _,,,,, ,,, : 
/�, ;',1, 

.. 

,, 'JI 

,,::,,a--' \:-'1:wo un!formly accelerated motions, begin-_n1ng _with null velocity, produce, when · 
?omb1ned, a uniformly accelerated motion 

4• 
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t , =x= � , an 

and, consequent!�·, t�e ent upon the time ; 
trajectory .fl O of the compound motion 1s 

made =p1 and B D If .fl B is 
=.fl C=p2, we obtain a parallelogram .fl B 
D C, which is similar to the parallelogram 

COMBINATION OF VELOCITY AND ACCELERATION. 

in the directions .A X and .A Y (Fig. 17) are p1 and p
'],
, then, at the 

close of the time t, the spaces will be .fl M 
Fig. 17. 

and .AN=y= Ps
2
t2 

Pi ez Pi is in no way depend-

d b ·e1rp t2 

relation x=1 = 
P,!/ P, t2 

.N.1------___, o 

--------�x 

rectilinear. 

. .11 0  .ll M.llMON, and from which .fl n= .11 B == 
tP1 t'=- 1a

2 . t2 ; therefore, .fl o=!
2 

.fl D • t2
• From this equation it ap-. 

P1 . 
pears that the trajectory .il O of the compound motitn is proportional 
to the square of the time; the motion itself, therefore, uniformly accele­
rated, and its acceleration is the diagonal .11 D of the parallelogram
constructed by the simple accelerations p1 and p2•

In the same manner, therefore, as velocities can be composed or
resolved by the parallelogram of ,·elocities, and, according to pre­
cisely the same rules, accelerations may be united into one, or broken 
up into several others by a parallelogram, which is called the paral­
lelogram of accelerations. 

§ 35. Combination of Velocity and .llcceleration.-By the combina­
tion of a uniform with a uniformly accelerated motion, an entirely 
variable motion is produced when the directions of the motions do not 
coincide. In a certain time t, with the velocity c in the direction 
.fl Y, (Fig. 18,) the trajectory .fl N=y= c t "·ill be described, and in 

the same time ,vith an unchange­
Fig. 18. able acceleration, and a direction 

A

--·---·-------------· 

=----:.-----:. N Y- .11 X at right angles to the former, ;a.-------.i
.--

__
r--:-

t2p: the trajectory .fl M=x= will
2 

be described, and the body arrives 
at the terminal point O of the pa­
rallelogram composed of y = c t  
and x= P ti 

. With the aid of 
2

these formul�, the position of the 
body can be determined for any.·en hme, but it is not always in one and the same straight line, for

.
gi,
if from the first equation we take t=Y, and place this value in the 

C 

second, we obtain the equation x= �� . In accordance with this, 

the trajectories {z) in the direction of the second motion do not cor-
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respond ,vi.th those in  the first, but with the squares 0() of those. i? 
and, consequently, the trajectory of the body 1s not rectili­the firste; 

near, but is a certain curved line, known in geometry by the name of 
parabola. 

Remark. Let ./1. B c. Fig. 19. be a cone wjth a circular base .IJ. E B F, let D E F be a. 

1nstant, and we obtain for the 
angle P O R = X T O  = If> which it makes with the second duection 

(axis) .fl. X, the formula tang. 41 = � � = p
c ' 
t 

tly, to find the space passed through, or the curve .8. 0 In order, las 

PARABOLIC �lOTION. 

section of it parallel to the aide 13 C and at 
right angles to t.l1e section .ii. B C1 anu let O P Fig. 19. 
N Q be a second section parallel to the base, 
and,conseqn�ntly, also circular. Then let E F 
l>e the line of section bet\veen the base and the 
first section, and O N that bet"'·een both sec­
tions ; itnagine, Lb.en, in the triangular section 
.Jl B C, the parallel diacneters .11 B and P Q, an<l 
in the section DEF, the axis D G. •r1.ten, for 
the half chord of the circle, M N= JJL O, i.he 
equation applies M Ni= P 1J X M Q; but 
M Q= B G  aurl for P M  "·e have the propor­
tion P M :  M D  =..i G :  D G ;  hence, it follo,•.s 

D M X .I.I GM N1=B GX . But, in like man-
D G 

ner, G Ei=B G X .ii. G ;  if one equation is 
divided. by the other, ,ve obtaiu, therefore, 
D M  M N2 ; the portions cut off from the
D 0- G Ei 
a.xis (absciss«) bear, therefore, the :,;an1e prc,­
portion to each other as the squares of the oor• 
respo11di11g perpendiculars (ordinatl!s). This 
law agreu:i completely ,vith the L.'l.,v for motion 
1ouml above ; this ntotioo. thcrcfort?, takes place in a curved line D NE, ·which can be 
slto,vn to be a section of the cone (Corne Section) . 

§ 36. Parabolic �lfotion.-:-In .order thoroughly to compreheend mo• . _t1on produced by the comb1nahon of velocity and acceleration, we 
n1ust be able also to indicate the di1·ection, velocity and the space passed 
t'1,rough during any length of time (t). The velocity parallel to .11. Y 
is invariable ande= c, that which 
is parallel to A X  is variable antl Fig. 20. 
= pt. If ,,�th these velocities, 
0 Q = c and O P = p t, the 
parallelogram O P R Q is con­
structed, Fig. 20, we obtain in  .!lf----:=--�---'a�----1' 
its diagonal O R the mean, or 
that velocity with \\•hich the body 
at O follows the parabolic curve M1--------''i<c--- � 
.fl. 0 U. This velocity itself is : 
V = ✓c2+pti. 

In like manner, 0 R is the 
tangent or direction in which the 
?ody at O proceeds for a single x ':I 

. . 



c2sin.a.cos.a. c2sin.2a. =----=---= a =  c sin. a.. t , 

could take place in a vacuum. If the projectile velocity is not great, aud the body is very �eavy as compared with its volume, then the deviation from the parabola is small enoug to ?6 altogether neglected. The most perfect instance of the parabolic course is _"'.'tnessed in colu'!lns of water flowing from vessels or from J·ets, &c. Bodies shot off. viz. bullets describe cur ves w ic h · h d ev.tate considerably from the parabola 1n conse-quence of the great resistance of the air. 

44 PARABOLIC MOTION. 

= s we can apply the equation <1=vt ( § 19) ; according to which we 
can calculate minute portions of it, which may be considered as its 
el�ments. The higher branches of geometry supply us with a com­
plicated formula for calculating the parabolic curve. 

§ 37. As yet we ha Ye assumed that the primary directions of mo­
tion formed a right angle with each other, and we must �ow study 
more closely that case in which the direction of the acceleration makes 
a certain angle with that of the velocity. If the body (J.?ig. 21) �as 
in the direction J1 Y1 the velocity c, and in the direct�on .11 X1, wh1<:h
makes with the first the angle X1 J1 Y = a. the velocity p, then .11 1s 
no longer the vertex, and J1 X1 no longer the axis, but only the direc­
tion of the axis of the parabola. The vertex C is much more de­
pendent upon the co-ordinates J1 B = a and B C = b, the latter of 

,vhich coincides with the 
Fig. 21. axis, and the former is at 

:---�::-- -----,.-- -=- �Yr..--= - .N�- - right angles to it, beginning 
at the commencing point of
the motion .11. The velocity
J1 D = c is made up of the 
components J1 F = c sin. a.
and JJE = c. cos. a.. The for­
mer of these remains always
the same, but the latter must 
be made equal to the variable X 
velocity p t, supposing that 
the body has required the time 
t to move from the vertex C to
the real commencing point .11. 

We have,therefore, c. cos. a. =p t, consequently t = c cos. °' , and 
p 

p 2p
- c2 cos.a.2 

. 
dan1 J1 B. 

pt2
2. B C - b -- 2 - 2p 

. 

If by these distances we have found the vertex of the parabola C,
then, beginning from thence we can find for any required time the 
position O of the body. Moreover we have: making C M= x and 
M O = y the general formula x = P� 2, also y = c sin. a. J

2 x_
2 c2sin.a. • ,.__ p 

Remarh. The theory of parabolic 1notion produced by an invariable velocity and a 
cons�nt acceleration, which we have just been considering, finds its application in the 
doctr�ne of Projectila. The bodies projected either upwards or downwards would 
descri� a parabolic curve as the result of their primary velocity ( c) and the acceleration of gravity (g= 32.2 feet), if the resistance of the air could be prevented, or the motion 

' ' ' · · · 
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2 g y

1,7561 ..i N = 3 feet, is, as y == 5 34 _ 
2 - 3 = 1,755, NO as 5,34 - 4_6,4 ( co,. 660)1 

.IJ .}l = .11. B - N  B 
g y2 c'lsin.«.i

b- x =b - = 

PARABOLIC MOTION. 

§ 38. A body projected at an angle of elevation Y .IJ. D = a. (�ig.
22), rises to a certain height B C, which is called the height of pro;ec­
tion, and it attains the horizontal plane, from which it departed at .11., 

Fig. 22. 

y 

C 

D 
B 

.x 

at a distance .11.D, which is called the range of-projection. It follo\\·s, 
according to § 37, from the velocity c, the acceleration g, and the angle
of elevation, that when p is replaced byg and «.0 by 90° + a.0 there­

,

fore cos. e1 by rin. e1 :  

-l1 •
th h . h . . . ( ., -sin.a, 

ll 

de e1g t of proJection 1s B C = b = ---, an , 2g 
2

the half of the range of projection .11. B = a =  c2sin. e1.

2g
On the contrary, the height corresponding to any horizontal distance 

= a - y becomes N O  =eB M =  C B - CM =  

2c'lcos.a.2 
- h sin a. - '!I 

• 
2

4 h cos.a.2-
,

2c'lcos.«.2 2g 
when h represents the height due to velocity �-

2g · ·I .t 1s evident from the formula for the range of projection, that th'1s 
will be greatest when sin. 2 a. = I, therefore 2 G = 90° , i e ,. = 45° . 
A bo<ly ascending, therefore, at an angle of elevation of 45° attains 
the greatest range of projection. 

Example 1. A jet of water ascending at an angle of elevation of 66° with a veloceity _of 20 feet, which bas therefore a height due to velocity h = 0,016.2()1 =6,4 feet, �tta!ns 
the height b = h ,in. •• = 6,4 (rin. 66°)• = 5,34 feet, and has a range of pro�ectton
a =  2. 6,4 lin. 132° = 2. 6,4 lit1. 48° = 9,51 feet. The time which each �cle of 

2 c. ,_ • -=water requires to perfonn the whole parabolic curve .A C D is = 
2 .  20 . lin. 66° . . tal 

8 
dmance= 1. 17 seconds. The height corresponding to the ho · nzon

31,25 

0,73 == 4,61 feet. 

'9,51 
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§ 39. Curved Mo tions in General.-By the combinati�n of s�ver�l 

like,vise produced, for not only the velocities but �he accelerations 
also may be united into a single one ; the result 1s, t�eref?re, the 

observe from what point C in this line, a small arc of a circle through 
A and O can be drawn. we may assume that not only C A, but also to A Y; that, therefore, in the small triangle N O  P the angle NP 0 

C O P is at right angles 

CURVED MOTIONS IN GENERAL. 

2. The jet of water flowing from a horizontal tube has at a height of Ii feet a range 
(half a range of projection) of a¼ feet, what is the velocity of the water 1 

From the formula x = g y'l = y•, it follows la =  yi , if x in this case = 1,75 and y = 
2 ci 4h 4x 

5�5R
5,25, then h = = 3,937 feet, and the velocity corresponding to this heightis c = 

4 . l,7515,ti8 feet. 

velocities and several invariable accelerations, a parabolic motion 1s 

same as if there were only one velocity and one acceleration, i.e. only
one uniform and one u niformly accelerated motion. 

If the accelerations are variable, they can just as well be united 
into a mean as if they were constant, for it is admissible to consider 
them invariable within the limits of an infinitely small space of time 
(") ; and the corresponding motions, therefore, during that space of 
time, as uniformly accelerated. Of course the resulting acceleration 
is variable, as are its components themsel,,es. If this resulting ac­
celeration be combined with the given velocity, it is possible to deduce 
a small parabolic curve, according to '\\'hich the motion is effected 
during the small portion of time. If again the velocity and mean 
acceleration are determined in the same manner for the next small 
portion of ti1ne, we are enabled to obtain a new curve belonging to 
another parabola; and if this be farther repeated, we at last obtain 
the whole course. 

§ 40. Any minute portion of any curve may be considered as the 
arc of a circle. The circle to which this arc belongs is called the 
circle of curvature, the radius pertaining to it is the radius of curva­
ture. The course of a moving body may, in the same manner, be 
composed of the arcs of circles, and thus a formula for its radius 
establishede. 

small trajectory described '\\·ith a 
uniformly accelerated motion x 

2 

=l!!._ in the direction .fl X, and
2 

let .fl N be a very small uniform­
=ly described trajectory y c-r,

and O the fourth terminating point
of the parallelogram constructed 
from x and y, i. e. the point which 
a body proceeding from A would 
occupy at the end of the short 
time (" ). Let .fl. C be drawn at· right angles to .fl. Y, and let 

Let .fl. M (Fig. 23) be a very 

Fig. 23. 
A 

us 

On account of the smallness of the arc A 0, 
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preciable with respect to c. But now according to the property of the 

form, a!1d consequently make v = c. 

CURVED MOTIONS IN GENERAL. 

is a right angle. The solution of this triangle gives us O P= 0 .N 
si.n. 0 NP=.11Msi,n. X.fl Y= P "  sin. e1, and the tangent ./1 P =

2 
p p 1'.fl N +NP= c "+ 2 

1'2 

cos. e1 = ( c+ cos. e1) "'amaybe madea= c "' 
2 

because ]!_-t cos. a, on account of the infinitely small factor .,., is inap-
2 

circle .fl J» =POx (P O +  2 C 0), or, as P O  vanishes when com­
pared with 2 CO .fl P2=P0 x 2 CO ; we have, therefore, the de-' .sired radius of curoature, 

.11 P2 c2 1'9 c2C.fl - C O - r - --=,....., � --:---:-- - -----c:---. 
ll - - - 2 P O - p 'I' sin. ca - p sin. ca

By the aid of the same formula, the radii of curvature of aU the ele­
ments of curves may be found, when the respective velo�ities (c) and 
the acceleration (p) are inserted, and also the angle a. '\\·h1ch the acce­
leration makes with the velocity, or with the direction of motion indi­
cated by the line of contact. 

Ezampk. For the parabolic path caused by the acceleration of gravity, we have r = 
0,031 . 

cl 
, and in the vertex of these curves, where • = 90°, therefore, riff. •=1, 

nn. a 

it results that r = 0,031 ,.a. With a velocity of 20 feet, it would therefore be found that 
r = 12,4 feet; the further, however, the body is removed from the vertex, 80 much the 
smaller • becomes, and so much the greater, therefore, the radius of curvature. 

§ 41. Proceaeding from a point (1 (�ig. 24 ), where the acceleration . _1s effected at nght angles to the direction of motion .fl Y, if, therefore, 
a = 90° , we obtain the radius of curvature C.fl = r = �, and the 

p
velocity at the follo,ving point O is composed of c and of p .,., hence 

2 ll 

v = ✓ c2 + p2 '1'2 = c + P " , because " is infinitely small compared 
2c 

with c. If we make V = C + Jr 1' .  "' we may then consider P
2 

1' as 
2c 2c 

the acceleration, and Y.,. . ,, as the corresponding increase of velo-
2c 

city. But as -t is infinitely small, the acceleration pll 
-t becomes

2c
also infinitely small, and in one second of time we have an infinitely
small increase ofvelocity, and may therefore consider the motion uni-

If, with the direction of motion, the direction of acceleration also 
changes, and if these remain constantly at right angles to each other,
then :,;e _shall always have " = c; the velocity of motion, therefore, 
remains invariably the same as it was at the commencem�nt, namely 
= c. An acceleration such as this, which is always at nght angles
to t�e motion, or causes the body to deviate af right angles from the 
motional direction, is called normal aculeration, and we hence know 

• 
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IS considered as invariable. The relative position O of a body (B) in motion is also found if ,ve add to the body, besides its own proper motion (BN), that AM of the body (A) to which we refer its position BQ, but in an inverse 

.. --: 

• '· • j� 
>;.•, 

48 CURVED MOTIONS IN GENERAL. 

that it alone never causes a change of velocity, but only a deviation
from the straight direction. According to the formula above, r -
� we must make the normal acceleration p = � == the ,quare ciftl&e 
p velocity divided by rthe respective radiu,

Fig. 24. of curvature. 
In the circle A O  D (Fig. 24) the ra­

dius of curvature (r) is the radius of the
circle C .11. = C O itself; hence, when
motion occurs in it, the acceleration p 

C = � is invariable. An invariable ac-
r

celeration, therefore, which constantly 
causes the body to deviate at right an­
gles from its motional direction, obligesI 
it to revolve in a circle. 

Exampk. A body which rotates in a circle of 5 feet diameter, in such a manner, that, 
or eac revo ution, 1t requires secon s o time, as a ve oc1ty c 2 "'

5t === -
3)1

2 . .,,. =6,283 feet, and a normal accelerationp = (6•2: = 7,896 feet ; viz., in every 

second it will deviate from a straight line by ½ p = ½ X 7,896 = 3,948 feet. 

§ 42. In the simultaneou, 
Fig. 25. motions ef two bodies, a con-

I stant change is taking place 
11 in their relative position, dis­

tance, &c., but with the aid
of the foregoing formul� it 
may be found for any given 
moment of time. 

__.__M __.A.'---____ =- _,X In Fig. 25, Jet .11. be the 
point of application of the one 

body,B that of the other; the first ad,·ances in the direction .11 X in 
a certain time (t) to M, the second in the direction BY in the same
time to N; we then have in this line the relative position and distance 
of the bodies A and B at the end of this time. If we draw .11.0 pa­
raUel with MN, and also make AO = MN, then will the line ./10
likewise give the opposite position of the bodies A and B.

If further we draw ON, we obtain a parallelogram in which ON
is alsoa= AM If finally we make BQ parallel and equal to NO,.
and draw OQ, we have then another parallelogram BNOQ, in which 
one side BN is the absolute path (y) of the second body, and the 
0!her �ide BQ the path (x) of the first body, described in the opposite
direch?n. The fourth corner O is the relative position of the second
�ody, 1!1 so far as it is referred to the position of the first body, which 
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eluded angle E B F = 11 = I 80° - B D C 
the second train B G=✓cl+ 

angle G B F =�, which this makes with the first direction of �otion: 

t - 29 02 - 29 02 
, L,g. nn. t = 0,75690--1, hence t = 34 , 50'. There-

fore in 15' tbe relative space described is B O  =29,02.900 = 26118 feet, the distance 

tangent = 
30000 = 0,8 = 38°, 40', therefore the angle .1J. B o = 38° 40' + t = 38° , 

CURVED MOTIONS IN GENERAL. 

direction, and then resolve these motions by the parallelogram BNOQ 
in the usual manner.

§ 43. If the motions of the bodies .11 and B are uniform, we may 
substitute for AM and BN the velocities c and c1, i. e. the spaces de­
scribed in one second. We obtain, therefore, the relative ve]ocity of 
the one body, when we add to the same in an opposit� direction,
besides its own absolute velocity, that of the body to which the first 
velocity is referred. The same re­ Fig. 26.lation takes place with the accelera­

0 . Ytions. 
Example. A locomotive train sets out 

upon the line .11. X, Fig. 26, from .11. with a 
velocity of 35 feet; another simultaneously
from B upon the line B Y, which makes with 
the former the angle B D X = 56° with a 
velocity of 20 feet. If now the initial dis• 
tances .11. C = 30,000 feet, and C B = 24,-
000 feet, how great is the distance ..i O of the 
two trains at the end of a quarter of an hour1 
From the absolute velocity B E = c1 = 20 
feet of the second train, the inverse velocity
B F =c = 35 feet of the first, and the in- �----�----=c__-=r 

=180° -56° =124° . 
...1. J> 

✓1225 + 400 - 1400 cos. 56° 

The relative velocity of 
c111+ 2 cc1 cos. • =e✓3511 + 20I - 2.35.20. an. 56° = = v'I625 - 782,9 = 29,02 feet. For the.✓842 2 = 

c1 tin. 56° _ 20.0,8290e._ .,in. 
' ' 

0 

.11. B =e✓(30000)11+ (24000)11 =  38419 feet. The angle B ..i C = .11. B F, whose 
24000 

°40' + 34° 73, 50' = , 30', and the distance of the two trains after 15': 
..i O = ✓.11..Bl+ B Ol -2 ..i B . B O cos • .11. B 0 

= V3841911+ 261181- 2 .  38419.  26118 COi. 73°, 30' = ✓158�190000=39852 feet. 

5 
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	I. s = ct. 
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	The spaces described in different uniform motions in equal times are to each other as the velocities; the spaces described with equalvelocities are as the times; and lastly, the velocities corresponding to equal spaces are inversely proportional to the times. 
	§ 7. Uniformly variable Motion.-A motion is uniformly variablewhen its velocity either increases or diminishes by a certain amountin equal and arbitrarily small times. It is .either uniformly accele­rated or uniformly reta·rded, according as in the first a gradual in(!rease, or in the second a gradual dimin�tion of ve!ocity;takes place, 
	In vacuo, the motion of a falhng body 1Ł uniformly accelerated; were the air to exert no influence upon it; the motion of a body verti• caJly projected would be uŁiformly retarded.a
	. 
	. . 
	_ 
	body is called acceleration; it is either positive ing as there is increase or diminution of the velocity. The greater this increase or diminution within a given time, the greater is theacceleration. In uniformly variable motion, the acceleration is inva­riable, and may be measured by the increase or diminution of velo­city which· takes place in a second of time. In every other motion, th� �easure of the acceleration is the increase or diminution which. a bo<ly would acquire if, from the moment in which the
	or 
	negatiŁe,
	accord­
	.

	·
	The measure is very commonly called the velocity. · 
	§ 9. If the velocity of a uniformly accelerated motion increase (•) in infinitely small particles of time, and a second of time is made up of such particles, the increment of velocity, or the acceleration, in 
	one second is: p = n ., 
	· 
	. 

	and the increment after t seconds = n t. s = n •· t =pt.
	If the initial velocity (the moment fŁm which the time is counted) c, the terminal velocity, i. e. the velocity acquired after the 
	= 
	time

	(t) is: V = C + pt.
	For motion,commencing without velocity, c 0, therefore and for uniformly retarded motion, having a negative acceleration (p),, V = c-p . 
	== 
	v 
	==p t,. 
	t

	�ampk 1. The acceleration of a body falling reely in vacuo = 32 . 2 feet; it ac quires, the�efoe, aer 3 nds, a velocity ., =zpt =z 32 . 2 X 3 = 96 . 6 feeL72• !',�pbere rolling down an inclined plane, with an initial velocity c = 25 feeacquir� 10 its oouree, at each second, 5 feet additional veocity; its vlocity, therefore, after 21., == 25 + 6 X 2.5 s= 2+ 12.6 == .5 feet, &c.; procei,dinl DO"! �e 1:­�nt uniformly, it will pass over 5 feet eeoond.-3. A 
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	UNIFORMLY ACCELERATED MOTION. 
	sponding to equal intervals. 
	. . 
	the sum of all the velocfties is equal to the product of the 
	(
	v 
	. ;) 

	tenpinal velocity v, and half the number of all the particles of time. The space described is the product (v •; • ") of the terminal velocity v,and half the number and magnitude of the particles. Now the magnitude (") of such a particle, multiplied by the number, gives the time t; the space, therefore, described in the time t with a uniformly 
	. . Vt
	I d •acce erate motion 1s s = 
	2
	The space, therefore, described in uniformly accelerated motion is as in uniform motion when, in the latter case, its velocity is half as great as the terminal velocity of the former. 
	Example 1. If a body in 10 seconds has acquired a velocity" by uniformly accelerated26 lO
	X 
	=

	motion of 26 feet, the space described in that time is = 130 
	,
	feet.-2. A 

	2carriage which, in its accelerated motion, goes over 25 feet in 2¼ 
	seconds, 
	proceeds 
	at

	2 X 25
	d "th l .
	th 
	§ 11. The two fundamental formulre of uniformly accelerated tion: 
	mo­

	vt
	I. v = t and II. s == , 
	p 
	2

	which express that the velocity is a product of the acceleration andthe time; and the space, half the velocity and the time ; include two re which are obtained, if from both equations vonce, and t t,vice. It follows that : 
	other principal formul
	be 
	eliminated 

	2 2
	p
	t
	v

	III. s = and IV. s = · 
	2 
	2 

	From this, the space described is a product !r half the acceleration, square of the time; and it is also the quotient of the square 
	and 
	the 

	Łgive, by inversion, after one or other of the 
	Th
	se 
	four 
	formulre 

	(16 . 5)• 2 . 4, 
	Figure
	• 
	UNIFOllML T .A.CCELKR.ATED MOTION. 
	a space 
	a space 
	15.625 X _.!.. = 17.578 feet-2. A body transported with 
	15·62
	!'> 
	X 
	{l.
	5
	)
	•
	s:: 
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	acceleration p = 4.5 into a velocity ti = 16.5 feet, has described a apace • == 30.25 feet. 
	an 
	= 
	5 

	Ł 12. By a comparison of two uniformly accelerated motions, 
	we 

	velocities 
	The 

	pt, the spaces on the other 
	1
	1

	from this it follows: 
	are v =pand v= tl pt I
	t 
	1 
	P

	and are s = _!_!.. ; 
	h

	and sa:
	1 

	_
	2 
	2 
	.!_ P t Ł P 1" .VJ11
	= 
	Figure
	and 
	= 
	1 
	as 
	t 
	= 
	.

	1 P11 1 P11' "11 V7 
	"
	t
	8
	t
	t
	1

	If we put t=t, we have !__ .. ..!. == I!__; the spaces described are 
	1 

	1 1 Pi
	1
	11

	to each other as the terminal velocities; or, as the acceleration-. 
	Figure
	Figure
	Figure
	· 
	If 
	If 
	fiurther, we ta e p
	1 

	. V t . 8 fl '1
	. 
	d 
	1 

	=p, 1t gives -= -an -; so 
	= 
	2
	= 
	1

	Vl tl Sl tl t,l
	in like accelerations, and ·also in one and the same uniformlyaccelerated motion, the terminal velocities are proportional to the times 
	that, 

	·
	and the spaces described to the squares of the times, as also to the squares of the terminal velocities. 
	rther, 1·r d -=v ·toc1 le& 
	F
	u
	· 
	P 
	t
	1 
	s 
	t 
	· 
	· 

	v= v gives-=-, an -; 1n equa1 el 
	1 

	i t 1 tl
	P
	8

	·
	the •Łelerations are inversely, and the spaces directly proportional to the times. 
	t,I
	p 
	t 
	I 

	L
	astly, 
	ti I
	p 
	V

	celerations are inversely Łs the squares of the times, and directly asthe squares of the terminal velocities. · . § 13. For a uniformly accelerated motion commencing with a velŁ 
	1

	city (c) we have §9: 
	I. v = c+ pt, and as the space ct beJongs to the invariable velocity (c), and the 
	'J 
	'J 
	p
	t

	space to the acceleration p:
	2 
	fl. S .. ·CI +• 
	p
	2 
	t'

	·
	If we eliminate p from both equationsŁ we have : 
	C + 1'
	Ill. , == t, 
	2 

	and substituting the value oft,. 
	· 

	"'...... ct 
	IV.'== 2p • &ampk 1. A body propelled with an initial Telooity e =3 feet, and with an aecele• ·122.5·=
	ton p == Łc-, deecribe, in 7 eeconds,·a spaee 1 =-3. 7+ 6. -·21 + 
	ra
	i
	Figure
	7
	1 
	·

	. 2 
	-. , -. 
	-
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	FREE DESCENT OF BODIES. 
	5 feet.-2. Another body which in 3 minutese= 180 secondchanges its velocity 
	143,
	s, 

	from 2½ feet into 7j feet, performs in this time a distance ·e·e9t.
	2
	= 
	00 
	fee

	•
	5
	+ 
	7
	5 
	1
	8
	0

	2 
	§ 14. For a uniformly retarded motion with an initial veloŁity c,these formulre are applicable: 
	I. v= c-pt, pF
	II. s=ct--,
	2 
	c+v
	III. S=--• t,
	2
	c2-v
	2 

	!hey Łre derived from the forll?-er !tmade negati_st n uniformly accelerated motion, the velocity increases without bm1t,in a uniformly retarded one, the velocity at a certain point of time 
	§,
	en 
	p 
	is 
	_a
	1

	. 
	bŁcoll?-es null, and afterwards negative,i. e. it goes on in an inversed1rect1on. If in the first formula we put v = O, pt= c, the time at which the 
	velocity becomes null is, t=c ; if we substitute this value of t in 
	the second equation, we have 1he space ,vhich the body has described 
	at the point of time = 
	c
	2 
	•

	2p 
	If the time be greater than , the space is less than .!__; if it be 
	c

	p 2p
	2c
	=-, the space becomes null, and the body returns to the point 
	from which it set out. If the time be greater than , then s becomes
	p 
	2c

	p
	negative,and the body is on the opposite side of its initial point
	• 

	.Example. A body which rolls up an inclined plane with an initial velocity of 40 ft., by 
	which it suffers a retardation of 8 feet per second, ascends only 5 seconds and •
	40 
	= 
	40

	8 2.8 
	100 feet in height, then rolls back and returns after 10 seconds with a velocity of 40 arrives at a diŁtance 40 X 12 -4 X (12)196 feet below this point if the plane extend itself backwards. 
	= 
	feet to its initial point; and after 12 second
	s, 
	= 

	§ 15. Free Descent ef Bodies.-The _free or vertical descent of bodies in vacuo, offers the most important example of uniformly ac­celerated motion. The acceleration of this motion brought about by gravity is designated by the letter g,and has the mean value of: 
	9,81 metres
	30,20 Paris feet. 
	32,22 English feet. 
	31,03 Vienna feet. 
	Łhil
	ve. 
	. 
	tv•
	1 

	= gt, s = -and s = -v =
	v 
	g
	, 

	2gs, 
	2 
	2
	g 
	✓

	Figure
	• 
	FREE DESCENT OF BODIES. 31 
	all questions,with reference to the free descent of bodies, may be answered. For the English measure : 
	V =a 32,2a. t-= 8,02 ✓ s; S -16,1a. fJ == .0155 1'
	2 

	and t .. 0,031 v == 0,249 ✓ s
	• 

	.&ampk 1. A body acquires in its free descent of 4 seconds a velocity 11 = 2.2 X 4 128.8 feet, and describes in this time a spacee,= 15.625 X 4= 250 feet.-2. A body falling from a height , = 9 feet, bas a velocity 11 = 8.02 ,,./ 9 = 24.06 feeL-3'. A body projected vertically with a velocity of 10 feet ascends to a heighte•;= 0.016 X IOI 16 feet, and requires for it a time t =0.031 X 10 =0.3, or about one-third of a second. 
	3
	= 
	1 
	=
	.

	§ 16. The fo1lowing table will show the relations of the motion tothe time in the free descent of bodies. 
	Figure
	I 
	Figure

	Time in 
	6 7 8 9 10
	Figure
	Figure
	Figure

	4
	2 3
	seconds. 0 1 
	Velocity. 
	0 lg 2g g 
	3

	4g 5
	g 
	6g 
	1g 
	Sg 
	9
	g 
	1
	0 

	2
	2 
	36K.. 49Ł64-. 81Ł'1
	2 2 2 2
	0 
	4Ł 9.[_ 16K_
	2
	2 2
	Space_. 
	Ditference. 0 
	1Ł · aL ·a5K_ 7..i_ 9Ł 11K.. 1aK.. 15K.. 17Ł 
	Figure
	Figure
	1

	.2 .2 .2 2 2 
	2 2 2 2 
	Figure
	The last horizontal column of this table gives the spaces which the freely falling body describes in the single seconds. We see that these spaces are to each other as the odd numbers I,3, 5, 7, &c., whilstthe times and velocities are as the natural numbers 1,2, 3, 4, &c., and the spaces fallen through as their squares 1, 4, 9, 16, &c. Forexample, the velocity after six seconds, is 6 = 193,2 feet,that is, the body would, if 1t proceeded from this time uniformly upon an horizontal plane, offering no impedimen
	g 

	last column it amounts to 13. =-13 x 16,1 == 209,3 feet, in the 
	g

	. 
	. 
	.2 

	eighth second it is 15. !== 15. 16,I =-241 feet, &e. 
	&mark . .,.-Many writers designate the space of 16 feet, .which a bod1 freely deeoeŁ will detcribe in one eeoond, by g, and term it properly the acceleration of granty.
	. 
	1ng 

	' They have then for the free descent of bodies, the following formula : 
	.,_2,i-2,,.;,,, 
	.,. 
	•-gtt -.,, 
	9 I
	,----✓
	-

	,_IAfl d · m
	2
	g I 

	Thia custom, which ia met with. in only, is disappearing Ł1 
	German:, 
	degaŁ 
	Ł 

	. consequence of its being fr equently misundentood, and the man:, miaeakeswhic anse therefiom, this is much to be desired. 
	FREE DESCENT OF BODIES. 
	Ifthe free descent of a body go on with a certain initial -relo­city ( c) the formulre are of the following kind: 
	§ 
	17. 

	2 
	t

	( 
	( 
	2

	= ct + g-== ct + 16.1 t',also s = 
	== 0,
	0155 v -&).

	2
	2 
	g 

	with the velocity c, then : 
	4,4s; 
	-6

	s 
	c2-v
	0155 
	O,

	v = c-gt = c-32,2 t; also v == ✓ c2 -2g s ✓ c3 
	= 

	ct-v
	t' 
	i 

	ct -g= ct -16,1 t; also s == 
	2 
	2 

	== 
	.
	-
	2g
	2g

	s 
	If we consider a given velocity c as the terminal velocity acquired
	ci
	a free descent, then the corresponding space fallen through 
	-
	-


	2g0,0155 . c2 is called the height due to the velocity. By the introduc­tion of this quantity, some of the foregoing formulre may be expressed 
	b
	y 
	= 

	more simply. If the heightedue to the initial velocity c be put 
	(;;) 

	2 
	= h, and that due to the terminal velocitye!!._= h, we have the fol
	i
	-

	2g
	2g
	lowing for faHing bodies : 

	kl = " + s' s = hl -h; 
	== h -s, s = h -h•The space of fall or ascent is, therefore, equal to the difference ofthe heights due to velocity. 
	and for ascendinge: h
	1 
	1

	&ample. The velocities are 5 and 11 feet, the heights due to velocitye= 0,0155· (5 )2 = 0,3875 feet, and 0,0155 . 11= 1,875 feet; the space which is described during the pas• sage from one velocity to the other: , = J,8755 -0,3875 = 1,4880 feet. 
	1 

	18. From the formulaes= h-hit also follows that a body ver­
	§ 

	1
	tically projected has at each point that velocity ,vhich it would have,but in an inverse direction, were it to ha¥e fallen from the height still remaining to that point, and which it then actually possesses in its following descent. 
	Example. A body is thrown up with a 15 feet velO<.'ity, and strikes in its rise against 
	an elastic impediment, which for the moment throws it back with the same velocity with which it struck.. How great then is this velocity, and the time of ascending and de­scending 1 To the velocity (c = 15 ft.) corresponds the height of ascent h = 3,49 ft.;the height due to velocity at the moment of impact is h1 = 3,49 -2,00 = 1,49, and con­sequently this velocitye= 8,02 .,./ 1,49 = 9,652 ft. The time to attain the whole height (3,49 ft.) is t = 0,032. v = 0,032. 15 = 0,480", for the height 1,49 ft. t1 = 0,
	=:= 
	.

	0,480 -0,320 =
	= 
	ti" . . 
	me of rising and falling
	e 
	=
	2.
	0,160 
	= 
	0,3
	20''. 

	20
	0,3

	w·hol 
	.
	.
	h

	t

	0960 
	0960 

	se
	folloŁ
	elast
	. 

	VARIABLE MOTIONS IN PARTICULAR. 33 
	is very often required in practical mechanics, and especially in hydraulics. A table where this is set down is of great use to the practical man. 
	Remark 2. The foregoing formula, are only strictly correct for a free descent in vacuo; they may be used with tolerable accuracy for a fall in air, if the falling bodies have a weight great in proportion to their volume, and if the velocities do not come out very great. For the rest, they are also used under other cireumstances and relations in many 
	§19. Variable Motions in Particular.-For variable. motions espe­
	§19. Variable Motions in Particular.-For variable. motions espe­
	.
	cially, in which the periodic are also included, the formulre 
	·
	1. 
	1. 
	1. 
	" = p -r, and

	2. 
	2. 
	<I = V <t 


	old good:a-the increment of velocity {a) acquired in a very smallt!me -, ( element of time), is a product of the acceleration and this<1 described in the element of time " is a pro­duct of the velocity () and the timea"· By inversion: 
	Ł
	p 
	time; and the space 
	v

	3.p= Ł and 
	(S 
	't
	Acceleration is the quotient of the increment of velocity by the
	element of the time -, in which it is acquired. Velocity is the ratio 
	The.two last formulre may be used for the measurement of the ac­on and !elocity. Ez. From given by the formula = at when a is the space described after the first second, it follows: 
	celera
	Ł
	the 
	motioa 
	Ł 

	. 
	+ or because "is small == t' + t ", it therefore foJlows 
	2
	t" 
	+ 
	-t
	1 
	, 
	2

	. 
	, 
	o 
	. " 
	B 
	"
	( t + ") = 2 a t + 2 a ", so that = 2 a -, and the acceleration p = 
	Ł=2a. We have, therefore, in this way found from the fonnulre 
	't
	formulre for the velocity and acceleration. 
	for 
	the 
	spaces, 

	. . 
	§The velocity c =-.!_ differs from the velocity v = 
	20. 
	_!__ 
	of 
	an 

	t 
	" 

	element of time, and is given when the space, which in a certain t!me ?of a periodic motion is described, is divided itself. This is called the mean velocity, and may be also reed as!velocity which a body must orderto describe un1foŁŁ given time (t) reality, is descnŁed vanably. So, for example, in uniformly variable motion, the velocity
	r 
	period 
	by 
	the 
	time 
	Ł
	hat 
	have 
	in 
	· 
	mlyin 
	a 
	given 
	space 
	(s), 
	which, 
	in 

	is equal to terminal velocitie
	half 
	the 
	sum 
	(c 
	! 
	") 
	of 
	the 
	initial 
	and 
	sŁ 

	according to13, the (c 
	for, 
	§
	space 
	is equal 
	to this 
	sum 

	. 
	") multi
	! 
	-

	· 
	. 

	3-i GRAPHICAL R &PRESENTATION. 
	the piston of an air or water-pump, for instance, moves variably up and down ; the velocity of this at its lowest and highest point is at a minimum, viz., null; at half the height a maximum, viz., equal to the velocity of the handle. In half a revolution, the mean vel<?city equals the whole height of ascent, i. e., the diameter of the c1!cle which the handle describes, divided by the time of half a revolution.The diameter = 2r and the time = t, then the mean velocity of the 
	2 r 
	. . 
	th 
	. .
	,c r 
	esem1c1rcle

	·t1 
	velocity, therefore, = Ł, and consequently the mean velocity of the 
	r

	2 2 
	·
	load = ;; = ble ve o
	· 
	-

	· 1
	· 1
	· 1
	= 0,6366 times as great as the 1nYaria

	3_ 
	3_ 
	1
	41


	city of the handle. 
	§ 21. Graphical Representation.-The la,vs of motion found above may be expressed by geometrical figures, or, as it is said, graphically represented. Graphical representations especially facilitate the con­ception, sustain the thoughts, pre\'ent mistakes, and ser\·e not unfre­quently for the discovery of a quantity, and on that account are of great use in mechanics. 
	In uniform motion the space (s) is the product (ct) of the velocity and the time, and in geometry the area of a 
	Fig. 1. 
	rectangular figure is the product of the height and base. We can, therefore, repre­
	_ 
	N 

	.Dr--c
	-;:.-------; 
	sent the space (s) uniformly described by a rectangle .ABC D, Fig. 1, whose base .fl B 
	is the time (t) and whose height (.fl D= B 
	C) is the velocity ( c), provided that the time 
	A'----__.x____ _, 
	IJl

	be expressed in the same unit of length as 
	the velocity, and that the second of time and the foot be represented by one and the same line. § 22. Whilst, in uniform motion, the velocity (MN) at any other 
	time (AM) of the motion is one and the same, it differs at every in­stant in a variable one; this motion, there­fore, can only be represented by a quadri-
	Fig. 2. 
	__...:.Nr-_--,c 
	.fl B the time for base, and for the other limits, three lines AD, B C, CD, of whichthe first two are equal to the initial and ter­minal velocities, and the last is determined 
	__a

	A :a by the extremity ( N) of the different velo-
	x 
	x 

	. cities at the intervals (.M)The line CD
	. 
	. 

	straight or curved, according to the different kinds of varia­
	is 
	e1theŁ 

	from the commencement, ascending or descending, or lastly 
	ble 
	motion 
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	osable into many small rectangular strips, Fig. 3.hke M O P N, of which each is a product 
	Ł

	--ŁNŁ-,c
	P 

	P
	Figure
	,--

	of a part (M 0of the base, and its corre­sponding height (M N or O P), and the spaces described in a certain time com­posed of particles of which each is a pro
	) 
	-

	duct of that particle and its corresponding
	velocity. A x. o B 
	. § 23. In uniformly variable motion, the�crease or diminution (v-c) of the velocity (=pt, § 13) is propor­tional to the time. If in the Figures and 5, the line DE be drawn 
	1
	4 

	Fig. 4. 
	Figure
	Figure
	Fig. 5. 



	»-------------Ł--------,Z
	»-------------Ł--------,Z
	• 
	• 
	• 
	• 
	I

	I 

	I

	•• 
	•• 

	I 
	I 
	'C 
	A----Ł..-----':II
	M A,________, ---w 
	parallel to the base ./1 B, and BE and M O = to the initial velocity.11 D be cut off frpm the lines M Nand B C, there remain the lines C E and N Ofor the increase or diminution of the velocity, for whicŁfrom the above we have the proportion 

	N O : C E = D O : D E.
	N O : C E = D O : D E.
	Such a proportion requires that Nas well as each point of the line C D lie in the straight line connecting C and D, and also that theline C D limiting the different velocities M be a right line.
	(
	N) 

	In consequence of this, the uniformly accelerated and uniformlyretarded space described may be represented by the area of a trape­zium ./1 B CD, which has for the height ./1 B, the time (t), and forthe parallel bases the initial and terminal velocities .fl D and B C. 
	The formula § s = c!. is in perfect accordance with this
	of 
	13, 
	v 
	t 
	. 

	In uniformly accelerated motion, the fourth side D C ascends from itsinitial point, and in uniformly retarded motion descends. In a uni­formly accelerated motion beginning with a velocity null, the trape­zium becomes a triangle whose area is l B C x .IJ B
	== i 
	ct. 

	space divided by the time; multiplied, there-
	Fig.NG.
	fore by the time, it gives as a pr<><Juct the
	7Ł,,c:.:______:Ł
	trajectory, and consequently may be also 

	considered as the height .IJ F B E of the .,
	= 

	parallelogram ./J. BE F Fig. 6, whicJi has
	the time (t) for the base ./1 B, and an area eual to the four-sided figure .fl B C NDA! 
	q
	which measures the trajectory or space 
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	passed through. The mean velocity is, therefore, likewise obtained by transforming the four-sided figure jJ B C ND into a parallelo• gram .11 B E F of the same length. Its determination is of import•ance, particularly in periodic motions, which occur in nearly all machines. The law for these motions is represented by a curvedline CD E F G H KFig. 7. If the line L M running parallel 
	, 

	Fi. 7• 
	g

	Figure
	.A.'---'ii.----Jr---ir----,r------lJJ 
	with .11. B cuts off the same space ·as the curved line, and is, as it were, the axis round which C D E F .... coils itself, then the distance .11 L = B M between the two parallel lines .11 B and L M is the mean velocity of the periodic motion, whilst .11 C, 0 E, B K, &c., is the maximum, and ND, P F, &c.e, the minimum Łelocity of a period .fl O, 0 Q, Q B, &c.
	§ 25. The acceleration also, or the increase of velocity during asecond of time may be easily shown in the figure. In the case ofuniformly variable motion it remains unchangeable; it is hence the difference P Q, Fi. 8 and 9, between two velocities OP and MN, 
	gs

	Fi. 8. Fi. 9. 
	g
	g

	N 
	N 

	D
	D
	---

	C 
	' 
	Figure

	A---'x...... A.----=Jll-=---=--·
	'--

	o
	Ł,,_..0--ŁB 

	the one of which appertains to a longer time by one second (M 0) than the other. If the motion is not uniformly variable, and the line of velocity CD therefore a curve, then for each second of time ( M) theacceleration varies, and is, consequently, not the real difference P Qbetween the two velocities O P and M N = 0 Q Figs. 10 and 11 ; but it is the increase R Q of the velocity MN, which would occur if commencing at the moment Mthe motion became uniformly accele­rated, and the curved line of velocity N Cpa
	_
	lne ŁE. No,v the tangent or line of contact NE, is that straighthne 1n thE: direction of which a curve D N proceeds, when from a erta1n po1n(N) it ceases to change its direction ; hence the new hne of vŁloc1ty cinides with the tangent, and the perpendicular line 0 R which cuts 1t, 1s accordingly the velocity which would take place 
	!
	_
	Ł
	Ł 
	?
	Ł

	COMPOUND MOTION. 
	after the lapse ofa second, supposing the motion to have become uni­formly accelerated from the commencement of that period, and lastly, 
	Fig. 10. Fig. 11. 
	1) 
	Figure
	A
	.A --.c,,,_..-l-----­
	Figure

	K o 
	the difference R Q between this velocity and the primary velocity (M N) is the acceleration for that moment which is determined bythe point .M. in the time line ./1 B. 
	CHAPTER II. 
	COMPOUND MOTION. 
	. 
	§ 26. Compound Motion.-One and the same body maat the same time have two or more motions; every (relative) motion con­sists of the motion within a certain space, and of the motion of this space within, or in relation to, a second space. Each point upon the surface of the earth has thus two motions, for it revolves daily once round the axis of the earth, and simultaneously with the earth once yearly round the sun. A person walking on board a ship has two motions in relation to the shore, his own motion and t
	r 
	g 

	the vessel and the motion with the vessel, &.c. 
	from 

	Hence we distinguish simple and compound motion. Those re��­
	.
	motions are called simple, of which other rectilinear or !1_motions, consequently called compound, are made up, be 
	hnear 
	cumb­
	ear 
	or 
	may 

	Figure
	combination of several simple motions to form and the resolution of a compound motion into 
	. 
	The 
	one 
	singlŁ 
	mo­
	tion, 
	several 
	Simple 

	· · 
	motions, will be treated of in the sequel. 
	• 
	PARALLELOGRAM OF THE VELOCITIES. 
	same straight line, their sum or difference gives the resulting com­pound motion, the former, when the motions take place in the same direction; the latter, when their directions are opposite. The of this axiom becomes directly obvious, when the contemporary spaces of the simple motions are united into one. The contemporary spaces ct and c, t correspond with the uniform motions and their velocities cand c; if these motions go on in the same direction, then after tseconds the space becomes s = ct + ct = ( c+
	truth 
	1 
	1 
	2 
	1 
	2 
	1 
	2
	2 
	(
	c
	s

	1 
	c

	t, here, therefore, the resulting velocity is equal to the difference of the simple velocities. 
	Example 1. To a person moving with a velocity of four feet upon the deck of a ship,in the same direction with the motion of the ship itself, which has a velocity of six feet, the objects on the shore appear to pass by with a velocity of 4 + 6 = 10 feet.-2. The water which flows from the lateral opening of a vessel with a velocity of 25 feet, whilst the vessel containing it is moved in an opposite direction with a velocity of 10 feet, has, in relation to the other objects at rest, only a velocity of 25 -10 =
	§ 28. The same relations obtain with variable motions. If oneand the same body have, in addition to the primary velocities, cand cthe constant accelerations pand p, then the corresponding spaces 
	1 
	2 
	1 
	2

	2 2 
	t
	t



	·r h 
	·r h 
	. .
	1
	t e ve oc1hes an 
	.
	d h I .
	t e acce erahons are 1n 
	the same direction, the whole space corresponding to these simple motions, will be : 
	es 
	s = ( c+ c2) t + (+ ) .
	P
	1 
	P
	2
	-

	1 
	t 

	. t2
	If c+ c= c and p+ p= p, we then obtain s = ct + p -, and 
	1 
	i 
	1 
	2 

	2 
	it follows, consequently, that not only the velocity of the resulting orcompound motion is made up of the sum of the simple velocities, but that also the sum of the accelerations of the simple motions gives theresulting acceleration. 
	Example. A magnet falls more quickly to the earth than another body, when a m88S of iron is immediately below it. The acceleration which the magnet experiences, in consequence of this iron, may be considered invariable when the height from which it fillls is small and the mass of iron very considerable, viz., an extensive layer of mag­netic iron ore. If this acceleration were 5 feet, then the magnet would fall with an increased velocity of 31,25 + 5 = 36,25 feet in the first second, therefore it would fall 
	§ 29. Parallelogram of the Velocities.-!£ a body has at the same
	.
	time tŁo mŁtions differing from each other in direction, it will assume d!rection bet,veen 
	a 
	meŁ1um 
	them 
	; 
	and 
	if 
	these 
	motions 
	are 
	of
	differ­
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	when the fourth corner of the parallelogram .fl M O N, determined by the contemporaneous trajectories .fl M 
	Fig. 12• 
	Figure
	= x and .11. N = y, as well as by the angle X .11. Y, or the distance by which the directions of motion deviate from eachother, is known. The correctness of this mode of procedure becomes evident when the trajectories x and y are supposed de­scribed one after the other, and not at the same time. In compliance with the one motion, the body describes the trajectory IJ M = x; and in compliance with the ----tr--­other,the trajectory proceeding from Min 
	.
	Figure
	. x 

	A
	A
	"--

	O = .11. N, then O is the position of the
	If 
	M 

	trajectory .11. N = y. 
	is all its points proceeds at the same time in the direction .11. Y, and therefore carries a parallel direction to .11. Y, and causes this 
	passed 
	over 
	in 
	a 
	line 
	.11. 
	X, 
	which 
	with 
	with 
	it 
	M 
	in 
	point 
	to 
	perform 
	the 

	trajectory M O = .11. N = y.
	§ 30. If both the motions in the directions .11. Xand .fl Y take place1 and cs,then the spaces will be­come after a certain time (t): x = c1 t and y = cs t; their relationship 
	uniformly and with the velocities c

	'!I = 5.. is, therefore, the same at all times, a peculiarity which is only 
	X proper to the straight line ./1 O, Fig. 13. Hence it follows that Łompound Łotion procŁŁds in a straight
	C1
	the 

	hne. If, with the velocities .fl B = cand .11. C = c,, the parallelogram .fl B C D is c?�struct�d, itsfourth corner gives the po­
	1 
	Fig. 13. 

	.
	sition D, 1n which the body v.·ill be placed after the lapse of one second. But as the resulting motion is rectilinear, it follows that it must always occur in the direction?f the diagonal of that parallelogram which trajectory .fl O which is actually passed through in the time t be s, then, on 
	Figure
	7
	is constructed by the velocities. If the 
	X

	A .s M 
	=account ofthe similarity ofthetriangles .11M O and.flB D, wehave:s .fl D :r. • .11 Dand it consequently follows thatthis trajectorys=== .flDInaccordance with the last equation, the•
	• 
	Cl 
	Figure
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	and tM angle which tMy make with each other, gives the direction and
	magnitude of the actually resulting motion. This parallelogram is called the parallelogram of velocities, the simple velocities are called the components, and the compound velocity the resultant. 
	§ 31. By the use of trinometrical formulre, the direction and mag­nitude of the mean velocity may be ascertained by calculation: The resolution of one of the equal triangles, viz., .fl B D, of w�1ch the parallelogram of velocities .fl B DC (Fig. 14) is composed, gives the mean velocity .fl D= c by means of the com­ponents .fl B = c and .fl C = c, and the
	go
	Fig. 14. 
	2

	1 
	angle B .fl C= formed by their directions bythe formula : c = ✓ c/ + c+ 2 cccos. a., and the angle B .fl D = t, included by the mean velocity, and the velocity cis expressed 
	a. 
	Ii 
	2 
	1 
	2 
	2 
	1 

	•
	• Csin. a,
	2 

	by the formula si. t = , or tang. 
	n

	C 
	c
	2 
	s
	i
	•
	n. 
	a. 

	• If the velocities and
	t 
	= 

	1
	c

	C+ CCOS. a, 
	1 
	2 

	care equal, and their parallelogram conse­quently a rhombus, then we obtain in a more simple form, in con­sequence of the diagonals being at right angles to each other : 
	2 

	c = 2 ccos.½ a. and t = ½a.. Lastly, if the velocities enclose a right angle, then likewise we ob­tain more simply: 
	1 

	c = ✓ 2 2 and tang. t = 2-.
	c 
	+
	c 

	1 2 
	1 2 
	Cl 

	Exampk 1. The water flowing from a vessel or a machine has a velocity c25 ft.,whilst the vessel is moved with a velocity c= 19 feet in a direction forming an anglea= 130with the direction of the flowing water. What is the direction and magni• tude of the resultant, or as it is also called, the absolute velocity1
	1 
	= 
	2 
	0 
	° 

	The required is c = 252 + 192 + 2 . 25e. 19 co,. 130= 
	resulting velocity 
	✓
	° 

	v= ✓7 = ✓375,3 = 19,37 feet. 
	625 + COi. 50
	361-50.19 

	° 
	=✓986-950 COi, 50
	° 
	986-610,
	Figure

	19 nn. 130
	° 

	Moreover, ain. = 0,9808 nn. 50= 0,7513, and consequently the
	t-
	° 

	19 37 
	,
	angle by which the resultant differs from the velocity ct = 4S, 42' and the angle which it makes with the direction of motion of the vessel: 1&-i' =8118'. 
	1 
	0 
	°

	2. If the former velocities were acting at right angles to each other, then co,, 1& =co,.o= 0, thence the mean velocity c = ✓= 31,40 feet; for its direction we should 
	9
	0 
	986 

	t 0.76, and consequently, its deviation from the first velocity: t
	have tang. 
	19 

	= 
	= 
	25 
	= 

	§ 32. Any given velocity may be supposed to consist of two com­
	�nents, and can consequently be resolved into them, in accordance with certain conditions. If, for instance, the angles D .11 B = t and D .fl C = _4-, Fig. 14, are giYen, and enclose the velocities requiredto�ether �•th the mean velocity .fl D= c, then draw through the ter­minal point D other lines which represent the degrees corresponding to. c, parallel to the directions .IJ X and .fl Y: the points of section will then cut off the required velocities .11. B = cand .fl C= c• 
	1 
	2

	Figure
	Figure
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	sin. (♦+.i,)velocities are at right angles toeach other, and then t+ .a,=90°
	= c cos. t and c 
	= c sin. •
	·

	1 
	c

	,
	) an.d its angle of direction (t ), the direction and magnitude of the other component may be estimated. Lastly, from the velocities c, cand calone their angles of direction may be determined, as the three angles of a triangle may be com­puted by the three sides. 
	Therefore, with one component ( c
	1
	1 
	2 

	JO lin. 70 ° 9,397 10 ,i,.. 65° 9,063 '1 = An. 1350 = lin. 450 = 13,29 feet and '2 = lin. 1350-= 0,7071 = 12,81 ft. §33. Composilion andResolution of 
	structing the parallelogram .fl. D , 
	F 
	E

	Fig. 15. 
	,ve get the mean velocity .fl. F to 4,Dand .IJ. E == c; and in like manner by Hconstructing the parallelogram ./1. F HG 
	3 

	,
	the mean velocity .IJ. H = c to .IJ. F and.fl. G = c is obtained, and thus the 
	,. 
	mean of c, c,, c, and c 
	1
	3
	. 

	The simplest method �f obtaining the mean velocity in question, is by the con­struction of a polygon .fl. B D F Hthesides of which .11 B, B D, D F, and F H,are d�wn parallel and equal to the given velo�1t1es c, c, c, and c,. ; the last side.IJ.H 1s then always the resnltantvelocity. 
	, 
	Ł
	1
	2
	3

	In the case, also, in which the velocities are not in mean velocity may be ascertained by repeated parallelogram of velocities. The mean velocity three velocities .fl. B = c, .fl. C == c and 
	the 
	same 
	plane,
	the 
	application 
	of 
	the 
	.fl. 
	F 
	= 
	c 
	(Fig.
	16) 
	of 
	1

	Fig. J6. 
	-!' E = c, which are not in the same piane, 
	3

	Figure
	is the diagonal of a parallelepipedon B C
	Łhe sides of which are equal to these 
	_,:-: 
	_,:-: 
	Figure
	G H, 
	_
	vŁloc1!1es. The parallelqnpedon
	.
	cities 1s, therefore, also a term in general
	use. 
	of velo-
	_,,,,, ,,, : /Ł, ;',1, 
	.. 
	, 
	,

	'JI 
	,,::,,a' \
	--

	:-'
	1:wo un!formly accelerated motions, begin
	-

	_
	with null velocity, produce, when· 
	n1ng 
	_

	?omb1ned, a uniformly accelerated motion 
	4• 
	COMBINATION OF VELOCITY AND ACCELERATION. 
	in the directions .A X and .A Y (Fig. 17) are p1 and p, then, at the close of the time t, the spaces will be .fl M 
	'],

	Fig. 17. 
	and.AN=y= is in no way depend-
	Ps
	2
	t
	2 
	Pi 
	e
	z 
	Pi 

	d b ·e1r
	p t
	2 

	relation 
	x
	=

	1 
	= 
	P,

	!/ P, 2 
	!/ P, 2 
	t

	.N.1------___, o --------Łx 
	rectilinear. 
	. .110 .llM
	.llMON, and from which 
	.llMON, and from which 
	.llMON, and from which 
	.llMON, and from which 
	.fl .11 B
	n
	= 
	== 


	t'=-1a
	tP
	1 


	2. t; therefore, .fl o=!.fl D t• From this equation it ap-
	2
	2 
	• 
	2


	. 
	1 . 
	P

	pears that the trajectory .il O of the compound motitn is proportional to the square of the time; the motion itself, therefore, uniformly accele­rated, and its acceleration is the diagonal 11 D of the parallelogramconstructed by the simple accelerations pand p•
	.
	1 
	2

	In the same manner, therefore, as velocities can be composed orresolved by the parallelogram of ,·elocities, and, according to pre­cisely the same rules, accelerations may be united into one, or broken up into several others by a parallelogram, which is called the paral­lelogram of accelerations. 
	§ 35. Combination of Velocity and .llcceleration.-By the combina­tion of a uniform with a uniformly accelerated motion, an entirely variable motion is produced when the directions of the motions do not coincide. In a certain time t, with the velocity c in the direction .fl Y, (Fig. 18,) the trajectory .fl Ny= c t "·ill be described, and in 
	=

	the same time ,vith an unchange­
	able acceleration, and a direction 
	Fig. 18. 

	A=----:.-----:.N Y-.11 X at right angles to the former, 
	--·---·-------------· 

	;a.-------.i__
	.--

	2
	2
	2
	2
	t

	p

	: 

	the trajectory .fl M=xwill
	= 


	2 
	Figure
	be described, and the body arrives at the terminal point O of the pa­rallelogram composed of y ct 
	= 

	P . With the aid of 
	and x
	= 
	t
	i 

	2
	these formulŁ, the position of the 
	body can be determined for any
	.
	but it is not always in one and the same straight line, for
	·
	en 
	hme, 

	.
	gi,
	first equation we take t=Y, and place this value 
	if 
	from 
	the 
	in 
	the 

	C 
	second, we obtain the equation x= Ł . In accordance with this, 
	Ł

	the trajectories {z) in the direction of the second motion do not cor
	-

	PARABOLIC ŁlOTION. 
	section of it parallel to the aide 13 C and at right angles to t.l1e section .ii. B C1 anu let O P Fig. 19. 
	N Q be a second section parallel to the base, and,conseqn�ntly, also circular. Then let E F l>e the line of section bet\veen the base and the first section, and O N that bet"'·een both sec­tions; itnagine, Lb.en, in the triangular section .Jl B C, the parallel diacneters .11 Band P Q, an<l in the section DEF, the axis D G. •r1.ten, for the half chord of the circle, MN= JJL O, i.he equation applies M Ni= P 1J X M Q; but M Q=BG aurl for PM "·e have the propor­D G; hence, it follo,•.s 
	tion PM: MD =..i G: 

	.I.I 
	D 
	M 
	X 
	G

	M N1=B GX. But, in like man-
	D G 
	ner, G Ei=B G G; if one equation is divided. by the other, ,ve obtaiu, therefore, 
	X .ii. 

	DM MN2 
	; the portions cut off from the
	; the portions cut off from the
	D 0-G Ei 

	a.xis (absciss«) bear, therefore, the :,;an1e prc,­portion to each other as the squares of the oor• respo11di11g perpendiculars (ordinatl!s). This law agreu:i completely ,vith the L.'l.,v for motion 
	1ouml above; this ntotioo. thcrcfort?, takes place in a curved line D NE, slto,vn to be a section of the cone (Corne Section) . 
	·which 
	can 
	be 

	. _
	t1on produced by the comb1nahon of velocity and acceleration, we n1ust be able also to indicate the di1·etion, velocity and the space passed t'1,rough during any length of time t). The velocity parallel to .11. Y is invariable ande= , that which is parallel to AX is variable antl 
	c
	(
	c
	Fig. 20. 

	= pt. If ,,Łth these velocities, 
	0 Q = c and O P = p t, the parallelogram O P R Q is con­
	-Ł---'aŁ---1' 
	=-
	Figure
	Figure
	-

	its diagonal O R the mean, or 
	that velocity with \\•hich the body 
	at O follows the parabolic curve 
	Figure
	M1--------''i<c---Ł 
	Figure

	.fl. 0 U. This velocity itself is : 
	c2+pt
	V 
	= 
	✓
	i. 

	In like manner, 0 R is the tangent or direction in which the 
	?ody at O proceeds for a single x 
	':I 

	Figure
	§ 36. Parabolic Łlfotion.In order thoroughly to compreheend mo• 
	§ 36. Parabolic Łlfotion.In order thoroughly to compreheend mo• 
	-:-
	.



	. . 
	PARABOLIC MOTION. 
	44 

	= s we can apply the equation <1=vt ( § 19) ; according to which we can calculate minute portions of it, which may be considered as its elments. The higher branches of geometry supply us with a com­plicated formula for calculating the parabolic curve. 
	Ł

	§ 37. As yet we ha Ye assumed that the primary directions of mo­tion formed a right angle with each other, and we must �ow study more closely that case in which the direction of the acceleration makes a certain angle with that of the velocity. If the body (J.?ig. 21) �as in the direction J1 Ythe velocity c, and in the direct�on .11 X, wh<:hmakes with the first the angle X1 J1 Y = the velocity p, then .11 1s no longer the vertex, and J1 X1 no longer the axis, but only the direc­tion of the axis of the parabo
	1 
	1
	1
	a. 

	,vhich coincides with the 
	Fig. 21. 
	axis, and the former is at 
	::-------,.---=-ŁY
	:---Ł

	r..--=-.NŁ--right angles to it, beginning 
	at the commencing point ofthe motion .11. The velocityJ1 D = c is made up of the components J1 F = c in. a.and JJE = c. cos. a.. The for­mer of these remains alwaysthe same, but the latter must be made equal to the variable 
	s

	X 
	velocity p t, supposing that 
	the body has required the time t to move from the vertex C tothe real commencing point .11. 
	We have,therefore, c. cos. a.=pt, consequently 
	t 
	=

	Figure
	os. °' 
	c 
	c

	and 
	, 

	p 
	p p
	2

	-c2cos.a.
	2 

	. 
	dan
	1 J1 B
	. 
	pt
	pt
	2

	2. B C b 
	2. B C b 
	-
	-
	-


	-
	2 
	2 

	-
	p 
	2

	. 
	If by these distances we have found the vertex of the parabola C,then, beginning from thence we can find for any required time the position O of the body. Moreover we have: making CM= x and 
	M O= y the general formula x Ł , also y = c sin. 
	= 
	P
	2
	a. 
	J
	2
	x_

	2• 
	c2sin.a. 

	,.__ 
	p 

	Remarh. The theory of parabolic 1notion produced by an invariable velocity and a consnt acceleration, which we have just been considering, finds its application in the ŁThe bodies projected either upwards or downwards would Ł parabolic curve as the result of their primary velocity ( c) and the acceleration 
	Ł
	doctr
	ne 
	of 
	Projectila. 
	descri
	a 

	of gravity (
	g
	=
	32.2 
	feet), 
	if 
	the 
	resistance 
	of 
	the 
	air 
	could 
	be 
	prevented, 
	or 
	the 
	motion 

	' 
	· 
	' 
	' 

	· 
	· 
	.IJ.}l= .11. B-N B g yc'lsin.«.
	2 
	i

	b-x =b-= 
	Figure

	PARABOLIC MOTION. 
	§ 38. A body projected at an angle of elevation Y .IJ. D = a. (�ig.22), rises to a certain height B C, which is called the height of pro;ec­tion, and it attains the horizontal plane, from which it departed at .11., 
	Fig. 22. 
	y C D B 
	.x 
	at a distance .11.D, which is called the range of-projetion. It follo\\·s, according to § 37, from the velocity c, the acceleration g, and the angleof elevation, that when pis replaced byg and «.by 90+ a.there­
	c
	0 
	° 
	0 

	,
	fore cos. e1 by ri. e1: 
	n

	-l1 •
	th h h . . . (.,-sia, d
	. 
	n.
	ll 

	e e1g t of proJection 1s B C= b = ---, an , 
	g 
	2

	2
	the half of the range of projection .11. B = a= 2si
	c
	n

	e1.
	. 

	2g
	On the contrary, the height corresponding to any horizontal distance 
	= a-ybecomesNO =eBM= CB-CM= 
	2c'lcos.a.
	2 

	-h sin a.-
	'!I 

	• 4 h cos.a.
	2
	2

	-
	,
	2c'lcos.«.
	2 

	2g 
	when h represents the height due to velocity Ł
	when h represents the height due to velocity Ł
	when h represents the height due to velocity Ł
	-

	2g · 

	·

	t 1s evident from the formula for the range of projection, thwill be greatest when sin. 2 a. = I, therefore 2 G = 90, i e ,. = . A bo<ly ascending, therefore, at an angle of elevation of 45attains the greatest range of projection. 
	I 
	.
	at 
	th'
	1s 
	° 
	45
	° 
	° 

	Example 1. Ajet of water ascending at an angle of elevation of 66with a veloceity 
	° 

	_
	of 20 feet, which bas therefore a height due to velocity h = 0,016.2()1 =6,4 feet, ttans the height b = h ,in. •• = 6,4 (rin. 66)• = 5,34 feet, and has a range of proecttona= 2. lit1. 48= 9,51 feet. The time which each Łcle of 
	Ł
	Figure
	!
	°
	Ł
	6,4 lin. 132
	° 
	= 2. 6,4 
	° 

	2 c. ,_ • 
	-=
	water requires to perfonn the whole parabolic curve .A C D is = 
	2. lin. 66. . dmance
	20. 
	° 
	tal 
	8 

	= 1. 17 seconds. The height corresponding to the ho · 
	nzon

	31,25 
	== 4,61 feet. 
	0,7
	3 

	'
	9,51 
	CURVED MOTIONS IN GENERAL. 
	2. The jet of water flowing from a horizontal tube has at a height of Ii feet a range (half a range of projection) of a¼ feet, what is the velocity of the water 1 
	From the formula x g = y•, it follows la= y, if x in this case 1,75 and = 
	= 
	y
	'l 
	i 
	= 
	y 

	2 ch 4x 
	i 
	4

	5Ł5R
	5,25, then h = = 3,937 feet, and the velocity corresponding to this height= 75
	is 
	c 
	4 
	. 
	l,

	15,ti8 feet. 
	velocities and several invariable accelerations, a 
	parabolic 
	motion 
	1s 

	same as if and one acceleration, i.e. onlyone uniform and one uniformly accelerated motion. 
	there 
	were 
	only 
	one 
	velocity 

	If the accelerations are variable, they can just as well be united into a mean as if they were constant, for it is admissible to consider them invariable within the limits of an infinitely small space of time (") ; and the corresponding motions, therefore, during that space of time, as uniformly accelerated. Of course the resulting acceleration is variable, as are its components themsel,,es. If this resulting ac­celeration be combined with the given velocity, it is possible to deduce a small parabolic curve
	§ 40. Any minute portion of any curve may be considered as the arc of a circle. The circle to which this arc belongs is called the circle of curvature, the radius pertaining to it is the radius of curva­ture. The course of a moving body may, in the same manner, be composed of the arcs of circles, and thus a formula for its radius 
	establishede. small trajectory described '\\·ith a uniformly accelerated motion x 
	2 
	l!!._ in the direction .fl X, and
	=

	2 
	let .fl Nbe a very small uniform­
	=
	ly described trajectory y c-r,and O the fourth terminating pointof the parallelogram constructed from x and y, i. e. the point which a body proceeding from A would occupy at the end of the short time (" ). Let .fl. C be drawn at
	ly described trajectory y c-r,and O the fourth terminating pointof the parallelogram constructed from x and y, i. e. the point which a body proceeding from A would occupy at the end of the short time (" ). Let .fl. C be drawn at
	ly described trajectory y c-r,and O the fourth terminating pointof the parallelogram constructed from x and y, i. e. the point which a body proceeding from A would occupy at the end of the short time (" ). Let .fl. C be drawn at
	· 

	right angles to .fl. Y, and let 

	Let .fl. M (Fig. 23) be a very Fig. 23. A 
	us 
	On account of the smallness of the arc A 0, 
	CURVED MOTIONS IN GENERAL. 
	is a right angle. The solution of this triangle gives us OP= 0 .N si.n. 0NP=.11Msi,n. X.fl Y= P" sin. e1, and the tangent ./1 P =
	2 
	p 1'
	p 

	.fl N +NP= c "+ cos. e1 = ( c+ cos. e1) "'amaybe madea= c "' 
	2 
	1'
	2 

	2 
	because ]!_cos. a, on account of the infinitely small factor .,., is inap
	-t 
	-

	2 
	circle .fl J» =POx (PO+ 2 C 0), or, as PO vanishes when com­pared with 2 CO P2=P0 x 2 CO ; we have, therefore, the de-
	.fl 
	Figure

	' 
	.
	sired radius of curoature, 
	1'c2
	.11 P2 c2
	9 

	-
	ll 
	--2 P O -p 'I' sin. ca -psin. ca
	-

	the aid of the same formula, the radii of curvature of aU the ele­ments of curves may be found, when the respective velo�ities (c) and a. '\\·h1ch the acce­leration makes with the velocity, or with the direction of motion indi­cated by the line of contact. 
	By 
	the 
	acceleration (p) are inserted, and also the angle 

	the parabolic path caused by the acceleration of gravity, we have r = 
	Ezampk. 
	For 

	and in the vertex of these curves, where • =90°, therefore, riff. •=1, 
	0,031 
	. 
	cl 
	, 

	nn. a 
	results that r =0,031 ,.a. With a velocity of 20 feet, it would therefore be found r = 12,4 feet; the further, however, the body is removed from the vertex, 80 much the smaller • becomes, and so much the greater, therefore, the radius of curvature. 
	it 
	that 

	§ 41. Proceaeding from a point (1 (Łig. 24 ), where the acceleration 
	. _
	1s effected at nght angles to the direction of motion .fl Y, if, therefore, 
	a = 90, we obtain the radius of curvature C.fl = r = Ł, and the 
	° 

	p
	velocity at the follo,ving point O is composed of c and of p .,., hence 
	2 ll 
	v = ✓ c2 + p2 '1'= c + P , because is infinitely small compared 
	2 
	" 
	" 

	2c 
	with c. If we make V = C Jr 1'. "' we may then consider P1' as 
	+ 
	2 

	2c 2c 
	Figure

	the acceleration, and Y.,. . ,, as the corresponding increase of vel
	o-

	2c 
	-t is infinitely small, the acceleration 
	city. 
	But as 
	p
	ll 
	-t 
	becomes

	2c
	infinitely small, infinitelyofvelocity, and may therefore consider the motion 
	also 
	and 
	in 
	one 
	second 
	of 
	time 
	we 
	have 
	an 
	small 
	increase 
	uni-

	the direction of motion, the direction of changes, and if these remain constantly at right angles to each other,then e shall always have " = c; the velocity of motion, therefore, remains invariably the same as it was at the commencemŁnt, namely 
	If, 
	with 
	accelerati
	on 
	also 
	:,;
	_

	= c. 
	An acceleration such as this, which is always at Łmotion, or angles from the idirection, is called normal aculerationand we know 
	nght 
	angles
	to 
	t
	e 
	causes 
	the body 
	to deviate 
	af 
	right 
	mot
	onal 
	, 
	hence 

	• 
	--: 
	.. 

	• '· • jŁ >;.•, 
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	causes a change of velocity, but only a deviationthe straight direction. According to the formula above, r 
	that 
	it 
	alone 
	never 
	from 
	-

	Ł we must make the normal acceleration p = Ł == the 
	,quare 
	cif
	tl&e 

	p r
	velocity 
	divided by 
	the respective radiu,

	of curvature. 
	Fig. 24. 

	In the circle AO D (Fig. 24) the ra­dius ofcurvature (r) is the radius of circle C .11. = C O itself; hence, whenmotion occurs in it, the acceleration p = � is invariable. An ac-
	Figure
	the
	C 
	invariable 

	r
	celeration, therefore, which constantly 
	Figure

	causes the body to deviate at right an­
	Figure

	gles from its motional direction, oblis
	ge

	I 
	it to revolve in a circle. 
	Exampk. A body whicrotates in a circle of 5 feet diameter, in such a manner, that, 
	h 

	or eac revo ution, 1t requires secon s o time, as a ve oc1ty c 
	2 
	"'

	5
	t 
	==
	= 
	-
	3)1
	2 . .,,. =6,283 feet, and a normal acceleration:= 7,896 viz., ery 
	p 
	= 
	(
	6•
	2
	feet ; 
	in 
	ev

	second it will deviate from a straight line by ½ p =½ 7,896 =3,948 feet
	X 
	. 

	§42. In the simultaneou, motions ef two bodies, a con-
	Fig. 25. 

	stant change is taking place 
	I 

	11 in their relative position, dis­tance, &c., but with the aidof the foregoing formul� it may be found for any given moment of time. 
	Figure
	__.__M__
	In Fig. 25, Jet .11. be the 
	.A.'---____ 
	=-
	_,X 

	point of application of the one body,B that of the other; the first ad,·ances in the direction .11 X in a certain time (t) to M, the second in the direction BY in the sameto we then have in this line the relative position of the bodies A and B at the end of this time. If we draw .11.0 pa­with MN, and also make AO= MN, then will ./10likewise give the opposite position of the bodies A and B.
	time 
	N; 
	and distance 
	raUel 
	the line 

	If further we draw ON, we obtain a parallelogram in which ONis alsoa= AM If finally we make BQ parallel and equal to NO,
	.
	and draw OQ, we have then another parallelogram BNOQ, in which BN is the absolute path (y) of the the the path (x) of the first body, described oppositeih?n. The fourth corner O relative position of the second
	one 
	side 
	second 
	body, 
	and 
	0
	!her 
	Łide 
	BQ 
	in the 
	d
	rec
	is the 

	ody, 1!1 so far as it is referred position ofthe first body, which 
	Ł
	to the 

	CURVED MOTIONS IN GENERAL. 
	direction, and then resolve these motions by the parallelogram in the usual manner.
	BNOQ 

	§43. If the motions of the bodies .11 and B are uniform, we may substitute for AM and BN the velocities c and c, i. e. the spaces de­scribed in one second. We obtain, therefore, the relative ve]ocity of the one body, when we add to the same in an oppositdirection,besides its own absolute velocity, that of the body to which the first velocity is referred. The same re­
	1
	Ł 

	Fig. 26.
	lation takes place with the accelera­
	0 .Y
	tions. 
	Example. A locomotive train sets out upon the line .11. X, Fig. 26, from .11. with a velocity of 35 feet; another simultaneouslyfrom B upon the line B Y, which makes with the former the angle B D X = 56with a velocity of 20 feet. If now the initial dis• tances .11. C = 30,000 feet, and C B = 24,000 feet, how great is the distance ..i O of the two trains at the end of a quarter of an hour1 From the absolute velocity B E = c= 20 feet of the second train, the inverse velocity
	° 
	-
	1 

	B F =c = 35 feet of the first, and the in
	-

	Ł----Ł----=c__-=r 
	=180-56124. 
	° 
	° 
	=
	° 

	...1. J> 
	✓1225 + 400 -1400 cos. 56
	✓1225 + 400 -1400 cos. 56
	° 

	The relative velocity of 
	c11+ 2cccos.• =e✓3511 + 20I -2.35.20. an. 56° = v'I625 -782,9 29,02 feet. For the.
	1
	1 
	= 
	= 

	✓842 2 = 
	ctin. 56_ 20.0,8290e
	1 
	° 
	.

	_ .
	,in. 
	' ' 
	0 
	✓(30000)11+ (24000)11= 38419 feet. The angle B ..i C = .11. BF,whose 
	.11. B 
	=e

	24000 
	°
	40' + 3473
	40' + 3473
	° 

	, 50' = , 30', and the distance of the two trains after 15': 

	..i O ✓.11..BlB Ol -2 ..i B . B O cos • .11. B 0 = Vi. 73, 30' 2 feet. 
	= 
	+ 
	38419
	11
	+ 261181-2. 38419. 26118 CO
	°
	= 
	✓158�190000=3985
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