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ABSTRACT

We consider the average consensus algorithm under the rate constraint communica-

tion network. Average consensus algorithms are protocols to compute the average

value of all sensor measurements via near neighbors communications. The main

motivation for our work is the observation that consensus algorithms offer the per-

fect example of a network communication problem where there is an increasing

correlation between the data exchanged, as the algorithm iterates. Henceforth,

it is possible to utilize previously exchanged data and current side information

to reduce the demands of quantization bit rate for a certain precision. We ana-

lyze the case of a network with a topology built as that of a random geometric

graph and with links that are assumed to be reliable at a constant bit rate. We

explore the conditions on the quantization noise which lead to a consensus value

whose mean squared distance from the initial average is bounded. We propose

two main practical schemes and show that they achieve bounded convergence with

zero rate asymptotically. We further investigate the problem under regular grid

network assumption and observe that computational complexity of the schemes

reduce significantly and global knowledge of the network connectivity assumption

can be relaxed. Thus, we conclude that the proposed schemes become scalable

under dense networks.
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Chapter 1

Introduction

1.1 Introduction

Vicsek et al. in their 1995 study [1] highlighted the complex cooperative behavior

arising in many particle systems. The emergence of complex cooperative behavior

has attracted many researchers from a wide range of fields over the years. For

instance, biologist have studied schools of fish, flocks of flying birds, cooperative

motion of bacteria under unfavorable conditions [2],[3]. Physicists have applied

cooperation theory to understand behavior and transition of dynamic systems of

particles[4],[1],[5]. Computer scientists have developed cooperation models to sim-

ulate flocking and schooling behaviors for the animation industry[5].

The cooperation problem has also been studied extensively in control and com-

munication fields. There is a wide range of applications, such as coordination of

autonomous and geographically separated field agents, distributed computing and

congestion control, tracking objects by several unmanned air vehicles (UAVs) and

decentralized reconstruction or compression of a field, where decentralized cooper-

ation strategies have to be designed. In this area, significant contributions came

by Morse et al., who studied coordination of mobile agents which move on a plane

with different bearings and aim to converge in the same direction [5]. In the same

context, rendezvous of these agents on a common point only with local commu-

nication has been also studied[6]. In [7] and [8], the problem is analyzed under

the context of fault tolerant distributed services for computers. Weigang et al.

have proposed a consensus protocol for mobile ad hoc networks in [9]. Coopera-

tion problem has also been studied in the context of information diffusion subject

1
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where the nodes which have already obtained the information, spread it to the rest

of the network via local communication as in [10].

In [11], Saber and Murray have focused on a specific kind of cooperation

which is called average consensus. This problem investigates the case in which,

nodes(agents, sensors) want to converge to the average of the initial values by up-

dating themselves using weighted average of their neighbors’ values. The authors

have analyzed continuous time update scenario with dynamically changing topol-

ogy (i.e. neighbors). Moreover, they have explored the necessary conditions on

the update weights and connectivity of the sensors for convergence. In [12], Ren

et al. have studied consensus problem under Kalman filtering context. Rabbat et

al. have focused on consensus problem with binary erasure links between neigh-

boring nodes[13]. In [14] asynchronous average consensus algorithms are studied

where at each iteration a randomly chosen node exchanges its value with one of

the neighbors. On the contrary, in regular (synchronous) consensus algorithms the

nodes exchange values with their neighbors through static or dynamic topology.

The motivation of our work lies in some of the results shown in [15] by Boyd

et al., who derived the convergence conditions for discrete time synchronous av-

erage consensus. The same authors have explored the convergence characteristics

of the problem when the state values are communicated in the presence of ad-

ditive independent noise with fixed variance in [16]. There are two discouraging

outcomes of this analysis. First, authors show that the system converges to the

initial average only in mean, but has increasing error variance as the number of

iterations grows. Second, the node values do not necessarily converge to a common

value asymptotically. The key observation here is that consensus algorithms offer

the perfect example of network communications problems in which there is cor-
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Figure 1.1: Encoding/Decoding strategies for consensus problem

relation between the data exchanged, and the correlation increases as the system

updates its computations. If this fact is properly accounted for in quantizing the

messages, the negative result in [16] should no longer be considered as indicative of

the performance of the consensus algorithms over digital communication networks.

To prove it, we introduce and analyze a more detailed internode communication

model, where the noise added to each computation is the result of the data source

encoding. In particular, we assume that at every iteration a message can contain

a finite number of bits and explore the effect of the quantization errors arising

due to this finite communication rate constraint. We explore the constraints on

the quantization noise under which the system converges to a consensus without

discouraging effects mentioned in [16]. Furthermore, we propose practical scalar

quantizers based on predictive and nested lattice Wyner-Ziv encoding schemes,
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show that a consensus can be achieved with zero transmission rate asymptotically,

and give achievable rate regions numerically. We discuss computational complexity

and scalability of these schemes under the dense network assumption.

Two main strategies are given in Fig. 1.1. We denote by zi(k) the unquantized

message of node i at iteration k and, by z̃i(k) its reconstructed value at the decoder

side. For both strategies, we consider the two possible communication scenarios in

Fig.1.2 called, respectively, the peer to peer case and the broadcast case. As seen

in Fig.1.2 a) the peer to peer schemes utilize a different encoder for each particular

destination while the broadcast schemes in Fig.1.2 b) require only one encoder for

all receivers of a given sender. The reason of this distinction is that the peer to

peer methods generally outperform the broadcast methods, but at the price of a

more complex encoder structure and of forcing to send a different message to each

neighbor. While sending a different message over each link is acceptable in a wired

network, it is wasteful in a wireless medium, where communications are naturally

broadcast and each transmission reaches all neighbors. For this reason, the peer

to peer methods are proposed for wired networks and the broadcast methods are

proposed for wireless networks. As mentioned above, through this study it is

possible to reach a more positive conclusion compared to that in [16].

1.2 Organization

The paper is organized as follows: In Chapter 2, we review the main mathemat-

ical relationships characterizing average consensus algorithms. In Chapter 3, we

explore the conditions on the noise variance under which the system converges to

a consensus. In Chapter 4, we propose a predictive coding scheme which has the

structure shown in Fig.1.1a. In Chapter 5, we discuss Wyner-Ziv encoder/decoder
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scheme as in Fig.1.1b. We discuss scalability of the proposed algorithms under

dense sensor networks in Chapter 6. We simulate and give the corresponding

results in Chapter 7. We conclude the paper in Chapter 8.



Chapter 2

System Model

2.1 Background on Algebraic Graph Theory

In this section, we introduce some basic concepts and notation in graph theory,

which will be used in the rest of the paper. A graph G is a pair of sets (V,E) where

V is a non-empty set of vertices and E is a set of unordered pairs of different vertices

which are called edges. Fig. 2.1 shows a graph G where V = {v1, v2, v3, v4} and

E = {e1, e2, e3, e4, e5}. An edge can also be represented by a unique unordered

pair of vertices, i.e. e1 = (v1, v2) = (v2, v1).

Remark 1. We note that there exists another family of graphs which is called

directional graphs. In this case, a pair of vertices represents two edges where the

order of the vertices represents the direction of an edge. Since we assume that the

links are bidirectional and channel transmission is error free, directional graphs are

not of particular interest.

Given a graph G, we denote (0, 1) adjacency matrix of G as A where:

aij = 1, if there is an edge between node vi and vj

aij = 0, if vi = vj or vi 6= vj and there is no edge
(2.1)

We note that A matrix is symmetric and there does not exist any edges pointing

a particular vertex to itself. The set of neighbors of the node vi is denoted by Ni.

Mathematically, j ∈ Ni ⇐⇒ aij = aji = 1. The number of neighbors of a vertex is

called its degree and denoted by degi:

degi =
n∑

j=1

aij =
n∑

j=1

aji

6
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Figure 2.1: A sample graph

We define the degree matrix of a graph G as ∆ where ∆ is a diagonal matrix each

diagonal entry corresponding to the degree of a node:

∆ij = 0, if i 6= j

∆ij = degi, if i = j

We can also represent ∆ as ∆ = diag(A1) where 1 is the all ones vector. The

difference between degree matrix and adjacency matrix of a graph G is the Laplace

matrix:

L = ∆− A

While we do not use the Laplace matrix in our study explicitly, previous research

on consensus algorithms include the extensive analysis of L. Interested readers

may refer to [17] for the detailed discussions about Laplace matrices.

Remark 2. A graph G is strongly connected if for every pair of vertices vi and vj,

there is a path from vi to vj, and vj to vi. Since we are constraining W matrices
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to be symmetric, existence of a path from vi to vj implies that there exists a path

from vj to vi.

2.2 Problem Formulation

We consider distributed linear average consensus algorithms. In the rest of the

paper, we will substitute vertex with node and edge with link for the sake of

consistency with communication literature.

We denote the value of node i at iteration k by xi(k). Then, consensus update

model is given as:

xi(k + 1) = xi(k)−
n∑

j=1,j 6=i

εlij
(
xj(k)− xi(k)

)
, (2.2)

for i = 1, . . . , n k = 0, 1, . . .. We can rewrite (2.2) in vector form as follows:

x(k + 1) = (I − εL)x(k) = Wx(k). (2.3)

where x(k) = [x1(k), . . . , xn(k)]T ,L is the Laplace matrix, I is the rank n identity

matrix and ε ∈ R+.

It was shown by Xiao and Boyd that above system converges to the average of

any initial vector x(0) ∈ Rn if and only if

1. 1T W = 1T

2. W1 = 1

3. ‖ W − 1
n
11T ‖< 1

where the norm is maximum singular value norm [15]. In other words, convergence

is satisfied if 1 is an eigenvalue of W and it is also the eigenvalue with greatest

magnitude. The intuition behind these conditions can be summarized as follows:
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The algorithm tends to compute the average of initial state vector (x(0)), therefore

it should preserve sums, i.e. 1T W = 1T . Moreover, the vector of averages has to

be a fixed (stable) point of the iteration , i.e. W1 = 1. The third condition

guarantees that limk→∞W k = 11T

n
, therefore x(k) → 11T

n
x(0).

Similar results for continuous time iterations are in [11]. For A = AT , by con-

straining 0 < ε < 1/max(A1), we guarantee that eq.(2.3) asymptotically converges

to average as in [15].

If we decompose eq. (2.3) as follows:

x(k + 1) = (I − ε∆)x(k) + εAx(k) (2.4)

we see that there are two different parts in the update: computing (I − ε∆)x(k)

requires only local values and εAx(k) uses the neighbors’ values. We can therefore

define

z(k) = εx(k), (2.5)

as the vector of variables, which needs to be exchanged over the links available in G

at each iteration k. The entries of the vector z(k), quantized with finite precision,

are reconstructed as:

z̃(k) = z(k) + w(k)

where w(k) is the quantization error.

While there exists a substantial body of work on average consensus protocols

under infinite precision and noiseless peer to peer communications, little research

has been done introducing distortions in the message exchange, such as the noisy

update assumption made in [16]. Specifically, Xiao and Boyd consider the following

extension of (2.2):

xi(k + 1) = xi(k)−
n∑

j=1,j 6=i

εlij
(
xj(k)− xi(k)

)
+ wi(k) (2.6)
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where wi(k), i = 1, . . . , n, k = 0, 1, . . . are independent zero mean fixed variance

identically distributed random variables. The authors show that under these as-

sumptions, the system converges to the initial average only in mean (i.e. we do

not have mean squared convergence) and that the mean squared error (MSE) de-

viation from the actual average increases beyond a certain iteration. The authors

also show that the node values do not converge to a common value as the number

of iterations increases. We propose that under a detailed internode communication

model wi(k) can be characterized as the quantization noise. If increasing correla-

tion among the node states is taken into account, it can be shown that the variance

of the quantization noise diminishes. Thus the negative results of [16] should not be

used as the performance indicators of consensus algorithms over digital networks.

This is the main contribution of our study.

2.3 Main Assumptions

In the rest of the paper, we assume that the data in the initial state vector x(0)

are random variables with zero mean and finite variance. We also assume that

communication noises at each step and sensor are spatially and temporally inde-

pendent zero mean random variables. These assumptions are met to a very close

approximation in the context of quantization theory as discussed in [18]. Since all

the variables we are going to deal with are zero mean, the appellative of covariance

and correlation will be used interchangeably.

While our results and encoding methods can be applied in the most general

case, all our numerical results will consider random geometric graphs to set up

the topology of G. A random geometric graph G(n, r) is a graph whose nodes are

uniformly distributed points over a fixed area and where a link exists between any



11

two nodes that are at a range less than r (r is called connectivity radius). We

assume that transmission over the range r are always successful, that no channel

errors are added, and that the nodes have fixed locations so that the topology of

G is fixed. We also assume that nodes are strongly connected, and W satisfies

convergence conditions for update structure defined in (2.3).



Chapter 3

Theoretical Results

3.1 Convergence Conditions Under Noisy Communication

Model

In this section, we derive necessary and sufficient conditions on the quantization

noise variances at each iteration and sensor, so that the nodes converge to a com-

mon value. Then, we give additional constraints that lead to a consensus where

the final value is bounded from the initial mean in the mean squared sense. We

will focus on the behavior of the transmitted random vector z(k) = εx(k) rather

than x(k) for easy to follow derivations. In the rest of the paper we will be using

the following system model:

x(k + 1) = (I − ε4)x(k) + Az̃(k) (3.1)

z(k + 1) = Wz(k) + εAw(k) (3.2)

where w(k) is the quantization error vector. The noise vector is assumed to be

spatially and temporally independent. The equations above are straightforward to

derive from eq. (2.4) and eq. (2.5).

Lemma 1. The nodes converge to a consensus, if and only if the noise variance

at each sensor converges to 0, i.e. E{w2
i (k)} → 0 as k →∞ ∀i ∈ {1, . . . , n}.

Proof. Define the mean-squared deviation from the current mean as:

δ(k) =
n∑

i=1

E{zi(k)− 1T

n
z(k)}2 (3.3)

It is clear that the nodes reach to a consensus if and only if δ(k) → 0. Define:

m(k) = z(k)− 1

n
11T z(k) = z(k)− Jz(k) = (I − J)z(k) (3.4)

12
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m(k) is the distances of the node values from their mean. We denote covariance

matrix of m(k) as, Θ(k) = E{m(k)mT (k)}. It is obvious that δ(k) = Trace(Θ(k)).

Recursion structure of m(k) can be written as:

m(k + 1) = (I − J)z(k + 1) = (I − J)Wz(k) + (I − J)εAw(k)

= (W − J)z(k) + (I − J)v(k) = (W − J)m(k) + (I − J)v(k)

where v(k) = εAw(k). Then,

Θ(k + 1) = (W − J)Θ(k)(W − J) + (I − J)E{v(k)vT (k)}(I − J) (3.5)

Since |W−J | < 1, Θ(k + 1) converges to 0 if and only if E{v(k)vT (k)} approaches

0 as k → ∞. Then, ε2AE{w(t)wT (t)}A → 0. Since ε > 0, aij ≥ 0 ∀i, j ∈
{1, . . . , n}, and E{w(t)wT (t)} is a diagonal matrix, each of the diagonal entries

approaches 0, i.e. E{wi(k)}2 → 0.

We note that speed of the convergence does not change the fact that the nodes

will reach to a consensus.

Corollary 1. If the nodes values converge to a consensus then, E{z(k)zT (k)} →
Σ? where Σ? is in the form of α11T .

Proof. Denote Σ(k) , E{z(k)zT (k)}. By recursion:

Σ(k) = WΣ(k − 1)W + ε2AE{w(k − 1)wT (k − 1)}A (3.6)

If the nodes converge, ε2AE{w(k)wT (k)}A → 0 by Lemma 1. Moreover, since W

is balanced and the largest eigenvalue of W is 1, limk→∞ W k = 11T

n
. Then there

exist an N such that,

Σ? =
11T

n
Σ(N)

11T

n
(3.7)
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Unfortunately without further constraints on the quantization noises, the nodes

may agree on a value which is very far from the initial average. In fact, if the noise

variances converge to zero slow enough, the consensus value may even be infinity.

For this reason, we derive the conditions for bounding the final value from the

initial mean in mean squared sense.

We denote the average of the state values at time k by a(k):

a(k) =
1

n

n∑
i=1

xi(k) =
1

n
1Tx(k)

We also denote the average of the exchanged vector z(k) by b(k), which has the

simple relation of b(k) = εa(k). In the rest of the section, we focus on b(k) to

streamline the derivations. Then,

b(k + 1) =
1

n
1Tz(k + 1) =

1

n
1TWz(k) +

ε

n
1TAw(k)

= b(k) +
ε

n
1TAw(k) (3.8)

where (3.8) follows the fact that 1T is an eigenvector of W with corresponding

eigenvalue 1. We note that E{b(k)} = E{b(0)} = 0 since the noise vector is an

independent quantity with zero mean and initial states are assumed to be zero

mean. We are interested in the behavior of the expected mean squared distance

between the asymptotic average and initial average. In particular from (3.8):

E{(b(k)− b(0))2} = E





(
ε

n

k−1∑
t=0

1TW k−1−tAw(t)

)2




= (
ε

n
)2E





(
k−1∑
t=0

1TAw(t)

)2




= (
ε

n
)2

k−1∑
t=0

E{(1TAw(t))2} (3.9)

= (
ε

n
)2

k−1∑
t=0

n∑
i=1

n∑

l=1

a2
liE{w2

i (t)} (3.10)
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= (
ε

n
)2

n∑
i=1

(
k−1∑
t=0

E{w2
i (t)}

n∑

l=1

a2
li

)
(3.11)

where (3.9) is due to temporal independence of the noise, and (3.10) follows spatial

independence of the noise. We would like to explore the conditions under which

the above sum is bounded as k →∞.

Lemma 2. Given finite number of sensors (n < ∞) and bounded A matrix (ali <

∞; ∀ l, i ∈ {1, . . . , n}), mean squared deviation from the initial average is bounded

if and only if limk→∞
∑k−1

t=0 E{w2
i (t)} converges ∀ i ∈ {1, . . . , n}. Therefore, a

necessary and sufficient condition for E{(b(k) − b(0))2} to be bounded is that the

noise variances at each sensor form a convergent series.

Proof. Proof of the lemma is straightforward from (3.11) and omitted.

We would like to note that by bounding E{(b(k)− b(0))2}, we guarantee that

E{(a(k)− a(0))2} is also bounded since E{(b(k)− b(0))2} = ε2E{(a(k)− a(0))2}.
We derived necessary and sufficient conditions on the noise variances for agree-

ing on a common value whose mean squared distance from the average of the initial

states a(0) is bounded. The implication of this is that if the quantization rates

can be chosen such that noise variances at each sensor form a convergent series

one can guarantee that the nodes will converge to the same value and that the

error with respect to the actual value will be bounded. One way to achieve this

convergence is to choose the communication rates such that the quantization noise

variances decay exponentially. In fact, any convergent sequences such as p-series2

with p > 1 and geometric series3 with α > 1 would be sufficient.

2
∑∞

k=1
1
pk

3
∑∞

k=1
1

kα
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If one is to consider simple source coding (i.e. just quantize and transmit the

state values z(k)), one would need a non-zero quantization rate(in bits) as k →∞
for achieving zero noise variance. In the following sections, we will propose two

practical schemes and show that they achieve bounded convergence with zero rate

asymptotically.



Chapter 4

Predictive Coding
In this chapter, we study the predictive encoding/decoding algorithm in Fig.1.1 a)

for the broadcast and peer to peer scenarios.

4.1 Background on Predictive Coding

The predictive coding method utilizes the past quantized node values to decrease

uncertainty of the present value, thus decreasing the transmission rate. Fig. (4.1)

shows the block diagram of a predictive encoder/decoder pair. The current value

zi(k) is predicted by linear combination of N previous outputs of the system:

ẑi(k) = a(1)(k)z̃i(k − 1) + a(2)(k)z̃i(k − 2) + . . . + a(n)(k)z̃i(k − n)

The difference between the state value and the predicted value is called prediction

error and applied to the quantizer whose characteristics are also known at the

decoder. We note that the predictor is not in terms of the original previous state

values but the previous outputs of the encoder. The idea behind is that the original

previous state values are not available at the decoder. Interested readers may

refer to [19] for more discussion regarding predictive coding algorithm and its

performance.

This method is suitable for the consensus problem since as the algorithm it-

erates, the previous outputs of the decoders become more and more correlated

with the current value, thus decreasing prediction error. As mentioned earlier,

this reduces the quantization rate demand significantly. Furthermore, since the

prediction error approaches 0 as algorithm iterates, zero quantization rate and

17
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Figure 4.1: Differential encoder/decoder diagram

convergence can be achieved at the same time asymptotically.

4.2 Broadcast Predictive Coding

To exploit the local temporal correlation, the nodes can digitize zi(k) in (2.5) via

the differential encoding/decoding scheme in Fig.4.1.

For each node i and time instant k, define:

ẑi(k) = prediction

di(k) = prediction error

d̃i(k) = quantized prediction error

z̃i(k) = noisy reconstruction

wi(k) = quantization error

z̃i(k) is derived through the following steps:

ẑi(k) =

p≤k∑

l=1

a
(k)
i (l)z̃i(k − l) (4.1)
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di(k) = zi(k)− ẑi(k)

= zi(k)−
p≤k∑

l=1

a
(k)
i (l)z̃i(k − l) (4.2)

d̃i(k) = Q[di(k)] = Q[zi(k)− ẑi(k)]

≈ zi(k)− ẑi(k) + wi(k) (4.3)

z̃i(k) = ẑi(k) + d̃i(k) (4.4)

= zi(k) + wi(k). (4.5)

where in (4.1) ẑi(k) is a linear minimum mean squared estimate(LMMSE) of zi(k)

of order p; di(k) in (4.2) is the prediction error, to be quantized and transmitted;

(4.3) is because quantization noise can be modeled as additive, and (4.4) is the re-

construction of zi(k) at the decoder. (4.5) shows us that zi(k) can be reconstructed

at the receiver within some noise wi(k). We note that in predictive coding scheme

prediction error is applied to the quantizer, and the output is transmitted to the

decoder. Since linear predictor ẑi(k) is also available at the decoder, zi(k) can be

reconstructed.

Assuming the Ri(k) is the transmission rate of sensor i and that we use a

finite range uniform scalar quantizer4 at iteration k, the range of the quantizer

and step-size can be chosen as follows:

ηi(k) = c ∗ STD [di(k)] , 4i(k) = ηi(k)2−Ri(k). (4.6)

where STD[.] is the standard deviation and c is the parameter to be tweaked for the

performance. Under the high resolution assumption, we can further approximate

the quantization error as a uniform random variable independent from di(k) and

4Nonuniform quantizers such as Lloyd-Max may also be implemented and may
result in better performance. Our choice is just for the sake of simplicity.
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all the above variables at time k. Hence:

V AR [wi(k)] ≈ ∆2
i (k)

12
=

c2V AR [di(k)] 2−2Ri(k)

12
, (4.7)

where V AR [di(k)] is the prediction error variance, and it is calculated below. If

one increases the value of c, probability that a specific realization of the random

variable di(k) falls into the quantizer range increases. But, by (4.7) the variance

of the quantization error also increases. Clearly, there is a tradeoff between c and

error variance. This parameter will be tweaked numerically in the Section 7.

The optimum linear prediction coefficients in the mean squared sense are:

a
(k)
i = vT

zi(k)M
−1
z̃i(k−1), (4.8)

where, for l, m = 1, . . . , p ≤ k:

[Mz̃i(k−1)]lm = E{z̃i(k − l)z̃i(k −m)}, (4.9)

[
vzi(k)

]
m

= E{zi(k)z̃i(k −m)}. (4.10)

Hence:

V AR [di(k)] = V AR [zi(k)]− vT
zi(k)M

−1
z̃i(k−1)vzi(k), (4.11)

and, plugging (4.11) into (4.7), we can calculate variance of quantization error for

a given node i and iteration k.

4.2.1 Analytical Framework

To be able to compute [Mz̃i(k−1)] and
[
vzi(k)

]
, we need to calculate E{z̃i(k−l)z̃i(k−

m)} and E{zi(k)z̃i(k−l)} for k, l ∈ {1, . . . , p}. Either terms can be obtained taking

the ii element of the cross-covariance matrices for a given k and l:

E{z̃i(k − l)z̃i(k −m)} =
[
E{z̃(k − l)z̃T (k −m)}]

ii

E{zi(k)z̃i(k −m)} =
[
E{z(k)z̃T (k −m)}]

ii
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which are easier to calculate because the recursions are more compact to express

in terms of vectors. Note that the noisy recursion has the following simple form:

x(k) = (I − εdiag(A1))x(k − 1) + Az̃(k − 1), (4.12)

where z̃(k − 1) = z(k − 1) + w(k − 1) by eq.(4.5). Therefore:

z(k) = εx(k) = (I − εdiag(A1))z(k − 1) + εAz̃(k − 1),

= (I − εdiag(A1))z(k − 1) + εAz(k − 1) + εAw(k − 1)

= Wz(k − 1) + εAw(k − 1) (4.13)

The simple expression in eq.(4.13) will be used to express the state covariance

matrix in a recursive fashion.

Further details on the calculation of E{z̃(k − l)z̃T (k −m)} and E{z(k)z̃T (k −m)}
are given in Appendix A and B. We define state and noise vector covariances as

follows:

Σ(k −m) , E{z(k −m)zT (k −m)}

Υ(k −m) , E{w(k −m)wT (k −m)}

E{z̃(k − l)z̃T (k −m)} is presented in Table 4.1 for a given k, m, l triplet in terms of

the state and noise vector covariances, W , A, and ε. Similarly, E{z(k)z̃T (k −m)}
can be written in terms of these quantities as:

E{z(k)z̃T (k −m)} = WmΣ(k −m) + εWm−1AΥ(k −m) (4.14)

The values of Σ(k −m), and Υ(k −m), that change with the index k−m, can

be calculated in an iterative fashion. In fact, using eq.(4.13), we can express state
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Table 4.1: Cross Correlations of Noisy States

E{z̃(k − l)z̃T (k −m)} =

l = m Σ(k −m) + Υ(k −m)

l < m Wm−lΣ(k −m) + εWm−l−1AΥ(k −m)

l > m Σ(k − l)W l−m + Υ(k − l)εW l−m−1A

covariances in terms of known previous state covariances and noise covariances as

follows:

Σ(k) = WΣ(k − 1)W T + ε2AΥ(k − 1)AT (4.15)

Moreover, by plugging (4.11) into (4.7), and assuming noises are independent spa-

tially, the noise covariance matrix can also be written as:

[Υ(k − 1)]ii =
c2V AR[di(k − 1)]2−2Ri(k)

12
(4.16)

and [Υ(k − 1)]ij = 0 if i 6= j.

4.3 Algorithm Summary

At iteration k; node i

• obtains the linear predictor coefficients a
(k)
i , the prediction error variance

V AR[di(k)], and the quantization interval length 4i(k),

• quantizes and transmits prediction error di(k),

• updates state and noise covariances matrices for the next iteration by (4.15).

Receiving transmitted value, neighbor j

• obtains the linear predictor coefficients a
(k)
i ,
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• reconstructs zi(k) as z̃i(k),

• updates state and noise covariances matrices for the next iteration by (4.15).

Once, transmissions are completed by all nodes, state values are updated by (3.1).

Remark 3. If the network connectivity (W ), initial distribution of the observations

(Σ(0)), and the rate allocation (Ri(k)) are fixed, then the prediction coefficients

can be calculated offline and stored at each sensor. In this case, each sensor stores

(ni + 1) × p ×K values where ni is the number of neighbors of sensor i, p is the

predictor order, and K is the maximum number of iterations. Assuming p and

K are fixed as reasonable quantities, the significant complexity factor will be the

number of neighbors. If the network is dense, this factor scales as log(n) under the

connectivity constraints. Though this results in scalability issues, if the network

is dense enough it can be modeled in a more structured way. In this case, the

same coefficient can be used for all neighbors, and each node stores only p × K

coefficients. Detailed discussions are given in Section 6.2.

4.4 Asymptotic Rate Behavior

In this section, we show that our proposed scheme requires zero rate asymptotically.

To prove it, we will first introduce Lemma 3.

Lemma 3. The system converges to a consensus if and only if σ2
di

(k) → 0 as

k →∞ where di(k) = zi(k)− ẑi(k).

Proof. Forward: If σ2
di

(k) → 0, then the node values converge to a consensus.

Define σ2
wi(k) , E{w2

i (k)}. If σ2
di(k) → 0, then

σ2
wi(k) =

c2

12
2−Ri(k)σ2

di(k) → 0.
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Reverse: If the nodes values converge to a consensus, then σ2
di

(k) → 0.

Assume that the nodes converge. Then by Lemma 1 E{w(k)wT (k)} → 0 and,

by Corollary 1 Σ(k) → Σ?.

By (4.14),

E{z(k)z̃T (k −m)} = WmE{z(k −m)zT (k −m)}

+ εWm−1AE{w(k −m)wT (k −m)}

Then, E{z(k)z̃(k −m)} → WmΣ? + 0 = Σ?; ∀ m ∈ {1, . . . , p}. Thus, [vzi(k)]m →
[Σ?]ii. By Table 4.1,

E{z̃(k − l)z̃(k −m)} → Σ? + 0 = Σ?

Thus, [Mz̃i(k−1)]lm → [Σ?]ii; ∀ l, m ∈ {1, . . . , p}.
At step k, and sensor i, equation (4.8) can be rewritten as:

Mz̃i(k−1)a
(k)
i = vT

zi(k) (4.17)

As k →∞, all entries of M matrix and v vector converges to [Σ?]ii as shown above.

Therefore, (4.17) has infinitely many MMSE solutions. We pick a
(k)
i = [1 0 . . . 0]T .

In other words, di(k) = zi(k)− z̃i(k − 1). Then,

σ2
di(k) → σ2

zi(k) −
(E{zi(k)z̃i(k − 1)})2

E{z̃i(k − 1)z̃i(k − 1)}
= Σ?

ii −
(Σ?

ii)
2

Σ?
ii

= 0

Lemma 4. All rate allocations that allow the node values to converge to a common

value will eventually converge to zero rate under predictive coding scheme.
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Proof. By Lemma 1 and Lemma 3, the nodes converge to a common value if and

only if σ2
wi(k) and σ2

di(k) → 0. By (4.7), Ri(k) can be chosen as any non-negative

number. Then, Ri(k) → 0 ∀i ∈ {1, . . . , n}.

By Lemma 4, we have showed that under the predictive coding scheme, a

consensus can be achieved with zero asymptotic rate. While we do not provide

minimum rates for a given MSE deviation(eq. 3.11), we propose a constructive

method to allocate quantization rates. If the quantization rates are chosen such

that σ2
wi

(k) sequence converges to 0 for all sensor i, then a consensus will be

achieved. More interestingly, if the rates are chosen such that
∑∞

k=0 σ2
wi

(k) < ∞ for

all sensor i, then not only a consensus will be achieved but also the MSE deviation

from the initial average will be bounded. We define the ratio of consecutive noise

variances at sensor i and iteration k as;
σ2

wi
(k+1)

σ2
wi

(k)
= ηi(k + 1). For instance, for

ηi(k) =
(

k
k+1

)β
and β > 1,

∞∑

k=1

σ2
wi

(k) = ζ(β)

where ζ(.) is a Riemann-Zeta function and finite. Under these conditions, a con-

sensus will be achieved with bounded MSE deviation and zero asymptotic rate.

The behavior of the quantization rates for a given β is simulated in Section 7.

4.5 Peer to Peer Predictive Coding

At a given time instant k, sensor i knows not only its own previously quantized

values (z̃i(k − 1), z̃i(k − 2), . . .), but also neighbors’ previously quantized values,

i.e. z̃j(k − 1), z̃j(k − 2), . . . where j is a neighbor of i. If the link is bidirectional

the prediction error at node i can be further reduced by having:

ẑi(k) =

p∑

l=1

a
(k)
i (l)z̃i(k − l) + b

(k)
i (l)z̃j(k − l). (4.18)
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where a
(k)
i and b

(k)
i are corresponding LMMSE coefficients. The derivations related

to this method follow exactly the same logic steps in Section 4.2. For brevity, the

detailed calculations are given in Appendix C.



Chapter 5

Coding With Side Information
In this chapter, we exploit the fact that a node can use its own sequence of present

and past values locally, all or in part, as side information ([20],[21]) and therefore

we can improve the accuracy in the reconstruction of the neighbors’ state in a way

that is comparable to predictive coding. To this end, we note that the calculations

done in Section 4.2.1 provide the covariance matrices of the current states and the

cross covariance of current states with previous states of all nodes. We propose

the use of a simple scalar nested lattice code to utilize the side information. We

analyze two schemes which are the broadcast and the peer to peer versions of the

strategy.

5.1 Background on WZ Scalar Quantization

Coding with side information or Wyner-Ziv (WZ) coding is the encoding strategy

that leads to reduced rate or improved performance by relying on the fact that

the decoder can make use of side information correlated with the incoming mes-

sage. In the classical WZ scheme, there is a single decoder-encoder pair and the

decoder has data that can be represented as a noisy version of the data to encode.

The rate distortion for this problem was studied by Wyner and Ziv in [20]. Our

implementation of WZ will be based on a nested lattice code construction (see e.g.

[22] and [23]). We will use the simple encoding approach discussed in [24] and [25]

that we summarize next.

The decoder has access to the side information y ∈ R. The encoder compresses

its observation x ∈ R in the following way (see Fig.5.1 which shows an example of

27
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a scalar nested lattice code with rate=1 bit, and quantization interval length 4):

• The encoder partitions the observation space into disjoint uniform quantiza-

tion intervals of length 4 and determines the index of the interval to which

x belongs to. (e.g. 34 in Fig.5.1)

• The encoder assigns a label l to each of the quantization intervals where

l ∈ {1, . . . , 2R} and R represents the transmission rate.

• The encoder transmits the label(coset index) of the interval to which x be-

longs to.(e.g. bin 1 in Fig.5.1)

The reader should note that there are infinitely many intervals which are assigned

the same coset index by the encoder in this scheme. Assuming that the coset index

is available at the decoder error free, the decoder uses the side information (y) and

the coset index (bin 1) to determine which one is the most likely interval in which x

falls among those that have the same coset index. A model often used to represent

the dependency between x and y is that y = x + n where n is random noise, with

a unimodal zero mean distribution. In this case a minimum distance rule can be

used to decide the quantization interval where x is. Then, the quantized value of

x is recovered as the centroid of this interval (e.g. x̂ = 4 in Fig.5.1). The formal

algorithm is given as follows:

• Given an integer number P = 2R, and quantization index 4, x is encoded

as:

p =

[
x

4
]

mod P, (5.1)

where mod stands for the modulo operation that returns a number p =

0, ..., P − 1 and the brackets indicate the rounding operation.
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Figure 5.1: An example of nested lattice codes in 1-D

• The coset index p is transmitted to the decoder error free.

• Using p and side information y, the decoder reconstructs x as [25]:

x̂ =

[
y
4 − p

P

]
P4+ p4 (5.2)

Since the rate is fixed by the communication constraint, the only parameter to

choose in the encoder/decoder pair specified in eqs.(5.1) and (5.2) is the quantiza-

tion step 4. The choice of the quantization step is non trivial due to its complex

effect on the actual distortion that one obtains with a finite nested lattice code,

such as our scalar quantizer. In fact, the decoding rule in (5.2) can produce errors

having much larger range than the quantization step 4 and the expression of the

error variance is a non linear function of the rate and the step size. The error vari-

ance expression for this scheme is given in [24]. It is valid under the assumptions

of jointly Gaussian random variables x and y and high resolution. The encoded

data x and side information y are such that y = x + n where n is also a Gaussian

random variable and independent of x. In the scalar case, the expression is:

E{(x− x̂)2} = Φ(R,4, σn) (5.3)
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= 22R42

∞∑

k=0

(2k + 1)Q
((k + 1

2
)2R4

σn

)
+
42

12

where σn is the variance of n, Q(x) = 1√
2π

∫∞
x

e−
t2

2 dt, and 4 > 0. Although

the expression is non linear function of the quantization interval 4, it is convex

therefore it has a minimum. Moreover, it can be minimized numerically for a given

choice of rate and σn with respect to 4.

Considering Gaussian random states, we propose to use the methodology in

(5.1) and (5.2) with a step size chosen to minimize (5.3) to encode the states

zi(k) making use of the side information at the decoder side. The strategy can be

generalized easily to other distributions by modifying (5.3) appropriately. Next,

the broadcast and the peer to peer strategies are discussed in the given order.

5.2 Broadcast WZ Coding

In this case, there is a single encoder and several receivers with heterogenous side

information. Recently, Feder et al. considered this problem for discrete sources in

[26]. The authors make an analogy between the degraded broadcast channel capacity

problem and the broadcast Slepian Wolf problem and provide achievable broad-

cast rates under static and streaming scenarios5. In our paper we use a simpler

albeit suboptimum encoder: a single encoding scheme optimizing the quantization

interval length 4 to have minimum average error variance at the receivers.

Let us denote the neighbor set of sensor i as Ni. For each receiver j ∈ Ni, we

can map quantities x and y = x + n in the previous section as follows:

zi(k) → x (5.4)

5At the moment no extension exists for the WZ result and the scheme proposed
in [26] requires a rather complex procedure.
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ẑji(k) =

p∑

l=1

bji(l)z̃ji(k − l) +

p∑

l=0

cji(l)zj(k − l) (5.5)

ẑji(k) → y (5.6)

where bji(l) and cji(l) are the linear estimation coefficients, ẑji(k) is the linear

estimate of zi(k) and z̃ji(k − l) is the reconstruction of zi(k − l) at sensor j.

Note that, although there is only one encoder used for all neighbors, the re-

construction of the state value z̃ji(k − l) (and its quantization noise) is different

at each receiver due to the heterogonous side information ẑji(k). To compute the

side information the decoder uses the supervector γji(k):

γji(k) = [zj(k) zj(k − 1) . . . zj(k − p) z̃ji(k − 1) . . . z̃ji(k − p)]T , (5.7)

and the covariance matrix and cross-correlation vector:

Mji(k) = E{γji(k)γT
ji(k)} (5.8)

vji(k) = E{zi(k)γT
ji(k)}. (5.9)

Then, the side information in (5.5) can be written in a compact form as:

ẑji(k) = vT
ji(k)M−1

ji (k)γji(k). (5.10)

The reader should note that Mji(k) is a (2p+1)× (2p+1) matrix for a given order

p. The upper left (p + 1)× (p + 1) block of the matrix contains cross correlations

of the states k, . . . , k − p at sensor j and can be calculated by (A.2). The lower

right p × p block is the covariance of the noisy reconstructions of sensor i and is

calculated via the recursion shown in Table 4.1. The upper right and the lower

left blocks of the matrix are cross correlations between reconstructions of sensor i

and states of sensor j and are derived in (4.14). The necessary equations to derive

vji(k) vector are (4.14) and (4.15).
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In order to choose the quantizer parameters, both encoder and decoders need

to know the statistics of dji(k) = zi(k)− ẑji(k) where dji(k) is the estimation error

of zi(k) and it is used as the side information noise (i.e. dji(k) → n). The variance

of dji(k) is necessary to derive 4:

σ2
dji

(k) = E{(zi(k)− ẑji(k))2}

= V AR[zi(k)]− vT
ji(k)M−1

ji (k)vji(k) (5.11)

Using (5.11) we can derive:

4i(k) = argmin4>0

∑
j∈Ni

Φ(R,4, σdji(k)) (5.12)

which is the common quantization interval length minimizing the average error

variance over all j ∈ Ni. Using (5.4), (5.6) and the 4i(k) in (5.12), the encoder

i computes the coset index and broadcasts to its neighbors. Upon receiving the

coset index error free, each neighbor reconstructs zi(k) as in (5.2).

Once all the neighbors’ information is received and decoded, the sensor i per-

forms the following state update:

xi(k) = (1− ε

n∑
j=1

aij)xi(k − 1) +
n∑

j=1

aij z̃ij(k − 1) (5.13)

To write the network equations we introduce Z̃(k) as a n×n matrix whose ij entry

is reconstruction of zj(k) by zi(k). The network equation is given as:

x(k) = (I − εdiag(A1))x(k − 1) + (A¯Z̃(k − 1))1. (5.14)

where ¯ represents entry by entry matrix multiplication and 1 is all ones column

vector.

Once all sensors update their current states as in (5.13), the new step requires

knowing Mji(k + 1), and vji(k + 1) defined in (5.8) and (5.9). As mentioned before,
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these quantities can be written in terms of the state and the noise covariances and

calculated recursively as indicated in Section 3.1.1. The only difference compared

to Section 3.1.1 is that because each term z̃ij(k−1) has its own specific quantization

error wij(k − 1) associated, the update of the covariance matrix of the states has

a different form in this case compared to (4.15). By eqs. (2.5) and (5.14):

z(k) = Wz(k − 1) + β(k − 1) (5.15)

where [β(k − 1)]i = ε
∑n

j=1 aijwij(k − 1). Then:

E{z(k)zT (k)} = WE{z(k − 1)zT (k − 1)}W T

+ E{β(k − 1)βT (k − 1)} (5.16)

where, approximating the wij(k − 1) as being spatially uncorrelated:

[E{β(k − 1)βT (k − 1)}]ii = ε2

n∑
j=1

a2
ijV AR[wij(k − 1)]

and the non-diagonal entries are 0. We note that

V AR[wji(k)] = Φ(R,4i(k), σdji(k)) (5.17)

for a given i, j pair, where 4i(k) is given in (5.12).

The procedure described in this section is followed for all k iteratively.

5.3 Asymptotic Rate Behavior

Lemma 5. The nodes converge to a consensus if and only if σ2
wji

(k) → 0 ∀ (j, i)

pair.

Proof. Define σ2
wji

(k) , V AR[wji(k)]. Proof is straightforward from Lemma 1.
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Lemma 6. Given finite number of sensors (n < ∞) and bounded A matrix

(aij < ∞; ∀ i, j ∈ {1, . . . , n}), mean squared deviation from the initial aver-

age is bounded if and only if limk→∞
∑k−1

t=0 σ2
wji

(t) converges ∀ i, j ∈ {1, . . . , n}.

Proof. Proof is very similar to of Lemma 2 and omitted.

Lemma 7. The nodes converge to a consensus if and only if σ2
dji

(k) → 0 ∀ (i, j) pair.

Proof. Forward: If σ2
dji

(k) → 0 ∀ j, then 4i(k) → 0 in (5.12), since expression

becomes a quadratic function of 4 which is minimized as 4 → 0. If 4i(k) → 0,

then σ2
wji(k) → 0 by (5.17).

Reverse: If the nodes converge, then by Lemma 5 σ2
wji

(k) → 0. Then by the

proof of Lemma 3, σ2
dji

(k) → 0. The similarity is due to the fact that dji(k)

corresponds to the linear predictor error (di(k)) in Lemma 3.

Lemma 8. All rate allocations that allow the node values to converge to a common

value will eventually converge to zero rate under WZ coding scheme.

Proof. By Lemma 5 and Lemma 7, the nodes converge if and only if σ2
wji(k) and

σ2
dji(k) → 0. By (5.3), Ri(k) can be chosen as any non-negative number. Then,

Ri(k) → 0 ∀i ∈ {1, . . . , n}.

5.4 Peer to Peer WZ

This strategy utilizes a different encoder for each neighbor. For each sender-receiver

pair (i, j), we define the message to be sent and the side information as in (5.4) and

(5.6). We follow the same procedure (5.7-5.11) to calculate predictor coefficients

and prediction error. In this case, the optimum quantization interval is given as:

4ji(k) = argmin4>0Φ(R,4, σdji(k)) (5.18)
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instead of (5.12). The sensor i encodes zi(k) as in (5.1) with 4 = 4ji(k). The

sensor j reconstructs zi(k) as z̃ji(k) via (5.2). The state updates are given as in

(5.14). The only difference in this scheme compared to the previous one is that

each encoder has a different step size and hence (5.17) should be replaced by

V AR[wji(k)] = Φ(R,4ji(k), σdji(k)), (5.19)

for a given i, j pair, where 4ji(k) is given in (5.18).



Chapter 6

Dense Sensor Networks

6.1 Relaxed Conditions on the Global Knowledge of the

Network Connectivity

In this section, we give a discussion about how to relax global knowledge of the

network graph under dense sensor network, therefore how to increase the scalability

of the proposed schemes. In particular, our derivations will be given for predictive

coding method since WZ analysis is quite similar.

Assume that a group of sensors is distributed uniformly over a 2-dimensional

square with unit area. In general the area of interest is much larger than unit

square, i.e. battlefield or forest, but it can be rescaled for analysis purposes.

Transform the square such that it wraps around in both x and y directions. Such a

network architecture is called 2-dimensional unit torus and has been used to model

connectivity graph for wireless sensor networks ([27],[28]). The main motivation

behind the approach is to remove boundary effects. An example with 16 nodes

and 2-D is given in Fig. 6.1. On a unit torus nodes 2,4,5 and 13 lie on a radius-r

circle whose center is node 1. We assume that a noise-free link exits between any

two nodes that are at a range less than connectivity radius r ([A]ij = [A]ji = 1 if

dij < r).

Remark 4. For a network with n nodes distributed uniformly on a 2-dimensional

unit torus with connectivity radius r (G2(n, r)), the degree of every node is O(r2n)

for large n.

The proof of the Remark 4 is straightforward from Law of Large Numbers. Con-

36
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1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 6.1: Grid representation of a regular network

sequently, for large n each node in the network has the same number of neighbors

with high probability and the connectivity graph of the network becomes regular

yielding more robust mathematical representation. We argue that for large n, con-

nectivity matrix of the network can be reconstructed by each node independently

with constraint that the underlying graph is regular.

Definition 1. A graph isomorphism is a one-to-one and onto mapping between

the vertices of the graphs G1 and G2 (F : G1 → G1) such that any two vertices

u2 and v2 are adjacent if and only if u1 and v1 are adjacent with relationship

u2 = f(u1) and v2 = f(v1). In other words, given two undirected graphs G1 and

G2 with adjacency matrices A1 and A2, G1 and G2 are isomorphic if and only if

there exists a permutation matrix P such that PA1P
−1 = A2.

Definition 2. A matrix P is defined as a permutation matrix if its entries are
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{0, 1} and, each row and column have exactly one entry as 1. Moreover P matrices

are orthogonal, i.e. PP T = I.

Lemma 9. Given two undirected graphs with A1 = PA2P
−1, the covariance ma-

trices of the consensus algorithm at step k have the following relationship under

the uniform rate constraint:

Σ1(k) = PΣ2(k)P−1

Proof. By Definition 2, if A1 = PA2P
−1 then W1 = PW2P

−1. We use induction

for the rest of the proof. Since G2 is transformed into a new (isomorphic) graph,

the nodes of the graph are renumbered while the edges stay fixed. Then Σ1(0) =

PΣ2(0)P−1 due to renumbering of the nodes. It follows that Γ1(0) = PΓ2(0)P−1

where Γi(k) is the noise variance matrix of graph i at step k. This is due the

fact that initial noise variances are functions of the individual state variances (i.e.

[Γ1(0)]ii = f([Σ1(0)]ii) ). We show that relationship holds for k = 0. Now, we

assume that it holds for t ∈ {1, . . . , k}. Then, we show that it holds for t = k + 1.

By Table 1 and equation (4.14):

E1{z̃(k − l)z̃T (k −m)} = PE2{z̃(k − l)z̃(k −m)}P−1

E1{z(k)z̃T (k −m)} = PE2{z(k)z̃T (k −m)}P−1

In the above equations we use the fact that (PBP−1)m = PBmP−1. Then,

[E1{z̃(k − l)z̃T (k −m)}]ii = [E2{z̃(k − l)z̃T (k −m)}]jj

[E1{z(k)z̃T (k −m)}]ii = [E2{z(k)z̃T (k −m)}]jj

where i = f(j) and f is the isomorphic mapping from G2 to G1. Then, [Γ1(k)]ii =

[Γ2(k)]jj. Since Γ is a diagonal matrix,

[Γ1(k)] = P [Γ2(k)]P−1 (6.1)
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By the update equation;

Σ1(k + 1) = W1Σ1(k)W1 + ε2A1Γ1(k)A1

= PW2P
−1PΣ2(k)P−1PW2P

−1 + ε2PA2P
−1PΓ2(k)P−1PA2P

−1(6.2)

= P (W2Σ2(k)W2 + ε2A2Γ2(k)A2)P
−1

= PΣ2(k + 1)P−1

where in (6.2) we use (6.1) and induction hypothesis.

The covariance matrix of the states of a graph at different time instances is

the main performance indicator of the system since noise variances are functions

of this particular matrix. By Lemma 9, we have shown that if two graphs are

isomorphic, the proposed consensus algorithm on these networks will have the

same performance under the constraint that same quantization rates are utilized.

Since dense sensor networks can be represented as regular graphs for sufficiently

large n, and independent numbering of such a graph results in adjacency matrices

which are isomorphic; by Lemma 9, there is no loss of performance with respect

to the case where W is known globally.

6.2 The Asymptotic Behavior of Predictor Coefficients

In this section, we show that predictor coefficients (a
(k)
i ) become the same for

all sensors i for a given iteration k, therefore complexity of the scheme does not

depend on number of neighbors but the predictor order and number of maximum

iterations.

A brief background on block circulant matrices with circulant blocks is given,

which will be used for analysis purposes.
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Definition 3. A matrix C is a circulant matrix of order n if it is a square matrix

of the form:

C =




c1 c2 . . . cn

cn c1 . . . cn−1

. . . . . . . . . . . .

c2 c3 . . . c1




Definition 4. Let C1, C2, . . . , Cn be circulant matrices with order n. Then B

matrix is block circulant matrices with circulant blocks if:

B =




C1 C2 . . . Cn

Cn C1 . . . Cn−1

. . . . . . . . . . . .

C2 C3 . . . C1




Remark 5. Diagonal entries of block circulant matrices with circulant blocks are

equal. Moreover, block circulant matrices with circulant blocks form a commutative

algebra, i.e. if A,B are such matrices, so are A + B and A.B.

The connectivity graph of regular grid in 2-dimensions is block circulant with

circulant blocks. Then, connectivity graph of a sufficiently dense sensor network

becomes block circulant.

Lemma 10. For a sufficiently dense sensor network where sensors’ initial ob-

servations are identically distributed, and quantization rate allocation is uniform

among the sensors, LMMSE coefficients will be exactly the same for all sensor

under predictive coding scheme.

Proof. By Remark 4, sufficiently dense sensor network can be mapped into a 2-

dimensional regular grid whose connectivity matrix is block circulant with circulant
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blocks. LMMSE coefficients for each sensor were given in (4.8) as:

a
(k)
i = vT

zi(k)M
−1
z̃i(k−1), (6.3)

where, for l, m = 1, . . . , p ≤ k:

[Mz̃i(k−1)]lm = E{z̃i(k − l)z̃i(k −m)}, (6.4)

[
vzi(k)

]
m

= E{zi(k)z̃i(k −m)}. (6.5)

Furthermore, these quantities could be obtained by taking ii element of the cross-

covariance matrices for a given k and l:

E{z̃i(k − l)z̃i(k −m)} =
[
E{z̃(k − l)z̃T (k −m)}]

ii
(6.6)

E{zi(k)z̃i(k −m)} =
[
E{z(k)z̃T (k −m)}]

ii
(6.7)

Therefore, necessary and sufficient condition for a
(k)
i = a

(k)
j for all {i, j} pairs and

recursion index k is that

[
E{z̃(k − l)z̃T (k −m)}]

ii
=

[
E{z̃(k − l)z̃T (k −m)}]

jj

[
E{z(k)z̃T (k −m)}]

ii
=

[
E{z(k)z̃T (k −m)}]

jj

∀{i, j} ∈ {1, . . . n}, l, m ∈ {1, . . . , p} and k ∈ {1, . . .}.
By hypothesis, adjacency matrix of the graph (A), initial covariance matrix of

the states and noises (Σ(0),Υ(0)) are block circulant with circulant blocks. Then,

W = I−ε(diag(A)−A) is also block circulant. Since block circulant matrices form a

commutative algebra, consecutive state and noise covariance matrices are also block

circulant given that quantization rate allocation is uniform among sensors. If W ,A,

Σ(k) and Υ(k) are block circulant for all k ∈ N, then
[
E{z̃(k − l)z̃T (k −m)}] and

E{zi(k)z̃i(k − m)} are also block circulant ∀ l, m ∈ {1, . . . , p}. Since diagonal

entries of a block circulant matrix are equal, a
(k)
i = a

(k)
j for all {i, j} pairs and

recursion index k.
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By Lemma 10, we have shown that the prediction coefficients at each sensor

will be the same therefore the number of neighbors of a given sensor is not an

indicative of the complexity. In other words, the scheme is asymptotically scalable

in terms of the number of coefficients computed and stored at each iteration.

To sum up, in Section 6.1 we have shown that each sensor can independently

label the network and reconstruct the adjacency matrix without losing any perfor-

mance with respect to the case where each node has access to the same adjacency

matrix. In Section 6.2, we have proved that prediction coefficients are the same

for all nodes, which makes the scheme more robust from scalability point of view.



Chapter 7

Simulation Results

7.1 Performance Analysis

In this chapter, we show the numerical performance of the broadcast algorithms

proposed, illustrating their convergence characteristics in the network scenario

defined next. Peer to peer schemes are not included in the section, since their

performance is naturally better than broadcast. For simulation purposes, several

random geometric graphs G(n, r) are generated with nodes uniformly distributed

over a unit square. According to the definition of G(n, r), there exists a link

between any two nodes if their range is less than r. We assume that there are no

channel errors between two nodes that are connected. Moreover, we assume that

matrix A in (2.1) is such that:

aij =





aij = 1, if there is an edge between node i and j

aij = 0, if i = j or i 6= j and there is no edge





(7.1)

A sample random network with ten nodes and connectivity 0.4 is shown in Fig.7.1.

Nodes are represented by vertexes, and link are represented by edges. First, we

investigate the behavior of the quantization rate and compare it among three

different schemes: broadcast, Wyner-Ziv and simple coding. Fig.7.2 shows the

behavior of the average number of quantization bits per sensor over 60 iterations.

The simulation parameters are r = 0.4, n = 10. The data at each sensor is

initialized as zero mean unit variance Gaussian random variable. Moreover, the

initial transmission rate is chosen as 0. Then, at each iteration the quantization

rates are chosen such that
σ2

wi
(k)

σ2
wi

(k−1)
=

(
k−1

k

)β
. It is true that for any choice of

β > 1, quantization noise will form a convergent p-series, thus nodes will achieve

43
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Sample Network with 10 nodes

Figure 7.1: A sample random network with r = 0.4, n = 10

bounded convergence. For simulation purposes, β is chosen to be 5 in Fig.7.2.

Under these conditions, simple coding requires a non-decreasing rate, and it tends

to converge to a non-zero rate. On the other hand, our proposed schemes require

smaller rates after a certain number of iterations and rates converge to 0 as number

of iterations go to infinity. For this specific simulation, WZ requires greater rates

in the beginning, but converges to 0 faster than predictive coding. We would

like to emphasize that the average number of quantization bits per sensor per

iteration converges to 0 in the proposed schemes, whereas in the simple coding

method, it will converge to a non-zero constant. Fig.7.3 shows the evolution of the

sensor states as the algorithm iterates under different methods. We assume that

we are allowed to transmit at a rate which is equal to the channel capacity at each

iteration(R = 5 bits per sensor). All algorithms are initialized by the same zero

mean unit variance Gaussian random data. There are 10 nodes in the network, and
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Figure 7.2: Rate demand for consensus(r = 0.4, n = 10,iteration= 60)

the connectivity radius is 0.5. Figs.7.3a and b show predictive coding with order 1,

and 2. We do not observe any significant improvement by increasing the prediction

order p. In fact, for p >= 2 the covariance matrix becomes badly scaled giving

rise to numerical errors in the computation of the prediction coefficients. Fig.7.3 c

shows WZ coding with p = 0. All three methods converge to a consensus which is

very close to the initial average (indicated with ∗). Fig.7.4 shows the behavior of

the average mean squared deviation from the initial average per iteration, defined

as:

MSE(k) =
1

n

n∑
i=1

(
zi(k)− 1

n

n∑
i=1

zi(0)

)2

.

In other words, MSE(k) is the average mean squared distance of the states at it-

eration k from the initial mean. The algorithms are simulated through 1000 monte

carlo initial state values, for a maximum of 400 iterations of the average consensus

algorithm and averaged over 13 different random geometric graphs. There are 10
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Figure 7.3: State evolution(n = 10,R = 5,r = 0.5)

network nodes and the connectivity radius is uniformly distributed in (0, 1) inter-

val. Fig.7.4 shows that quantizing without taking into account of the increasing

correlations among the states (i.e. simple coding) results in increasing and un-

bounded error variance as discussed by Boyd et al.[16](dotted line). Instead, it

appears that if we utilize the correlation structure of the data exchanged as in

our paper, the error variance converges to a finite value (solid line), irrespective of

the iteration number. Fig.7.5 shows the rate-distortion performance of predictive

coding(p = 1) and WZ (p = 0). The results are averaged over 1000 monte carlo
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Figure 7.4: MSE versus iteration(n = 10,R = 0.1)

runs under a single random network topology and 50 iterations. Rates represent

average number of bits per sensor per iteration. We note that given rate-distortion

performances are only valid for 50 iterations, since as the number of iterations

increase average transmission rates are going to decrease, and vanish as iterations

go to infinity. But we are aware that in practical communication systems one can

only have a finite number of iterations. Thus, we provide a sample rate-distortion

performance for one such scenario. While it is clear that the predictive coding

method performs better, the WZ scheme also has reasonably good performance.

This result is promising in the following way: One may argue that due to memory

and lifetime constraints of battery powered wireless networks, storing and process-

ing previous values may not be feasible. In this case, one can set p = 0 in the WZ

coding strategy (no previous values but current states only reaching reasonably

good performance).
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Figure 7.5: MSE versus iteration(n = 10,R = 0.1)

7.2 An Example Practical Application

In this section, we consider a practical application of consensus algorithm. Assume

that there are n agents on the field that can only communicate locally with their

neighbors. They travel at the same speed but towards different directions. The

aim of these agents is to move into the average of the initial direction. In this

scenario, adjacency matrix of the network is dynamic since as the agents move

outside of the connectivity radius of some neighbors, connectivity will break down.

We note that the agents may be troops in a battlefield trying to move to the same

direction, UAV’s flying in a formation, or satellites trying to beam into a single

point.

We assume that there are total of 10 agents and they communicate at the rate

of 5 bits per iteration. Fig. 7.6 shows the movement of the agents without any

communication. Each agents initialize its direction independently and follows its
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Figure 7.6: Agent movement without communication

own course. Fig. 7.7 shows the movement when the agents communicate with

their neighbors. The connectivity radius is 0.3. Each node can hear the nodes

which are closer than 0.3 units in Euclidean distance metric. It can be seen that

nodes whose initial headings are towards negative directions, turn and follow a

positive bearing. While seven agents converge to the same direction, three of them

follow a different course. Connectivity radius is not large enough so three agents

lose communication with the group and get lost. We can increase the connectivity

radius to make sure that agents converge to the same heading before they lose

communication. Fig. 7.8 is the result of the simulation when connectivity radius

is 5 units. It may be seen that the agents follow the same heading which is very

close to the average of the initial directions.
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Chapter 8

Discussion
We have explored conditions on the quantization noise variances which are re-

quired for convergence of the nodes in the average consensus problem. We have

also studied bounded convergence,where the mean squared distance between the

final node values and the initial mean of the nodes is bounded. We have proposed

and investigated two source coding strategies which satisfy bounded convergence

constraints with zero average rate asymptotically. We have given the mathemati-

cal framework for predictive coding, and nested lattice coding for both peer to peer

and broadcast scenarios, providing the details on how to implement each strategy.

Our most significant contribution is that we have shown that even with highly sub-

optimal encoding strategies using the temporal correlation and the ever increasing

spatial correlation, bounded consensus can be achieved with zero asymptotic rate.

In other words, our proposed schemes lead to a non increasing MSE divergence

from the initial mean as the number of iterations increases. Hence, this decreases

the sensitivity of the algorithm precision relative to the convergence speed of the

algorithm itself. On the other hand this also highlights that the accuracy gained

by increasing the number of iterations saturates with these simple approaches.

We analyze the behavior of the schemes under the dense sensor network as-

sumption without boundary effects. We have shown that network connectivity

matrix of such a network can be reconstructed by each node independently with-

out any performance losses with respect to the case where each node has access to

the same connectivity matrix. Moreover, we have shown that predictor coefficients

at each sensor are the same and we have removed drawback mentioned in Remark
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3. We conclude that the schemes presented are scalable in the context of wireless

sensor networks.

Moreover, the comparison of our strategies leads to the interesting observation

that predictive coding strategy performs better but WZ scheme has a promising

performance even with p = 0.



Appendix A

Calculation of E{z̃i(k − l)z̃i(k −m)}
We have already known that E{z̃i(k − l)z̃i(k − m)} = [E{z̃(k − l)z̃(k −m)}]ii.
Covariance among noisy states at time instant l and time instant k can be written

as:

E{z̃(k − l)z̃T (k −m)} = E{z(k − l)zT (k −m)}

+ E{z(k − l)wT (k −m)}

+ E{w(k − l)zT (k −m)}

+ E{w(k − l)wT (k −m)}.

We also note that z(k) vector can be written in terms of z(k − 1− q) as follows:

z(k) = Wz(k − 1) + εAw(k − 1)

= W q+1z(k − 1− q) + ε

q∑
j=0

W jAw(k − 1− j). (A.1)

We will focus on the first term of covariance equation. Suppose l ≤ m; by eq. A.1

correlation between states can be expressed as:

E{z(k−l)zT (k−m)} = E{z(k −m + (m− l))zT (k −m)}

= Wm−lE{z(k −m)zT (k −m)}

+ε

m−l−1∑
j=0

W jAE{w(k−l−1− j)zT (k −m)}

= Wm−lE{z(k −m)zT (k −m)} (A.2)

We note that each element of the summation term is zero since vector z(k −m)

is independent of future noise vectors and both state and noise vectors have zero

mean. In the case of l > m, state correlation can be written as;

E{z(k − l)zT (k −m)} = E{z(k − l)zT (k − l)}(W l−m)T
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Now, we will focus on the second equation. Suppose l < m. Then,

E{z(k − l)wT (k −m)}

= E{z(k −m + (m− l))wT (k −m)}

= Wm−lE{z(k −m)wT (k −m)}

+ ε

m−l−1∑
j=0

W jAE{w(k−l−1− j)wT (k −m)}

= εWm−l−1AE{w(k −m)wT (k −m)}

We realize that z(k−m) is independent of the noise w(k−m), and noises vectors

at different time instants are independent. In the case of l ≥ m,

E{z(k − l)wT (k −m)} = 0

By the same way, the third term can be given as

E{w(k − l)zT (k −m)} = 0

if l ≤ m. In the case of l > m,

E{w(k − l)zT (k −m)} =

E{w(k −m)wT (k −m)}ε(Wm−l−1A
)T

The last term, which is the covariance of the error terms, is zero unless l = m since

noises at different time instants are independent.

If we are to summarize the formulas above in three different cases; If l = m

E{z̃(k − l)z̃T (k −m)} = E{z(k −m)zT (k −m)}

+ E{w(k −m)wT (k −m)}

If l < m

E{z̃(k − l)z̃T (k −m)} = Wm−lE{z(k −m)zT (k −m)}

+ εWm−l−1AE{w(k −m)wT (k −m)}
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If l > m

E{z̃(k − l)z̃T (k −m)} = E{z(k − l)zT (k − l)}(W l−m)T

+ E{w(k − l)wT (k − l)}ε(Wm−l−1A
)T

Moreover, E{z̃i(k − l)z̃T
i (k −m)} can be found by taking ii entry of the E{z̃(k −

l)z̃T (k −m)} matrix.



Appendix B

Calculation of E{zi(k)z̃T
i (k −m)}

In this section, we will calculate correlation between state vector at time k, and

noise vector at time k−m. We know that E{zi(k)z̃i(k−m)T} = E{z(k)z̃(k−m)}ii.

Then,

E{z(k)z̃(k −m)T} = E{z(k)
(
zT (k −m) + wT (k −m)

)}

= WmE{z(k −m)zT (k −m)}

+ εWm−1AE{w(k −m)wT (k −m)}

In the above derivation, we use the equations in Appendix A by setting l = 0, and

m ≥ 1.
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Appendix C

Derivation of the Separate Encoder
We start by redefining the equations given in Section 4.2. Assume that sensor i is

to transmit sensor j where the link is bidirectional. Define a vector γji as:

γji(k) = [z̃ji(k − 1) . . . z̃ji(k − p) z̃ij(k − 1) . . . z̃ij(k − p)]T (C.1)

where z̃ji(k) is the reconstruction of zi(k) at sensor j, and z̃ij(k) is the reconstruc-

tion of zj(k) at sensor i at time k. By modifying (4.1), the predictor of zi(k) at

the sensor j can be expressed as;

ẑji(k) = a
(k)
ji γji(k) (C.2)

where a
(k)
ji = vT

zji(k)M
−1
z̃ji(k−1). For l, m ≤ 2p, we define:

[Mz̃ji(k−1)]lm =





E{z̃ji(k − l)z̃ji(k −m)} l,m ≤ p

E{z̃ji(k − l)z̃ij(k −m mod p)} l ≤ p < m

E{z̃ij(k − l mod p)z̃ji(k −m)} m ≤ p < l

E{z̃ij(k − l mod p)z̃ij(k −m mod p)} m, l ≥ p





(C.3)

[vzji
(k)]m =





E{ziz̃ji(k −m)} m ≤ p

E{ziz̃ij(k −m mod p)} m > p





(C.4)

C.1 Detailed Mathematical Analysis

We define n2 × 1 vector s as:

s(k) = Hz(k) + ω(k) (C.5)
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Table C.1: M Matrix
[Mz̃ji(k−1)]lm =

l, m ≤ p E[s(k − l)sT (k −m)](i+(j−1)n,i+(j−1)n)

l ≤ p < m E[s(k − l)sT (k −m modp)](i+(j−1)n,j+(i−1)n)

m ≤ p < l E[s(k − l modp))sT (k −m)](j+(i−1)n,i+(i−1)n)

m, l ≥ p E[s(k − l mod p)sT (k −m mod p)](j+(i−1)n,j+(i−1)n)

z(k) is the state vector, H is n2 × n matrix of the form

H =




I

I

. . .

I




(C.6)

I is n× n identity matrix and,

ω(k) =




w11

w12

w13

...

w1n

w21

...

wnn




(C.7)

where wji(k) is the additive noise in the reconstruction of zi(k) at sensor j and has

the characteristics which are discussed in Section 4.2. It is clear that s(k) vector

contains all possible state reconstructions. We can express the entries of [Mz̃ji(k−1)]

in terms of s(k) as in Table C.1. Now, we revisit the noisy recursion formula of

the z(k) vector. If we focus on the ith entry of the vector z(k),

zi(k) =
n∑

j=1

wijzj(k − 1) + ε

n∑
j=1

aijwij(k − 1) (C.8)
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Then, (4.13) can be modified as:

z(k) = Wz(k − 1) + εβ(k − 1) (C.9)

where

[β(k − 1)]i =
n∑

j=1

aijwij(k − 1) (C.10)

We note that state recursions have rather simple form also in this case. Moreover,

z(k) = W q+1z(k − q − 1) + ε

q∑
j=0

W jβ(k − 1− j) (C.11)

C.2 Calculation of M matrix

To be able to calculate [Mz̃ji(k−1)]lm, we need to calculate E[s(k− l)sT (k−m)] for

a given l, m ≤ p pair. By (C.5):

E{s(k − l)sT (k −m)} = HE{z(k − l)zT (k −m)}HT

+ HE{z(k − l)ωT (k −m)}

+ E{ω(k − l)zT (k −m)}HT

+ E{ω(k − l)ωT (k −m)}.

Let’s focus on the first term. If l ≤ m,

HE{z(k − l)zT (k −m)}HT = HE{Wm−lz(k −m)zT (k −m)}HT

+ HE{
m−l−1∑

j=0

W jβ(k − l − 1− j)zT (k −m)}HT

= HWm−lE{z(k −m)zT (k −m)}HT

since noise is independent of states. If l ≥ m,

HE{z(k − l)zT (k −m)}HT = HE{z(k − l)zT (k − l)}(W l−m)T HT
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If we focus on the second term, for l ≥ m

HE{z(k − l)ωT (k −m)} = 0

If, l < m, then

HE{z(k − l)ωT (k −m)} = HE{Wm−lz(k −m)...

+ ε

m−l−1∑
j=0

W jβ(k − l − 1− j) ωT (k −m)}

= εHWm−l−1E{β(k −m)ω(k −m)}

where E{β(k −m)ω(k −m)} has a rather nice form, i.e.

[Eβ(k −m)ω(k −m)]ij = a2
ijV AR[wij(k)]

Third term is very similar to second term. If l ≤ m

HE{ω(k − l)zT (k −m)} = 0

If l > m,

HE{ω(k − l)zT (k −m)} = E{β(k − l)ω(k − l)}(εHWm−l−1)T

The last term, E{ω(k − l)ωT (k −m)} = 0 if m 6= l. If m = l,

E[{ω(k − l)ωT (k − l)}](i(n−1)+j,i(n−1)+j) = V AR[wij(k − l)]

where non-diagonal entries are 0. Now, we will investigate vzji
(k) vector. We can

rewrite eq. C.4

[vzji
(k)]m =





E[z(k)sT (k −m)](i,n(j−1)+i) m ≤ p

E[z(k)sT (k −m mod p)](i,n(i−1)+j) m > p





(C.12)

and

E[z(k)sT (k −m)] = εHWm−1E{β(k −m)ω(k −m)T}
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We will finalize the section by calculating state variance matrix in a recursive

fashion. Using eq. C.9,

E{z(k)zT (k)} = WE{z(k − 1)zT (k − 1)}W T (C.13)

+ ε2E{β(k − 1)βT (k − 1)} (C.14)

where

E[β(k − 1)βT (k − 1)]ii =
n∑

j=1

a2
ijV AR[wij(k − 1)]

and non-diagonal entries are 0.
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