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Abstract 
Four studies on residual strength prediction of thin-walled geometries have been carried out 
for validating various assessment methods under development at GKSS. 

1. Riveted curved and stiffened panel, case 1 
This panel represents an aircraft fuselage which was tested elsewhere, and the test results were 
compared with predictions using two methods: 

(a) The method based on the 5 type CTOD was used to characterise the material's 
resistance to crack extension. This technique has recently appeared as ASTM [1] and 
ISO [2] standards. The R-curve for the skin material was experimentally determined 
and extended for large amounts of crack propagation using the cohesive model. 5 as a 
driving force parameter at the crack in the skin of the fuselage was determined by a 
finite element analysis. 

(b) The cohesive model was the second method employed to assess the fuselage panel. 
For this model, a special traction–separation law and methods for determining the 
cohesive parameters, cohesive stress and cohesive energy, were developed [3]. The 
cohesive parameters were determined by means of tests on Kahn specimens. 

The maximum load experienced during the test is substantially overestimated by the R-curve 
technique, whereas it is underestimated by the cohesive model, Fig. 1. The reasons for these 
findings will be discussed. 
 
2. Riveted curved and stiffened panel, case 2  

In this study, a similar component was analysed within a separate project. One of the aims of 
the study was a comparison of the analytical SINTAP/FITNET procedure with the KR curve 
concept. The latter method is frequently used in aerospace applications. The thin wall option of the 
SINTAP/FITNET method [4] based on the 5 technique was applied to the riveted panel. The 
elastic-plastic crack opening is given by 

5ep = 5e· f(Lr)-2                                                                                                                                                                                    (1) 

with 

5e = K2/(m·E’· Y)                                                                                                                    (2) 
The ligament yielding parameter, Lr , is defined as 

Lr = F/FY = ref / Y                                                                                                                    (3)                         
The results shown in Fig. 2 demonstrate that the linear elastic KR curve method overestimates 
the failure behaviour as compared to the SINTAP/FITNET method. In addition, since the KR 
predictions are beyond the yield load, they are non-conservative. 
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3. Integral curved and stiffened pressurised component   

A simplified integral curved and stiffened internally pressurised component was modelled by 
finite elements in order to compare load versus crack extension characteristics as obtained 
from the methods 
- Cohesive model (as in (1b) above),  
- The crack tip opening angle (CTOA) method; the CTOA was measured experimentally and 
transferred to the panel using the FE codeANSYS, 
- The thin wall module of the analytical SINTAP/FITNET procedure, see above. The results 
shown in Fig. 3 demonstrate that all these methods provide very similar predictions of the 
maximum load.  

Figure 2: Predicted maximum 
internal pressure of a curved 
and stiffened panel, using the 
SINTAP and the KR curve 
method 

Figure 1: Assessment of a riveted curved 
and stiffened panel using the cohesive model 
and the R-curve concept. 
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4. Predictive round robin 

Finally, this study was a contribution to a predictive round robin organised by ASTM. In this 
round robin, Alcoa had done a test on a tensile panel representing an integral stiffened panel 
with the stiffeners made by milling down a thick plate, resulting in a thin skin with stiffeners, 
Fig.4a. The complexity of this study regarding the crack extension behaviour was even higher 
than in the previous work since the crack branched at the skin-stiffener location. Only the 
cohesive model could be used for such a prediction. The cohesive parameters were 
determined by a fit procedure to an experiment on an M(T) specimen. Again, the result was in 
excellent agreement with the behaviour as determined in the experiment, Fig. 4b. 
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Figure 4a: Integral panel 
tested and analysed in the 
round robin. 

Figure 3: Comparison of three assessment methods (SINTAP, CTOA, 5) applied to a 
curved and stiffened panel [5]. 
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Figure 4b: Experimental result and 
prediction using the cohesive model for 
the configuration shown in Fig. 4a. 
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 Residual strength characterization of integrally-stiffened 
structures utilizing novel manufacturing technologies 

 

B. R. SESHADRI 1, S. W. SMITH 2, W. M. JOHNSTON, Jr.3  
NASA Langley Research Center 

Hampton, Virginia 
 

Abstract 
A finite-element fracture simulation methodology has been established at NASA Langley Research Center to 
predict the residual strength of damaged aircraft structures. Over the years, the prediction methodology based on 
critical crack-tip-opening-angle (CTOA), has been experimentally verified for laboratory coupons to full-scale 
built-up structural components with single and multiple-site damage. The same methodology has recently been 
employed in the residual strength characterization of flat and curved integrally-stiffened panels subjected to a 
combination of constant pressure and uniaxial tensile loading which is representative of loading conditions 
experienced by an aircraft fuselage in service. Analysis carried out using both two and three-dimensional finite 
element codes captured the crack growth and crack branching behavior in flat and curved integrally-stiffened 
panels. Advanced manufacturing technologies have demonstrated great promise to provide components of lower 
weight and containing fewer parts.  The aircraft industry has expressed considerable interest in several 
manufacturing methods including, friction stir welding, integral machining, extrusion and electron beam free 
form fabrication, which are being studied at NASA Langley Research Center. To better understand the 
advantages and limitations of each manufacturing process, a series of panels were fabricated and tested with 
stiffeners either manufactured or joined using these methods. The analytical tools developed for flat and curved 
integrally-stiffened panels were applied to each of these test panels with specific modifications to account for 
multiple materials and residual stresses developed during manufacture. 
Fracture tests were conducted on a series of 24-inch wide 2219 integrally-stiffened panels fabricated using 
friction stir welding, integral machining, extrusion and electron beam free form fabrication. Each integrally-
stiffened panel had a 4 to 6-inch crack located in the center of the panel.  The  panels were subjected to uniaxial 
tension loading until failure. Load-crack extension and out-of-plane displacements were measured. The CTOA 
fracture criterion assumes that stable crack growth occurs when the crack-tip angle reaches a constant critical 
value. The critical CTOA value is determined by simulating fracture behavior in basic laboratory coupons.  
Middle-crack tension, M(T), or compact tension, C(T), specimens were tested to determine the critical CTOA, 
(Ψ c) using a three-dimensional finite element code (ZIP3D). These values were then used in the ZIP3D analysis 
to predict the fracture behavior of the various integral panels. The analysis predicted stable tearing, buckling, 
and crack branching at the integral stiffener using the appropriate values of critical CTOA for representative 
material thicknesses and orientations. Comparisons are made between measured and predicted load-crack 
extension, strain gage measurements and out-of-plane displacement. 

                                                         
1  Senior Research Scientist, National Institute of Aerospace, Hampton, VA. 
2  Senior Materials Research Engineer, Durability, Damage Tolerance & Reliability Branch. 
3  Research Engineer, Lockheed Martin Engineering and Sciences Corporation, Hampton, VA. 
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1.  Introduction 
Widespread fatigue damage is of great significance to the operation of aging commercial transport fleets 
because the residual strength of a stiffened structure with a single long crack may be significantly reduced by 
the existence of adjacent smaller cracks as postulated by Swift [12]. Tests on wide structural panels with long-
lead cracks and multi-site damage (MSD) have shown that the presence of an array of small adjacent cracks 
strongly degrades residual strength [2,5]. This type of damage can also lead to panel buckling, which 
considerably reduces the residual strength. As part of the NASA Airframe Structural Integrity Program [2,5], a 
fracture simulation methodology, based on the critical-crack-tip-opening angle (CTOA),Ψc was developed to 
predict the strength of damaged aircraft structures. It has been shown [4-6] that critical CTOA determined from 
a single test and analysis performed with a C(T) or M(T) specimen accurately predicts the residual strength of 
wide stiffened panels. The CTOA fracture criterion assumes that stable crack growth occurs when the crack-tip 
angle reaches a constant critical value.  The critical CTOA value appears to be independent of loading, crack 
length, and in-plane dimensions. However, it is a function of material thickness, material orientation and local 
crack-front constraint. The aircraft industry is investigating the possibility of using integrally-stiffened 
structures with the intention of reducing part count and manufacturing cost [1,3]. Analysis carried out using two 
and three dimensional finite element codes incorporating CTOA methodology at NASA Langley Research 
Center (LaRC) has captured both the crack growth and crack branching behavior in flat and curved integrally-
stiffened panels [7-10]. Advanced manufacturing technologies have demonstrated great promise to provide 
components of lower weight and containing fewer parts. The aircraft industry has expressed considerable 
interest in several manufacturing methods including, friction stir welding, integral machining, extrusion and 
electron beam free form fabrication, which are being studied at NASA LaRC. There has been a consistent effort 
at NASA LaRC to extend the critical CTOA based methodology to the analysis of integrally-stiffened panels 
fabricated using advanced manufacturing technologies. The authors will discuss the results from the testing and 
analysis of different integrally-stiffened panels fabricated using different manufacturing procedures.  

2.  Experiments 
As part of the NASA Aircraft Aging and Durability Project, fracture tests on 24-inch wide integrally stiffened 
panels fabricated using different manufacturing procedures are being performed at NASA LaRC.  The integrally 
machined and extruded panels consist of a single material (AA2219-T81). The integrally machined panel is 
manufactured from a plate product to produce a sheet that is nominally 0.19-inch thick with two stiffeners 
symmetrically placed on the panel to be spaced 8-5/8 inch apart and 0.14 inch thick.  The extruded panels are 
the thickest panels examined with a sheet thickness of 0.29-inch, with the stiffener configuration and thickness 
being the same as that for the integrally machined panels. The built up (riveted), friction stir welded, and free 
form fabricated panels were produced using two different materials.  For each process, a 0.19 inch thick sheet of 
AA2219-T81 was used as the panel.  The built up and friction stir welded panels were produced by joining a 
0.14-inch thick stiffener to the panel, with the stiffeners being spaced consistent with that of the integrally- 
machined and extruded panels.  The free form fabricated panels were manufactured by depositing layers of 
material onto the AA2219-T81 sheets using AA2024 powder and an electron beam system. The deposited 
material was heat treated with the electron beam to develop an aged material and finally machined to produce 
two stiffeners spaced consistent with the other panel configurations. Additional 24-inch wide panels of the 
AA2219-T81 material without stiffeners (unstiffened) were also tested, as a baseline configuration.  Wire 
electron discharge machining (EDM) was used to place a starter notch (either 3.5 or 5.5-inch length) in the 
middle of each panel.  Each panel was then fatigue loaded to produce a precrack that is approximately 4 or 6-
inch in length.  Each precracked panel was subjected to uniaxial tension loading along the length of the panel 
allowing the crack to propagate until failure. The crack length was measured visually throughout the testing.  
Eight strain gages were located on each panel (four on each side) to measure the deformation.  In addition, to 
using the data of the 24-inch wide unstiffened panels to determine a baseline residual stress, the critical CTOA 
was evaluated and compared to that determined using a 6-inch wide C(T) specimen. Additional 6-inch wide 
C(T) specimens were manufactured to determine critical CTOA for the 0.29 and 0.14-inch thick AA2219 and 
the 0.14-inch thick AA2024 regions of each panel.  



6th International Conference on Computation of Shell and Spatial Structures IASS-IACM 2008, Ithaca 

 3 

3. Analysis results 
When modeling the failure of integral structures, care must be taken to ensure the proper fracture properties 
(CTOA) of the material are used in strength prediction.  As a crack grows with stable tearing in a integrally-
stiffened panel, the crack tip passes through sections of various thicknesses and orientations, which will have 
their own critical CTOA. In addition, when the lead crack approaches and severs an intact integral stiffener, 
crack branching occurs. When crack branching occurs, the crack growth at multiple crack tips is controlled with 
different CTOA values. 

3.1 Fracture analyses of 24-inch wide integrally-stiffened panels 

The 24-inch wide integrally-stiffened panels were analyzed using ZIP3D [11]. ZIP3D is an elastic-plastic 
material non-linear finite element software with capabilities to carry out fatigue and fracture analysis. The load-
crack extension data from the test carried out on a 24-inch wide unstiffened panel was used to predict the critical 
CTOA required in the residual strength prediction of integral panels. Comparison of load-crack extension data 
for the unstifened panel is shown in Figure 1. The open circular and square symbols correspond to the test data 
and ZIP3D analysis result is represented by solid line. The filled circular symbol indicates the maximum load 
carried by the panel before failure. The estimated critical CTOA from the analysis was 4.8 degrees. The 
estimated critical CTOA was used in the residual strength prediction of the integral panel. The comparison of 
load-crack extension results for the integral panel made from 2219-T81 is shown in Figure 2. The experimental 
load-crack extension data is represented by open symbols and corresponds to both left and right crack tips 
respectively. The filled symbol indicates maximum load carried by the integral panel at failure. The solid line 
indicates ZIP3D analysis result. The insert shows the location of the intact integral stiffener. ZIP3D analysis 
results compare well with the experimental maximum and are within 2.5% of the test maximum load. The 
results have demonstrated that ZIP3D haa all the capability and features that are required in the analysis of  
integrally stiffened panels.  
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Figure 1: Load crack extension data for 24-inch wide unstiffened M(T) panel 

 
Figure 2: Load crack extension data for 24-inch wide integrally machined panel 
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Abstract
This work deals with the numerical simulation of the dissipative phenomena involved in composite 

absorption devices for two main degradation modes: the ply fragmentation and the delamination process. The 
first  one  is  mainly  initiated  by  a  microbuckling  mechanism,  which  is  dependant  on  the  microstructural 
imperfections.  The  dissipated  energies  associated  to  the  fragment  creation  are  evaluated  through  a 
micromodelling  approach.  Contrary  to  expectations,  these  energies  seem  to  be  insensitive  to  microscopic 
parameters. On the other hand, computation control on the dynamic delamination process has been investigated 
through a damageable interface model. Due to quantitative crack speed records from mode II propagation tests 
in  dynamics,  we  show the  efficiency  of  a  rate  dependent  model  on  the  interface.  We add only  two new 
parameters to take into account these intrinsic effects, directly linked to the dynamic fracture theory. All these 
results  give perspectives  to  implement  delamination  and fragmentation  interactions  at  mesoscale  within  an 
absorber-like configuration. 

1.  Introduction
The intensive use of composite materials in the field of aeronautical  structures and particularly for 

dynamic loading situations imposes to model by predictive methods the whole behavior up to failure. Among all 
the  degradations  involved  in  absorption  purposes,  it  is  now  clear  that  the  interlaminar  degradation  (i.e. 
macroscopic delamination) and the ply fragmentation are two major modes. For ply fragmentation, the key 
mechanism  is  very  well  known  at  the  microscale  (creation  of  kink-bands  by  a  microbuckling  process  in 
longitudinal compression) but is not directly transposable for structural calculations because micro-defects a-
priori  trigger  the mechanism.  For the delamination process,  numerous  researches  on interface  modelling at 
mesoscale or microscale (Yu et al. [14], Corigliano et al. [4]) provide a better prediction of dynamic crack 
growth  events  in  materials  (Ravi-chandar  [13],  Lambros  et  al.  [10]),  but  the  physics  of  initiation  and 
propagation in dynamics, and the way to include such rate dependence and at what scale are usually open issues 
that we proposed to discuss here. 

A first  part  of  this  work is  dedicated to  the  building of  a  meso-model  for  the  fragment  creation. 
Physical justification is based on micromechanical analyses (Fleck and al. [5]), taking into account the natural 
dispersive misalignments (Paluch et  al. [12]) and matrix plasticity.  This study enables to build a mesoscale 
fragmentation model improved by a statistical and only physical knowledge at microscale (Guimard et al. [7]), 
which gives virtual test data’s for mesoscale framework. Then for the delamination issues, the objective is to 
enhance  current  interface  meso-models  (for  example  the  interface  developed  and  identified  for  static 
applications in Ladevèze et al. [9] and Allix et al. [1-2]), for the dynamic delamination process where some rate 
effects could occur. A recall  of the different parameters influence is proposed in a derived 1D approach in 
dynamics and its local and global consequences when using a proposed rate dependent model. Thanks to this 
computational control for this new model, the identification can also be performed on mode II tests allowing 
good accuracy at both local (crack speeds magnitudes) and global (force versus displacement) levels. 
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2.  Ply fragmentation modelling
2.1  1D microbuckling analysis

Over the past thirty years, many models have been proposed. In this work we have chosen a well-
recognized model to treat the microbuckling process in 1D frame: the Fleck and al. model  [5]. It permits an 
accurate description of peak instability, the process leading to a fragment creation. Although this model has not 
been used over the past for energy balance but for instability purposes (peak load or critical strain evaluation), 
the work of Guimard et al. [7] proposes calculation of peak loads and associated dissipated energies with regard 
to the physics of defects (figure 1).
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2.2  Statistical and energetic knowledge for meso-fragmentation
These statistical results represent a virtual test database for compression failure understanding in the 

sense that it  reproduces the key parameters influence on global behaviour in compression failure. Indeed it 
permits the building and improvement of a mesoscopic compression model able to treat failure, considering 
these microscopic knowledge with only relevant statistical data’s. With this approach, we must not use all the 
microparameters in order to keep the conservative mechanism’s evolution. Therefore, a mesoscale equivalent 
model can be derived with a dispersive stress parameter corresponding to the initiation and a negative hardening 
law which dissipate a constant energy (figure 2).
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Figure 2. Identification of Peak loads repartition law (Weibull, normal) (a) and Identification of Dissipated 
energies repartition law (Weibull, normal) (b)  for T300/914.

3.  Dynamic delamination modeling by a damage interface approach
The modelling of interlaminar interface, which is chosen here, is a well known model developed at LMT 

Cachan and is based on damage mechanics [1-2-9]. The interface is modelled as a virtual entity with its own 
behavior model. We present the study of a pure mode II case: a strain energy by unit surface is first defined as 
follows in equations (1), the corresponding thermodynamical force associated with the internal variable d t is 
then defined to give the Clausius-Duhem inequality φ. The classical evolution law is a rate-independent one.
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In this model, we have initiation parameters (the kt parameter is the interface stiffness in tangent mode, n is the 
brittleness  parameter)  and propagation parameters  (Yc is  the critical  thermodynamical  force equal  to  GIc,  γ 
permits to have the GIc/GIIc  ratio). As a softening model, it is well known that it includes a new characteristic 
length  which can be viewed as  the process  zone and influences  the structural  response (while  any LEFM 
approach does not) and the mesh size required. In transient dynamics, it is also the case, but Lc is also dependent 
on the crack speed and we find the same magnitudes with other interface or cohesive approaches (Yu and al. 
[14]), the major difference is that the initiation phase is directly dependent on the stiffness and n which are 
physical  parameters,  while  in  classical  cohesive  models  triangular  or  penalty  stiffness  are  preferred:  the 
consequences for physical assessment of initiation problem is crucial. For the propagation problem, the local 
calculation of the critical energy release rate gives a constant value and will allow crack speeds magnitudes up 
to the theoretical Rayleigh wave speed. 

In the particular dynamic situation of mode II CLS modified, some quantitative tests (Guimard et al. [8]) 
have permit to conclude that a rate effect is acting on the interface (gaps in crack speeds, existence of a different 
limiting speed and new crack events). Among all possibilities to include a rate dependence in interface (like in 
Corigliano et al. [4], with a bounded jump rate), we have chosen to impose a bounded damage rate (Allix et al. 
[3]), which was initially used to regularize localisation problems in plies. In our dynamic situations, the key 
point is that this formulation (2) directly introduces a new characteristic time τc with a physical interpretation in 
terms of time to fracture, like in Morozov et al. [11], which are known to be attributed to new crack events at the 
microscale when the crack speed increases (Ravi-chandar [13]). We have identified the two new parameters by 
scanning ( ccA τ, ) couples for accurate crack speeds magnitudes (figure 3). It results in accurate correlation on 
the global curve (force vs. displacement) and also on the local curve (crack growth events). 

(2)

Figure 3. Comparisons between simulation and dynamic tests on a mode II CLS modified configuration: 
global response (left) and local response (right). The speed loading rate is 8 m/s.

The key issue is then to know if the delay effect could be linked with the dynamic fracture theory (Freund [6]). 
When we calculate the local critical energy release rate in the simulation, we obtain the same tendency of Gc 

dependence with the crack speed. So the use of a bounded damage rate allow us to take into account in an 
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homogeneized part the physics of dynamic fracture events (Figure 4): the presence of new surfaces different 
from the longitudinal path, the existence of a crack limited speed and the increasing of the corresponding Gc.

Figure 4. Overview of physics and model in high dynamic situations and consequences in terms of interface 
modelling enhancement for the dynamic fracture link.

Acknowledgement
This research work has been supported by Airbus France and EADS Innovation Works.  

References
[1] Allix O., Lévêque, D. and Perret, L. Identification and forecast of delamination in composite laminates by an 
interlaminar interface model, Composites Science and Technology. 58, 1998, pp. 671-678.
[2] Allix O., Ladevèze P., Interlaminar interface modeling for the prediction of laminates delamination, Composite  
Sructures 22, 1992, pp. 235-242.
[3] Allix, O. and Deü, J.F. Damage mesomodelling for the fracture prediction of laminated composites under 
dynamic loading. In Engineering Transactions. 29-46 eds. 45(1):pp1148-1155.1997.
[4] Corigliano, A., Mariani, S. and Pandolfi, A. Numerical analysis of rate-dependent debonding processes in 
composites. Composite Structures. 61:39-50.2003.
[5] Fleck, N., Deng, L., Budiansky, B. Prediction of kink width in compressed fibre composites. J. of Applied 
Mechanics, 62, 1995.
[6] Freund, L.B. Dynamic fracture mechanics. Cambridge University Press, 1990.
[7] Guimard, J.M., Allix, O., Pechnik, N., Thévenet, P. Statistical energy and failure analysis of CFRP compression 
behavior using a uniaxial microbuckling model. Jal of Composite Materials. 41(23):2807-2828. 2006
[8] Guimard, J.M., Allix, O., Pechnik, N., Thévenet, P. Characterization and modeling of intrinsic rate effects for the 
dynamic delamination propagation in fiber reinforced composites. To be published in Eng. Fracture Mech. in 2008.
[9] Ladevèze P. Le Dantec E.,  Damage modeling of the elementary ply for laminated composites,  Composite  
Science and Technology, 43-3, 1992, pp. 257-267.
[10] Lambros, J. and Rosakis, A. Dynamic crack initiation and growth in thick unidirectional graphite/epoxy 
plates. Composites Science and Technology. 57:55-65.1997.
[11] Morozov, N.F. and Petrov, Y.V. Incubation time based testing of materials.  European J. of Mechanics  
A/Solids. 25:pp 670-676. 2006.
[12] Paluch, B. Analysis of geometric imperfections in fibres for unidirectional fibre reinforced composites.  La 
Recherche Aéronautique, 6, 1994.
[13] Ravi-chandar, K. Dynamic fracture. 2004. Elsevier Ltd.
[14] Yu, C., Pandolfi, A., Ortiz, M., Coker, D. and Rosakis, A. 3D-modeling of intersonic shear-crack growth in 
asymmetrically loaded UD composite plates. Int. J. of Solids and Structures, 39:2779-2811, 2002.

4



Proceedings of the 6th International Conference on
Computation of Shell and Spatial Structures
IASS-IACM 2008: Spanning Nano to Mega

28-31 May 2008, Cornell University, Ithaca, NY, USA
John F. ABEL and J. Robert COOKE (eds.)

A damage-based cohesive model in an adaptive spacetime
discontinuous Galerkin method
Reza ABEDI and Robert B. HABER*

*Department of Mechanical Science & Engineering
University of Illinois at Urbana-Champaign
1206 West Green Street, Urbana, IL 61801 USA
r-haber@uiuc.edu

Abstract

We describe a new method for modeling elastodynamic fracture using a spacetime discontinuous Galerkin (SDG)
finite element method and a novel, damage-based cohesive model. The underlying SDG formulation features
powerful h-adaptive meshing capabilities, exact balance of linear and angular momentum on every spacetime
element, good shock-capturing properties and scalable performance with linear complexity in the number of ele-
ments. Enhanced adaptive meshing capabilities provide a flexible framework for extending cohesive interfaces to
track solution-dependent crack paths. Rather than use a traditional traction-separation law, we propose a damage-
based cohesive model that properly accounts for the change in the structure of the interface conditions between the
undamaged and fully fractured states. In so doing, the model incorporates favorable aspects from both intrinsic
and extrinsic fracture models.

1. Introduction

This work describes a new method for modeling elastodynamic brittle fracture using a spacetime discontinuous
Galerkin (SDG) finite element method and a novel, damage-based cohesive model. In previous work [1,2,3], we
proposed an h-adaptive SDG model for elastodynamic fracture that delivers exact balance of linear and angular
momentum on every spacetime element, superior shock-capturing properties and scalable, linear complexity in
the number of elements. Independent error indicators, for energy dissipation and cohesive work of separation,
drive the adaptive meshing process. The resulting high-precision solutions led to the discovery of quasi-singular
velocity response in elastodynamic fracture and the first transient studies of the nonlinear relation between crack-
tip velocity and process-zone size. Our previous implementation was restricted to problems where the potential
crack paths can be determined a priori. Here, we introduce an improved method that supports predictions of
crack propagation along trajectories determined during the solution process. The new advancing-front solution
method, in which patch-wise finite element solutions are interleaved with unstructured spacetime mesh generation,
supports unrestricted evolution of crack geometry while maintaining the quality of the spacetime mesh.

Most cohesive models use traction-separation laws to model the transition of material from the undamaged
state to the fully separated condition. Intrinsic cohesive models use a large initial cohesive stiffness to approxi-
mate the compatibility constraint for undamaged material; this approximation can be problematic, especially in
simulations of dynamic brittle fracture. Extrinsic, initially-rigid cohesive models have so far proved more suitable
for brittle fracture, but these models do not describe the gradual loss of stiffness prior to reaching the cohesive
strength and are generally not differentiable. The latter property is not a practical concern in explicit time integra-
tion schemes, but it does present a serious problem in the implicit patch-wise solutions used in the SDG approach.
We propose a new class of cohesive models that uses a damage parameter to smoothly transition from the con-
tinuum jump conditions that describe compatibility and momentum balance in the undamaged state to the jump
conditions that describe the traction-free condition in the fully separated state. This model is differentiable, de-
scribes compatibility in the undamaged state to within the accuracy of the discretization, and includes the gradual
loss of stiffness prior to reaching the cohesive strength.

1
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Figure 1. Pitching tents (patches) in spacetime. Local causality constraint limits patch duration; time-axis is vertical.

2. Adaptive SDG method for elastodynamics

2.1. SDG finite element formulation for elastodynamics

Our method inherits the favarable properties of the SDG method for elastodynamics [1]. It uses basis functions
defined on fully unstructured spacetime meshes to describe displacement solutions that admit jumps across all
inter-element boundaries. This discontinuous solution structure leads to exact balance of linear and angular mo-
mentum on every spacetime element and superior shock-capturing properties. When implemented on suitable
spacetime grids, the SDG method exhibits linear complexity in the number of elements. The SDG formulation
easily incorporates cohesive damage models. Displacement jumps are intrinsic to the model, so the only modifi-
cation is the use of the cohesive traction model to define the target momentum flux on cohesive interfaces. There
is no need for cohesive elements or other special data structures.

We use differential forms and the exterior calculus on manifolds to obtain a direct, coordinate-free notation
that facilitates our formulation on unstructured spacetime meshes (cf. [1] for details). We have displacement
u, spacetime momentum flux M , body force b, strain–velocity ε. The discrete weighted residual statement for
balance of linear momentum and kinematic compatibility takes the following form: Find u ∈ Vh such that, for all
elements Q in the spacetime domain,∫

Q

˙̂u ∧ (dM + ρb) +
∫

∂Q

{
˙̂u ∧ (M∗ −M) + (ε∗ − ε) ∧ iM̂

}
+

∫
∂Qti

kû0 ∧ (u∗ − u) ?dt = 0 ∀û ∈ VQ
h , (1)

in which a superposed ‘̂ ’ indicates a weight function, and k is a constant introduced for dimensional consistency.
Vh is the discrete space of discontinuous Galerkin functions over the full space-time domain, and VQ

h is the
restriction of Vh to element Q. Items marked with asterisks are target fluxes that are computed from prescribed
boundary or initial data, as Godunov values from the solution to a local Riemann problem on interior boundaries,
or from cohesive values based on the particular fracture model at hand. The Stokes theorem applied to (1) leads
to the discrete weak form that defines our finite element method:∫

Q

(−d ˙̂u ∧M + ˙̂u ∧ ρb) +
∫

∂Q

{
˙̂u ∧M∗ + (ε∗ − ε) ∧ iM̂

}
+

∫
∂Qti

kû0 ∧ (u∗ − u) ?dt = 0 ∀û ∈ VQ
h . (2)

It is easily shown that the discrete solution to (2) exactly satisfies the integral forms of balance of linear momentum
and balance of angular momentum over every spacetime element Q [1].

2.2. Spacetime meshing

We use an advancing-front meshing/solution procedure in which the Tent Pitcher algorithm [4] generates un-
structured spacetime meshes that obey a causality constraint based on the characteristics of the governing partial
differential equations; see Figure 1. The causality constraint and discontinuous basis ensure that the solution
on each new patch from Tent Pitcher depends exclusively on prescribed initial/boundary data and outflow data
from previously-solved patches. This structure enables a scalable, patch-by-patch solution procedure with O(N)
complexity (N is the number of spacetime elements), in which we immediately compute the local finite element
solution on each new patch as soon as it is generated. The causality constraint limits the duration of each patch,
but the durations of individual patches vary as there is no global time-step constraint.

We exploit this flexibility in h-adaptive analysis methods that simultaneously refine in space and time to
achieve significant performance gains, especially in hyperbolic solutions with sharp wavefronts, as seen in Figure
2 (Left). The SDG scheme supports higher-order bases on fixed stencils and features an asynchronous parallel
structure that facilitates high-performance implementations. In fracture applications, adaptive spacetime meshing
ensures accurate resolution of sharp wavefronts and sufficient refinement in the active fracture process zone to

2
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(a) Vertex deletion (b) Edge flip (c) Inclined tent pole

Figure 2. Left: Spacetime mesh for a crack-tip simulation with shock loads. Right: Spacetime adaptive meshing operations.

Figure 3. Dynamic fracture under mixed-mode loading showing quasi-singular velocity field

automatically ensure numerical stability and an accurate rendering of cohesive traction–separation laws. Two
independent error indicators drive the adaptive procedure: a dissipation-based indicator that limits numerical
energy dissipation throughout the solution domain and one that controls the discrepancy between the works of
separation predicted by the trace of the finite element stress field and the cohesive traction model. The resulting
high-precision solutions led to the discovery of quasi-singular velocity response in the neighborhood of the process
zone and the first transient studies of the nonlinear relation between crack velocity and process-zone size.

In new work reported here, we extend the adaptive meshing capabilities to support solution-dependent nucle-
ation and extension of cohesive surfaces. We have extended Tent Pitcher to implement common adaptive remesh-
ing operations as special spacetime patches that incur zero projection error; Figure 2 (Right). We introduce a new
set of spacetime adaptive meshing operations where each operation is implemented as a special spacetime patch
rather than as a discrete operation in space. The inflow faces of the special patches conform to the outflow faces
of previously solved elements, so there is no need to project the old solution onto a new mesh. This eliminates
the projection errors incurred by conventional adaptive remeshing procedures and preserves the full convergence
rates of high-order elements. Patches with inclined tent poles reposition vertices in the space mesh; we use these
to continuously smooth the space mesh to maintain and improve its quality and to track moving interfaces, such
as cohesive surfaces. Special single-tetrahedron patches perform edge-flip operations to improve the quality of
the spatial triangulation. Coarsening patches remove a vertex from the space mesh. Mesh refinement involves a
nested subdivision of the space mesh that incurs zero projection error. We use these operations in combination
to nucleate cohesive interfaces at arbitrary locations and to extend existing interfaces in any direction, as indi-
cated by the physics of the solution. Element quality is maintained throughout the procedure, and there are no
restrictions on the direction of crack propagation. Figure 3 shows an example of dynamic crack propagation under
mixed-mode loading conditions.

2.3. Cohesive model

Initially-rigid cohesive models are often used to simulate dynamic fracture, especially in combination with explicit
time integration. These models transition abruptly from an undamaged state to the regime of a traction-separation
law, and are, therefore, non-differentiable. This makes them unsuitable for our patch-wise-implicit SDG solution
scheme. We propose a new initially-rigid cohesive model that uses a damage parameter to transition smoothly
between enforcing the flux conditions for undamaged material and the traction-free conditions for a crack.

3
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2.3.1. Modification of SDG formulation to incorporate a cohesive model

It is relatively easy to extend the SDG formulation for elastodynamics to incorporate a cohesive model. The SDG
bases naturally support discontinuous displacements, velocity and stress across element boundaries. So the only
modification required is to compute values for M∗ and ε∗ consistent with the cohesive model on cohesive faces.
Cohesive interfaces are material interfaces, and this simplifies the formulation: M∗ and ε∗ simplify to σ∗ and v∗,
the stress/traction form and the velocity form, respectively. All that is required to implement a traditional cohesive
traction separation law is (1) to set v∗ = v (the trace of the element velocity field on the cohesive face) to relax
the velocity jump condition across the cohesive surface, and (2) set σ∗ = σC, where σC is the cohesive traction
predicted by the TSL.

In developing a new damage-based cohesive model, we attempt to combine the best properties of extrinsic and
intrinsic cohesive models in a single formulation. Consider a perfectly brittle fracture process at the microstructure
level, and let D be the area fraction of the cohesive surface that has fractured due to micro-crack formation. Then
we have microscopic target values σ̄∗ = 0 and v̄∗ = v on the damaged area fraction D, vs. σ̄∗ = σG and
v̄∗ = vG on the intact area fraction 1−D. Applying these conditions in the SDG weighted residual expression at
the microstructural level and integrating to get a simple homogenization, we obtain the macroscopic target values,

σ∗ = (1−D)σG (3)

v∗ = (1−D)vG +Dv. (4)

in which a superscript ‘G’ refers to a Godunov value obtained from the local Riemann problem for intact material.
Quantities with no superscript are traces from the interiors of elements adjacent to the cohesive interface. A single
dimensionless damage parameter D evolves according to a rule of the form,

Ḋ = f(σ±,v±,u±, D) (5)

in which a superscript ‘±’ denotes the traces from both sides of the interface. We report on evolution models
similar in structure to those proposed in [5], except we do not introduce an interface stiffness. Thus, we avoid
a key disadvantage of intrinsic models that modify the bulk material properties whenever cohesive surfaces are
introduced, especially as their spacing approaches zero. Provided that D = 0 initially, cohesive surfaces can
be introduced at any density without affecting the bulk properties in the present model. In contrast to many
extrinsic models, the cohesive surfaces can sustain increasing loads, so that crack nucleation and propagation can
be determined intrinsically by the eventual damage evolution.

2.3.2. Propagation of cohesize surfaces

We nucleate and propagate cohesive surfaces at locations where an effective stress exceeds a critical value. Exist-
ing cohesive surfaces extend in the direction that maximizes the trace of the effective stress at the current tip of the
cohesive zone, provided a specified critical value is exceeded. The flexibility of our adaptive spacetime meshing
scheme allows complete freedom to follow this criterion wherever it is active and in any direction for extension.

Acknowledgment: This work was supported by the Center for Process Simulation & Design, University of
Illinois at Urbana Champaign under U.S. National Science Foundation grant DMR-01-21695.
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Abstract  
Cohesive zone models have been widely utilized in order to investigate nonlinear fracture behavior. Several 
potential-based cohesive constitutive models have been proposed by, for example, Beltz and Rice (1991), 
Tvergaard and Hutchinson (1993), and Xu and Needleman (1993, 1994). However, previous potential-based 
models have limitations to represent different fracture energies in mode I and mode II. In this study, a novel 
potential-based cohesive constitutive model, called the PPR model, is presented in conjunction with 
macroscopic fracture parameters, i.e. fracture energies, cohesive strength and shape of cohesive interactions. 
The proposed model is able to characterize different fracture energies and cohesive strengths. The model is 
applicable to various material softening responses, i.e. plateau-type, brittle and quasi-brittle, due to the 
controllable softening shape. Furthermore, initial slope indicators are introduced to control elastic behavior, 
which exists in intrinsic cohesive zone models. The limits of the initial slope indicators lead to the potential 
model for extrinsic cohesive zone models. The consistency of the proposed constitutive model is verified by 
investigating path dependence of work-of-separation and simulating mixed-mode bending tests.   

 

1.  Introduction 
For the analysis of deformation and failure mechanisms, one can employ either non-potential-based models 
(Yang and Thouless [1]; Camanho and Davila [2]; Zhang and Paulino [3]; Bosch et al. [4]) or potential-based 
models (Needleman [5]; Beltz and Rice [6]; Tvergaard and Hutchinson [7]; Xu and Needleman [8], [9]). Non-
potential-based models are relatively simple to develop cohesive interactions because a symmetric system is not 
required. For instance, Yang and Thouless [1] utilized trapezoidal shaped traction-separation laws to simulate 
the mixed-mode fracture of plastically deforming adhesive joints. Zhang and Paulino [3] utilized the traction-
based bilinear cohesive zone model for the analysis of homogeneous and functionally graded materials (FGMs) 
undergoing dynamic failure. Shim et al. [10] extended the traction-based model to the displacement-based 
bilinear cohesive zone model in order to investigate J resistant behavior of TiB/Ti FGM in conjunction with the 
domain integral. Bosch et al. [4] proposed an alternative exponential cohesive law, and assessed the work-of-
separation under mixed-mode separation. The main limitation of a non-potential-based model is that one does 
not account for all possible separation or loading paths of crack growth in a domain. Therefore, some non-
potential-based models may provide non-physical cohesive interactions, i.e. positive stiffness in a softening 
region, under certain mixed-mode fracture conditions, although the non-potential based models can capture 
physical fracture behavior for known crack path problems (e.g. mode I fracture or inter-layer delamination). 
Moreover, the tangential stiffness leads to the unsymmetric condition, which increases computational cost when 
solving the underlining linear system of equations.  

The potential model based on a one-dimensional traction potential has been extensively employed although it is 
unable to represent different fracture energies in mode I and mode II [7]. However, most materials have 
different fracture energy with respect to the loading mode. Many researchers have demonstrated the variation of 
the fracture energy from mode I fracture to the mode II fracture through mixed-mode fracture specimen (Banks-
Sills and Bortman [11]) and delamination testing (Reeder and Crews [12]). Due to the high fracture energy in 
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mode II, a structure may have higher loading capacity under certain loading conditions. A potential function 
which captures the different fracture energies, therefore, is necessary for the simulation of the mixed-mode 
fracture. A potential function which captures the different fracture energies, therefore, is necessary for the 
simulation of the mixed-mode fracture. In this study the authors present the previous potentials and their 
limitations in Section 2. A novel potential-based model is summarized in section 3.   

 

2.  Previous potentials and their limitations 
Needleman [5] proposed a polynomial function-based potential to investigate void nucleation. In order to 
account for the limitation at the large shear displacements, Needleman [6] also developed the exponential-
periodic potential based on the universal atomistic potential by Rose el. al [13]. Later, Beltz and Rice [8] 
obtained a generalized form of the exponential-periodic potential. The normal interaction has the exponential 
expression based on the atomistic potential (Rose et al. [13]), while the tangential interaction employs the 
periodic function due to the periodic dependence of the underlying lattice. Analogously to the exponential-
periodic potential, Xu and Needleman [9], [9] proposed the exponential-exponential potential to improve the 
shear failure behavior.  

However, the potential function proposed by Xu and Needleman, the most recent one, has several limitations 
because of the fracture boundary conditions and the exponential expression. First, non-symmetric boundary 
conditions introduce the additional length scale parameter (Δ*

n), and result in non-physical cohesive interactions 
for several cases (i.e. r ≠ 0, q ≠ 0). When shear separation reaches infinity (Δt →∞), the boundary condition for 
the complete normal failure, i.e. , should be introduced in the exponential potential, which 

results in the symmetric boundary conditions. Instead of the boundary condition, the alternative boundary 
condition, , is utilized by introducing the additional length scale parameter (Δ*

n). Both the 

length scale parameter (Δ*
n) and the nondimensional parameter (r) are difficult to be evaluated on the basis of 

either physical experiments or explanations. Because of the deficiency in the boundary condition of complete 
normal failure (the nonsymmetric boundary condition), when the mode I fracture energy is greater than mode II 
fracture energy, the cohesive interactions do not correspond to physical fracture behavior. 

lim ( , ) 0
t

n n tT
Δ →∞

Δ Δ =

*lim ( , ) 0
t

t n tT
Δ →∞

Δ Δ =

Next, the exponential potential originates from an atomistic potential which includes elastic behavior. When 
cohesive surface elements are inserted in a large domain, numerical simulations of the cohesive zone models 
lead to large artificial compliance. Ideally, the elastic behavior should be generally eliminated in numerical 
implementation of cohesive surface elements. Additionally, because of the exponential expression, the traction 
free condition occurs when separation is infinite, although a final crack opening width is finite in macroscopic 
scale fracture. The limitations of the exponential potential are summarized as follows:  

• It contains an ill-defined fracture parameter, Δ*
n, which is difficult to determine experimentally. 

• It is not applicable when the mode I fracture energy is greater than the mode II fracture energy. 

• It provides large artificial compliance for numerical simulation of cohesive surface elements because it 
does not allow any control of the elastic behavior. 

• Due to the exponential function, the final crack opening width is infinite, which does not resemble 
macroscopic fracture behavior. 

 

3.  Unified potential-based model 
As indicated above, previous potentials have several limitations such as ill-defined fracture parameters, large 
artificial compliance, and infinite final crack opening width. In this section, the polynomial-based potential [4] 
is presented in conjunction with symmetric fracture boundary conditions and macroscopic fracture parameters. 
The proposed potential is defined in the cohesive interaction (softening) region where fractured surfaces transfer 
cohesive tractions. The PPR potential satisfies the following fracture boundary conditions: 
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• The complete normal separation occurs (Tn = 0) when either normal or tangential separation reaches a 
certain length scale. 

( , ) 0n n tT δ Δ = ,  ( , ) 0n n tT δΔ =   

    where nδ is a normal final crack opening width, and tδ  is a tangential conjugate final crack opening width. 

• Similarly, the complete tangential separation occurs (Tt = 0) when either normal or tangential separation 
reaches a certain length scale, 

( , ) 0n n tT δ Δ = ,  ( , ) 0n n tT δΔ =   

    where nδ is a normal conjugate final crack opening width, and tδ  is a tangential final crack opening width. 

• The area under the pure normal and tangential traction-separation curves provides the mode I and mode II 
fracture energy, respectively, 

0
( ,0)n

n n nT d
δ

φ = Δ∫ n 0
(0, )t

t t tT d
δ

φΔ t,  = Δ Δ∫   

• The traction-separation curves reach a peak point at a critical crack opening width ( ncδ , tcδ ) 

/ 0
n nc

n nT
δΔ =

∂ ∂Δ = ,  / 0
t tc

t tT
δΔ =

∂ ∂Δ =   

• The traction values at the critical separations correspond to the cohesive strength, 

max( ,0)n ncT δ σ= ,  max(0, )t tcT δ τ=    

• The shape parameters (α, β) are utilized in order to represent various material softening responses. When 
the shape parameters are smaller than two, the cohesive law illustrates the concave shape. If α, β � 2, the 
cohesive law shape is convex. 

The unified mixed mode potential (PPR) and its gradients are plotted in the positive softening region, shown in 
Figure 1. The plotted potential represents different fracture energies (e.g., φn = 100 N/m, φt = 200 N/m), 
cohesive strengths (e.g., σmax = 40 MPa, τmax = 30 MPa), cohesive laws (e.g., α = 5,  β = 1.3) and initial slope 
indicators (e.g., λn = 0.1, λt = 0.2). The normal cohesive law illustrates the convex shape while the tangential 
cohesive law describes the concave shape. Furthermore, the limits of the initial slope indicators lead to the 
potential model for extrinsic cohesive zone models, shown in Figure 2. 

 

              
Figure 1: Unified mixed-mode potential (PPR) and its gradients for the intrinsic cohesive zone model with φn = 
100 N/m, φt = 200 N/m, σmax = 40 MPa, τmax = 30 MPa, α= 5, β= 1.3, λn = 0.1, and λt = 0.2 
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Figure 2: Unified mixed-mode potential (PPR) and its gradients for the extrinsic cohesive zone model with φn = 
100 N/m, φt = 200 N/m, σmax = 40 MPa, τmax = 30 MPa, α= 5, and β= 1.3 
 

3.  Summary 
Previous potentials have several limitations such as ill-defined fracture parameters, large artificial compliance, 
and infinite final crack opening width. The unified potential-based constitutive model (PPR) is presented in 
conjunction with physical macroscopic fracture parameters and consistent fracture boundary conditions.  
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Abstract

The present study focuses on the implementation and effects of circumferential surface and embedded cracks in
pipes subjected to global bending and internal pressure. The pipe is modelled using co-rotated four-node assumed
natural strain thin shell and line-spring finite elements. The embedded crack is modelled using double-defined
line-spring elements which handles both centric and eccentric cracks in the thickness direction. This study is a
numerical study concerning the effects of an embedded versus a surface defect.

1 Introduction

Surface cracks in curved shell structures, e.g. offshore pipelines, have been thoroughly studied the last decades.
Embedded defects however has not been emphasised the same way. It is in general assumed that surface cracks are
of higher criticality than embedded cracks. Fig. 1 shows the concept of a surface crack versus an embedded crack
for a pipe segment. Due to the difficulties in detecting and quantifying the dimensions of an embedded crack, very
little literature is available on this topic. Also it is not an easy task to fabricate an embedded crack in a large scale
pipe test specimen. Nilsson et al. [10] did some fracture testing on cladded flat specimens with a machined through
the width embedded defect subjected to four point bending, but no experimental results for pipes are found in the
literature.

pi

F M

(a) (b) (c)

Figure 1: Schematic view of (a) a tubular pipe, and the concepts of (b) surface and (c) embedded crack

A rectangular co-rotated thin shell ANDES shell element is used for the structural modelling, and line-springs
elements are used to account for a surface or embedded crack. The shell element used was first presented by
Felippa and Militello [1] and further extended to account for large rotations in elastic-plastic materials by Skallerud
and Haugen [5].
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2 Implementation

The software employed is denoted LINKpipe, and is based on four-node ANDES shell elements and non-linear
line-spring elements. The shell element has 6 degrees of freedom in each node.

The surface crack is accounted for by line-spring elements. The line-spring elements are non-linear connectors
between shell elements where the stiffness of the connector is changing with relative crack depth and mate-
rial hardening. The line-spring element was initially proposed by Rice and Levy [2] and further extended by
Parks and co-workers [3, 4]. The elastic-plastic line-spring element consists of tabulated convex yield surfaces,
Φ(Q;a; t;σ(εpl)), whereQ are the generalised forces in the line-spring element,a is the crack depth,t is the shell
thickness andσ(εpl) is the uniaxial stress at an equivalent plastic strain ofεpl. As for the shell element used in the
code, the line-spring element transmits stress resultants to the main program. Further details about the theory and
implementation of LINKpipe and the line-spring element are provided by Skallerud et al. [6, 7].

The generalised forces along with the generalised displacements are used to compute the crack tip opening dis-
placement,CTOD, which is used in the ductile crack growth algorithm. The ductile crack growth assumes quasi-
static conditions, and the crack grows through the thickness following a crack growth resistance curve. This curve
comes from either experiments or other numerical damage analyses, e.g. Gurson-Tvergaard-Needleman damage
model. The implementation is also extended by Berg et al. [8] to account for circumferential crack growth in
addition to the in depth crack growth. The crack growth in the thickness and circumferential directions are incre-
mentally updated asa(i+1) = a(i) + ∆a(i) andc(i+1) = c(i) + ∆c(i). The implementation for surface cracked pipes
is validated by Berg et al. [9] against large scale experiments of pipes subjected to internal pressure and bending
load.

Embedded defect is introduced in LINKpipe using the surface cracked line-spring element. As shown in Fig. 2, two
line-spring elements together forms the embedded defect. One element has the surface crack on the upper side and
the other element has the surface crack located on the inside. Linear dependencies couples this pair of line-spring
elements to the neighbouring shell elements. This method does not demand any changes of the element codes.
The sum of the wall thicknesses of the two line-spring elements equals the wall thickness of the neighbouring shell
elements.

��
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��

Shell Shell
Line-spring

Line-spring

Linear dependencies

thickness

Figure 2: Conceptual figure of the modelling of embedded defects using shell and line-spring elements

3 Results

The model used in the analyses is a straight pipe segment, modelled with shell elements and line-spring ele-
ments, having an outer diameter of 400mm, a wall thickness of 20mm and a length of 6 times the outer diameter
(2400mm). A transversal defect was positioned at the mid-span of the pipe length at a location of 12 o’clock. A
positive bending moment will then contribute to open the crack in mode I. The surface crack is modelled with
uniform initial depth of 4.0mm and a crack length of 126mm. The embedded crack has the same initial crack
dimensions as the surface crack. The material properties used in the analyses are based on a linear elastic non-
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linear plastic power law hardening. Young’s modulus,E, is 207000MPa and Poisson’s ratio,ν, is 0.3. The initial
yield stress and hardening exponent areσ0 = 460MPa and n = 0.07 respectively. The pipe is subjected to a
non-proportional loading situation with an internal pressure giving 40% of yield in the circumferential direction
followed by a global bending moment.

Fig. 3 compares the applied global strain versus crack growth for outer and inner surface flaw and one case of
embedded crack. It is observed that the internal surface crack has the highest deformation capacity and the em-
bedded crack located between the outer surface and mid-thickness has the smallest deformation capacity. It is also
observed that the ductile crack growth for embedded defect at mid-thickness is very close to the icrack growth for
the outer surface crack.
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Figure 3: Global strain versus ductile crack growth for outer surface flaw, inner surface flaw, embedded defect
located at the mid-thickness and embedded defect located between outer surface and mid-thickness (cf. Fig. 2)

In Fig. 4 the effect of eccentricity for the embedded defect is plotted in terms of critical strain versus crack eccen-
tricity. The initial crack size is the same for all analyses. The crack is then moved from almost outer surface flaw
to an almost inner surface flaw. The abscissa axis in Fig. 4 is the distance from the outer surface to the center of
the embedded crack. It is here observed that the embedded crack closest to the outer surface has the lowest strain
capacity before it breaks the surface and the crack with a distance of 12mm to the outer surface has the highest
deformation capacity. It is noteworthy to see that the crack positioned with 4mm from the outer pipe surface has a
lower deformation capacity than the innermost crack (4mm from the inner surface). For the case with the highest
strain capacity, the crack location is such that the local bending moment contributing to open the crack is at its
minimum, hence the crack opening consists of a more membrane dominated situation as for the other locations.

4 Conclusions

The present study focuses on the effect of embedded defects in a shell structure. Results for one crack depth to
thickness ratio and nine locations of the crack are presented. The global load mode was internal pressure and
global bending moment. The position of the crack shows that the crack close to the outer pipe surface is more
critical than the crack close to the inner pipe surface. It is also observed that the embedded defects can become
more critical compared to the surface cracks at higher strain levels. A crack located between the inner pipe surface
and the center of the thickness has the highest strain capacity.

Due to the high plastic strains a stress based design approach is not feasible, hence a strain based design approach
is recommended.
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Figure 4: Distance from outer pipe surface versus the strain level when the embedded defect breaks the surface on
the outer or inner pipe wall
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Abstract 
The challenging performance and affordability goals of next generation aircraft have accelerated demand for 
advanced structural concepts capable of achieving significant weight and cost savings.  Alcoa has developed 
advanced metallic hybrid concepts for use in areas of fuselage and lower wing covers that are traditionally 
limited by static tension, fatigue and damage tolerance, and residual strength.   

1.  Introduction 
For fuselage the concepts involve the bonding of FML reinforcing straps under stringers and/or frames 
only where needed to improve performance. For lower wing skins the Alcoa concepts focus on bonded 
laminated metallic sheet structure with embedded FML reinforcement structure (CentrAl), Figure 1, or 
without this FML core reinforcement structure. In all concepts the layers are bonded together using 
adhesive or BondPregTM which is a reinforced adhesive specially developed to optimize fatigue crack 
growth in advanced hybrid structures. This approach for lower wing skins allows for a degree of 
structural tailoring previously unseen in metallic structures, while addressing the issues of thermal 
expansion mismatch, galvanic corrosion and strain to failure mismatch, associated with structures 
assembled from graphite composites and aluminum. 

Alcoa has completed several experimental programs on coupons and flat panels to validate the 
extraordinary performance and weight saving benefits of advanced metallic hybrid concepts, Figure 2.  
In addition, a large scale testing program was conducted for wing and fuselage panels to validate 
breakthrough improvements in structural damage tolerance performance. For wing concepts, crack 
growth tests were conducted on five stiffener panels with a broken central stiffener representing a 
repeat inspection scenario for cracks growing under wing bending loads. Again, both constant 
amplitude and representative wing cyclic load spectra were applied (Figure 3). For fuselage concepts, 
crack growth tests were conducted on five stringer panels with a broken central stringer representing a 
repeat inspection scenario for circumferential cracks in the crown of the fuselage (Figure 4).  Both 
constant amplitude and representative fuselage cyclic load spectra were applied.  
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This presentation addresses the work aimed at developing methods to predict the fatigue crack growth in the 
advanced metallic hybrid stiffened panels. This work encompasses 1)the development of a methodology to grow 
delaminations in multiple layers within the laminated skin of the stiffened panel structure, 2) material property 
inputs to the delamination growth models and crack growth models, 3) the development of an self contained, 
user friendly finite element based software code (ASPAN-FP) which has the capability to simultaneously grow 
bond line delamination and metal layer cracks in multiple layers and at multiple locations in stiffened panels. 
This capability is needed when analyzing the effect of the bending loads introduced by a broken stiffener on 
crack growth and delamination growth in the skin (Figure 5) . Results of validation analyses will be presented 
for strap reinforced panels of various gage thicknesses run under constant amplitude loading, Figure 6-7, and for 
a laminated CentrAlTM middle crack specimen under constant amplitude loading. Finally predictions for an 
advanced hybrid stiffened wing panel under constant amplitude loads will be presented.  Issues related to 
extending this approach to spectrum loading and residual strength predictions will be discussed 

 

A stiffened structural assembly employing laminated aluminum skins reinforced by finite 
width FML straps and outer aluminum sheets bonded with BondPregTM fiber-reinforced 
adhesive 
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Figure 1, CentrAl Advance Hybrid Lower Wing Concept 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2, FML reinforced Aluminum Panels Testing Program 
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Fig. 3. Large Panels Tested under Mini-TWIST Lower Wing Spectrum and Constant Amplitude Load  
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Fig. 4. Large Panels Tested under Fuselage Crown Spectrum and Constant Amplitude Load  

 

 

 

 

 

 

 

 

Fig. 5. Bending Loads from Broken Stiffeners introduce a non-uniform crack and delamination pattern in the 
laminated skin through-the-thickness.  
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Part of the selective reinforcement represented 
by single layer with effective properties

 

 

 

 

 

 

 

 

 

 

 

Figure 6, Aspan-FP model of the NLR panel 4.1 
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Figure 7, Skin crack and delamination modeling in Aspan-FP 
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Abstract 
The purpose of this work is to investigate crack growth trajectory within a pressurized floating-frame fuselage. 
Many in-depth research projects have focused on computing residual strength of aircraft structural components 
using thin-shell geometry models a priori [7, 5, 10, 4, 3]. These projects developed a modeling interface 
between STAGS (STructural Analysis of General Shells) and FRANC3D, a FRacture ANalysis Code. STAGS, 
however, is not commercially available software and is relatively limited in capability. Therefore, FRANC3D 
was extended to interface with ABAQUS. Much of the work presented here addresses the verification of this 
interface and quantifying the effects of the frames and doublers, used in a floating-frame fuselage, on crack 
growth trajectory. Also briefly discussed is a modeling framework that incorporates a fully 3D model near the 
crack front for simulation of through-thickness crack growth.  

1.  Introduction 
To study crack trajectory, a sub-model of an aircraft fuselage of a generic narrow body fuselage was modeled 
using ABAQUS CAE. The fuselage panel modeled here is shown as Figure 1.  The geometry shown in Figure 1 
is a floating-frame design and is common to commercial transport aircraft. In addition to the components shown 
in Figure 1, doublers (tear straps) which run beneath the frames and are coupled to the skin were also explicitly 
modeled. The tear straps are detailed in Figure 2. The tear straps are important since they are designed to retard 
crack growth either by stopping the crack propagation or redirecting it so that it will not grow beyond a bay of 
the fuselage. The boundary conditions applied to this model were the result of a global/local approach where 
displacements and rotations were taken from the results of the global model and applied to the boundaries of the 
local submodel studied here. An internal pressure equal to 7.8 psi was also applied to simulate cabin 
pressurization during flight. 

 

Figure 1: Aircraft fuselage section to be modeled. 

2.  Finite Element Model 
To understand the major influences on crack trajectory, four separate models were created for this study, 
including:  
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Case 1- Model of skin with edge boundary conditions;  
Case 2- Model of skin with edge boundary conditions and internal pressure;  
Case 3- Model of skin and tear straps with edge boundary conditions and internal pressure;  
Case 4- Complete model of Figures 1 and 2 with edge boundary conditions and internal pressure.  

By successively adding detail to the geometry of the model, the contribution of the specific components to crack 
trajectory could be more easily understood. The trajectory results of the 4 configurations are shown in the next 
section.  

In the analyses, the model was simulated with a 3 inch initial crack length, as shown in Figure 3. At the crack 
tip, quarter-point triangular elements were used. The mesh was then transitioned toward the boundaries using 
triangular elements and quad elements where bilinear mapping could be employed. Discrete crack growth steps 
were modeled in one inch increments. At each step, the crack growth direction was computed using the max(σθθ) 
criterion. The crack was then propagated in the computed direction, and, finally, the model geometry was 
updated with the new crack configuration and remeshed for subsequent analysis. Important modeling 
assumptions are summarized here:  

1. Contributions from thin shell crack motions, k1 and k2, are ignored;  
2. The crack would not arrest in the skin (KIC <KI );  
3. Material nonlinearities and fracture anisotropy were not considered;  
4. T-stress effects on propagation direction were included;  
5. BCs were not updated at crack growth iterations;  
6. Depressurization was not considered.  

 
Figure 2: Typical cross-sectional view of model fuselage (dimensions shown in inches). 

 
Figure 3: Meshed fuselage panels with initial crack geometry. 

The FRANC3D/ABAQUS interface was implemented to complete the crack growth iterations. As shown in 
Figure 4, the initial model attributes are defined in ABAQUS, and FRANC3D is used to compute crack growth 
parameters and updates the geometry and mesh. After a model is analyzed using ABAQUS, FRANC3D 
computes the location of the new crack front, extends the crack, and updates the model geometry. Finally, 
remeshing is done and the process is continued until some criterion is met. For this study, the crack was grown 
in one inch increments until the crack was within 0.5 inch of the doublers.  

3.  Results 
Figure 5 shows the predicted crack trajectories for the various levels of model detail as listed in the previous 
section. Case 1, the model involving only the skin with no applied pressure, is not shown in the figure since no 
turning of the crack occurred. This result, when compared with Case 2, shows the influence of cabin 
pressurization on crack trajectory. By observing the results of these simplified models, it is easy to determine 
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which structural components have the strongest influence on crack growth direction. In comparing Case 2 only 
with Case 3 it is observed that the doublers have little effect on crack growth trajectory when the tip is away 
from the doublers. However, as the crack approaches the doublers, their presence is felt through the change in 
local stress field and the crack is turned more as a result. It is also seen that the fully detailed Case 4 results in a 
much more dramatic turning during trajectory. This is due mainly to the introduction of the doublers. The crack 
was not placed symmetrically in the fuselage and was actually closer to the lower stringer. With the inclusion of 
the stringers, this caused more exaggerated crack turning at the beginning stages of crack growth.  

To make sense of the magnitudes by which the crack turns, observe Figure 6, which is a graphical representation 
of the well-known, second order maximum tangential stress equation. It is seen that the two governing ratios are 
T/KI and KII/KI.  For both ratios, a large value results in a large θc. The rc value must be defined as a unique 
value since the max(σθθ) direction depends on rc and different values for rc will produce different predicted 
propagation angles. For this study, it will suffice to consider rc as a material constant that can be determined 
from fracture testing of coupons. The value of rc, 0.05 inch, used here is a result of extensive coupon testing [6]. 

So, we see that T = (1.5in1/2) T/KI. For the initial cracked configuration in Case 4, the ratio of 1.5 · (T/KI) = −0.2 
and KII/KI ≈ −0.01, whereas for the final cracked configuration the ratio of 1.5 · (T/KI) = 0.5 and KII/KI ≈ −0.01.  
Following the red dotted lines in Figure 6, which correspond to these ratios, gives a better understanding of the 
magnitude of the crack turning when the crack is near or far from the doublers.  The results of crack trajectory 
within the completely detailed model, using the ABAQUS interface, were compared with past analysis, which 
used the STAGS interface.  This comparison showed that the resulting predicted crack trajectory was 
independent of the interface used. 

This research has shown the ability to predict crack trajectory in a thin shell structure, but the inherent plane-
stress or plane-strain assumption must be made. Also, a loss of fidelity in crack growth simulation occurs due to 
the homogenization of through-thickness crack shape. Therefore, this work will extend upon past thin-shell 
modeling of crack growth simulation by incorporating a fully 3D finite element model near the crack front. To 
maintain computational efficiency, regions of the model that are not near the crack front are modeled using shell 
elements. With this mixed-modeling technique, coupling of the shell region to the solid region is investigated.  
The mixed-modeling capability is facilitated by the discussed ABAQUS/FRANC3D interface and multi-point 
constraints defined within ABAQUS. 

 
Figure 4: Iteration loop for crack growth modeling with the FRANC3D/STAGS framework [6]. 

 
Figure 5: Predicted trajectory of crack in fuselage panel. 
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Figure 6: Influence of T-stress on propagation angle [6]. 
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Abstract 
We briefly present finite element framework for modeling of localized failures in ductile beams and plates. The 
embedded discontinouity finite element method is used. We model both diffused plasticity mechanism, which 
describes the first part of material nonlinear behavior, and the localized plasticity mechanism, that captures the 
softening phase of beam/plate response. Diffused plasticity is defined at the level of stress resultants with state 
variables describing general isotropic hardening. Local effects are captured in the form of softening plastic 
hinges or softening plastic lines. The plastic hinges and lines are defined as strong discontinuities of the 
generalized displacements at the element level and are treated as additional unknowns that can be eliminated 
element-wise from the global solution scheme. With a localized softening law we correlate strong 
discontinuities of the generalized displacements with stress resultants acting at the localization. Performance of 
presented formulations is illustrated with two numerical simulations. 

 

1.  Introduction 
The ever increasing demand to build economically acceptable structures pushes design of structural systems to 
their limit. In this situation, the need to better understand the behavior of complex structural systems, including 
the failure modes, is enormous. This naturally leads to development of new models, which are capable of 
describing the localized effects, since the failure of a structure, or its components, usually occurs due to the 
localization of the yielding and damage.  

 

2.  Basics of beam/plate element with embedded discontinuity 
We consider a displacement based finite element, with additional kinematic parameters , which are introduced 
to describe discontinuity in displacements. Displacements over the element are then given as  

α

 . (1) ∑ =
+=

nrnodes
i ii )()()(

1
αxNuxNxu α

Interpolation functions are illustrated in Figure 1 for a 2-node bar element. 

The strain field can then be computed as the space derivative of displacements 

 , (2) ααxGuxBxε xcrack
nrnodes
i ii )()()( δα ++=∑ =1

where  are strain displacement operators, and  is strain operator related to α . If we drop the last term in 
(2) (one can interpret this term as localized plastic strain), we get the regular strains 
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Figure 1: Two node bar element with embedded displacement discontinuity 

To describe material behaviour, we consider three different material response regimes. The first one is purely 
elastic, the second one is classical plasticity or viscoplasticity and the last one covers the softening phase of 
structural response. By employing , we can compute stress resultants σ  at any point outside the 
discontinuity as 

pe
R εεε +=

 , (4) ))()(()()( p
R

e xεxεCxCεxσ −==

where  is elastic constitutive matrix,  is elastic part of the corresponding deformation  quantity, and  are 
plastic strain-like variables. Activation and response of plastic regime is determined by the yield function (here 

 and 

C eε pε

hq hξ  are variables controlling isotropic hardening) 
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evolution equations 
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and loading/unloading conditions. One can look at the softening phase as a special case of plasticity with one 
significant distinction, i.e. the plastic process is strictly limited to discontinuity. As in dispersed plasticity, we 
have yield function that governs the behavior of model in softening 

 ( ) 0≤= ΓΓ )(q),( ss ξφφ αt , (7) 

where  is stress-resultant traction at discontinuity, while  and t sq sξ  are variables related to softening. 
Principle of maximum plastic dissipation gives the evolution equations 
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where Γγ  is plastic multiplier for localized plasticity. 

By using the weak form of equilibrium equations, one can obtain a set of global equations 

 [ ] 0ff =−=
e,exteint,nrelements

eA 1 ,      . (9) ∫
Ω

Ω=
e

eT
i

eint, dσBf

Along with the usual form of global equilibrium equations (9), we get additional element-wise equilibrium 
equations, which state, that the stress-resultant traction in the discontinuity must be in equilibrium with 
surrounding stress resultant field 
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Ω Γe e

eTe dd:e α

where  is the discontinuity. Eqs. (9) and (10) are solved as described in Ibrahimbegovic [4] and 
Ibrahimbegovic and Melnyk [1]. 

eΓ

 

2.  Numerical examples 
As a first example we consider plate with length 10=L , width 5=b  and thickness . Plate is clamped 
along one of the shorter edges. Transversal displacement is incrementally applied at the opposite end. Plate’s 
response is initially linear elastic with Young’s modulus 

1=h

1=E and Poisson’s ratio 30.=ν , until the yield 
function is violated and the softening line forms. The response of the hinge line is determined with yield 
function 

 0≤−−=Γ )qm(|m| sucrackφ , (11) 

where ,  is stress-resultant (moment) traction at discontinuity, n  is the unit normal vector (it is 
determined with the direction of principal bending moment) to the hinge line 

nt ⋅=crackm t
Γ  and  is the 

ultimate bending strength. We assume linear softening law with softening modulus . In Figure 2 we 
plot the reaction-displacement curves for several meshes. Figure 3 presents hinge line patterns for different 
meshes. 

000250.mu =
0080.Ks =

 
Figure 2: Rectangular plate - reaction-displacement curves 

 
Figure 3: Hinge lines for different meshes (only the area near support is plotted) 

 

In the second example we consider a beam with the following geometric and material properties: length 
, 10=L 1=EI , yield moment 0040.M y = , hardening modulus 050.Kh = , ultimate moment 
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0050.Mu = , and softening modulus . The beam is clamped at one end; transversal displacement is 
incrementally applied at the opposite end. The plastic response is determined with yield function 

040.Ks =

 0≤−−

 4 

= |M|φ )qM( hy , (11) 

and the plastic hinge response is determined with 

 0≤−−=Γ M| crack )qM(| suφ , (11) 

where . We assume linear hardening and linear softening. Figure 3 presents reaction 
moment-displacement curve obtained with 4 Euler – Bernoulli beam elements.   

crackxx|M ==crackM

 
Figure 3: Built-in beam - reaction moment-displacement curve 

 

3.  Conclusions 
We have presented basics of finite element formulation with embedded discontinuities for metal beams and 
plates. The formulations are similar to those presented in Ehrlich and Armero [2], [5] and Armero and Ehrlich 
[3]. Further details of our work and further numerical examples will be presented at the conference. 
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