

- Tightening of regulations and permits
- Increased enforcement
- Increased monitoring

Technical Challenges & Sustainability

- Surface Water/Groundwater Quality
- Point source vs. non-point source
- NPDES/SPDES
- TMDLs
- Part 360 land application

Sources of Information

- · Wine Institute and CAWG
- Code of Sustainable Winegrowing Practices (2002)
- Land Application Studies and Literature Review (2004)
- Sustainable Winery Practices for Process Water Management (2007)

Sources of Information (cont'd) CLFP Manual of Good Practices for Land Application (2007) BEST Winery Guidebook, Ernest Orlando Lawrence Berkeley National Laboratory (2005) Sustainable Winemaking Ontario (2007)

Sources of Information (cont'd)

- International Proceedings Specialised Conference on Sustainable Viticulture and Winery Waste Management (2004 and 2006)
- Environmental Protection Agency (1988) Waste Minimization Opportunity Assessment Manual

Approach Conventional Operations Step 1: Planning and Organization Step 2: Assessment Step 3: Data Evaluation & Option Identification Step 4: Feasibility Analysis Step 5: Implementation

Supporting Materials Worksheets Water use and sanitation inventories Flow and analytical monitoring plans Case study Includes waste stream chemistry data Illustrates biggest sources Sampling tips for each waste stream (Section 2.2) Guidelines for data collection (Guideline 1) Flow monitoring Sampling

		2 CT			- 		1
Winery Unit Oper.	Water Use Task	Flow Duration (mins)	Water Use Rate (gpm)	Task Water Use (gals/ task)	Task Freq. (x /day)	Daily Water Use (gal/ day)	Annu Wate Use
Tank Wash (60k gal)	Rinse	15	25	375	10 tanks	3,750	0.71
Tank Wash (60k gal)	Caustic	20	25	500	10 tanks	5,000	0.91
				Subtota	:	8,750	1.6

Winery Unit Operation	Process Water Source	Flow Type	Access	Flow Meter Type	Manual or Data Logger	Rent, Buy o Own?
Filtration	Sanitation	Batch	Drain	Area Velocity	Data Logger	Rent
Barreling	Cleaning	Batch	Drain	Transit- Time Ultrasonic	Data Logger	Rent

Step 3: Data Evaluation & Option Identification Generate options for source reduction,

- recycling and treatment
- Screen and select options for further study

Supporting Materials

- Worksheets

- Brainstorming options
- Option description form
- Option evaluation by statistical methods
- Overview of Waste Minimization Techniques (Figure 3-1)
- Waste Minimization and Treatment Options (Appendix E)

HE COL	The second state states
- The Part	
rocess Water and Lys	simeter Samples
pН	
Organics	BOD5, VDS, Alkalinity
Nitrogen	NH4+, NO2, NO3, Organic-N, Total N
Salts, salinity	EC, TDS, IDS, VDS, Na+, CI+, Ca2+, Mg2+, SO42, K+, Alkalinity or acidity
Reduction – oxidation status	Total Fe, Tota I Mn
Soil Samples	
Collected at depths of 0-1	, 1-2, 2-3, 3-4, and 4-5 feet
pH	
Organics	% Total Carbon
Nitrogen	% Total Nitrogen, NH +*-N, NO3-N
Salts, salinity	EC, TDS, IDS, VDS, ESP, Ca ²⁺ , Mg2+, Na, K ⁺ , Cl, SO4, P
Reduction -	Total Fe, Total Mn

 Nitrogen and salt management, rotation schedule, basin management

Basic Results (2002 and 2003)

- Land application was shown to be a viable natural treatment technology at stillage and non-stillage sites
- Effective management results in: – Odor control
 - pH buffered to neutral values
 - Near complete BOD₅ removal at 5 feet
 - Effective total nitrogen treatment

Basic Results (2002 and 2003)

- Natural soil processes affect ion ratios regardless of source of water
- · Salt treatment is complex
 - Load in approximately equal to load out
 - Some ions accumulate in soils
 - Some ions move with water
 - Some ions are generated in soil profile

Step 4: Feasibility Analysis

- · Conduct technical evaluation
- · Conduct economic evaluation
- Identify preferred options
- Develop action plan

Supporting Materials

- Worksheets
 - Capital costs for proposed improvements
 - Utility costs
 - Impact on operating costs/revenues
 - Impact on profitability/payback
- Guidelines
 - Land Application (Guideline 2)
 - Treatment Technology Selection (Guideline 3)

Step 5: Implementation

· Justify projects and obtain funding

Install equipment

- Implement procedural changes
- Evaluate performance
- · Re-check periodically

Acknowledgements

- American Vineyard Foundation
- Wine Institute
- California Association of Winegrape Growers

A SAN

- California Sustainable Winegrowing Alliance
- National Grape and Wine Initiative
- Pacific Gas and Electric