

Overview

- · Antimicrobial use in humans and animals
- · Dairy farm antimicrobial usage
- Pathogen based treatment (PBT)

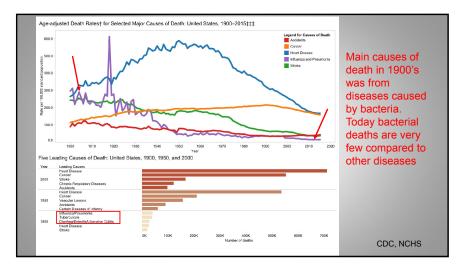
Pop quiz

- What is the percentage of mastitis cultures that are culture negative?
- What percentage of mastitis causing organisms are treatable or respond to intramammary treatment?
- How many dairy producers in the room have a MAST No Treat protocol?

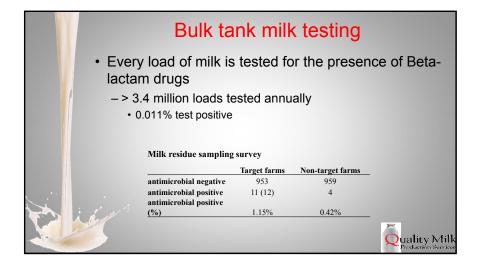
The role of antimicrobials in human and animal medicine

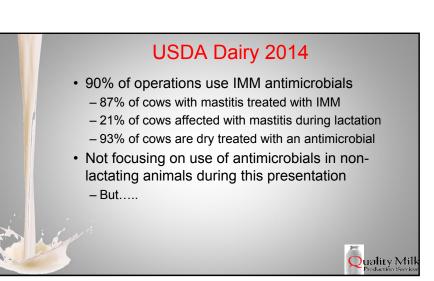
- Antimicrobials medicine that inhibits the growth of or destroys microorganisms
 - Some antimicrobials specifically target bacterial cells
 - Human cells have a plasma membrane but lack a peptidoglycan cell wall structure
 Beta-lactams selectively target bacteria with a peptidoglycan layer with no negative impact on human cells
- Antimicrobials have and continue to save millions of lives
- Antimicrobials improve human health
 Lifespan
- 1930 60 years
- 2016 78 years
- Use of antimicrobials in animal medicine
 - Lower mortality rate
 Lower morbidity rate
- Lower disease rates increased risk of another disease when sick

What were the major

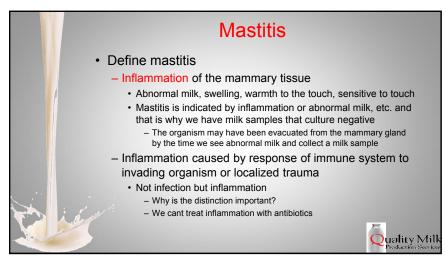

killer of humans in the

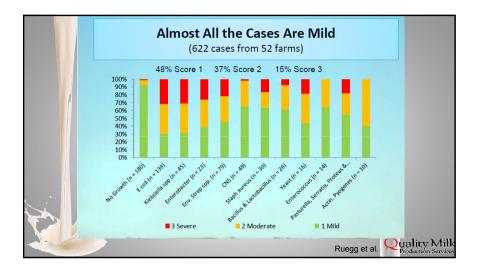
What are the major

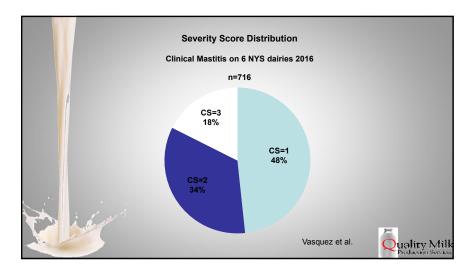

killers of humans today?

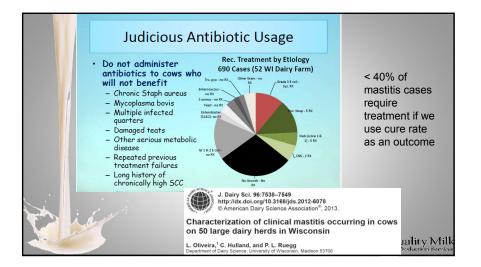

1930?

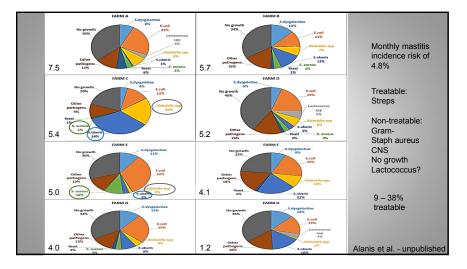
Quality Mill

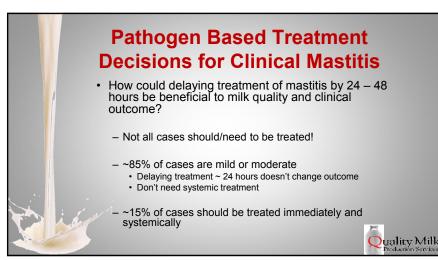

	History of antimicrobi		60% ofLimited
	 1951 FDA approves antimicrobials for use in animal feed based on stud livestock improve weight gain 	dies showing it helps chickens, pigs and	• 5/6
	 1969 A committee of government experts in the U.K. concludes that the contributed to antimicrobial resistance in humans 	e use of antimicrobials in animals has	Product
	 1970 A U.S. task force, including scientists from the FDA and other age used in humans be banned from use in animals 	encies, recommends some antimicrobials	Boehringer I ToDAY*
	1977 The FDA proposes a ban on the use of penicillin and tetracycline makers can show the practice is not a danger to humans	in animal feed, unless pharmaceutical	"PolyMast" (R)
	 1980 FDA-commissioned report by the National Academy of Sciences tresistance caused by feeding drugs to animals 	finds little scientific data on antimicrobial	Collinea (1)
	 1997 World Health Organization recommends antimicrobials used in hu growth in animals. 	umans should not be used to promote	
	 1999 The European Union issues a ban on using popular human antim due to risks to humans 	icrobials in animals for growth promotion	Zoetis Pirsue ^o (R)
	 2003 U.S. Institute of Medicine issues a report on the rise in dangerous recommendations include banning use of antimicrobials for growth pror 	bacteria, or superbugs. The group's notion in animals.	
	 January 2012 The FDA orders limits on cephalosporin antimicrobials gi pneumonia and other diseases in humans. 	ven to animals. The drugs are used to treat	
	 April 2012 The FDA outlines plans to phase out non-medical uses of m three years. 	ore than 200 antimicrobials in animals over	Spectramast* LC
	 2015 FDA implements animal drug regulations regarding veterinary fee regulation established requirements relating to the distribution and use such drugs. This amendment is intended to improve the efficiency of FL 	d directive (VFD) drugs. FDA's current VFD of VFD drugs and animal feeds containing	Merck
	such drugs. This amendment is intended to improve the efficiency of FL and animal health.	DA's VFD program while protecting human	Amoxi-Mast ^a (R)
10.0			

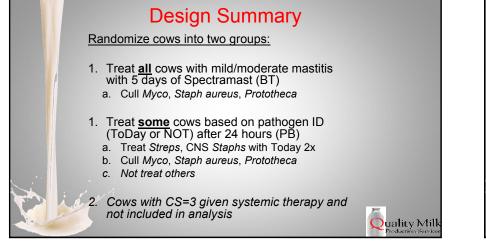

Quality Milk Production Services 60% of AMU in dairy is for mastitis or milk quality (MAST and dry cow)... Limited number of approved intramammary antimicrobials

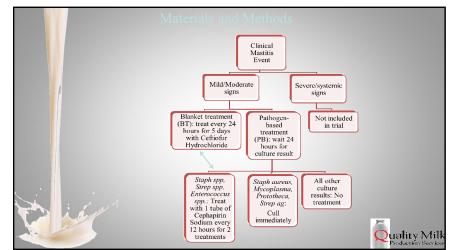

Product	Antibiotic	Bactericidal Bacteriostatic	Spectrum	Dosage	Milk Withholding	Slaughter Withdrawal	Product Indications
Boehringer Ingel ToDAY®	heim Vetmedic Cephapirin Sodium	c a, Inc. cidal	Broad	1 syringe repeat in 12 hours	96 hours	4 days	Treatment of mastitis in lactating cows caused by susceptible strains of <i>Streptococcus agalactiae</i> and <i>Staphytococcus aureus</i> including strains resistant to penicillin.
'PolyMast'* (Ŗ)	Hetacillin Potassium	cidal	Broad	1 syringe repeat in 24 hours up to 3 days	72 hours	10 days	Treatment of acute, chronic or subclinical bovine mastitis in lactating cows caused by susceptibl strains of Streptococcus agalactiae Streptococcus aureus and Escherichia coli.
Zoetis Pirsue [®] (R)	Pirlimycin Hydrochloride	static	Narrow	1 syringe repeat in 24 hours x 2 days 1 syringe repeat in 24 hours for > 2 days (up to 8 days)	36 hours	9 days 21 days	Treatment of clinical and subclinic mastitis in lactating dairy cattle against Stepplyclococca aureus and Streptococcus agalactiae, Streptococcus dygalactiae and Streptococcus aberis.
Spectramast [®] LC (R)	Ceftiofur Hydrochloride	cidal	Broad	1 syringe repeat in 24 hours x 8 days	72 hours	2 days	Treatment of clinical mastitis in lactating dairy cattle associated with coagulase-negative staphylococci, Streptococcus dysgalactiae, and Escherichia colu
Merck Amoxi-Mast [#] (R)	Amoxicillin	cidal	Broad	1 syringe repeat in 12 hours for three treatments	60 hours	12 days	Treatment of subclinical mastitis in lactating cows due to Streptococcus agalactiae and penicillin-sensitive Staphylococcus aureus.
Dariclox [®] (R)	Sodium Cloxacillin	cidal	Narrow	1 syringe repeat in 12 hours for three treatments	48 hours	10 days	Treatment of bovine mastitis in lactating cows due to Streptococca agalactuae and nonpenicillinase- producing Staphylococcus aureus.

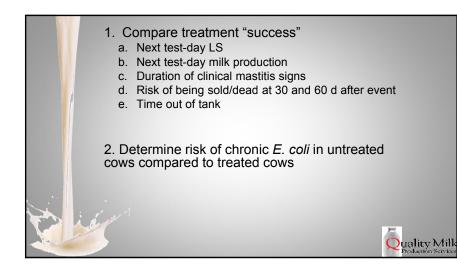

2/3 of that 60% is for Dry Cow Therapy

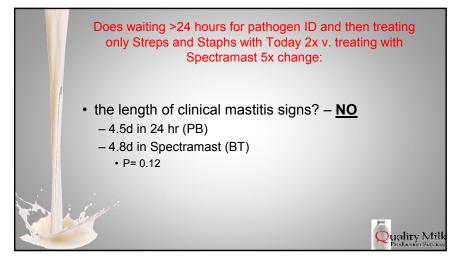

Boehringer Inge ToMORROW®	Cephapirin Benzathine	a, Inc. cidal	Broad	1 syringe per quarter at dry off	72 hours	30 days	42 days	Treatment of mastitis in dry cows, when caused by Streptoroccus agalactiae and Staphylococcus aureus, including penicillin- resistant strains.
Dry-Clox* (R)	Cloxacillin Benzathine	cidal	Narrow	1 syringe per quarter at dry off	0	30 days	30 days	Treatment of mastitis in dry cows when caused by Streptococcus agalactiae and Staphylococcus aureus including penicillin- resistant strains.
Zoetis Albadry Plus®	Penicillin G, Procaine and Novobiocin Sodium	cidal	Broad	l syringe per quarter at dry off	72 hours	30 days	30 days	Treatment of subclinical mastitis in dry cows caused by susceptible strains of Staphylococcus aureus and Streptococcus agalactiae.
Spectramast [®] DC (R)	Ceftiofur Hydrochloride	cidal	Broad	l syringe per quarter at dry off	. 0	30 days	16 days	Treatment of subclinical mastitis in dairy cattle at the time of dry off associated with Staphylococcus anreus, Streptococcus dysealactiae and Streptococcus aberis.
Merck Orbenin®-DC (Ŗ)	Benzathine Cloxacillin	cidal	Narrow	l syringe per quarter at dry off	0	28 days	28 days	Treatment and prophylaxis of mastitis in dry cows due to Staphylococcus aureus and Streptococcus agalactiae.
WG Critical Car Quartermaster [®] (R)	re Penicillin- Dihydrostreptomycin	cidal	Broad	l syringe per quarter at dry of	96 hours f	42 days	60 days	Reduce the frequency of existing infection and to prevent new infections with <i>Staphylococcus</i> <i>aureus</i> in dry cows.

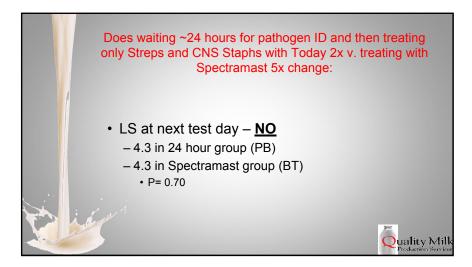


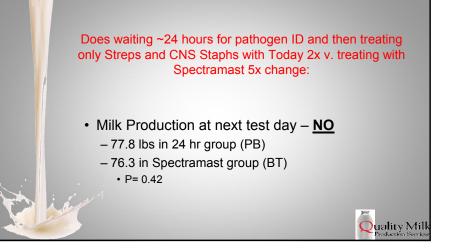


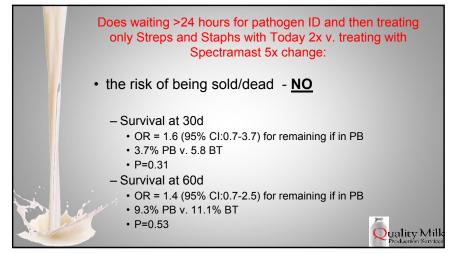


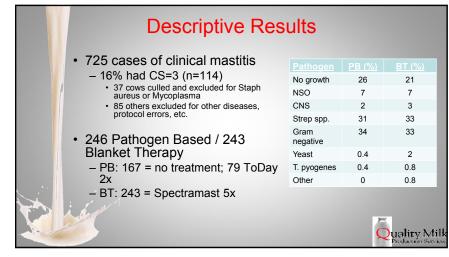


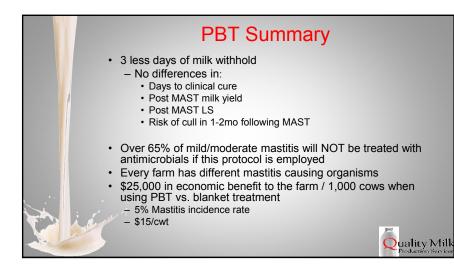


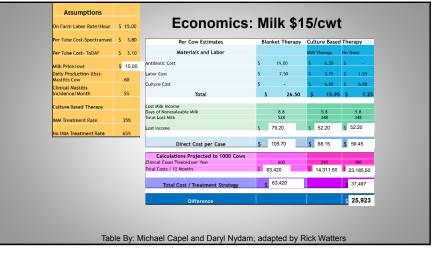


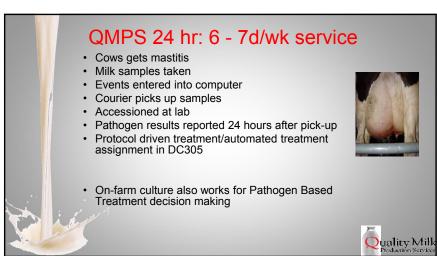


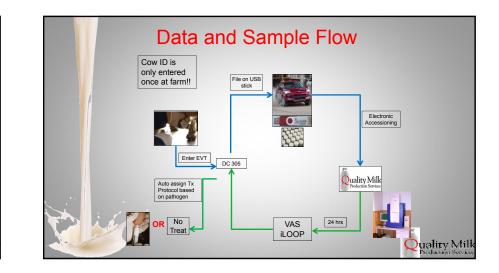


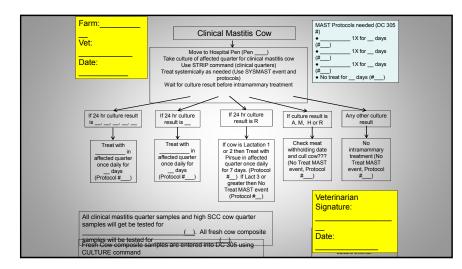


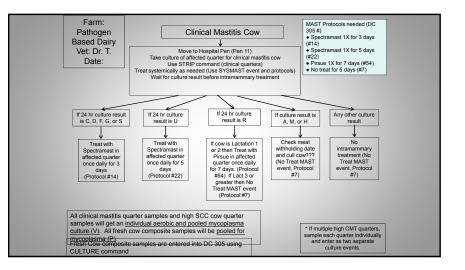












	Events ID PEN LACT DIM	6893 1 3	tems2 T CWVAL PGVAL PSCC SCC		PMILK	28440 0	RPRO DSLH DCC DUE	ID OK/OPEN 0 0	When Cow
	01/12/1 01/12/1 01/18/1	FRESH MOVE MAST	F008T010 SLC4RF. F010T008	Bull Liv	• 0 0	1/23/15 MAS 1/23/15 MOV 1/28/15 VAO 2/04/15 VAO	T NOTO E F0107 C 35VAC	001	Entered
	Events ID	689			PrevLacts 0 CSEX	MSA		OK/OPEN	693
	PEN LACT DIM			17			DCC DUE	0	When Sample at
	01/12/ 01/12/ 01/18/	15 FRESH 15 MOVE 15 MAST 15 MOVE 15 CULTURE	F008T01 SLC4RF. F010T00			01/23/15 MAS 01/23/15 MOV 01/28/15 VAC 02/04/15 VAC	VE F010 C J5VA	F001	Lab
	e e Events	🗜 📝 🖬 Demsi	Items2	TestDays	PrevLacts	Lactation		D	6893
	ID PEN LACT DIM		PGVAL		0 CSEX 0 305ME 0 PMILK 4 MILK	MSA 28440 0	DSUH	OK/OPEN 0 0	24 Hour Results
A start	01/10/ 01/12/ 01/12/ 01/18/	15 FRESH 15 MOVE 15 MAST 15 MOVE	F008T01 SLC4RF. F010T00	Bull L	Ne 🤇	122 1/23/15 MA9 11/23/15 MO 11/28/15 VAC 12/04/15 VAC	ST NOTO VE F010 C J5VA	C 001	
	01/2/	15 CULTURE	N/RF	>					Quality Mill

Review MAST treatment protocols - DVM

- When was the last time that you reviewed your MAST treatment protocols?
- How many farms have a MAST no treat protocol?

Pathogen based treatment at QMPS

- > 100,000 cows in NY state on PBT
 - Where was this number 5 or 10 years ago?
 - Where will this number be 5 or 10 years from now?
 - Approximately 35% of cows managed with On-farm culture
- NY state most likely has the highest adoption rate of PBT than any other state given the ability of QMPS to promote the program state wide
- NY State Dairy Statistics
 - 4,400 farms
 - 623,000 cows

Dry cow therapy

- 2014 NAHMS, USDA survey indicated that 93% of cows undergo dry treatment
 - 9.39 million dairy cows in US 2017
 - -4 tubes/cow
 - Blanket treatment of all cows to control contagious mastitis
- · What about selective dry cow therapy?
 - Does every quarter of every cow need to be treated with intramammary antimicrobials at dry off?

Quality Milk

SDCT

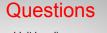
- Slow adoption from NE to SE to NW to MW
 - Farms are working closely with veterinarians
 - Superior milk quality should be achieved prior to taking on SDCT
 - Using multiple criteria to determine if cow is eligible for no treat may be beneficial
 - Error on the side of treating a few more versus not treating cows that should be treated

Potential antimicrobial reduction

- 30 65% no treat with PBT
 - Stop treating negatives to full on PBT
- 50 65% no treat with SDCT
 - Use farm records to determine who to treat and not treat
- · 20% of dairy operation antimicrobial use for mastitis
- 40% of dairy operation antimicrobial use for dry treatment
 - Potential to reduce antimicrobial usage by 30 50 %
 - Not reduction but prudent use

What if...?

- What would happen if antimicrobials were banned for use in food-producing animals?
 - Inhumane? YES
 - We don't want to find out
- What can we do to promote prudent or efficacious use of antimicrobials in the dairy industry and the food-producing animal industries?


Discussion

- Antimicrobials are necessary for humane treatment
 of animals
- Two pronged science based approach to prudent use of antimicrobials
 - PBT
 - SDCT
- Pathogen based treatment in NY
 - No increase in SCC, New and Chronic Infection rates at farms using $\ensuremath{\mathsf{PBT}}$
 - No increase in chronic MAST at farms using PBT
- Internationally antimicrobial usage has decreased
 with no negative impact on animal health

- What is the percentage of mastitis cultures that are culture negative?
 - 30-40%
- What percentage of mastitis causing organisms are treatable or respond to intramammary treatment?
 - 10 - 40%
- How many dairy producers in the room will have a MAST No Treat protocol after today?

- Without bacteria we wouldn't be alive
 Humans require bacteria for carbon,
 - Cycling of chemical elements converting nitrogen to ammonia or nitrates to be absorbed by plants, which we eat and absorb to create amino acids and nucleic acid
 - Digestion without bacteria we wouldn't break down all food – obtain more nutrition from food because of bacteria
- Without antimicrobials we would have a shorter lifespan

It's not about whether or not we should use antimicrobials, but instead implementing prudent use management strategies for antimicrobial use on dairy operations.

Quality Milk