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Abstract

In this paper, we study the problem of European option pricing in the presence of
fized transaction costs. The problems of optimal portfolio selection and option pric-
ing in the presence of proportional transaction costs has been extensively studied in
the mathematical finance literature. However, much less is known when we have
fixed transaction costs. In this paper, we show that calculating the price of an Euro-
pean option involves calculating the value functions of two stochastic impulse control
problems and we obtain the explicit expressions for the resultant quasi-variational in-
equalities satisfied by the value functions and then carry out a numerical calculation
of the option price.

1 Introduction

Option pricing has been extensively studied in the mathematical finance literature since
the publication of the Black-Scholes formula in 1973. The analysis of Black and Scholes
however assumes a perfect market with frictionless trading. More recently, option pricing
has been investigated in the presence of imperfect markets with transaction costs. Several
authors have studied the problems of option pricing and optimal portfolio selection in this
setting.

In 1993, Davis, Panas and Zariphopolou, studied the problem of European option
pricing in the presence of proportional transaction costs and showed how to obtain the price
of the option in terms of the value functions of two different singular stochastic control
problems. In this paper, we study the problem of option pricing when the transaction
costs are a fixed fraction of the portfolio value along with a fixed exogenously specified
fee. Adapting the ideas of Davis et al to this setting, we show that the option price can
be expressed in terms of the value functions of two different stochastic impulse control
problems and derive the quasi-variational inequalities of the value function.

The general problem of impulse control and quasi-variational inequalities has been
thoroughly investigated in the mathematical literature.( see Bensoussan and Lions(1984)
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and the references cited therein). Eastham and Hastings (1988) provided one of the first
rigorous adaptations of the theory to the problem of optimal impulse control of portfolios.

In section 2, we provide a rigorous introduction to the problem of option pricing and
present a definition for the price of a European option in terms of the value functions of
two stochastic impulse control problems. As in Davis et al(1992), we define the replicat-
ing portfolio for a European option and prove that when the space of admissible trading
strategies is linear, the price of the option is the initial endowment associated with the
replicating portfolio. In section 3, we carry out a detailed investigation of the general
situation with fixed transaction costs and define the admissible trading strategies for the
investor. We also prove theorems analogous to those in EH giving conditions under which
optimal admissible trading policies exist. In section 4, we actually carry out a calculation
of the price of the European option when the drifts and volatilities of the bond and stock
are constants which is the Black-Scholes market. We analyze the quasi-variational inequal-
ities satisfied by the value function of the associated impulse control problem and prove
that, under the conditions of the model under investigation, the optimal trading policy for
the investor entails at most one intermediate transaction in the interval [0.7") in addition
to liquidation at the terminal date T'.

In section 5, we conclude the paper.

2 Option Pricing

In this section, we adapt the ideas of Davis et al(1992) to our setting and give a definition
of the option price in terms of utility maximization. In order to facilitate comparison with
their definitions and results, we shall attempt to retain their notation.

P = (Fy, Py,..., P,) is a vector-valued stochastic process describing the prices of a risk-
free asset or bond Fy and n risky assets or stocks. These are assumed to be defined on
a probability space (€2, F, P) and a time interval [0,7]. The right continuous complete
filtration F; of the probability space is generated by the price process P(t). We shall
define a price at time zero for a European option with exercise time T on one of the stocks,
say Pi(t).

Let T(.So) denote the set of admissible trading strategies for an investor who starts with
So shares of the risk-free asset and no shares in stocks. At any time ¢, the value of the
investor’s portfolio is given by

V, = S(t).P(1) (2.1)

where S(1) is the vector-valued “share” process. If the investor carries out a transaction
at time ¢, then

Ve = S(1).P(1) — (1 — a)[S(1).P(1)] — 3 (2:2)



where 0 < a < 1 and 3 > 0.

Thus, we have defined the effect of transactions for positive and negative values of the
portfolio.

In this paper, we shall make the following important assumption about the nature of
the market.
Assumption : Transaction costs incurred as soon as the investor decides to make a
transaction, i.e. the investor pays the transaction cost before carrying out the transaction.

An option on the stock Pi(t) is the right to buy one share at time T' at a price F,
which may be, in general, an Fr— measurable random variable. The option writer forms
a portfolio to hedge the option and liquidates it at time 7. If P; < F the option is not
exercised and the cash value of the portfolio is P.S(T') — (1 — «)|S(¢).P(t)| — 3. If P, > F,
the buyer pays the writer £ in cash, and the writer given one share to the buyer. The cash
value of the portfolio is therefore S(¢).P(¢) — (1 — «)|S(¢).P(t)| — 5+ F — Pi(T) where &,
is the vector (0,1,0,...,0).

For notational convenience, let us henceforth assume that the value of the writer’s
portfolio at time 7' is positive. Let & : R — R be the writer’s utility function which is
concave and increasing. Just as in Davis et al, we can define the following value functions

Vi (So) = supret(so) EU(L(pyr)<m)(P.S(T) — (1 — @)[S(1).P(1)| — 3)
+ I(py1y>my(E — Pi(T) +S(1).P(t) — (1 —a)[S(t).P(1)] - B)] (2.3)

and
Vi(S0) = supeerisn EU(P.S(T) - (1 — a)|S(0).P(0)] - 5] 2.4)

V(o) is the maximum utility available to the writer if he hedges the option and V;(.Sy)
is the maximum utility if he enters the market with an initial endowment of Sy shares of
the risk-free asset. Let

Sw =1inf{So: V,(So) > 0} (2.5)
and
Sy =1inf{S : Vi(So) > 0} (2.6)

If we assume that V,, and V] are continuous and monotone increasing functions of their
argument, then just as in Davis et al, we can define the price of the option as

Pw = Sw - Sl (27)
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A replicating portfolio for the option contract is an element 7 € T(So) with initial
endowment S, such that S(T) = Iipy(ry>p)(—F,1,0,...,0).
Note: The form of the replicating portfolio differs from the one in Davis et al because of
the different transaction cost model under consideration.

For notational convenience, we shall assume that P.S(T) > 0 in the following :
We shall now prove a proposition exactly analogous to theorem 1 in Davis et al.

Proposition 1 Suppose T is a linear space and V,,(So) and Vi(So) are both continuous
and strictly increasing functions of So. Then p,, = Sy if a replicating portfolio & € T (So)
exists.

Proof.
The proof follows exactly along the lines of the one given in Davis et al. By linearity,
an arbitrary trading strategy m can be written in the form 7 = 7@ + @ with 7 € T(.Sp) and

T E T(go). Then,
0=V,(5)

VM&JZSwumwwEWUmw@®PS—ﬁ%+%@»AMPS%—ﬁ—HUU+Eﬂ)
2.8

Therefore,
Vi(Sw) = sup zers, -5y EU@P.S = 3+ Ip 1y p(E — Pi(T)))] (2.9)

By the definition of the replicating portfolio, we easily see that

0= V,(Sy) = Vi(Sy — So) (2.10)
Therefore,
So = Sy — 51 = pu (2.11)
This completes the proof.

Just as in the paper by Davis et al, we see that the Black-Scholes model satisfies the
conditions of proposition 1. Therefore, in the absence of transaction costs, the price of a
European option reduces to the Black-Scholes price.



3 Option Pricing with Fixed Transaction Costs

In this section, we shall introduce a model to price a European option in the presence of
fixed transaction costs. We adopt the notation introduced by Eastham and Hastings(1988).

3.1 Price Processes for the Bond and Stocks

If P =(F,P,..., P,) is the vector-valued price process for the bond and n stocks, then
we assume that

dPy(r) = po(Po(r),r)dr (3.1)
with Py(t) = po > 0 for t € [0,7] and po > 0
dP;(r) = pi(P(r),r)dr + oi;(P(r), r)dW;(r) (3.2)

for i = 1...n and j = 1...d. The initial conditions are given by P;(t) = p; > 0 for t € [0, T].
Thus, we have modeled the stock price processes as diffusion processes.

3.2 The Admissible Trading Strategies

The admissible trading strategies for the option writer can be broadly described as follows.
At any time ¢ € [0, 7], the investor holds a portfolio of shares of each asset represented by
the (n + 1)— dimensional vector s € R"t!'. He intervenes at various instants to rebalance
his portfolio and at each time of intervention, he pays a fixed transaction cost so that the
value of this portfolio satisfies :

p(i+).s'(t+) = p().s(t) — (1 — a)lp.s(t)| - B (3.3)

where ¢ € [0,7") is a time at which he intervenes or trades and s and s’ are the initial
and final share vectors respectively. At the final time 7' he dissolves his portfolio and
consumes it. In order to ensure the existence of optimal strategies, we have to however,
impose additional conditions on the share process and the trading strategies available to
the investor.

We assume that there exist upper and lower bounds on the number of shares of each
risky asset available to the investor. Therefore, for each 7 = 1...n there exist B; > 0 and
B; < oo such that

—B; <s; < B;



We also assume that there exists ' < 0 and I' > —oo such that the investor is permitted to
carry out a transaction if and only if the value of his portfolio after he pays the transaction
cost does not fall below I'. Following the notation of Eastham and Hastings(1988), let

B = (—OO, OO) X H?:l[—BZ', BZ]
The feasible set K(p,s) corresponding to the price vector p and share vector s is given

by
K(p,s)={s"€B:ps’'=p.s— (1 —a)lps| — 5}

provided p.s > —I" and p.s’ > —I" and K(p,s) = ® otherwise.
Let K = {(p,s) : K(p,s) # ®}. From the above definitions, it is clear that K is a
closed set.

3.3 The Impulse Control Problem

From the model and the definitions introduced in the previous section, it is clear that
the investor’s optimization problem is an impulse control problem. An impulse control
v = {(01,Sy)} is a sequence such that (6;) is a nondecreasing sequence of stopping times
and (S is a sequence of R"*! valued random variables such that Sy € Fy, where F; is the
complete, right continuous filtration on the underlying probability space. If X is the joint
price-share process (P, S), the impulse control v is called admissible if

Or < 0141 for any k

0y is a stopping time of X
Pllimj_ o0, <T] =0
Si € K(P(0y),S5-1)

Sk € Fy,

If U is the investor’s utility function, then we can define the value of the admissible
impulse control v by

J(p,s,t,v) = Eps:[U(CT)] (3.4)

where C'r € R is the consumption at the terminal time 7.
Note In the problem we are investigating, there is consumption only at the terminal time
T in contrast with the portfolio selection problem studied by Eastham and Hastings(1988).

The impulse control problem reduces to finding an admissible v* such that .J(p, s, ¢, v*) >
J(p,s,t,v) for each p € R%! and s € B and each admissible v.



From the definitions above, we see that the admissible impulse controls are exactly the
admissible trading strategies available to the investor and the impulse control problem is
exactly the optimization problem we need to solve in order to determine the price of an
option. In the next subsection, we shall introduce the quasi-variational inequalities that
describe the solution of the impulse control problem and prove that a sufficiently regular
solutionn of the quasi-variational inequalities (if it exists) gives rise to an admissible impulse
control.

3.4 The Optimal Impulse Control Policy

We shall now introduce the quasi-variational inequalities satisfied by a sufficiently regular
solution of the impulse control problem. Let u = u(p,s,r) be a continuous real-valued
function on Rt x B x Ry with continuous first partial derivatives in r and continuous
second partial derivatives in p. We define the operator

Lu(p,s,r) = u.(p,s,r) + Vu(p,s,r).p(p,r) + (1/2) Y > wij(p,s,r)Ai;(p, 7)
i=1j=1 (3.5)
where A = oo,
We also define the operator
Mu(p,s,r) = supyer(ps)t(p,s’,r) (3.6)

If p,s ¢ Kor K(p,s) = ®, we define Mu(p,s,r) = —oc.

We note that the operator M is well-defined since for each (p,s) € K, K(p,s) is
compact and non-empty. Further, we will show later that K is upper semicontinuous as
a multifunction. Since u is continuous and B is locally compact, there exists a Borel
measurable function ¢ : K x [0,7) — B such that

o(p,s,r) € K(p,s) (3.7)

and

Mu(p,s,r) = u(p, ¢(p,s,7),7) (3.8)
for all (p,s,r) € [0,T).

Let C be the space of continuous real-valued functions on R%*' x B xR with continuous
first partial derivatives in r , continuous second partial derivatives in p and satisfying
Dynkin’s formula, i.e.

Fowat(p(7),5(7),7) = u(p,5,1) + Fps [ Lulp,s,r)dr (3.9



Suppose there exists u € C such that
u > Mu,Lu <0
(v — Mu).(Lu) =0

u(p, S, T) = U(CT(pv S))
We can define the continuation set C = {u > Mu} and the action set A = C°

Lemma 1 The multifunction K : K — B is upper semicontinuous.

Proof.
The proof follows along the lines of the proof of the analogous proposition in Eastham

and Hastings(1988). We need to show that

lim sup K (pk,sk) € K(p,s)
k—o0
when (pk,skx) — (p,s) in K.
Given any subsequence (k;) and s] € K(py,,sk,) converging to some s', it is enough to
show that s’ € K(p,s).
But K(pk,sk) = {s € B: pk.sy = apx.sk — 3}
Since px, — p and si, — s’ , by continuity p.s’ = ap.s — 3. This completes the proof.

Lemma 2 Mu is upper semicontinuous on K x [0,7").

The proof follows exactly along the lines of lemma 2.8 in Eastham and Hastings (1988) using
the result of the previous lemma. In particular, this lemma implies that the continuation
set C = {u > Mu is open

Proposition 2 u is the minimum element of the sel of functions v € C salisfying

v > Mu and Lv <0
U(p,S,T) = U(CT(pasvT))

Proof.

Since u is continuous and Mu is upper semicontinuous, the continuation set C = {u >
Mu} is an open set. Let v € C be as in the statement of the proposition. Clearly, v > Mu
implies that v > u on C. It remains to show that v > w on the set u > Mu. Suppose
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we assume the contrary, i.e there exists (p,s,r) € B x [0,7) : u(p,s,r) > v(p,s,r). Since
Lu =0 on u > Mu and Lv <0, it follows that L(v —v) > 0 on u > Mu.

Define 7 = inf {t > r : u(p(t),s(t),t) = v(p(t),s(t),t)} with p(r) = p and s(r) = s.
Since u(p,s,T) = v(p,s,T), clearly 7 < T. Further 7 is a stopping time since u and v are
continuous functions and therefore {u > v} is an open set. Applying Dynkin’s formula to
u — v, we see that

E(u—v)(r) = (u—o)(r) + E, / L(u — v)(s)ds

where the other arguments of u — v have been suppressed. By the definition of 7, and the
fact that (u —v)(r) > 0, it follows that we must have L(u — v)(s) < 0 for some s € [r, 7).
Therefore, Lv(s) > 0 which contradicts the assumptions on v. Hence, v > u on u > Mu.
This completes the proof. Note: We have used the fact that u < v on u > Mu so that for

telr,7)u(p(t),s(t),t) > Mu(p(t),s(t),1).

Thus, if u is a sufficiently smooth solution of the quasi-variational inequalities,we can
construct an impulse control policy as follows:

Using the notation of Eastham and Hastings(1988), if the initial data is (p,s,t), we set
05 =1 and S§ = s. Define

0; = inf {r >0;_,:(P(r),S5_,,r) € A} (3.10)
where 0; = oo if process does not enter A before T'.
Sk = ¢(P(07), Sk-1,05) (3.11)

By the upper semicontinuity of Mu and the continuity of w, it is easy to see that A is
a closed set. Therefore, 6} is a stopping time for each k. By the continuity of the price
process, (P(67),S5_,,05) € A and Sj is well defined. We shall now check that the control
policy v* = {(05,S;)} is admissible.

Proposition 3 If the price process P is almost surely finite and quasi-left continuous,
Pllimpeo0;, < 00] =0

Note: In the problem we are considering , P is, in fact, a continuous process. But the
assertion holds even if P has jumps where the jump times are totally inaccessible. (see

Elliott(1982)).

Proof.
We shall again adopt the notation of Eastham and Hastings(1988).
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Let
D = {limy_..0; <T}

M= max {B;i=1,...,n}
=Y Pi(1).S;;t > 0;

and, as in Eastham and Hastings, let us drop the subscript "+’
We shall first prove that S, the number of shares of the riskless asset is almost surely
finite. By the definition of the admissible trading strategies, we know that

Wi_1(0r) — Wi(0r) > .
Therefore,
Sko < Sp—10+ E (0r)/ Po(0r))(Sk—1: — Ski) — B/ Po(0r)

=1

[terating the above, we see that

kol

S0 < 0+ 3P0/ Pol0)(Sirs — Sii) — X ¢/ Pol6)

j=11i=1 j=1
Interchanging the order of summation and using the monotonicity of Fy, we finally obtain

n k-1

S0 S 507+ (A0 )i+ (M) YL IR Ose0) = RO kel (n (D))

=1

This proves that Sy < oo almost surely. We shall now show that Sy > —oo almost surely.
By the definition of admissible trading strategies,

Wi(0y) > —T
Therefore,

n

Po(0r)So(0k) + > Pi(0y)Si(0) > —T

i=1
Therefore,
So(0r) > —T' — MZ P;(0y)
i=1
Since Fy > 0, Sy > —oco almost surely.

By the finiteness of P and Sy, we see that —oco < W}, < oo almost surely. We shall now
show that

D C limsup{ Wy (0p41 — Wi(0:) > B/2} a.s (3.12)

k— o0
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Let us assume the contrary. Therefore, suppose w € D and there exists I = [(w) such that
for all & > 1,
Wi(Op41) — Wi(0r) < =0

Therefore, for 7 > 1,
Wisi(0;) < =5 — 1 =1)8/2+ Wi(br)

Since Wi(0;) < oo a.s., by choosing j sufficiently large , we see that W;_,(8;) < —I" almost
surely which contradlcts our definition of the choice of trading strategies. Therefore, we
have a contradiction and this proves the statement.

The rest of the proof now proceeds along the lines of the proof of lemma (2.12) in
Fastham and Hastings(1988). We know that

D C lim sup{ Wi (0p41 — Wi(0r) > 3/2} N D
K

Therefore,
Dglimksup{[Po(QkH) Po(01)][ so—l—zn: 01)/po)si
FTPo(Ousr) — PoOOL IO o) (X (P 6540) — Pi(05)| — K3/ (n Po(T)))]

+ Z[PZ Or+1) — P;(01)].Sk: > 8/2} N D (3.13)
=1
By the pigeonhole principle,
D C limksup{[Pg(QkH) Po(0k)][s0 + Z 61)/po)si
=1

>B/22n+1))}NDU Q limksup{[Po(HkH) — Po(0r)]

((M/po) 3 Pi(0js1) — Pi(0;)] — ke/(nPo(T))]// = B/(2(2n + 1))} N D

i=1

=1

The first lim sup is contained in

lim sup{ Po(0x+1)— Po(0r) > cpo/(Q(Zn—l—l)(sopo—l—Z P;(61)s:)); //Sop0‘|'z P(61)s; > 0}(ﬂD |
k 3.15
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Since D = {limp—o0; < T}, we easily see that the above is contained in the set where
Fy becomes infinite at some ¢ < T" which has probability 0 by hypothesis. Since Sj; is
bounded, for each : = 1,...,n

limksup{[Pi(GkH) — PZ(Hk)]S;m Z c/(2(2n + 1))} npD
C limsup{P;(0x+1) — Pi(0x) > ¢/2M(2n+ 1))} N D (3.16)

The above is contained in the set where finiteness or quasi-left continuity of P is violated
and therefore has probability zero.
By the monotonicity of Fy , each set in the middle of the union in 7?7 is contained in
k-1

1imksup{(1/k) Z_: |Pi(0;41) — Pi(0;)]

> poc/(MnPy(T) 4 poc/(2kM(2n + 1)(Po(T) — po))} N D
CA{IFi(0j41) — Pi(0;)] 0 as j — oo} N D (3.17)

which has probability zero by hypothesis. This completes the proof of the assertion !

Proposition 4 If u is a sufficiently smooth solution of the quasi-variational inequalities
giving rise to an admissible control v* = {(0;,8})}. Also suppose that u satisfies Dynkin’s
formula, i.e.

o

E[U(P(Q;c)a Sk-1, ‘%c) - U(P;c—la Sk-1, 02—1)] =FE LU(P(T)v Sk-1, T)d?“

Ok
where v = {(0k,Sk)} is any admissible impulse control and ), = 0, AN'T. Then v* is an

optimal impulse control.

Proof.
The proof of this proposition follows exactly along the lines of the proof of Theorem
3.2 in EH using the results of the previous propositions and we shall not repeat it here.

4 Pricing of the European Option

In this section, we shall use the results of the previous section to explicitly calculate the
price of a European option in the situation where the parameters of the bond and stock
price processes are constants. We shall consider the situation where we have one bond
and one stock which is basically the Black-Scholes situation. We shall then compare the
price of the option with the Black-Scholes price and thus demonstrate the effect of fixed
transaction costs.
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4.1 Price processes for the bond and stock

The price processes for the bond and stock are given by

dPy(t) = 1o Po(t)dt (4.1)

dP\(t) = p P()dt + o Py (1)dW (1) (4.2)

where W (1) is one-dimensional Brownian motion.

The partial differential operator associated with the optimal impulse control policy is
given by

Lu = u; + propotty, + priprttp, + (1/2)0%piug,, (4.3)
In this paper, we shall assume that the investor has the risk-neutral utility function
U(z) ==
In the notation of section 3.2, we have
B = (—o00,0) x [~ By, Bi]
and

K(p,s) = {s€eB:ps’ =aps—p>-T for p.s >0,
ps'=(2—-a)ps—3>-Tforps<0} (4.4)

K ={(p,s) : K(p,s) # ¢} (4.5)

By the above definition, we see that

K ={(p,s):p.s’' > -T}
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4.2 The Impulse Control Problems

By the results of sections 2 and 3.4, the value functions V,,(Sp) and V;(Sp) are the
solutions of the following problems :

Vi(So) = sup niersy EIP.S(T) — (1 - a)[P.S(T)| - 4] (4.6)

Vi(So) = sup ner(sy) £IP-S(T) — (1 = a)[P.S(T)| = 5+ I(py(1)>5)(E — P(T))]

(4.7)
If we set
n = Ellpyry>p)(P(T) - E)]
we easily see that
Viu(So) = Vi(S0) — (4.8)
Therefore,
Sy = inf {Sp: Vi(So) > —n} (4.10)
Thus, we only need to calculate V;(.Sp).
4.3 Calculation of Vi(5))
By the results of section 3.4,
‘/1(50) = U(Po(O),Pl(O),So,0,0) (411)

where u € C (defined in section 3.4) and

u > Mu,Lu <0
(v — Mu).(Lu) =0
u(p,s,T)=p.s (4.12)

We shall solve the above implicit obstacle problem by the usual method of “iterating
upon the obstacle”. We choose ug as the solution of the p.d.e

LUOZO
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satisfying
Uo(p, S, T) =PpPs— (1 - Oé)|pS| - /8
and define u;,1 = 1,2,3,... by
Lu; <0,u; > uiy

and

(Lul)(uz — Mui_l) =0

Therefore, ug < u; < ugy < ... < .

For notational convenience, we shall assume in the following that p.s > 0. The expres-
sions for p.s < 0 can be obtained from those for p.s > 0 by replacing the parameter o by
2 —a.

It is easy to see that

uo = aposo exp(po(T — 1)) + apisiexp(u (T —t)) — 8 (4.13)

If iy = po, ug > Mug everywhere. Therefore,

U = ug
In this case,
Vi(so) = aposoexp(poT’) — 3 for sg > 0 (4.14)
and
Vi(so) = (2 — a)pose exp(poT') — B for so < 0 (4.15)

In the notation of section 1, S; = (6/a)exp(—puoT') and S, = (8 — n)/alphaexp(—puoT).
Therefore, the price of the Furopean option is given by

Pw = Sw — 51 = —(n/a) exp(—poT') = (Ellp1y>m)(F(T) — E)]/a) exp(—poT')
(4.16)

We shall now consider the case when 1 > po.

Proposition 5 If uy # po, the optimal trading policy involves at most one transaction in
[0,7), i.e. u=uy.

Proof.
We shall describe the proof for the case where 1 > po. The proof for the case where
p1 < po is analogous.
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In this case ,we have

uo = (@poso + apisi) exp(po(T — 1)) + apisi(exp(p (T' — 1)) — exp(uo(T' — 1)) — 3
(4.17)

It is easy to see that

Mug = (0*(poso + p1510) — o) exp(uo(T — 1)) + apy Blexp(pr (T — 1)) — exp(po(T — t))() - 5)
4.18
Define
i = (aposo + prs1)) exp(po(T — 1)) + ap1 Bexp(p (T — t)) — exp(uo(T — 1)) — B
(4.19)

It is easy to see that
Li = a(p1 — po) exp(po(T — 1))pi(s1 — B) <0
since s < B. It is also easy to see that
u > Mu
and

u(T) = aposo + p1s1) — B

By the result of proposition 2,
u>u

In particular,
U 2 U1

Since the operator M is monotone
Mu 2 Mu1 Z MUQ
Mii = i )[ap-S' exp(po(T = 1)) + p1B(exp(pi (T — 1) — exp(po(T — 1)))) — ]
sg,s1)EK(p,s
Therefore,
Mi = (a’p.s — af3) exp(po(T — 1)) + p1 Bexp(un (T — 1)) — exp(po(T — 1)) = 3

It is also easy to show that

MUO = Mu
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Therefore,
Mu1 = MUO
Substituting the above in the quasi-variational inequalities defining ug, uy, ..., we see that
u; satisfies
Lu1 S 0

(Luy)(ug — Muy) =0

Therefore, u = u; ! Thus, we have shown that the optimal policy involves at most one
transaction in [0, 7)

This completes the proof. !

Therefore, by the result of the above proposition,

Vi(So) = us(Po(0), P1(0), So,0,0) (4.20)

Using the above, we can calculate the price of the European option.



