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The modified base, 5-methylcytosine (5mC) is enriched at repetitive DNA 

sequences including satellite repeats that surround chromosome centromeres. 

These centromeric and pericentromeric satellite repeats are important for stable 

chromosome structure and proper chromosome segregation. Loss of 5mC at 

pericentromeric repeats is common in cancer and senescence. While the 

general importance of 5mC is well-established, the specific functions of 5mC at 

pericentromeres are less clear. 5mC loss at pericentromeric repeats is a 

molecular hallmark of the rare genetic disease Immunodeficiency, Centromere 

instability and Facial abnormalities (ICF) syndrome. To date, attempts to model 

specific loss of 5mC at pericentromeres in mouse through mutation of ICF 

associated genes have been unsuccessful. Here, I develop a zebrafish model 

for ICF syndrome by mutating the zebrafish ortholog of ZBTB24, a poorly 

characterized gene that is disrupted in ~30% of ICF patients. 

zbtb24 mutant zebrafish recapitulate key features of ICF syndrome including 

immunodeficiency, facial abnormalities, gastrointestinal defects, impaired 

growth and reduced lifespan. I also show that homozygous mutation of 

zbtb24 causes a progressive loss of 5mC at pericentromeric satellite repeats in 

zebrafish. This progressive loss of methylation allowed for elucidation of primary 

vs secondary consequences of hypomethylation at these sequences. 

Transcriptome analysis revealed that one of the earliest consequences of 



pericentromeric hypomethylation was activation of an interferon-based innate 

immune response. Mechanistically, I tie this response to derepression of 

pericentromeric satellite transcripts and I demonstrate that these aberrant 

transcripts are recognized through the MDA5-MAVS dsRNA-sensing 

machinery, which is normally associated with an innate immune response to 

viruses. Additional preliminary studies indicate increased incidence of DNA 

damage and tumor formation in zbtb24 mutants suggesting that pericentromeric 

5mC is likely important for genome stability. Taken together, this thesis 

describes the first viable animal model of ICF Syndrome, reveals a function for 

ICF-gene zbtb24 in the long-term maintenance of pericentromeric DNA 

methylation and identifies roles for pericentromeric DNA methylation in 

preventing autoimmunity and maintaining genome integrity.  
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Chapter 1 : INTRODUCTION 

 

DNA CYTOSINE METHYLATION 

The epigenetic modification 5mC  

Methylation at the fifth position of the cytosine ring of DNA (5-methyl Cytosine, 

5mC) is a well-conserved feature of many plant, animal and some fungal 

genomes (Goll and Bestor, 2005) (Figure 1.1 A). In vertebrates genomes, 

cytosine methylation is mostly restricted to the symmetrical cytosine-guanine 

(CpG) dinucleotide context (Figure 1.1 B). DNA methylation is mitotically 

 

Figure 1.1:  DNA Methylation 
(A) Chemical structure of cytosine DNA base and its methylated form, 5-
methyl cytosine. (B)  In vertebrates genomes, cytosine methylation of DNA is 
mostly restricted to the symmetrical cytosine-guanine (CpG) dinucleotide 
context. Images modified from Wikimedia Commons. 
 

 



2 

  

inherited and is largely associated with transcriptional repression (Suzuki and 

Bird, 2008). 

 

DNA methylation plays an important role in normal development through its 

function in regulating gene expression, X-chromosome inactivation and 

genomic imprinting (Jones and Takai, 2001). Global methylation deficiencies 

are linked to a variety of adverse outcomes including deregulation of gene 

expression, developmental defects, elevated levels of DNA damage and 

increased genome instability during mitosis (Smith and Meissner, 2013). 

 

Enzymes involved in establishment and maintenance of DNA methylation 

DNA methylation is established by the transfer of a methyl group from S-

adenosyl-L-methionine to the fifth position of the cytosine ring by DNA 

methyltransferases (DNMT). Based on their structure and function, DNMTs 

largely fall into two conserved families: DNMT1, and DNMT3 (Goll and Bestor, 

2005) (Figure 1.2). DNMT1 is a maintenance methyltransferase that 

propagates 5mC at CpG dinucleotides during mitosis by recognizing 

hemimethylated sites (Li et al., 1992). DNMT1 localizes to the replication fork in 

the S phase of the cell cycle and copies methylation states onto the newly 

synthesized DNA strand in a semi-conservative manner (Leonhardt et al., 

1992). Ubiquitin-like with PHD and ring finger domains 1 (UHRF1) is a cofactor 

to DNMT1 that is essential for targetting DNMT1 to replication forks to maintain 

DNA methylation (Bostick et al., 2007). Together, DNMT1 and UHRF1 ensure 

the faithful maintenance of DNA methylation patterns during DNA replication. 

Knockout mutations of Dnmt1 in mice are embryonic lethal and cause up to 90 



3 

  

% reductions in genome-wide DNA methylation (Li et al., 1992). Loss of function 

of MET1, the Arabidopsis thaliana ortholog of Dnmt1, leads to developmental 

abnormalities such as delayed flowering and reduced fertility (Xiao et al., 2006). 

Mutations in dnmt1 in zebrafish also causes embryonic lethality and affects liver 

and pancreatic development (Anderson et al., 2009). Similar to Dnmt1 

mutations, homozygous mutations in Uhrf1 results in genome-wide de-

methylation and embryonic lethality in mice and zebrafish (Feng et al., 2010; 

Sharif et al., 2007). 

 
Figure 1.2: Schematic of the functions of DNA methyltransferase 
(Dnmt) enzymes 
De novo establishment of 5mC (depicted by solid lollipops) is performed 
by Dnmt3a and Dnmt3b. After DNA replication, the newly replicated 
products are hemi-methylated. Uhrf1 binds to hemimethylated DNA and 
directs Dnmt1 to the replication fork for maintaining methylation. Dnmt3a 
and Dnmt3b can function as proofreaders and fill the gaps of the 
hemimethylated CpG sites missed by Dnmt1 especially at heavily 
methylated genomic sites. Adapted from (Chen et al., 2003).  
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The establishment of DNA methylation marks are orchestrated largely by the de 

novo DNMTs of the DNMT3 family (DNMT3A and DNMT3B) (Okano et al., 

1999). During early mammalian embryogenesis, DNA methylation marks are 

established by Dnmt3a and Dnmt3b following a wave of global erasure of 

methylation. While global methylation patterns appear intact in Dnmt3a deficient 

mice and they survive to term, they are runted and die early in adulthood with a 

loss of germ cells in males (Okano et al., 1999). Dnmt3b mutant mice die around 

9.5 dpc with demethylation of minor satellite repeats (Okano et al., 1999).  De 

novo DNMTs are also implicated in the maintainance of methylation patterns at 

germline genes and repetitive elements (Chen et al., 2003; Liang et al., 2002).  

 

A third homolog, DNMT3L, which lacks methytransferase activity, cooperates 

with DNMT3A for establishing genomic imprints in the germline (Bourc'his et al., 

2001; Chedin et al., 2002). Dnmt3l homozygous null mice are viable however 

both males and females are sterile. A recently discovered enzyme, Dnmt3c, is 

requried for the de novo methylation of the promoters of young transposable 

elements in the male germ line in mice  (Barau et al., 2016).  

 

Together, these various DNMTs play essential roles in establishment and 

maintenance of stable DNA methylation patterns in many cellular and 

developmental contexts.   

 

Distribution of DNA methylation in mammalian genomes 

DNA methylation is detected using bisulfite conversion, methylation-sensitive 

restriction enzymes, methyl-binding proteins and anti-5mC antibodies 
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(Zilberman and Henikoff, 2007). High-throughput sequencing combined with 

5mC detection techniques has revealed genome-wide distribution patterns of 

DNA methylation that have contributed to our understanding of its function 

(Laird, 2010).  

 
Figure 1.3: Distribution of DNA methylation in mammalian genomes. 
The mammalian genome is depleted of CpGs and majority of these CpGs are 
methylated (solid lollipops). The bulk of the methylated CpGs are found at 
repetitive elements. CpG islands are enriched for CpG dinucleotides, coincide 
with gene promoters, but are generally unmethylated (empty lollipops). Gene 
bodies are often CpG poor but are extensively methylated. Image from 
Wikimedia Commons.  

 

The frequency of CpG dinucleotides is statistically underrepresented in 

organisms with 5mC, for instance, mammals contain only 20-25% of the 

expected CpGs. In healthy mammalian genomes, 70–80% of these CpGs, 

however, are methylated (Ehrlich et al., 1982). The bulk of these CpGs are 

found within the intergenic and intronic regions of DNA particularly within repeat 

sequences and transposable elements (Figure 1.3).  

 

Repetitive Elements  

One of the most conserved features of DNA methylation function is the 

repression of repetitive elements such as pericentromeric satellite repeats and 

transposable elements to ensure long-term silencing. Repetitive DNA elements 
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constitute up to 50% of the human genome and contain approximately 52% of 

all CpG dinucleotides in the human genome (Lander et al., 2001). The bulk of 

5mC (~90%) in vertebrate genomes is found at these repeats (Beisel and Paro, 

2011). In humans, repetitive elements are arranged as interspersed repeats or 

tandem repeats. Interspersed repeats include transposable elements such as 

SINE (Short Interspersed Elements), LINE (Long Interspersed Elements), LTR 

(Long Terminal Repeats) and DNA transposons. Tandem repeats include 

Satellite repeats and Simple repeats that are typically found near the 

centromere or telomere (Lopez-Flores and Garrido-Ramos, 2012).  

 

Transposable elements are heavily methylated to prevent these parasitic 

elements from invading and integrating into different parts of the genome. If 

such parasitic repeat elements are not silenced, they can pose a serious threat 

to the structural integrity of the genome by causing chromosomal 

rearrangements and disrupting genes. While the proposed role of 5mC 

enrichment at transposable elements is to prevent their translocation, the 

significance of DNA methylation abundance at pericentromeric repeats is 

unclear. Loss of DNA methylation from these repeat sequences is often 

reported in human disease (Robertson, 2005). 

 

Gene Body Methylation 

Gene bodies are often CpG poor but are extensively methylated. Contrary to 

the canonical role of DNA methylation in repression, gene body methylation is 

often associated with transcribed genes (Jones, 2012). While the detailed role 

of gene body methylation is unclear, some studies suggest its role in regulating 

splicing (Shukla et al., 2011).  
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CpG islands 

Less than 10% of CpGs occur in CG-dense regions in small genomic regions of 

about one kilobase, known as CpG islands. Although CpG islands account for 

only about 1% of the genome and less than 10% of the total genome-wide 

CpGs, these regions contain over 50% of the unmethylated CpGs. These CpG 

islands are most often found in the promoters or first exons of genes and are 

unmethylated in healthy cells (Deaton and Bird, 2011). An open chromatin 

structure, enriched in acetylated forms of histones H3 and H4, further marks 

CpG islands for transcriptional activation (Tazi and Bird, 1990). CpG islands are 

hypermethylated in tumors resulting in the transcriptional silencing of tumor-

suppressors (Esteller, 2002).  

 

DNA methylation in Zebrafish 

While, 5mC is an important and extensively characterized epigenetic 

modification, it is absent or present in low-levels in many popular invertebrate 

model organisms such as S. cerevisiae, D. melanogaster and C. elegans. Danio 

rerio (Zebrafish) is an important emerging model system to study epigenetic 

regulation in vertebrate development and disease (Mudbhary and Sadler, 

2011). ~70% of mammalian genes have at least one zebrafish ortholog and 

proteins involved in chromatin regulation are highly conserved (Howe et al., 

2013).  

 

The DNMT machinery is conserved in zebrafish through the presence of a 

maintenance methyltransferase (Dnmt1) and 6 orthologs of de novo DNA 

methyltransferases (Dnmt3) (Goll and Halpern, 2011). Mutations and 
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morpholino-based knock down of Dnmt1 in zebrafish resulted in global DNA 

hypomethylation and display several terminal differentiation defects (Rai et al., 

2006) (Anderson et al., 2009). Similar to mice, uhrf1 zebrafish mutants display 

global 5mC reduction (Feng et al., 2010). Systematic mutation of the six 

zebrafish Dnmt3 orthologs has not been performed, although morphants for 

Dnmt3bb.2 (an ortholog of DNMT3B) display neuronal defects (Rai et al., 2010).  

 

Consistent with mammalian genomes, zebrafish have high levels of DNA 

methylation (80%) at CpG dinucleotides at all sequence contexts, and are 

depleted for 5mC at CpG islands in promoters of genes. DNA methylation is 

comparably enriched at repetitive elements and gene bodies in zebrafish as well 

(Feng et al., 2010).  

 

Zebrafish are different from mammals in that they lack imprinting and X-

chromosome inactivation (Corley-Smith et al., 1996). The developmental 

dynamics of DNA methylation during early development is distinct in zebrafish 

compared to mammals. In the early mammalian embryo, both parental 

genomes undergo genome-wide erasure and re-establishment of global 

methylation patterns. (Smith and Meissner, 2013). However, remodeling of DNA 

methylation in the early zebrafish embryo is more limited. The paternal 

methylome is stably inherited and the maternal methylome undergoes some 

remodeling to match up to the paternal genome without any global 

demethylation (Jiang et al., 2013; Potok et al., 2013). 
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Overall, the similarities in the distribution and function of DNA methylation 

between zebrafish and mammals set up zebrafish as a promising model to 

understand the role of DNA methylation in development and disease.  

 

PERICENTROMERES 

Pericentromeric Satellite repeats 

The region flanking chromosome centers is abundant in several thousand 

copies of AT-rich, non-coding tandem repeat sequences known as satellite 

repeats. While satellite repeats are not conserved at a sequence level, their 

organization at the centromeric and pericentromeric region is a conserved 

feature of eukaryotic cells (Garrido-Ramos, 2017). These satellite repeats are 

implicated in important functions such as maintaining heterochromatin 

architecture (Allshire and Madhani, 2018),  facilitating chromosomal segregation 

during mitosis and meiosis (Plohl et al., 2014) and encapsulating the genome 

within a single nucleus (Jagannathan et al., 2018).  

 

In humans, the centromeric and pericentromeric region consists of several 

thousand copies of alpha-satellite DNA with a monomer length of ~170bp 

(Figure 1.4). The alpha satellite monomer is repeated to form a higher repeat 

which in turn is repeated several times to form a higher order repeat array in the 

peri/centromeric region. The alpha-satellite repeats are found on all 

chromosomes and are important for kinetochore assembly that propels cells 

division (Tyler-Smith and Brown, 1987). In addition to the peri/centromeric 

alpha-satellites, three types of classical satellite repeats found in the 

pericentromeric regions of chromosomes and account for ~ 4%–5% of the 
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human genome. Satellite type I are short AT-rich sequences found at 

pericentromeric regions of most chromosomes. Type II and type III satellites 

(SAT2 and SAT3) are made of a 5bp GGAAT repeat unit and form condensed 

domains in the pericentromeric regions of chromosomes 1, 9, 16 (Vourc'h and 

Biamonti, 2011). 

 

In mice, two types of repetitive DNA sequences are associated with 

centromeres. Major satellite repeats (6 megabases of 234 bp units) are located  

pericentromerically and minor satellite repeats (∼600 kb of 120 bp units) 

coincide with the centromeric region (Choo, 1997; Joseph et al., 1989). In 

zebrafish, Type I satellite-like sequence (Sat1) are 186 bp long, A+T-rich (65%), 

and constitute 8% of the zebrafish genome (Ekker et al., 1992). Fluorescence 

in situ hybridization experiments revealed that Sat1 sequences are located in 

the peri/centromeric regions of all chromosomes (Phillips and Reed, 2000). 

 
Figure 1.4: Pericentromeric satellite repeats. 
Schematic representation of human centromeric and pericentromeric satellite 
repeats. Adapted from (Cleveland et al., 2003) 
 

p-arm q-arm 
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Based on their location and sequence organization, Sat1 repeats in zebrafish 

are reminiscent of human alpha-satellite repeats.   

 

Pericentromeric Chromatin 

Pericentromeric repeats are enriched with repressive epigenetic modifications. 

This includes the repressive histone modification Histone H3 lysine 9 trimethyl 

(H3K9me3) and the DNA modification, 5mC (Dejardin, 2015). The 

pericentromeric satellite sequences are a significant source of 5mC in 

vertebrate genomes. Despite their abundance the exact importance of 5mC at 

these sequences is unknown. 

 

The function of de novo DNA Methyltransferases DNMT3A and DNMT3B is 

5mC establishment and DNMT1 on 5mC maintenance is well known (Goll and 

Bestor, 2005). However, since DNMTs lack intrinsic sequence specificity 

beyond CpG dinucleotides, mechanisms by which DNMTs target satellite 

repeats are unclear. DNMT3B is predicted to be involved in establishing DNA 

methylation at satellite repeats. Minor satellite repeats are substantially 

demethylated in Dnmt3b−/−, but not in Dnmt3a−/− mouse ES cells and similar 

demethylation of the minor satellite repeats was also detected in E9.5 Dnmt3b−/− 

and Dnmt3a−/−, Dnmt3b−/− mouse embryos, but not in Dnmt3a−/− embryos 

(Okano et al., 1999). These results indicated that minor satellite repeats are 

specific targets for Dnmt3b.  

 

Suv39h-mediated H3K9me3 is involved in directing DNA methylation to satellite 

repeats. The H3K9me3 methylation system interacts with Dnmt3b and 



12 

 

influences DNA methylation at satellite repeats (but not other repeats) in mouse 

ES cells (Lehnertz et al., 2003). These findings indicate a cross-talk between 

the two most abundant repressive epigenetic modifications found at 

pericentromeric satellite repeats.  

 

While the classical roles of DNMT1 as a maintenance methyltransferase and 

DNMT3s as de novo enzymes are well established, these roles are not mutually 

exclusive, especially in 5mC dense repetitive sequences. Mouse ES cells 

deficient in Dnmt3a and Dnmt3b but containing functional Dnmt1 progressively 

lost 5mC at repetitive elements after prolonged culture (Chen et al., 2003). It is 

proposed that due to the risk of errors in maintenance methylation at highly 

repetitive 5mC rich sequences, Dnmt3a/Dnmt3b ensure methylation fidelity, 

though the molecular details of this role are unclear (Liang et al., 2002). 

 

Together, these studies indicate an essential role for Dnmt3b in establishement 

and maintenace of 5mC at peri/centromeric satellite repeats.  

 

Diseases associated with pericentromeric DNA hypomethylation  

Cancer  

Pericentromeric satellite sequences appear particularly susceptible to 

methylation loss in several cancers. (Enukashvily et al., 2007; Fanelli et al., 

2008; Nakagawa et al., 2005; Narayan et al., 1998; Qu et al., 1999b; Suzuki et 

al., 2002; Tsuda et al., 2002). It is believed that hypomethylation of condensed 

pericentromeric repeat sequences may predispose cells to cancer-promoting 

chromosomal rearrangements. However, pericentromeric hypomethylation is 
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neither necessary nor sufficient to cause chromosomal rearrangements in 

tumors (Ehrlich et al., 2003; Tsien et al., 2002). Further studies are necessary 

to understand the consequences of this hypomethylation and its impact on 

cancer progression. Understanding the consequences of pericentromeric 

hypomethylation has been challenging since most studies are in the context of 

global hypomethylation, masking the specific effects of satellite DNA 

hypomethylation. 

 

Senescence 

Pericentromeric repeats are also found hypomethylated in senescent cells 

(Enukashvily et al., 2007, Suzuki et al., 2002).  Methylome analysis of senescent 

cells compared to proliferating cells revealed global hypomethylation including 

hypomethylation of Sat2 sequences in senescent cells, reminiscent of 

methylation changes reported in cancer (Cruickshanks et al., 2013). This study 

suggested that such a similarity in methylome between senescent cells and 

cancer cells might facilitate late-life onset of many cancers.  

 

ICF Syndrome 

Individuals with the rare, autosomal recessive disorder, Immunodeficiency, 

Centromere and Facial anomalies (ICF) syndrome, also show extensive 

hypomethylation of pericentromeric Sat2 and Sat 3 and alpha-satellite repeats, 

while methylation across the rest of the genome is relatively intact (Velasco et 

al., 2018). Chromosome anomalies including whole-arm deletions and 

multiradial chromosomes have also been reported in mitogen-stimulated 

lymphocytes from ICF-patients. However, similar chromosome anomalies are 

not observed in primary tissues from affected individuals (Ehrlich, 2003). ICF 
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syndrome presented a unique opportunity to study consequences of 

pericentromeric hypomethylation in the context of a relatively intact global 

metylome.  

 

ICF SYNDROME, A MODEL FOR PERICENTROMERIC DNA 

HYPOMETHYLATION 

ICF Syndrome Symptoms  

Centromeric Instability  

Molecular hallmark of this disease is hypomethylation of classical satellite 2 and 

3 DNA, the main DNA components of 1qh, 16qh, and 9qh. In addition, a subset 

of patients displays hypomethylation at centromeric alpha-satellite repeats. This 

hypomethylation is associated with cytogenetic aberrations in lymphocyte 

cultures of blood cells from patients. Chromosome anomalies include whole-

arm deletions and multiradial chromosomes. Though the aberrations seen in 

these cultured cells increase with time, they are rarely seen in other tissues. 

(Ehrlich et al., 2006) 

 

In addition to the molecular hallmark of pericentromeric DNA hypomethylation, 

ICF patients have other characteristic symptoms.  

 

Immunodeficiency  

ICF patients are characterized by severe immunodeficiency. Decreased 

immunoglobulins with often normal level of lymphoid cells is the most common 

feature of ICF syndrome. Infections are recurrent in patients and often the cause 

of death at a young age.  The cause of immunodeficiency in ICF patients is 
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unknown. Regular intravenous infusions of immunoglobulin are the most 

common treatment offered to ICF patients currently.  

 

Facial Anomalies  

ICF Syndrome patients exhibit mild but characteristic facial anomalies which 

include a flat nasal bridge, hypertelorism (widely spaced eyes), epicanthic folds, 

macroglossia (enlarged tongue), micrognathia (small jaw), and low set ears.  

 

Additional symptoms 

ICF patients display growth retardation, gastrointestinal defects and an overall 

failure to thrive. Variable levels of intellectual impairment and neurological 

defects have also been reported in some patients.  

 

Genetic Basis of ICF Syndrome 

Homozygosity mapping and whole-exome sequencing have separately 

implicated four genes in ICF syndrome: DNA Methyltransferase 3B (DNMT3B, 

ICF type-1), Zinc-finger and BTB domain containing 24 (ZBTB24, ICF type-2), 

Cell division cycle associated 7 (CDCA7, ICF type-3) and Helicase, lymphoid-

specific (HELLS, ICF type-4) (de Greef et al., 2011; Thijssen et al., 2015; Xu et 

al., 1999).  

 

DNMT3B (ICF-1) 

Approximately half of the reported ICF syndrome patients carry mutations in the 

de novo DNA methytransferase DNMT3B (OMIM 602900) (Xu et al., 1999). 

Most of the described mutations in DNMT3B cause amino acid substitutions 
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within the C-terminal catalytic domain, suggesting they may be hypomorphic 

(Figure 1.5 A). Hypomethylation is restricted to pericentromeric classical 

satellite repeats, Sat2 and Sat3. The alpha-satellite repeats are not 

hypomethylated in ICF-1. Mutations in DNMT3B in ICF Syndrome are 

consistent with the role of DNMT3B in satellite DNA methylation.   

 

ZBTB24 (ICF-2)  

Zinc-finger and BTB domain-containing 24 (ZBTB24, OMIM 614064), belongs 

to a large ZBTB family of transcription factors that form homo- or hetero dimers 

through their protein interacting BTB domain and bind to target DNA via their 

zinc finger domains (Siggs and Beutler, 2012). ~30% of ICF patients carry null 

mutations in ZBTB24 (Figure 1.5 B) (de Greef et al., 2011). In addition to the 

classical satellite repeats, alpha-satellite repeats are also hypomethylated in 

ICF Syndrome patients with mutations in ZBTB24 (ICF-2).  

 

The detailed molecular functions of ZBTB24 are unclear. So far, it has been 

characterized as a transcription factor that controls the expression of another 

ICF gene, CDCA7 (Wu et al., 2016). Three ZBTB family members, ZBTB38, 

ZBTB33, and ZBTB4 bind both unmethylated and methylated DNA, and function 

as readers of DNA methylation (Siggs and Beutler, 2012). Immunofluorescence 

revealed that mouse Zbtb24 binds to the pericentromere and can do so in the 

absence of DNA methylation (Nitta et al., 2013). More recently, ZBTB24 was 

shown to coordinate with DNMT3B to control DNA methylation at intergenic 

sites (Thompson et al., 2018). Knockdown of ZBTB24 in B-cells and knockout 

in Human Embryonic Kidney cell-lines significantly reduced proliferation (Liang 
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et al., 2016; Unoki et al., 2018).  The molecular details of the role of ZBTB24 in 

methylation of peri/centromeric satellite repeats remain to be clarified.   

 

CDCA7 (ICF-3)  

Cell division cycle associated 7 (CDCA7, OMIM 609937) contains a highly 

conserved 4CXXC zinc finger domain and has been suspected to be a 

transcription factor under the control of c-Myc (Gill et al., 2013). Loss of function 

mutations in CDCA7 have been identified in 4 ICF patients (Figure 1.5 C) 

(Thijssen et al., 2015). Current understanding of CDCA7 function is that it forms 

a complex another factor mutated in ICF Syndrome, HELLS (Jenness et al., 

2018). CDCA7 also forms a complex with factors involved in non-homologous 

end joining (NHEJ) and mutations in CDCA7 in cell culture promote DNA 

damage (Unoki et al., 2018).   

 

HELLS (ICF-4) 

Helicase, lymphoid-specific (HELLS, OMIM 603946) is a relatively well 

characterized chromatin remodeler that is involved in de novo DNA methylation, 

through its interaction with DNMT3B, dependent on its ATPase domain (Figure 

1.5 D) (Myant and Stancheva, 2008). Five ICF patients with homozygous null 

mutations in HELLS have been identified (Thijssen et al., 2015). Hells mutant 

mice are perinatal lethal and show signs of genome-wide hypomethylation in 

addition to methylation loss at repeat sequences including satellite repeats (Tao 

et al., 2011).  

 

In addition to these 4 ICF genes, more genes involved in ICF Syndrome remain 

to be identified (ICF-X).  
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Epigenomic Assessment of ICF Syndrome  

A key molecular hallmark of ICF syndrome is extensive hypomethylation of 

classical satellite 2 and 3 DNA, the main DNA components of 1qh, 16qh, and 

9qh. In addition, ICF-2, ICF-3 and ICF-4 patients display hypomethylation at 

centromeric alpha-satellite repeats. ICF syndrome is the only human disease 

that shows Mendelian inheritance of aberrant DNA methylation. Outside of 

pericentromeres methylation changes in ICF patients appear limited. 

Comparative methylome analysis of whole blood from ICF syndrome patients of 

all four genotypes revealed that only 2-3% of the total probes in Illumina Infinium 

HumanMethylation450 BeadChip were hypomethylated (Velasco et al., 2018). 

 

Figure 1.5: Genes mutated in ICF Syndrome 
Four genes are mutated in ICF Syndrome. (A) De novo DNA 
methyltransferase DNMT3B (B) Zinc-finger and BTB domain-containing 24 
(ZBTB24), (C) Cell division cycle associated 7 (CDCA7) and (D) Helicase, 
lymphoid-specific (HELLS). 
 



19 

 

These probes assayed more than 485,000 CpGs throughout the human 

genome, covering 99% of Refseq genes and approximately 25% of the probes 

were designed in intergenic regions. This study revealed a strong correlation 

between methylation landscapes in ICF-2, ICF-3 and ICF-4 patients, distinct 

from ICF-1.  More than 90% of the hypomethylated CpGs in ICF-2, 3 and 4 

samples were located in CpG-poor, late-replicating heterochromatic regions 

compared with less than 70% in ICF-1. In contrast, 25% of hypomethylated 

CpGs in ICF-1 were located in functional promoters and enhancers but were 

absent from hypomethylated probes common to ICF-2, 3 and 4 cells (Velasco 

et al., 2018). The difference in methylome of ICF-1 compared to ICF-2, 3 and 4 

indicates that DNMT3B access at several sites outside of the peri/centromeric 

region is independent of the other ICF factors, ZBTB24, CDCA7 and HELLS.  

 

Molecular Basis of ICF Syndrome   

Mechanistically, ZBTB24, CDCA7 and HELLS are thought to converge in a 

singular pathway that facilitates DNMT3B access to pericentromeric DNA. 

ZBTB24 promotes the transcription of CDCA7 (Wu et al., 2016) (Figure 1.6). 

CDCA7 and HELLS form a nucleosomal remodelling complex that is proposed 

to facilitate DNMT3B access to DNA (Jenness et al., 2018). The similarity in the 

methylome of ICF-2, 3 and 4 primary cells gives credence to this model 

suggesting that the three genes are likely acting in the same pathway in the 

methyation of satellite repeats (Velasco et al., 2018). 

 

However, this model does not clarify how DNMT3B is targeted to satellite 

repeats. Further, these studies fail to explain why alpha-satellite repeats are 
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hypomethylated in ICF-2, 3, and 4 but not ICF-1. Understanding the functions 

of the genetic players associated with ICF Syndrome will provide mechanistic 

insights regarding the establishment and maintenance of DNA methylation at 

pericentromeric DNA. 

 

Figure 1.6: Molecular Basis of ICF Syndrome. 
Predicted model for the role of ICF genes in regulating DNA methylation. 
ZBTB24 stimulates transcription of CDCA7. CDCA7 associates with 
chromatin, recruits HELLS, and remodels nucleosomes to allow DNMT3B-
mediated DNA methylation. Adapted from (Jenness et al., 2018). 

 

Animal Models of ICF Syndrome  

Previous attempts to generate viable mouse models of pericentromeric 

hypomethylation through mutation of ICF genes have had limited success. Mice 

harboring ICF-like mutations in Dnmt3b exhibit some characteristics of ICF 

syndrome including small size and facial anomalies. However, most mice die 

within 24 hours of birth (Ueda et al., 2006). Deletion of the mouse Zbtb24 gene 

was reported to cause embryonic lethality; but methylation changes in these 

mutants have not been investigated (Wu et al., 2016). Animal models with 

mutations in CDCA7 have not yet been reported. Perinatal lethality was 

observed following deletion of the mouse HELLS orthologue. In this case, 
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mutations were accompanied by roughly 50% reductions in 5mC, and 

methylation loss was noted at pericentromeres, retroviruses and some single 

copy sequences  (Tao et al., 2011). ICF specific HELLS mutations have not 

been introduced in any organism.  

 

DISSERTATION OVERVIEW 

While the general importance of 5mC is well characterized, its role at 

pericentromeric satellite repeats is less clear. Progress has been hampered by 

the lack of model systems with large-magnitude hypomethylation limited to 

pericentromeric repeats. To circumvent this problem, I have developed the first 

viable animal model of ICF syndrome, a disease characterized by the loss of 

methylation from pericentromeric repeats. The generation and phenotypic 

characterization of a zebrafish model of ICF Syndrome are described in 

Chapter 2.   

 

In Chapter 3, I present the characterization of the epigenetic features of a 

zebrafish model of ICF syndrome with mutations in zbtb24. This analysis 

revealed progressive loss of methylation at satellite repeats indicating a role for 

Zbtb24 in maintaining methylation at these repeat sequences.  

 

The progressive loss of methylation observed in this ICF disease model further 

allowed for elucidation of primary vs secondary consequences of 

hypomethylation at these sequences. In Chapter 4, I present my findings that 

identify an interferon response as one of the earliest consequences of 

pericentromeric hypomethylation. Further, I identify aberrantly overexpressed 
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satellite RNAs as a trigger for this immune response elicited by pericentromeric 

hypomethylation. 

 

Hypomethylation of pericentromeric repeats has been reported in several 

cancers. In Chapter 5, I present evidence for a link between pericentromeric 

hypomethylation and genomic instability in an animal model of ICF Syndrome.  

 

The discussion in Chapter 6 places these findings in context and identifies 

potential future directions. 
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Chapter 2 : DEVELOPING AN ANIMAL MODEL OF ICF SYNDROME 

 

PREFACE 

The zebrafish genome encodes for 6 orthologs of DNMT3 and one conserved 

ortholog of ZBTB24. At the onset of this project, CDCA7 and HELLS were not 

yet identified as genes mutated in ICF syndrome. With the primary aim of 

creating an animal model for ICF Syndrome, I decided to introduce mutations in 

the single copy of the zebrafish ortholog of ZBTB24. Additionally, since the 

function of ZBTB24 was largely unclear, mutational analysis of zbtb24 held the 

promise of providing insights into the role of ZBTB24 in establishment and/or 

maintenance of DNA methylation at pericentromeric DNA.  

 

The zebrafish genome encodes a well-conserved orthologue of ZBTB24 

(Figure 2.1 A). The BTB and Zinc finger domains are well-conserved (Figure 

2.1 B). Phylogenetic analysis reveals that Zbtb24 clusters with its orthologs in 

other species when compared to its closest members of the Zbtb family (Zbtb14 

and 16). However, Zbtb24 is also more divergent among its orthologs in various 

species compared to zbtb14 and zbtb16 (Figure 2.1 C). This divergence is 

typical of proteins associated with the centromere and pericentromere, 

consistent with the rapid divergence of satellite DNAs observed between 

different species (Henikoff et al., 2001).  
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Figure 2.1: Zebrafish Zbtb24 is conserved 
(A) Schematic of human and zebrafish Zbtb24 proteins. (B) Sequence 
alignment of mouse (Mm), human (Hs) and zebrafish (Dr) Zbtb24 showing 
conservation of BTB (blue) and Zinc finger (orange) domains. (C) Phylogenetic 
tree of Zbtb24 with closest members of Zbtb family of proteins, Zbtb14 and 
Zbtb16 mouse, rat, human, chick, and Tetradon. Alignments were performed on 
full-length amino acid sequences via ClustalW and DRAWTREE 
(http://mobyle.pasteur.fr/cgi-bin/portal.py). 
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Figure 2.1 (Continued) 
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 EXPRESSION ANALYSIS OF ZEBRAFISH zbtb24  

Expression of zbtb24 was first investigated using Reverse Transcriptase-PCR 

(RT-PCR) by extracting total RNA from various stages of early development in 

zebrafish. Low-level expression of zbtb24 was detected in the first 24 hours of 

development (Figure 2.2 A). zbtb24 mRNA transcripts were detected at 2 hours 

post fertilization indicating that zbtb24 is maternally deposited albeit at low 

levels. This observation was consistent with the expression of zbtb24 reported 

in a study that assessed mRNAs expressed during zebrafish development 

across several time points from 1-cell to 5 days post-fertilization (White et al., 

2017). This study indicates that zbtb24 is expressed at comparable levels 

across early development (Figure 2.2 B). 

 

To determine the spatial-temporal expression of zbtb24, I performed whole 

mount in situ hybridization (WISH) using probes specific for zbtb24 on zebrafish 

embryos from 1-4 dpf. WISH using an antisense RNA probe for zbtb24 gene 

showed low level expression across most tissues in the animal (Figure 2.2 C). 

Sense RNA probe for zbtb24 is used as a negative control. zbtb24 appears to 

be somewhat prominently expressed in the Yolk Syncytial Layer compared to 

other tissues.  

 

MORPHOLINO-MEDIATED KNOCKDOWN OF Zbtb24 

To determine whether the zebrafish Zbtb24 is essential for embryonic 

development, I injected separately two morpholino-oligonucleotides (MO), an 
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ATG blocking (ATG MO) and a splice site blocking (SS MO) morpholino 

targeting zbtb24 into 1-cell stage wildtype embryos. Phenotypes were analyzed 

at both 1dpf and 2 dpf. Most embryos displayed developmental defects such as 

smaller eyes, enlarged yolk sac and thinner yolk extension upon injecting 3.5ng 

of ATG MO (Figure 2.3 A). Similar phenotypes were observed upon injecting 

3.5ng of ssMO (Figure 2.3 A). These defects could be rescued by co-injecting  

 
Figure 2.2:  zbtb24 is maternally deposited and expressed at low-levels 
during early embryonic zebrafish development. 
(A) RT-PCR analysis of zbtb24 in whole zebrafish embryos at indicated stages 
of development. zbtb24 expression is compared to Histone H3, family 3B 
(h3f3b2). (h: hours post fertilization) (B) Expression level of zbtb24 and h3f3b.1 
(Histone H3, family 3B.1) measured in FPKM. Values were obtained in an 
mRNA expression study of zebrafish development performed by RJ White and 
Colleagues, 2017. (C) In situ hybridization of zbtb24 from 1 day post 
fertilization (dpf) to 4 dpf. Sense probe for zbtb24 is used as a negative control. 
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Figure 2.3: Morpholino-mediated knockdown of Zbtb24 causes 
developmental abnormalities in zebrafish embryos.  
(A) Morphology of embryos injected with ATG blocking (ATG MO) and splice 
site blocking (SS MO) morpholinos imaged at indicated time-points alongside 
uninjected sibling controls. (B) Developmental phenotypes in zebrafish 
injected with zbtb24 ATG MO are partially rescued by co-injecting full length 
zbtb24 mRNA. Images obtained at 2 dpf. (C) Quantification of embryos 
demonstrating a rescue of zbtb24 ATG MO-induced phenotypes upon co-
injecting with full length zbtb24 RNA at 2 dpf.  
 

A 

B C 
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a full-length zbtb24 mRNA (Figure 2.3 B). The morpholino-mediated 

knockdown and their rescue was quantified (Figure 2.3 C). Most morpholino-

injected embryos died by 5dpf. These zbtb24 knockdown phenotypes are 

reminiscent of morphant embryos with defects in proliferation.   

 

I was next interested to test whether knockdown of zbtb24 was sufficient to 

cause the molecular hallmark of ICF syndrome, hypomethylation of 

pericentromeric satellite repeats. Pericentromeric satellite type-1 (Sat1) repeats 

are found on all zebrafish chromosomes and comprise 5-8% of the zebrafish 

genome (Phillips and Reed, 2000). Based on their location and sequence 

organization, Sat1 repeats in zebrafish are reminiscent of human alpha-satellite 

repeats. To test whether Sat1 repeats are hypomethylated in zbtb24 morpholino 

injected embryos, I performed a methylation sensitive southern blot. Zebrafish 

Sat1 has a site that is recognized by the methylation sensitive restriction 

enzyme HpyCH4IV which is resistant to digestion when methylated. I observed 

that morpholino-injected embryos showed mild hypomethylation at satellite 

repeats as evidenced by increased digestion of Sat1 DNA (Figure 2.4). dnmt1 

mutant zebrafish embryos at 6dpf were used as a positive control (Figure 2.4). 

While these results were encouraging, morpholino-based loss-of-function 

approaches are limiting due to the incomplete knockdown of the gene of 

interest. Moreover, since most embryos died by 5dpf, I was unable to assess 

ICF syndrome-specific developmental phenotypes in zbtb24 morphants. At the 

time of these preliminary analyses, the genome editing revolution was dawning 

upon the zebrafish model system and so I set out to generate loss-of-function 

mutations in the zebrafish ortholog of zbtb24. 
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DESCRIPTION OF zbtb24 MUTANT ALLELES  

With the goal to generate an animal model of ICF Syndrome, I introduced null 

mutations in the zebrafish ortholog of ZBTB24 using Transcription activator-like 

effector nucleases (TALENs) for mutagenesis. To introduce mutations in 

zebrafish zbtb24, I designed two (TALENs) targeting the BTB domain and the 

Zinc Finger domain respectively (Figure 2.5 A). I was successful in recovering 

three different mutant alleles.   

 

 
Figure 2.4: Morpholino-mediated knockdown of Zbtb24 causes modest 
hypomethylation of pericentromeric Sat1 repeats. 
Southern blot of genomic DNA digested with 5mC-sensitive restriction 
enzyme HpyCH4IV and probed with zebrafish Sat1 sequence. Genomic DNA 
was isolated at 2 dpf zebrafish larvae injected with morpholino against zbtb24. 
Uninjected siblings are used as a negative control. DNA from dnmt1-/- 
zebrafish larvae at 7 days post fertilization and their phenotypically wild-type 
siblings (WT) provides a positive control. 
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zbtb24mk22  

Upon co-injection of two TALENs, each targeting the BTB and Zinc Finger 

Domain respectively, I recovered a 7.9 kb deletion allele (zbtb24mk22; here after 

referred to as zbtb24Δ) that eliminates coding sequence between exons 2 and 

5 (Figure 2.5 A-B). Generation of this large deletion allele was confirmed 

through sequencing (Figure 2.5 C). Genotyping for the mutant allele is 

described in Figure 2.5 D. Animals that were homozygous for this deletion 

lacked detectable zbtb24 transcripts, suggesting zbtb24Δ is a null allele (Figure 

2.5 E). Primary analysis in this thesis uses the zbtb24Δ allele. 

 

zbtb24mk19 

When I injected the TALEN targeting the BTB domain, I recovered a mutant 

allele that resulted in an 8bp deletion in the second exon. This deletion, causes 

a frame shift resulting in introduction of a STOP codon at amino acid 82 

(zbtb24mk19) (Figure 2.6 A).  The mutant allele is resistant to digestion by the 

restriction enzyme Fnu4H1 which was used to genotyping the allele (Figure 2.6 

B). Generation of the zbtb24mk19 allele was confirmed through sequencing 

(Figure 2.6 C). 

 

zbtb24mk21 

When I injected the TALEN targeting the Zinc Finger domain, I recovered a 

mutant allele with a 9bp (or 3 amino acid) in-frame deletion in region of the 

zbtb24 gene encoding the second zinc finger of Zbtb24 (zbtb24mk21) (Figure 2.6 

D).  The mutant allele is resistant to digestion by the restriction enzyme EarI 

which was used to genotyping the allele (Figure 2.6 E). Generation of a 
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zbtb24mk21 allele was confirmed through sequencing (Figure 2.6 F). This allele 

may be hypomorphic. 

 

 

 
Figure 2.5: Generating a large deletion in the zebrafish ortholog of 
zbtb24 (zbtb24mk22(Δ)) 
 (A) Schematic of zebrafish zbtb24 gene. Location of TALEN target 
sequences are indicated in red (not to scale). Brackets indicate the region 
deleted by the zbtb24Δ allele. (B) Schematic of TALEN sequences showing 
target sites for introducing mutations in zbtb24. P1, P2 and P3 indicate 
locations for genotyping primers. Sequence in blue indicate target site. 
Sequence in yellow indicates site of restriction enzyme digestion. (C) 
Sequence trace confirming generation of large deletion, zbtb24Δ. (D) 
Representative genotyping of zbtb24Δ allele. L: Ladder. P1, P2, P3 represent 
primers from panel A used for amplifying product in specified lane. (E) qRT-
PCR analysis of zbtb24 mRNA in zbtb24+/+ and zbtb24Δ/Δ zebrafish at 2 wpf 
(n=6 for each group). 
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Figure 2.6: Additional zbtb24 mutant alleles (zbtb24mk19 and zbtb24mk21) 
(A) Schematic of zbtb24mk19 with premature stop codon at aa 82. (B) 
Representative genotyping of zbtb24mk19 allele. (C) Sequence trace confirming 
generation of small deletion allele, zbtb24mk19. (D) Schematic of zbtb24mk21 with 
a 9bp in-frame deletion. (E) Representative genotyping of zbtb24mk21 allele. (F) 
Sequence trace confirming generation of small in-frame deletion allele, 
zbtb24mk21. 
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zbtb24 MUTANTS RECAPITULATE KEY PHENOTYPES OF ICF 

SYNDROME 

Growth defects 

Zbtb24 homozygous mutant embryos were born to heterozygous parents at the 

expected Mendelian ratios and had no obvious morphological abnormalities 

during the first two weeks of development (Figure 2.7 A-B). Phenotypes that 

were reminiscent of ICF syndrome emerged as animals matured. Consistent 

with the small stature observed in ICF syndrome, by 3-4 weeks post fertilization 

(wpf), zbtb24Δ/Δ mutant zebrafish were smaller than wild-type siblings raised 

under identical conditions (Figure 2.7 C), and this size reduction persisted into 

adulthood (Figure 2.7 D-E). Similar growth phenotypes were also observed in 

zbtb24mk19/mk19 (Figure 2.7 F-G) and zbtb24mk21/mk21 mutant fish (Figure 2.7 I-

J). Significant death was noted among zbtb24Δ/Δ homozygous mutants at 4 

months of age and fewer than 10% of zbtb24Δ/Δ animals survived beyond 8 

months (Figure 2.7 K). Although not riguourously quantified, reduced lifespans 

were also observed in zbtb24mk19/mk19 and zbtb24mk21/mk21 mutants. Of the three 

alleles, zbtb24Δ/Δ animals displayed the strongest growth defects followed by 

zbtb24mk19/mk19, which were more severe than zbtb24mk21/mk21.  

 

 Immunodeficiency 

A characteristic feature of ICF syndrome is immunodeficiency characterized by 

hypogammaglobulinemia or the decrease in immunoglobulins, in the presence 

of normal lymphoid cell numbers. To test for immunoglobulin deficiency in 

zbtb24 mutant fish, I performed expression analysis for zebrafish 

immunoglobulins IgM, IgD and IgZ. B cell development in zebrafish initiates at 
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Figure 2.7:  Growth defects in zbtb24 mutants 
 (A) Representative images of zbtb24+/+ and zbtb24Δ/Δ zebrafish at 2 wpf. Scale 
bar: 1 mm. (B) Representative images of zbtb24+/+ and zbtb24mk19/mk19 zebrafish 
at 4 dpf. Scale bar: 1 mm. (C) Standard length measurements for zbtb24+/+ and 
zbtb24Δ/Δ zebrafish at 1, 2, 3 and 4 wpf (n≥6 for each group). (D) Representative 
images of zbtb24+/+ and zbtb24Δ/Δ zebrafish at 5 months. Scale bar: 5 mm. (E) 
Average weight of zbtb24+/+ and zbtb24Δ/Δ zebrafish at 5 months (n=5 for each 
group). (F) Representative images of zbtb24+/+ and zbtb24mk19/mk19 zebrafish at 
5 months. Scale bar: 1 mm. (G) Average weight of zbtb24+/+ and zbtb24mk19/mk19 
zebrafish at 5 months (n=5 for each group). (H) Representative images of 
zbtb24+/+ and zbtb24mk21/mk21 zebrafish at 5 months. Scale bar: 1 mm. (I) 
Average weight of zbtb24+/+ and zbtb24mk21/mk21 zebrafish at 5 months (n=5 for 
each group). (J) Kaplan-Meier curve indicating survival among groups of 
zbtb24+/+ and zbtb24Δ/Δ zebrafish (n=12 for each group). (K) Alizarin Red bone 
staining of zbtb24+/+ and zbtb24mk19/mk19 zebrafish adults at 5 months. Scale bar: 
2 mm. 
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Figure 2.7 (Continued) 
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6 wpf (Trede et al., 2004). I observed significantly decreased expression of 

these immunoglobulins in zbtb24 mutants (Figure 2.8 A and E) at 6 weeks post 

fertilization. I tested for the number of lymphoid cells using FACS sorting of 

whole kidney marrow in adult zebrafish. I observed normal lymphoid cell 

numbers (Figure 2.8 B and F). Collectively these data suggest the presence of 

ICF-like immunological defects in zbtb24 mutant zebrafish. 

 

Facial Abnormalities 

As adults, zbtb24Δ/Δ mutants exhibited unique facial anomalies that were 

characterized by a quantifiable elongation of the snout (Figure 2.8 C and G). 

To quantify these abnormalities, I took the ratio of the distance between the tip 

of the fish’s snout and the anterior end of the eye to the posterior end of the eye 

(Figure 2.8 D). This defect is reminiscent of a flattened nasal bridge often 

reported in ICF Syndrome patients.  

 

Gastrointestinal defects 

ICF patients have often reported gastrointestinal defects such as diarrhea and 

recurrent gastrointestinal tract infections (Ehrlich, 2003). To test for any 

pathological defects in the intestinal tract of zbtb24 mutant fish, I performed H&E 

staining on sagittal sections of one-month old zbtb24 mutant fish and their wild- 

type siblings as a control. Given the differences in size between zbtb24 mutant 

fish and their wild-type siblings at this age, I also included sections of wild-type 

fish size-matched with zbtb24 mutant fish as an additional control.  I observed 

signs of intestinal inflammation as observed by villous blunting and enlarged 

goblet cells in the intestinal villi (Figure 2.9 A). I further confirmed increased  
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Figure 2.8: Immunodeficiency and Facial anomalies in zbtb24 mutants 
 (A) Abundance of IgM, IgD and IgZ transcripts in zbtb24+/+ and zbtb24Δ/Δ 
zebrafish at 6 weeks post fertilization (n=5 for each group). (B) Quantification of 
lymphoid cell populations in total blood isolated from zbtb24+/+ and zbtb24Δ/Δ 
kidney marrow from 8-month-old adults, measured by Forward/Side scatter flow 
cytometry (n=11 for each group). (C) Representative images of facial 
abnormalities in zbtb24+/+ and zbtb24Δ/Δ adults at 6 months. Scale bar: 2 mm. 
(D) Schematic and quantification of facial abnormalities in zbtb24Δ/Δ zebrafish 
(n=5 for each group). (E) qRT-PCR analysis of IgM, IgD and IgZ zebrafish 
immunoglobulins in zbtb24+/+ and zbtb24mk19/mk19 zebrafish measured at 6 
weeks post fertilization (n=5 biological replicates). (F) Quantification of lymphoid 
cell populations in total blood isolated from zbtb24+/+ and zbtb24mk19/mk19 11-
month-old adult kidney marrow, measured by Forward/Side scatter flow 
cytometry (n=16 biological replicates). All error bars indicate standard error of 
the mean (SEM). (G) Facial abnormalities in zbtb24+/+ and zbtb24mk19/mk19 
zebrafish. Scale bar: 3 mm. 
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Figure 2.9: Gastrointestinal defects in zbtb24 mutants. 
 (A) Representative image of H&E staining of the gut of zbtb24+/+ and 
zbtb24Δ/Δ at 8 wpf. (B) Sudan black staining in the gut of zbtb24+/+ and 
zbtb24Δ/Δ at 3 wpf. (C) Quantification of Sudan black positive cells in the gut 
of zbtb24+/+ and zbtb24Δ/Δ at 3 weeks. Results are representative of 4 
independent experiments. Error bars indicate SEM. (D) Schematic of dextran 
micro-gavage in zebrafish larvae at 3 wpf. (E) Dextran gavage in zbtb24+/+ 
and zbtb24Δ/Δ at 3 wpf. EDTA is co-gavaged as a positive control. (F) 
Quantification of dextran leakage into the vasculature as measured by 
fluorescence intensity (measured in arbitrary units, a.u.) in zbtb24+/+ and 
zbtb24Δ/Δ at 3 wpf. 
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incidence of inflammation in the gut as assayed by staining for sudan black, a 

stain for neutrophils, which are first responders to an inflammation site. Sudan 

Black-positive cells are detected in the villi of zbtb24Δ/Δ (Figure 2.9 B-C) and 

zbtb24mk19/mk19 larvae (Figure 2.9 D). This intestinal inflammation also led to 

epithelial barrier disruption in the guts of zbtb24Δ/Δ larvae as assayed by the 

leakage of microgavaged fluorescent dextran (Figure 2.9 E-F). Together these 

data demonstrate inflammatory bowel-disease like symptoms in zbtb24 

mutants. While gastrointestinal tract infections and diarrhea have been reported 

in ICF patients, inflammatory phenotypes of the gut have not been categorically 

described in ICF patients before. These results raise the possibility that 

intestinal inflammation could contribute to the gastrointestinal defects observed 

in ICF patients and is an underappreciated aspect of ICF pathology. 

 

Infertility 

All attempts to set up mutant fish either as intercross or outcrossed to ABs have 

been unsuccessful (Figure 2.10 A). To better understand the sterility 

phenotype, we performed H&E staining on testes and ovary of zbtb24 mutant 

adults. Histological sections did not reveal any obvious differences in 

morphology of male and female gonads (Figure 2.10 B-C). We also observe 

formation of mature sperm. However, the testes in zbtb24Δ/Δ mutants are thinner 

compared to wildtype siblings (Figure 2.10 D) and sperm count in zbtb24Δ/Δ 

mutants is also significantly reduced (Figure 2.10 E-F). This defect likely 

contributes to the infertility observed in the mutants. 
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Figure 2.10: Fertility and gonad analysis in zbtb24 mutants. 
 (A) Outcome of mating for the indicated crosses. Success and failure are 
defined respectively as generation and lack of fertilized embryos from a male x 
female cross. (B) H&E staining of cross-section of testes dissected from 8-
month-old adult zbtb24+/+ and zbtb24Δ/Δ zebrafish. Scale: 20um. (C) H&E 
staining of cross-section of 8-month-old adult zbtb24+/+ and zbtb24Δ/Δ zebrafish 
ovaries. Scale: 1mm. (D) Brightfield images of adult testes in zbtb24+/+ and 
zbtb24Δ/Δ zebrafish. The lower panel highlights the trace of the testis shaded in 
black. Scale: 1mm. (E) Area of the black shaded region in panel D was used to 
measure the size of the testis. Error bars indicate SD from 2 biological 
replicates.  (F) Brightfield images of counting chamber grid used to count sperm. 
Black specks (arrows) indicate individual sperm. (G) Sperm count from crushed 
testes dissected from adult zbtb24+/+ and zbtb24Δ/Δ zebrafish. Error bars 
indicate SEM from 3 biological replicates. 
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Figure 2.10 (Continued) 
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DISCUSSION 

Taken together, these findings identify zbtb24 homozygous mutant zebrafish as 

a faithful animal model of ICF syndrome phenotypes. In this study, I describe a 

viable animal model of ICF syndrome which recapitulates key phenotypic 

hallmarks of the disease including slow growth, facial anomalies, 

immunoglobulin deficiencies and reduced lifespan. Given that previous attempt 

to model ICF syndrome in mice have resulted in perinatal or embryonic lethality 

(Geiman et al., 2001; Ueda et al., 2006; Wu et al., 2016), this zebrafish model 

provides an important new resource for understanding ICF disease etiology 

during juvenile and adult life stages. Most research on ICF Syndrome has been 

performed on immortalized lymphoblastoid cell lines from ICF patients which do 

not provide any information on the tissue specific phenotypes observed in 

patients. zbtb24 mutant zebrafish will be useful for understanding phenotypes, 

such as immunoglobulin deficiency, which have not been reported in mouse 

models and are difficult to study in cell culture systems. 

 

While the developmental progression of ICF syndrome phenotypes has been 

anecdotally reported, it has not been well-characterized. The lack of model 

systems for this disease has been a major impediment for understanding the 

developmental aspects of ICF syndrome. Analysis of developmental 

phenotypes in zbtb24 mutants reveal that the zbtb24 mutant fish are born 

normal but demonstrate ICF-like phenotypes with age. Developmental defects 

emerge in the juvenile stage between 3-4 weeks post fertilization. Combined 

immunodeficiency has also been reported to develop with age, at least in one 

patient (von Bernuth et al., 2014). This study indicates that developmental 
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progression of ICF phenotypes is an essential but underappreciated feature of 

the disease.  

 

Gastrointestinal infections and diarrhea are commonly reported clinical 

manifestations of ICF syndrome. More recently, a 17-month-old patient with 

Very-Early-Onset IBD who was reported to have mutations in ZBTB24 (Conrad 

et al., 2017) In this study, I provide evidence for intestinal bowel disease (IBD)-

like inflammatory symptoms in zbtb24 mutant zebrafish. As early as 3 weeks 

post fertilization, I observe signs of intestinal inflammation which develop into 

more chronic IBD-like symptoms with age. This is unlikely a byproduct of 

immunodeficiencies because at this stage the adaptive immune system has not 

yet developed (Trede et al., 2004). Together, this study identifies an 

underappreciated link between ICF syndrome and intestinal inflammation. 

Verification of this pathological feature in ICF patients could pave the way for 

appropriate therapy to alleviate the gastrointestinal symptoms observed in ICF 

patients.   
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Chapter 3 : EPIGENETIC ANALYSIS OF AN ANIMAL MODEL OF ICF 

SYNDROME 

 

PREFACE 

A zebrafish model of ICF syndrome with mutations in zbtb24 described in 

Chapter 2, recapitulates the principle clinical and pathological manifestations of 

the human disease. The molecular hallmark of this disease is hypomethylation 

of pericentromeric satellite DNA repeats. ICF syndrome is the only human 

disease that involves Mendelian inheritance of aberrant DNA methylation. A 

majority of the methylome analysis of ICF syndrome has employed immortalized 

cell lines from patients. However, DNA methylation pattern changes have been 

reported in such long-term cultured lymphoblastoid cell lines (Grafodatskaya et 

al., 2010). Thus, representative methylome changes in ICF syndrome patients 

has not been well characterized. Recently, the first comparative methylation 

profiling in primary blood samples from ICF patients with all four genotypes was 

reported which revealed that, despite unifying hypomethylation of 

pericentromeric repeats and a few common loci, methylation profiling clearly 

distinguished ICF1 from ICF2, 3 and 4 patients (Velasco et al., 2018). The study 

showed that in addition to satellite repeats, ZBTB24, CDCA7 and HELLS 

mutations affect CpG-poor regions with heterochromatin features. DNMT3B 

mutations also affected Sat2 DNA methylation, though, preferential 

hypomethylation of CpG islands was an exclusive feature of ICF-1 methylome.   

While this study provided insight into methylome differences in the four types of 

ICF Syndrome, analysis on the developmental dynamics of methylation 

changes at satellite repeats (the unifying feature of ICF syndrome) has been 
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completely lacking due to the rarity of patients and lack of model systems of ICF 

syndrome. The viable zebrafish model of ICF syndrome with mutations in 

zbtb24 provided a unique opportunity to assess the methylation status at 

pericentromeric repeats in vivo, over time. Given that ICF 2, 3 and 4 methylome 

show similarity based on analysis by Velasco and colleagues, findings from 

such an analysis on zbtb24 mutants could likely be generalized to ICF 2, 3 and 

4 (Velasco et al., 2018). 

 

PERICENTROMERIC DNA METHYLATION ANALYSIS 

Pericentromeric satellite repeats are hypomethylated in zbtb24 mutants 

To test for satellite DNA hypomethylation, I performed methylation-sensitive 

Southern blot. Zebrafish Sat1 has a site that is recognized by the methylation 

sensitive restriction enzyme HpyCH4IV which is resistant to digestion when 

methylated. As expected, I found that Sat1 sequences from wild-type one-

month fish were resistant to digestion by HpyCH4IV, indicating that these 

pericentromeric repeats were heavily methylated. In contrast to wildtype, Sat1 

sequences from zbtb24Δ/Δ and zbtb24mk19/mk19 mutant siblings were readily 

digested with HpyCH4IV, indicating extensive loss of methylation at these 

repeats (Figure 3.1 A-C). The hypomethylation of zebrafish Sat1 was 

independently verified using a secondary approach called Combined Bisulphite 

Restriction Analysis (COBRA) which employed bisulphite conversion (Xiong 

and Laird, 1997) (Figure 3.1 D-E). In this approach, total genomic DNA is 

bisulphite converted, Sat1 DNA is PCR amplified and the amplicon is digested 

with the restriction enzyme, HpyCH4IV. If Sat1 is methylated, the sequence 

recognized by HpyCH4IV is intact and digested. If Sat1 is unmethylated, 
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(A) Southern blot of genomic DNA digested with 5mC-sensitive restriction 
enzyme HpyCH4IV and probed with zebrafish Sat1 sequence. Genomic DNA 
was isolated from one-month-old zbtb24+/+ and zbtb24Δ/Δ animals. Each lane 
represents DNA isolated from one adult individual of the indicated genotype. 
DNA from dnmt1-/- zebrafish larvae at 7 days post fertilization and their 
phenotypically wild-type siblings (WT) provides a positive control. (B) 
Quantification of methylation changes in panel A. Error bars indicate SEM from 
the 3 biological replicates. (C) Southern blot of genomic DNA digested with 
5mC-sensitive restriction enzyme HpyCH4IV and probed with zebrafish Sat1 
probe. Genomic DNA was isolated from one-month-old zbtb24+/+ and 
zbtb24mk19/mk19 animals. Each lane represents a biological replicate for the 
indicated genotype. (D) Schematic of Combined Bisulphite Restriction Analysis 
(COBRA). (E) DNA methylation changes in Sat1 assayed by COBRA in 
zbtb24+/+ and zbtb24Δ/Δ adult fins. Bisulfite-treated DNA was amplified with Sat1 
specific primers and digested with HpyCH4IV restriction enzyme. The products 
from COBRA were run on the same agarose gel, then cropped and presented. 
(F) COBRA quantification of 5mC levels at Sat1 repeats in zbtb24+/+ and 
zbtb24Δ/Δ zebrafish. For each sample, data is presented as the ratio of 
undigested (unmethylated)/digested (methylated) DNA fragment normalized to 
zbtb24+/+. Error bars indicate SEM from 3 biological replicates. 
 
 
 

  

Figure 3.1: Pericentromeric satellite repeats are hypomethylated in zbtb24 
mutants. 
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Figure 3.1 (Continued) 
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cytosine at the site of CpG methylation is converted to thymine, is no longer 

recognized by HpyCH4IV and the amplicon is resistant to digestion. 

Comparable Sat1 methylation deficiencies were observed when DNA was 

isolated from dissected adult brain, skin, muscle and fin, suggesting that these 

sequences were similarly hypomethylated in most adult somatic tissues (Figure 

3.2 A). However, methylation levels at Sat1 repeats appeared normal in sperm 

extracted from zbtb24Δ/Δ mutant adults, suggesting methylation loss may be 

restricted to somatic tissues (Figure 3.2 B-C).   

 

Progressive hypomethylation at pericentromeric satellite repeats 

ICF syndrome developmental phenotypes are progressive in zbtb24 mutants. 

Methylation analysis in ICF patients has never been performed over time. I thus 

tested for methylation differences at Sat1 over embryonic and juvenile stages 

of development. I found that pericentromeric methylation loss in zbtb24Δ/Δ 

mutants was progressive. While extensive hypomethylation of Sat1 sequences 

was detected in adults lacking zbtb24, similar hypomethylation was not 

observed in mutants at 1 wpf. At 2 wpf, zbtb24 mutants exhibited roughly 3-fold 

increases in HpyCH4IV digestion, and sensitivity to digestion became 

increasingly pronounced in older animals. By 32 weeks, Sat1 sequences from 

zbtb24 mutants exhibited a 23-fold increase in HpyCH4IV digestion compared 

to wildtype, suggesting a greater than 95% reduction in methylation of these 

repetitive sequence blocks (Figure 3.3 A-B). Progressive hypomethylation at 

Sat1 repeats in zbtb24Δ/Δ was further verified through COBRA (Figure 3.3 C-

D). Collectively, these findings are suggestive a role for zbtb24 in the long-term 

maintenance of 5mC at pericentromeric satellite repeats. 
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Figure 3.2: Somatic tissues but not germ cells are similarly 
hypomethylated at pericentromeric Sat1 repeats in zbtb24 mutants. 
(A) Southern blot of genomic DNA from different tissues in zbtb24+/+ and 
zbtb24Δ/Δ digested with 5mC-sensitive restriction enzyme HpyCH4IV and 
probed with zebrafish sat1 probe. Each lane represents pooled DNA samples 
of the indicated tissue from 3 zebrafish 8-month-old adults. (B) Southern blot 
of genomic DNA from Skin and sperm from 8-month-old adult zbtb24+/+ and 
zbtb24Δ/Δ digested with 5mC-sensitive restriction enzyme HpyCH4IV and 
probed with zebrafish Sat1 sequence. (C) Ethidium bromide gel with genomic 
DNA collected from sperm digested with methylation sensitive enzymes, 
HpaII and HhaI and the methylation-insensitive isoschizomer of HpaII, MspI.  
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Figure 3.3: zbtb24 mutation causes progressive methylation loss at 
pericentromeric Sat1 repeats in zbtb24 mutants. 
A) Southern blot of genomic DNA digested with 5mC-sensitive restriction 
enzyme HpyCH4IV and probed with zebrafish Sat1 sequence. Genomic DNA 
was isolated from zbtb24+/+ and zbtb24Δ/Δ animals at 1, 2, 4, 16 and 32 wpf as 
indicated. (B) Quantification of methylation changes at Sat1 sequences in panel 
C. Data represent averages from two independent experiments. Error bars 
represent the standard deviation (SD). (C) DNA methylation changes in sat1 
assayed by COBRA in zbtb24+/+ and zbtb24Δ/Δ animals at 1, 2, 4, 16 and 32 wpf. 
Bisulfite-treated DNA was amplified with sat1 specific primers and digested with 
HpyCH4IV restriction enzyme. The products from COBRA were run on the 
same agarose gel, then cropped and presented. Degree of hypomethyla-tion 
was expressed as a ratio of the intensity of undigested (unmethylated: unme) 
fragment divided by the digested (methylated: me) fragment (D) COBRA 
quantification of 5mC levels at sat1 repeats in zbtb24+/+ and zbtb24Δ/Δ zebrafish 
at 1, 2, 4, 16 and 32 wpf.  For each sample, data is presented as the ratio of 
undigested (unmethylated) / digested (methylated) DNA fragment normalized to 
zbtb24+/+ Error bars indicated standard deviation (SD) from 2 independent 
experiments. 
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Figure 3.3 (Continued) 
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GENOME-WIDE METHYLOME ANALYSIS 

To clarify whether additional sequences were hypomethylated in zbtb24 

mutants, we performed Enhanced Reduced Representation Bisulfite 

Sequencing (ERRBS) using genomic DNA isolated from the fins of three 

zbtb24Δ/Δ mutant 6-month-old adults and three wild-type siblings (Garrett-

Bakelman et al., 2015). This approach is used to assess the methylation status 

at CG rich genomic loci. The enrichment for such loci is achieved by digesting  

with restriction enzyme MspI (recognizing CCGG) followed by bisulphite 

conversion and next generation sequencing. At 6 months, Sat1 sequences from 

isolated fins were 20-fold more sensitive to HypCH4IV in zbtb24 mutants 

compared to controls, indicating extensive loss of DNA methylation at 

pericentromeric repeats (Figure 3.4 A-B). In collaboration with John Edwards 

(Washington University at St. Louis, USA), we used ERRBS data to interrogate 

the methylation status of 979,971 non-pericentromeric CpG sites across the 

genome in the same tissue samples. Our analysis revealed a strong correlation 

between genome wide 5mC levels in wild-type and zbtb24Δ/Δ mutant adults 

(Pearson’s correlation value of 0.928), although overall methylation levels were 

reduced by ~10% in mutants (Figure 3.4 C). This 10% methylation reduction in 

mutants consisted primarily of small-magnitude changes in 5mC across all 

methylated sequence features in the zebrafish methylome (Figure 3.5). Only 

1.3% (13,205) of examined CpG dinucleotides exhibiting methylation 

differences of greater than 20%. Consistent with this finding, at a threshold of 

20% change (p-value<0.01), only 55 differentially methylated regions (DMRs) 

were identified between wild-type and zbtb24Δ/Δ adults. 
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Figure 3.4: zbtb24 mutants exhibit modest reductions in 5mC at non-
pericentromeric sequences. 
(A-B) Southern Blot and quantification of HpyCH4IV digestion at Sat1 
sequences in fin tissues from 6-month-old adult zebrafish used for ERRBS. 
(C) Violin Plots indicating overall CpG methylation levels in fins from 6-month-
old adult zbtb24+/+ and zbtb24Δ/Δ zebrafish. (D) Correlation heat map of CpG 
methylation levels in zbtb24+/+ and zbtb24Δ/Δ as assessed by ERRBS (Data 
reflects 3 biological replicates of each genotype). The density of CpGs 
increases from blue to dark red. (E) Basic statistics of ERRBS analysis in 
zbtb24+/+ and zbtb24Δ/Δ zebrafish. 
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Figure 3.5: DNA Methylation levels at different genomic classes in fins 
of zbtb24+/+ and zbtb24Δ/Δ zebrafish. 
Violin plots indicating CpG methylation in fins from 6-month-old adult zbtb24+/+ 
and zbtb24Δ/Δ zebrafish at various genomic classes. The annotations are 
based on CGI, Repeatmasker, and RefSeq (only “cmpl” entries) tracks from 
the UCSC genome browser (DanRer7).  Promoters are defined as the region 
+/- 500 bp around the TSS. All CpGs had coverage >=10. DNA Transp.: DNA 
Transposons, Low complex.: Low Complexity. 
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Figure 3.6: Methylation at interspersed repeats is unaffected in zbtb24 
mutants. 

Southern blot analysis of DNA methylation at interspersed repeats (A) Short 
Interspersed Nuclear Element (SINE), DANA and SINE_HE1 (B) Long 
Interspersed Nuclear Element (LINE), L1-10 (C) DNA Transposon, Kolobok 
(D) Endogenous Retroviral (ERV) elements, ZFERV2, ERV1-3, ERV4 and 
Gypsy21 in zbtb24+/+ and zbtb24Δ/Δ 1-month old zebrafish. Each lane 
represents a biological replicate of the indicated genotype. Genomic DNA 
from dnmt1-/- embryos is used as a positive control. The methylation-sensitive 
enzyme used to digest genomic DNA is indicated below the respective blot. 
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Methylation levels at endogenous retroviruses and other transposable elements 

were also examined by methylation sensitive restriction digest. All tested 

elements revealed similar resistance to digestion in zbtb24Δ/Δ mutant adults and 

wild-type siblings, indicating that these specific sequences are heavily 

methylated in both genotypes (Figure 3.6). Collectively, these data reveal 

limited methylation changes at genic regions with modest decreases at repeat 

classes outside the pericentromeric region. 

 

HISTONE MODIFICATION ANALYSIS 

Despite significant changes in DNA methylation at satellite repeats, I did not 

observe any changes in histone modifications H3K9me3 or H3K27me3 at 

pericentromeric sequences in zbtb24Δ/Δ zebrafish when assayed at 1 month 

using chromatin immunoprecipitation (ChIP) (Figure 3.7 A). At this stage Sat1 

repeats are significantly depleted for 5mC in zbtb24Δ/Δ zebrafish. I further  

 
Figure 3.7: Histone Modifications are unaffected in zbtb24Δ/Δ mutants 
(A) ChIP-qPCR analysis of H3K9me3 and H3K27me3 at Sat1 repeats in 
zbtb24+/+ and zbtb24Δ/Δ. Chromatin was collected at 1 month post fertilization. 
Error bars indicate SEM with 3 biological replicates. (B) Immunofluorescence 
analysis of H3K9me3, H4K20me3 and H3K4me3 in zbtb24+/+ and zbtb24Δ/Δ. 
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observed no change in the repressive histone modifications H3K9me3 and 

H4K20me3 or the activating histone modification H3K4me3 when assayed 

through immunofluorescence (Figure 3.7 B). These data suggest that DNA 

methylation status does not influence enrichment of these modifications at 

pericentromeres. This is consistent with a study that shows that H3K9me3 is 

not lost in Dnmt1 deficient or Dnmt3a/Dnmt3b double-deficient mouse ES cells 

that show impaired DNA methylation at satellite repeats (Lehnertz et al., 2003).  

 

DISCUSSION  

The progressive loss of 5mC we observe in somatic tissues between larval and 

adult stages implicates Zbtb24 in regulating the long-term maintenance of 

methylation at pericentromeric repeats. It is also possible that Zbtb24 functions 

in both maintenance and establishment of pericentromeric methylation, but that 

requirements for establishment are masked by maternally deposited RNA in 

zbtb24 mutant zebrafish lines. Unfortunately, zbtb24 homozygous mutant 

zebrafish are sterile, preventing the generation of the maternal-zygotic mutants 

required to address this question.  

 

We note that the onset of ICF-like growth defects in zbtb24 mutant zebrafish 

emerged in the weeks following Sat1 methylation loss. In at least one case of 

ICF syndrome type 2, growth reductions and immunodeficiency were also 

reported to develop with age, raising the possibility that similar progressive 

methylation loss may impact ICF etiology in humans (von Bernuth et al., 2014). 

Knockdown of ZBTB24 using shRNAs inhibits replication of a B-cell line (Liang 

et al., 2016). It is likely that the developmental growth defects observed in 
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zbtb24 mutants is a consequence of decreased replication from pericentromeric 

hypomethylation. While methylation at satellite repeats has not been tested in 

the same ICF individual over time, I predict progressive methylation loss to be 

observed in humans too, contributing to development of growth defects with 

age. Whether and how pericentromeric hypomethylation causes 

immunodeficiency in ICF syndrome is still an open question.   

 

Methylation levels at pericentromeric Sat1 sequences could not be quantified 

by ERRBS, as this technique relies on MspI restriction digest to enrich for CpG 

containing sequences, and zebrafish Sat1 repeats are lacking in this restriction 

site. For highly repetitive sequences, methylation sensitive restriction digest 

followed by Southern blot remains the most effective way to assess methylation 

levels. By this approach, we observed increases in HpyCH4IV digestion that are 

consistent with up to 95% reductions in methylation at Sat1 pericentromeric 

repeats in zbtb24 mutants. ERRBS analysis suggested that the general 

methylation landscape in human ICF syndrome and in zbtb24 mutant zebrafish 

is similar. Methylome analysis of primary blood from ICF patients identified 

methylation changes of greater than 20% at roughly 3% of examined CpG 

dinucleotides. Significant changes in methylation of retroviruses and other 

dispersed repeats were not observed in these patients (Velasco et al., 2018). 

Consistent with these findings, our ERRBS analysis revealed methylation 

changes of greater than 20% at roughly 1.3% of assayed CpG dinucleotides 

and found methylation of dispersed repeats to be similar between wildtype and 

in zbtb24 mutant zebrafish. The low-level methylation changes outside of the 

pericentromeres observed in ICF syndrome and our mutants raise the possibility 

that zbtb24 may have additional modest roles in maintaining methylation at non 
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pericentromeric sequences. One important caveat of ERRBS analysis is that 

CpG poor sequences can be under represented, leaving open the possibility 

that additional DMRs in CpG poor regions of the genome were overlooked by 

our approach.  

 

While similar hypomethylation was observed in all adult somatic tissues that we 

examined, we unexpectedly observed that methylation levels in sperm from 

zbtb24 mutants and wildtype animals appeared comparable. This finding raises 

the possibility that different pathways act to control pericentromeric methylation 

in germ and somatic cells and zbtb24 is only required for regulating DNA 

methylation in somatic cells. Alternatively, such a difference between somatic 

and germ cell methylation in zbtb24 mutants could be zebrafish-specific due to 

the differences in sperm chromatin in zebrafish compared to humans or mice 

(Ward and Coffey, 1991; Wu et al., 2011). Assessment of methylation state at 

satellite repeats in human sperm from ICF patients can help reveal whether 

such differences are species-specific.  
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Chapter 4 : PERICENTROMERIC HYPOMETHYLATION ELICITS AN 

INTERFERON RESPONSE 

 

PREFACE 

The zebrafish zbtb24 mutants described in this thesis provide a previously 

unavailable animal system to investigate the functions of DNA methylation at 

pericentromeric sequences. These highly repetitive, pericentromeric sequences 

are enriched in DNA methylation in vertebrate genomes, and are particularly 

susceptible to methylation loss in disease. However, the significance of this 

methylation loss is not well understood. This study describes the first animal 

model that exhibits pericentromeric hypomethylation without extensive genome-

wide hypomethylation. The progressive loss of methylation observed in this 

model further allows for elucidation of primary vs secondary consequences of 

hypomethylation at these sequences.  

    

INTERFERON RESPONSE IN zbtb24 MUTANTS  

To gain insights into the early consequences of methylation loss in zbtb24 

mutants, I performed transcriptome analysis on total RNA isolated from wild-

type and zbtb24Δ/Δ zebrafish at 2 wpf.  At this stage, zbtb24Δ/Δ mutants remain 

morphologically indistinguishable from wildtype, but show clear 

hypomethylation of pericentromeric sequences. RNA-seq identified 58 genes 

that were downregulated by more than 2-fold in zbtb24Δ/Δ larvae at 2 wpf, while 

119 were upregulated by 2-fold or more (Figure 4.1 A). No gene enrichment 

signature was observed among downregulated genes. However, I did observe 

near complete loss of cdca7 expression in zbtb24 mutants in our RNA-seq data  
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Figure 4.1: cdca7a is downregulated in zbtb24 mutants 
(A) Volcano plot representation of differential gene expression in zbtb24+/+ vs 
zbtb24Δ/Δ zebrafish at 2 wpf. Blue and red points mark genes with >2-fold 
downregulation or upregulation respectively. (B) Expression levels of cdca7 
and hells through RNA Seq (n=3 biological replicates for each group). Error 
bars indicate SEM. (C) qRT-PCR analysis of cdca7 and hells mRNA in 
zbtb24+/+ and zbtb24Δ/Δ zebrafish at 3 wpf (n=4 biological replicates for each 
group). Error bars indicate SEM. 
 

set and by qRT-PCR (Figure 4.1 B-C). This is consistent with previous studies 

that have identifies Zbtb24 as a transcription factor required for the expression 

of Cdca7 (Thompson et al., 2018; Wu et al., 2016).  

 

However, roughly 30% of upregulated genes were associated with activation of 

the innate immune system. In particular, upregulated transcripts included those 

associated with interferon stimulated genes (ISGs) and inflammatory cytokines 

(Figure 4.2 A). Consistent with these observations, Gene Set Enrichment 

Analysis (GSEA) identified significant enrichment of genes involved in viral 

response, a key function of innate immune pathways (Figure 4.2 B). 

Upregulation of ISGs was also observed in zbtb24Δ/Δ and zbtb24mk19/mk19 

mutants by qRT-PCR at 3 wpf (Figure 4.2 D-E), whereas the same genes were 

expressed at wild-type levels at 1 wpf (Figure 4.2 C).  
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Figure 4.2: Mutation of zbtb24 leads to activation of innate immune 
response genes. 
(A) RNA-seq heatmap showing innate immune genes upregulated in 
zbtb24Δ/Δ mutant compared to zbtb24+/+ siblings at 2 wpf. Shown are Z-score 
normalized gene expression values. (B) GSEA of a set of genes involved in 
Response to Virus in zebrafish comparing zbtb24+/+ vs zbtb24Δ/Δ. NES, 
normalized enrichment score; FDR, false discovery rate. (C) qRT-PCR 
analysis reveals similar expression of interferon genes in zbtb24+/+ and 
zbtb24Δ/Δ larvae at 1 wpf. Error bars represent SEM from at least 5 biological 
replicates. (D) qRT-PCR demonstrating upregulated interferon and 
inflammatory response genes in zbtb24Δ/Δ mutants at 3 wpf. Expression levels 
are reported relative to b-actin. Error bars indicate SEM from at least 3 
independent biological replicates with n=8 total animals for each replicate. (E) 
qRT-PCR validation of genes that are part of the innate immune response 
pathway that are also upregulated in zbtb24mk19/mk19 zebrafish at 3 wpf. Error 
bars indicate SEM from 5 biological replicates.  
 

No immune-related genes (and only 1 gene differentially upregulated in the 

RNA-Seq) were found within 100kb of identified DMRs, suggesting that direct 

loss of methylation at these sequences was unlikely to cause the response 

(Figure 4.3).  
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Figure 4.3: Methylation at promoters of innate immune genes 
upregulated in zbtb24 mutants is unchanged. 
Venn diagram summarizing the overlap between differentially upregulated 
genes from RNA-Seq (right circle) and genes within 100kb of all DMRs in 
ERRBS tested for differential expression (left circle). 

 

MECHANISM FOR INTERFERON RESPONSE IN zbtb24 MUTANTS  

Introduction to interferon response   

The interferon response is an innate immune response that plays an essential 

role in defense against pathogen infection via induction of interferon stimulated 

genes (ISGs) through Janus kinase (JAK)–signal transducer and activator of 

transcription (STAT) signaling pathway. The interferon response is triggered by 

the cellular detection of pathogen-associated molecular patterns (PAMPs) in 

viruses, bacteria, fungi and protozoa. These PAMPs are detected by molecules 

called pattern-recognition receptors (PRRs). Following detection of a PAMP by 

its associated PRR, signaling cascades are induced that drive the production of 

interferons and expression of ISGs and other inflammatory cytokines with 

antiviral and immune modulating functions (Schneider et al., 2014).  
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Figure 4.4: Schematic for activation of interferon response by nucleic 
acids. 
The type I interferon response is activated by pattern recognition receptors 
(PRRs), which recognize pathogen-associated molecular patterns (PAMPs) 
such as viral nucleic acids. PRR signals are transduced to transcription factor 
activity via adaptor molecules. Activation of such adaptor molecules leads to 
activation of IRF3/7 which trigger the expression of interferons (IFN) and 
interferon stimulated genes (ISGs) with anti-viral roles. dsRNA: double 
stranded RNA; 5’P RNA: RNA with 5′-triphosphate caps; ssRNA: single 
stranded RNA; dsRNA: double stranded RNA; MDA5: Melanoma 
Differentiation-Associated protein 5; RIG-I: retinoic acid-inducible gene I; 
MAVS: Mitochondrial antiviral-signaling protein; TLR: Toll-Like Receptor; 
TRIF: TIR-domain-containing adapter-inducing interferon-β; Myd88: Myeloid 
differentiation primary response 88; cGAS: Cyclic GMP-AMP synthase; 
STING: Stimulator of interferon genes; IRF: Interferon Regulatory Factor. 
  

Characteristic features of PAMPs are that they are important products of 

biosynthetic pathways in the lifecycle of the pathogen and they lack the ability 

to evade immune detection due to genetic mutability. Targeting viral proteins is 

inefficient since viral proteins evolve rapidly without being functionally 

compromised by mutation. From an evolutionary standpoint, it was a better 
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investment for an innate immune system to target viral nucleic acids instead 

leaving the adaptive immune system to target proteins (Medzhitov, 2007) 

Nucleic acid detection is accomplished by an array of PRRs, each specializing 

in the detection of distinct nucleic acids. For instance,  

• the cytosolic RIG-I-like receptors (RLR) RIG-I recognized 5’-

triphosphorylated RNA and MDA5 recognize cytosolic long double 

stranded RNAs (dsRNAs) (Yoneyama et al., 2005),  

• the endosomal Toll-like receptors (TLR) TLR3, TLR7/8 and TLR9 

recognize endosomal dsRNA, ssRNA or unmethylated DNA respectively 

(Kawai and Akira, 2010),  

• cGAS recognizes dsDNA (Sun et al., 2013). 

 

PRR signals are transduced to transcription factor activity via adaptor molecules 

such as mitochondrial antiviral-signaling protein (MAVS), myeloid differentiation 

factor-88 (MYD88) or stimulator of IFN genes (STING).  

• MAVS is the adaptor molecule for RLRs that detect cytosolic RNA (Kawai 

et al., 2005), 

• Myd88 is the adaptor molecule for endosomal TLR 7/8/9. TRIF is the 

adaptor molecule for TLR3 (Medzhitov et al., 1998),  

• STING is the adaptor molecule for cytosolic DNA detection by cGAS 

(Ishikawa et al., 2009).  

Activation of such adaptor molecules leads to phosphorylation of interferon 

(IFN) response factors 3 or 7 (IRF3/7). Phosphorylated dimers of IRF3/7 

translocate to the nucleus, where they bind to and activate specific promoters, 

triggering expression of IFN as well as a subset of ISGs. These ISGs include 

IRFs, PRRs and antiviral effectors (Schneider et al., 2014) (Figure 4.4). 
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However, nucleic acids are not unique to viruses and thus aberrantly 

accumulated endogenous nucleic acids can trigger autoimmunity via the viral 

detection machinery that activates an interferon response. Several studies have 

reported that in addition to extracellular pathogens, PRRs also recognize 

PAMPs associated with cell-intrinsic stimuli including DNA damage, 

endogenous retroviral RNA and RNA-DNA hybrids (Chiappinelli et al., 2015; 

Hartlova et al., 2015; Mankan et al., 2014; Roulois et al., 2015). Recent studies 

have further linked global hypomethylation to activation of antiviral signaling 

pathways in zebrafish mutated for dnmt1 and in cancer cells treated with the 

DNA methyltransferase inhibitor 5-azacytidine (Chernyavskaya et al., 2017; 

Chiappinelli et al., 2015; Roulois et al., 2015). In these studies, the interferon 

response was attributed to the upregulation of endogenous retroviral elements 

(ERVs) due to hypomethylation of these sequences. These parasitic 

transposons triggered an interferon response through viral mimicry detected by 

the MDA5-MAVS dsRNA detection machinery.  

 

The innate immune response in zbtb24 mutants is mediated by sensors of 

cytosolic RNA  

To clarify the origin of the interferon response in zbtb24 mutants, I examined 

the major families of PRRs involved in innate immunity. Using CRISR-Cas9, I 

introduced mutations in adaptor proteins that are activated via different PRRs 

to cause downstream activation of ISGs. These key adaptor proteins are 

conserved in structure and function in zebrafish (Li et al., 2017). Mutations in 

MAVS (mavsmk28) eliminates the C-terminal transmembrane domain that is 

required for interferon induction (Seth et al., 2005) (Figure 4.5 A) Mutation in 
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STING (stingmk30) takes out all domains (Figure 4.5 B).  A mutant allele for 

Myd88 (myd88hu3568) required for signaling through most TLRs has previously 

been described (van der Vaart et al., 2013). 

 

 
Figure 4.5: Mutation of zebrafish orthologs of mavs and sting. 
(A) Schematic of mutation in mavs including position of targeted gRNA, 
sequence information of the mutation, and location of predicted STOP codon. 
(B) Schematic of mutation in sting including position of targeted gRNA, 
sequence information of the mutation, and location of predicted STOP codon.  

 

As in prior experiments, significant increases of the ISGs, signal transducer and 

activator of transcription 1b (stat1b) and interferon regulatory factor (irf7) were 

observed in zbtb24Δ/Δ larvae at 3 wpf by qRT-PCR. Introduction of myd88 or 

sting mutations had little impact on expression of these ISGs, as similar 

transcript levels were detected in zbtb24Δ/Δ single mutant animals compared to 

myd88hu3568/hu3568; zbtb24Δ/Δ (Figure 4.6 A) or stingmk30/mk30; zbtb24Δ/Δ double 
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mutants (Figure 4.6 B). Sustained ISG expression in these double mutants 

suggests limited roles for TLR and cGAS PRRs in mediating the interferon 

response in zbtb24 mutants. In contrast to myd88 and sting, mutation of mavs 

suppressed stat1b and irf7 upregulation in zbtb24Δ/Δ mutant animals. 

Expression levels of irf7 and stat1b were reduced 2- and 4-fold respectively in 

mavsmk28/mk28; zbtb24Δ/Δ double mutants when compared to zbtb24Δ/Δ single 

mutant zebrafish (Figure 4.6 C), indicating a requirement for mavs and 

suggesting a role for cytosolic RNA in the upregulation of these ISGs.  

 

 

 
Figure 4.6: Interferon response in zbtb24 mutants is mediated by 
sensors of cytosolic RNA. 
(A) Expression of interferon signaling genes stat1b and irf7 in indicated 
genotypes at 3 wpf. n = 4 biological replicates. (B) Expression of the ISGs 
stat1b and irf7 in indicated genotypes at 3 wpf. n ≥ 7 biological replicates. (C) 
Expression of interferon signaling genes stat1b and irf7 in indicated 
genotypes at 3wpf. n ≥ 5 biological replicates. All error bars indicate SEM. 
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Satellite RNA is upregulated in zbtb24 mutants  

Given known roles for DNA methylation in transcriptional repression, I next 

tested whether loss of methylation at pericentromeric sequence resulted in 

increased levels of Sat1 transcripts that could trigger the RNA mediated 

interferon response.  

 

Consistent with this model, strong derepression of Sat1 RNA from 

hypomethylated pericentromeres was noted in zbtb24 mutant adults (Figure 4.7 

A and D). Increases in Sat1 transcripts correlated with levels of irf7 expression 

in adult zebrafish (r=0.77), and upregulation of Sat1 transcripts coincided with 

the window of ISG induction during development (Figure 4.7 B-C). Both sense 

and antisense transcripts were detected in mutants using TAG-aided 

sense/antisense transcript detection (TASA-TD) strand-specific PCR (Henke et 

al., 2015), suggesting the potential for derepressed Sat1 transcripts to form 

double stranded RNAs (Figure 4.7 D-E). Whereas transcripts for other 

dispersed repetitive elements remained unchanged between mutants and 

wildtype (Figure 4.8). 
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Figure 4.7: Pericentromeric Sat1 transcripts are upregulated in zbtb24 
mutants. 

(A) Northern blot analysis of Sat1 transcripts in zbtb24+/+ vs zbtb24Δ/Δ 
zebrafish at 6 wpf. Each lane represents a biological replicate. The lower 
panel represents the cropped ethidium-bromide stained gel as loading control. 
(B) qRT-PCR for Sat1 transcripts in zbtb24+/+ and zbtb24Δ/Δ zebrafish at 1, 3 
and 6 wpf. Error bars indicate SEM of at least 4 biological replicates in each 
group. (C) Correlation between the expression of Sat1 and irf7 in zbtb24+/+ 
and zbtb24Δ/Δ at 6 weeks (n=15). (D) qRT-PCR of Sat1 RNA in zbtb24+/+ and 
zbtb24mk19/mk19 zebrafish at 6 wpf. Error bars indicate SEM from at least 3 
biological replicates. (E) TASA-TD PCR amplified sense (s) and antisense 
(as) transcripts Sat1 (114 bp) and b-actin (125bp) from first strand zbtb24Δ/Δ 
cDNA at 6 wpf. PCR primers: gene-specific (GS); TAG. The products from 
TASA-TD PCR were run on the same gel, then cropped and presented. (F) 
Quantification of TASA-TD from panel E. Error bars indicate SD from 2 
biological replicates. 
 

 



72 

 

 

Satellite RNA is sufficient to trigger an interferon response  

To determine whether Sat1 transcripts were sufficient to activate an innate 

immune response, in vitro synthesized RNA corresponding to Sat1 sense and 

antisense transcripts were injected into wild-type embryos at the 1-cell stage. 

Expression of the ISGs stat1b, irf7, irf1b and mxa was then assessed at 8 hours 

post fertilization. Co-injection of sense and antisense Sat1 RNA was sufficient 

to reproducibly cause a 2 to 4-fold upregulation in expression of these ISGs, 

whereas combined injection of sense and antisense control transcripts encoding 

a fragment of zebrafish b-actin or GFP had no effect on expression of these 

genes (Figure 4.9). Lower level upregulation of some, but not all ISGs was  

 
Figure 4.8: Mutation in zbtb24 upregulates Sat1 transcripts but not 
transposons. 
qRT-PCR reveals similar levels of expression from transposable elements in 
zbtb24+/+ and zbtb24Δ/Δ zebrafish at 6 wpf. Error bars indicate SEM from 4-8 
biological replicates. ERVs: Endogenous Retroviruses; LTR: Long Terminal 
Repeats.   
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Figure 4.9: Sat1 RNAs are sufficient to elicit an interferon response. 
(A) Expression of interferon stimulated genes stat1b, irf7, irf1b and mxa in 
wildtype embryos injected with Sat1 or control RNA. 50pg of in vitro 
transcribed sense and antisense transcripts were injected into wildtype 
zebrafish embryos at the 1-cell stage. Total RNA was extracted at 8 hpf for 
qRT-PCR analysis. Error bars indicate SEM from at least 3 biological 
replicates with n=20 embryos for each biological replicate. (B) Expression of 
interferon stimulated genes in wild-type embryos injected with sense (Sat1_s), 
anti-sense (Sat1_as) or an equimolar mixture of sense and anti-sense Sat1 
transcripts (Sat1_s+as). Transcripts of similar size encoding a fragment of 
GFP are used as a control. 50pg of in vitro transcribed transcripts were 
injected into wild-type zebrafish embryos at the 1-cell stage. Total RNA was 
extracted at 8 hours post fertilization for qRT-PCR analysis. Error bars 
indicate SEM from 4 to 8 biological replicates with n=20 embryos for each 
biological replicate. p-values are adjusted for multiple comparisons using the 
Holm-Sidak method, tested against uninjected control. n.s: Not significant. 
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noted when sense or antisense Sat1 transcripts were individually injected into 

the embryo, suggesting that the response was primarily triggered by formation 

of Sat1 dsRNA (Figure 4.9 B). Collectively, these results functionally link the 

derepression of Sat1 transcripts to the activation of the innate immune response 

in zbtb24 mutants.  

 

The cytosolic RNA helicase Mda5 is required for the Interferon Response 

in zbtb24 mutants 

Finally, I sought to identify the specific PRR required for the interferon response 

in zbtb24 mutants. The RLR family of PRRs consists of two RNA helicases that 

signal through Mavs: Melanoma Differentiation-Associated protein 5 (Mda5) 

and Retinoic acid-inducible gene I (Rig-I). Rig-I binds 5’ triphosphorylated RNA 

molecules, whereas Mda5 recognizes long double-stranded RNAs in the cytosol 

(Crowl et al., 2017). Given that 5’ triphosphorylation of RNAs is a typical viral 

signature that is unlikely to be present on endogenous RNA transcripts, I 

reasoned that Mda5 was a more likely candidate for the receptor. To test the 

requirement for mda5, I generated a 7 base-pair deletion in this gene that 

disrupted the DEAD box helicase domain (Figure 4.10 A). This mda5mk29 allele 

was then introduced onto the zbtb24 mutant background, and expression of the 

ISGs stat1b and irf7 was examined at 3 wpf and 6wpf (Figure 4.10 B and D). 

Homozygous mutation of mda5 was sufficient to restore stat1b and irf7 

expression to wild-type levels in zbtb24Δ/Δ mutant larvae, suggesting that Mda5 

is the primary PPR required for the response. This requirement was further 

validated by RNA-seq, which revealed that a broad panel of ISGs that showed 
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elevated expression in zbtb24 single mutants were no longer upregulated in 

mda5mk29/mk29; zbtb24Δ/Δ double mutants (Figure 4.10 C) 

 
Figure 4.10: Mutation of cytosolic dsRNA receptor Mda5 mitigates the 
interferon response in zbtb24Δ/Δ zebrafish. 
(A) Schematic of mutation in mda5 including position of targeted gRNA, 
sequence information of the mutation, and location of predicted STOP codon. 
The site of deletion is indicated with a red arrow on the sequence trace. (B) 
Expression of interferon signaling genes stat1b and irf7 in indicated 
genotypes at 3 wpf. n ≥ 7 biological replicates. (C) RNA-seq heatmap of 
interferon stimulated genes upregulated in zbtb24Δ/Δ zebrafish and rescued in 
mda5mk29/mk29; zbtb24Δ/Δ zebrafish at 3 wpf. Shown are Z-score normalized 
gene expression values. (D) Expression of interferon signaling genes stat1b 
and irf7 in indicated genotypes at 6 wpf. n=6 biological replicates. 
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Co-mutations in Interferon activation genes do not rescue ICF Syndrome 

Phenotypes in zbtb24 mutants  

The interferon response reported in zbt24 mutant zebrafish in this study has not 

been tested for in ICF syndrome human patients. To test the possibility that such 

an interferon response contributed to ICF Syndrome phenotypes, I assayed for 

key ICF syndrome phenotypic characteristics in zbtb24 mutant zebrafish in the 

background of the mda5 or mavs homozygous mutants. Such double mutants 

that demonstrated a rescue of interferon response did not show any change in 

life-span compared to zbtb24 single mutants (Figure 4.11 A-B). Developmental 

growth defects and decreased body weight was similar in double mutants 

compared to zbtb24 single mutants (Figure 4.11 E). I did not observe a change 

in expression of immunoglobulins among double mutants, suggesting that the 

interferon response was not causing immunodeficiencies (Figure 4.11 C-D). 

Collectively these data suggest that interferon response is unlikely to be the 

cause of ICF phenotypes in zbtb24 mutant zebrafish, but rather, it likely 

represents an unappreciated consequence of pericentromeric methylation loss. 

. 
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Figure 4.11: Mitigation of interferon response in zbtb24 mutants does 
not rescue ICF syndrome phenotypes.  
(A-B) Kaplan-Meier curve indicating survival among groups of zebrafish of the 
indicated genotype. (C-D) qRT-PCR analysis of IgM, zebrafish 
immunoglobulin in zebrafish of the indicated genotype measured at 6 wpf. (E) 
Average weight of 5-month-old adult zebrafish of the indicated genotype. 
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DISCUSSION  

In this study, I take advantage of the progressive Sat1 methylation loss in zbtb24 

mutants to identify activation of interferon signaling as one of the earliest in vivo 

consequences of pericentromeric hypomethylation. This phenotype cannot be 

attributed to defects in adaptive immunity, as the zebrafish adaptive immune 

system is not functional until roughly 4 wpf (Trede et al., 2004). This study 

implicates Mda5-Mavs RLR signaling in the activation of the innate immune 

system in zbtb24 mutants and suggests a cytosolic satellite RNAs as a trigger 

for the response (Figure 4.12). 

 

 
Figure 4.12: Model for the activation of interferon response in zbtb24 
mutants. 

Loss of Zbtb24 function causes hypomethylation of pericentromeric Sat1 
repeats, which leads to depression of associated Sat1 transcripts. These 
pericentromeric transcripts are recognized by the dsRNA helicase Mda5 
which signals through Mavs and Irf7 to upregulate ISGs. Auto-regulatory 
feedback implicates irf7 as both an ISG and a key downstream effector of 
Mda5/Mavs signaling. 

 

DNA hypomethylation has previously been associated with immune dysfunction 

related diseases. Systemic lupus erythematosus (SLE) is one of the most 

commonly studied autoimmune diseases. Increased apoptosis results in 
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accumulation of hypomethylated DNA fragments that induce SLE-like 

symptoms in non-susceptible mice (Wen et al., 2007). Over 25% of CpG 

dinucleotides in the human genome reside within Alu elements, the most 

abundant human repeats (Xie et al., 2009). Accumulation of RNA from Alu 

elements induces age-related macular degeneration by activating an 

inflammatory response (Tarallo et al., 2012). The role of abundant 5mC at 

satellite repeats has not been clear. This study identifies a previously 

unappreciated role for DNA methylation at pericentromeric satellite repeats in 

preventing autoimmunity. 

 

Induction of an interferon response has been reported in the context of global 

hypomethylation in cancer cell lines treated with the DNA methyltransferase 

inhibitor 5-azacytidine and in zebrafish mutated for the maintenance DNA 

methyltransferase machinery (Chernyavskaya et al., 2017; Chiappinelli et al., 

2015; Roulois et al., 2015). In each of these cases induction of the interferon 

response was attributed to massive derepression of endogenous retroviral 

elements. In this study, I functionally link the derepression of Sat1 transcripts to 

the activation of the innate immune response in zbtb24 mutants. These results 

are distinguished from these earlier studies in that I identify hypomethylation of 

pericentromeric sequences and subsequent derepression of associated 

satellite transcripts as a previously unappreciated trigger of innate immunity. 

Immunostimulatory motifs have been noted in pericentromeric RNAs derived 

from mouse and humans, and transcripts derived from these repeats have been 

observed in p53 null mouse fibroblasts following global methylation loss 

(Leonova et al., 2013; Tanne et al., 2015). However, while these studies suggest 

the potential for pericentromeric hypomethylation to drive an interferon 
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response in diverse vertebrate species, experimental evidence in support of this 

model has been lacking. Here I demonstrate a causative link between 

derepression of pericentromeric RNAs and the interferon response, and identify 

a requirement for Mda5/Mavs in mediating the response. These findings 

suggest that aberrant upregulation of both sense and antisense transcripts 

derived from pericentromeric repeats creates an abundance of double stranded 

RNAs within the cytosol, which mimic features of double stranded RNA viruses. 

This finding raises the possibility that this pathway may also recognize 

additional endogenous long dsRNAs that lack viral origin. 
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Chapter 5 : PERICENTROMERIC DNA HYPOMETHYLATION AND 

GENOME INSTABILITY 

 

PREFACE 

Loss of DNA hypomethylation from pericentromeric repeats has been observed 

in several tumors such as Breast adenocarcinomas (Narayan et al., 1998), 

(Tsuda et al., 2002), Wilms Tumors (Qu et al., 1999b) , Ovarian Epithelial 

Tumors (Qu et al., 1999a), Glioblastoma (Fanelli et al., 2008) and Urothelial 

Carcinomas (Nakagawa et al., 2005). 

 

Dnmt1 mutant mice with global genome hypomethylation including 

hypomethylation of satellite DNA develop aggressive thymic tumors (Gaudet et 

al., 2003). While this study suggests a causal role for global hypomethylation in 

cancer progression, the specific contribution of pericentromeric DNA 

hypomethylation in cancer development is unclear. One hypothesis is that 

pericentromeric DNA hypomethylation makes the pericentromeric region 

particularly vulnerable for chromosomal rearrangements which contributes to 

genome instability. However, a study that compared incidence of satellite 

hypomethylation to karyotypic instability in tumors reported incidences of 

hypomethylated pericentromeres without chromosomal rearrangements 

(Ehrlich et al., 2003). This suggests that hypomethylated pericentromeres 

contribute, but are not sufficient, to cause genomic instability.  

 

Another hypothesis is that expression of non-coding satellite RNAs from 

hypomethylated satellite RNAs could contribute to tumor development via acting 
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as a sink for various anti-tumor components. Aberrant expression of satellite 

RNA has been observed in several cancers (Ting et al., 2011). In cancer cell 

lines, hypomethylated HSATII DNA sequestered polycomb group complex 

PRC1, which is commonly misregulated in cancers. In these cells, HSATII RNA 

accumulated the methyl-DNA binding protein, MeCP2, which affected broader 

cancer associated expression patterns (Hall et al., 2017). More recently, 

aberrant overexpression of satellite RNAs in mammary glands induced tumor 

formation in mice by sequestering BRCA1-associated protein networks required 

for the stabilization of DNA replication forks (Zhu et al., 2018). Collectively, these 

studies indicate a role of satellite RNAs emerging from hypomethylated satellite 

DNA in cancer.   

 

Cytogenetic chromosomal abnormalities in mitogen-stimulated lymphocytes 

from peripheral blood of ICF patients have been frequently reported. These 

include, chromosome breaks, whole-arm deletions, multi-branched 

chromosomes or decondensation in chromosomes 1, 9 and 16 (Ehrlich, 2009). 

Although, similar chromosome anomalies are not observed in primary tissues 

from affected individuals. Despite these chromosomal aberrations, very few 

incidences of cancer have been reported in ICF Syndrome patients. One ICF2 

patient developed a classical Hodgkin’s lymphoma (Schuetz et al., 2007). It is 

likely, that pericentromeric DNA hypomethylation in ICF patients predisposes 

them to cancer but severely shorted lifespans preclude detection of 

malignancies in ICF patients. 

 

Recently, cells with mutations in ICF genes CDCA7 and HELLS showed 

compromised classical non-homologous end joining (NHEJ). Cells displayed 
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Figure 5.1: Gene mutation analysis of ZBTB24 in human cancers.  
Mutations of ZBTB24 gene in human cancers were analyzed using the 
cBioPortal Database. (A) Frequencies of ZBTB24 alterations in human 
cancers. (B) Genetic alterations in ZBTB24 in Lymphoid Neoplasm Diffuse 
Large B-cell Lymphoma. (C) Distribution of mutations identified in ZBTB24 in 
human cancers.  
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increased apoptosis, abnormal chromosome segregation, centrosome 

amplification and significant accumulation of yH2AX (Unoki et al., 2018). 

Although less prominent, cells with zbtb24 mutations also showed similar 

defects. This defect in NHEJ could contribute to increased genome instability in 

ICF syndrome.  

 

Somatic mutations in ZBTB24 in cancer 

Mutation analysis using cBioPortal for mutations in ZBTB24 in human cancers 

revealed that the gene was altered in ~1% of queried samples in 238 studies 

(Figure 5.1 A) and indicated ~13% frequency of deep deletions in Diffuse Large 

B-Cell Lymphoma (Figure 5.1 A-B). Somatic mutations in ZBTB24 do not 

appear to show any particular hotspot mutation site (Figure 5.1 C). Intriguingly, 

ZBTB24 maps to chromosome 6q21, a region which is frequently deleted in 

many types of cancer, including lymphoid malignancies, melanoma, prostate 

cancer, fibroadenomas, and carcinoma of breast.  

 

Given the contribution of pericentromeric hypomethylation to genomic instability 

is ambiguous in cancer and ICF syndrome, I investigated any potential link 

between pericentromeric hypomethylation and tumorigenesis in the disease 

model of ICF Syndrome with mutations in zebrafish zbtb24.  

 

EVIDENCE OF DNA DAMAGE AND CANCER INCIDENCE  

To test for increased incidence of genome instability in zbtb24 mutants, I 

performed immunohistochemistry on sagittal cryosections for fixed zbtb24 

mutants along with their wildtype siblings as controls using an antibody against  
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Figure 5.2: Increased incidence of DNA damage in zbtb24 mutants. 
(A) Immunohistochemistry of g-H2AX (red) merged with DAPI (blue) on 
cryosection of zbtb24+/+ vs zbtb24Δ/Δ at 1.5 months (B) Quantification of 
number of cells with g-H2AX foci in 5 representative regions in a cryosection 
of zbtb24Δ/Δ at 1.5 months. The equivalent tissue in zbtb24+/+ is used as a 
control for counting (C) Immunohistochemistry of g-H2AX on three 
cryosections of zbtb24+/+ vs zbtb24Δ/Δ at 5 months. 
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yH2ax to assay for any incidence of DNA damage. Preliminary experiments 

revealed increased DNA damage across tissues in zbtb24 mutants at 1.5 

months (Figure 5.2 A-B) and 5 months (Figure 5.2 C). This finding provided an 

initial indication of genome instability in zbtb24 mutants.  

 

Obvious solid tumors have not been observed in zbtb24 mutants, though 

systematic analysis for liquid tumors in zbtb24 mutants remains to be 

performed. To further investigate whether zbtb24 mutants are pre-disposed to 

cancer, I crossed them onto a homozygous mutant background for the tumor 

suppressor, tp53 (Berghmans et al., 2005). In preliminary experiments, I 

observed development of ocular tumors starting at 2 months post fertilization in 

5 out of 16 genotyped zbtb24Δ/Δ; tp53-/- adult zebrafish (Figure 5.3 A-E). None 

of the tp53-/- siblings (wild-type for zbtb24) raised in this cohort developed any 

ocular tumors in the time period of data collection (2-8 months post fertilization). 

Since, the zbtb24 mutants are predisposed to chronic inflammation and given 

that the association between chronic inflammation and cancer is well-accepted 

(Mantovani et al., 2008), I tested for signed of inflammation in the eyes of zbtb24 

mutants at 3 weeks post fertilization. I picked this stage since it represented the 

earliest stage in zbtb24 mutants with incidence of inflammatory phenotypes 

(initially observed in the gut). Sudan black staining for neutrophils revealed 

increased inflammation in the eyes of zbtb24 mutants (Figure 5.3 F-H). The 

persistence of eye inflammation later in development in zbtb24 mutants remains 

to be tested. Together, these results provide preliminary evidence of genome 

instability and cancer in zbtb24 mutants.  
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Figure 5.3: Increased incidence of eye tumors in zbtb24Δ/Δ; tp53-/- 
zebrafish. 
(A-C) Representative brightfield images of zbtb24Δ/Δ; tp53-/- zebrafish that 
develop eye tumors (white arrow) starting ~2 months. (D-E) H&E staining of 
a cross-section of the ocular tumors observed in zbtb24Δ/Δ; tp53-/- zebrafish 
(F) Sudan black staining in the eye of zbtb24+/+ and zbtb24Δ/Δ at 3 weeks. (G) 
Sudan black staining in the eye of zbtb24+/+ and zbtb24mk19/mk19 at 3 weeks. 
(H) Quantification of Sudan black positive cells in the eyes of zbtb24+/+ and 
zbtb24 mk19/mk19 at 3 weeks. 

 

DISCUSSION  

Preliminary analysis reveals increased incidence of DNA damage in zbtb24Δ/Δ 

and eye tumors in zbtb24Δ/Δ; tp53-/- adult zebrafish. The incidence of eye tumors 

correlates with eye inflammatory phenotypes observed in zbtb24Δ/Δ. Analysis of 
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Sudan black staining in juvenile zebrafish mutants revealed highest levels of 

neutrophil staining in the gastrointestinal tract, a highly proliferative tissue during 

juvenile development, and in the proliferative region of the eye. It is likely that 

hypomethylation of pericentromeric satellite repeats accumulates the most in 

rapidly proliferating cells and contributes to inflammation. If tumors observed in 

zbtb24Δ/Δ; tp53-/- zebrafish are indeed associated with inflammation, these fish 

are likely to have an increased risk for intestinal cancers as well. This is an area 

of future investigation. 

 

Several studies have previously implicated a protective role for an interferon 

response against cancer. For instance, suppressing interferon signaling 

promoted melanoma development with 100% penetrance in a mouse model 

with oncogenic mutations in BRAF (Katlinskaya et al., 2016). In this study, I 

demonstrate the activation of an interferon response is a primary consequence 

of pericentromeric DNA hypomethylation. Given the link between interferon 

activation and tumor suppression, it is likely that inhibiting the interferon 

response in zbtb24 mutants could further promote accumulation of genome 

instability and/or the onset of malignant phenotypes.   
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Chapter 6 : SUMMARY AND PERSPECTIVES 

 

Animal model of ICF Syndrome 

I have identified zbtb24 homozygous mutant zebrafish as a faithful animal model 

of ICF syndrome. This viable animal model of ICF syndrome recapitulates key 

phenotypic hallmarks of the disease including slow growth, facial anomalies, 

immunoglobulin deficiencies, reduced lifespan and pericentromeric DNA 

hypomethylation. Using this animal model, I have identified a link between 

progressive pericentromeric DNA hypomethylation and progressive 

development of ICF syndrome growth defects. In addition, I have identified 

intestinal inflammation as an important yet underappreciated feature of ICF 

syndrome. Given that previous attempt to model ICF syndrome have resulted 

in perinatal or embryonic lethality (Geiman et al., 2001; Ueda et al., 2006; Wu 

et al., 2016), this zebrafish model provides an important new resource for 

understanding ICF disease etiology during juvenile and adult life stages. In 

particular, zbtb24 mutant zebrafish will be useful for understanding phenotypes 

such as immunoglobulin deficiency and its connection to pericentromeric DNA 

hypomethylation (if any), which have not been observed in mouse models and 

are difficult to study in cell culture systems. Regular intravenous infusions of 

immunoglobulin are the most common treatment offered to ICF patients 

currently. zbtb24 mutant zebrafish can be used as a platform for drug discovery 

to treat the different clinical manifestations of ICF syndrome. 
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Function of Zbtb24 

Previous studies have suggested that ZBTB24 is a transcription factor that acts 

to regulate DNA methylation through transcriptional control of the ICF gene 

CDCA7 (Thompson et al., 2018; Wu et al., 2016). Consistent with this model, I 

observe near complete loss of cdca7 expression in zbtb24 mutants.  

Collectively, my findings corroborate previous research that implicate ZBTB24 

as a transcription factor and expand on its role in long-term maintenance of 5mC 

at pericentromeric satellite repeats. While, the progressive loss of 5mC from 

Sat1 repeats in zbtb24 mutants indicates a role for Zbtb24 in maintenance 

methylation, it’s role in de novo establishment at these sites is unclear. 

Curiously, methylation levels in sperm from zbtb24 mutants and wildtype 

animals appeared comparable. This opens avenues of future research on 

understanding the differences between the control of pericentromeric 

methylation in germ and somatic cells.    

 

Pericentromeric hypomethylation, genome instability and the interferon 

response 

A major finding of this dissertation is that an innate immune response is an early 

consequence of pericentromeric hypomethylation. These results support a 

model in which derepression of transcripts from hypomethylated 

pericentromeres triggers activates the innate immune system through the 

Mda5/Mavs viral RNA recognition pathway. These findings identify roles for 

pericentromeric RNA as a trigger of autoimmunity and reveal important 

functions for pericentromeric methylation in suppressing the generation of these 

immunostimulatory transcripts. Hypomethylation of pericentromeric sequences 
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is observed in abnormal cell contexts including cancer and senescence. 

Massive increases in pericentromeric transcripts and upregulation of interferon 

genes have both been noted in cancer (Cheon et al., 2014; Ting et al., 2011). 

Our data raise the possibility that pericentromeric hypomethylation and 

subsequent derepression of associated RNAs represents an important but 

underappreciated trigger of autoimmunity in a variety of disease states.  
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MATERIALS AND METHODS 

 

Zebrafish husbandry  

Zebrafish husbandry and care were conducted in full accordance with animal 

care and use guidelines with approval by the Institutional Animal Care and Use 

Committees at Memorial Sloan Kettering Cancer Center and the University of 

Georgia. Zebrafish were raised under standard conditions at 28° C. Wild-type 

lines were of the AB background. Mutant alleles are summarized in Appendix 1.  

 

TALEN and CRISPR mutagenesis 

TALEN sequences were selected using Targeter 2.0 software (Doyle et al., 

2012). TAL repeat assembly was achieved using the Golden Gate assembly 

method, and assembled repeats were integrated into the GoldyTALEN scaffold 

(Bedell et al., 2012; Cermak et al., 2011). Assembled vectors served as 

templates for in vitro mRNA transcription using the T3 mMessage mMachine kit 

(Ambion) according to manufacturer’s instructions. 50–100pg mRNA was 

injected into wild-type embryos at the one-cell stage. Injected embryos were 

raised to adulthood and F1 progeny were screened for germline transmission of 

mutations as previously described (Li et al., 2015). Primers used for detection 

of mutations and subsequent genotyping are included in Appendix 1. 

 

Target selection for CRISPR/Cas9 mediated mutagenesis was performed using 

CHOPCHOP (Labun et al., 2016). sgRNA templates were generated either by 

cloning into pT7-gRNA as described by (Jao et al., 2013) or using the oligo-

based approach described in (Gagnon et al., 2014) and (Burger et al., 2016). 
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Template oligos are listed in Appendix 3. sgRNAs were in vitro transcribed from 

their respective templates using T7 RNA polymerase (Promega) as per 

manufacturer protocol. Cas9 RNA was in vitro transcribed from the pT3TS-nls-

zCas9-nls plasmid (Jao et al., 2013) using the T3 mMessage mMachine Kit 

(Ambion). For mutagenesis, 200-400ng of sgRNA and ~500ng of Cas9 mRNA 

were co-injected into wild-type embryos at the one-cell stage. Injected embryos 

were raised to adulthood, and F1 progeny were screened for germline 

transmission of mutations as previously described (Li et al., 2015). Primers used 

for detection of mutations and genotyping are included in Appendix 1. 

 

Zebrafish imaging and length measurements 

All bright field imaging of zebrafish larvae and adult was performed using 

Olympus MVX10 with CellSens Standard software. Standard-length was 

documented using ImageJ as defined in (Parichy et al., 2009). Photoshop 

(Adobe) adjustments to brightness and contrast were equally applied to all 

images of whole zebrafish in order to improve visualization. 

 

FACS Analysis of Whole Kidney Marrow 

Adult zebrafish at 6 months were sacrificed with a combination of tricaine 

(Sigma-Aldrich, CAS number 886-86-2) and rapid chilling. Whole kidneys were 

dissected using forceps and placed in 0.9× PBS/5% FCS. Manual 

disaggregation using a P1000 pipette resulted in single cell suspensions. Cells 

were filtered over a 40 μm nylon mesh filter, and resuspended in PBS/FCS to 

give a final concentration of 100,000 cells/μl. FACS sorting of single cells were 
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analyzed for forward/side scatter profiles. FACS data were analyzed using 

FloJo software. 

 

Morpholino oligonucleotide (MO) knockdown 

One cell wild-type zebrafish embryos were injected with 3.5ng of zbtb24 ATG 

blocking MO (5’- gagtaaggtcatcATGTCTGCCCTT-3’) or Splice site blocking MO 

(obtained from the Zon Lab, Harvard Univ.).  

 

Whole Mount in situ Hybridization (WISH) 

WISH was performed as described previously (Thisse and Thisse, 2008).  

 

DNA Methylation Analysis  

For Southern blot analysis, 1 µg of purified total genomic DNA was digested 

with the indicated methylation sensitive restriction enzyme, fractionated by 

electrophoresis through a 0.9% agarose gel and transferred to nylon 

membrane. Probes were PCR amplified using primers in Appendix 2 and 

radiolabeled with 32P-dCTP using RediprimeTM II Random Prime Labelling 

System (Amersham) according to manufacturer protocol. Hybridization signals 

were imaged and analyzed using a Typhoon phosphorimager (GE Life 

Sciences). Signal intensities were measured using ImageJ. Methylation 

changes at Sat1 was quantified as a ratio of the intensity of the unmethylated / 

methylated blot regions as indicated in the respective blot. HypCH4IV was 

selected for Sat1 methylation analysis over the more traditional Msp1/HpaII 

isoschizomer pair because Sat1 sequences lack the CCGG sites that are 

recognized by these enzymes. 
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Enhanced Reduced Representation Bisulfite Sequencing (ERRBS) 

50 ng of high quality genomic DNA was prepared from fin tissue from adult 

zebrafish at 24 wpf as previously described (Garrett-Bakelman et al., 2015). 

DNA was digested with Msp1. Bisulphite conversion rates (calculated using 

non-CpG methylation conversion rates) ranged from 99.6 to 99.7% for all 

samples (Figure 2-figure supplement 2C). Amplified libraries were sequenced 

on the Hiseq2000 platform for 50 cycles single end read runs.  ERRBS data 

were filtered for sequence adapters, limited to the first 29 bp of the read (Boyle 

et al., 2012), and mapped to the zebrafish genome (danRer7) using BSmap (v 

2.90) (Xi and Li, 2009). Methylation scores were calculated as the number of 

unconverted reads divided by the number of total reads at each CpG site. DMRs 

with at least a 0.2 change in methylation were determined using DSS (delta=0.2, 

p.threshold=0.01) (Park and Wu, 2016). Sat1 sequences are deficient in Msp1 

sites, and are therefore not included in ERRBS data. 

 

RNA Expression Analysis  

For qRT-PCR, total RNA was isolated using Trizol (Invitrogen) and precipitated 

with isopropanol. RNA used for assaying expression of repeat sequences 

subsequently was treated with DNase using TURBO DNA-free™ Kit (Ambion) 

prior to analyses. RNA was converted to cDNA using GoScript™ Reverse 

Transcriptase Kit (Promega) and Real Time PCR was performed using an 

Applied Biosystems 7500 PCR Machine. Analysis was performed using the 2 – 

ΔΔCt method, with relative mRNA levels of all transcripts normalized to b-actin1. 

All primer sequences are listed in Appendix 2.  
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For Northern blot analysis, total RNA was extracted with using Trizol 

(Invitrogen). 2 µg of RNA was subjected to electrophoresis on 1% agarose gel 

and transferred to Amersham Hybond-N+ membrane (GE Healthcare). The 

membrane was probed with 32P-dCTP radiolabeled Sat1 DNA probe at 42°C. 

Hybridization signals were imaged and analyzed using a Typhoon 

phosphorimager (GE Life Sciences). 

 

TAG-aided sense/antisense transcript detection (TASA-TD) strand-specific 

PCR was performed as described by (Henke et al., 2015). Oligos used are listed 

in Supplemental File 3. 

 

Transcriptome sequencing 

After RiboGreen quantification and quality control by Agilent BioAnalyzer, 500 

ng of total RNA underwent polyA selection and TruSeq library preparation 

according to instructions provided by Illumina (TruSeq Stranded mRNA LT Kit), 

with 8 cycles of PCR. Samples were barcoded and run on a HiSeq 2500 High 

Output in a 50bp/50bp paired end run, using the TruSeq SBS v4 Kit (Illumina).  

An average of 45.3 million paired reads was generated per sample. The percent 

of mRNA bases averaged 62.8%. 

 

For single-mutant RNA-seq analysis presented in Fig 3, reads were mapped to 

the Zebrafish genome (danRer7) using the rnaStar aligner v2.5.0a (Dobin et al., 

2013). I used the two-pass mapping method outlined in (Engstrom et al., 2013). 

The first mapping pass used a list of known annotated junctions from Ensemble. 

Novel junctions found in the first pass were then added to the known junctions 
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and a second mapping pass was done (on the second pass the 

RemoveNoncanoncial flag was used). Expression counts (counts per million, 

cpm) were computed from the mapped reads using HTSeq v0.5.3 (Anders et 

al., 2015) and Ensemble D.rerio v79 gene annotations. Normalization and 

differential expression was performed using DESeq (Anders and Huber, 2010). 

 

For RNA-seq analysis presented in Fig 6, raw RNA-seq FASTQ reads were 

trimmed for adapters and preprocessed to remove low-quality reads using 

Trimmomatic v0.33 (arguments: LEADING:3 TRAILING:3 MINLEN:36) (Bolger 

et al., 2014) prior to mapping to the Danio rerio GRCz10 reference genome 

assembly. Reads were mapped using TopHat v2.1.1 (Kim et al., 2013) supplied 

with a reference General Features File (GFF) to the Danio 

rerioGRCz10 reference genome assembly, and with the following arguments: -

i 10 -I 5000 --library-type fr-firststrand. Gene expression was estimated using 

Cuffquant (a tool from Cufflinks v2.2.1), with following arguments --library-

type fr-firststrand.  Expression level were normalized in FPKM units by 

Cuffnorm (a tool from Cufflinks v2.2.1), with following arguments --library-

type fr-firststrand. 

 

RNA synthesis and injections 

Sat1 RNA and dsRed RNAs were in vitro transcribed using Riboprobe® in vitro 

transcription systems (Promega). Oligos to amplify the DNA template for in vitro 

transcription are included in Appendix 3. Sense and anti-sense transcripts were 

transcribed in vitro using the T3 and T7 RNA polymerases respectively. RNA 

was purified illustra MicroSpin G-50 Columns (GE Healthcare) and 50 ng of 
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sense and antisense RNA was co-injected into zebrafish embryos at the 1-cell 

stage.  

 

Histology 

For Hematoxylin and Eosin (H&E) staining, adult zebrafish were fixed in 10% 

Neutral Buffered Formalin for 48 hours. Zebrafish were then decalcified in 0.5 M 

EDTA for 24h. After decalcification, fish were incubated overnight in 70% 

Ethanol before embedding in paraffin blocks. Sections were stained with H&E 

according to standard procedures.      

  

Sperm Count  

Adult zebrafish at 8 months were sacrificed with a combination of tricaine and 

rapid chilling. Whole testis was dissected using forceps and crushed in 100 ul 

of PBS. For determining sperm-count, sperm samples were diluted 1:20 for 

each fish. 10ul of the diluted sample was then loaded onto a hemocytometer 

(Bright-Line, Hauser Scientific) for counting.  The volume over the central 

counting area is 0.1 mm3 or 0.1 microliter. Average number of sperm counted 

over the central counting area was multiplied by 10000 to obtain the number of 

sperm/ml of the diluted sample. The obtained value was multiplied by the 

dilution factor to obtain the final sperm count. 

  

Chromatin Immunoprecipitation (ChIP) 

ChIP was performed as described in Lindeman et al. 2009 with modifications. 

Briefly, zebrafish juveniles at 1 month were euthanized using tricaine. 

Chromatin was prepared from euthanized fish by lysing flash frozen samples 
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using an automated pulverizer (Covaris) and crosslinking using 1% 

Formaldehyde for 5 mins. Chromatin shearing was performed using a Covaris 

S220 sonicator using the following conditions: 1 ml tubes with total chromatin 

from each fish in buffer containing 1% SDS were sonicated using peak intensity 

power of 140, duty factor of 5.0 and 200 cycles per burst, for 14 minutes 

for zbtb24+/+ and 6 minutes for zbtb24Δ/Δ. Shearing was monitored using 1% 

agarose gel. To provide standardized input for each ChIP experiment, 

chromatin was diluted to A260=0.2. For each ChIP, 2 μg antibody per 10 μl 

Dynabeads and 100 μl chromatin was incubated overnight at 4 °C. Following 

antibodies were used in this study: anti-H3K9me3 antibody (abcam ab8898), 

H3K27me3 (Millipore 07-449) and IgG control (abcam ab15008). After elution, 

ChIP DNA and input controls were purified using QIAquick PCR purification kit 

(Qiagen). Eluted DNA was analyzed by qPCR using primers targeting Sat1. 

  

5-aza-dC Treatment 

Zebrafish embryos were treated with 5-aza-dC (Sigma-Aldrich) to the final 

concentration of 25uM or 50uM within the first 2 hours post fertilization, when 

zebrafish are sensitive to 5-aza-dC treatments as described in Martin et al., 

1999. At 24hpf, total RNA was collected for expression analysis. At 24hpf, 

genomic DNA was also collected and digested with methylation sensitive 

enzyme, HpaII, to test for global DNA hypomethylation. 

 

Immunofluorescence 

Whole zebrafish at the desired stage of analysis were fixed with 4% 

paraformaldehyde in phosphate-buffered saline (PBS) overnight at 4°C room 
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temperature, rehydrated with PBS and and cryoprotected by overnight 

saturation in 30% sucrose. 25 μm sections were cut using a cryostat and 

collected on SuperFrost slides (Thermo Fisher). anti-H3K9me3 

antibody (abcam ab8898), H3K27me3 (Millipore 07-449), anti-H3K4me3 

(Millipore 07-473) and anti-g-H2AX (Genetex, GTX127342) were diluted 1:200 

in PBS, 10% sheep serum, 1% DMSO, 0.1% Tween-20. Alexa-596 goat anti-

rabbit secondary antibodies (abcam ab150088) were diluted 1:1000. Images 

were acquired using an Axiocam camera on a Zeiss microscope. 

 

Microgavage  

Microgavage of zebrafish juveniles at 3 weeks post fertilization was performed 

as described in (Cocchiaro and Rawls, 2013) 

 

Sudan Black staining  

Juveniles at appropriate stage (3 weeks), rinsed in PBS and incubated in 0.03% 

Sudan Black (Sigma-Aldrich) in 70% ethanol and 0.1% phenol for 30mins-3 hrs 

minutes (depending on the uptake of the stain). After staining, the fixed samples 

are washed extensively in 70% ethanol in water, then progressively rehydrated 

to PBS and 0.1% Tween 20 (PBT). After rehydrating, samples are washed in 

1% KOH and 1% H2O2 to remove pigmentation for imaging.  

 

Statistical Analysis  

The Student unpaired 2-tailed t-test was used for statistical analysis unless 

specified otherwise. Statistical analysis was performed using GraphPad PRISM 

software. 
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APPENDIX 1: LIST OF MUTANT ALLELES 

 
Name 
of 
allele  

Mutatio
n in  

Referen
ce 

Mutati
on 

Genotyping Primers Restricti
on  
Enzyme 
for 
genotypi
ng 

mk22 zbtb24  This 
publicati
on 

~8kb 
large 
deletio
n 

F(P1):AGTCCTCGCTCTGCA
CTCAG 
R(P3):CTCTTGGCGGTGAAA
CACTT 

N/A 

mk19 zbtb24  This 
publicati
on 

8bp 
deletio
n 

F(P1):AGTCCTCGCTCTGCA
CTCAG 
R(P2):TCTCGTCCACCAACA
CGAC 

Fnu4HI 

mk28 mavs This 
publicati
on 

4bp 
deletio
n 

F:ACAGCAGGTGGAGCAAG
TTT 
R:TGAGGTGGAGATGGGAG
ATT 

Fnu4HI 

mk29 mda5 This 
publicati
on 

7bp 
deletio
n 

F:CTGCTCTGGAGGAGAAG
AACAT 
R:TCCAATATCATGCAGCCA
TAAG 

BsaJI 

mk30 tmem1
73 
(STIN
G) 

This 
publicati
on 

10bp 
deletio
n 

F:TTTCTGTGTGGCTCTGTC
AAGT 
R:AGCGATAATTCCAGCTCT
TTCA 

BssHII 

hu35
68 

myd88 van der 
Vaart et 
al., 2013 

Point 
mutati
on 

F:GAGGCGATTCCAGTAACA
GC 
R:GAAGCGAACAAAGAAAA
GCAA 

MseI 

s904 dnmt1 Anderso
n et al., 
2009 

1bp 
frame-
shift 

Genotyped based on GFP 
labelling as described in 
Goll et al., 2009.  

N/A 
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APPENDIX 2: LIST OF PRIMERS 

qPCR  

Name Sequence 

q_zbtb24_F TCTGCACTCAGCAACACACA  

q_zbtb24_R CGGTGAACAATGCTGAGAAA 

q_IgZ_F AAAGCAACGATACCAAAGTG (Page et al., 2013) 

q_IgZ_R AACAGCTTGCAAGACAATTC (Page et al., 2013) 

q_IgD_F GACACATTAGCCCATCAGCA (Page et al., 2013) 

q_IgD_R CTGGAGAGCAGCAAAAGGAT (Page et al., 2013) 

q_IgM_F GAAGCCTCCAATTCTGTTGG (Zimmerman et al., 

2011) 

q_IgM_R CCGGGCTAAACACATGAAG (Zimmerman et al., 2011) 

q_stat1b_F  GCTGCTCCAATGAAGGTTCC (Li et al., 2014) 

q_stat1b_R  GCAACGGGTCTTGCAACAG (Li et al., 2014) 

q_irf7_F AAAGTGGGCAGTACGAAGGT  

q_irf7_R TCCATTTTGCTTTGTCGTTAG  

q_irf1b_F CGGATGAAGAGTCTGTCTCA (Briolat et al., 2014) 

q_irf1b_R TGCCGAGTGAGCTCTAAGAT (Briolat et al., 2014) 

q_mxa_F CTGCTTTTCCCAGAACTTCG 

q_mxa_R CCCCGGTACTTGACTTCGTA 

q_ifi27_F CTACTTACAGCCGCCGTAGC 

q_ifi27_R GCAGCTGACATCATTGAGGA 

q_ ifi44l_F CAAGCTGGAGCAGGAAAGTC 

q_ ifi44l_R ACCAGGGGCAAAGTTTTCTT 

q_ lgals9_F GGGCAGAAGAAAAACATGGA 
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q_ lgals9_R CAGTGAAGCGGTGCTTGTAA 

q_gbp1_F  CCGCAGTGAGAAAGAAGGAC 

q_gbp1_R TGATCCGTTCACATTCTCCA 

q_CRP_F  GGCTCAATCCAAAAGGAACA 

q_CRP_R  ATGACCTTCTCCCTCAAGCA 

q_ il22ra2_F  CTACCCTCAGTGGGAAACCA 

q_ il22ra2_R TCAGTGGAGTTCTCGGAGGT 

q_ il1b_F  GACTTCGCAGCACAAAATGA 

q_ il1b_R CACTTCACGCTCTTGGATGA 

q_CCL20_F ATATGGGCCGCTGAACTATG 

q_CCL20_R GGCATCTATACGGCACACCT 

q_caspbl_F CCTCGAGTCGAAACTTCTGG 

q_caspbl_R ATGATCCCTCGTGGTCTCTG 

q_tnfa_F CAGGGCAATCAACAAGATGG (Marjoram et al., 2015) 

q_tnfa_R TGGTCCTGGTCATCTCTCCA (Marjoram et al., 2015) 

q_bactin1_F CGAGCAGGAGATGGGAACC (McCurley and Callard, 

2008) 

q_bactin1_R CAACGGAAACGCTCATTGC (McCurley and Callard, 

2008) 

q_Sat1_F  GTCTCTGACTGAGTTTGCATTAC 

q_Sat1_R ACATTCTGAATTGGACGTTGA 

q_ERV1-1_F GTGTTCCGGAGAAAGTGGAA 

q_ERV1-1_R ACCCTCGTGCAGTGGTTTAG 

q_ERV1-3_F ATCACTATCCCGTGGCTGAG 

q_ERV1-3_R ATGTCCTCCACTCGCTTGAG 
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q_LTR-2_F GGTGTCGTTAGAATGCCCTTGAC (Houwing et al., 

2008) 

q_LTR-2_R GGTTATACCTGTGGGTCACGTG (Houwing et al., 

2008) 

q_ZFERV1_F CAAAACTGGGGTTTGGAAGA 

q_ZFERV1_R CCCTGCTCCATTGTCTCAGT 

q_BEL20_F GTGTCACTTCCCCAAGTCGT 

q_BEL20_R GAAAGTGCCTCCAGAAGTGC 

q_GypsyDR-2_F GAAATCACCTGTGCATTTAC (Houwing et al., 2008) 

q_GypsyDR-2_R ATGCAGACATTGGGTAAAGC (Houwing et al., 2008) 

q_Dirs1a_F GGGTGCGTCACGCTTGC (Houwing et al., 2008) 

q_Dirs1a_R GTAACCTCGAACGTTCCCC (Houwing et al., 2008) 

q_L1-1_F AAATGCTTGGACATGGAAGG 

q_L1-1_R TCTGCTGCATCTTGGAACTG 

q_L1-5_F GCACAAAGGACAAATTCACTGGAC (Houwing et al., 

2008) 

q_L1-5_R GTCCACGTTTAGTATTACAGTTGC (Houwing et al., 

2008) 

q_Ngaro_F GGAGCGATCGAGACCTACC (Houwing et al., 2008) 

q_Ngaro_R CAATCATATCACGTGCTCCTCTCG (Houwing et al., 

2008) 

q_EnSpmN1_F GATTGGCCATTGTGTTCACATGC (Houwing et al., 

2008) 

q_EnSpmN1_R GCTGTGACTGTCATAGGTTTACC (Houwing et al., 

2008) 
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q_Polinton_F CCTGACAATGTTGTCAGCCTG (Houwing et al., 2008) 

q_Polinton_R CATGAAAGCTAAGGGTATAACTCTG (Houwing et al., 

2008) 

 

COBRA 

Name Sequence 

Satbis_F GAGTTTGTATTATTGTTTATTT 

Satbis_R CACTTACAACTTACTTTAAC 

 

Primers for probe synthesis for southern blotting 

Name Sequence 

Sat1_F TGTTTTAGACAACATTTCATGCAC 

Sat1_R AGTCAGCCAGCAGAGAGGTC 

DANA_F GGCGACGCAGTGGCGCAGTGGG (Anderson et al., 

2009) 

DANA_R TTTTCTTTTTGGCTTAGTCCC (Anderson et al., 2009) 

SINE_HE1_F TGGCTCAGTGGTTAGCACTG 

SINE_HE1_R TTTATCAGGGGTCGCCACAG 

L1-10_F ATGGAAGAGGAAGGCAAGGT 

L1-10_R GCAGGCCAATTAGTCTCAGG 

Kolobok_F AGTGAAGCACAGTTGAGCGA 

Kolobok_R ACACTCCTGGATCAGTCGGA 

ERV1-3-LTR_F TAAACATGTGTAGTGGAAACTTACAGC 

ERV1-3-LTR_R TAAAGAGGCGCTCTCTGTGGT 

ERV4-DR1_F GTGGAAAACAGGGTCATTGG 
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ERV4-DR1_R CACGAAGGCATAAATGCAAA 

Gypsy21_LTR_F TTTAAATCTTAAAATTGCCTAAAGGT 

Gypsy21_LTR_R TTGCACGCGATGACAACC 

ZFERV2-LTR_F TGTCCCATAGGGTGTTGGTT 

ZFERV2-LTR_R CAGTGCATGTCCAAAAATGG 
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APPENDIX 3: LIST OF OLIGOS 

 

Oligos for mutagenesis  

Name Sequence 

mavs_cc_F (oligo 

based) 

GAAATTAATACGACTCACTATAGGACATGTCAGG
AGCTGCTTGTTTTAGAGCTAGAAAT 

mda5_cc_F (oligo 

based) 

GAAATTAATACGACTCACTATAGGTGATAAACAC
TGCGACCCGTTTTAGAGCTAGAAAT 

Invariant reverse oligo AAAAGCACCGACTCGGTGCCACTTTTTCAAGTTG
ATAACGGACTAGCCTTATTTTAACTTGCTATTTCT
AGCTCTAAAAC 

STING_cc_F (cloning 

based) 

TAGGCAGCCTGCTGCGCGCTCT 

STING_cc_R (cloning 

based) 

AAACAGAGCGCGCAGCAGGCTG 

gRNA target sequence is underlined 

 

Oligos for in vitro transcription of Sat1 

Name Sequence 
Sat1_FT3 TTGAAATTAACCCTCACTAAAGGGAGACTGGTTTTATTA

CATTCTGAATTGG 

Sat1_RT7 TTGATAATACGACTCACTATAGGGAGATCCAGCCATAAA
ATGCATCA 

b-actin_FT3 TTGAAATTAACCCTCACTAAAGGGAGAACTTTGAGCTCC
TCCACACG 

b-actin_RT7 TTGATAATACGACTCACTATAGGGAGAACTCGGTGATGA
CGTTCTCG 

GFP_FT3 TTGAAATTAACCCTCACTAAAGGGAGATATATCATGGCC
GACAAGCA 

GFP_RT7 TTGATAATACGACTCACTATAGGGAGAGAACTCCAGCA
GGACCATGT 
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Oligos for TASA-TD 

Name Sequence 

b-actin sense 

TAG 

GCACACGACGACAGACGACGCACCAACGGAAACGCTC
ATTGC 

b-actin anti-

sense TAG 

GCACACGACGACAGACGACGCACCGAGCAGGAGATGG
GAACC 

sat1 sense TAG GCACACGACGACAGACGACGCACACATTCTGAATTGGA
CGTTGA 

sat1 antisense 

TAG 

GCACACGACGACAGACGACGCACGTCTCTGACTGAGTT
TGCATTAC 

b-actin sense CGAGCAGGAGATGGGAACC 

b-actin antisense CAACGGAAACGCTCATTGC 

sat1 sense GTCTCTGACTGAGTTTGCATTAC 

sat1 antisense ACATTCTGAATTGGACGTTGA 

TAG primer GCACACGACGACAGACGACGCAC    
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APPENDIX 4: eLife PAPER 
 
Reprinted from Rajshekar, S. et al. Pericentromeric hypomethylation elicits an 

interferon response in an animal model of ICF syndrome. Elife 7, 

doi:10.7554/eLife.39658 (2018).  
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Abstract Pericentromeric satellite repeats are enriched in 5-methylcytosine (5mC). Loss of 5mC

at these sequences is common in cancer and is a hallmark of Immunodeficiency, Centromere and

Facial abnormalities (ICF) syndrome. While the general importance of 5mC is well-established, the

specific functions of 5mC at pericentromeres are less clear. To address this deficiency, we

generated a viable animal model of pericentromeric hypomethylation through mutation of the ICF-

gene ZBTB24. Deletion of zebrafish zbtb24 caused a progressive loss of 5mC at pericentromeres

and ICF-like phenotypes. Hypomethylation of these repeats triggered derepression of

pericentromeric transcripts and activation of an interferon-based innate immune response. Injection

of pericentromeric RNA is sufficient to elicit this response in wild-type embryos, and mutation of

the MDA5-MAVS dsRNA-sensing machinery blocks the response in mutants. These findings identify

activation of the innate immune system as an early consequence of pericentromeric

hypomethylation, implicating derepression of pericentromeric transcripts as a trigger of

autoimmunity.

Editorial note: This article has been through an editorial process in which the authors decide how

to respond to the issues raised during peer review. The Reviewing Editor’s assessment is that all

the issues have been addressed (see decision letter).

DOI: https://doi.org/10.7554/eLife.39658.001

Introduction
In vertebrate genomes, the majority of cytosine residues within CpG dinucleotides are methylated at

the 5 position of the cytosine ring (5-methylcytosine, 5mC) (Suzuki and Bird, 2008). 5mC is estab-

lished by the de novo DNA methyltransferases of the Dnmt3 family, and is propagated by the main-

tenance DNA methyltransferase, Dnmt1 (Goll and Bestor, 2005). In mice, frogs and zebrafish,

mutation or morpholino-mediated depletion of Dnmt1 results in extensive genome-wide methylation
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loss and embryonic lethality (Anderson et al., 2009; Lei et al., 1996; Rai et al., 2006;

Stancheva and Meehan, 2000). In these species, global methylation deficiencies are linked to a vari-

ety of adverse outcomes including deregulation of gene expression, derepression of transposons,

elevated levels of DNA damage and increased genome instability during mitosis (Smith and Meiss-

ner, 2013). Recent studies have further linked global hypomethylation to activation of antiviral sig-

naling pathways in zebrafish mutated for dnmt1 and in cancer cells treated with the DNA

methyltransferase inhibitor 5-azacytidine (Chernyavskaya et al., 2017; Chiappinelli et al., 2015;

Roulois et al., 2015). While these studies reinforce the general importance of DNA methylation in

vertebrate development and tissue homeostasis, the extensive genome-wide loss of methylation in

these models makes it difficult to assign significance to methylation deficiencies at any particular

subclass of sequence.

The pericentromeric satellite sequences that juxtapose chromosome centromeres represent an

essential structural component of chromosomes and a significant source of 5mC in vertebrate

genomes. These highly repetitive sequences appear particularly susceptible to methylation loss in

cancer and senescent cells, although the consequences of this hypomethylation are not well under-

stood (Enukashvily et al., 2007; Fanelli et al., 2008; Nakagawa et al., 2005; Narayan et al., 1998;

Qu et al., 1999; Suzuki et al., 2002; Tsuda et al., 2002). In contrast to global hypomethylation, loss

of 5mC at pericentromeric repeats is compatible with human development. Individuals with the rare,

autosomal recessive disorder Immunodeficiency, Centromere and Facial anomalies (ICF) syndrome

show extensive hypomethylation of pericentromeric repeats, while methylation across the rest of the

genome is relatively intact (Tuck-Muller et al., 2000; Velasco et al., 2018; Weisenberger et al.,

2005). Affected individuals usually die in late childhood or early adulthood, and exhibit variable

symptoms including immunoglobulin deficiency, facial dysmorphism, growth retardation and a gen-

eralized failure to thrive (Ehrlich et al., 2008). Chromosome anomalies including whole-arm dele-

tions and multiradial chromosomes have also been reported in mitogen-stimulated lymphocytes

from ICF-patients. However, similar chromosome anomalies are not observed in primary tissues from

affected individuals (Ehrlich, 2003).

Homozygosity mapping and whole-exome sequencing have separately implicated four genes in

ICF syndrome: DNA Methyltransferase 3B (DNMT3B, ICF type-1), Zinc-finger and BTB domain con-

taining 24 (ZBTB24, ICF type-2), Cell division cycle associated 7 (CDCA7, ICF type-3) and Helicase,

eLife digest Cells package DNA into structures called chromosomes. When cells divide, each

chromosome duplicates, and a structure called a centromere initially holds the copies together. The

sequences of DNA on either side of the centromeres are often highly repetitive. In backboned

animals, this DNA normally also has extra chemical modifications called methyl groups attached to

it. The role that these methyl groups play in this region is not known, although in other DNA regions

they often stop the DNA being ‘transcribed’ into molecules of RNA.

The cells of people who have a rare human genetic disorder called ICF syndrome, lack the methyl

groups near the centromere. The methyl groups may also be lost in old and cancerous cells.

Researchers often use ‘model’ animals to investigate the effects of DNA modifications. But, until

now, there were no animal models that lose methyl groups from the DNA around centromeres in

the same way as seen in ICF syndrome.

Rajshekar et al. have developed a new zebrafish model for ICF syndrome that loses the methyl

groups around its centromeres over time. Studying the cells of these zebrafish showed that when

the methyl groups are missing, the cell starts to transcribe the DNA sequences around the

centromeres. The resulting RNA molecules appear to be mistaken by the cell for viral RNA. They

activate immune sensors that normally detect RNA viruses, which triggers an immune response.

The new zebrafish model can now be used in further studies to help researchers to understand

the key features of ICF syndrome. Future work could also investigate whether the loss of methyl

groups around the centromeres plays a role in other diseases where the immune system attacks

healthy tissues.

DOI: https://doi.org/10.7554/eLife.39658.002
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lymphoid-specific (HELLS, ICF type-4) (de Greef et al., 2011; Thijssen et al., 2015; Xu et al., 1999).

Most of the described mutations in DNMT3B cause amino acid substitutions within the C-terminal

catalytic domain, suggesting they may be hypomorphic. In contrast, the majority of mutations in

ZBTB24, CDCA7 and HELLS are predicted to cause loss of function. Mechanistically, ZBTB24,

CDCA7 and HELLS are thought to converge in a singular pathway that facilitates DNMT3B access to

pericentromeric DNA (Jenness et al., 2018; Wu et al., 2016).

To date, most studies of pericentromeric 5mC loss have been performed using transformed

B-cell lines derived from ICF patients carrying mutations in DNMT3B (Ehrlich et al., 2008). Attempts

to generate viable mouse models of pericentromeric hypomethylation through mutation of ICF

genes have had limited success. Mice harboring ICF-like mutations in Dnmt3b exhibit some charac-

teristics of ICF syndrome including small size and facial anomalies. However, most mice die within 24

hr of birth (Ueda et al., 2006). Global methylation profiles were not assessed in these mutants; but

significant hypomethylation was reported at both pericentromeric repeats and retroviral sequences.

Similar perinatal lethality was observed following deletion of the mouse HELLS orthologue. In this

case, mutations were accompanied by roughly 50% reductions in 5mC, and methylation loss was

noted at pericentromeres, retroviruses and some single copy sequences (Tao et al., 2011). Deletion

of the mouse Zbtb24 gene was reported to cause embryonic lethality; but methylation changes in

these mutants have not been investigated (Wu et al., 2016).

Here, we describe a viable model of pericentromeric methylation loss, generated through muta-

tion of the zebrafish zbtb24 gene. Homozygous mutant adults exhibited key phenotypic hallmarks of

ICF syndrome including hypomethylation of pericentromeric satellite repeats. Hypomethylation of

these repeats was first detected in mutants at 2 weeks post fertilization (wpf) and became more

severe as animals matured. This progressive methylation loss allowed us to investigate the primary

consequences of pericentromeric hypomethylation in the context of a vertebrate animal. Using this

model, we link derepression of transcripts from hypomethylated pericentromeres to activation of an

interferon-based innate immune response, and we demonstrate that this response is mediated

through the MDA5-MAVS RNA sensing machinery. Our findings provide insights into the earliest

consequences of pericentromeric hypomethylation, demonstrating an unappreciated function for

methylation of pericentromeric repeats in protecting against autoimmunity.

Results

Mutation of zebrafish zbtb24 causes ICF syndrome-like phenotypes
The zebrafish genome encodes a single, well-conserved orthologue of ZBTB24, which we mutated

using TAL effector nucleases (TALENs) (Figure 1A and Figure 1—figure supplements 1 and 2). The

recovered 7.9 kb deletion allele (zbtb24mk22; here after referred to as zbtb24D), eliminates coding

sequence between exons 2 and 5 (Figure 1B). Animals that were homozygous for this deletion

lacked detectable zbtb24 transcripts, suggesting zbtb24D is a null allele (Figure 1—figure supple-

ment 2D). Zbtb24D/D embryos were born to heterozygous parents at the expected Mendelian ratios

and had no obvious morphological abnormalities during the first two weeks of development

(Figure 1C). Phenotypes that were reminiscent of ICF syndrome emerged as animals matured. Con-

sistent with the small stature observed in ICF syndrome, by 3–4 weeks post fertilization (wpf),

zbtb24D/D mutant zebrafish were smaller than wild-type siblings raised under identical conditions,

and this size reduction persisted into adulthood (Figure 1D–F). As adults, zbtb24D/D mutants exhib-

ited facial anomalies that were characterized by a quantifiable elongation of the snout (Figure 1G–

H). We also noted evidence of hypogammagloblulinemia in the presence of normal lymphoid cell

numbers, which is an immunological hallmark of ICF syndrome (Figure 1I–J). Significant death was

noted among homozygous mutants at 4 months of age and fewer than 10% of zbtb24D/D animals

survived beyond 8 months (Figure 1K). Attempts to recover fertilized embryos by intercrossing or

outcrossing zbtb24D/D adults were unsuccessful, suggesting that animals were sterile (Figure 1—fig-

ure supplement 3A). Gonadal morphology in zbtb24D/D mutants appeared overtly similar to wild-

type siblings in histological sections (Figure 1—figure supplement 3B–C). However, testes size and

sperm count were severely reduced in zbtb24 mutants, providing one potential explanation for

impaired male fertility (Figure 1—figure supplement 3D–G). Similar ICF-like phenotypes were

observed in zebrafish that were homozygous for a second independently-isolated mutant allele of
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Figure 1. Mutation of zbtb24 causes ICF syndrome-like phenotypes in zebrafish. (A) Schematic of human and zebrafish Zbtb24 proteins. The BTB/POZ

domain is indicated in blue and C2H2-type zinc fingers in dark grey. (B) Schematic of zebrafish zbtb24 gene. Location of TALEN target sequences are

indicated in red (not to scale). Brackets indicate the region deleted by the zbtb24mk22(D) allele. (C) Representative images of zbtb24+/+ and zbtb24D/D

zebrafish at 2 wpf. Scale bar: 1 mm. (D) Standard length measurements for zbtb24+/+ and zbtb24D/D zebrafish at 1, 2, 3 and 4 wpf (n � 6 for each

group). (E) Representative images of zbtb24+/+ and zbtb24D/D zebrafish at 5 months. Scale bar: 5 mm. (F) Average weight of zbtb24+/+ and zbtb24D/D

zebrafish at 5 months (n = 5 for each group). (G) Representative images of facial abnormalities in zbtb24+/+ and zbtb24D/D adults at 6 months. Scale bar:

2 mm. (H) Schematic and quantification of facial abnormalities in zbtb24D/D zebrafish (n = 5 for each group). (I) Abundance of IgM, IgD and IgZ

transcripts in zbtb24+/+ and zbtb24D/D zebrafish at 6 weeks post fertilization (n = 5 for each group). (J) Quantification of lymphoid cell populations in

total blood isolated from zbtb24+/+ or zbtb24D/D kidney marrow from adults, measured by Forward/Side scatter flow cytometry (n = 11 for each group).

(K) Kaplan-Meier curve indicating survival among groups of zbtb24+/+ and zbtb24D/D zebrafish (n = 12 for each group). All error bars indicate standard

error of the mean (SEM).

DOI: https://doi.org/10.7554/eLife.39658.003

The following figure supplements are available for figure 1:

Figure supplement 1. Zbtb24 conservation in vertebrate species.

DOI: https://doi.org/10.7554/eLife.39658.004

Figure 1 continued on next page
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zbtb24 (zbtb24mk19) (Figure 1—figure supplement 4). Taken together, these findings identify

zbtb24 homozygous mutant zebrafish as a faithful animal model of ICF syndrome phenotypes.

Progressive methylation loss at pericentromeric repeats in zbtb24
mutants
Pericentromeric satellite type-1 (Sat1) repeats are found on all zebrafish chromosomes and comprise

5–8% of the zebrafish genome (Phillips and Reed, 2000). As expected, we found that Sat1 sequen-

ces from wild-type adults were resistant to digestion with the methylation sensitive restriction

enzyme HpyCH4IV, indicating that these pericentromeric repeats were heavily methylated. In con-

trast to wildtype, Sat1 sequences from zbtb24D/D and zbtb24mk19/mk19 mutant adults were readily

digested with HpyCH4IV, indicating extensive loss of methylation at these repeats (Figure 2A–B and

Figure 2—figure supplement 1A). Comparable Sat1 methylation deficiencies were observed when

DNA was isolated from dissected adult brain, skin, muscle and fin, suggesting that these sequences

were similarly hypomethylated in most adult somatic tissues (Figure 2—figure supplement 1B and

Figure 2—figure supplement 3A). Methylation levels at Sat1 repeats appeared normal in remaining

sperm extracted from zbtb24D/D mutant adults, suggesting methylation loss may be restricted to

somatic tissues (Figure 2—figure supplement 1C–D).

Somewhat unexpectedly, we found that pericentromeric methylation loss in zbtb24D/D mutants

was progressive. While extensive hypomethylation of Sat1 sequences was detected in adults lacking

zbtb24, similar hypomethylation was not observed in mutants at 1 wpf (Figure 2C–D). At 2 wpf,

zbtb24D/D mutants exhibited roughly 3-fold increases in HpyCH4IV digestion, and sensitivity to

digestion became increasingly pronounced in older animals (Figure 2C–D). By 32 weeks, Sat1

sequences from zbtb24 mutants exhibited a 23-fold increase in HpyCH4IV digestion compared to

wildtype, suggesting a greater than 95% reduction in methylation of these repetitive sequence

blocks. Histone H3 lysine nine trimethylation levels were unaffected at Sat1 sequences in zbtb24D/D

mutant adults (Figure 2—figure supplement 2).

Zbtb24 mutants exhibit modest reductions in 5mc at non-
pericentromeric sequences
To clarify whether other sequences were also hypomethylated in zbtb24 mutants, we performed

Enhanced Reduced Representation Bisulfite Sequencing (ERRBS) using genomic DNA isolated from

the fins of three 6-month-old zbtb24D/D mutant adults and three wild-type siblings (Garrett-

Bakelman et al., 2015). At this stage, Sat1 sequences from isolated fins were 20-fold more sensitive

to HypCH4IV in zbtb24 mutants compared to controls, indicating extensive loss of DNA methylation

at pericentromeric repeats (Figure 2—figure supplement 3A–B). We then used ERRBS data to

interrogate the methylation status of 979,971 non-pericentromeric CpG sites across the genome in

the same tissue samples. Our analysis revealed a strong correlation between genome wide 5mC lev-

els in wild-type and zbtb24D/D mutant adults (Pearson’s correlation value of 0.928), although overall

methylation levels appeared reduced by ~10% at all methylated sequence features in mutants

(Figure 2E–F and Figure 2—figure supplement 4). Reductions consisted primarily of small-magni-

tude changes in 5mC across the genome, with only 1.3% (13,205) of examined CpG dinucleotides

exhibiting methylation differences of greater than 20%. Consistent with these findings, at a threshold

of 20% change (p-value<0.01), only 55 differentially methylated regions (DMRs) were identified

between wild-type and zbtb24D/D adults (Supplementary file 4). Methylation levels at endogenous

retroviruses and other transposable elements were also examined by methylation sensitive restric-

tion digest. All tested elements were similarly resistant to digestion in zbtb24D/D mutant adults and

Figure 1 continued

Figure supplement 2. TALEN design for introducing mutations at the endogenous zbtb24 zebrafish gene.

DOI: https://doi.org/10.7554/eLife.39658.005

Figure supplement 3. Fertility and gonad analysis in zbtb24D/D mutants.

DOI: https://doi.org/10.7554/eLife.39658.006

Figure supplement 4. A second mutant allele of zbtb24 recapitulates key features of ICF Syndrome.

DOI: https://doi.org/10.7554/eLife.39658.007
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Figure 2. Mutation of zbtb24 causes progressive methylation loss at pericentromeric satellite repeats. (A) Southern blot of genomic DNA digested with

5mC-sensitive restriction enzyme HpyCH4IV and probed with zebrafish Sat1 sequence. Each lane represents DNA isolated from one adult individual of

the indicated genotype. DNA from dnmt1-/- zebrafish larvae at 7 days post fertilization and their phenotypically wild-type siblings (WT) provides a

positive control. (B) Quantification of methylation changes at Sat1 sequences in panel A). Error bars indicate SEM from the three biological replicates.

(C) Southern blot of genomic DNA digested with 5mC-sensitive restriction enzyme HpyCH4IV and probed with zebrafish Sat1 sequence. Genomic DNA

was isolated from zbtb24+/+ and zbtb24D/D animals at 1, 2, 4, 16 and 32 wpf as indicated. (D) Quantification of methylation changes at Sat1 sequences

in panel C). Data represent averages from two independent experiments. Error bars represent the standard deviation (SD). (E) Correlation heat map of

CpG methylation levels in zbtb24+/+ and zbtb24D/D as assessed by ERRBS (Data reflects three biological replicates of each genotype). The density of

CpGs increases from blue to dark red. (F) Violin Plots indicating overall CpG methylation levels in fins from adult zbtb24+/+ and zbtb24D/D zebrafish.

DOI: https://doi.org/10.7554/eLife.39658.008

The following figure supplements are available for figure 2:

Figure supplement 1. Zbtb24 mutation causes methylation loss at pericentromeric repeats.

DOI: https://doi.org/10.7554/eLife.39658.009

Figure supplement 2. Repressive histone modifications are unaffected in zbtb24D/D mutants.

DOI: https://doi.org/10.7554/eLife.39658.010

Figure supplement 3. Zbtb24 mutants exhibit modest reductions in 5mC at non-pericentromeric sequences.

DOI: https://doi.org/10.7554/eLife.39658.011

Figure 2 continued on next page
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wild-type siblings (Figure 2—figure supplement 5). Collectively, these data indicate that pericentro-

meres are a predominant site of methylation loss in zbtb24D/D mutants.

Mutation of zbtb24 causes activation of innate immune response genes
To gain insights into the early consequences of methylation loss in zbtb24 mutants, we performed

transcriptome analysis on RNA isolated from wild-type and zbtb24D/D zebrafish at 2 wpf. At this

stage, zbtb24D/D mutants remain morphologically indistinguishable from wildtype, but show clear

hypomethylation of pericentromeric sequences. RNA-seq identified 58 genes that were downregu-

lated by more than 2-fold in zbtb24D/D larvae at 2 wpf, while 119 were upregulated by 2-fold or

more (Figure 3A). No gene enrichment signature was observed among downregulated genes. How-

ever, roughly 30% of upregulated genes were associated with activation of the innate immune sys-

tem. In particular, we noted that upregulated transcripts included those associated with interferon

stimulated genes (ISGs) and inflammatory cytokines (Figure 3B). Consistent with these observations,

Gene Set Enrichment Analysis (GSEA) identified significant enrichment of genes involved in viral

response, a key function of innate immune pathways (Figure 3C). Upregulation of ISGs was also

observed in zbtb24D/D and zbtb24mk19/mk19 mutants by qRT-PCR at 3 wpf, whereas the same genes

were expressed at wild-type levels at 1 wpf (Figure 3D–E and Figure 3—figure supplement 1). No

immune-related genes (and only one gene differentially upregulated in the RNA-Seq) were found

within 100 kb of identified DMRs, suggesting that direct loss of methylation at these sequences was

unlikely to cause the response (Figure 2—figure supplement 3D and Supplementary file 4). Con-

sistent with previous studies, we found that global methylation depletion using the DNA methyl-

transferase inhibitor 5-azacytidine also resulted in upregulation of immune response genes

(Figure 3—figure supplement 2).

The innate immune response in zbtb24 mutants is mediated by sensors
of cytosolic RNA
The innate immune system represents an ancient defense system in which pathogen-associated

molecular patterns (PAMPs) are recognized by pattern recognition receptors (PRRs). These PRRs

induce signaling cascades that drive the production of interferons and other inflammatory cytokines

with antiviral and immune modulating functions (Schneider et al., 2014). In addition to extracellular

pathogens, PRRs also recognize PAMPs associated with cell-intrinsic stimuli including DNA damage,

endogenous retroviral RNA and RNA-DNA hybrids (Chiappinelli et al., 2015; Härtlova et al., 2015;

Mankan et al., 2014; Roulois et al., 2015).

To clarify the origin of the response in zbtb24 mutants, we examined the major families of PRRs

involved in innate immunity. These include the Toll-like receptors (TLRs), which have broad functions

in detecting PAMPs, the RIG-I like receptors (RLRs), which are involved in the detection of cytosolic

RNA and cGAMP synthase (cGAS), which functions as a cytosolic sensor of DNA and RNA/DNA

hybrids (Crowl et al., 2017). Mutations in key mediator proteins required to propagate interferon

signaling from each PRR family were introduced onto the zbtb24 mutant background and we tested

the effect on ISG expression. Mutations in the zebrafish orthologs of mitochondrial antiviral-signaling

protein (mavs), which is an intermediate in RLR signaling and stimulator of interferon genes (sting),

which is involved in cGAS signaling were generated using CRISPR/Cas9 technology (Figure 4—fig-

ure supplement 1A–B). The mutant allele of Myeloid differentiation primary response 88 (myd88),

which is required for signaling through most TLRs, was previously described (van der Vaart et al.,

2013).

As in prior experiments, significant increases of the ISGs, signal transducer and activator of tran-

scription 1b (stat1b) and interferon regulatory factor (irf7) were observed in zbtb24D/D larvae at 3

wpf by qRT-PCR (Figure 4A–C). Introduction of myd88 or sting mutations had little impact on

Figure 2 continued

Figure supplement 4. DNA Methylation levels at different genomic classes.

DOI: https://doi.org/10.7554/eLife.39658.012

Figure supplement 5. Methylation at interspersed repeats is unaffected in zbtb24 mutants.

DOI: https://doi.org/10.7554/eLife.39658.013
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expression of these ISGs, as similar transcript levels were detected in zbtb24D/D single mutant ani-

mals compared to myd88hu3568/hu3568; zbtb24D/D or stingmk30/mk30; zbtb24D/D double mutants

(Figure 4A–B). Sustained ISG expression in these double mutants suggests limited roles for TLR and

cGAS PRRs in mediating the interferon response in zbtb24 mutants. In contrast to myd88 and sting,

mutation of mavs suppressed stat1b and irf7 upregulation in zbtb24D/D mutant animals. Expression

levels of irf7 and stat1b were reduced 2- and 4-fold respectively in mavsmk28/mk28; zbtb24D/D double

mutants when compared to zbtb24D/D single mutant zebrafish, indicating a requirement for mavs in
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Figure 3. Mutation of zbtb24 leads to activation of innate immune response genes. (A) Volcano plot representation of differential gene expression in

zbtb24+/+ vs zbtb24D/D zebrafish at 2 wpf. Blue and red points mark genes with >2 fold downregulation or upregulation respectively. (B) RNA-seq

heatmap showing innate immune genes upregulated in zbtb24D/D mutant compared to zbtb24+/+ siblings. Shown are Z-score normalized gene

expression values. (C) GSEA of a set of genes involved in Response to Virus in zebrafish comparing zbtb24+/+ vs zbtb24D/D. NES, normalized enrichment

score; FDR, false discovery rate. (D) qRT-PCR demonstrating upregulated interferon and inflammatory response genes in zbtb24D/D mutants at 3 wpf.

Expression levels are reported relative to b-actin. Error bars indicate SEM from at least 3 independent biological replicates with n = 8 total animals for

each replicate. (E) qRT-PCR analysis reveals similar expression of interferon genes in zbtb24+/+ and zbtb24D/D larvae at 1 wpf. Error bars represent SEM

from at least five biological replicates.

DOI: https://doi.org/10.7554/eLife.39658.014

The following figure supplements are available for figure 3:

Figure supplement 1. Mutation in zbtb24 leads to activation of innate immune response pathways.

DOI: https://doi.org/10.7554/eLife.39658.015

Figure supplement 2. Activation of interferon stimulated genes upon treating zebrafish embryos with 5aza-cytidine.

DOI: https://doi.org/10.7554/eLife.39658.016

Rajshekar et al. eLife 2018;7:e39658. DOI: https://doi.org/10.7554/eLife.39658 8 of 21
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the upregulation of these ISGs (Figure 4C). This finding implicates RLR signaling in the activation of

the innate immune system in zbtb24 mutants and suggests a cytosolic RNA trigger for the response.

Pericentromeric RNA transcripts are sufficient to trigger the interferon
response in zbtb24 mutants
Given known roles for DNA methylation in transcriptional repression, we next tested whether loss of

methylation at pericentromeric sequence resulted in increased levels of Sat1 transcripts that could

trigger the RNA mediated interferon response. Consistent with this model, strong derepression of

Sat1 RNA from hypomethylated pericentromeres was noted in zbtb24 mutant adults (Figure 5A and

Figure 5—figure supplement 1A), whereas transcripts for other dispersed repetitive elements

remained unchanged between mutants and wildtype (Figure 5—figure supplement 1B). Increases

in Sat1 transcripts correlated with levels of irf7 expression in adult zebrafish (r = 0.77), and upregula-

tion of Sat1 transcripts coincided with the window of ISG induction during development (Figure 5B–

C). Both sense and antisense transcripts were detected in mutants using TAG-aided sense/antisense

transcript detection (TASA-TD) strand-specific PCR (Henke et al., 2015), suggesting the potential

for derepressed Sat1 transcripts to form double stranded RNAs (Figure 5D–E).

To determine whether Sat1 transcripts were sufficient to activate an innate immune response, in

vitro synthesized RNA corresponding to Sat1 sense and antisense transcripts were injected into wild-

type embryos at the 1 cell stage. Expression of the ISGs stat1b, irf7, irf1b and mxa was then

assessed at 8 hr post fertilization. Co-injection of sense and antisense Sat1 RNA was sufficient to

reproducibly cause a 2 to 4-fold upregulation in expression of these ISGs, whereas combined injec-

tion of sense and antisense control transcripts encoding a fragment of zebrafish b-actin or GFP had

no effect on expression of these genes (Figure 5F and Figure 5—figure supplement 2). Lower level

upregulation of some, but not all ISGs was noted when sense or antisense Sat1 transcripts were indi-

vidually injected into the embryo, suggesting that the response was primarily triggered by formation

of Sat1 dsRNA (Figure 5—figure supplement 2). Collectively, these results functionally link the

derepression of Sat1 transcripts to the activation of the innate immune response in zbtb24 mutants.
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Figure 4. Interferon response in zbtb24 mutants is mediated by sensors of cytosolic RNA. (A) Expression of interferon signaling genes stat1b and irf7 in

indicated genotypes at 3 wpf. n = 4 biological replicates. (B) Expression of the ISGs stat1b and irf7 in indicated genotypes at 3 wpf. n � 7 biological

replicates. (C) Expression of interferon signaling genes stat1b and irf7 in indicated genotypes at 3 wpf. n � 5 biological replicates. All error bars

indicate SEM.

DOI: https://doi.org/10.7554/eLife.39658.017

The following figure supplement is available for figure 4:

Figure supplement 1. Mutation of zebrafish orthologs of mavs, sting, and mda5.

DOI: https://doi.org/10.7554/eLife.39658.018
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Figure 5. Pericentromeric transcripts are sufficient to induce the innate immune response in zbtb24 mutants. (A) Northern blot analysis of Sat1

transcripts in zbtb24+/+ and zbtb24D/D zebrafish at 6 wpf. Each lane represents a biological replicate. The lower panel represents the cropped ethidium-

bromide stained gel as loading control. (B) qRT-PCR for Sat1 transcripts in zbtb24+/+ and zbtb24D/D zebrafish at 1, 3 and 6 wpf. Error bars indicate SEM

of at least four biological replicates in each group. (C) Correlation between the expression of Sat1 and irf7 in zbtb24+/+ and zbtb24D/D at 6 weeks

(n = 15). (D) TASA-TD PCR amplified sense (s) and antisense (as) transcripts Sat1 (114 bp) and b-actin (125 bp) from first strand zbtb24D/D cDNA. PCR

primers: gene-specific (GS); TAG. The products from TASA-TD PCR were run on the same gel, then cropped and presented. This panel is

representative of two independent biological replicates. (E) Quantification of TASA-TD from panel D). Error bars indicate SD from two biological

replicates. (F) Expression of interferon stimulated genes in wild-type embryos injected with Sat1 or control RNA encoding a similar-sized fragment of b-

actin. 50 pg of in vitro transcribed sense and antisense transcripts were injected into wild-type zebrafish embryos at the 1 cell stage. Total RNA was

extracted at 8 hr post fertilization for qRT-PCR analysis. Error bars indicate SEM from at least three biological replicates with n = 20 embryos for each

biological replicate.

DOI: https://doi.org/10.7554/eLife.39658.019

The following figure supplements are available for figure 5:

Figure supplement 1. Mutation in zbtb24 upregulates Sat1 transcripts but not transposons.

DOI: https://doi.org/10.7554/eLife.39658.020

Figure supplement 2. Effect of injecting in vitro transcribed Sat1 RNAs on expression of interferon stimulated genes.

DOI: https://doi.org/10.7554/eLife.39658.021
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The cytosolic RNA helicase MDA5 is required for the interferon
response in zbtb24 mutants
Finally, we sought to identify the specific PRR required for the interferon response in zbtb24

mutants. The RLR family of PRRs consists of two RNA helicases that signal through Mavs: Melanoma

Differentiation-Associated protein 5 (Mda5) and Retinoic acid-inducible gene I (Rig-I). Rig-I binds 5’

triphosphorylated RNA molecules, whereas Mda5 has been implicated in the recognition of long

double-stranded RNAs in the cytosol (Crowl et al., 2017). Given that 5’ triphosphorylation of RNAs

is a typical viral signature that is unlikely to be present on endogenous RNA transcripts, we reasoned

that Mda5 was a more likely candidate for the receptor. To test the requirement for mda5, we gen-

erated a seven base-pair deletion in this gene that disrupted the DEAD box helicase domain (Fig-

ure 4—figure supplement 1C). This mda5mk29 allele was then introduced onto the zbtb24 mutant

background, and expression of the ISGs stat1b and irf7 was examined at 3 wpf and 6 wpf. Homozy-

gous mutation of mda5 was sufficient to restore stat1b and irf7 expression to wild-type levels in

zbtb24D/D mutant larvae, suggesting that Mda5 is the primary PPR required for the response

(Figure 6A and B). This requirement was further validated by RNA-seq, which revealed that a broad

panel of ISGs that showed elevated expression in zbtb24 single mutants were no longer upregulated

in mda5mk29/mk29; zbtb24D/D double mutants (Figure 6C).

Taken together, these results support a model in which derepression of transcripts from hypome-

thylated pericentromeres triggers activation of the innate immune system through the Mda5/Mavs

viral RNA recognition pathway (Figure 6D). These findings identify roles for pericentromeric RNA as

a trigger of autoimmunity and reveal important functions for pericentromeric methylation in sup-

pressing the generation of these immunostimulatory transcripts. Based on these results, we propose

that induction of the innate immune system is one of the earliest in vivo consequences of pericentro-

meric methylation loss.

Discussion
In this study, we describe a viable animal model of ICF syndrome which recapitulates key phenotypic

hallmarks of the disease including slow growth, facial anomalies, immunoglobulin deficiencies and

reduced lifespan. Given that previous attempts to model ICF syndrome have resulted in perinatal or

embryonic lethality (Geiman et al., 2001; Ueda et al., 2006; Wu et al., 2016), this zebrafish model

provides an important new resource for understanding ICF disease etiology during juvenile and adult

life stages. In particular, zbtb24 mutant zebrafish will be useful for understanding phenotypes such

as immunoglobulin deficiency, which have not been observed in mouse models and are difficult to

study in cell culture systems.

As in ICF syndrome, zbtb24 mutant adult zebrafish exhibited extensive loss of methylation at peri-

centromeric sequences. For highly repetitive sequences, methylation sensitive restriction digest fol-

lowed by Southern blot remains the most effective way to assess methylation levels. By this

approach, we observed increases in HpyCH4IV digestion that are consistent with up to 95% reduc-

tions in methylation at Sat1 pericentromeric repeats in zbtb24 mutants. While similar hypomethyla-

tion was observed in all adult somatic tissues that we examined, we unexpectedly observed that

methylation levels in sperm from zbtb24 mutants and wildtype animals appeared comparable. This

finding raises the possibility that different pathways act to control pericentromeric methylation in

germ and somatic cells.

Methylation levels at pericentromeric Sat1 sequences could not be quantified by ERRBS, as this

technique relies on MspI restriction digest to enrich for CpG containing sequences, and zebrafish

Sat1 repeats are lacking in this restriction site. Nonetheless, ERRBS analysis suggested that the gen-

eral methylation landscape in human ICF syndrome and in zbtb24 mutant zebrafish is similar. Methyl-

ome analysis of primary blood from ICF patients identified methylation changes of greater than 20%

at roughly 3% of examined CpG dinucleotides. Significant changes in methylation of retroviruses

and other dispersed repeats were not observed in these patients (Velasco et al., 2018). Consistent

with these findings, our ERRBS analysis revealed methylation changes of greater than 20% at roughly

1.3% of assayed CpG dinucleotides and found methylation of dispersed repeats to be similar

between wildtype and in zbtb24 mutant zebrafish. The low-level methylation changes outside of the

pericentromeres observed in ICF syndrome and our mutants raise the possibility that zbtb24 may

have additional modest roles in maintaining methylation at non pericentromeric sequences. One
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Figure 6. Mutation of cytosolic RNA receptor Mda5 mitigates the interferon response in zbtb24D/D zebrafish. (A) Expression of interferon signaling

genes stat1b and irf7 in indicated genotypes at 3 wpf. n � 7 biological replicates. (B) Expression of interferon signaling genes stat1b and irf7 in

indicated genotypes at 6 wpf. n = 6 biological replicates. (C) RNA-seq heatmap of interferon stimulated genes upregulated in zbtb24D/D zebrafish and

rescued in mda5mk29/mk29; zbtb24D/D zebrafish at 3 wpf. Shown are Z-score normalized gene expression values. (D) Model for the activation of interferon

response in zbtb24 mutants. Loss of Zbtb24 function causes hypomethylation of pericentromeric Sat1 repeats, which leads to derepression of

associated Sat1 transcripts. These pericentromeric transcripts are recognized by the RNA helicase Mda5 which signals through Mavs and Irf7 to

upregulate ISGs. Autoregulatory feedback implicates irf7 as both an ISG and a key downstream effector of Mda5/Mavs signaling.

DOI: https://doi.org/10.7554/eLife.39658.022

The following figure supplement is available for figure 6:

Figure supplement 1. Expression of ICF genes cdca7 and hells in zbtb24 mutants (A) Expression levels of cdca7 and hells in the RNA Seq data set

reported in Figure 6C (n = 3 biological replicates for each group).

DOI: https://doi.org/10.7554/eLife.39658.023

Rajshekar et al. eLife 2018;7:e39658. DOI: https://doi.org/10.7554/eLife.39658 12 of 21

Research Communication Chromosomes and Gene Expression

https://doi.org/10.7554/eLife.39658.022
https://doi.org/10.7554/eLife.39658.023
https://doi.org/10.7554/eLife.39658


important caveat of ERRBS analysis is that CpG poor sequences can be under represented, leaving

open the possibility that additional DMRs in CpG poor regions of the genome were overlooked by

our approach.

The progressive loss of 5mC we observe in somatic tissues between larval and adult stages impli-

cates Zbtb24 in regulating the long-term maintenance of methylation at pericentromeric repeats.

We are unaware of any developmental or methylation milestones that can account for the onset of

hypomethylation around 2 wpf. Rather, we speculate that the onset of methylation loss at this stage

partly reflects the need to deplete maternally loaded zbtb24 prior to unmasking of the zbtb24

mutant phenotype and partly reflects the culmination of minor methylation losses due to lower fidel-

ity maintenance over many rounds of cell division. We note that the onset of ICF-like growth defects

in zbtb24 mutant zebrafish emerged in the weeks following Sat1 methylation loss. In at least one

case of ICF syndrome type 2, growth reductions and immunodeficiency were also reported to

develop with age, raising the possibility that similar progressive methylation loss may impact ICF eti-

ology in humans (von Bernuth et al., 2014). It is also possible that Zbtb24 functions in both mainte-

nance and establishment of pericentromeric methylation, but that requirements for establishment

are masked by maternally deposited RNA in zbtb24 mutant zebrafish lines. Unfortunately, zbtb24

homozygous mutant zebrafish are sterile, preventing the generation of the maternal-zygotic mutants

required to address this question.

Previous studies have suggested that ZBTB24 is a transcription factor that may act to regulate

DNA methylation through transcriptional control of the ICF gene CDCA7 (Wu et al., 2016). Consis-

tent with this model, we observe near complete loss of cdca7 expression in zbtb24 mutants in our

RNA-seq data set and by qRT-PCR (Figure 6—figure supplement 1). A more recent study in cul-

tured human cells proposed that ZBTB24 binding might be directly involved in recruiting DNMT3B

to promote gene body methylation through recognition of AGGTCCTGGCAG motifs in human cells

(Thompson et al., 2018). Analysis using Find Individual Motif Occurrences (FIMO) (Grant et al.,

2011), did not reveal this motif in the promoter or gene body of zebrafish cdca7 or at Sat1

sequences.

In the current study, we take advantage of the progressive Sat1 methylation loss in zbtb24

mutants to identify activation of interferon signaling as one of the earliest in vivo consequences of

pericentromeric hypomethylation. This phenotype cannot be attributed to defects in adaptive immu-

nity, as the zebrafish adaptive immune system is not functional until roughly 4 wpf (Trede et al.,

2004). Induction of an interferon response has been reported in the context of global hypomethyla-

tion in cancer cell lines treated with the DNA methyltransferase inhibitor 5-azacytidine and in zebra-

fish mutated for the maintenance DNA methyltransferase machinery (Chernyavskaya et al., 2017;

Chiappinelli et al., 2015; Roulois et al., 2015). In each of these cases induction of the interferon

response was attributed to massive derepression of endogenous retroviral elements.

Our results are distinguished from these earlier studies in that we identify hypomethylation of

pericentromeric sequences and subsequent derepression of associated satellite transcripts as a pre-

viously unappreciated trigger of innate immunity. Immunostimulatory motifs have been noted in

pericentromeric RNAs derived from mouse and humans, and transcripts derived from these repeats

have been observed in p53 null mouse fibroblasts following global methylation loss (Leonova et al.,

2013; Tanne et al., 2015). However, while these studies suggest the potential for pericentromeric

hypomethylation to drive an interferon response in diverse vertebrate species, experimental evi-

dence in support of this model has been lacking. Here we demonstrate a causative link between

derepression of pericentromeric RNAs and the interferon response, and identify a requirement for

Mda5/Mavs in mediating the response. Our findings suggest that aberrant Sat1 transcripts derived

from pericentromeric repeats trigger this response, and that these transcripts may mimic features of

double stranded RNA viruses in the cytosol. This finding raises the possibility that this pathway may

also recognize additional endogenous RNAs that lack viral origin.

While mutation of mda5/mavs rescued the interferon response in zbtb24 mutants, mda5/mavs

mutation had little impact on other ICF phenotypes observed in zbtb24 mutants. Therefore, we find

it unlikely that the interferon response drives ICF etiology. Rather this response represents an addi-

tional consequence of pericentromeric hypomethylation. Hypomethylation of pericentromeric

sequences is compatible with human viability and is observed in abnormal cell contexts including

cancer and senescence. Massive increases in pericentromeric transcripts and upregulation of inter-

feron genes have both been noted in cancer (Cheon et al., 2014; Ting et al., 2011). Our data raise
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the possibility that pericentromeric hypomethylation and subsequent derepression of associated

RNAs represents an important but underappreciated trigger of autoimmunity in a variety of disease

states.

Materials and methods

Zebrafish husbandry
Zebrafish husbandry and care were conducted in full accordance with animal care and use guidelines

with approval by the Institutional Animal Care and Use Committees at Memorial Sloan Kettering

Cancer Center and the University of Georgia. Zebrafish were raised under standard conditions at 28˚
C. Wild-type lines were of the AB background. All mutant alleles are summarized in

Supplementary file 1.

TALEN and CRISPR mutagenesis
TALEN sequences were selected using Targeter 2.0 software (Doyle et al., 2012). TAL repeat

assembly was achieved using the Golden Gate assembly method, and assembled repeats were inte-

grated into the GoldyTALEN scaffold (Bedell et al., 2012; Cermak et al., 2011). Assembled vectors

served as templates for in vitro mRNA transcription using the T3 mMessage mMachine kit (Ambion)

according to manufacturer’s instructions. 50–100 pg mRNA was injected into wild-type embryos at

the one-cell stage. Injected embryos were raised to adulthood and F1 progeny were screened for

germline transmission of mutations as previously described (Li et al., 2015). Primers used for detec-

tion of mutations and subsequent genotyping are included in Supplementary file 1.

Target selection for CRISPR/Cas9 mediated mutagenesis was performed using CHOPCHOP

(Labun et al., 2016). sgRNA templates were generated either by cloning into pT7-gRNA as

described by Jao et al. (2013) or using the oligo-based approach described in Gagnon et al., 2014

and Burger et al. (2016). All template oligos are listed in Supplementary file 3. sgRNAs were in

vitro transcribed from their respective templates using T7 RNA polymerase (Promega) as per manu-

facturer protocol. Cas9 RNA was in vitro transcribed from the pT3TS-nls-zCas9-nls plasmid

(Jao et al., 2013) using the T3 mMessage mMachine Kit (Ambion). For mutagenesis, 200–400 ng of

sgRNA and ~500 ng of Cas9 mRNA were co-injected into wild-type embryos at the one-cell stage.

Injected embryos were raised to adulthood, and F1 progeny were screened for germline transmis-

sion of mutations as previously described (Li et al., 2015). Primers used for detection of mutations

and subsequent genotyping are included in Supplementary file 1.

Zebrafish imaging and length measurements
All bright field imaging of zebrafish larvae and adult was performed using Olympus MVX10 with

CellSens Standard software. Standard-length was documented using ImageJ as defined in

Parichy et al. (2009). Photoshop (Adobe) adjustments to brightness and contrast were equally

applied to all images of whole zebrafish in order to improve visualization.

FACS analysis of whole kidney marrow
Adult zebrafish at 6 months were sacrificed with a combination of tricaine (Sigma-Aldrich, CAS num-

ber 886-86-2) and rapid chilling. Whole kidneys were dissected using forceps and placed in

0.9 � PBS/5% FCS. Manual disaggregation using a P1000 pipette resulted in single cell suspensions.

Cells were filtered over a 40 mm nylon mesh filter, and resuspended in PBS/FCS to give a final con-

centration of 100,000 cells/ml. FACS sorting of single cells were analyzed for forward/side scatter

profiles. FACS data were analyzed using FloJo software.

Histology
For Hematoxylin and Eosin (H and E) staining, adult zebrafish were fixed in 10% Neutral Buffered

Formalin for 48 hr. Zebrafish were then decalcified in 0.5 M EDTA for 24 hr. After decalcification,

fish were incubated overnight in 70% Ethanol before embedding in paraffin blocks. Sections were

stained with H and E according to standard procedures.
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Sperm count
Adult zebrafish at 8 months were sacrificed with a combination of tricaine and rapid chilling. Whole

testis was dissected using forceps and crushed in 100 ul of PBS. For determining sperm-count,

sperm samples were diluted 1:20 for each fish. 10 ul of the diluted sample was then loaded onto a

hemocytometer (Bright-Line, Hauser Scientific) for counting. The volume over the central counting

area is 0.1 mm3 or 0.1 microliter. Average number of sperm counted over the central counting area

was multiplied by 10000 to obtain the number of sperm/ml of the diluted sample. The obtained

value was multiplied by the dilution factor to obtain the final sperm count.

DNA methylation analysis
For Southern blot analysis, 1 mg of purified total genomic DNA was digested with the indicated

methylation sensitive restriction enzyme, fractionated by electrophoresis through a 0.9% agarose gel

and transferred to nylon membrane. Sperm DNA was isolated from sperm samples collected by

crushing dissected testes in PBS. Probes were PCR amplified using primers in Supplementary file 2

and radiolabeled with 32P-dCTP using RediprimeTM II Random Prime Labelling System (Amersham)

according to manufacturer protocol. Hybridization signals were imaged and analyzed using a

Typhoon phosphorimager (GE Life Sciences). Signal intensities were measured using ImageJ. Methyl-

ation changes at Sat1 was quantified as a ratio of the intensity of the unmethylated/methylated blot

regions as indicated in the respective blot.

HypCH4IV was selected for Sat1 methylation analysis over the more traditional MspI/HpaII iso-

schizomer pair because Sat1 sequences lack the CCGG sites that are recognized by these enzymes.

Chromatin immunoprecipitation (ChIP)
ChIP was performed as described in Lindeman et al. 2009 with modifications. Briefly, zebrafish juve-

niles at 1 month were euthanized using tricaine. Chromatin was prepared from euthanized fish by

lysing flash frozen samples using an automated pulverizer (Covaris) and crosslinking using 1% Form-

aldehyde for 5 mins. Chromatin shearing was performed using a Covaris S220 sonicator using the

following conditions: 1 ml tubes with total chromatin from each fish in buffer containing 1% SDS

were sonicated using peak intensity power of 140, duty factor of 5.0 and 200 cycles per burst, for 14

min for zbtb24+/+ and 6 min for zbtb24D/D. Shearing was monitored using 1% agarose gel. To pro-

vide standardized input for each ChIP experiment, chromatin was diluted to A260 = 0.2. For each

ChIP, 2 mg antibody per 10 ml Dynabeads and 100 ml chromatin was incubated overnight at 4˚C. Fol-
lowing antibodies were used in this study: anti-H3K9me3 antibody (abcam ab8898), anti-H3K27me3

(Millipore 07–449), anti-H3 (abcam 1791) and IgG control (abcam ab15008). After elution, ChIP DNA

and input controls were purified using QIAquick PCR purification kit (Qiagen). Eluted DNA was ana-

lyzed by qPCR using primers targeting Sat1 (Supplementary file 2).

Enhanced Reduced Representation Bisulfite Sequencing (ERRBS)
50 ng of high quality genomic DNA was prepared from fin tissue from 6-month-old adult zebrafish

DNA was digested with MspI and bisulfite converted using the EZ DNA methylation kit (zymo) as in

Garrett-Bakelman et al. (2015). Bisulphite conversion rates (calculated using non-CpG methylation

conversion rates) ranged from 99.6% to 99.7% for all samples (Figure 2—figure supplement 2C).

Amplified libraries were sequenced on the Hiseq2500 platform using a minimum of single-read 51

cycles. ERRBS data were filtered for sequence adapters, limited to the first 29 bp of the read

(Boyle et al., 2012), and mapped to the zebrafish genome (danRer7) using BSmap (v 2.90) (Xi and

Li, 2009). Other than limiting to the first 29 bp all other BSmap parameters were the defaults. Meth-

ylation scores were calculated as the number of unconverted reads divided by the number of total

reads at each CpG site. DMRs were called as described in Park and Wu (2016). DMRs with at least

a 0.2 change in methylation were determined using DSS (delta = 0.2, p.threshold = 0.01). CallDMR

function in DSS was used with default parameters except for p.threshold and delta as specified. Sat1

sequences are deficient in MspI sites, and are therefore not included in ERRBS data.

RNA expression analysis
For qRT-PCR, total RNA was isolated using Trizol (Invitrogen) and precipitated with isopropanol.

RNA used for assaying expression of repeat sequences subsequently was treated with DNase using
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TURBO DNA-free Kit (Ambion) prior to analyses. RNA was converted to cDNA using GoScript

Reverse Transcriptase Kit (Promega) and Real Time PCR was performed using an Applied Biosystems

7500 PCR Machine. Analysis was performed using the 2–DDCt method, with relative mRNA levels of

all transcripts normalized to b-actin1 or 18S. All primer sequences are listed in Supplementary file

2.

For Northern blot analysis, total RNA was extracted with using Trizol (Invitrogen). 2 mg of RNA

was subjected to electrophoresis on 1% agarose gel and transferred to Amersham Hybond-N+ mem-

mbrane (GE Healthcare). The membrane was probed with 32P-dCTP radiolabeled Sat1 DNA probe

at 42˚C. Hybridization signals were imaged and analyzed using a Typhoon phosphorimager (GE Life

Sciences).

TAG-aided sense/antisense transcript detection (TASA-TD) strand-specific PCR was performed as

described by (Henke et al., 2015). Oligos used are listed in Supplemental file 3.

Transcriptome sequencing
After RiboGreen quantification and quality control by Agilent BioAnalyzer, 500 ng of total RNA

underwent polyA selection and TruSeq library preparation according to instructions provided by Illu-

mina (TruSeq Stranded mRNA LT Kit), with 8 cycles of PCR. Samples were barcoded and run on a

HiSeq 2500 High Output in a 50 bp/50 bp paired end run, using the TruSeq SBS v4 Kit (Illumina). An

average of 45.3 million paired reads was generated per sample. The percent of mRNA bases aver-

aged 62.8%.

For single-mutant RNA-seq analysis presented in Figure 3, reads were mapped to the Zebrafish

genome (danRer7) using the rnaStar aligner v2.5.0a (Dobin et al., 2013). We used the two-pass

mapping method outlined in Engström et al. (2013). The first mapping pass used a list of known

annotated junctions from Ensemble. Novel junctions found in the first pass were then added to the

known junctions and a second mapping pass was done (on the second pass the RemoveNoncanon-

cial flag was used). Expression counts (counts per million, cpm) were computed from the mapped

reads using HTSeq v0.5.3 (Anders et al., 2015) and Ensemble D.rerio v79 gene annotations. Nor-

malization and differential expression was performed using DESeq (Anders and Huber, 2010).

For RNA-seq analysis presented in Figure 6, raw RNA-seq FASTQ reads were trimmed for adapt-

ers and preprocessed to remove low-quality reads using Trimmomatic v0.33 (arguments: LEADING:3

TRAILING:3 MINLEN:36) (Bolger et al., 2014) prior to mapping to the Danio rerio GRCz10 refer-

ence genome assembly. Reads were mapped using TopHat v2.1.1 (Kim et al., 2013) supplied with a

reference General Features File (GFF) to the Danio rerioGRCz10 reference genome assembly, and

with the following arguments: -i 10 -I 5000 –library-type fr-firststrand. Gene expression was esti-

mated using Cuffquant (a tool from Cufflinks v2.2.1), with following arguments –library-type fr-first-

strand. Expression level were normalized in FPKM units by Cuffnorm (a tool from Cufflinks v2.2.1),

with following arguments –library-type fr-firststrand.

5-aza-dC treatment
Zebrafish embryos were treated with 5-aza-dC (Sigma-Aldrich) to the final concentration of 25 uM or

50 uM within the first 2 hr post fertilization, when zebrafish are sensitive to 5-aza-dC treatments as

described in Martin et al. (1999). At 24hpf, total RNA was collected for expression analysis. At

24hpf, genomic DNA was also collected and digested with methylation sensitive enzyme, HpaII, to

test for global DNA hypomethylation.

RNA synthesis and injections
Sat1 RNA and control RNAs were in vitro transcribed using Riboprobe in vitro transcription systems

(Promega). Oligos to amplify the DNA template for in vitro transcription are included in

Supplementary file 3. Sense and anti-sense transcripts were transcribed in vitro using the T3 and T7

RNA polymerases respectively. RNA was purified illustra MicroSpin G-50 Columns (GE Healthcare)

and 50 ng of sense and antisense RNA was co-injected into zebrafish embryos at the 1 cell stage.

Statistical analysis
The Student unpaired 2-tailed t-test was used for statistical analysis unless specified otherwise. Sta-

tistical analysis was performed using GraphPad PRISM software.
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