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A new method of element decomposition is introduced in the formulation 

of a new shell finite element. The actual element is decomposed into a 

translational element defined completely by the nodal translations and a 

difference element representing the difference between the actual element and 

the translational element. An alternative form of coordinate transformation is 

also suggested to achieve a simple and systematic formulation. Three different 

types of elements, designated as types I, II and III, are derived by employing 

different assumptions on the displacement field of each component element. 

The type III element, in which the rotation of the translational element and the 

translation of the difference element are suppressed, gives the most favorable 

results. The element has properties similar to Ahmad's degenerate shell 

element, but shows better performance than the latter for all test problems 

considered in this study.

However, the element suffers from locking phenomena for sensitive 

problems under thin shell situation. Three complementay devices, i.e., reduced 

integration, addition of internal degees of freedom, and mixed formulation, are 

considered in order to remove the phenomena. Combination of reduced 

integration and internal degrees of freedom cures the locking phenomena 

effectively. But an element with these combined complementary devices gets 

into trouble due to spurious zero-energy modes for cases with minimum 

boundary conditions. Two different zero-energy control methods, i.e., a-control



and e-control schemes, are used to eliminate these spurious modes. Proper 

zero-energy control indices, which can avoid both the locking phenomena and 

the spurious zero-energy modes, are obtained through numerical studies.

The element is applied in analyses of two biological problems, eggshell 

breakage and stomatal opening, which have been frequently studied by many 

researchers. The stresses and the deformed shapes are graphically 

represented by a microcomputer based postprocessor developed for this study.
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Chapter 1 

INTRODUCTION

A shell is defined as a curved surface wall. Shells can be found in many 

places such as the dome of a building, an arch dam, a pressure vessel, a 

machine part, the hull of an airplane or a ship, etc. Shells have become many of 

the structural or architectural parts ever since ancient times, not only due to 

aesthetic reasons, but also due to the fact that combination of proper 

geometrical form and usual surface loading leads to efficient behavior-almost 

pure compression or tension over most of shell. For these reasons, shells tend 

to be present in 'natural' or biological structures as well. Accordingly, it has 

long been of great interest for structural theorists, as well as structural 

designers. Many shell theories and analysis tools have been developed and 

used. However, exact closed-form solutions by classical shell theories involve 

formidable complexity and difficulties even for a simple configuration, and 

therefore have been limited to special geometric shapes like circular cylinders, 

spheres, conical shells, and so on. After all, analytical methods are not 

applicable to irregular problems with arbitrary geometry, load conditions, and 

boundary conditions. There have also been experimental approaches. But 

experimentally measured data are not available for every general case 

encountered in common structures. Thus, approximate analysis methods 

based on simplification and idealization of shell behaviors have been 

predominantly used in practice by engineers.

Generality of solution can be achieved only by numerical approaches

which came into actual use after the advent of computers in the 1950's. Above

all things, the appearance of the finite element method began an epoch for both

1
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numerical methods and structural analysis. Neither the complexity of the 

geometry nor that of boundary conditions poses a restriction in the analysis due 

to this powerful numerical technique.

Many engineering disciplines have been involved in developing or 

applying the finite element method. Application of the method became diverse 

and manifold. One of the areas in which the finite element method can play an 

important role is biological engineering or more specifically biomechanics. 

Recently, there has been growing interest in applying the finite element 

technique to the analysis of biological systems. The present study was first 

motivated by that kind of interest. Many biological systems can be modelled as 

a shell. This study was intended for the analysis of shell-type biological objects. 

And there was a need for an analysis tool. Thus, the finite elements for shell 

analysis became the primary concern of the study.

One can find that a great portion of the development effort in the finite 

element method have been devoted to shell analysis. This fact reflects not only 

the importance but also the difficulties involved in the finite element analysis of 

shells. The development of the finite element method for shell analysis has 

been stimulated by the need of civil, mechanical, and aerospace structural 

design, and has been active for the last twenty years. There are many shell 

elements available today as recounted in Section 1.1. Various shell elements 

have been applied to biological problems. Some of them are mentioned in 

Section 1.3. There are a few finite elements or computer programs specialized 

for certain biological problems. Those elements or programs may be most 

effective for the given problems. However, they are devoid of generality and not 

applicable to others. If there is really a reliable and generalized element, it 

should be able to relieve the burden of developing such special-purpose finite 

elements.
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There has been a constant desire to obtain a shell element good for both 

thick and thin shells. That is also a desire to achieve more generality and 

reliability. As another effort to satisfy that desire, a new finite element for shell 

analysis is formulated in the present study. A new method of element 

decomposition is also suggested as a basis for the formulation.

The formulation presented in this study is not destined for exclusive 

application to biomechanics. Accordingly, the focus of the study is more 

fundamental and general than biological problems.

The finite element analysis consists of three phases: formulation, 

implementation, and application. All these three phases are integrated in this 

study. The greatest portion of the study is related to the formulation of a new 

finite element for shell analysis. Only one chapter is devoted to the application 

to biological systems. But this study will serve as preparation for more 

extensive application to biological problems. Thus it will have significance for 

both finite element method and biological engineering.

1.1. Shell elements

As a result of extensive studies on the finite element analysis of shells 

during the last two decades, many shell elements have been developed and 

are being used. Shell elements can be classified largely into the following four 

types:

1 . A flat element, obtained by superposition of a plane stress element 
and a plate bending element.

2. A curved thin shell element based on Kirchhoff-Love assumptions and 
formulated by shell theory.

3. A three-dimensional solid element applied to shells.

4. A degenerate shell element obtained by collapsing the thickness of a 
three dimensional solid element.
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1.1.1 Flat elements

Shell problems can be modelled efficiently by an assembly of the flat 

elements. Each flat element has an approximate displacement field for both 

membrane and bending stresses. A flat triangular shell element was first 

introduced by Green et al. (1961). Clough and Johnson (1968) divided the 

plate element into three subelements and assumed nine displacement 

functions in each subelement in order to develop displacement functions which 

maintain full compatibility along the three edges. The flat element can handle 

rigid body displacement and can be made fully compatible. This element is 

attractive because it is easily formulated and requires simple geometric 

description. However, it has a critical shortcoming due to the uncoupling of 

membrane and bending actions. The coupling between in-plane and bending 

behavior occurs only at nodes joining adjacent elements which are not 

coplanar. In the case of a slit cylinder subject to torsion, all stresses except the 

twisting moment should be negligible everywhere, but the flat element cannot 

achieve the correct answer for this problem. A cylinder under uniform internal 

pressure is another case for which the flat element fails to give the correct 

solution because it produces artificial bending moments.

A modified version of the flat element (Knowles et al., 1976) was 

obtained by combining the constant-strain triangle and the famous BCIZ plate 

bending element (Bazeley et al., 1965). Moderately good performance can be 

obtained by this element when either membrane or bending action is 

predominant. But it becomes extremely poor when there exists a strong 

coupling between membrane and bending stiffness (Knowles et al., 1976).

Melosh (1965) and Utku (1967) developed a flat triangular element in

which the transverse shear deformations are considered. These elements are
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effective for a thick shell, but are quite uneconomical for the thin shell situation 

due to large transverse stiffness. To achieve convergence to Kirchhoff 

solutions, Wempner (1968) applied discrete Kirchhoff constraints to a shell 

element similar to Melosh's element.

A number of higher order flat elements have also been developed. 

Olson and Bearden (1979) obtained an 18 degee-of-freedom flat triangular 

element by incorporating in-plane rotations at each vertex of the original flat 

element. The resulting displacement element is compatible but not complete. 

Although the element produces rapid convergence, the answers deviate from 

the correct ones in many applications. Argyris et al. (1977) derived another 18 

d.o.f. facet triangular shell element (TRUMP) based on a physical lumping idea 

with a mechanical interpretation. The element gives a relatively economical 

solution with engineering accuracy. The element should be used with caution 

because the stiffness matrix becomes indefinite if one of the vertex angles 

exceeds 90°.

1.1.2 Curved thin shell elements based on shell theory

The classical curved thin shell element formulations are based on either 

shallow or deep shell theories. The displacement field is generally defined by 

the mid-surface displacements based on the Kirchhoff assumptions. The 

rotation of the midsurface involves second derivatives of the normal 

displacement of the surface. Therefore, C1 continuity of normal displacement is 

required for convergence. Even relatively small interelement discontinuities of 

slope may lead to large perturbations in the local stress distributions (Strickland 

and Loden, 1968). Conner and Brebbia (1967) developed a rectangular thin 

shell element based on shallow shell assumptions. The element employs
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linear variation of displacements and does not include all the required rigid- 

body modes. Yang (1973) also developed a rectangular shallow shell element 

with displacement functions expressed as products of one dimensional, first- 

order Hermitian interpolation formulas. By use of such displacement functions, 

the six rigid-body modes required for the shell are implicitly included.

Rectangular shell elements are easily formulated and give fast 

convergence (Connor and Brebbia, 1967). However, the poor geometrical 

representation of curved surfaces and boundaries is a critical shortcoming of 

the rectangular elements. The curved triangular thin shell element of Strickland 

and Loden (1968) is also derived from shallow shell theory. Linear variation of 

in-plane displacements and cubic variation of normal displacements are 

assumed. The interelement slope continuity is achieved in a similar way as in 

the BCIZ plate bending element (Bazeley et al., 1965) which enables all the 

required rigid body modes to be included. However, the performance of the 

element is only slightly better than the flat triangular element (Clough and 

Johnson, 1968).

Bonnes et al. (1968) employed a cubic variation for all three 

displacement components. They divided an element into three subtriangles to 

satisfy the interelement compatibility requirements. This element is similar to 

the flat triangular family of elements in that the membrane and bending stiffness 

matrices are determined separately and are then superimposed. But the 

geometry of the elements is specified by constant curvatures assumed within 

each element by a quadratic function. The desired coupling of the in-plane and 

the bending actions is introduced by the presence of the curvature. The 

performance of the element for the cylindrical roof case shows some 

improvement over the element of Strickland and Loden (1968). Another 36 

d.o.f. shallow shell element by Cowper et a l. (1970) uses a constrained quintic
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polynomial (21 terms) for normal displacements and cubic polynomials (10 

terms each) for tangential displacements. They chose the displacement field 

so as to provide equivalent accuracy for both the tangential and the normal 

displacement components.

Dawe (1975,1976) contended that it is more efficient to use quintic 

polynomial for all the three displacement components. A triangular thin shell 

element of Stolarski et al. (1964) is also similar to the flat element. It is formed 

by combination of a constant membrane element and a discrete Kirchhoff 

bending element. However, the strain-displacement relationship is based on 

the shallow shell assumption, and bending and membrane actions are coupled. 

They introduced a mode decomposition technique to avoid membrane locking 

and to achieve the correct relationship between membrane and bending effects.

The equations in most shallow shell formulations have been written on a 

flat base plane onto which the actual surface is projected, and the curvature is 

assumed to be constant over the element. These assumptions make the 

shallow shell formulations simpler than the deep shell formulations (Cook, 

1981). However, as indicated by Morris(1973,1976), the mapping between a 

curved and a flat surface transforms the polynomial solutions into 

transcendental form. Another difficulty is the appearance of interelement gaps 

between adjacent curved elements, although these shrink as the mesh is 

refined.

The shallow shell formulation can be used to derive deep shell elements. 

Cowper et al. (1971) extended their shallow shell element (1970) to obtain a 

deep shell element using a suitable transformation between the shallow shell 

d.o.f. and those for the deep shell.

A more general approach in deep shell formulation is based on non­

shallow or deep shell theory. There are many shell theories (Baker,1972;
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Flugge, 1960; Gould,1977) which are distinguished chiefly by their strain- 

displacement relationships. A different element will be derived depending on 

which of the theories is applied. The displacement behavior is commonly 

expressed with reference to curvilinear coordinates in the mid-surface of the 

shell. The formulation and implementation of deep shell elements is relatively 

complex, and requires much more effort than simpler elements. Therefore, 

construction of an individual element stiffness matrix tends to result in high 

computing cost even though the convergence is fast.

The SHEBA deep-shell element of Argyris and Scharpf (1971) is based 

on the natural strain concept. The strain-displacement relationship and the 

geometry are described in terms of triangular natural coordinates. Adoption of 

natural coordinates considerably simplifies the formulation and assures the 

existence of rigid-body modes. (Argyris and Scharpf,1968) The displacement 

field for bending action is identical to that of the TUBA plate bending element 

(Argyris et al., 1968; Argyris and Buck,1968) which is based on complete 

polynomial functions for the normal deflection of order higher than quintic. The 

nodal d.o.f at the vertices of the triangle include the first and the second 

derivatives as well as the values of displacements. The inclusion of second 

derivatives is intended to ensure the continuity of stresses and moments at the 

vertices but may cause an overcompatibility and thus stiffen the element. The 

overcompatibility is likely to make higher order elements too stiff, and their 

performance deteriorates. Nevertheless, the element is known to be relatively 

accurate.

Dupuis and Goel (1970) developed a similar thin shell element based on 

Koiter's theory of thin shells. In order to assure C1 continuity and thus 

convergence, they used basic functions which are equivalent to the rational 

functions (Bazeley etal., 1965) employed in the BCIZ element.
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Wu (1981) adopted a similar approach based on the natural strain 

concept. The displacement fields are expressed by complete cubic polynomials 

and rational functions (Belytschko,1981) which are added in order to satisfy C1 

continuity. Substitute shape functions (Razzaque, 1973) are employed to make 

the element more flexible. Mohr (1980) also applied the natural strain concept 

to his 27 d.o.f. element which is obtained by coupling a quartic bending 

element with a linear strain membrane element.

1.1.3 Three-dimensional solid elements

A shell can be considered as a special case of a three-dimensional 

continuum, and 3-D solid elements with quadratic or cubic shape functions can 

be used directly in the analysis of curved shells simply by reducing their 

dimension in the shell thickness direction. (Zienkiewicz, 1977) The 20-node 

brick element \N\\h quadratic isoparametric shape function has been commonly 

used in thick shell analysis. Dovey (1974) applied the 3-dimensional approach 

to thin shell analysis by incorporating geometric constraints on the permissible 

displacements of individual nodes. A cubic shape function gives improved 

results with additional computing cost. One can eliminate the mid-surface node 

points from the quadratic or cubic element by assuming zero normal strain and 

linear variation of tangential strains in the thickness direction. However, the 

transverse shear strains are still retained. Numerical evidence has shown that 

the above assumptions are not sufficient to recapture the behavior of curved 

thin shells (Gallagher,1976). The element is too stiff to represent the bending 

behavior of thin shells.

Various schemes have been proposed to overcome these difficulties 

(Dupuis,1970, Wilson,1971, Dovey,1974). However, the use of 3-D elements
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has distinct disadvantages. First, it is economically inefficient because several 

layers of elements or a large number of degrees of freedom in the thickness 

direction are required in order to model the bending behavior properly. 

Second, numerical troubles may arise as the thickness to length ratio becomes 

large. And third, it is difficult to attach these elements to their neighbors at lines 

of abrupt curvature changes. The degenerate shell element can be regarded 

as an extension of the 3-D element devised to surmount these difficulties.

1.1.4. Degenerate shell elements

Ahmad et al. (Ahmad,1970) formulated the 8-node degenerate shell 

element for application to the thick shell. The element is often called an 

isoparametric shell element, although it is in fact superparametric. The element 

is obtained by collapsing the nodes, in the thickness direction, of a three- 

dimensional solid element into one node on the middle surface. The mid­

surface translations and the rotations of the normal are independently 

interpolated from nodal variables using the serendipity shape functions, a 

procedure which is analogous to the Mindlin plate element theory (Cook,1981). 

This relieves the Kirchhoff assumption, and incorporates the transverse shear 

effects. The normal sections are assumed to remain plane but not normal after 

deformation. The major difficulty in thin shell elements originates from C1 

continuity requirements due to the Kirchhoff assumptions. It is difficult to 

construct shape functions which satisfy C1 continuity.

The formulation of the degenerate shell element is relatively simple 

because the full C1 continuity requirement is not imposed. Melosh's flat 

triangular element (Melosh,1965) and the element by Key and Beisinger 

(1970) are similar in this point. The performance of these elements with
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transverse shear effect is poor in the thin shell situation, and may not be 

acceptable for sensitive problems. Zienkiewicz et al. (1971) and Pawsey and 

Clough (1971) applied a reduced or selective integration technique to the 

degenerate shell element to improve the convergence of the element in thin 

shell applications. Takemoto and Cook (1973) modified the element by an 

alternative form of coordinate transformation, use of stiffness coefficients for 

sandwich construction, and inclusion of bubble functions. They showed that 

the formulation can be simplified by adopting global Cartesian coordinates 

instead of local coordinates as in the original formulation. Irons and Razzaque 

(1973) obtained a thin plate bending element by imposing discrete Kirchhoff 

constraints at 2x2 integration points of Ahmad's element. It was found later that 

the element significantly violates interelement compatibility and gives 

erroneous results for elements of other than triangular shape (Irons ,1976).

Kanoknukulchai (1979) developed a four node bilinear shell element 

based on the degeneration concept. The element is basically the same as 

Ahmad's degenerate element except that it uses three rotational d.o.f. instead of 

two. The solution may not converge as the mesh becomes refined, because the 

d.o.f. associated with in-plane rotation causes a weakly-restrained torsional 

mode. As a remedy, torsional stiffness is added by two penalty functions, but 

there are inherent numerical difficulties in selecting the values of the penalty 

parameters.

The SemiLoof element by Irons (1976) is another form of degenerate 

shell element with discrete Kirchhoff constraints. The element has eight Loof 

nodes in addition to the corner and midside nodes. The nodal translations and 

rotations are interpolated independently as in Ahmad's element but two 

different shape functions are used. The unconstrained 'virgin element' has 43 

d.o.f. The 11 constraints are imposed to make the appropriate shear strains
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vanish at the 2x2 Gauss points, the Loof nodes, and the center. As a result, the 

total number of d.o.f. is reduced to 32. The element has high accuracy, but the 

formulation is very complex and its implementation into a computer program is 

difficult. The element is too flexible under a point load.

1.2 Motivation for a new element

There have been enormous efforts to find a good element for use with 

both thin and thick shells. As a result, a great number of elements have been 

developed, and more continue to be proposed. Only a few of these were 

mentioned in the previous section. However, none of them has appeared as 

the best one. An element good for a certain type of problems may be poor for 

others. Hughes and Cohen (1977,1978) expressed their dissatisfaction with the 

current shell elements as follows:

None of the (shell) elements developed so far is suitable for 
inclusion in finite element codes which are widely disseminated. The 
reason for this is that the most important attribute of elements in the 
hands of the average user is reliability.

One of the first tasks facing a potential practitioner of the finite 
element method is element selection. At this stage one is confronted 
with the bewildering array of elements that has resulted from over 
twenty years of research activity. No one particular element has 
emerged as the so called 'best ’ element.

The most important attributes of an element are accuracy, simplicity and 

generality. Flat elements are simple and easy to formulate and implement but 

are not accurate. The solution may not converge to the correct one for certain 

problems. Thin shell elements based on shell theories are relatively accurate 

but tend to be extremely complicated and require high computational cost, 

especially when deep shell theories are involved. These elements are 

applicable only to thin shells and are therefore devoid of generality. Generality 

should be stressed in view of practical applications, because even the choice
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between thin and thick shell categories is in the hands of average users. There 

may be some problems which contain both thin and thick shell categories.

There are also cases, such as fracture analysis, for which transverse 

shear effects are important. The stress intensity factor for mode III fracture is a 

function of transverse shear stresses. However, any information about the 

transverse shear stresses can not be retrieved by thin shell elements. Barsoum 

(1976) indicated that there exist no thin plate or shell elements which contain 

the required singularity of r 1/2.

Some of the thin shell elements are not valid for plate bending analysis. 

Under these circumstances, acceptance or general use of these thin shell 

elements is precluded. Furthermore, thin shell elements require significant 

efforts for data preparation, because accurate geometric representation is 

essential for these elements. Some of the thin shell elements have the second 

derivatives of the normal displacements as nodal variables which make the 

specification of boundary conditions even more difficult. These may be some of 

the reasons that the degenerate type of shell elements has been used more 

and more recently even though these elements are not as accurate as the thin 

shell elements. The loss in accuracy is more than compensated for by reduced 

computational cost of an efficient element (Gallagher,1975). The most popular 

among these degenerate shell elements might be Ahmad's element (1970). 

The element may have more generality than any other types of elements, 

because it has become applicable not only to thick shells but also to thin shells 

by the use of the reduced integration technique. Strangely enough, however, 

most of the previous studies on Ahmad's element have been limited to 

quadrilateral shapes although the triangular elements are practically more 

useful. The satisfactory performance of the quadrilateral degenerate shell 

element is unexpected (Irons, 1976) and it is due to coincidence that the
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transverse shear strain vanishes at the reduced integration points (Cook,1981). 

Unfortunately, this coincidence does not happen for triangular elements. 

Numerical studies in the present work have revealed that the performance of 

the element with triangular or significantly distorted quadrilateral shape is much 

poorer than that of regular quadrilateral shape. Batoz et al. (1980) and 

Belytscheko et al. (1984) also observed that the reduced integration is 

ineffective for triangular elements.

The quadrilateral element with reduced integration gives satisfactory 

solutions for the so-called sensitive problems (Morris,1973,1976). It was found 

that the element suffers from the locking phenomenon, as shown in Fig.B.3, for 

a quarter cylinder subjected to pure bending. This suggests that the element is 

not as reliable as was reported in previous studies (Fezan,1982; 

Takemoto,1973; Zienkiewicz 1971). The formulation of the element is too loyal 

to the degeneration concept. One can easily identify that the bending and the 

membrane actions are artificially coupled in the process of coordinate 

transformation and interpolation within a curved element. Inextensional 

bending is disabled by this undesirable coupling. It causes locking for a curved 

shell under pure bending action. The number of zero eigenvalues decreases 

as the curvature increases, which implies a lack of rigid body modes.

As will be shown in subsequent chapters, one can derive an element 

equivalent to the degenerate shell element through a completely different but 

simpler and more generalized procedure based on a new concept of element 

decomposition and a new procedure of coordinate transformation. The element 

has the correct number of rigid body modes regardless of the shell curvature, 

and is capable of representing a pure bending state. As described in the fourth 

chapter, numerical tests prove that the performance of the element is always 

better than that of the popular Ahmad's degenerate element. It is relatively easy
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to modify, or add complementary devices to, the element. To obtain satisfactory 

performance for triangular shapes, several modifications are made to the 

element, which include the addition of internal d.o.f. and application of mixed 

formulation. The eventual objective is to construct an element which is 

applicable for both thin and thick shells and which can be of triangular as well 

as of quadrilateral shape.

1.3 Finite element shell analysis in biomechanics

Hatze (1974) defined Biomechanics as a study of the structure and 

function of biological systems by means of the methods of mechanics. The 

subject of the study ranges from the microscopical cellular level to the human or 

animal body. Most of the work in this area has been done by mechanical 

engineers and medical scientists who have been oriented towards medical 

applications. On the other hand, agricultural engineers together with biologists 

have shown more concern for basic knowledge of biological objects which may 

be related to production, processing or handling of food and agricultural 

products.

Biomechanics has a long history of development (Fung 1976, King 

1984). Classical solid and fluid mechanics have been the major analysis tools. 

Recently, biomechanics has made rapid progress due to numerical methods 

and computer simulations. Especially, the finite element method has broadened 

the methodology of biomechanics to a large extent. There is also a tendency 

that many classical problems are reviewed by use of this powerful method 

which enables more realistic and sophisticated modelling. Although 

biomechanics usually imports the advances in finite element method achieved 

in other disciplines, there are a number of finite element formulations (Spilker
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1982, Beaupre and Hayes 1985) and computer programs (Pao 1982) 

specialized for biological problems.

There are many biological systems which have a shell-like geometry and 

mechanical behavior. The following is a brief review of some shell-type 

biological problems which have been modeled by the finite element method.

The mechanical behavior of individual cells consisting biological tissues 

is often modeled as a shell. Pitt and Davis (1984) analyzed a parenchyma cell 

as a thin-walled, fluid filled sphere. They used axisymmetric solid elements for 

both the inside fluid and the cell wall, and assigned a single layer of elements to 

the latter.

Zarda et al. (1977) formulated a finite element specialized for red blood 

cell analysis. They modeled the biconcave cell shape as a shell of revolution. 

Their modeling is considered to be more realistic and accurate than previous 

analytical ones, because the analytical solutions assumed spherical shapes 

and could not represent the bending actions properly.

Cooke et al. (1976) analyzed stomatal guard cell deformation using 7- 

node thin shell elements for orthotropic elastic materials of doubly elliptical 

torus and examined the mechanism for opening and closure of stomatal pores. 

A follow-up study by Cooke et al. (1977) modeled the same problem with 

consideration of geometric nonlinearity.

The finite element modellings at the cellular level may have a difficulty 

supplying accurate material properties and loading conditions, and are usually 

based on approximate estimates rather than experimentally measured values. 

They are, in fact, intended to relate the mechanical behavior with assumed 

material properties and loading conditions to obtain only quantitative insight 

into the behavior. Or those unknown parameters are sometimes estimated from 

the results of analyses.
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This is not the case for a large-scaled cell like an egg. Manceau and 

Henderson (1970) and Upadhyaya et al. (1985) used experimentally measured 

material properties for their finite element analysis of the egg shell. Both groups 

fit the mathematically expressed eggshell geometry by shell-of-revolution 

elements. Gates et al. (1984) used doubly curved thin shell elements (ANSYS) 

for the problem of flat plate loading at the equator of an egg.

Yettram et al. (1982) suggested a computer graphical technique 

reconstructing the three-dimensional geometry of human left ventricle, which is 

intended for mesh generation of finite shell elements.

Gould et al. (1973) and Cataloglu et al. (1976) analyzed the human aortic 

valve using 6-node triangular thin shell elements. Humid et al. (1985) 

compared the finite element analysis of aortic valve by membrane shell 

elements and three-dimensional solid elements.

Pao et al. (1974) applied the finite element method for stress analysis of 

the left ventricular wall. They followed the pattern of a previous simplified 

analytical approach (Gould, 1972) and partitioned the ventricular wall into two 

parts, each of which was modeled independently by several layers of 

axisymmetric solid elements.

McPherson and Kriewall (1980) investigated the deformation of human 

fetal head using 4-node thin shell elements (SAP IV).

The above review represents only part of the previous work in finite 

element shell analysis related to biological systems. Many complicated 

problems have been solved by the finite element method. However, some of 

the previous works are far from complete, and some aspects of the finite 

element modelling are not realistic. Although biomechanics is not a new 

subject, the application of the finite element method in this area is rather new. 

Careless use of the method by average users in this area may lead to
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erroneous results. This is more likely in the case of shell analysis due to its 

sophisticated characteristics. Therefore, suggesting a methodology for proper 

application of finite elements to biological problems is as valuable as 

developing a good finite element.

There still remain many other biological problems which require the use 

of the finite element analysis technique. It is a challenging task to do more 

accurate and sophisticated modelling of biological systems using appropriate 

shell elements.

1.4 Objectives and overview of the study

The objective of this study, in short, is to develop an efficient and simple 

finite element for both thin and thick shells and to present the potential 

application of the element to biological problems. The study consists of four 

major parts: formulation of a new element for shell analysis, implementation of 

the element, numerical studies, and application to practical problems. A 

graphical postprocessing program has been developed for use in the present 

study. However, the discussion of its implementation is not elaborated in this 

study. That is a subject to be handled in a separate document.

In Chapter 2, a new method of element decomposition is presented for 

the formulation of shell elements. Three different possibilities of element 

decomposition are discussed. The displacement model is constructed for each 

of the possibilities. Subsequently, the strain-displacement relationships and the 

element stiffness matrices are derived and expressed in a unified format. 

Several complementary devices are also suggested to improve the 

performance of the elements. Spurious zero energy modes and their control 

are treated at the end of the chapter.
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Chapter 3 gives a guideline for efficient implementation of the 

formulation. Computational procedures are suggested for the evaluation of the 

transformation matrix, numerical integration, and evaluation of load vectors. 

Section 3.3 describes a slight modification of a frontal solver. The nodal stress 

smoothing for the shell element is also discussed in this chapter.

Numerical studies based on benchmark problems are presented in 

Chapter 4. The numerical tests cover convergence tests, patch tests, element 

distortion tests, and tests on locking behavior and zero energy modes. The 

accuracy of the new formulation is also examined through comparisons with 

analytical solutions. The interrelationship of locking and spurious modes is 

studied thoroughly using two sensitive cases. Many of the figures related to 

numerical studies are provided in an appendix to improve the readability of 

Chapter 4.

In Chapter 5, actual biological problems are analyzed using the shell 

element developed in this study. Stress analysis of an eggshell is the major 

portion of the work. Stomata of plant leaves are also analyzed. This chapter is 

intended not only to present the results of the analysis but also to give criticism 

of previous work and to suggest a methodology for future work with the same 

kind of problems.

The last chapter summarizes the discussions in the preceding chapters 

and draws conclusions to the present study. Further extensions of the study are 

suggested at the end of this chapter.



Chapter 2

FORMULATION OF A NEW FINITE ELEMENT

A new method of element decomposition is suggested for formulation of 

finite elements for shell analysis. Three different types of elements are derived 

based on the three different methods of decomposition. The formulation uses a 

new method of coordinate transformation which facilitates a systematic and 

simple approach. The element stiffness matrix is derived in three steps: 

construction of the displacement field by element decomposition, derivation of 

the strain-nodal displacement relationship, and evaluation of the element 

stiffness matrix. Complementary devices to remove locking phenomena are 

also suggested. Zero energy control schemes are discussed at the end of this 

chapter.

2.1 Coordinate transformation

Formulation of a shell element usually involves rigorous coordinate 

transformations. The coordinate systems used in the present formulation are 

first defined, and a new method of coordinate transformation is introduced in 

this section. The actual computation of transformation matrices is detailed in 

Section 3.1.

2J..-1 Definition and notation of coordinates

The three coordinate systems used in the formulation are illustrated in 

Fig.2.1 and defined in the following.

2 0
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Global coordinates

Cartesian coordinates are used as global coordinates for the complete 

system comprising all elements. Any values expressed in global coordinates 

are denoted in upright letters such as x,y or 8.

Local coordinates

The local coordinate is a Cartesian coordinate defined by three 

orthogonal axes x, y  and za t a point in an element. Some of the values 

expressed in local coordinate are denoted in italic letters such as x,y or S, if 

necessary for distinction. The local z axis is set in the direction normal to the 

midsurface. Accordingly, the x and y axes are tangential to the surface. The 

directions of the three axes are expressed by unit vectors, v1 v2, and v3, each of 

which has three directional cosines with respect to the global coordinates. A 

vector in the z direction can be found as a cross product of any two vectors 

tangent to the midsurface (Ahmad etal., 1970).

Natural coordinates

The natural coordinates are dimensionless coordinates representing a 

relative location of a point within an element. On a surface parallel to the 

midsurface, £ and r\ are either the two independent area coordinates for a 

triangular element or the (-1.+1) range intrinsic coordinates for a quadrilateral 

element. In the thickness direction, £ is a (-1,+1) range intrinsic coordinate 

normal to the midsurface. Some of the values expressed with respect to natural 

coordinates are denoted with underlines, if necessary for distinction. For 

example, q, and 0 are rotations about the axes normal to the £ and r\ directions, 

respectively.
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2.1.2 Alternative form of coordinate transformation

One usually obtains a vector 8 at a point p within an element by 

interpolation of the nodal vectors 8 j .  Then, one applies coordinate 

transformation to convert it into the other coordinate system, say local 

coordinates.

n
8 = X  N j8 j (2.1.1)

i-1

and

8 = R 8 (2.1.2)

in which 8 is a vector expressed in the local coordinates, and R is a rotation 

matrix transforming the global coordinates into the local coordnates at a desired 

point.

As an alternative, one may think of reversing the order of interpolation 

and transformation. That is, one transforms all the nodal values first

<5j = R 8 1, (2.1.3)

and interpolates them later

n
5= X  N | <5j (2.1.4)

i =1

This requires more multiplication by the rotation matrix, because one must 

transform all the nodal values instead of transforming values at point p only. 

However, as will be shown later, this procedure is more efficient for evaluating 

the curvature, if required, as well as the Jacobian matrix and other derivative 

matrices. By this alternative form of the transformation, one can write directly
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Fig. 2.1 Two alternative procedures of coordinate transformation
(a) transforming the coordinates after interpolation
(b) interpolating the transformed coordinates

Fig. 2.2 Nodal degrees of freedom in global coordinates
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the Jacobian matrix J which relates the local coordinates and the natural 

coordinates:

V5 = J V X (2.1.5)

with

M (a 1
_ / > V* = <3x ,

a_

& \ j ,ay,

(2.1.5a)

and the Jacobian matrix 

J =

-*>T| y-n

(2.1.5b)

One can define a new transformation matrix J2 which transforms the first 

and the second derivatives from local to natural coordinates.

with

V% = V2 y xx

( 3  ) ( 3  )

a a
an ay

a2 V = (/ y XX a2
a ^ ax2

a2 a2
an2 ay2

a2 a2
l a w la ^ y j

(2.1.6)

(2.1.6a)
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* * y * 0 0 0

•*>T1 y> n 0 0 0

X'\% (y.*)2 2 x , ^ (2.1.6b)

y.riTi (*.„)2 (y. ti)2 2x>r̂ y,̂

y>%ti y.^y-n x,iy iti+x,^y it) -

in which the higher order derivatives are also evaluated using interpolation 

equations. If J2'1 exists, the inverse relation of Eqn.(2.1.6) can be written as

V x *= J 2-1 VK (2.1.7)

It is convenient to denote S = J2'1 and define another 3X5 transformation matrix 

S* for future use:

S31 S32 ' ■ ' S35
s* = S41 S42 • ' ' S45

- 2S51 2S52 •■ ■ 2S55.

>̂xx Î’XX (U 2 (11- x)2 2̂>xll>X
= yy T],yy (ty)2 (Tl.y)2 2̂>yn >y

- 2txy 2q>xy 2«-y 2n-xrl.y 2(̂ >xll.y'*‘̂ ixll>y)-

With these, one can relate the two differential operators using the 

transformation matrix.

(2.1.9)
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with

dy2

2d2

(2.1.9a)

Now, the convenience of the coordinate transformation will be exemplified by 

the evaluation of surface curvatures, even though the curvature is not involved 

in the present formulation. To obtain the curvatures at a point p within an 

element, one first transforms all the coordinates of the nodal points into the local 

coordinates at that point,

(2 . 1. 10)

and interpolates the nodal coordinates:

n
Z = S  N jZj

i = 1

n n
Vf t (z ) = Vf t  ( I  N i z j ) = I  V^(N ,) z i (2.1.11)

i =1 i=1

in which is the differential operator defined in Eqn.(2.1.10a). If one denotes 

S = J2'1, then the curvatures of a shallow shell at point p are



27

( z ■ \I’XX $31 S32 ' ‘ ' S35
k = < Z\,yy - S41 S42 • • ' S45

k^z i'xy ) -2S5i 2 S52 • • 2S55 -

Z i-!t 

Z i-^ ’ 

z i,Trn 
\ z i>£n

or

k = V*x { z ) = S* VK ( z )

(2 .1 . 12)

(2.1.12a)

Thus, one can evaluate the curvature without resorting to extra coordinates 

defined relative to the base triangle employed in other references (Strickland 

etal., 1968; Bonnes et al., 1968)

2.2 New concept of element decomposition

Decomposition of an element is not new and has been used in many 

other plate and shell elements. For example, the flat element is composed of 

membrane and bending elements. The BCIZ element (Bazeley et al., 1965) is 

obtained by superpostition of two displacement fields, i.e., the rigid body 

displacement field and the remaining ones. Moreover, Stolarsky et al. (1984) 

separated the displacement field into two different modes. However, the 

concept of decomposition is more generalized in the present study. The actual 

element is termed the total element and is decomposed into a translational 

element and a difference element. The nodal displacements are decomposed 

into the part for the translational element and the remaining part for the 

difference element. The displacements within each element are determined by 

independent interpolation of the respective parts of the nodal displacements. 

The total element is built by superposition of the two component elements. The 

decomposition is intended not only to simplify and systematize the formulation
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Fig. 2.3 Methods of element decomposition
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but also to ensure the rigid body displacements. One can arrive at different 

types of elements depending on the method of decomposing the nodal 

displacements.

2,2.1 Total element

The total element represents the actual displacement field. The 

displacement field is defined by five displacement components,

in which u, v, and w are translations respectively in the x, y, and z Cartesian 

directions , and a and p are rotations about two orthogonal axes as illustrated 

in Fig.2.2. For future convenience, a translation vector and a rotation vector are 

also defined as

The total element at each node should represent the actual nodal 

displacements. That is,

A = L u v w a p J (2 .2 .1)

8 = L u v w J 

0 = L a p J . (2 .2 .2)

A(at node i) = Aj = L 8j 0j J . (2.2.3)

The element nodal d.o.f are denoted by A®.

A® = LA-j - • • AnJ 

= L M r  • • 5n0nJ

=  Lu-, V-| Wt ttl pr  • • Un Vn w n C X n P j

(2.2.4)
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2.2.2 Translational element

The translational element is defined completely by nodal translations. 

The element is denoted with superscript t.

At = L 8< 0tj (2.2.5)

The translations represented by the translational element should match the 

actual nodal translations at each node,

S*i = 6,,

a“ = Lf, e>, • ■ ■ s'ne>nJ = Ls, e’r • ■ s„e<nJ. (2.2.6)

2.2.3 Difference element

The difference element represents the difference between the total 

element and the translational element. The element is denoted with 

superscript d.

Ad = A -  A1 (2.2.7)

The nodal translations of the element are always zero,

5dj = 0 ,  V i

Therefore,

Ade = L sd-, ed! • • • 8dn ednj  = Lo edi • • • o ednJ (2 .2 .8)

2.2.4 Decomposition of nodal d.o.f.

The nodal d.o.f. can be decomposed in many different ways. One may 

logically think of four possibilities depending on whether any or all of the
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component elements are subject to the Kirchhoff assumption. The fourth 

possibility, in which the difference element satisfies the Kirchhoff assumption 

and the translational element does not, is excluded in the present study 

because it may not allow rigid body displacement. The other three types of 

decomposition are designated as type I, type II and type III decompositions. 

Each type of decomposition is defined below.

Type I decomposition

The displacement fields are decomposed so that both the translational 

and the difference elements satisfy the Kirchhoff assumption. First the nodal

rotations of the translational element are evaluated as a function of surface 

normal displacement with G ^ V ^ w 1) which is the statement of the Kirchhoff

assumption. And then, the nodal rotations of the difference element are 

obtained by 0d=0-0t. The translations within the translational element are 

determined by interpolation of nodal translations, and the normal displacement 

within the difference element is determined from nodal values of 0d.

Type II decomposition

In type II decomposition, the translational element satisfies the Kirchhoff 

assumption but the difference element allows transverse shear deformations. 

The nodal displacements are decomposed in the same way as the type I 

decomposition. The translations of the translational element are determined by 

interpolation of nodal translations. The normal displacement of the difference 

element is restrained to be zero, and the rotations are evaluated by 

independent evaluation of the nodal values of ad and pd.
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Type III decomposition

In type III decomposition, the rotation of the translational element and the 

translations of the difference element are restrained to zero. The translations of 

the translational element and the rotations of the difference element are 

obtained by independent interpolation of corresponding nodal values.

2.3 Decomposition of an element

The concept of element decomposition has been introduced in the 

preceding section. In this section, the displacement field within an element is 

constructed on the basis of each decomposition method. An element is, 

hereinafter, designated as type I, type II or type III element, according to the 

method of decomposion. Interpolations of the displacement field from the 

nodal displacements are expressed by the displacement function matrix which 

is given in the same format for all three different types of e lem ent 

decomposition.

2.3.1 Type I decomposition

Translational element

The displacement vector of the translational element is given by Eqn.

(2.2.6). The translations are obtained by interpolation of nodal values,
n

St = l N i 8 i (2.3.1)
i=i

and in local coordinates,
n n

5 l = I  Ni<5j = I  N iR 5| 
i =1 i =1

(2.3.2)
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in which Sdenotes a translation vector in the local coordinates and R is the 

rotation matrix evaluated at the point of consideration. One can relate Sx to the 

element nodal d.o.f. in the form of

<5l= L Ae (2.3.3)

with

A® = L u1 V! W1 cq p! • • • un vn wn Op pn J (2.2.4)

L = [ NtR 0 N2R 0 ■ ■ ■ NnR 0 ] (2.3.3a)
3x5n 3x3 3x2

or

L i N 1 R 11 N i R i 2 N 1 R 13 0 0 - ' N nR-ii N nR i2 N nRl3 0 0

1-2 = N i R2i N 1 R 22 N i R23 0 0 • ' N nR21 N nR22 N 0^23 0 0

1--
--- r- co I__
_

- N i R 32 N 1R33 0 0 ■ • N nR3i N nR32 N nR33 0 0

(2.3.3b)

For simplicity, Eqn.(2.3.3c) can be rewritten as

Lk = [ Hki 0 Hk2 0 ■ ■ ■ Hk3 0 ] for k=1,2,3 (2.3.4)
1x5n 1x3 1x2

with

Hk1 = N-|Rk (2.3.4a)

Rk = L Rki Rk3 -I (2.3.4b)

Let Lk' be the first derivative of Lkwith respect to the natural coordinates. 

Differentiation of Eqn.(2.3.4) with respect to the natural coordinate £ and rj 

yields Lk'.

W =V^(Lk) = [H 'k1 0 H'k2 0 ■ • • H'kn 0 ]  (2.3.5)
2x5 n 2x3 2x2

U’w -  ^ ( H k i)=V5(N,)Rk + NiV5(Rk) (2.3.5a)
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Once Lk' is evaluated, the derivatives with respect to the local coordinates are 

obtained simply by use of the Jacobian inverse.

Lk' = J -V  = [ H'k1 0 H'k  0 • ■ • H’kn 0 ] (2.3.6)
2x5n 2x3 2x2

H'ki =J ' H'ki (2.3.6a)

n
When R is evaluated by interpolation of nodal values using X  N| R(i)

i =1

n n

v$( Rk) = v §( X  N, Rk(i)) = X  V^(Nj) Rk(i) (2.3.7)
i =1 i =1

where R(i) is a rotation matrix evaluated at node i. Assuming that the curvature 

of an element is not large, one may set V^( Rk ) = 0.

If one denotes with underlines the rotations expressed in natural 

coordinates such as

0 = V^(w)

= V^vv1), etc. (2.3.8)

then,

or e u j- ia *  (2 .3 .9)

Since the translational element, in type I decomposition, is subject to the 

Kirchhoff assumption, the rotation can be expressed in terms of the surface 

normal translation.

fit=  ^ = fw t ,^ = V j: (w t)  (2.3.10)

I f f  i  V ' . J

From eq.(2.3.3) and (2.3.10)

Q}=  V ^(L3A«) = L3 ' A® (2.3.11)
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0 t=  J-1$t= A 8 = L3’ A e

Now, the displacements of the translational element can be written in terms of 

the element nodal d.o.f. of the total element.

(u x\

in which

v '
A x = ( w x =<

ta1

(S ' ' ' L

W ' , - L ’s-
A8 = T ' A8 (2.3.12)

T  =

T 'i
L T»2

3x5 n or - T l3 .

- l 3'-

1---i—

2x5 n

—
i_̂y>

_
i

= L

= U '

(2.3.12a)

For future use, the k& row of T 1 is denoted by T lk . The matrix T is designated 

as the displacement function matrix. The matrix T l represents the portion of the 

displacement function matrix contributed by the translational element.

Difference element

Although the total element is constructed by superposition of the 

translational and the difference elements and is not determined yet, the nodal 

contribution of the difference element is obtained using the relation

or in local coordinates,

Ad = A -  A1 (2.3.13)

Ad = A -  A x (2.3.14)
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Here, one must distinguish beween two different notations. A\ denotes the

displacements of node i expressed in the local coordinates of a point in 

consideration within the element, whileA^is the displacements expressed in 

the local coordinates of node i. Naturally, A j(i) implies the displacement of

node j expressed in the local coordinates of node i. For simplicity, however, 

the displacement at node i expressed in the local coordinate of node iwill be 

denoted by A(i) instead of A i(j).

= 4 (l|—4 '(i) (2.3.15)

/ * dd > H 5"> v p m

\ e d( i) i  V 0(1) )  10'(|) /  (2.3.15a)

The nodal translation consists only of the contribution of the translational 

element; therefore,

5^) = $(i) and 5 d(i) = 0 (2.3.16)

The rotation of the translational element at node i can be evaluated by applying 

Eqn.(2.3.6) and (2.3.11 ) at the node,

fl’li) -  <-3(l) Ae -  [ H'31(i| 0 H'32(i) 0 • • ■ H'3n(i) 0 ] A6 (2.3.17)
2x3 2x2

One can express the relation between 0(i) and the element nodal d.o.f. as follows;

0(i) = [ 0  0 0 0 ■ • • 0 I - - - 0 0 ] A® (2.3.18)
2x3 2x2 2x3 2x2 2x3..2x2 2x3 2x2

1 2 . . . i . . . n

in which I is a (2x2) unit matrix. Substituting Eqn.(2.3.17 ) and (2.3.18) into 

0d(i)=0(j)—10t(i), one obtains

Gd(i)= t-H'sKi) 0 ■ ■ ■ -H '3i(i) I ■ ■ ■ -H '3n(i) 0 ] A® (2.3.19)
2x3 2x2 2x3 2x2
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The rotation expressed in natural coordinates at node i is obtained using the 

Jacobian matrix.

fid(i)=  J(i)6d(i)

=  [  - H ’3 !  (j) 0

(2.3.20)

-H'0  3i(i) J (i) ‘ —t i ,3n(i) 0  ]

since H'3k(i) = J(i)H 3k(i) is the inverse relation of Eqn.(2.3.6a), where J (i) is the 

Jacobian matrix evaluated at node i. Now, the nodal rotations of the difference 

element with respect to natural coordinates can be expressed in terms of the 

element nodal d.o.f.

f id<2>

<

vfid(n) J

—JtL'31 (1) J(1) _ t l ,32(1) 0  ’ 

—tL’31 (2) 0  —ti-32(2) J(2)‘

■ ■

■ ■

-H'31(n) 0 -H ,32(n) 0

_tL'3n(i) o 

—t i '3n(2) 0

■ ■

■ ■

tL3n(n) J (n) -

Si >

01

< ■

«n

_  ̂®n >

(2.3.21)

or

fide = Q Ae (2.3.21a)

in which

r * w

fid(2)
fide = (2.3.21b)

vfid(n)y
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—H '31 (1 ) J(1) —Jd'32(1) 0  ’ ' ' ’ -ti'3 n (1 ) 0

~H'31(2) 0  _ tl'32(2) J(2) ’ ’ - ’ —— 3n(2) 0

Q (2.3.21c)
2nx5n

- -H '31 (n) 0 -H '23(n) 0 ■ - -tL'3n(n) J  (n) .

In the foregoing, the relation between the nodal rotation of the difference 

element and the element nodal d.o.f. has been derived. The next goal is to 

evaluate the displacements of the difference element at a point of consideration 

within an element. We can assume that u 1 = u andv 1 = v . This assumption is 

legitimate as well as natural because there is no rotation around the axis in the 

surface normal direction. It is equivalent to the assumption of

As already given in Eqn.(2.3.10) for the translational element, there exists a 

functional relation between the normal displacement and the rotations of each 

element subject to the Kirchhoff assumption.

Now, the difference element will be constructed such that fi.d at each node 

satisfies the nodal value given in Eqn.(2.3.21). This can be achieved by use of 

generalized coordinates in a similar way as was done in the derivation of the 

displacement interpolation function from generalized coordinates. One first 

defines w d in terms of generalized coordinates.

u d = v d = 0 (2.3.22)

(2.3.23)
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wd = a1 + a2̂  + a3ri + -----+ a3r£f>r|q (2.3.24)

or

wd = pT a
1x3n 3nx1

(2.3.24a)

with

pT = L 1 £, T ]----- p̂riq J

aT = L a ^  • ■ ■ ■ a3n J

(2.3.24b)

(2.3.24c)

in which p is a vector of polynomial terms selected from Pascal's triangle and 

a is a vector of generalized coordinates.

f  0 1
" 1 $1 Til 1̂2 Til2 ------- ( a )  a1

£ r(1) 0 1 0 2$i 0 • • • • q^ip'1Tiiq a2

£ro) 0 0 1 0 2rii . . . .  q^Pri^-1 a 3

< • > = • • • • • ...................... < • >

0 1 Tin n̂2 Tin2 ------- ^npn nq •

^(n) 0 1 0 2̂ n 0 • * • • Q^nP' 1Tlnq •

l  2r(n) J . 0 0 1 0 2Tln • • • • q ^ W 1 -  ̂ a 3n y

Denote

2nx1

Pd(2)

0 '
« d(i)

Pd(2)

f a  \  a 1

a 2

. > 0 de =  < ► a =< .

«d(n)
VPd(n)>

3nx1

0

“d(")
v P d(n)j

3nx1

<a 3n>

(2.3.25a)
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1 $1 ■Hi ^ 1 2 T il2 ----------

0 1 0 2 $ i 0 . . . .  q ^ M r i ^

0 0 1 0 2 t H . . . .  q ^ P q ^ - 1

3nx3n

1 Tin ^ n 2 Tip2

0 1 0 2 ^ n 0  • • • • <l4np ' , '1nq

0 0 1 0 2 t l n q 4 , W 1 .

Then,

£ de = A a
3nx1 3nx3n 3nx1

Therefore,

a = A 1 e de = G £de

(2.3.25b)

(2.3.26)

(2.3.27)

in which G is a (3nx2n) matrix obtained from A*1 by removing the columns 

corresponding to zero entries in vector Q.de. Substituting Eqn. (2.3.27) in 

(2.3.24a), one obtains

w d = pT G fide = pT G Q Ae (2.3.28)

and since only p in the above equation is a function of coordinates,

Qd = {w d) =V^ ( pT) G Q A8 = a' G Q A8 (2.3.29)

0d = J-1i d = J 1£' G Q A8 = p' G Q A8

with

£' = V5(p) = 0

0

1 0 

0 1

2£ 0 • • • • q̂ P-1r|ci 

0 2ri • • • • q̂ PqP-1. (2.3.29a)

P' =
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The following is the displacement function matrix of the difference element, 

which summarizes Eqn.(2.3.22), (2.3.28) and (2.3.29).

Tdr 0
Td2 = 0

LTd3- . pT G Q.

'Td4‘
= L’3 + p ' GQ

-Td5-

(2.3.30)

Total element

The displacements of the translational and the difference element have 

been related to the nodal displacement by the displacement function matrices of 

each element.

A* = V A *  Ad = Td A® (2.3.31)

Superposition of the displacement fields in both elements yields that of the total 

element.

A = T Ae = ( Td + V ) Ae (2.3.32)

Accordingly, the displacement function matrix for the total element is obtained 

by addition of Eqn.(2.3.12a) and (2.3.30).

Ti
t2

-T3.

Li 
L2

L l3 + pT g q  J

= L'3 + p ' GQ
Lt 5J

(2.3.33)

in which Tk is the klb row of T.
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2.3.2 Type II decomposition

Translational element

The displacement field of the translational element in type II 

decomposition is identical to that of type I decomposition. Therefore, the 

displacement function matrix derived in the previous section is applicable for 

the type II decomposition as well.

T*i
T*2

- T V
r m

LTt5 J

= L
(2.3.12a)

Difference element

In type II decomposition, all the translations of the difference element are 

suppressed, i.e.

8d = 0 , (2.3.34)

and the rotations of the element are obtained by independent interpolation of 

nodal rotations, £ d j-

n
fid = x  n i adi = n fide

i =1
(2.3.35)

with
N = F N-, 0 N2 0 • ■ • Nn 0 

2x2n [  0 0 N2 • • • 0 Nn _
(2.3.35a)

It should be noted that an interpolation has been applied to 0d instead of 0d. 

Direct interpolation of 0d may damage the geometric isotropy, because one
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obtains different sets of 0d depending on the establishment of the local 

coordinate which is not uniquely defined at each node. Substitution of 

Eqn.(2.3.21a) into (2.3.35) gives the rotations of the difference element 

expressed as a function of the nodal displacements.

fid = N Q Ae (2.3.36)

which can also be converted into the local coordinates.

0d = J-ifid = J-1N Q Ae (2.3.37)

Thus, the displacement function matrix of the difference element is obtained 

from Eqn.(2.3.34) and (2.3.37).

T V
Td2
-Td3-
Td41

= 0

= J '1N Q
LTd5J

(2.3.38)

Total element

The addition of Eqn.(2.3.12a) and (2.3.38) yields the displacement 

function matrix of the total element with type II decomposition.

V
t2 =L
.T3 (2.3.39)
V

-Ts.
= L3’ + J 1N Q
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2.3.3 Type III decomposition 

Translational element

The rotations of the translational element in type III decomposition are 

suppressed to zero, while the translations of the element are retained as in the 

type I and II decompositions. Therefore, one can write the displacement 

function matrix of the translational element directly by use of the previous 

formulations.

Difference element

In type III decomposition, all the translations of the difference element are 

suppressed, i.e.

and the rotations of the element are equivalent to that of the total element. The 

rotation vector expressed in natural coordinate can be written as a function of 

the element nodal d.o.f.

(2.3.40)

= 0

<5d = 0  , (2.3.41)

^(i) = J(i) 9(i) 
fide = Q0 A® (2.3.42)
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with

0 (̂1) 0 0 0 0

Q0 = 0 0 0 J(2) 0 0 (2.3.42a)
2nx5n 2x3 2x3 2x3 2x3

0 0 0 0

in which J (i) denotes the Jacobian matrix evaluated at node i. The rotations at 

the desired point are obtained by independent interpolation of nodal rotations.

The reason why one should interpolate fi.dj instead of 0dj is explained after 

Eqn. (2.3.35) in the previous section. In Ahmad's degenerate shell element 

(Ahmad et al., 1970), the nodal rotations are first converted into translations in 

global coordinates and then these translations are interpolated to a desired 

point. This type of interpolation, physically loyal to the degeneration concept, 

prevents rigid body rotation of a curved element. That is the reason why the 

degenerate shell element performs poorly for the case shown in Fig.4.3. It is 

obvious that the interpolation of fi.d allows rigid body rotations, as does 

isoparametric interpolation of translational d.o.f. (Cook,1981) Substituting 

Eqn.(2.3.42) in (2.3.43), one obtains

The rotations expressed in Cartesian coordinates are obtained again by use of 

the Jacobian inverse.

n
fid = l N ^  = Nfide (2.3.43)

i =1

fid= N Q 0 A8 (2.3.44)

0d= J-i£d = J1N Q 0 Ae (2.3.45)
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From Eqn. (2.3.41) and (2.3.45), the displacement function matrix for the 

difference element can be written as

T d i

Td2
- T V
r T M

= 0

= J'1N Q0
LTd5 J

(2.3.48)

Total element

In type III decomposition, the total element has only the contribution of 

translational element for translation and only the contribution of difference 

element for rotation.

V V  ‘

t 2 = T<2

t 3 .

CO

V ' T V

-T 5 - - Td5 .

(2.3.47)

The above displacement function matrix reveals uncoupling of the 

translations and rotations in the type III decompostion. However, they are 

coupled by imposition of transverse shear constraints as shown subsequently in 

Eqn.(2.4.8).

2.4 Strain-displacement relationship

The displacement field within an element has been related to the nodal 

displacements by displacement function matrix. Differentiation of the matrix 

yields the strain-nodal displacement relationship which is directly involved in
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the stiffness matrix evaluation. The strain-displacement matrices relating the 

strain field to the nodal displacements are derived for each type of element 

decomposition in the following.

2.4.1 General form of strain-nodal displacement relationship

In a situation where the transverse shear strains are zero or constant 

through the thickness, the displacement field can be represented in terms of the 

midsurface translations and rotations.

1 0 
0 1 

LO OJ

a

P

(2.4.1)

where Lu ' v ' w'J represents the translations of a point on the surface a distance 

of 1/2(t£) from the midsurface, whereas lu  v w j  are the translations on the

midsurface. The displacements also can be related to the element nodal d.o.f. 

by use of the displacement function matrix derived in the previous sections.

V
- I t cO ^

T4 '

1----

( - t 2 T5
W ' J - Lt 3 .

c.
. 0 . -

Ae (2.4.2)

The strains are defined in local coordinates. All six strains can be included for a 

shell element in which the transverse shear effects are included. However, the 

strain ezneed not be included in the formulation, because the normal stress az 

in the thickness direction is negligible according to the Love assumption, and 

all the other stresses are decoupled from the thickness direction strain ez in 

order to relieve the excessive stiffness. Therefore, one retains only five strain 

components expressed in local coordinates.
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e = <7 xy

V
VTxz;

> (2.4.3)

For the convenience of the formulation, the in-plane strains Lex ey yxy J and the 

transverse shear strains Lyy2 Y*2Jare considered separately. Here, 'in-plane' 

implies the directions parallel to the mid-surface. One applies to the in-plane 

strains the strain-displacement relationship of two-dimensional plane elasticity.

The in-plane strains can be divided into membrane strains em and bending 

strains eb.

em eb = (2.4.5)

The strains can be related to the element nodal d.o.f. in the form of

em = Bm A®

eb = — 1 1 C Bb Ae 
2

in which the matrices B m and Bb are to be determined. 

Eqn.(2.4.2) into (2.4.4) yields

"̂ 1 >x

1

__
_1

Bm = T2,y Bb = *̂5>y
3x5n .Ti,y +T2,x . 3x5n T„ + Tc L-M'y ‘ 5 ’X-1

(2.4.6)

Substitution of

(2.4.7)
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The transverse shear strains are

Es = f yxz\ = ( w \ x+u '>2\ = fw,x } - ( cl\ 
\1yzJ \ w \ y + v \ z J \W,y J \ p /

(2.4.8)

since 2 =1/2( t Q a n d  a ,z = p,z = 0, neglecting higher order terms. The 

transverse shear strains can also be related to the element nodal d.o.f.

es= Bs Ae (2.4.9)

with

II
(0C

O

T 3 .X
-

1
H •U __
__

_
1

- ^3<y- Lt 5J
(2.4.10)

Thus, one can establish a general form of the strain-nodal displacement 

relationshipas follows.

e je m+eb\  =

1—
 

C
O

X-P

T
-|C

\

1EC
O

1__

\  *  / Bs
A® (2.4.11)

or
e = B Ae (2.4.11a)

with
B = Bm — ^ tCBb 

Bs
(2.4.11b)

The matrices B, Bm, Bband Bs are designated as strain-displacement matrices 

and more specifically membrane strain-displacement matrix, etc. In the 

following sections, the strain-displacement matrices are derived for each type of 

element decomposition.
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2.4.2 Strain-nodal displacement relationship for type I decomposition

Substituting Eqn.(2.3.33) in (2.4.7), one obtains the membrane strain- 

displacement matrix for type I decomposition.

Ti,x ' 1 0  0 o ' ■ L -r
T2,y = 0 0 0 1

-Tl,y+T2,X .

00

- L 2-
4 x 5n

The bending strain-displacement matrix can also be derived from Eqn.(2.3.33) 

and (2.4.7) *

Bb =
"̂ 4>x 
"̂ 5’y

-^4<y^5’X

= V‘x ( l-3+p G Q) = s*( L3"+£" G Q) (2.4.13)

because

"̂ 4>x ' dldx 0 ' sldx 0

"̂ 5>y = 0 3/3y = 0 d/3y > (L3+p g Q)

-T4,y+T5,x- 3!dy 3>dx- -T 5. - 3>3y 3/dx- 3li)y , (2.4.13a)

*The same strain-displacement matrix can be derived based on the Kirchhoff 
assumption adopted in the type I decomposition,

CX,x =W ,xx Piy = '^>yy ®>x= P>y =  w<xy
Therefore, the bending strains can be written purely in terms of the normal 
displacement.

1 f W m  )  1
e b =  - ^ t ?  ( W , yy  )  — J t c n ( i v )

\̂ 2W)Xy j

V*x (w ) =S* VK (w )
= S V ^ ( L3 + pT G Q ) A®
= S* ( L3" + a" G Q ) A®

Therefore, Bb = S* ( L3" + g" G Q )
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in which G and Q are constant within an element. The first and second 

derivatives of L3 and p are obtained by differentiating respectively Eqn.(2.3.4) 

and (2.3.24b) with respect to the natural coordinates £ and rj.

W  = V ^ ( L 3) = [H"1 0 H"2 0 ■ ■ ■ H"n 0 ]  (2.4.14)
5x5n 5x3 5x2

fi" = V ^ (p T)
5x3n

0 1 0  2 ^ 0 rj • • • • p^P-1rj^

0 0 1 0 2r\  ̂ • • • • q^PriP'1

0 0 0 2 0 0 • • • • p(p-1)^P-2r(q (2.4.15)

0 0 0 0 2 0 • • • • q(q-1)£Pr|q'2
. 0 0 0 0 0 1 • • • • pq^P-1rtq-1 .

The transformation matrix S* is defined in Eqn.(2.1.8). Assuming that the 

curvature is not large within an element, one can write

H"i = V ^ ( H j ) = V ^ ( N i ) R 3 (2.4.16)

Because the transverse shear strains are neglected in type I decomposition, the 

transverse shear strain-displacement matrix is null.

Bs = 0 (2.4.17)

2A .2 Strain-nodal displacement relationship for type II decomposition

Since the translation element of type II decomposition is identical to that 

of type I decomposition, the membrane strains are obtained from the same 

relation,

Bm =
3x5n

1 0 0 0 L'
0 0 0 1
0 1 1 0. . L'

(2.4.12)

4x5n
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The bending strain-displacement matrix with type II decomposition is derived 

from Eqn.(2.3.39) and (2.4.3).

1

X __
1

0

Bb = "̂ 5>y = 0 3'dy

.T4,y+ T5,x . -3'a / sidx -

( L3'+J-1N Q) (2.4.18)

After a rigorous manipulation, presented in Appendix A, of the left hand side, the 

matrix Bb can be written as

Bb = S*( L3"+ N*Q ) (2.4.19)

where S* is defined in Eqn.(2.1.8), and

Ni 0 n2 0 • • Nn 0
0 Ni 0 n2 • • • 0 Nn

NU 0 N2,S 0 • • Nn,̂ 0 (A.1.12)
0 N 1 ,Tl 0 N2.„ • • • 0 n̂,T|

5 Ni.n 2 ^ 2-t1 • . . I n2 W 5 Nn,5 J

The transverse shear strain-displacement matrix is obtained by substituting 

Eqn.(2.3.39) into (2.4.10).

Bs = L3' -  ( L3' + J-1N Q ) = -J-1N Q (2.4.20)

since

(2.4.21)

The right hand side of Eqn.(2.4.20) is equivalent to (-0d). This implies that the 

transverse shear strain in type II decomposition is equivalent to the rotation of 

the difference element. According to Eqn.(2.4.20), the transverse shear strains 

have been obtained by direct interpolation of their nodal values.
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2.4.4 Strain-nodal displacement relationship for type III decomposition

The membrane strains have the same relationship with the nodal 

displacements as in type I and II decompositions.

Bm =
3x5n

1 0 0 0 L'
0 0 0 1
.0 1 1 0. . L’

1

2-1

4x5 n

(2.4.12)

The bending strain-displacement matrix of type III decomposition is obtained 

from Eqn.(2.3.47) and (2.4.7).

"̂ 4>x 'aldx 0

Bb =

1 r
1 H
 

**
<P

 
^

*

0 S ty  

-d'dy d'dx -

( J ' N Q 0) (2.4.22)

By the same analogy to Eqn.(2.4.18), the matrix Bbcan be written as

Bb = S‘N* Q0 (2.4.23)

The matrix Bs for the transverse shear strain can also be obtained from 

Eqn.(2.3.47) and (2.4.10).

Bs = L3'-J-1N Q 0 = J-1(L3'-NQ0) (2.4.24)

Thus, all the strain-displacement matrices necessary for stiffness matrix 

evaluation are obtained.

2.5 Element stiffness matrix

Once the strain-displacement relations are established, the stiffness

matrix can be evaluated directly using the following standard equation of

displacement finite element formulation:
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ke = BTE B dV (2.5.1)

in which k® is the element stiffness matrix, and E is the stress-strain matrix. 

Derivation of the equation can be found in many references (Desai and Abel, 

1972; Zienkiewicz, 1977) and will not be repeated here. As the stresses and 

strains are expressed in local coordinates, one has a 5x5 stress-strain matrix 

which can be represented as

E p E ps

E =  2x2 2x3

5x5 ESP Es
2x2 3x3

(2.5.2)

in which Esp = (Eps)t and E, Ep, and Es are symmetric. For isotropic or 

stratified anisotropic materials, Eps=0. If the material is isotropic,

Ep =

1 v 0
v 1 0
0 0 (1 -v )/2 .

Es = _E___
2 k (1 +v)

1 0 
. 0 1 .

(2.5.3)

in which E is the Young's modulus, and v is the Poisson's ratio. The constant k 

is a factor to compensate the strain energy for transverse shear displacement 

approximation. Substituting Eqn.(2.4.11b) and (2.5.2) into (2.5.1), one obtains

k® =
•

~Bm -  ± t £ B b ' T ’ E p E ps

I
CD 3 I

ro
 | —

*■
r“+ iT
X CD or

__
_

1

J v B s _ E sp E s B s

dV (2-5.4)

Changing to integration in terms of natural coordinates, one may write

r 1 r
~Bm-  | t £ B b ' T '  ep Eps " ~Bm-  ^ t £ Bb I J*|d$ dr] d£

J -1 . A Bs . Esp Es Bs (2.5.4)
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in which J* is a Jacobian matrix which transforms the local coordinate into the 

natural coordinate, and |J‘ | is its determinant in three dimensions. Evaluation 

of |J*| is detailed in Section 3.1.1. The integration in the thickness direction can 

be performed explicitly. And integration of ^d^ yields zero. Therefore, the 

equation can be expanded as follows

ke = t f  (BmTEP Bm + jL  t2 BbT EP Bb+ BsT ESBS + BmTEPs Bs+ BsTEsPBm)|J| dA 

J a (2.5.5)

The stiffness matrix can therefore be divided into four parts.

with

k® = km + kb + ks + kPs

km = f  BmTEP Bm|J| t dA
J A

kb= _L f  BbTEP Bb |J| t3 dA 
12 J A

ks = f  BsTes BS |J| t dA 
J A

kPs= f (  BmTEPs Bs+ B sTEsP Bm)|J| tdA
J A

(2.5.6)

(2.5.6a)

The matrices km, k band ks correspond respectively to the commonly-called 

membrane, bending and transverse shear stiffness matrix. The matrix kPs 

represents the cross-effect of membrane and transverse shear strain, and 

vanishes when Eps = (Esp)t = 0. Thus, the stiffness matrix equation can be 

simplified further for isotropic or stratified anisotropic materials.

k® = km + kb + ks (2.5.7)

The formulations based on the three types of element decompostion are

summarized in Table 2.1.
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Table 2.1 Summary of the formulation

Classification Type I Type II Type III

Transl. Kirchhoff
Element element
decomposit- ------------------------------
ion Differ. Kirchhoff

element

Kirchhoff rotation
suppressed

translation translation
suppressed suppressed

Displacement
fi in t̂innc

Ti
t 2
-T3-

Li

1-2
,l3+ptg q .

Li

L2
-*-3-

Li

l 2
l3-

1 Li 1 ILslI Li IIO

t 4‘
lt5J L'3+p'GQ L’3+J-1NQ J 1NQ

Strain-
displacement-
matrix

Bm
1 0 0 0 L'i 
0 0 0  1

.0 1 1 o j Ll '2_
same as type I same as type I

Bb S‘(L3"+a"GQ) S*(L3"+N*Q) S*N*Q0

Bs 0 -J ‘1NQ J-'OLs'-NQo)

Similar elements BCIZ plate bend.1 
and Strickland's 
3-node shell2

Ahmad's
degenerate
shell3

1Bazeley et al. (1965), 2Strickland and Loden (1968), 3Ahmad et al. (1970)
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2.6 Complementary devices for improvement of the formulation

The greatest difficulty in thin shell formulation originates from the 

Kirchhoff assumption which mandates C1 interelement continuity (Wempner 

etal., 1968; Key et al. 1970; Gallagher, 1970). The difficulty has been 

overcome simply by including the transverse shear effect in the element of the 

present study as well as in the degenerate family of elements. The included 

transverse shear energy is of order t, while the bending energy is of order t3, 

where t represents the thickness of the shell. Consequently, the elements have 

the tendency to become too stiff in thin shell and plate situations. The 

convergence is unacceptably slow for some cases. It has been commonly 

understood that this undesirable behavior, called shear locking , is chiefly due 

to excessive shear strain. As will be discussed in the following chapter, the 

numerical tests on the new element developed in the present study also show 

the significance of the locking behavior for thin shells and plates.

Many approaches have been proposed to alleviate shear and membrane 

locking phenomena (Zienkiewicz, 1977). Some of such approaches for 

displacement formulation are reduced integration (Zienkiewicz et al., 1971; 

Pawsey et al., 1971), the discrete Kirchhoff constraint approach (Bathe et al., 

1974; Irons, 1980), the addition of internal d.o.f. (Cook, 1972; Takemoto et al., 

1973; Hughes et al., 1978), penalty methods (Zienkiewicz, 1977), energy 

balancing (Fried, 1974), mode decomposition (Stolarski et al., 1984; Stolarski et 

al., 1985), and derivative smoothing by substitute shape functions(Razzaque, 

1973). Other alternative formulations such as hybrid formulation (Pian et al., 

1969; Pian, 1971, 1983; Morley, 1984), the mixed formulation (Hermann, 1965; 

Chatterjee, 1972; 1984a, Lee et al., 1978, 1982, 1984, 1985; Karamanlidis et 

al., 1984), and the assumed stress or strain formulation (Pian, 1964; MacNeal,
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1982) have also been suggested. In the present study, the first three 

approaches for displacement formulation and the mixed formulation are 

investigated in association with the new element. However, application of the 

discrete Kirchhoff constraint approach was not successful.

2.6.1 Reduced Integration

Doherty et al. (1969) pointed out that the element performance can be 

improved greatly by evaluating the shear strain energy in the element by a 

lower-order integration procedure than is used for the normal strain energy. 

This lower-order integration neglects the extraneous shear strain imposed by 

the assumed displacement functions, and thus tends to relax the overstiffness of 

the element. The idea of reducing the order of the integration in evaluating the 

stiffness matrix called, reduced integration, was applied to the degenerate shell 

element concurrently and independently by Zienkiewicz et al. (1971) and 

Pawsey and Clough (1971). The latter used a 2X2 integration scheme for 

transverse shear strain components and a 3X3 for the others, and demonstrated 

the resulting improvement for thin, as well as thick, shell applications. On the 

other hand, the former discovered that reduced integration of all stress 

components gives better improvement than the selective reduced integration of 

the transverse shear strains. It was found that the lower-order integration 

reduces substantially computational cost at the same time (Zienkiewicz et al., 

1976).

The application of reduced integration was successful but was not well 

understood at the beginning. The validity of reduced integration is 

mathematically proved by Zienkiewicz et al. (1976). The reduced integration 

relaxes a certain constraint by the introduction of a matrix singularity and thus
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b : 4 = 0.4701 T| = 0.0597 
c: 4 = 0.7974 = 0.1013

a : 4 = 0.3333 t \  = 0.3333 
b : 4 = 0.6 T| = 0.2

4

9 c cr

1 
o O

b a b 

o  c  * b 0 c

a :4 = 0 t) = 0
b : 4 =±0.7746 t\ = 0 
c : 4 =±0.7746 ti =±0.7746

o 3 o 3

o a ®a

a : 4 =±0.5774 t \  =±0.5774

Fig. 2.4 Integration schemes for triangular and quadrilateral elements
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relieves locking phenomena (Pugh et al., 1978). Other aspects of reduced 

integration are fully discussed in other references(Zienkiewicz et al., 1976; 

Pugh et al., 1976; Hughes et al., 1977). Stolarski and Belytschko 

(1982,1983,1984) observed that overintegration of the membrane strains also 

retards the convergence. This phenomenon is called membrane locking. The 

membrane locking results from the effects of the curvature on the bending 

stiffness, whenever membrane displacements are represented by polynomials 

of lower order (Stolarski et al., 1982). It was also found that there exists an 

interdependence between membrane and shear locking. This is the reason 

why uniform reduced ntegration generally gives faster convergence than 

selective reduced integration. It has been recognized that uniform reduced 

integration also has a greater advantage over selective reduced integration in 

computational economy. The selective integration requires a more complex 

computational procedure than the uniform reduced integration. Lack of 

geometric isotropy is another disadvantage of selective integration. Pawsey 

(1972) argued that spurious zero-energy modes may appear in isoparametric 

elements when the uniform reduced integration is used. However, this does not 

appear to be a hindrance in practical problem solving. It has been confirmed 

that the element does not show this singularity of an assembly if two or more 

elements are used (Hughes et al., 1978; Zienkiewicz, 1972). Boundary 

conditions make the assembled stiffness matrix positive definite such that the 

zero-energy modes are not globally present.

It should be noted that application of reduced integration has so far been 

limited to the quadrilateral element. The reasons why one obtains such a 

dramatic improvement for quadrilateral elements by the reduced integration are 

well explained in beam analogy (Cook, 1981). One may simply apply the same 

idea to a triangular element. Unfortunately, however, one cannot extend the
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beam analogy to a triangular element. Thus, the reduced order integration does 

not work for triangular or severely distorted quadrilateral elements so 

dramatically as for regular quadrilateral elements. Collapsed quadrilateral 

elements have often been used in lieu of the triangular ones. According to the 

numerical tests in this study, however, the collapsed quadrilateral elements 

perform no better than the triangular elements with reduced integration. For 

triangular elements, a three-point integration, as opposed to six- or seven-point 

rules, may be regarded as a reduced scheme. A four-point integration for 

triangular elements results in non-positive definite stiffness matix and thus 

should be precluded. Various integration schemes shown in Fig. 2.4 have been 

investigated in association with the elements formulated in the present study. 

The numerical results are illustrated in Fig. 3.3.

2.6.2. Addition of internal dearees-of-freedom

Tsach (1981) observed that an element does not lock when the 

interpolated shear strain function contains more variables than the number of 

equations obtained when equating the shear strains to zero. Therefore, one 

can avoid locking either by increasing the number of variables or by reducing 

the number of equations. Reduced integration is equivalent to reducing the 

number of equations. One may increase the number of variables simply by 

adding internal d.o.f. Cook (1972) advocated the use of single, lateral 

displacement internal d.o.f. in eight-noded plate elements and also suggested a 

scheme for avoiding possible zero-energy modes. Takemoto and Cook (1973) 

studied analogous treatment of the degenerate shell element. They added three 

translational d.o.f. in the middle of the quadrilateral element. The element 

suffers from spurious zero-energy deformation mode. As a remedy, the authors
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suggested multiplying each on-diagonal stiffness coefficient associated with an 

internal d.o.f. by 1.003 prior to condensation of the internal freedoms. As a 

result, the performance of the element was improved for some cases, but was 

little affected, in general, by the internal d.o.f.

Hughes and Cohen (1978) added two rotational, instead of translational, 

d.o.f. at the center of the serendipity Mindlin plate element, and named it the 

heterosis element. They also considered the Lagrange element which has all 

three d.o.f., i.e. one translational and two rotational, as internal freedoms. A few 

numerical examples showed that the Lagrange and heterosis elements are 

consistently superior to the serendipity element. The elements with internal 

d.o.f. are better than the serendipity element also for distorted configuration as 

demonstrated by numerical study in Chapter 4. Both elements demonstrated 

almost equivalent convergence properties, with the former being somewhat 

more accurate. They observed that the Lagrange element may suffer from rank 

deficiency in certain singular situations and produce significant oscillations in 

displacements. The addition of internal d.o.f. is usually accompanied by rank 

deficiency. To avoid rank deficiency, selective reduced integration was applied 

to the heterosis element and Lagrange element.

The assemblage of elements with internal d.o.f. is well explained 

elsewhere (Gallagher, 1975; Cook, 1981). The element stiffness equation is 

first assembled with all the external and the internal d.o.f. If the external d.o.f. 

are denoted by Ar and the internal d.o.f. by Ae, the stiffness equation can be 

partitioned into the part associated with Ar and the other part with Ae.

(2 .6 .1)

The internal d.o.f are eliminated before assembly of element stiffness matrix
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(2.6.2a)

(2.6.2b)

and recovered later for stress computation. One can assign either absolute or 

relative values* to the internal d.o.f., and will obtain identical results whichever 

option chosen (Gallagher, 1975). However, assigning relative values makes 

the formulation simpler because the shape function of the internal node can be 

constructed by a hierarchical formulation.

Denote the shape functions with and without an internal nodes 

respectively by N, (i = 1 , . n) and N*j ( i = 1........ n+1 ) where n is the number of

external nodes for an element. In an hierarchical formulation,

for i = 1........n and a bubble function is used for N*n+1 . As an example, for a 6-

node triangular element,

More than one internal node can be added. These nodes can be located not 

only at the center but also at any point within an element. Consider an internal 

node k at and r|=rik within a triangular element. The shape function of the 

node, N*k should have zero value at the boundary of the element. Therefore, 

the shape function can be written in the form of

in which a, b, and h are coefficients to be determined from the conditions,

N*; = N : (2.6.3)

N > 2 7 $ n ( i - ^ n ) (2.6.4)

N*k = h £n (1 -  ) (1 -  a£- bTi) (2.6.5)

N*k.̂  = N*ki,  = 0 and N*k = 1 for £=£k and rj=rik. (2.6.6)

Internal d.o.f. assigned with relative values are commonly called bubble modes.
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It is not necessary to force the shape function to vanish at other internal 

nodes, because the internal d.o.f. represent only relative values in an 

hierarchical formulation. When the internal node is located at the center of a 

triangle, i.e. ^k=rik= 1/3, Eqn.(2.6.5) reduces to (2.6.4). For the case of a 6-no'de 

triangular element with three internal nodes at (^7=rj7=1/6), (^8=2/3, r|8=1/6) and 

(^9=1/6, Tjg= 2/3), the following shape functions are derived:

N*7 = 135 ( 1 -  £ - t| ) ( 1 -  9/5 9/5t| )
N*8 = - 1 0 8 ^ ( 1 - ^ - t i) (1 -9 /4U  (2.6.7)
N*9— 108§n(1-^-T| ) (1-9/4Ti )

In this study, the addition of internal d.o.f. was intended chiefly for 

triangular elements, because the new element of quadrilateral shape with 

reduced integration already shows satisfactory performance. But, the identical 

logic is applied to both triangular and quadrilateral shape, since the shape of 

the element is not distinguished in the present formulation. At the 

implementation stage, the addition of internal d.o.f. is achieved simultaneously 

for both shapes. Only different shape functions associated with the internal 

node(s) should be provided for each element shape.

One can think of several different ways of selecting the internal d.o.f. The 

following four possibilities of assigning internal d.o.f. have been considered in 

the present study:

1) three translations at the center

2) two rotations at the center

3) three translations and two rotations at the center

4) two surface tangential translations and two rotations at the center

There are many other possibilities of adding internal nodes and d.o.f.

Because the internal d.o.f. get relative values rather than absolute ones, they
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can be specified either in global coordinates or in local coordinates, whichever 

d.o.f. are chosen.

2.6.3 Mixed formulation based on Hellinger-Reissner principle

Another simple approach to cure the locking effect may be to use the 

Hellinger-Reissner principle which was first introduced by Hellinger and later 

refined by Reissner (Zienkiewicz et al., 1984). In this principle, the stationary 

point of a functional is sought by taking variations of the displacements and 

stresses at the same time. The application of this principle leads to a mixed 

formulation. Herrmann applied the principle to plate bending (1967) and 

incompressible problems (1965). Lee and Pian (1978) demonstrated the 

improvement of plate and shell elements by the mixed formulation. Lee and 

Wong (1982), and Lee and Zhang (1985) developed Mindlin type plate bending 

element based on the modified Hellinger-Reissner principle. The equivalence 

between the mixed model and displacement models with reduced integration 

was observed by Lee and Pian (1978), Malkus and Hughes (1978), and Batoz 

et al. (1980). Shimodaira (1985) investigated the conditions under which the 

mixed model and the displacement model with reduced or selective integration 

become identical, and found that both models are not identical for a 6-node 

triangular element. The advantage of the mixed formulation is that it is more 

flexible than reduced integration and simpler than the selective reduced 

integration (Lee etal., 1985).

The functional of the Hellinger-Reissner principle is written as

n R = j  ( eTE e - 1 eT E e ) dv - W (2.6.8)

with
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Ê  -  L Ex ' ' ‘ ' 7xz J 

eT= L U>x ■ • • • w ,x+u,z J

(2.6.8a)

(2.6.8b)

in which e  is the strain vector and e  is the displacement derivative vector. E and 

W denote the constitutive matrix and the external load potential respectively. 

Applying the principle to the shell element formulated in the present study with 

Eps=0, one obtains

nR = f  ( E P T E P  ep -  i  E P T  E P  ep + e s  T  E s g s  -  1 e s T E s E s )  dv -  W (2.6.9)

in which

(2.6.9a)

(2.6.9b)

(2.6.9c)

(2.6.9d)

As derived in the previous sections,

eP= (Bm -  |  t ^Bb ) A® 

es = BSA®

(2 .6 .10)

(2.6.10a)

One assumes the strain distributions in polynomial form:

eP = Pt a

e s  =  P2 b

(2 .6 . 11)

(2.6.11a)
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with

Pi =
9i 0 0
o gi o

. 0 0 Q)

C9i0 0 
o C91 0

0 0 C9 i -
= [ f W

g2 o o 
o g2 o 

. 0 0  g2 .

f =
9i 0 0
o gi o

L o o  gi J

91 =L 1 $ Ti ^  • J
1x m

g2 =L 1 £ ti • • • J
1x n

(2.6.11b)

(2.6.11c)

(2.6.11d)

(2.6.11e) 

(2.6.11f)

and a and b are unknown parameter vectors. Each formulation will be 

designated as an m g^/n g2 scheme by the number of terms m and n, 

respectively in g! and g2. For example, for the 4g^ 3g2 scheme,

9i = L 1 $ T1 £r|J (2.6.12)

g2 = L 1 k n J

Substituting Eqn.(2.6.10) and (2.6.11) into (2.6.9), one obtains

n R = ( aT Gt Ae -  |  aT Ht a + bT G2 A® -  \  bT H2 b ) -  W (2.6.13)

with

Gi = 

Hi =

EP(Bm -  |tC B b)dv = 

EpPt dv =

Jv fT EPBm dv 

. | t j v fT EPBb C2 dv

Jv fT Ep f dv 0

0 \  Jv fT EP f dv .

(2.6.13a)

(2.6.13b)
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G 2 = j  EsBs dv (2.6.13c)

H2 = J P2t EsP2 dv (2.6.13d)

Taking the variation of I I r with respect to a and b, one obtains

a = H 1- i G 1Ae (2.6.14)

b = H2‘1 G2 A®

Substitution of Eqn.(2.6.14) into (2.6.13 ) leads to

n R= ^ AeT ke Ae -W  (2.6.15)

with

ke = G iT H ^1 Gt + G2t H2-1 G2 (2.6.15a)

An alternative form of the mixed formulation can be achieved based on

the modified Hellinger-Reissner principle by which the energy functional for the 

shell can be expressed as

n R = J  ( \  ept Ep eP + esT Eses -  \  esT Eses ) dv - W (2.6.16)

In the same way as above, one can derive the element stiffness matrix.

k® = k0 + G2t H2 1 G2 (2.6.17)

with

ko= j  BTE B dv (2.6.17a)

The matrix k 0 is equivalent to the element stiffness matrix derived in the

previous sections.
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2.6.4 Application of more than one complementary device

In the previous sections, three different complementary devices have 

been discussed separately. However, any single remedy may not be effective 

enough to provide satisfactory improvement for certain types of problems. Two 

or more devices can be applied together to an element to achieve a universal 

improvement. For example, one may combine the reduced integration and the 

internal d.o.f., or include the internal d.o.f. in the mixed formulation. The 

computed results with a single device as well as with combination of several 

devices are compared and discussed in the next chapter.

2.6.5 Control of zero-enerav modes

The locking phenomenon can be removed completely or partially by the 

complementary devices described in the previous sections. One negative 

feature of these devices is the spurious zero-energy modes or rank deficiencies 

of the stiffness matrix which may arise. However, it should first be noted that 

rank deficiency is not always harmful. The presence of spurious zero-energy 

modes at individual element level does not adversely affect the accuracy of the 

element as long as these modes are suppressed by assembly of elements 

(Hughes et al., 1978). In general, the assembled stiffness matrix is positive 

definite after application of boundary conditions, and therefore, the zero-energy 

modes are not globally present (Hughes et al., 1978a). This is true for the 

reduced integration as observed by Zienkiewicz (1972) and Hughes et al. 

(1978a). However, as other complementary devices are combined with the 

reduced integration scheme, one obtains more zero-energy modes, and the 

whole system may become unstable or oscillatory results may be obtained due 

to the zero-energy modes for certain boundary conditions. The element,
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(b)

Fig. 2.5 Graphically represented Eigenvectors associated with zero
Eigenvalues of the element stiffness matrix ( type III element with 
internal d.o.f.)
(a) Rigid body mode
(b) Spurious zero-energy mode
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Fig. 2.6 Spurious zero-energy mode in an assembled configuration

.
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complemented by both reduced integration and internal d.o.f., fails for a 

rectangular plate which is simply supported at four corners.

The zero-energy modes can be detected by an eigenvalue test. The zero 

eigenvalues of the stiffness matrix represent either the rigid body modes or the 

spurious zero-energy modes. The eigenvectors correspond to normalized 

displacements. Therefore, the eigenvectors associated with each zero 

eigenvalue describe geometrically the form of the rigid body mode or the 

spurious mode. Thus, one can distinguish the spurious modes from the rigid 

body modes by graphically visualizing the eigenvectors as shown in Fig. 2.5. 

The zero-energy modes in assembed configuration can also be displayed as in 

Fig. 2.6.

Selective reduced integration can be regarded as one of the measures to 

avoid the spurious modes. The disadvantages of selective reduced integration 

have already been mentioned. As an alternative for selective reduced 

integration, Kavanagh and Key (1972) attempted to combine portions of the 

reduced and unreduced stiffness matrices. The resulting stiffness is formed 

from the sum

K = ocKfull + (1- a) Kred (2.6.18)

where Kfui| and Kred represent the unreduced and the reduced stiffness matrix 

respectively, and a has a value between zero and one. The scheme is 

intended to remove zero-energy modes while maintaining geometric isotropy. 

The method is designated as the a-control scheme in this study. Cook (1972) 

indicated that the method gives extremely poor results. However, Belytschko et 

at. (1981) suspected that the poor results might be due to use of an improper a 

value.
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The graphically displayed spurious mode in Fig. 2.5. shows an 

indentation of the element at the center. This spurious mode at the element 

level can be related with that of the assembled configuration in Fig. 2.6. One 

can imagine that the spurious modes may be suppressed by preventing the 

indentation of the element. This can be linked to the idea of Cook (1972) and 

Takemoto and Cook (1973). They suggested adding a soft spring to the internal 

d.o.f. to remove the spurious modes in Lagrangian type elements. This can be 

achieved by multiplying kc by (1+e), where kc is the diagonal term of the 

uncondensed element stiffness matrix ke associated with the internal d.o.f. and 

e is a small number. In this study, the method is designated as the e-control 

scheme and the values e and a are called zero-energy control indices.

Belytschko et al. (1981) extended the idea of Kavanagh and Key (1972) 

and proposed a stabilization matrix , which is used as a small perturbation to 

eliminate zero-energy modes. Dovey (1974) applied to a quadrilateral element 

a five-point integration scheme which was obtained from combination of 2x2 

rule and one-point rule. Flanagan and Belytschko (1981) developed 

stabilization operators to suppress the spurious modes. Belytschko and Liu 

(1984) suggested the consistent spurious control method for 9-node Lagrange 

element based on the degenerate shell theory.

The a-control scheme and the e-control scheme, which were originally 

devised for quadrilateral elements, have been tested for triangular elements in 

the present study. Also suggested is an alternative integration scheme in 

which the stiffness matrix is integrated by linear combination of two different 3- 

point rules with appropriate proportions. Various proportions of the combination 

are investigated. As shown by numerical tests in Chapter 4, the scheme is 

more efficient than the one which is obtained by combination of the full and the 

reduced integration schemes.



Chapter 3 

IMPLEMENTATION

In Chapter 2, the element stiffness matrix has been formulated based on 

three types of element decomposition. Although most aspects of its 

implementation are rather routine, not only the computational efficiency but also 

the accuracy are influenced by how properly it is implemented. Many 

operations involved in the formulation of the stiffness matrix are articulated for 

notational simplification. One can economize those operations by taking 

advantage of their characteristics. It is also desirable to generalize the 

implementation as much as possible. This chapter deals with practical aspects 

related to evaluation of the element stiffness matrix and other subsequent 

computations.

3.1 Computation of element stiffness matrix

The formulation of the element stiffness matrix differs for various types of 

element decomposition. However, as shown in Table 2.1, the three types of 

formulation are in the same format, and therefore there are only minor 

differences between their computational procedures. The flow diagram in 

Fig.3.3 exemplifies the steps of computing the stiffness matrix for a type III 

element with three internal d.o.f., u, v and w. One can use the same element 

stiffness matrix routine for both triangular and quadrilateral elements if the type 

of decomposition is identical. The number of external nodes for an element is 

specified by a variable N rather than a certain constant value so that one can 

easily change the shape and the order of the element by incorporating 

corresponding shape functions. Various combinations of internal d.o.f. can be

74
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achieved simply by switching on or off the loop over the internal node. Only 

when the tangential displacements, i.e., u and v, are specified as internal d.o.f. 

are additional manipulations required to convert the displacement into global 

coordinates before interpolation. The element stiffness matrix is constructed 

through four major steps, i.e., evaluation of transformation matrices, 

computation and storage of strain-displacement matrices, numerical integration, 

and condensation of internal d.o.f. The general flow diagram for the overall 

shell analysis is presented in Fig.3.1.

3.1.1 Evaluation of transformation matrices 

Rotation matrix

A vector in the z direction can be defined as a cross product of any two 

vectors tangent to the midsurface (Ahmad eta!., 1970).
CO (  V  \ ( x ^A >Y|

IICO

>
V 23 H >x < V n

^ V 3 3 > l z , £ ) t z n |  >

When the nodal coordinates are given as input data, the first derivatives of the 

global coordinates with respect to the natural coordinates can be evaluated 

using the interpolation equation.

n
x ^ = X N j ^ X j  etc. (3.1.2)

i =1

in which Nj is the interpolation function associated with node i, andXj is the

nodal coordinate. In the case where the geometry of the midsurface is defined 

by a mathematical expression <\>( x, y, z) = constant, a normal vector can be 

obtained from
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V 3 = < <t>,y >

U,z>
(3.1.3)

Thus, the unit vector in the direction of z,

v 3 = V3 / V 3 (3.1.4)

in which V3 = V ( V-|32 + V232 + V332 ) is the Euclidean norm of V3. Two other 

orthogonal unit vectors are obtained from

v - | = j x v 3 and v2= v3 xv,  (3.1.5a)

or in case the direction of the y axis and that of v3 coincide,

v2 = v3xi and v1= v2 xv3 (3.1.5a)

in which i and j are unit vectors, respectively, in the x and the y directions. 

Thus, the rotation matrix transforming the global coordinates into the local 

coordinates is given by

R = [v1 v2 v3] (3.1.6)

The rotation matrices are required at all the nodes and integration points. For 

computational economy, one may compute the rotation matrices only at nodal 

points and interpolate them to each integration point. In the case where the 

derivatives of the global coordinates are evaluated by Eqn. (3.1.2), there is a 

discontinuity of the computed normal direction at an element boundary. The 

rotation matrix can be evaluated more accurately by averaging the nodal values 

of adjacent elements. However, the improvement of the accuracy becomes 

negligible as mesh is refined, and there may exist actual discontinuity of
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surface slope at sharp edges. Therefore, it is more practical and efficient to use 

the rotation matrices evaluated independently for each element.

Jacobian matrix

Since the formulation is based on local coordinates and the integration 

in the thickness direction is explicit, the Jacobian matrix in three dimensions 

can be written in the form

J11 J12 0 J 0 '
J21 J22 0 = 2x2 0

1

00
 

__
1 1 O O v 2t-

in which

(3.1.7)

J = J-11 J12 

- J21 J22-

(3.1.7a)

is a Jacobian matrix of two dimensions. The inverse and the determinant of the 

Jacobian matrix are obtained from

(3.1.8)
J 1 0 "

J*1 = 2x2 0

OO__
1 1/2t-

and

|J*| = V2t |J| (3.1.8a)

in which J-1 and |J| denote, respectively, the inverse and the determinant of J. 

Therefore, one manipulates only a 2x2 Jacobian matrix instead of a 3x3. The 

Jacobian matrices are required at nodal points and integration points. The 

determinant and the inverse of the Jacobian matrix should be computed at each 

integration point
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Transformation matrix J2

The transformation matrix J2 defined in Eqn. (2.1.6b) can be partitioned 

as follows:

Jo =
J 0
2x2 2x3

B C
3x2 3x3

(3.1.9)

with

x'%% y «
B = y<t|Ti

- X’£t| y*n -

(H )2 5 ro

C = (̂ .T,)2 (y.-n)2 2Xn,y.Ti

(3.1.9a)

The inverse of J2can be obtained from

J 1 0
-C  1BJ 1 C 1

(3.1.10)

The inverse of J2 is required at each integration point.

3.1.2 Computation of the strain-displacement matrices

The strain-displacement matrices are evaluated at each integration point. 

For type I decompositon, the matrix G need be computed no more than once 

through the whole analysis. The shape function matrix N and its derivative 

matrix N‘ are computed for the first element and updated only when either the 

shape or the integration scheme of the element is changed from that of the 

preceding element. In Chapter 2, the strain-displacement equations are written



79

in a way to simplify and systemize the expressions as much as possible. Thus, 

most of the matrices are not fully populated, and especially Q0 is quite sparsely

populated. Full expansion of the equations will make the implementation too 

massive even though it may be conducive to computational economy. 

However, one can achieve computational efficiency, to some degree, by 

rewriting the equations in more practical forms. For example, Eqn. (2.4.23) can 

be converted into the following form:

3.1.3 Numerical integration

The integration of the stiffness matrix is performed explicitly in the 

thickness direction and numerically in the tangential direction as already 

discussed in Section 2.5. Thus, Eqn. (2.5.5a) is replaced by Eqn.(3.1.11) which 

is expressed in the form of numerical integration.

n
Bb = S*N*Q0= S * I  N*i J(i) (3.1.11)

with

Ni 0

(3.1.11a)

q
km = lB V E P k Bmk|J| k t k Wk (3.1.12a)

k=1
q

kb= —  lB b kTEPk Bbk | J|k t k3 Wk 
12 k=1

(3.1.12b)
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ks = X  BskTEsk Bsk |J|k t k Wk (3.1.12c)
k=1

q
kps=X (B V E psk Bsk+B»kTEsPk Bmk)jJ[k t k Wk (3.1.12d)

k=1

in which q is the number of integration points, the subscript k is used to denote 

the values evaluated at integration point k, and W is the integration weight 

factor. The constitutive matrix E and the thickness t at an integration point are 

obtained by interpolation of given nodal values. In the previous chapter, each 

strain-displacement matrix has been associated with the entire element d.o.f. for 

notational convenience. Some of the d.o.f. are not active in the matrix. Only the 

active part of the matrix is involved in the operation of the numerical integration. 

Therefore, it is necessary to avoid manipulating or storing the inactive part in 

order to achieve computational efficiency. The active d.o.f. are indicated in 

Table 3.1.

For the purpose of generalization, information about a few different 

integration schemes is stored as a set of internal data which include the number 

of integration points, their natural coordinates, integration weights, stress 

extrapolation coefficients, etc. Full or reduced order integration can be 

achieved simply by specifying the desired set of data. Selective reduced 

integration is also relatively easy for isotropic materials because one can apply 

separate integration schemes for km+kband ks in Eqn.(2.5.6) without involving 

any computational complexity. But, as for anisotropic material, the selective 

integration will involve more complexity due to the coupling of normal strain and 

transverse shear strain represented by kPs in Eqn.(2.5.5a). Detailed handling of 

selective integration can be found in other literature (Pawsey and Clough, 1971;
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Hughes eta /., 1978). The type I element requires at least three-point integration 

for membrane strains and nine-point integration for bending strains.

Table 3.1 Active degrees of freedom in strain-displacement matrices

Type of 
decomp.

Strain-displac.
matrix

Associated 
strain components

Active 
nodal d.o.f.

Bm Ex ' Ey , Yxy U, V, w

Type I Bb Ex > Ey, Yxy u, V, w, a, p

Bs — —

Bm Ex • Ey, Yxy U, V, w

Type II Bb Ex. Ey, Yxy u, v, w, a, P

Bs lyz > Yxz u, v, w, a, p

Bm Ex. Ey, Yxy u, v, w

Type III Bb Ex- Ey, Yxy a, p

Bs Yyz > Yxz u, v, w, a, p

3.1.4 Condensation of internal d.o.f.

Implementation of this complementary device is applied simultaneously 

to both triangular and quadrilateral elements, because any specific shape is not 

assumed in the element formulation. However, separate shape functions 

associated with each shape should be provided. Various combinations of 

internal d.o.f. can be achieved simply by switching on or off the loop over the 

internal node. Only when the tangential displacements, i.e., u and v, are
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specified as internal d.o.f. are additional manipulations required to convert the 

displacement into global coordinates before interpolation. The element 

stiffness equation comprising all the external and internal d.o.f. is first 

constructed. Then the internal d.o.f. are condensed out from the stiffness matrix 

and from the load vector before assembly of the global system equation. The 

matrices in Eqn.(3.1.13) are stored for future use in stress computation.

ks = kre kee 1 (3.1.13a)

fs = kee-1fe (3.1.13b)

An alternative method of condensation, which uses Gauss elimination directly, 

is given in the literature (Desai and Abel,1972, pp146-147)

3.1.5 Incorporation of zero energy control devices

The a-control scheme can be handled by the numerical integration in 

which the control index a is given by the integration weight. Because a has a 

small value, the integration point associated with a can be excluded from

computation of nodal loads and stresses. The e-control scheme can be 

achieved simply by multiplying the diagonal terms of kee before condensation of

the internal d.o.f.

3.2 Computation of element nodal loads

A few different types of external forces are expected from input data. 

Work equivalent nodal loads are computed from the given external forces and 

assembled into the global load vector as described in the following.
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3.2.1 Concentrated forces

The concentrated forces are directly assembled into the global load 

vector. When the direction of a concentrated force is specified in local 

coordinates, it should be converted into global coordinates using the relation,

f ci = R |T f c\ (3.2.1)

in which f  cj and fcj denote concentrated loads applied at node i which are 

expressed, respectively, in local and global coordinates.

3.2.2. Distributed surface loads

A distributed load can be specified either by its nodal values or as a 

uniform load over each element. When the nodal values are given as input 

data, the values at an arbitrary point within an element are obtained by 

interpolation. A distribution of a load over an element is denoted by w and the 

value at node i by w. Thus,

with

n
w = XN|Wj =NTw e

i =1

NT = LN1 N2 N3- ■ • NnJ 

w eT = L w1 w2 w3 • ■ • wn J

(3.2.2)

(3.2.2a)

(3.2.2b)

Here, N should be distinguished from N in Eqn. (2.3.35a). The work equivalent 

nodal load is obtained from

f de  _ N wdA = N N Tw edA = (
J A A

(3.2.3)

Applying the numerical integration,
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f de = (X NkNkT |J|kWk ) w e (3.2.4)
k=1

in which the subscript k is the index for integration point k. When a uniform load 

over an element w is given, the work equivalent load is obtained from

* de = & N k|J|kWk )w  (3.2.5)
k=1

If a distributed surface load is expressed in local coordinates, it should first be 

converted into global coordinates before computing the work equivalent load.

3.2.3. Line loads

It is assumed that line loads are applied only along element boundaries. 

The integration points are set along the boundary.

fie L ( I  YkYkTW'k )
k=1

T e (3.2.6)

where L, r, and W are the length of the boundary, number of integration points, 

and integration weight for one-dimensional integration, respectively, and Y is 

the corresponding interpolation function. The vector T « has the nodal values

of the line load.

' 0 ^

S
'OV

._______

H
i

. 
_ 

o
 

.

> Te=<
Ti

>
f'm Tm
0 0

< 0 , , o >

(3.2.7)



85

in which the j, • • ■, m are the indices for the nodes along the boundary. Strictly 

speaking, L should be replaced by a Jacobian determinant when the nodes are 

not equally spaced along the boundary.

3-2.4. Body forces

The element body force vector is obtained from

f be _ (NTXdv = l N kT|J|kWkt kXk
k=1

(3.2.8)

in which X is an inertia force. Assuming that the mass density is uniform within 

an element, one obtains

f be = ( l N kT|J|kWkt k)X
k=1

(3.2.9)

3.2.5 Global load vector

The global force vector comprises all the external forces, that is,

f i=  I V  S  (fdie + f lie+ f bie ) (3.2.10)
e

The summation is performed for all the elements meeting at node i.

3.3. Assembly and solution of system equations

The overall effectiveness of the finite element analysis procedure 

depends especially on how the assembly and solution of the system equations 

are accomplished. The three most commonly used methods are band-matrix 

algorithm, skyline storage scheme, and frontal solution technique (Irons, 1970). 

Although the skyline storage scheme is more efficient than the band-matrix
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algorithm, the use of the scheme is still restricted by the available computer 

memory. The frontal solution technique reduces, to a large degree, the required 

memory space, but takes more computing time. Many finite element analysis 

systems (Brebbia, 1985) employ either the skyline storage scheme or the 

frontal solution method. It is reasonable to include both facilities in one 

program, as illustrated in Fig. 3.1, providing the opportunity for the users to 

decide, based on the problem size and the available computer memory, which 

solution routine to use. If the skyline scheme is chosen and the total skyline 

length exceeds the dynamically dimensionable space, the solution routine 

should be switched to the frontal method.

Standardized codes of solution routines are available (Bathe 

et al., 1976; Hinton et a l . , 1977; Bathe,1982). Fig. 3.2(a) is the general flow 

diagram of the frontal solution routine given elsewhere (Hinton and Owen, 

1977). The unassembled element stiffness matrices are first recorded in a 

secondary storage device and recovered at the stage of assembly. Fig.3.2(b) 

shows an alternative scheme adopted in the present study, in which the 

element stiffness matrices are directly assembled into the system of equations. 

The scheme reduces the time consuming I/O operations and the secondary 

storage usage by bypassing the storage of the element stiffness matrices. It 

does not harm the reanalysis capability. The scheme in Fig.3.2(a) is more 

efficient only when some of the element stiffness matrices are updated and the 

rest of them are retained in the process of reanalysis.

3.4. Computation of stresses

Once the nodal displacements are obtained by solving the system

equations, the strains within an element can be computed from the strain-nodal
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displacement relationship. The stresses are computed subsequently, using the 

constitutive relation at the point of consideration. The stresses are usually the 

final and probably the most useful product of the finite element analysis. 

Therefore, it is important to use a proper method for stress evaluation.

3-4.1. Stresses at integration points

The computed strains and stresses are most accurate at integration 

points. Therefore, they are first evaluated at each integration point using the 

relations

ek = BkAe

and

a k = Ek ek

(3.4.1)

(3.4.2)

in which the subscript k denotes the values at integration point k. The strain- 

displacement matrix Bk is computed at the stage of stiffness matrix evaluation. 

The matrix, which consists of Bmk , Bbk and Bsk , takes a huge data space, and 

therefore should be stored in a secondary storage device and recovered later 

for stress computation. The computed stresses vary linearly in the thickness 

direction and are completely defined by the values at the top and the bottom 

surface. The strains at both surfaces are obtained using the following 

equations.

ek(,0P) = Bmk~ 1/2t kBbk 

Bsk

A® (3.4.3a)

Bmk+ 1/2t kBbk 
Bsk

A®e ^ )  = (3.4.3b)
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in which ek(t0P) and ek(bot) denote the stresses respectively, at the top and the 

bottom layers. The stresses at an integration point are obtained by Eqn.(3.4.2).

3.4.2 Nodal stresses

There are many techniques to obtain smoothed nodal stresses from the 

values at integration points. Among these, the local least squares smoothing 

might be the simplest, but the most suitable method for shell analysis in view of 

the accuracy and the complexity of shell ellements. According to this method, 

the stresses are first evaluated at each integration point and extrapolated to the 

nodes. The nodal stresses are obtained by averaging the contribution of each 

element which meets at the node. The extrapolation is based on the least 

squares regression of the values at integration points. The surface of the 

extrapolation can be expressed as a function of the natural coordinates

The coefficients, aj, are determined such that the deviation of the extrapolation 

surface from the actual stress surface is minimized in the least squares sense. 

Thus,

is to be minimized, where o denotes the actual stress. Here, the unknown 

coefficients a, can be obtained from the conditions,

°o  =  a 1 +  a 2^ +  a 3Tl +  • • • • (3.4.4)

E =  J A { -  ( a1 + a2  ̂+ a3Tl + • • • • ) }2 dA (3.4.5)

2E = 2E = . . . =0 
3a1 da2

(3.4.6)

From Eqns. (3.4.5) and (3.4.6), one obtains
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' r ’ 1 $ n • • • '
M

%
(•

$ ¥  $n • • • a2

"H > a dA = T1 ^  . . . <a3

• J A ...................... •

V * ) ' " • • • • l  ' J

(3.4.7)

Assuming that the stress evaluated at an integration point represents the 

actual stress, and applying numerical integration to the left hand side and 

explicit integration to the right hand side, one derives the following relation for a 

6-node triangular element with 3-point (inside) integration.

M
5 -1 -1

° 2 -1 5 -1

<*3 -1 -1 5

° 4
3A 2 2 - 1

- 1 2  2

. 2 - 1  2 .

M la<0  
IJIb̂ b >
MIc a c y

(3.4.8)

in which a, denotes the stress at node i, and the subscripts a, b and c are used 

to indicate the values evaluated at the integration points a, b and c respectively. 

For an 8-node quadrilateral element, the nodal stresses are given by

' * r ' 4-2V3 - 2 - 2 4+2V3

o2 - 2 4+2^3 4-2^3 - 2

4+2^3 - 2 - 2 4-2V3

O4 > = X - 2 4-2^3 4+2V3 - 2
<

IJIbOb

4A 1-V3 1+V3 1-V3 1+V3 |J|c <*c

^+y|3 1+V3 1-V3 1-V3 JJ|dOd>

1+V3 1-V3 1+V3 1-V3

^°8y . 1-V3 1-V3 1+V3 1+V3 .
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The surface area of the element is also obtained by numerical integration, 

q
A = S w k |J|k (3.4.10)

k-1

The above equations become identical to those appearing in other literature 

(Hinton and Campbell ,1974; Hinton et al., 1975) when |J| is constant 

everywhere within the element.

The principal stresses and the principal directions are determined as the 

eigenvalues and the corresponding eigenvectors of the stress tensor.
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Fig. 3.1 General flow diagram
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Fig. 3.2 Process of solving system equations
(a) Hinton and Owen (1977)
(b) Present study
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Type of decom position  ?

Type I 1 Type II [  Type~111

Internal d.o.f. ?

N one v, w O.P u, V ,  w .a , p j u, V, a ,  p

N S P  : No. of integration points

N : No. of external n odes

Fig. 3.3 Flow diagram for computation of element stiffness matrix



NUMERICAL STUDY

Chapter 4

This chapter investigates the validity of the newly formulated element and 

its complementary devices discussed in Chapter 2. The element is also 

compared with the popular degenerate shell element to distinguish in detail the 

new formulation from the old one. The effects and limitations of various 

complementary devices are numerically demonstrated. Attention is also given 

to finding the possibility of removing the troublesome locking behavior without 

inducing spurious modes. Finally, the overall evaluation suggests how to 

achieve the best performance of the element. The following test problems are 

used in this numerical study:

(1) Cylindrical shell roof under dead weight

(2) Pinched cylinder (thicker case)

(3) Pinched cylinder (thinner case)

(4) Fixed-free quarter cylinder subject to uniform line moment at the 

free end

(5) Four-corner-supported square plate under uniform load

(6) Clamped circular plate under uniform load

(7) Cantilever plate with uniform line load at the free end

(8) Sphere under uniform internal pressure

(9) Pinched sphere

(10) Truncated half sphere with point loads in two orthogonal directions 

Problems (1) through (4) are used for convergence tests and element distortion 

tests. The interrelation of locking and spurious zero-energy modes are studied 

based on problems (3) and (5). The patch tests are (4), (7) and (8). The

94
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computed stresses are compared with the analytical solutions for (1), (7), (8), (9) 

and (10). Figures corresponding to each test are indicated in Table 4.1. The 

element notations in the figures are given following the rules in Table 4.2.

4.1. Description of test problems

The analytical solutions of the test problems as well as their 

configurations are given in this section.

Cylindrical shell roof

The cylindrical shell roof in Fig.4.1 has been most widely used as a test 

case for shell elements. The shell roof is subjected to dead load only and 

supported by rigid diaphragms at both ends. Only one quarter of the roof is 

modeled due to its symmetry. Approximate analytical solutions based on the 

shallow and the deep shell theories give a vertical deflection of 3.703 and 3.598 

inches, respectively, at the center of the free edge (Scordelis and Lo, 1964).

Pinched cylinder (thicker and thinner cases)

The cylinder in Fig.4.2 is another popular test case for shell elements. 

Both ends of the cylinder are free. The numerical tests include cases with two 

different thicknesses, t = 0.094 in. (thicker) and t = 0.01548 in. (thinner) The 

thinner one is sensitive for locking phenomena. A point load is applied at the 

center of the cylinder (point C) with P = 100 lb for the thicker case and P = 0.10 

lb for the thinner case. One octant of the cylinder (the shaded region in the 

figure) is modeled. The vertical deflection at point C obtained by analytical 

solution (Ashwell et al. 1972) are 0.1139 in. and 0.02439 in., respectively, for 

the thicker and the thinner cases.



Table 4.1. Figure numbers for numerical tests

Test type Convergence Comparison w/ Effect of zero Element
pr0b.# test analytical sol. energy control distortion test

(1) B.1,B.6,B.7,B.11 4.9,4.10 B.15,B.18,B.25 B.30

(2) B.2,B.8,B.12 — - B.31

(3) B.3.B.9.B.13 — - B.32

(4) B.4,B.10,B-14 — B.16,B19,B.21 ,B.23,B.26,B28 B.33

(5) B.5 - B.17,B.20,B.22,B.24,B.17,B.29 —

(6) — 4.11 - -

(7) - - — (Table 4.5)

(9) - 4.12,4.13 ,4.14 —

(10) ( Table 4.3) - — -



Table 4.2 Rules for element notations in figures

Format shape & type-complementary device-complementary device ( integration scheme)

Shape Type Complementary Device Integration Scheme

T Triangular 1 Type 1 A IDOF(A) 3 3 point integration

Q Quadrilatral II Type II B IDOF(B) 3S Midside 3 point integr.

III Type III C IDOF(C) 7 7 point integration

D Degenerate D IDOF(D) 2x2 2x2 integration

M Mixed formulation 3x3 3x3 integration

MM Modified mixed form. 3/3 3 point+3 point a control

3/7 3 point+7 point a control

Examples : QD(2x2) Degenerate shell element with 2x2 integration
Till—A(3S) Type III element with IDOF(A) and midside 3 point integration
Till—A—M(7) Type III element by mixed formulation with IDOF(A) and 7 point integration
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Fig. 4.1 Cylindrical shell roof

Fig. 4.2 Pinched cylinder
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Fixed-free quarter-cylinder

The fixed-free quarter-cylinder with infinite width in Fig.4.3 was 

considered by Wu (1981) as a case in which the bending action is dominant.

This is a patch test case for pure bending and provides a good test for 

membrane locking as well. One edge of the cylinder is fixed and the other edge 

is free. A uniform line moment M is applied along the free edge. Only one strip 

of the cylinder is modeled. The rotation in the axial direction is suppressed to 

simulate the infinite width. The exact solution for the horizontal displacement at 

point B is obtained by

uB= 1 2 M r 2(1 -  v 2 ) / ( E t 3) (4.1.1)

in which r, t, E, and v represent respectively the radius, the thickness of the 

cylinder, the modulus of elasticity, and the Poisson's ratio. The above equation 

gives uB = 10.92 for the dimensions and material properties shown in the figure.

Four-corner-supported square plate

A simply-supported square plate is considered as an extreme case to test 

the spurious zero-energy modes. The plate is supported at the four corner 

points. A uniformly distributed load is applied in the transverse direction. Only 

one quarter of the plate is modeled due to symmetry. The analytical solution 

(Timoshenko e ta l., 1959) gives the normalized vertical deflection at the center 

of the plate

w_a4= 2.8 (4.1.2)
E t3

for the configuration shown in Fig. 4.4.
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Fig. 4.3 Fixed-free quarter cylinder

Fig. 4.4 Four-corner-supported square plate
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Clamped circular plate under uniform load

A circular plate with a clamped boundary is tested to assess the accuracy

of the element. Distorted meshes are used for both triangular and quadrilateral

elements. Owing to the symmetry, only a quarter of the plate is modeled. The

deflection, along the radial line, under uniform load is given as follows

(Timoshenko and Woinowsky-Krieger, 1959) :

w =_9_[(r2 -  x 2)2 + 4t2(r2 -  x 2) / (1 -v)] (4.1.3)
64D

in which q, r, x and t are defined inFig.4.11.

Cantilever plate with uniform line load at the free end

An infinitely long square plate in Fig.4.5, with one end fixed and the other 

end free, is subject to a uniform line load, tension or moment, at the free end. It 

is a patch test case in which all the elements in a distorted mesh should have 

uniform tensile stress or uniform bending moment and zero values for other 

stress components.

Sphere under uniform internal pressure

This case tests the capability of representing constant membrane 

stresses of a doubly curved shell. This is also a patch test with geometric 

approximation. The normal deflection as well as the normal stresses should be 

uniform over the whole sphere. The exact solutions are

w = q r2(1 - v ) / ( 2 E t )  (4.1.4)

and

cx= oy = q r / 2 (4.1.4a)

Only one octant of the sphere is modeled due to symmetry and for the 

convenience of applying boundary conditions (Fig. 4.6). Two cases with 

different thickness to radius ratio, i.e., t/r=0.01, and 0.1 are tested.
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Fig. 4.5 Cantilever plate 
(a) Configuration (b) Distorted mesh
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Pinched sphere

A pinched sphere is a doubly curved shell with positive Gaussian 

curvature. The sphere is subjected to point loads at the crowns as shown in 

Fig.4.6. It is a case with a stress singularity at the pole. Bending action is 

dominant around the pole, and membrane action is dominant away from the 

pole. Only one octant of the sphere is analysed. The analytical solution by 

Koiter (1963) gives the nondimensionalized vertical displacement at the crown,

E-Lw -  2 1 .2 (4.1.5)
P

for the configuration in Fig.4.6.

Truncated half sphere

A half sphere is truncated for 18° from the pole (Fig. 4.7). It is a sensitive 

case with strong coupling of membrane and bending actions. Only a quarter of 

the half sphere is modelled using the symmetry. The solution for normal 

displacement at point A and B is given as 0.094 in the reference (MacNeal and 

Harder, 1984).

Distorted meshes

Problems (1), (2), (3), (4), and (7) are also tested with distorted meshes 

as shown in Figs. 4.5 and 4.8. Distortion of finite element meshes usually 

deteriorates the accuracy of the computation. Meshes of real objects are 

complex and seldom regular. Therefore, it is necessary to evaluate the 

performance of a finite element with realistic meshes. The distortion has been 

made by rotating the cenral element of 3X3 mesh as shown in Fig.4.8. The 

degree of distortion is indicated by the rotation angle.
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Fig. 4.6 Membrane and pinched sphere
(a) Configuration
(b) MXN mesh with triangular elements around the pole and 

quadrilateral elements elsewhere
(c) MXN mesh with triangular elements
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Fig. 4.7 Truncated half sphere
(a) Configuration
(b) MXN mesh with quadrilateral elements
(c) MXN mesh with triangular elements
(d) Non-uniform mesh with local refinement
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(b )

Fig. 4.8 Finite element mesh for element distortion tests 
(a) Configuration (b) Distorted mesh
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4.2 Review of the degenerate shell element

The degenerate shell element has been studied numerically by many 

researchers (Ahmad eta!., 1970; Fezans and Verchery, 1982; Pawsey and 

Clough, 1971; Takemoto and Cook, 1973; Zienkiewicz eta!., 1971). The 

previous investigators concluded that the element with reduced integration 

performs satisfactorily for both thick and thin shells. However, all of them are 

concerned only with the quadrilateral element, and no numerical tests of 

triangular element are reported in the literature. The present study revealed 

that the triangular element behaves differently from the quadrilateral element. 

Reduced integration is not as helpful as for the triangular element. The element 

suffers from severe locking phenomenon in so-called sensitive problems. 

Another noteworthy case is a curved shell under pure bending, which has not 

been studied so far for the degenerate shell element. Even the quadrilateral 

element suffers from locking phenomena in this case. The convergence tests of 

the degenerate shell element are presented in Fig. B.1 through B.5 and 

discussed below.

Cylindrical shell roof

The convergence of quadrilateral elements with 3x3 full integration is 

relatively slow but drastically improved by 2x2 reduced integration as shown in 

Fig. B.6. The solution converges to the analytical solution based on shallow 

shell theory. Two different 3-point rules together with the 7-point rule are 

compared for triangular element. The inside 3-point rule gives the fastest 

convergence. However, the convergence of triangular elements is not as 

satisfactory as that of the quadrilateral element with reduced integration.
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Pinched cylinder (thick)

The convergence for the pinched thick cylinder is in the same order as in 

the cylindrical shell roof case. But the quadrilateral element with reduced 

integration converges to a value approximately 7 % smaller than the analytical 

solution by Ashwell and Sabir (1972).

Pinched cylinder (thin)

The quadrilateral element with reduced integration gives satisfactory 

results also for this case. But the solution converges to a value approximately 

5% smaller than the analytical one (Ashwell and Sabir, 1972). The triangular 

element behaves very poorly regardless of integration order, and its 

convergence is unacceptably slow for this case.

Fixed-free quarter cylinder

Both the triangular and the quadrilateral element with reduced order 

integration converge to a value approximately 20% smaller than the exact 

solution. The convergence cannot be improved further by mesh refinement 

beyond 100 nodes. Substantial membrane shear stress remains even with 

refined mesh. Thus, the element suffers from membrane shear locking. The 

failure for this case implies that the element cannot properly represent the pure 

bending state of a cylindrical^ curved shell.

4.3 Convergence of the new elements

The convergence behavior of the new element with each type of 

decomposition is compared with the degenerate shell element in Fig.B.1 

through Fig.B.5. The element behaves better than the degenerate shell 

element for all cases tested in this study. The type I element converges to
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somewhat larger values than the analytical solutions in general. The elements 

with type II or III decomposition show a convergence to the exact solutions for 

both thick and thin shells. Although the rate of convergence is almost 

equivalent to that of the degenerate shell element, the deviation of the 

converged solution from the analytical one is much smaller, and almost not 

noticeable. The superiority is more noticeable for bending-dominant cases. A 

significant difference from the degenerate shell element is that the new element 

does not lock for the curved shell under pure bending action. However, the 

element still suffers from locking for thin shell cases, which should be cured by 

complementary devices discussed in Section 2.6. The element with type III 

decomposition seems to give the most favorable convergence behavior 

(Figs. B.1-B.5).

Cylindrical shell roof

The convergence of the element with type II or type III decomposition is 

slightly faster than, but almost equivalent with, that of the degenerate shell 

element. The element with type I decomposition gives a more flexible solution 

which converges to the deep shell solution. The computed vertical 

displacement on midsection is compared in Fig.4.9. It demonstrates the 

convergence of the element to the exact solution.

Pinched cylinder (thick)

The type I element gives a solution about 5% larger than the exact one, 

while the type II and III elements show convergence to the exact solution. All 

three types of element of triangular shape produce much slower convergence, 

although they are slightly better than the degenerate shell element of the same 

shape.
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Pinched cylinder (thin)

The type II and the type III elements of quadrilateral shape show quite 

satisfactory convergence characteristics for this case. All the three types of 

element of triangular shape produce much slower convergence, although they 

are slightly better than the degenerate shell element of the same shape.

Fixed-free quarter cylinder

This is a test case which proves the superiority of the new element over 

the degenerate element. The capability of the element for constant strain state 

under pure bending is also numerically proved. Membrane stresses vanish 

completely by mesh refinement with type II or type III elements, while this cannot 

be achieved by the degenerate shell element. The type II and the type III 

element converge to the exact solution without any locking phenomenon even if 

the thickness of the cylinder is reduced to a thin shell category.

4.4 Accuracy of the new elements

The convergence tests revealed that the type I element is not desirable, 

because the solution does not converge to the correct ones. The type II element 

yields an almost identical solution to that of the type I element. For these 

reasons, only the accuracy of the type III element was examined by comparing 

the computed displacements and stresses with analytical solutions.

The type III element shows relatively good agreement with the analytical 

solutions for the following test cases.

Cylindrical shell roof

In Fig. 4.9 and Fig. 4.10, the computed normal displacements, tangential 

displacements, membrane stresses and bending moments are compared with 

analytical solutions (ASCE Manual No.31,1952; Scordelis and Lo, 1964;
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Fig. 4.9 Displacements of the cylindrical shell roof
(a) Longitudinal displacements at the support
(b) Vertical displacements on the midsection
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Fig. 4.10 Stresses of the cylindrical shell roof
(a) Membrane stress cx at the midsection ( x=0 )
(b) Membrane stress cry at the free edge (<>=40°)
(c) Bending moment My at the midsection
(d) Bending moment Mx at the midsection
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Zienkiewicz et al. 1971 ). With 4x4 mesh, the quadrilateral element shows 

good accuracy, but the triangular element shows some discrepancy from the 

analytical solution. It should be noted that results of the triangular element do 

not represent the converged solution. The displacement pattern implies that the 

triangular element will also produce a good accuracy as the mesh is further 

refined.

Clamped circular plate

In Fig. 4.11, the deflections along a diameter of the circle are compared 

with the exact solutions for t/r=0.1 and t/r=0.02. The type III element of 

quadrilateral shape gives relatively good accuracy even with the distorted 

coarse mesh, while the triangular element shows some descrepancy from the 

exact solution for t/r=0.02. A more refined mesh of triangular elements would be 

necessary for this case to obtain satisfactory results.

Pinched sphere

Figs. 4.12, 4.13 and 4.14 show the comparisons of the computed results 

with the exact solutions for normal deflections, membrane stresses and bending 

moments along a meridional line. The computed deflections agree well with the 

membrane solution for a meridional angle greater than 5°. The converged 

solution of the deflection at the pole is larger than the membrane solution and 

Koiter's analytical solution with modification for bending. But the solution 

agrees with the Koiter's solution when the load is distributed over the area of 10 

subtended angle. A refined mesh around the pole is needed to obtain a 

converged solution for this region. Mesh refinement gives almost no effects for 

the region beyond the 5° subtended angle. A similar pattern of solution is 

observed for membrane stresses and bending moments.
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Fig. 4.11 Deflection of a circular plate with clamped boundary and under 
uniform load



N
on

di
m

en
si

on
al

iz
ed

 n
or

m
al

 d
is

pl
ac

em
en

t 
E

 t 
w

l 
P

115

Fig. 4.12 Nondimensionalized normal displacement along the meridian of the 
pinched sphere
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Fig. 4.13 Nondimensionalized stress resultants along the meridian of the 
pinched sphere
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Fig. 4.14 Nondimensionalized bending moment along the meridian of the 
pinched sphere
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Sphere under uniform pressure

The elements of all three types give the correct solution even with 

relatively coarse mesh refinement. Both quadrilateral and triangular elements 

produce equivalent accuracy. The type III element shows dependence of its 

accuracy on the thickness to radius ratio for coarse mesh (4 intervals in 

meridional and equatorial directions). For t/r=0.01, the maximum error is about 

6% in normal displacements and 2% in stresses. But, in the case of t/r=0.1, the 

maximum error is less than 1% in normal displacements and stresses. With 

more refined mesh (8 intervals in both directions), the maximum errors in 

displacements and stresses are in the order of 0.01 % for both t/r=0.1 and 0.01.

Truncated sphere

This is an extremely thin shell case, and the convergence behavior for 

this case is somewhat similar to that of thin pinched cylinder. The normalized 

radial displacements at A and B with respect to the exact solutions are 

presented in Table 4.3.

Table 4.3 Computed deflections* at points A and B of the truncated half sphere

Qlll(2x2)
M p c h

C
MXC
M

QO

Till (3) Tlll-A (3) TD (3)

uA=wB U A = W B u A wB U A  w b u A wB

4x4 0.796 0.754 0.047 0.045 0.483 0.441 0.048 0.046
8x8 0.990 0.917 0.367 0.366 0.835 0.821 0.357 0.355
12x12 0.996 0.921 0.746 0.749 0.943 0.941 0.701 0.707
15x15 0.997 
985nodes“

0.921 0.897
0.910

0.899 0.979 0.979 0.838
0.847

0.840

The results are normalized with respect to uA=wB=0.94
Nonuniform mesh (12x12 mesh + local mesh refinement around load point). 
See Fig. 4.8. The displacement uA is computed from single load using 
superposition
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The non-uniform mesh refinement with the finest grid around the load 

point does not provide a significant improvement of the accuracy, apparently 

because the bending action is large throughout the sphere.

4.5 Remedies for locking phenomena

The complementary devices for locking phenomena have been treated in 

Chapter 2 and their implementation has been discussed in Chapter 3. Their 

effectiveness is investigated through numerical tests in this section.

4,5.1 Reduced integration

Full and reduced order integration have already been compared in the 

previous sections. As far as quadrilateral shape elements are concerned, the 

effectiveness of the reduced integration is conspicuous in most cases for both 

the degenerate shell element and the new element. As for triangular elements, 

the convergence is improved by the reduced integration, but the improvement is 

not complete, and the locking phenomena cannot be removed. The inside 3- 

point integration gives faster convergence than the midside 3-point rule, 

selective reduced integration has also been tested, but proved to be not as 

effective as uniform reduced integration. Eigenvalue tests show that the 

selective reduced integration destroys the geometric isotropy of the element. 

The results of the selective integration imply that the membrane locking is as 

significant as the transverse shear locking.
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4.5.2 Addition of internal d.o.f.

Five different possibilities of adding the internal d.o.f. have been 

considered as described in the previous chapter, but only type III element has 

been tested numerically in association with these internal d.o.f. The inside 3- 

point integration rule is applied for all cases. The following notations are used 

to indicate the various internal degrees of freedom.

IDOF(A) : three translational d.o.f. at the center

IDOF(B) : two rotational d.o.f. at the center

IDOF(C) : all five d.o.f. at the center

IDOF(D) : two translational d.o.f. in the tangential directions and two 

rotational d.o.f. at the center

In general, IDOF(A) and IDOF(D) show the most favorable convergence 

behavior for all cases tested in the present study. But IDOF(A) gives fluctuation 

of the computed normal displacements for the uniform pressure case when 

coarse meshes are used. The same difficulty arises also for IDOF(C). IDOF(B) 

fails to remove the locking phenomenon in a sensitive thin shell case. The 

solution with IDOF(C) generally converges to a value slightly larger than the 

analytical solution. The convergence of the type III element with different 

internal d.o.f. is compared in Fig. B.7 through Fig. B.10.

Cylindrical shell roof

The convergence of a type III triangular element is im proved 

conspicuously by the IDOF(A) (Fig. B.7). The solution converges to the 

analytical solution based on shallow shell assumptions. IDOF(B) gives slower 

convergence than IDOF(A) while the one with IDOF(C) or IDOF(D) gives faster 

convergence. However, IDOF(C) and IDOF(D) do not give monotonic
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convergence and the solutions with these internal d.o.f. approach a value a bit 

larger than the analytical solution (Fig. B.7).

Pinched cylinder (thick)

IDOF(A) and IDOF(D), show almost equivalent convergence 

behavior which approaches the analytical solution. The performance of 

IDOF(B) is quite poor for this case (Fig. B.8).

Pinched cylinder (thin)

IDOF(A), IDOF(C) and IDOF(D) improve the rate of convergence 

significantly and remove the locking behavior to such a degree that the element 

might be acceptable. The improvement by IDOF(B) is not sufficient. IDOF(C) 

converges to approximately 3% higher value than the analytical solution 

(Fig. B.9).

Fixed-free quarter cylinder

IDOF(A), IDOF(B), IDOF(C), and IDOF(D) show equivalent rates of 

convergence for this test case (Fig. B.10).

Sphere under uniform pressure

The converged solutions with IDOF(A) and IDOF(C) show local 

fluctuation of the surface normal displacement when coarse meshes are used. 

This is similar to what is usually observed for Lagrange elements of 

quadrilateral shape. This fluctuation disappears as the mesh is refined. 

IDOF(B) and IDOF(D) give the correct solution even with a coarse mesh.

Four corner supported square plate

IDOF(A) and IDOF(C) fail for this test case. IDOF(B) and IDOF(D) do not 

fail but converge to a bit larger value than the exact solution.
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4,5.3 Mixed formulation

The mixed formulation was applied only to the type III element. Various 

combinations of m and n in the mixed formulation were tested, where m and n 

represent the number of polynomial terms in g-, and g2 of Eqn. (2.6.10). The

stiffness matrix of a triangular element becomes negative definite unless the 

39 i /392 scheme is used. The quadrilateral element with the 3g-,/3g2 scheme

shows favorable convergence for all the test problems except the pinched 

cylinder and the four corner supported square plate case, for which the element 

fails due to rank deficiency. The quadrilateral element also fails for other than 

the 4g1/3g2 or the 4g-|/4g2 schemes. However, geometric isotropy is violated 

when the 4g-,/3g2 scheme is used. In short, only the triangular element with the 

3g-i/3g2 scheme and the quadrilateral element with the 4g-|/4g2 scheme are 

acceptable. Therefore, only those schemes are numerically tested in more 

detail. The convergence tests show there are no significant differences 

between the full order and the reduced order integrations for mixed formulation. 

The computed results are approximately equivalent to that of the displacement 

formulation with reduced integration. The mixed formulation itself is not 

effective enough to remove the locking phenomenon of thin shell cases. Thus, 

the addition of internal d.o.f. will be necessary also for the mixed formulation to 

avoid the locking phenomena. The advantage of the mixed formulation with full 

order integration is that it stabilizes the local fluctuation which arises in the 

displacement formulation when internal d.o.f. are added.

The alternative form of mixed formulation based on the modified 

Hellinger-Reissner principle was also numerically investigated. There are no 

noticeable differences in convergence between the original mixed formulation 

and the modified formulation when reduced integration is applied. But the



Table 4.4 Performance of the Mixed Formulation

Method of Shape mgi/ng2 Inter. Integr. Rate of convergence
formulation m n d.o.f. schm. or property of element stiffness matrix

Mixed Triangle 3 3 3-point Equivalent to D.W.R.(displacement formulation with reduced intgr.)
Formulation 3 3 7-point Equivalent to D.W.R.

3 3 u,v,w 3-point Equivalent to D.W.R.
3 3 u,v,w 7-point Equivalent to D.W.R.. no oscillation for uniform pressure case
4 3 3-point Non-positive definite stiffness matrix, geometric isotropy violated
4 3 7-point Convergence slower than D.W.R., geometric isotropy violated
4 4 3-point Non-positive definite stiffness matrix.
4 4 7-point Convergence slower than 4g1/3g2with 7-point integration.

Quadril. 3 3 2x2 Rank deficiency for pinched cylinder (thick and thin)
3 3 3x3 Non-positiveness for cyl. shell roof, rank deficiency for pinched cyl.
4 3 2x2 Equivalent to D.W.R., geometric isotropy violated
4 3 3x3 Equivalent to D.W.R., geometric isotropy violated
4 4 2x2 Equivalent to D.W.R.
4 4 3x3 Equivalent to D.W.R.

Modified Triangle - 3 3-point Equivalent to D.W.R.
Mixed - 3 7-point Slightly slower than D.W.R.
Formulation - 4 3-point Non-positive definite stiffness matrix

- 4 7-point Slower than 3g2 with 7-point integration
Quadril. - 3 2x2 Rank deficiency

- 3 3x3 Rank deficiency for cyl. shell roof
- 4 2x2 Equivalent to D.W.R.
- 4 3x3 Significantly slower than D.W.R.

123
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modified formulation gives slower convergence when full order integration is 

used. The performances of the mixed formulation and the modified mixed 

formulation are presented in Fig. B.11 through Fig. B.14 and summarized in 

Table 4.4.

4.6 Control of zero-energy modes

The zero-energy modes and their control were considered for Type III 

triangular element with internal d.o.f. Two schemes of controlling the zero- 

energy modes, i.e., e-control and a-control, were tested and compared. A 

larger value of zero-energy control index (e or a) is more effective for controlling 

the zero-energy modes, but more likely to induce locking phenomena. Thus, 

the main point of the numerical tests is to find the range of the index which can 

control the spurious zero-energy modes without inducing the locking 

phenomena. The pinched cylinder (thin), which is sensitive for locking, and the 

four corner supported plate, which is sensitive for zero-energy modes, are the 

two extreme cases from which one can derive a conclusion probably valid for a 

wider variety of problems. The test results of zero-energy control are given in 

Fig. B.15 through Fig. B.29 and are summarized in Table 4.5.

4,6.1 e-control

The control index e ranging from 10‘12to 0.1 was examined for both the 

pinched cylinder and the four corner supported plate case (Fig. B.25 through 

Fig. B.29). The zero-energy mode is not controlled when the index e is zero. 

As the index becomes larger, the effect of the internal d.o.f. diminishes and the 

solution approaches the one without any internal d.o.f. Because 64 bit double
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precision is used in the computation, an index less than 10’12 will be 

overwhelmed by computational error.

Pinched cylinder (thin)

Type III elements with various internal d.o.f. are almost unaffected by 

control with e value of less than 1 0 6. As the index increases, the convergence 

becomes slower. The element with IDOF(A) is slightly less sensitive to the 

value of the control index than those with IDOF(C) or IDOF(D). The element 

with IDOF(A) suffers from significant locking behavior again when the index is 

larger than 10’3.

Four corner supported plate

The element with IDOF(A) appears correct for an e value greater than 

1CH0. However, the computed displacement oscillates across the plate when 

the index is less than 10'4. The oscillation becomes severe as the index 

decreases. The amplitude of the oscillation has a tendency to decrease as the 

mesh is refined. The element shows locking behavior again when the index is 

larger than 10'3. The element with IDOF(B) and IDOF(D) gives convergence to 

the analytical solution when the index is greater than 0.1. The converged 

solution approaches approximately 6 % larger value than the analytical solution 

as the index decreases below 10-4. When the control index is reduced below 

10'8, the solution stabilizes and is not affected by the control index. The 

element with IDOF(C) is most sensitive to the control index. The element 

behaves similarly to those with IDOF(B) and IDOF(D) for control index greater 

than 10'8, but shows oscillation of displacements, as in the case of IDOF(A), for 

e value less than 10-3.



Table 4.5 Effects of Zero-energy Control

Control
Scheme

Internal
D.O.F.

Pinched-cylinder Four-corner-supported plate

e-control
IDOF(A)

IDOF(B)
IDOF(C)
IDOF(D)

Locking if e>10'3

Locking for all e values 
Locking if e>10*2 
Locking if e>10'3

Correct center displ. for e<10'10 
Oscillation for e>10’4 
Convergence to 7 % larger value 
Oscillation for e>10_3 
Convergence to 7 % larger value

a-control 
3/3 point 
integration

IDOF(A)

IDOF(B)
IDOF(C)
IDOF(D)

Locking if e>10-4

Locking for all e values 
Locking if e>10‘2 
Locking if e>10'3

Correct center displ. for e<10'12 
Oscillation for e>10'5 
Convergence to 7 % larger value 
Oscillation for e>10’4 
Convergence to 7 % larger value

a-control 
3/7 point 
integration

IDOF(A)

IDOF(B)
IDOF(C)
IDOF(D)

Locking if e>10'6

Locking for all e values 
Locking if e>10'2 
Locking if e>10'3

Correct center displ. for e<10‘12 
Oscillation for e>10’6 
Convergence to 7 % larger value 
Oscillation for e>10'4 
Convergence to 7 % larger value

126
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4.6.2 cx-control

This control scheme can be achieved by various combinations of 

integration rules, namely, combination of two 3-point rules (inside 3-point and 

midside 3-point ), 1-point and 3-point rule, or 3-point and 7-point rule.

However, 1-point /3-point rule fails, with any value of a, for the four corner 

supported plate case, and therefore was excluded from detailed numerical 

study. The control index a ranging from 10'12to 0.5 was examined. The zero- 

energy mode is not controlled when the index a is zero, and the integration 

scheme becomes equivalent to 6- or 10-point rule as a approaches 0.5. The 

scheme gives, in general, similar convergence patterns as the e-control 

scheme (Fig. B.15 through B.24).

4.7. Other tests to prove the validity of the elements

The convergence and the accuracy of the elements have been 

investigated in the previous sections. However, most of the computations are 

performed using uniform rectangular grids. Therefore, it is necessary to 

examine how the elements behave when they are distorted. Patch tests and 

element distortion tests are used to prove the validity of the elements with 

arbitrary shape.

4.7.1 Patch fe?t?

A cantilever plate with uniform tensile load and the one with uniform 

moment at the free edge are examined for patch tests. The 3x3 distorted mesh 

shown in Fig.4.5 is used for the test. The central element is kept in rectangular 

shape and the surrounding elements are distorted by rotating the central 

element 30°. The type I element fails for the case of edge moment. The type II
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and III elements of triangular shape pass the tests. However, the quadrilateral 

elements show errors (order of 0.1 %) in bending stresses when the meshes 

are not rectangular. But the error decreases as the mesh is refined. Thus the 

quadrilateral elements seem to pass the patch test in the limit of mesh 

refinement.

Table 4.6 Summary of the patch test results

Element Constant tension Constant bending

Ti Pass Fail

Til, Till Pass Pass

Til l-A—D Pass Pass

QII.QIII Pass Pass if rectangular. Otherwise pass only infinitesimally

Qlll-A-D Pass Pass if rectangular. Otherwise pass only infinitesimally*

Addition of internal d.o.f. reduces the error in constant bending stresses of 
distorted elements.

4.7,2 Element distortion tests

Distortion of elements usually degrades the accuracy or retards the rate 

of convergence. Furthermore, distortion may incapacitate the complementary 

measures for locking. It is worthwhile to examine how element distortion affects 

the convergence behavior. Thus, four test cases have been examined for 

various degrees of element distortion. The type III elements of quadrilateral 

shape with and without internal d.o.f are compared with the degenerate shell 

element in Fig. B.30 through Fig. B.33. The effects of element distortion seem 

more serious for thinner shells. They can still be considered to be within 

acceptable range, provided that higher degree of distortion is avoided in 

practical mesh design. It should also be noted that the 3x3 mesh does not give
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converged solution even for a rectangular mesh and therefore the results of the 

element distortion tests reported here may not necessarily represent the 

behavior for a more refined mesh. Addition of internal d.o.f. generally makes 

the element less sensitive to distortion. For the pinched cylinder case, 

quadrilateral elements with internal d.o.f. (u,v, and w) and reduced integration 

fail due to spurious zero-energy modes. However, these spurious modes 

disappear as the elements are distorted. The interrelation of the locking 

penomena and the spurious modes can also be seen in this context.

The clamped circular plate is another case in which element distorsion 

has been implicitly included (Fig.4.11). Even though the quadrilateral element 

does not pass the patch test, it gives relatively good performance for this case.

4.8 Overall evaluation

The type I element fails the patch test and gives convergence to 

somewhat larger values than the exact solutions. This may be due to the fact 

that the element does not satisfy the C1 interelement continuity because the 

rotations in natural coordinate directions are interpolated by incomplete quintic 

polynomials. Interpolation satisfying the C1 continuity is a subject for further 

study.

The convergence behaviors of the type II and III elements are similar. 

However, the type III element is preferred because its formulation is simpler. 

The element shows better performance than the degenerate shell element for 

all the test cases. Especially the element of quadrilateral shape gives 

satisfactory convergence for both thick and thin shells. The convergence of the 

triangular element is slow for thin shells. This can be improved by 

complementary devices together with zero-energy control schemes. Type III
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elements give good agreement with analytical solution as demonstrated for the 

cylindrical shell roof case (Figs.4.9 and 4.10) and the pinched sphere case 

(Figs.4.12, 4.13 and 4.14). As shown in the case of the pinched sphere and 

truncated half sphere, the element requires fine mesh refinement to represent 

properly bending actions of thin shells.

It is recommended that quadrilateral elements be used for thin shells with 

significant bending action and use triangular elements be used only for places 

such as sharp corners or crack tips where the quadrilateral element does not fit. 

Triangular elements should be used with fine grids or with complementary 

devices for locking and zero-energy control. A high degree of element 

distortion should be avoided if possible.

It has been discovered that quadratic or higher order isoparametric 

elements under special restrictions on their geometry can represent the r 1/2 

stress singularity at a crack tip (Barsoum,1974,1976,1976a). Specifically, 

triangular quadratic elements with two adjacent side nodes located at the 

quarter points provides this singularity at the included corner nodes. It has also 

been proved that the degenerate element with reduced integration has the 

required singularity. The type III element should possess the same capability, 

because the element is also based on the isoparametric interpolation. 

However, it has not yet shown that the element with internal nodes or the the 

one based on the mixed formulation can represent the same singularity; this 

demonstration is beyond the scope of this study. Therefore, it is recommended 

that, at a crack tip, triangular elements without any complementary devices 

other than reduced integration be used. Special care should be taken in mesh 

generation to make the sides of elements straight and to place the side nodes 

exactly at quarter points as shown in Fig.5.25.



Chapter 5 

APPLICATION

In preceding chapters, finite elements for shell analysis have been 

formulated and their accuracy has been examined by numerical studies with 

various test problems. The role of the finite element technique in biomechanics 

has been described in Chapter 1 through a brief review of the previous works 

in this area. This chapter deals with the application of the finite element to 

practical problems related to biological objects. Two examples are presented 

here. One is stress and fracture analysis of an eggshell, and the other is 

modelling of a stomatal opening in plants. The type III elements are used for 

both cases.

5.1 Analysis of stresses in eggshell

Eggshell breakage during handling and processing is a continuing 

problem for the poultry industry. About five to twelve percent of the fresh market 

eggs is lost or downgraded simply because the shell is fractured (Anderson and 

Carter, 1976, Orr et ah, 1977, Washburn, 1982). This results in a substantial 

financial loss. A better understanding of the eggshell breakage will influence 

the design of egg processing equipment and research into strengthening 

eggshells. On the other han, the eggshell is considered as an ideally designed 

structure and has an analogy to man-made shell structures. Therefore, the 

investigation of eggshell stresses may give feedback to the structural analysis 

and design processes.

Primitive stress analyses of eggshells were initiated chiefly for evaluation 

of physical properties or failure stresses. Although a comprehensive

131
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understanding of the shell's reaction to external forces requires a knowledge of 

the stress distribution throughout the shell, it was extremely difficult for the early 

researchers to do an accurate analysis of an eggshell due to its complex 

geometry. To remove the complexity, Voisey and Hunt (1967) assumed a 

spherical shape of the egg for the stress analysis of the shell. Their result 

shows the wide discrepancy between the experimentally measured and the 

theoretically computed values for failure forces. Tung et al. (1969) also 

assumed a spherical shell and employed Reissner's solution to estimate the 

elastic properties and the failure strength of eggshells from experimantally 

measured deformations and crushing forces. In spite of its simplicity, the 

assumption of spherical shape is not encouraging as shown by Voisey's results, 

because the actual stress distribution of a shell is generally sensitive to its 

geometry. In the light of this fact, the results obtained by Sluka et al. (1965) are 

considered to be more reliable. They devised a hydrostatic pressure tester 

which raised the internal pressure in an egg until the shell failed in tension. 

They evaluated the failure tensile stress by applying the simple membrane 

theory to an eggshell subject to hydrostatic pressure from inside. McRae and 

Duff (1969) did a similar analysis for the case of hydrostatic compression and 

determined the ultimate compressive stresses of the eggshell. Voisey and Hunt 

(1967) applied brittle coating techniques to the eggshell in order to determined 

the surface stress distribution under quasi-static loading. The stress patterns 

under various loading conditions were produced. The overall tendency of the 

stress distribution and the principal directions could be deduced. However, it 

was diffucult to determine quantitatively the magnitude of each stress 

componenet from the experiment. Furthermore, direct observation of the stress 

pattern on the inner shell surface was not possible due to various reasons, 

while the authors conjectured that the first fracture of an eggshell due to quasi­
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static loading is more likely to occur at the inner surface under the point of 

loading.

Manceau and Henderson (1970) first applied the finite element method 

to stress analysis of eggshell. They represented the eggshell geometry by a 

number of axisymmertric shell elements subject to non-axisymmetric loading 

conditions, and obtained the stress distribution under two loading conditions, 

i.e., thermal loading and loading on the equator between two flat plates.

Upadhayaya et al. (1984a) studied the thermo-elastic behavior of avian 

eggs idealized as a fluid filled spherical shell and investigated the effect of 

eggshell size, thickness and air cell size on the thermally induced stress in the 

eggshell. The results were compared in another study by Upadhayaya et al. 

(1984b), which used the finite element method for a stress analysis of avian 

eggs with various shapes. The latter analyzed the stresses due to temperature 

change and internal pressure when subjected to flat plate loading using a 

generalized finite element analysis program.

Eggshell strengths are usually determined by measuring a certain type of 

external force at failure and relating this with the analytically obtained stresses. 

The investigation of eggshell strength has been bedevilled by two things: its 

high variability, and complication involved in the stress analysis. The difficulty 

in stress analysis has been overcome by the finite element method, and 

accurate values can now be predicted. However, many researchers (Brooks 

and Hale, 1955; Orr et al., 1955; Washburn,1982) reported there were large 

variations in the observed strength and the elastic modulus of eggshells. Thus, 

the accuracy achieved in computation may be overshadowed by the variability 

in experimental data which can be attributed chiefly to the measurement 

error (Rehkugler 1963).
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There are many experimental techniques to predict the eggshell 

strength. They can be classified largely into four groups, 1) flat plate loading 

tests, 2) uniform pressure tests, 3) deformation tests (Brooks and Hale 1955, 

Schoorl and Boersma 1982), and 4) puncture tests. Among these techniques, 

only the deformation test is nondestructive. The nondestructive test is based on 

the correlation between the elastic modulus and the egg shell strength ( Hunt 

and Voisey, 1966).

The objective of the present analysis is to evaluate the reliability of each 

measurement technique, based on the results obtained by finite element 

analysis.

The global stress distribution under the following three loading conditions is 

studied in the present work.

1) Uniform internal pressure.

2) Point loads at the pole.

3) Point loads at the equator.

The stress distribution around a crack tip is also considered for the first loading 

condition.

The geometric data and the material properties of the eggshell are input 

in two different ways: one with computed actual values and the other with 

normalized values. The analyses with actual values are to show the overall 

stress distribution and the displacement pattern under each loading condition. 

The normalized values are used to examine the effect of eggshell geometry and 

loading conditions on the stress distribution and thus to evaluate the 

appropriateness of the various widely used measurement techniques for 

eggshell strength.
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5.1.1 The physical characteristics of eggshell

This section decribes the physical properties of eggshells which are 

necessary in analyzing the eggshell stresses.

Egg shell geometry

A correct expression of the eggshell shape is important in predicting the 

shell stresses accurately. There are many methods describing egg shape. 

Tyler (1961) defined the ratio of the major axis to minor axis as the shape index. 

Many researchers (Hunt and Voisey,1966; Rehkugler,1964) have used this 

shape index to define the egg shape. The egg shape index measured by 

Beyavin and Boorman (1981) ranges from 1.36 to 1.88. For purpose of stress 

analysis, the principal curvature has also been frequently used as an egg 

shape characteristic. A mathematical expression defining egg shell geometry is 

more useful in generating the input data for finite element analysis. Smart 

(1967) defined the eggshell geometry by the following m athem atical 

expression.

a2 + (b + xtane)2 =  1 (5.1.1)

in which a and b are a half of the height, and the radius of oval at equator, 

respectively, and 0 is the skew angle as indicated in Fig.5.1.a. This equation is 

equivalent to Eqn. (5.1.2) with x, y, and z in Fig.5.1 .b.

x2 + y2+ z2
a2 (b+xtane  )2

= 1 (5.1.2)

The thickness of the shell is also an important factor affecting the 

eggshell stresses and strength. Therefore, accurate evaluation of shell 

thickness is essential. Romanoff and Romanoff (1949) obtained a linear 

relationship between the volume of an egg and the thickness of the shell
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y

(b)

Fig. 5.1 Parameters defining eggshell geometry
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Fig. 5.2 Relationship between the volume of a hen's egg and the thickness of 
the shell (After Romanoff and Romanoff, 1949)

Fig. 5.3 Typical force-deformation record for an eggshell compressed at 
0.07 in/min (After Voisey and Hunt, 1967)
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(Fig.5.2). Brooks and Hale (1955) found that both the shell thickness t and its 

squared value t2 have equivalent correlation with the egg weight. They 

obtained a mean eggshell thickness of 0.329 mm.

Material properties

The stress-strain relationship of an eggshell is approximately linear and 

isotropic (Brooks and Hale,1955, Tung et al. 1969). The force-deformation 

behavior of an egg under quasi-static flat plate loading is elastic up to the point 

of failure as shown in Fig.5.1 ( Voisey and Hunt, 1967). To analyze the 

stresses, material properties should be known beforehand, while they cannot 

be determined directly by the experimental measurements without stress 

analysis due to the complex geometry of the eggshell. Rehkugler (1963) tried to 

separate the geometric effects and measure the modulus of elasticity directly 

using a ring portion of shell and obtained a value ranging from 4.906X106 to 

8.460X106 psi (3.38X104 to 5.83X104 MPa). As acknowledged by the author, 

this considerable variation may be due mainly to the measurement error rather 

than to inherent variation in the shell property. Tung et al. (1961) obtained 

average values of 4.571 X104 and 4.694X104 MPa, respectively, by point 

loading and distributed loading over a small area and using Reissner's solution 

for spherical shell. Manceau and Henderson (1970) obtained the modulus of 

elasticity and the Poisson's ratio as 6.80X106 psi (4.69X104 MPa ) and 0.307 

respectively, using a ring of eggshell specimen. Voisey and Hunt (1967) 

defined the eggshell stiffness by the force-deformation ratio under flat plate 

loading, and obtained the stiffness values of 885 and 1450 in/lb for loading at 

the equator and at the pole respectively.

Hammerle and Mohsenin (1967) obtained the average ultimate tensile 

strength of 1.9X103 psi (13 Mpa) by uniform pressure loading tests. The
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compressive ultimate strength ranges from 2.3X104 to 2.8X104 psi (158 to 193 

MPa, McRae and Duff, 1969).

5.1.2 Global stress distribution in the eggshell

The stress distribution in an eggshell has been analyzed here for one 

geometric configuration and three different loading conditions: uniform 

pressure, flat plate loading at the equator and at the pole. It is legitimate to 

assume that the eggshell is hollow, because the shell, not the contents, carries 

most of the load (McRae and Duff, 1969; Hammerle and Mohsenin, 1967). The 

following data are used in the analysis: 

a = 28 mm, b =21 mm, 0=15°,

Thickness = 0.3 mm, Poisson's ratio = 0.3,

P = 0.1 N ( for flat plate loadings), p = 10 KPa ( for uniform pressure) 

Stresses due to uniform pressure

Internal pressure (Sluka et al., 1965; Hammerie and Mohsenin, 1967) or 

external compression (McRae and Duff, 1969) are used to measure the 

eggshell strength. In actual situation, the eggshell may be subjected to internal 

pressure due to expansion of internal material. Eggshell breakages frequently 

occur due to pressure type of external loading. Therefore, uniform pressure is a 

common loading case of eggshell. The membrane action is dominant 

throughout the egg. Therefore, computational accuracy is achieved even with 

relatively coarse meshes as shown in Fig.5.4. The bending stress at the point of 

the maximum principal stress contributes less than 1 % of the total stress. The 

shear stresses are also negligibly small. The membrane stresses are minimum 

at the sharp pole and reach the maximum around the equator. These results
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Fig. 5.4 Exaggerated view of the eggshell deformation under uniform internal 
pressure-overlaid with the undeformed mesh
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Fig. 5.5 Principal stresses in the middle surface under uniform internal 
pressure
(a) a, (b) am
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seem to agree with the analytical membrane solution for the uniform pressure 

case.

in which a-| and g2 are the major and the minor principal stresses, and r-, and 

r2 are the major and minor radii of the principal curvatures. The major principal 

stress reaches maximum at around the waist of the egg as shown in Fig.5.4. 

The major principal direction is in circumferential direction. That is supposed to 

result in a meridional crack which is usually observed in eggshell fracture. The 

computed maximum major principal stress is 553 Kpa. Comparing with a 

hypothetical ultimate tensile strength 13 MPa (Hammerle and Mohsenin,1967), 

0.24 Mpa of uniform internal pressure is required to break the eggshell.

Stresses due to point loads at the poles

This case analogous to an eggshell compressed by two flat plates at the 

poles. Upadhayaya et al. (1984b) reported that the point load applied to the 

eggshell gave numerical difficulty producing very large stresses, and that the 

load distribution area affects significantly the magnitude of the stresses. 

Theoretically, there is a stress singularity under the point load; however, the 

rotational shell finite element used does not have the capability to represent a 

stress singularity. It is suspected that the numerical difficulty might be due to the 

singularity of the rotational shell finite element itself at the pole rather than the 

theoretical stress singularity. Such a numerical difficulty is not expected for the 

finite element formulated in the present study.

The theoretical stress singularity can never be achieved in the

computation, although higher and higher stresses are obtained at the point of

<*1 = P r2(2ri ’ r2)/(2 1 r,) 

c2 = pr2 /(2t)

(5.1.3a)

(5.1.3b)
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the load as the mesh is refined. To obtain a bounded convergence, it is 

necessary to assume that the point load is distributed over a finite contact area. 

It is a formidable task, and may not be practical, to evaluate the accurate contact 

area and the contact pressure distribution, because it is extremely difficult to 

model accurately the uncertain asperity and irregularity of the shell surface 

around the contact region. Furthermore, the contact area of a hollow shell will 

always be underestimated if the normal strains in the thickness direction are 

neglected. Therefore, it is most reasonable to use the contact area which has 

been observed by experiments. Experimentally measured contact areas at 

crushing force were reported in the range of 0.2-0.6 mm2, which is equivalent to 

contact diameter of 0.5-1.0 mm (Brook et al., 1955).

Upadhayaya et al. (1984b) replaced the point load by a pressure over a 

1 or 2 degree subtended angle at the pole. Their numerical results showed that 

the stress distribution close to the load point depends much on the contact area. 

Upadhayaya et al. predicted that the shell would fail at the blunt end, based on 

the finite element analysis results. This is true if the contact areas at both ends 

are the same. However, the contact area at the sharp pole is likely to be smaller 

than that of the blunt end. Therefore, there is no ground to give such a 

prediction based on the finite element analysis results, unless the contact areas 

at both ends are evaluated accurately.

In the present analysis, the point loads of 0.1 N are distributed over 1° 

subtended angle at each end. The contact areas of the sharp and the blunt 

poles are 0.123 mm2 and 0.322 mm2, respectively. Consequently, the stresses 

are approximately equal at both ends. The membrane shear stresses are 

negligible at the point under the load, and the normal stresses are the same in 

the two orthogonal directions. The bending moment reaches the maximum at 

the pole, and vanishes rapidly away from the pole. The minor principal stress
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(b)

Fig. 5.6 Exaggerated view of the eggshell deformation
(a) under flat plate loading at the pole
(b) under flat plate loading at the equator
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Fig. 5.7 Principal stresses of an eggshell under flat plate loading at the pole
(a) a t in the inner surface (b) c m in the outer surface
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(compression) due to membrane action contributes only less than 15 % of the 

total stress. The bending action is dominant at the poles. The major principal 

stress (tensile) in the inner surface, which is considered to cause the stress 

failure, is in latitudinal direction along the meridian of the eggshell. Fig.5.6a is 

the exaggerated view of the deformed eggshell under point load at the poles. 

The principal stresses are also shown in Fig.5.7.

Stresses due to point loads at the equator

The flat plate loading can also be applied at the equator. Manceau and 

Henderson (1970) assumed the forces are applied over an elliptical area. They 

divided the eggshell with 50 rotational elements, applied the force over 8 

elements, and described the force distribution by a finite Fourier series at each 

nodal circle. Gates et al. (1984) also analyzed the same case using doubly 

curved thin shell elements. In the present analysis, the loads are also 

distributed over 1° subtended angle, giving a contact area of 0.248 mm2. The 

bending action is dominant in the vicinity of the loaded area, but decreases 

rapidly away from the area. The stresses are approximately the same in all 

directions at the point of loading. The major principal stress in the inner surface 

is in the longitudinal direction for this case. The deformed shape and the 

principal stresses are graphically represented in Fig.5.6b and Fig.5.8.

5-.1-3 Effects of egg shape and load conditions on the stress distribution

Stresses and deformations are computed for various egg shapes 

corresponding to equal volume and for several different loading conditions. 

The objective of the analysis is to examine the effects of egg shape and loading 

conditions on the stress distribution and consequently to evaluate the 

appropriateness of the currently used measurement techniques for eggshell
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(b)

Fig. 5.8 Principal stresses of an eggshell under flat plate loading at the 
equator
(a) CT| in the inner surface (b) am in the outer surface
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strength. Relative results rather than absolute ones are desired for the purpose 

of comparisons and therefore, normalized dimensionless values are used in the 

computation. The following eggshell geometry, properties and loading 

conditions are used in the analysis.

Egg shape: Six different ratios of a and b in Eqn. (5.1.1) were combined with 4 

different skew angles 0°, 5°, 10°, and 15°. Thus, 24 different egg shapes 

were analyzed. The values of a and b are determined to yield a volume 

equivalent to that of a sphere with radius 1. The size and the shape indices 

for various egg shapes are given in Table 5.1.

Eggshell thickness: The maximum bending stress is approximately proportional 

to t3 and the membrane stress is proportional to t. If one assumes that the 

variation of the thickness is not large and the thickness is small compared 

with the curvature, the effect of the thickness to maximum stresses and 

deformation are rather predictable. The linear relationship between the 

volume of the egg and the shell thickness has also been observed 

(Romanoff and Romanoff, 1949, see Fig5.2). This relationship gives one 

thickness for the normalized volume. Therefore, the effect of eggshell 

thickness on the stress distribution was excluded from the investigation, and 

only one thickness of the egg shell was used in the analysis. As a typical 

dimension (Romanoff and Romanoff, 1949), the thickness is assumed to be 

one eightieth of the radius of the sphere.

Load conditions: Seven different loading cases were examined, i.e., a uniform 

pressure case, three cases of flat plat loading at the poles and three others 

at the equator, respectively, with subtended load angles 1°, 2° and 3°.

Material properties: The material is assumed to be homogeneous and isotropic 

with the modulus of elasticity 1.0 and the poisson's ratio 0.3.



Table 5.1 Dimensions of ovals with equal volume

Skew angle 6 = 0° 0 = 5° 0 =: 10° 0 =1 50

% a b=b' index* a b b' index* a b b’ index* a b b' index*

1.0 1.000 1.000 1.00 0.999 0.999 1.003 .996 0.998 0.998 1.013 .985 0.995 0.995 1.028 .968
1.2 1.129 0.941 1.20 1.128 0.940 0.945 1.19 1.126 0.938 0.958 1.18 1.122 0.935 0.978 1.15
1.4 1.256 0.894 1.40 1.250 0.893 0.900 1.39 1.246 0.890 0.916 1.36 1.240 0.886 0.940 1.32
1.6 1.368 0.855 1.60 1.366 0.854 0.862 1.58 1.361 0.851 0.882 1.54 1.352 0.845 0.910 1.49
1.8 1.480 0.822 1.80 1.477 0.821 0.831 1.78 1.470 0.817 0.854 1.72 1.458 0.810 0.887 1.64
2.0 1.587 0.794 2.00 1.584 0.792 0.804 1.97 1.575 0.787 0.830 1.90 1.558 0.779 0.867 1.80

shape index
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Uniform pressure case

As already observed in the previous section, the bending moment is 

negligible over the whole eggshell under uniform pressuffee bending effect 

increases as the skew angle becomes larger, but is still negligible even for 15° 

skew angle which is already beyond the usual range of egg shapes. Therefore, 

only the membrane stress has a significant effect for the eggshell breakage. In 

Fig. 5.9, the normal stresses in the midsurface are plotted along the meridian of 

the eggshell for two different egg shapes. Fig. 5.10 shows the maximum 

principal membrane stresses for various egg shape ranging from sphere to 

skewed ovals. The values are normalized with respect to that of a sphere. The 

results show that the spherical shape gives the minimum value of the maximum 

membrane stress. For a given a/b ratio, the more skewed egg shell gives larger 

membrane stress.The maximum stress increases as the skew angle increases. 

This value also increases as the a/b ratio increases for skew angle 0°, 5°, and 

10°, but decreases for 15°. This seems to reflect the fact that the maximum 

principal stress is proportional to the maximum value of (2r, -  r2) / (2 t r-,) in 

which r-, and r2 are, respectively, the radii of the major and the minor principal 

curvatures at a given point (Flugge,1962).

Most frequently, the ratio a/b is in the range of 1.2 to 1.6, and the skew 

angle is in the range of 5° to 10° (Stewart,1936; Romanoff,1949). For this range 

of egg shape, the maximum stress is approximately 1.3 to 1.4 times that of a 

sphere with equal volume. Therefore, an analysis based on assumption of 

spherical egg shape (Upadhaya et al., 1985) underestimates, by around 30 to 

40 %, the stresses due to uniform pressure.
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CTX (circumferential)

1.43

Fig. 5.9 Normal stresses in the middle surface along the meridian of an
eggshell under uniform internal presssure (Values are normalized 
w.r.t. that of a sphere with equivalent volume.)
(a) 0 = 5°, a/b = 1.2 (a) 0 = 15°, a/b = 2.0
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Fig. 5.10 Maximum principal stresses of ovals with equal volumes and under 
uniform pressure
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Flat plate loading at the equator

In Fig.5.11, the maximum bending moments and the maximum 

membrane stresses are plotted along the meridian of the eggshell for two 

different loaded areas. The principal stresses in the inner and outer surfaces 

are also presented in Fig.5.11c. The effect of egg shape and the load angle on 

maximum principal bending moments and membrane stresses are shown in 

Fig.5.12 and 5.13. The stresses are dominated by the bending moment at the 

pole, but diminish rapidly toward the equator as shown in Fig.5.11. The values 

corresponding to dimensionless load area 0.1 and 0.2 are obtained by 

interpolation of those for the three load angles, and presented in Fig.5.14 and 

5.15. The egg shape does not affect the maximum membrane stress and 

especially the bending stress as much as does the load area. By doubling the 

load area from 0.1 to 0.2, the maximum membrane stress is reduced 

approximately 5 % and the maximum bending stress approximately 30 %. 

Because in this case the stresses are dominated by the bending moment, the 

total stresses are largely dependent on the load area.

The maximum deflection has significant dependence on both the egg 

shape and the load area as illustrated in Fig.5.16.

Flat plate loading at the pole

Similar graphs as in the preceding case are presented in Figs.5.17 

through 5.22. The variations of maximum membrane stress and the bending 

moment with respect to the egg shape and load area are similar to the 

preceding case. However, the dependence on the load area is more 

conspicuous. In contrast to loading at the equator, the deformations depend 

more on the egg shape than the load angle. It appears that the deformation is 

approximately proportional to the width at the equator.
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(a)

(b)

(c)

1 3 1 .1  (contact area  A= 0.1)

Fig. 5.11 Stresses of an eggshell under flat plate loading at the equator 
(0 = 5°, a/b = 1.2)
(a) Maximum membrane stress
(b) maximum bending moment
(c) Coupled principal stresses
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Fig. 5.12 Maximum membrane stresses of ovals with equal v<
flat plate loading at the equator (plotted w.r.t. load ai
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Fig. 5.13 Maximum bending moments of ovals with equal volumes a
flat plate loading at the equator (plotted w.r.t. load angle)
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Fig. 5.14 Maximum membrane stresses of ovals with equal volumes and under
flat plate loading at the equator (plotted w.r.t. load area)
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Fig. 5.15 Maximum bending moments of ovals with equal volumes and under
flat plate loading at the equator (plotted w.r.t. load area)
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a / b

Fig. 5.16 Maximum displacements of ovals with equal volumes and under flat
plate loading at the equator
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1 3 3 .5  1 0 9 .5  ( a )  1 0 8 .9  1 3 0 .2

2 .0 7 3  0 .8 8 8  (b )  0 .8 9 0  2 .0 7 3
(A =0.1) (A =0.2) (A =0.2) (A =0.1)

6 6 0 .0  2 3 3 .1  4 4 9 .8  9 2 6 .8  9 2 3 .0  4 5 0 .0  2 3 2 /2  16 6 2 .6
(A =0.1) (A =0.2) (A =0.2) (A =0.1) (A = 0.1)(A = 0.2) (A =0.2) (A =0.1)

(C)

Fig. 5.17 Stresses of an eggshell under flat plate loading at the pole 
(0 = 5°, a/b = 1.2)
(a) Maximum membrane stress
(b) maximum bending moment
(c) Coupled principal stresses
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Fig. 5.18 Maximum membrane stresses of ovals with equal volumes and under
flat plate loading at the pole (plotted w.r.t. load angle)
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Fig. 5.19 Maximum bending moments of ovals with equal volumes and under
flat plate loading at the pole (plotted w.r.t. load angle)
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Fig. 5.20 Maximum bending moments of ovals with equal volumes and under
flat plate loading at the pole (plotted w.r.t. load area)
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Fig. 5.21 Maximum membrane stresses of ovals with equal volumes and under
flat plate loading at the pole (plotted w.r.t. load area)
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Fig. 5.22 Maximum displacements of ovals with equal volumes and under flat
plate loading at the pole
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Fig. 5.23 Comparison of loading cases
(Values are normalized w.r.t. that of a sphere with 1° load angle)
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Observations

The tendency of stress and displacement variation with respect to 

eggshape and loading condition is summarized in Fig.5.23. If one can measure 

the load angle accurately, the loading at the pole will give better prediction than 

the one at the equator. It seems to be better to specify the load condition by the 

load angle rather than the contact area because the former gives less 

dispersion.

The stresses due to uniform pressure vary significantly with the egg 

shape, while those due to flat plat loading depend more on the load area or 

load angle. This fact suggests that the load area be reflected in determining the 

eggshell strength by flat type loading. Egg shape is an easily predictable factor, 

while the load area is difficult to evaluate exactly. Therefore the strength 

predicted by the uniform pressure type loading is more reliable.

Deformation due to flat plate loading at the poles is also more dependent 

on the egg shape than the load area. Therefore, the non-destructive 

measurement of deformation can provide reliable information for a prediction of 

the eggshell strengh, if one can obtain a good correlation between the 

deformation and the strength as observed by several researchers (Voisey and 

Hunt, 1967).

5.1.4 Fracture of eggshell

The fracture analysis of an eggshell in this section has not been carried 

out to present specific analysis results. Rather it is intended to explore the 

possibility of fracture analysis using the finite element formulated in the present 

study.
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There have been numerous studies on the eggshell failure under quasi­

static, impact, cyclic, thermal and other loading conditions. Some researchers 

investigated experimentally the appearance of cracks due to various loading 

conditions. Others tried to predict the fracture by stress analysis or to relate the 

experimental observations with analysis results. Most of the previous studies 

are based on the simple notion that breakage occurs when the stress at some 

point in the shell exceeds the ultimate strength of the shell material at that point. 

However, the eggshell is known to be a brittle material (Voisey and Hunt, 1968; 

Manceau and Henderson, 1970a), and usually fails in the form of a fracture. 

There are often microcracks within a newly laid egg before its handling (Tyler 

and Moore, 1964). Those microcracks cause a fracture failure at stress level 

much less than the material strength. The measured apparent strength may 

have been influenced by this initial imperfection. Therefore, the failure of 

eggshell should also be examined from fracture mechanics view point.

Crack initiation

A material fails when a stress at a point exceeds its strength. A crack 

propagates when the stress intensity factor at the cracktip exceeds the fracture 

toughness of the material. Stress intensity factor and toughness are analogous, 

respectively, to stress and strength. In other words, the toughness is a material 

property while the stress intensity factor is a material response to external 

effects. The stress intensity factors should be determined by analysis, and the 

toughness is to be evaluated by experiment. Therefore, the major task of a 

fracture analysis is to find the stress intensity factors.

There are three modes of fracture; opening ( mode I ), sliding (mode II ) 

and tearing (mode III), Fig.5.24. Different intensity factors are associated with 

each of these modes. The stresses and displacements in the immediate
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Fig. 5.24 Three modes of fracture
(a) Mode I (opening) (b) Mode II (sliding)
(c) Mode III (tearing)

Fig. 5.25 Quarter point singularity elements of shell
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vicinity of the crack tip can be expressed in terms of these stress intensity factors 

as follows:

a = —L_ ( K| gi + K|| gn + Km gin) (5.1.4a)
V(r)

8 = V(r) ( K| h| + K|| hn + Km h|n) (5.1.4b)

in which

o = stresses in the vicinity of the crack tip 

5 = displacements in the vicinity of the crack tip 

r = V( x2 + y2 ), the distance from the crack tip 

9i> 9n. gin = functions of 0 with 0 = tam1( x / y ) 

h|, hM, hm = functions of 0 and material properties 

K|, K||, Km = stress intensity factors for mode I, II and III respectively 

The 1 /V(r) singularity of stresses in Eqn. (5.1.4a), and V(r) variation of 

displacements in Eqn. (5.1.4b) can be modelled using quadratic isoparametric 

finite elements. This is achieved simply by placing the side nodes adjacent to 

the crack tip at quarter points of their respective sides as shown in Fig. 5.25 

(Barsoum,1974; Henshell and Shaw, 1975; Barsoum,1976a ).

Stresses in shells also have a 1 / V(r) singularity (Folias,1967; Duncan- 

Fama and Sandar, 1972). Barsoum (1976b) proved that the degenerate shell 

elements can also be made to represent the required stress singularity by the 

quarter point elements described above. The stress singularity can be 

achieved by requiring the strain-displacement matrix, B, to be singular at the 

crack tip and the strains to vary in proportion to 1 / V(r). One can easily 

recognize that the strain-displacement matrices in the present formulation have, 

as multiplication factor, the Jacobian matrix J or transformation matrix S*. If one 

uses a different coordinate transformation method discussed in Section 2.1, a 

matrix equivalent to S* is to be obtained by multipling the Jacobian matrix with



171

coordinate transformation matices. Therefore, the singularity of the Jacobian 

matrix directly leads to the singularity of the strain-displacement matrices for the 

present formulation as well. It is already known that the Jacobian matrix is 

singular in quarter point elements. Thus, the singularity of B in quarter point 

elements is proved for the present formulation. The 1 /V(r) singularity of 

strains along the edge can be proved in the same manner as in other literature 

(Barsoum,1976), although its detailed proof is not within the scope of this study.

There are three techniques for computation of the stress intensity factors 

using the finite element method: the displacement correlation method, the 

global energy release method and the hybrid direct method. The displacement 

correlation method incorporated with the quarter point singularity element is 

believed to be the simplest and the most efficient one. According to the 

displacement correlation method, Kh K|(, and Km can be obtained by inserting

the computed displacements into Eqn.(5.1.4b) and solving the equation. For 

example, in case of mixed mode I and mode II involving membrane actions 

only, the stress intensity factors can be expressed in terms of displacements at 

the nodes, facing the crack, of the quarter point elements (Ingraffea, 

1977,1981).

K, = V(2tc/ L) G { 4 (  v B' — v D' ) + v E' —v c' }  / ( k  + 1) (5.1,5a)

Kj, = V(2ti / L) G { 4 ( u B ’  - u d' ) + u E' -u  c' } / ( k  + 1) (5.1,5b)

in which u and v are displacements expressed in crack tip coordinates shown 

in Fig.5. . And G is the shear modulus, and k  = ( 3 -  v ) / (1 + v )  assuming 

locally plane stress state.

For linear fracture analysis of shell, the stress intensity factors can be 

evaluated by superposing the stress intensity factors for membrane actions and
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Fig. 5.26 Local coordinates relative to the crack tip
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for bending actions (Lakshminarayana, 1982). Then, the total stress intensity 

factors, K|(to1) and K||(tot>, are given by

in which K|(m) and K((b) are mode I stress intensity factors due to the membrane 

and the bending actions, respectively.

The following is a simple example of fracture analysis for an eggshell 

under uniform internal pressure. It is assumed that there is a small through 

crack in the equatorial direction at the waist of the egg. The deformation and 

stresses are computed using quarter point triangular elements in the vicinity of 

the crack tip. Fig.5.28 shows the deformed shape. The stress in the equatorial 

direction is also shown in Figure 5.29. The stresses here, which were 

computed by linear extrapolation, are not expected to be accurate at the 

immediate vicinity of the crack tip. The actual stress distribution should be 

obtained by inserting the computed stress intensity factors into Eqn. (5.1.4a). 

For the present case with a small through crack, the stress intensity factors may 

be obtained from Eqn. (5.1.5), assuming that the thickness is small, the 

membrane action is dominant, and thus the transverse crack propagation is 

negligible. For uniform pressure p=10 KPa, the computed displacements are

Substituting the values into Eqn. (5.1.5), one obtains the following stress intensity 

factors:

K,(t°t)= K,(m) + K,(b)

= k m(") + K||(b>

(5.1.6a)

(5.1.6b)

u b' = 2.71 X 10'6 mm vb' = -7.24X10-5 mm

u c' = —5.73 X 10’6 mm vc' = 1.25X1 CH mm

u d = 2.14 X 10’6 mm vd = -8.10X1 O'5 mm

u e' = -6.45 X 10'6 mm ve' = 1.52X10‘4 mm
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K| = 4.63 MpaA/(mm)

K|| =0.0412 MpaV(mm)

The force-deformation diagram in Fig.5.3 supports the notion that an eggshell is 

almost ideally brittle. For an ideally brittle material, the crack initiation leads to 

instantaneous fracture failure at constant load level. Therefore, overall failure of 

an eggshell is expected when the stress intensity factors reach the fracture 

toughness. The fracture toughness of eggshell is not available. But the 

physical properties of eggshell are known to be similar to that of limestone. The 

toughness of Indiana limestone, Ktc= 35 MpaV( mm), may be used as an

approximate estimation of eggshell toughness.

There are a few theories of predicting the crack propagation in mixed 

mode fracture (Broek, 1974). In general, the condition for crack propagation is 

expressed by an interaction equation in the form of

in which Kjc, Knc and Kmc are the toughnesses for modes I, II, and III, 

respectively. According to the energy release rate criterion, fracture occurs 

when the energy release rate is greater than the energy consumption rate. The 

criterion is given by

Assuming that Kic= K|]c* , and using Eqn.(5.1.8), one can predict that the fracture 

failure is expected at uniform pressure level, p=0.076 Mpa, which is 

approximately one third of the load level for the stress failure mentioned in 

Section 5.1.2.

*ln reality, KMc and Kicare not necessarily the same. Their ratio is around unity 
and dependent on the Poisson's ratio.

(1.5.7)

(1.5.8)
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. Fig. 5.27 Finite element mesh for an eggshell with a through crack
(a) Overall view
(b) Close-up view in the vicinity of the crack tip
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(b)

Fig. 5.28 Deformation of an eggshell with a through crack and under uniform 
internal pressure
(a) Overall view
(b) Close up view in the vicinity of the crack tip
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(a)

(b)

Fig. 5.29 Circumferential stresses of an eggshell with a through crack and 
under uniform internal pressure 

. (a) Overall view
(b) Close up view in the vicinity of the crack tip
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Crack trajectory

The criterion of Eqn.(1.5.8) is based on the assumption that the crack 

propagates in a self-similar manner. However, it is usually observed that mixed 

mode crack extension takes place under an angle with respect to the original 

crack. According to the maximum principal stress theory, a crack propagates in 

the direction perpendicular to the maximum principal stress. The angle between 

the original and extending direction, 0m, can be obtained by the following 

relation:

K| sin 0m + K|| ( 3 cos 0m -  1 ) = 0 (5.1.9)

And the fracture criterion is

K|C < K, cos3 (0m/2) -  3 K|, cos2 (0m/2) sin (0m/2) (5.1.10)

Substitution of the computed K, and KM into Eqn.(5.1.9) gives 0m = 0.5 °. Use of

either Eqn. (5.1.8) or (5.1.10) does not make any significant difference for this 

case, because 0m is small, and one can conclude the crack propagates in an

essentially self-similar manner. In other words, crack propagates in the plane of 

the original crack.

There is another theory which states that crack growth takes place in the 

direction of minimum energy density. A detailed description of the criterion can 

be found in other literature (Sih, 1974).

5.2 Modeling of stomatal opening

Stomata are microscopic pores formed by guard cells, which are found in 

plant leaves. The opening and closure of these pores control 95 %, or more, of 

the photosynthesis and transpirations (Willmer, 1983). The mechanism of 

stomatal opening has long been of great interest for many researchers. It has
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been frequently modelled by an analogy to a rubber tube or a balloon. Aylor et 

at. (1973) simulate the stomatal opening using a balloon and supplemented 

the experimental observation by an elastic analysis of tubular beam subject to 

pure bending. Shoemaker and Srivastava (1973) also used a beam analogy to 

relate the differential wall thickening of the guard cell to the opening 

mechanism. DeMichele and Sharpe (1973) idealized the guard cell as a 

rectangular composite beam to show that the opening is a result of opposing 

pressure of the guard cell and adjacent epidermal cells. These early primitive 

analyses, based on simplification and idealization of guard cell geometry, 

properties and external effects, led to many controversial conclusions. Cooke 

et al. (1976) were the first to analyze the stomatal mechanism using the finite 

element method. They modeled the guard cell as an elliptical torus with 

orthotropic material properties and variable thickness using triangular thin shell 

elements. Their modeling is considered to be far more realistic and complete 

than the previous ones. Cooke et al. (1977) went further with finite element 

analysis to include the geometric nonlinearity.

Analysis of the stomatal mechanism involves complex geometry, material 

properties, and external effects. This may be one of the typical problems which 

can exploit the powerful feature of the finite element method as a tool for 

biomechanics. The finite element method equipped with high speed computing 

and computer graphics has enabled not only realistic modeling but also lifelike 

visualization of the analysis results. Real time animation of stomatal movement 

is no loger a remote possibility.

The analysis of stomatal opening presented in this section is intended to 

validate the newly formulated finite element, rather than to derive specific 

conclusions. The computed results are compared with previous experimental 

or numerical analyses.
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An elliptic stomate has been modelled as an elliptical torus with elliptic 

plates inside. The geometry of the middle surface of the doubly curved shell is 

defined by the following expressions (Cooke et al., 1976).

x = cos 0 [ b + ac (1 + sin <j)) { (  a cos 0 )2 + ( b sin 0 )2 } - 1/2 ] (5.2.1 a)

y = sin 0 [ a + be (1 + sin <{>){( a cos 0 )2 + ( b sin 0 )2 } - 1/2 ] (5.2.1 b)

z = dcos0 (5.2.1c)

with 0 < 0 < 7i/2 and - k/2 < <f> < k/2.  The parameters a, b, c, and d are defined in 

Fig. 5.30. The elliptical plate is perpendicular to and bounded by the curved 

shell at 0 = k/2.  Uniform thickness and isotropic material property are 

assumed. A uniform internal pressure is applied perpendicular to the shell 

surface. Owing to its symmetry, only one octant of the torus need be analyzed. 

Boundary conditions are applied so as to take into account the symmetry. The 

type III triangular elements are used in these analyses. In this qualitative 

analysis, the geometry of the guard cell is defined by the nondimensionalized 

values, a = 7.3, b = 1.0, c = 5.35, d = 4.0 and thickness = 1.0. The material 

properties are assumed to be homogeneous throughout the guard cell and the 

elliptic plate with modulus of elasticity E = 106 units and Poisson's ratio = 0.0.

For better visualization, a quarter of the torus is graphically generated 

using symmetry. Fig. 5.31 shows the perspective view of the guard cell seen 

from two different angles. The deformed shapes are also shown in Fig. 5.32. 

The major principal stress in the middle surface is presented in Fig. 5.33.

Aylor et al. (1973, 1975) stressed that the stomatal opening requires the 

radially arranged cellulose microfibrils and the existence of constraints on the 

length of the stomatal system. Shoemaker and Srivastava (1973) argued that 

the non-uniform thickening of the guard cell walls is crucial for stomatal 

opening. None of these is required for the present analysis. However, the finite
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Fig. 5.30 Parameters defining the geometry of a guard cell middle surface 
(Eqn.5.2.1, after Cooke etal., 1976)
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element model achieves proper opening of the guard cell as shown in Fig. 5.32. 

This fact has already been observed in the preceding finite element analyses 

(Cooke et al., 1976; Cooke et al., 1977), and is verified again by the present 

analysis.

To examine the effect of the stomatal geometry on its opening, guard 

cells with the following three different shapes, which are not possible in reality, 

are also analyzed.

1) Elliptical torus with circular cross section: a = 7.3, b = 1.0, c = d = 5.0

2) Circular torus with circular cross section: a = b = 2.5, c = d = 5.0

3) Circular torus with elliptical cross section: a = b = 2.5, c = 5.35, d = 4.0 

The deformed shapes overlaid with the undeformed finite element meshes are 

shown in in Figs.5.34 to 5.37. The graphically represented results clearly 

indicate that the elliptical cross section as well as the elliptical torus shape is an 

essential character for opening of the stomate.

An analytical solution (Cooke et al., 1976) states that the pore of an 

isotropic circular torus decreases as the internal turgor pressure increases, 

unless b/c > 1.77 (Fig. 5.30). However, the present analysis shows that the 

pore increases slightly although b/c <1.77. This discrepancy from the 

analytical observation may be partly due to the differences in Poisson's ratios 

and in the thickness-radius ratios. It should also be noted that membrane 

solution as well as the finite element solution by Cooke et al. (1976) is based on 

the assumption that the thickness is relatively small in comparison with other 

dimensions and thus the transverse shear strains are negligibe, while the 

present formulation takes into account the transverse shear strains. 

Furthermore, the bending actions are neglected in the membrane solution. 

Accordingly, the results of the present analysis for a thick shell may not match 

exactly with the analytical solution. The two give the bounded solutions for thin
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and thick shells, respectively. This implies that the circular torus would not 

properly open for all thickness ranges. As shown in Figs. 5.34 and 5.36, tori 

with circular cross sections bulge out under uniform internal pressure. This 

corresponds to an intrusion of the guard cell into the neighboring epidermal cell 

region, which will cause mechanical disturbance to the rest of the leaf. From the 

results of the above analyses, it can be concluded that the elliptical shape of the 

torus (top view) seems to be a requirement for the opening of the guard cell and 

the elliptical cross section (elevation view) for the prevention of bulging into the 

neighboring region. The guard cell geometry plays an important role in 

stomatal opening.

A model without the elliptic plates is also analyzed in order to find 

whether the existence of the plates is essential to the opening. The deformed 

shape in Fig. 5.37 shows that the opening of the guard cell in the absence of the 

plates is similar to the case with elliptic plates (Fig. 5.32). Therefore, the 

opening of the guard cell seems not to be affected significantly by the existence 

of the elliptic plates. This agrees with an experimental observation 

(Sack, 1982).
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stomal 

3-D Shading

(a)

(b)

Fig. 5.31 Computer-generated perspective views of a guard cell 
(a) seen from outside (b) seen from inside
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Fig. 5.32 Deformed shape (opening) of a guard cell

Fig. 5.33 Major principal stresses in the middle surface
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Fig. 5.34 Deformed shape of a circular torus with circular cross section and 
circular plates -  overlaid with the undeformed mesh

Fig. 5.35 Deformed shape of a circular torus with elliptical cross section 
-  overlaid with the undeformed mesh
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Fig. 5.36 Deformed shape of an elliptical torus with circular cross section 
-  overlaid with the undeformed mesh

*
Fig. 5.37 Deformed shape of an elliptical torus with elliptical cross section 

but without elliptic plate -  overlaid with the undeformed mesh



Chapter 6 

CONCLUSIONS

This study has integrated three different phases of finite element 

analysis, i.e., formulation, implementation, and application. The first part may 

be regarded as one of the numerous efforts to develop a reliable tool for thin 

and thick shell analysis. Not only the satisfactory performance achieved by the 

new formulation but also the methodology provided for a simple, systematic, 

and generalized formulation are the fruitful outcomes of this study. Another 

significance of the study can be found in its elaboration to bridge the analytical 

study and the practical application to biological problems.

6.1 Summary

Finite element analysis of shells

Many shell elements have been developed and are being used. Each 

element has its own advantages and disadvantages, but, none of them has 

appeared to become the uniquely best element. There have been ceaseless 

efforts to obtain an element applicable to both thin and thick shells. Ahmad's 

degenerate shell element is one of the most successful elements in this sense. 

The element, which was originally designed for thick shell applications, 

happened to become applicable to thin shells as well, using the reduced 

integration technique. Another advantage which was found later (Barsoum, 

1976) is its capability of representing the stress singularity at a crack tip by use 

of quarter point nodes. Unfortunately, however, the element performs poorly 

when the shape of the element is triangular. As revealed by the numerical

188
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study in Chapter 4, the element even with quadrilateral shape shows locking 

behavior for a certain type of problems.

To overcome these discouraging features of the degenerate shell 

element, a new finite element has been formulated as described in Chapter 2. 

A new method of element decomposition has been introduced as a basis of the 

formulation. A novel method of coordinate transformation has also been 

suggested. The formulation is based on five d.o.f. at each node, but the 

element shape or number of nodes per element may be varied in the 

formulation in order to achieve greater generality.

The displacement model is constructed by decomposing the actual 

element into translational and difference elements. The displacement field of 

each component element is expressed in a generalized format using a 

displacement function matrix. Differentiation of the displacement function 

matrix directly leads to the strain-displacement matrices. The element stiffness 

matrix is obtained by simple manipulation of these strain-displacement 

matrices.

There are many possible ways to decompose the elements. But only 

three different possibilities are discussed and put into practice in this study. As 

a result, three different elements, designated as type I, type II and type III 

elements, are obtained. Each of the three types has slight differences from the 

other in the derivation of the element stiffness matrix. However, the final forms 

of the displacement model, the strain-displacement relationship and the 

stiffness matrix are common to all three types of elements. The merit of the new 

formulation can be seen also from its simplicity and systematic methodology 

demonstrated in the derivation of the stiffness matrices.

Three different complementary devices, namely reduced integration, 

addition of internal d.o.f., and mixed formulation, are applied to the present
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formulation in order to remove the locking phenomena encountered in 

sensitive problems. Four different combinations of the internal d.o.f. at the 

center of the element have been considered: three translations, IDOF(A); two 

rotations, IDOF(b); all the five d.o.f., IDOF(C); and two translations and two 

rotations, IDOF(D).

The mixed formulations based on Hellinger-Reissner principle and 

modified Hellinger-Reissner principle are also considered as a modification to 

the present formulation.

Combination of internal d.o.f. or mixed formulation with reduced 

integration can remove the locking phenomena successfully. However, an 

element with this combination of complementary devices may suffer from 

spurious zero energy mode. Two different methods of controlling the 

troublesome zero energy modes have been investigated in association of the 

present study: an a-control scheme and an e-control scheme.

The implementation of the finite element and other attendant 

computational procedures have been discussed in Chapter 3. Many 

operations involved in the element formulation are expressed so as to attain 

notational simplification as much as possible. Those operations can be 

economized by taking advantage of their characteristics. These practical 

aspects of implementation are not fully detailed in this chapter. However, they 

should be taken care of in an actual implementation.

Comprehensive numerical studies are also presented to validate the 

formulations and to examine their convergence behavior.

Application to biological objects

The new shell elements have been used in stress analysis of eggshell 

and for elastic modelling of stomatal opening. The stresses developed in an
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eggshell under three different loading conditions are computed and graphically 

represented. The effects of egg shape and loading conditions on eggshell 

breakage are also examined on the basis of stress analysis. Consequently, the 

appropriateness of the widely used strength measuring techniques is 

evaluated.

Four different configurations of tori are analyzed to decide the effects of 

stomatal geomtry on its opening and closure mechanism. The effect of elliptic 

plate on the stomatal opening is also examined.

6.2 Conclusions

Finite element analysis of shells

The type I element gives slightly faster convergence than the other two, but 

converges to a value somewhat larger than the exact solution for certain types 

of problems. It may be due to the fact that the type I element does not satisfy 

the C1 interelement continuity even though the element is based on the 

Kirchhoff assumptions for both the translation and the difference element. The 

type II and type III elements give almost equivalent convergence behavior. 

However, the type II element requires a more arduous derivation and 

computational procedure. Thus, the type III element is the best among the 

elements formulated in the present study. Especially the element of 

quadrilateral shape gives satisfactory convergence for both thick and thin 

shells. Numerical studies with various test problems reveals that the type III 

element performs better than the widely used degenerate shell element. Yet 

the element has all the advantageous features of the degenerate shell element.

However, the convergence of the type III triangular element is quite slow 

under the thin shell situations. This can be improved by complementary
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devices together with zero energy control schemes. Not only the transverse 

locking but also the membrane locking are significant. Thus, the selective 

reduced integration cannot cure the locking phenomena completely. 

Furthermore, geometric isotropy is violated when the selective reduced 

integration is applied. On the other hand, the uniform reduced integration 

does violate the geometric isotropy, and improves drastically the convergence 

of the quadrilateral element. The performance of the quadrilateral element with 

reduced integration is satisfactory for all the test problems, but the reduced 

integration is not effective enough for triangular element. The convergence of 

the triangular element even with reduced integration is unacceptably slow for 

extremely thin shell cases with strong coupling of bending and membrane 

actions. The other two complementary devices are intended mainly for the 

triangular element.

Substantial improvement is achieved by adding the internal d.o.f. 

However, IDOF(B) cannot remove the locking phenomena sufficiently for 

certain problems. IDOF(C) produces fastest covergence. However, the 

solutions obtained with IDOF(C) and IDOF(D) converge to a value somewhat 

larger than the exact ones for some cases. Local oscillation is also observed in 

the computed displacements with IDOF(C). IDOF(D) gives almost identical 

convergence rate as that of IDOF(A). But this involves more rigorous 

computational procedure than IDOF(A), because two translational d.o.f. are 

expressed in local coordinates. IDOF(A) gives satisfactory convergence and 

accuracy for most of the test problems. Slight local oscillation of normal 

displacements appears for uniform pressure case. However, this vanishes as 

the mesh is refined. Therefore, IDOF(A) seems to be most favorable among 

the four schemes. But IDOF(A) suffers from spurious zero energy modes in the 

case of minimum boundary constraints such as the four-corner-supported plate.
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This is not a case frequently encountered in practical problems; however, the 

trouble should be treated from the viewpoint of the generality of the element.

The two zero energy control schemes, considered in the present study, 

give almost equivalent effects. The difficulty with these schemes is that the 

scheme may induce the locking phenomenon when a large value of control 

index is applied. Therefore, an appropriate control index should be applied in 

order to avoid the locking as well as spurious modes. This is a subject which 

requires further studies.

In terms of convergence rate, there are no significant differences 

between the full order and the reduced order integrations for the mixed 

formulations. The combination of internal d.o.f. with the mixed formulation 

removes the locking phenomenon satisfactorily. The mixed formulation 

stabilizes the local oscillation of the normal displacement which is observed in 

the displacement formulation with IDOF(A) or IDOF(C).

Application to biological objects

The stresses under the flat plate loading depend much on the contact 

area; therefore, the strength measured by flat plate loading may be influenced 

by the contact area which is less predictable. The uniform pressure types of 

measurement may be more reliable if one can apply the uniform pressure 

accurately, because the stresses under uniform pressure can easily be 

predicted and do not depend on such an uncertain factor as the contact area in 

the flat plate loading case.

The opening of stomatal guard cell is largely influenced by its geomtry. 

An elliptical torus with elliptical cross section is an essential configuration for 

proper stomatal opening. The existence of the elliptic plate, the radial stiffening 

or the differential wall thickening is not required for opening of gaurd cell.



194

6.3 Suggestions for further study

The formulation of shell elements in this study is intended to provide a 

more generalized finite element applicable to both thick and thin shells. 

Although the newly formulated element provides satisfactory results in 

comparison with the currently available degenerate shell element, it is not yet 

ideal. There is room for improvement or extension of the present formulation. 

Especially the following subjects related to this study are suggested for further 

study.

Completion of the type I element

It has been observed in Chapter 4 that the type I element converges to a 

value a bit larger than the exact solution, although this gives somewhat faster 

convergence than the other type elements. It may be because the element 

does not satisfy C1 interelement continuity in a strict sense, although the 

element is based on Kirchhoff assumptions. The C1 continuity will be satisfied 

if the generalized coordinate, a in Eqn. (2.3.27) is expressed in terms of 0de, in 

lieu of 0de. That is

a = G '0de (6.2.1)

in which G’ is equivalent to G in Eqn. (2.3.27). Evaluation of G' will require 

more complicated manipulation than that of G. However, by use of Eqn. (6.2.1), 

C1 interelement continuity will be assured, and convergence to the correct 

solution is expected.

Control of spurious modes

Although various methods of controlling spurious modes have been

mentioned in Chapter 2, only two schemes, i.e ., a -  and e -con tro l; are

discussed in detail and examined numerically in Chapter 4. It is discouraging



195

that both schemes depend on an artificial number, the control index. Other 

control methods, e.g., consistent spurious control method (Belytschko and Liu, 

1984), may provide more thorough solutions. Therefore, it is suggested to 

investigate the possibilities of applying other control schemes to the present 

formulation.

Six d.o.f. per node element

The present formulation employs five d.o.f. per node. The in-plane 

rotation is not included as a nodal d.o.f. Shell elements missing this d.o.f. 

usually perform poorly for torsional effects. This may be the reason why the 

element formulated in this study shows relatively poor convergence behavior 

for the truncated half sphere case in Chapter 4. The in-plane rotation can be 

included in the formulation by a slight modification. This sixth d.o.f. can also be 

decomposed into the translational element and the difference element. For 

example, the in-plane rotation of translational element can be defined by the 

in-plane rigid body rotation.

i = ( u , y - v , x) / 2  (6.2.2)

in which y denotes the in-plane rotation. The stiffness is assigned directly to 

this in-plane rotation. Therefore, the meaning of this additional d.o.f. is different 

from that of the other six d.o.f. degenerate element (Kanok-Nukulchai, 1979) in 

which the three rotations are eventually transformed into two in local

coordinates.

Investigation of stress singularity for fracture analysis

As already mentioned in Chapter 5, the type III element is expected to 

have the capability of representing stress singularity by placing the midside 

node at the quarter point, but this has not been proved either mathematically or
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numerically. It is doubtful whether the element will have the same capability 

when complementary devices and zero energy control schemes are applied. 

This should be investigated for future fracture analysis using the element with 

or without complementary devices.

Application to biological objects

The eggshell breakage has been studied mainly on the basis of the 

stress and strength concept. It is suggested to study eggshell breakage from 

fracture mechanics view points as well. In the simplified fracture analysis, 

presented as an application example in this study, the bending behavior has 

been neglected. This type of analysis is not valid for the flat plate loading 

cases, because the bending action is the major driving force for crack 

propagation. Therefore, the contribution of the bending behavior should be 

included in the computation of the stress intensity factor. Evaluation of the 

stress intensity factor, using the finite element developed in the present 

formulation, is another subject for further study.



DERIVATION OF BENDING STRAIN-DISPLACEMENT MATRIX

Appendix A

In Chapter 2, the bending strain-displacement matrix Bb of Eqn. (2.4.19) 

is derived from Eqn. (2.4.18). The matrix Q in the right hand side of Eqn.(2.4.18) 

is constant. Thus, the differentiation of the last term in the equation can be done 

as follows:

2_( J-1N ) = (3J-1 ) N + J-1 M  (A.1.1)
Bx dx dx

2 -(J -1N ) = (2J-1 )N + J -12N (A. 1.2)
By By By

The first terms in the right hand side of Eqns.(A.1.1) and (A.1.2) are

& T 1 )N =

1----pr>< 
ULP 
1 __ Ni 0 n2 0 • ■ Nn 0 (A. 1.3)

Bx - >̂xy Tl>xy - . 0 Ni 0 n2 • . 0 Nn -

)N = .̂xy Î'xy " N-| 0 n2 0 • ‘ Nn 0 (A. 1.4)
By - >̂<yy T| >yy - . 0 Ni 0 n2 • . 0 Nn-

And the second terms are

J 1 M  = ' t x Tl.x " N1>x 0 N2-x 0 • • Nn,x 0 (A. 1.5)

-^.y Tl.y - . 0 Ni.x 0 N2.x ■ . 0 Nn.x-

1 ii ' t x l̂.x " " N-|,y 0 N2.y 0 • Nn,y 0 (A. 1.6)
By -^.y “H.y - . 0 Nl.y 0 N2,y • . 0 Nn,y .
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Combining Eqns. (A.1.1) and (A.1.2), one obtains

Ni 0 n2 0 ■ ■ -Nn 0
'2_ (J-1N)" >̂xx Tl-xx >̂x Tl.x 0 0 0 Nt 0 N2 • • ■ 0 Nn
dx = >̂xy l̂>xy >̂y Tjiy 0 0 Ni.x 0 n2,x 0 • • • Nn,x 0
2_(J-1N) >̂xy l̂>xy 0 0 ^,x Tl.x 0 Ni ,x 0 N2.x- . . 0 M•'•n.x
? y -̂ >xy ^l’xy 0 0 >̂y Tl.y - Nl,y 0 N2,y 0 ■ ■ ■ N„,y 0

. 0 N1iy 0 N 2.y ■ 0 N„,y .
(A. 1.7)

Rearranging Eqn. (A.1.7), one arrives

d/Sx 0
o 3/3y

■ % y  3/Sx-

(J- 'N)

^’xx Tl-xx >̂x 0 T|,x 0
^>yy ^liyy 0  >̂<y 0  TJ,y

L2 ,̂Xy 2n xy $.y $ x Tl.y T1 X

(A.1.8)

Ni 0 n2 0 ■ ' - N n 0
0 Ni 0 n2 ■ . . 0 Nn
Ni.x 0 N2.x 0 • • ' Nn-x 0
Nl.y 0 N2.y 0 • Nn,y 0

0 Ni,x 0 N2,x- • 0 Nn.x
. 0 Nl.y 0 N 2,y . 0 Nn,y

Denote

' N i 0 n2 0 • • N n 0
0 Ni 0 n2 ■ . 0 Nn

Ni.x 0 N2,x 0 • ■ Nnix 0

Nl.y 0 N2.y 0 ■ Nn,y 0

0 Ni.x 0 N2.x ■ • 0 Nn-x
. 0 Nl.y 0 N2,y • . 0 Nn.y -

N' = (A.1.9)
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and

N i 0 n 2 0 • • N n

o

0 N i 0 N2 • . 0 N n

N k 0 N2* 0 ■ • Nn,̂ 0

N"| >T| 0 n 2)11 0 • Nn>t| 0

0 N i ,4 0 n 2*  ■ • 0 Nn*
. 0 N l,r 0 N2>11 ■ . . 0 Nn'-q -

Then, N' and N' have the following relation:

1 0 0 0 0 0
0 1 0 0 0 0

N’ = 0 0 Tl-x 0 0 N'
0 0 ty Tl.y 0 0
0 0 0 0 tx Tl-x

. 0 0 0 0 S.y Tl.y -

If one defines

N1 0 n2 0 . . . ■ Nn 0
0 Ni 0 N2 . . . • 0 Nn

N* = N u 0 n 2* 0 • ■ • • Nn* 0
0 N1 ,n 0 N2,ri . . . • 0 Nn,T|

V2N,iT, 1/2n U 1/2N2lTl ' / 2n2i5- ■ ■ ■ 1/2Nn,n 1/2Nn*

then, Eqn. (A.1.8) can be simplified as

' f y x  0 >̂xx Tl.xx (U )2 (n.x)2 2 îxTJ,x
0 3/ay (J- ’ N )  = Kyy T],yy (ty)2 Ol.y)2

-3/8y d/dx - -^>xy ^H>xy ^̂ >y4>x 2t|iy l̂>x 2(^,y^,x+T|,yT|,x) -

(A.1.10)

(A.1.11)

(A.1.12)

*= S‘N*

(A.1.13)
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in which S* is defined in Eqn. (2.1.14). The first term of Eqn. (2.4.18) is obtained 

using the relation in Eqn. (2.1.15) as follows:

' S'dx o '3 / 3x 0 % x '

o 3/ay 

- a/3y 3/ax -

L 3' = 0 3/Sy 

-3/3y  3/3x  -

<

,3/3 y ,

>L3 = V ‘ x ( L 3 ) = S *L 3’' (A .1 .14)

in which L3, L3' and are defined in Eqns. (2.3.4), (2.3.6) and (2.4.14) 

respectively. Now, the bending-strain displacement matrix Bb can be obtained 

by combining Eqns (A.1.13) and (A.1.14).

Bb =
3/Sx 0

0 3/3y

d/dy % x

(L3'+ J-1N Q ) = S '(  W +  N‘Q ) (A. 1.15)



RESULTS OF CONVERGENCE TESTS 

AND OTHER NUMERICAL TESTS

Appendix B
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Fig. B.1 Comparison of the new formulation with the degenerate shell element
Cylindrical shell roof-vertical displacement at B
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Fig. B.2 Comparison of the new formulation with the degenerate shell element
Pinched cylinder (thick)-vertical displacement at C
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Fig. B.3 Comparison of the new formulation with the degenerate shell element
Pinched cylinder (thin)-vertical displacement at C
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Fig. B.4 Comparison of the new formulation with the degenerate shell element
Fixed-free quarter cylinder-horizontal displacement at C
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Fig. B.5 Comparison of the new formulation with the degenerate shell element
Four-corner-supported plate-deflection at the center
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Fig. B.6 Convergence of the degenerate shell element
Cylindrical shell roof-vertical displacement at B
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N u m b er of n o d e s

Fig. B.7 Convergence of the type III element
Triangular element with or without internal d.o.f.
Cylindrical shell roof-vertical displacement at B
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N u m b er of n o d e s

Fig. B.8 Convergence of the type III element
Triangular element with or without internal d.o.f.
Pinched cylinder (thick)-vertical displacement at C
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Fig. B.9 Convergence of the type III element
Triangular element with or without internal d.o.f.
Pinched cylinder (thin)-vertical displacement at C
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Fig. B.10 Convergence of the type III element
Triangular element with or without internal d.o.f.
Fixed-free quarter cylinder-horizontal displacement at C
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N u m b er of n o d e s

Fig. B.11 Convergence of type III element by mixed formulation
Triangular and quadrilateral elements
Cylindrical shell roof-vertical displacement at B
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N u m b er of n o d e s

Fig. B.12 Convergence of type III element by mixed formulation
Triangular and quadrilateral elements
Pinched cylinder (thick)-vertical displacement at C



V
er

ti
ca

l 
di

sp
la

ce
m

en
t 

at
 

C
 

in
 

in
ch

es

214

Fig. B.13 Convergence of type III element by mixed formulation
Triangular and quadrilateral elements
Pinched cylinder (thin)-vertical displacement at C
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N u m b er of n o d e s

Fig. B.14 Convergence of type III element by mixed formulation
Triangular and quadrilateral elements
Fixed-free quarter cylinder-horizontal displacement at C
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Fig. B.15 Effect of zero energy control
a-scheme with 3/3 point integration for the type III element
with IDOF(A)
Cylindrical shell roof-vertical displacement at B



V
er

ti
ca

l 
di

sp
la

ce
m

en
t 

at
 

C
 

in
 

in
ch

es

217

Fig. B.16 Effect of zero energy control
a-schem e with 3/3 point integration for the type III element
with IDOF(A)
Pinched cylinder (thin)-vertical displacement at C
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Fig. B.17 Effect of zero energy control
a-schem e with 3/3 point integration for the type III element
with IDOF(A)
Four-corner-supported square plate-deflection at the center
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N u m b er of n o d e s

Fig. B.18 Effect of zero energy control
a-schem e with 3/3 point integration for the type III element
with IDOF(D)
Cylindrical shell roof-vertical displacement at B
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Fig. B.19 Effect of zero energy control
a-schem e with 3/3 point integration for the type III element
with IDOF(D)
Pinched cylinder (thin)-vertical displacement at C
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Fig. B.20 Effect of zero energy control
a-schem e with 3/3 point integration for the type III element
with IDOF(D)
Four-corner-supported square plate-deflection at the center
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Fig. B.21 Effect of zero energy control
a-schem e with 3/7 point integration for the type III element
with IDOF(A)
Pinched cylinder (thin)-vertical displacement at C
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Fig. B.22 Effect of zero energy control
a-schem e with 3/7 point integration for the type III element
with IDOF(A)
Four-corner-supported square plate-deflection at the center
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Fig. B.23 Effect of zero energy control
a-schem e with 3/7 point integration for the type III element
with IDOF(D)
Pinched cylinder (thin)-vertical displacement at C
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Fig. B.24 Effect of zero energy control
a-schem e with 3/7 point integration for the type III element
with IDOF(D)
Four-corner-supported square plate-deflection at the center
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Fig. B.25 Effect of zero energy control
e-scheme for the type III element with IDOF(A)
Cylindrical shell roof-vertical displacement at B
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Fig. B.26 Effect of zero energy control
e-scheme for the type III element with IDOF(A)
Pinched cylinder (thin)-vertical displacement at C
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Fig. B.27 Effect of zero energy control
e-scheme for the type III element with IDOF(A)
Four-corner-supported square plate-deflection at the center
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Fig. B.28 Effect of zero energy control
e-scheme for the type III element with IDOF(D)
Pinched cylinder (thin)-vertical displacement at C
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Fig. B.29 Effect of zero energy control
e-scheme for the type III element with IDOF(D)
Four-corner-supported square plate-deflection at the center
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Fig. B.30 Effect of element distortion
Cylindrical shell roof-vertical displacement at B
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Fig. B.31 Effect of element distortion
Pinched cylinder (thick)-vertical displacement at C
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Fig. B.32 Effect of element distortion
Pinched cylinder (thin)-vertical displacement at C
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Fig. B.33 Effect of element distortion
Four-corner-supported square plate-deflection at the center
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