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Photos taken a8 vierious time intervals during @ 2-mater trial. Mote formation of “fingers.” Virious
replications show Scatber in peak time and inmensity. This is dwe 1o sightly diferent conditions during
triads. Only the identical replicates 1 and 2 will be companed to the model.
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Using the data from 8 rubber asphalt molds, the above power functions were fit to describe both the
detachability coeffickent, a, and the fraction of eiectaila surface mass in terms of M__ Thi funclions
wara than incorporated inlo the model developed by Shaw et al.
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Removable screens used to
catch sediment were
exchanged every three
minutes during a trial. Each
sample collected indicated total
loss during the three-minute

time interval.
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Photos taken at various time intervals during a 2-meter trial. Note formation of 'fingers.’ Various
replications show scatter in peak time and intensity. This is due to slightly different conditions during
trials. Only the identical replicates 1 and 2 will be compared to the model.
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Since the rough surface in
this study introduces
cavities that can hold
particle mass not
necessarily contributing to
the available pool of
particles on the surface,
another term is required
to adjust M, based on
what is available in the top
layer.

fis defined as the “eiectable”
fraction of M. Since a drop has at
most enough energy to eject particles
| within 2 layers deep, “eiectable”
| sediment is mass found above a
depth of 0.42 mm in the cavities of

- the surface (= two particle diameters).

The functions for a and f are determined experimentally as explained below...



Rubber molds of the asphalt surface were taken characterizin g
to represent high and low traffic load areas in h
various directions across the grade. A 10 cm ro u g n es S
long, 1 mm wide strip was trimmed from each
maold and the profile was digitally imaged using a
high resolution scanner,
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Measure: Average cavity length, I, at 0.04cm depth intervals over length, L.
Determine: Zl_/L = fraction of length covered by exposed sediment
Liske defined a=A," whare A, is the area = fraction of area covered by exposed sediment
influenced by drop impact and V is drop - Vol = total cavity volume at depth, d =  volume of each depth interval = d
volume. On our rough surface. A, M= Vol p = cavity volume * bulk density of particulate
becomes cavity size ”;:::’Lﬁ?l:::ﬁ:;l f = fraction of ejectable particulate = particulates in top depth interval / M,
' | Ag = (1/2)F 14*(drop diameter/2)
a = Aj/drop volume = 3(1/2)%/4*(drop diameter/2)*
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Using the data from 9 rubber asphalt molds, the above power functions were fit to describe both the
detachability coefficient, a, and the fraction of ejectable surface mass in terms of M. The functions
were then incorporated into the model developed by Shaw et al.



applying the
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The red curve is the model’s prediction based on the test parameters
and using the functions for a and f found in step 4.

Figure 2 shows the model prediction for a simple rough surface. Since
the peak was higher than observed and the tail did not fit the ‘fingers’
seen in the data, we created ", the superposition of contributions from
areas with varying roughness characteristics (dashed lines). Another
possible variation among ‘chunks’ of the pulse could be varying flow
velocities across the surface.
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