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This chapter presents a collection of verification examples. We compare the MP results with the
theoretical solution whenever feasible. These examples illustrate MP techniques and the
strengths and weaknesses of the triangular element.

The first three examples appeared in the student guide, but are repeated here. At least one
example for each type of problem is included. In addition to the necessary role of validation,
these examples provide hints for using MP more effectively.

Format for problems
Title
Project name (as on diskette)
Description of the problem, including specific issues
Screen dumps of major parts of the solution
Output (graphical and tabular)
Theoretical solution (assumption, equations, etc.)
References
Addendum

List of problems (Click to select.)
Student version

01: Heat conduction through a hollow cylinder
02: Electric potential between two eccentric metal cylinders
03: Bottom-heated pot revisited

Unrestricted professional version

04: Insulated cylinder with convection

05: Chimney temperature

06: Illustrative heat conduction example

07: Barge with grain

08: Temperature in a slab with internal heat generation

09: Floor heating

10: Sphere heated by sun

11: Ideal fluid flow past elliptic cylinder and prolate spheroid
12: Ideal fluid flow in channel with abrupt enlargement

13: Diffusion through cylinders of different radii

14: A point charge eccentrically placed in a conducting sphere
15: Parallel plate capacitor

16: Conducting cylinder in a uniform electrostatic field

17: Spheres in a uniform electrostatic field

18: Prolate spheroid dielectric in a uniform field

19: Step change in boundary

20: Torsion of a square shaft




Project 01: Heat conduction through a hollow cylinder.

Folder: Cylinder
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Fig 1.1.1 Cylinder Fig 1.1.2 Cylinder schematic

This project models a hollow cylinder with an inside wall temperature of T1 and outside wall
temperature of T2. Fig 1.1.1 is a sketch of the problem, while Fig 1.1.2 illustrates how you use the
axial symmetry of the problem (i.e., the cylinder is represented by a rectangle rotated about the z-
axis). The problem as posed could also be treated as a planar problem (a slice of two concentric
circles).

The problem has dimensions as shown above, with a wall thickness of two meters, a height of 4
meters, and a thermal conductivity (k) of 1IW/m°C. Take T1 as 100°C and T2 as 20°C.

Fig 1.1.3 Constant temperatures



The equipotential lines resulting from this solution are shown in Fig 1.1.3. Notice that the lack
of a z temperature gradient means that the problem is essentially one dimensional and could
have been solved as a thin ring with only two nodes on the vertical side. A portion of the tabular
output of the program (accessible via the library function, Fig 1.1.5) shows the temperature at
different nodes along with the list (Fig 1.1.4) giving node position vs. node number and can thus
be used to find the computed temperature at any node.
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Fig 1.1.4. Node position vs. node number for nodes 55 to 65
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Fig 1.1.5 Nodal temperatures
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Fig 1.1.6 Node numbers in radial direction
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Fig 1.1.7 Temperature in radial direction (cf Fig 1.1.6)

Theoretical solution and comparison of results:

When you solve the differential equation governing steady state heat conduction in the tube, the
resultis: T =c; In (r) + c,; with c, and c, easily calculated from boundary conditions. The
solution assumes the tube to be of constant material properties, to have no heat sources or sinks
within it, and to be very long axially, thus specifying no heat flow in the z direction. The radial
variation in temperature is shown in Fig 1.1.7.

The following is the tabulated output comparing MP results (at nodes) to the results of the
theoretical solution at those nodes.

Clearly, at this resolution (20 nodes in r-direction) you obtain very accurate results.



Pr-01 Cylinder

Radius MP Theory Error
2.00 100.00 100.00 0.00%
2.11 94.09 94.09 0.01%
2.21 88.45 88.45 0.00%
2.32 83.08 83.08 0.00%
2.42 77.95 77.95 0.00%
2.53 73.04 73.04 0.00%
2.63 68.33 68.33 0.00%
2.74 63.80 63.80 0.00%
2.84 59.44 59.44 0.00%
2.95 55.24 55.25 0.01%
3.05 51.21 51.20 -0.03%
3.16 47.29 47.28 -0.02%
3.26 43.50 43.50 -0.01%
3.37 39.84 39.83 -0.01%
3.47 36.28 36.28 0.00%
3.58 32.84 32.84 0.00%
3.68 29.49 29.49 0.00%
3.79 26.24 26.24 0.00%
3.89 23.08 23.08 0.00%
4.00 20.00 20.00 0.00%

References: Eckert, E.R.G., and Drake, Robert M. Jr. 1972. Analysis of Heat and Mass Transfer.
McGraw-Hill, p70.

An interesting variation on this problem is to assume the tube to have different material
properties at different radii, thus making a composite tube. This problem also has an easily
derivable, closed form solution. However, it is possible to change the problem in ways which
render closed form solutions difficult, such as: by removing the "very long axially" restriction
and assuming a convection loss along the top and bottom surfaces, or by assuming a small band
of insulating or conducting material buried in the tube, or by assuming heat sources unevenly
distributed within the tube.



Project 02: Electric potential between two eccentric metal
cylinders.

Folder: Eccentric Cylinder
Two metal circular cylinders of different radii and different centers, one lying completely within

the other are shown in Fig 1.2.1. The voltage on the inner cylinder is taken to be 200 volts, while
the outer cylinder is taken as ground (0.0 volts). The potential distribution between the cylinders

is desired.
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Fig 1.2.1 Eccentric cylinder capacitor

The geometry creation and subsequent mesh generation are tricky in this problem. The
intermediate region generating points on the cylinders must be equally spaced to prevent
incorrect mesh generation. Remember, MacPoisson uses a second degree curve fitting technique
to connect two endpoints with an intermediate point on the curve. If, in this problem, you select
regions which have unequally spaced intermediate points on the inner or outer cylinder, the
result is a different paraboloid for each section, with non-continuous slope at the region borders.

Keep in mind the desirability of roughly equilateral triangles to promote accuracy in
computations when specifying the node/size values for the problem. The left side of the
problem tends to have longer, thinner elements if the node/side spacing is not adjusted carefully.

Once you create the mesh, the material property and boundary condition specification is
straightforward. Figure 1.2.2 shows the solution of the problem as graphed by MacPoisson.

The theoretical solution to this problem is possible through the use of bicylindrical coordinates,
wherein a family of orthogonal circles is defined by the relations:



Fig 1.2.2 Equipotential lines for eccentric cylinder
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z=12
h = constant (circles about poles on x-axis at +a and -a).
g = constant (orthogonal circles, centers on y axis).

The solution for the problem is easily shown to be:

(- hy)
= P E—— h :
V =200 (h,+h, where;
h1 corresponds to the inner 200v cylinder, and
h, corresponds to the outer grounded cyliner

To find V at any point given Cartesian coordinates, use the following relationship between x and
y.
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where rq=radius of the smaller cylinder
ro =radius of the larger cylinder
s = distance between cylinder centers

Errors for Eccentric cylinder
Theoretical MacPoisson % Error Node #

46.759037 44.792961 4.2 22
23.257677 22.017195 5.3 29
24.038365 22.554054 6.2 38
24.177020 22.466274 7.1 47
23.537626 22.196783 5.7 56
21.767392 20.854362 4.2 110
21.758951 20.637066 5.2 119
21.249613 20.252686 4.2 128
20.356016 19.539839 4.0 155

A computer program to solve the theoretically derived potential at each node was used to
generate a table of the nodal values where the error exceeds 4.0% when compared to theory.

Clearly, even at a relatively low resolution (D.O.F. = 279), MacPoisson produces very good results,
with a maximum error of 7.1%, and with only 3% of all nodes having an error of more than 4%.

Reference: Moon and Spencer. 1961. Field Theory for Engineers. D. Van Nostrand Company Inc.
Ch 13.



Project 03: Bottom-heated pot revisited

Folder: HeatedPotlns
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Fig 1.3.1 Pot with insulation

You wish to achieve a uniform temperature within the bottom-heated pot example discussed in
Chapter 3. Suppose you want to consider the influence of the insulation of the pot on the
temperature profile of the bottom-heated flower pot. One obvious possibility is the limiting case
of a perfectly insulated wall, which we leave as an exercise. Consider the conditions depicted in
Fig 1.3.1.

The formulation and solution are outlined in Figures 1.3.2 and 1.3.3.
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Fig 1.3.2 Mesh generation steps for insulated pot



Fig 1.3.3 Properties, boundary conditions, and temperature profile

Compare the results with the example in Chapter 3 of the user guide.



Fig 1.3.4 The insulated and uninsulated pot temperature profiles

Notice that the four degree drop occurs over a much greater distance than in the uninsulated

Fig 1.3.5 Insulated and uninsulated examples superimposed



The difference between the uninsulated and insulated cases can be displayed more clearly by
superimposing the two results.

Reference: Yang, X. and L.D. Albright. 1985. Finite Element Analysis of Temperatures in a

Bottom-heated Nursery Container. Acta Hort. No 175. pp155-165. (Also: ASAE Paper No. 85-4048
ASAE St. Joseph, MI)



Project 04: Insulated cylinder with convection.
Folder: InsPipe

A metal pipe of inner radius 0.15 ft, outer radius 0.25 ft, and conductivity 0.5Btu/ (hr ft °F) is
covered by insulation 0.10 ft thick of conductivity 0.5 Btu / (hr ft °F). The fluid inside the pipe is
at 100°F and the fluid outside the insulation is at 50°F. The film coefficients are 20 and 2 Btu / (hr
ft2 °F) on the inner and outer surfaces, respectively. Find the temperature profile in the pipe and

insulation.

Fig 1.4.1 Insulated pipe and properties
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Fig 1.4.2 Geometry and region definition sketches






Fig 1.4.4 Properties and boundary conditions
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Fig 1.4.5 Computed temperatures
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Fig 1.4.6 Plot with labels

The problem solving steps are outlined in Figures 1.4.2 through 1.4.6. Under certain

circumstances in heat conduction from small-diameter tubes the application of insulation
actually increases heat loss.

Reference: Eckert, E.R.G. and Robert M. Drake. Jr. 1972. Analysis of Heat and Mass Transfer.
McGraw-Hill Book Co. NY. Ch 3.



Project 05: Chimney temperature.
Folder: Chimney
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Fig 1.5.1 Chimney temperature
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Fig 1.5.2a Mesh generation
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Fig 1.5.2b Mesh generation

You can easily find the steady- state temperature within the walls of a square chimney (Fig 1.5.1).

By utilizing symmetry, you need only consider one eighth of the chimney (Fig 1.5.2). A uniform
mesh is adequate.



Chimney - Boundary Conditions: Input

Chimney - Nodal Temperatures

20.0

Fig 1.5.3 Boundary conditions and solution




The inner and outer walls are exposed to different constant temperatures. The surface coefficient
is different for these two walls. Due to symmetry, you can apply a no-flux condition to the other
two walls.

The constant temperature lines intersect the end walls at right angles, as expected for no-flux
conditions. MP provides automatic lookup of the temperature contours.



Project 06: lllustrative heat conduction example.

Folder: Illustrative heat

Fig 1.6.1 Illustrative example

The problem depicted in Fig 1.6.1 was created by Segerlind (2nd edition, pp. 219 - 223) to illustrate
the application of the various boundary conditions (temperature, flux, and convection) and a line
source. This example provides a comparison with a non-graphical formulation, including the
input data.

You can construct the mesh using two mesh generating regions; the two regions correspond to
two different material properties. The changes in material properties must match element
boundaries. Note that the choice of mesh generating regions assures that this requirement will
be met.

Since you must apply a line source at a node, the mesh you create must have a node at the
desired location. In addition, you expect the temperature to change rapidly in the vicinity of a
source so the elements should be smaller there.

Reference: Segerlind, L.J. 1984. Applied Finite Element Analysis. John Wiley & Sons. NY. (2nd
edition, p219 - 223)

Figures 1.6.2 through 1.6.7 show solution steps. Four mesh generating regions were used (Fig
1.6.2). The placement of the intermediate points on the regions causes the elements (Fig 1.6.3)
created near the line source to be smaller. Figs 1.6.4 and 1.6.5 show the property assignments and
boundary conditions, respectively. Figs 1.6.6 and 1.6.7 show two representations of the computed
results.
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Fig 1.6.5 Boundary conditions
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Fig 1.6.6 Constant temperature lines

Fig 1.6.7 Average temperature



Project 07: Barge with grain.

Folder: Barge
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Fig 1.7.1 Barge with grain

Suppose a barge load of grain (Fig 1.7.1) is floated in water at 55°F while the air space above the

grain is at 86°F. Find the temperature profile.
Note: This problem was suggested by Richard Stroshine.
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Fig 1.7.3 Boundary conditions and solution



Project 08: Temperature in a slab with internal heat

generation.
Folder: HeatedSlab

In many problems, the source of heat energy is generated in the conducting body. MP can easily
handle diffuse energy source problems, as shown in this simple example of a wall with internal
heat generation and convection boundary conditions (Fig 1.8.1).

b
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Surmrounding
fluid = 20° C
_%/
-

Fig 1.8.1 Slab with internal heat generation

Assume the wall's length to be much greater than its thickness, thus implying zero y-direction
flux. The problem is, therefore, essentially one-dimensional, so use maximum resolution in the
x-direction and minimum resolution in the y-direction.

The important constants are:

Thermal conductivity:

k=1.0W/m°K
Heat per unit volume:

Q' =10W/m3
Convection coefficient:

h =10 w/m2°K
Fluid temperature:

tf = 20°C

Geometry (Fig 1.8.2), mesh (Fig 1.8.3), and boundary conditions (Fig 1.8.4) follow.
The distributed heat source (Fig 1.8.5) is assigned in the properties section.
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Fig 1.8.2 Geometry of slab
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Fig 1.8.3 Generated mesh
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Fig 1.8.5 Assignment of heat per unit volume in properties definition section.

The theoretical solution to this problem is well known.

where:

T:%(lz- X2)+QTI|+tf

T =temperature within the slab,
I = center to edge length of the slab, and
x = distance from center of slab.



Internal Heated Slab Results

Theoretical MacPoisson Percent Node

Value: Output: Error:  Number:
25.000000 24.947821 0.208717 1
25.000000 25.052179 -0.208717 6
25.000000 25.052179 -0.208717 57
25.000000 24.947821 0.208717 60

Comparison of the MacPoisson solution on a node by node basis against the theoretical solution
to the problem is shown at the left. All nodes with an error greater than 0.1% are shown.

The greatest error is one part in 479 for this problem, clearly demonstrating the potential for
accuracy from the finite element formulation if you use high resolution.

Exercise: You could have used symmetry in this problem since no heat flows across the
centerline; i.e., you could use half of the mesh with a no-flux condition at the center.

References: E.R.G. Eckert and Robert M. Drake. 1972. Analysis of Heat and Mass Transfer.

McGraw-Hill. pages 95-98.
P. Moon and D.E.Spencer. 1961. Field Theory for Engineers. D.Van Nostrand Co. section 14.06.



Project 09: Floor heating.

Folder: Floor
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Fig 1.9.1 Electrical floor heating

Segerlind (1984, 148-151) describes this problem of a grid of heating cables embedded in a thin
concrete slab for snow melting. A similar problem (Cooke, 1969 and 1970) has been examined as a
basis for off-peak energy storage and for keeping the floor of a brooder for baby chicks warm and

dry and, therefore, healthier. Will the floor become too hot? How deep should you place the
heating cables?

References: Cooke, J.R. and D.R. Price. 1969. Analysis of subsurface electric heating. ASAE Paper
No. 69-848.

Cooke, J.R. 1970. Summary of progress in electric floor heating studies. 27th Annual Progress
Report to NY Farm Electrification Council. pp. 53-54.

Segerlind, Larry J. 1984. Applied Finite Element Analysis. Second edition. John Wiley & Sons,
Inc. NY. pp. 149-151
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Project 10: Sphere heated by sun.

Folder: SpherelnSun
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Fig 1.10.1 Externally heated sphere

Find the temperature within a blackened cast iron sphere placed in sunlight. The problem is
axisymmetric. Newton’s law of cooling applies at the surface and the effective temperature of the
surrounding fluid varies from a maximum at the point nearest the source and diminishes to
zero at the “equator” according to a cosine function. The remainder of the surface blocked from
the radiant pharosage is taken to be zero. This approach is equivalent to the sol-air approach
used in building design.

We created the mesh depicted in Fig 1.10.2 using two degenerate mesh generating regions. Two
sides of each generating region fall along the circular arc. We placed the intermediate node
common to the two regions near the surface in order to produce smaller elements nearer the
surface. The boundary fluid temperature varies along the upper half of the sphere. We used the



value at the midpoint of the element; therefore, the maximum value at the “north pole” is
slightly underestimated.

)

Fig 1.10.2 Problem formulation
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Fig 1.10.3 Temperature within sphere



Theoretical solution and references

Moon and Spencer (1961, 221-224) present the separation of variables solution for this problem
developed originally by Lord Rayleigh and summarized by Byerly in Fourier Series (1893, pl177,
ch 5&6).

.2
9 P, (cosq)

_(1-r)D(0) g 2ea A S5ea o
= 4e 81 k+eaeaﬂcosq+4(2k+ea)e§

3ea ¢ 1,0

- = &=g Pslcosq) + 74

8@k reg cap Fa(00%)+ 7

The solution is expressed as a series of Legendre polynomials where surface reflectance r =0; D(0)
incident radiant power per unit area; and “a” is sphere radius. Note: The Moon and Spencer
equation 8.16 contains a typographical error in the multiplier and has been corrected here.

Using the general expression for the series coefficients from Byerly (1959,177) and the recurrence
relation for Legendre polynomials from Abramowitz and Stegun (1965, 340,344) we obtained 66.6,
60.0, 59.0 and 56.3 degrees at the “north pole”, “center”, “equator”, and “south pole” respectively.
The corresponding MP values are 66.37, 59.97, 59.01, and 56.37 with a relative error of less than
three tenths of a percent.



Project 11: Ideal fluid flow past elliptic cylinder and prolate
spheroid.

Folder: Elliptic cylinder; Prolate Spheroid

In this example consider ideal fluid flow past an elliptical cylinder and past a prolate spheroid.
Suppose an ellipse with semi-minor axis is 2.0 and the semi-major axis is 4.0 is placed in a
uniform velocity field. Find the streamlines for both the planar and the axisymmetric cases.

Fig 1.11.1 Elliptical cylinder in a uniform flow



[=] [5] [5]
{51

[&]
N

e T

\

Fig 1.11.2. Mesh and boundary conditions

The mesh and boundary conditions are shown in Fig 1.11.2. Note we refined the mesh in the
vicinity of the ellipse. We used the ellipse generating tool to construct the generating regions.



Fig 1.11.3 Planar solution

Fig 1.11.4 Axisymmetric solution

Fig 1.11.5 is an overlay of the planar and axisymmetric solutions for a direct comparison.



Fig 1.11.5 Planar and axisymmetric solutions superimposed
Reference: L.M. Milne-Thomson. 1967. Theoretical Hydrodynamics. MacMillan Co. §6.33.



Project 12: Ideal fluid flow in channel with abrupt
enlargement.

Folder: Enlargement

Ideal fluid flow (inviscid, irrotational) is governed by Poisson’s equation. A classic problem from
hydrodynamics is the two-dimensional flow in a channel (Fig 1.12.1) which has an abrupt change
in width (Milne-Thomson, 1967; Lamb, Hydrodynamics, 1945). A Schwarz-Christoffel
transformation is often used to solve this problem. Walker (1964, p62) presents a detailed
discussion of this problem and a figure.

v

Fig 1.12.1 Ideal fluid flow in a channel with abrupt width change

i i E—

Fig 1.12.2 Expected ideal fluid flow pattern

You can find the streamlines (Fig 1.12.2) if you assign 1.0 to the top boundary and 0.0 to the lower
boundary which has two abrupt turns. The left and right ends have a zero normal gradient; in
MP a boundary left undesignated automatically corresponds to one having a zero normal
gradient.
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Fig 1.12.3 Coarse mesh (79 dof)

An examination of the mesh generation process is instructive. Recall that the automatic mesh
generator requires quadrilateral regions. Let’s subdivide the region into three rectangular mesh
generating regions as follows.

This rather coarse mesh (dof=79) produces surprisingly good results (Fig 1.12.3). As expected, the
contours in the vicinity of the corners are the most uneven. By refining the mesh you can obtain
a smoother result, i.e., a better approximate solution. The following figures illustrate ways to
improve the results.

Fig 1.12.4 Diagonals

The simple triangular element allows only multilinear interpolation within an element.
Therefore, if two sides of an element (Fig 1.12.4) have the same value, the entire element must



also have that same value because MP uses a linear element. If you need greater resolution in
the corner, switch the diagonal using the redefine tool in Modify mesh of the Goodies menu in
the mesh module.
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Fig 1.12.5 Second mesh (260 dof)

The easiest and most obvious technique to improve the result is to increase the number of
elements. Of course, there is always a practical limitation of available RAM and computation
time. In this instance, increasing the degrees of freedom from 79 (Fig 1.12.3) to 260 (Fig 1.12.5)
produces a smooth plot.



Fig 1.12.6 Third mesh (108 dof)

MP provides other mesh modification techniques which improve performance. You can obtain
results roughly comparable to the 260 dof solution (Fig 1.12.5) with 108 dof (Fig 1.12.6).

You can make the elements smaller in the vicinity of the abrupt enlargement by moving the
points on the side of the mesh generating region (in the geometry module) nearer the abrupt
change. The nodes per side assignments (Fig 1.12.6) also reflect this adjustment.
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Fig 1.12.7 Fourth mesh (260 dof)

The student version (max. 300 dof) is capable of obtaining a smooth result even with regular
element shapes and 260 dof.

For purposes of illustration Fig 1.12.8 shows the result you can obtain with a Macintosh SE with
one Meg of memory (1020 dof).

You can find the conjugate problem (a family of curves everywhere orthogonal to the
streamlines) by swapping the constant potential and no-flux boundary conditions (Fig 1.12.8).



Fig 1.12.8 Fifth mesh (1020 dof)

The convenience and speed of the finite element method are striking in dealing with complex

geometries. With the conformal mapping technique the computational details for all but the
simplest geometries quickly become very complex.

References: Lamb, Horace. 1945. Hydrodynamics. Dover Publications. NY.
Milne-Thomson, L.M. 1967. Theoretical Hydrodynamics. MacMillan. NY.

Walker, Miles. 1964. The Schwarz-Christoffel Transformation and Its Applications. Dover
Publications. NY. pp. 53-65.



Project 13: Diffusion through cylinders of different radii.

Folder: Stomatal Diffusion

Fig 1.13.1 Diffusion through connected cylinders

Now suppose you wish to generalize the channel problem (Project 12) into an axisymmetric
problem (Fig 1.13.1). This problem arises in connection with gas exchange through stomatal
pores on the leaves of plants. Higher plants depend upon the entry of carbon dioxide through
pores for the source of carbon for photosynthesis. Refer to Chapman and Parker (1981) for the
analytical solution to this problem. The complex variables method is no longer applicable, and
the direct use of separation of variables and integral transform methods is troublesome due to
this slight complication in geometry. Even if the length of the smaller cylinder were reduced to
zero, you would have to solve a mixed boundary value problem of significant difficulty.

1.00

L

-0.25 == . .
0.00 = 1.00

Fig 1.13.2 Mesh generation

First, formulate the problem geometry using a mesh of elements to describe the geometry. Fig
1.13.2 shows the first step in this process—regions defined for use with the automatic mesh



generator. These regions typically match geometric boundaries and changes in material
properties. Next the mesh generator uses these regions to produce the elements shown in Fig
1.13.2. The program automatically creates the data structures, displays the node and element
numbers, and provides tools for refining the mesh, i.e., improving element shapes and sub-
dividing elements in the vicinity of greatest change of the dependent variable. Automatic node
renumbering reduces the memory requirements and increases computational speed.

Fig 1.13.3a Properties



el

Fig 1.13.3 Boundary conditions

Second, supply the properties. Assign each different property value to a shading pattern; then
"paint” the elements with these shades. Although not required here, the r and z components can
vary arbitrarily from element to element in Fig 1.13.3. Third, supply the boundary conditions to
complete the formulation of a well posed problem (Fig 1.13.3).
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Fig 1.13.4a Constant potential lines
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Fig 1.13.4b Enlargement of corner

Figs 1.13.4 and 1.13.5 display the calculated potential. The tabular results are also available,
should you need additional calculations. The calculated diffusion resistance differs from the
Chapman and Parker result by less than 2 percent.

The above problem also describes the analogous direct current resistance problem and ideal fluid
flow through a cylinder having an abrupt enlargement, as well as the problem of immediate
interest—the diffusion of carbon dioxide through connected cylinders of different radii.

The finite element formulation provides even more generality than suggested by this example.
Suppose there were obstructions within the cylinders. Or suppose the cylinders were made of
composite materials. These more general solutions are immediately available; simply assign
different properties and boundary conditions to the elements. Even if the permeability or
conductivity components were not the same in the r and z directions, the calculation still would
proceed smoothly.



Fig 1.13.5 Element average concentration

References: Chapman, David C. and Robert L. Parker. 1981. A Theoretical Analysis of the
Diffusion Porometer: Steady Diffusion Through Two Finite Cylinders of Different Radii.
Agricultural Meteorology v23 pp. 9-20.

Cooke, J. Robert. 1988. Instructional Sofware Makes The Finite Element Method Accessible.
Academic Computing. Sept 1988. pp. 34-35, 54.

Cooke, J. R., S.K. Upadhyaya, M.J. Delwiche, R. H. Rand, N. S. Scott and E.T. Sobel. 1988.
StomateTutor™: An Introduction to Stomatal Control of Gas Exchange in Plants. Cooke
Publications, Ithaca, NY. (A HyperCard application).

Holcomb, D.P. and J.R. Cooke. 1977. Diffusion resistance of porometer calibration plates
determined with an electrolytic tank analog. ASAE Paper No. 77-5509. 60 pages. St. Joseph. MI.

Holcomb, D.P. and J.R. Cooke. 1977. An electrolytic tank analog determination of stomatal
diffusion resistance. ASAE Paper No. 77-5510. 56 pages. St. Joseph. Ml.



Project 14: A point charge eccentrically placed in a

conducting sphere.
Folder: Point Charge in Sphere

Fig 1.14.1 Eccentric point charge in a sphere

A point charge (Fig 1.14.1) lies eccentrically in a hollow conducting sphere. What is the potential
distribution?

Use the radial symmetry in the formulation of this problem—an axisymmetric semicircle of
equipotential with a point source located on one axis of symmetry. The problem is relatively
simple to set up as you need only one region, a semicircular one with the axis of the semicircle
lying on the z-axis. This shape generates a sphere when it is rotated about the z-axis. MP
produces results within 15% of theoretical results (except at node source) with an 11x11 mesh for
121 D.O.F. Solution time is low (on the order of 1 minute on a 512KE Mac).

Find the potential field associated with a point charge g eccentrically located a distance d from the
center of a conducting sphere of radius a (Fig. 1.14.2).

Fig 1.14.2 Schematic of point charge in sphere



Find the solution (Fig 1.14.2) using the method of images to solve for V (Pugh & Pugh, p 90).
Compare the results with the finite element method using MacPoisson.

E51
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Fig 1.14.3 Geometry
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Fig 1.14.4 Nodes per side
Geometry:

For the sample problem, assume a sphere of radius 5.0 meters with a point charge of 1.0
microCoulomb located 2.0 meters from the center of the sphere.

Use the axial symmetry of the problem to your advantage by specifying axisymmetric coordinate
axes when prompted at the beginning of the geometry definition section. The semi-circle lies
vertically on the z-axis (Fig 1.14.3), you should, therefore, set the r-range to 0.0 to 5.0 and use the
default z-range of 0.0 to 10.0.

Begin to define the region. Choose the arc command and use keyboard input. MP prompts for
the arc's center point. Enter 0.0, 5.0; then click OK. (Use the return key to go from the upper to
lower box.) MP asks for the arc's starting point. Enter 0.0, 0.0; then click OK. Since you want a
semicircular region, type 180 into the box asking how many degrees counterclockwise the arc
should run. MacPoisson now draws the arc for you and asks how many intermediate points you
want. Because it is convenient to have eight points along the entire boundary of the region,
select three intermediate points; then press OK (Fig 1.14.3). (You have three points on the circle,
two at vertices, and three on the z-axis, thus making eight total.) Now, to quickly add the last
three points, select line mode, keyboard entry. Put 0.0, 10.0 for the starting point; 0.0, 0.0 for the
ending point; and again select three intermediate points. Click OK.



Select the area by going to the region selection mode, moving the circle to the vertex at 0.0, 0.0,
and choose the subsequent counterclockwise dots. After you select the eighth dot, the timer
appears; and MacPoisson fills the region.

You are now ready to go on to the mesh generation section. Pull down the File menu and select
Mesh. Save the geometry data. A menu appears and you should click on >>Generate Mesh.

Mesh: Because MacPoisson views the semicircle as a degenerate curvilinear quadrilateral, you
are prompted to select the nodes/side value for both pairs of sides; namely the upper-arc/lower-
radius pair and the lower-arc/upper-radius pair (Fig 1.14.4). Use 11 as a first try, this gives a
reasonable amount of resolution while not taking too much computing time. (11 is preferable to
10 in this problem because it results in 11 nodes and, therefore, 10 spaces over the 5 meter radius,
making source placement easy to calculate.) If you want greater resolution, use a higher number
of nodes; if you want faster processing, use a lower number.

Click on the Generate button and MacPoisson draws the mesh. When the drawing is complete,
pick different node numbers (by clicking the box in the generated picture window to show the
original screen) or use the generated mesh by selecting End Generation under the Generate
menu.

You are again at a menu, this time showing Generate Mesh with a checkmark next to it and
offering Other Calculations below it. Choose Other Calculations to finish the mesh generation
computations and ensure minimal processing time later in the program. Regardless of whether
or not you achieved bandwidth reduction, you must save the renumbered data and the line
information.

E51 - Boundary Conditions =F—=—|

E:xternald Internal
Mode Source
Value | 1.0

Fig 1.14.5 Boundary conditions



Boundary Conditions: Select >>Enter Boundary Conditions. MP draws the geometry you created
along with mesh node points. Set the node source value to 1.0 for a 1 microCoulomb charge.
Since the source in this problem is 2.0 meters from the center of the sphere, and since you have
the relationship of 1 node space equal to 0.5 meter, you place the cursor on the 4th node from the
center and click the mouse (Fig 1.14.5).

To model the grounded conducting sphere, select node potential by pointing at the black and
white circle icon and clicking. The default potential is zero, which is correct for a grounded
sphere. You can individually set the outer nodes to zero now, by moving the pointer onto each
of them and clicking; however, it is much more convenient to use the perimeter feature of MP.
Place the pointer on the lower vertex of the semicircle, press the keyboard shift key, and click
once. Now go to the upper vertex and do the same; MP fills in the nodes in a counterclockwise
manner.

Now select End Boundary Conditions Definition under the B.C. menu, save the boundary
conditions, and proceed with the solution.

ES1 - Modal Potentials

)

Fig 1.14.6 Nodal potentials

Solving and Plotting: Finish the problem by clicking on >>Solve to reach the Solve menu. As
you did in the heated pot demo, first solve for the nodal potentials, then for potential gradients
and other calculations. MP insures that you proceed in the correct order by dimming the non-

allowed menu choices.



Having solved the problem, click on >>Plot to get to the plot screen. Use the screen plotsize first
to observe the potential plot at default plot values. Notice that the equal spacing causes
MacPoisson to draw a graph with too much unusable resolution near the center (Fig 1.14.6); this
is due to the inverse-square relationship between potential and distance. To produce a plot with
greater resolution at the edges of the plot, specify different limits on the plot values, such as 0.0 to
0.4 (Fig 1.14.7). If the information you want is shown on the graph, select 8x10 plot size and
produce a high quality final draft of the problem's solution (Fig 1.14.8). If you'd like greater
resolution elsewhere, get it by choosing the appropriate limits on the plot choice menu.

E51 - Modal Potentials

Fig 1.14.7 Rescaled plot. (0.0 to 0.4 range)

The potential becomes infinite at the line source, so the error is expected to be large there. As an
exercise, solve the problem with a refined mesh, i.e., one with more elements and smaller
elements near the source.



Project 15: Parallel plate capacitor.

Folder: Parallel Plate

+1 volt

-1 volt

Fig 1.15.1 Parallel plate capacitor

One of the classical problems of electrostatics is the fringing of a parallel plate capacitor. The
simplest approximation used in introductory electrostatics books ignores the fringing effect at the
edges of the capacitor. You can analyze this problem using conformal mapping in complex
variable theory. The results using the Maxwell curves is presented in the Field Theory
Handbook (Moon and Spencer, 1971, p65 and Moon and Spencer, 1961, p341). [Note: The
mathematically equivalent problem for ideal fluid flow, i.e., a liquid flowing from a large
reservoir into a canal bounded by two thin parallel walls, is presented by Lamb (1945, p74).]

= g (w+1+¢€"
This describes a capacitor of spacing ‘2a’ with potential of +p and - p .
a u a u
x=—=(u+1+ecosv) y:E (v+esinv)

The x =0,y =0 origin is at the right edge of the plates and midway between the two. The no-
fringing approximation appears to be a surprisingly useful approximation.
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Fig 1.15.2 Mesh generation
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Fig 1.15.2b Mesh generation

Although you can solve this problem using the student version, the mesh shown (Fig 1.15.2)
shows the refinement which is possible with 2 megabytes of memory (and 1882 degrees of
freedom). Since you must locate the boundary in MP a finite distance from the origin, use a

guarter circle a “large distance” from the origin. Set the gradient of the potential to zero at this
large, but finite distance from the capacitor (Fig 1.15.3).



]

Fig 1.15.3a Generated mesh and boundary conditions
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Fig 1.15.3b Generated mesh and boundary conditions
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Fig 1.15.4a Constant potential lines
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Fig 1.15.5b Flow lines and equipotential lines

The constant potential lines (Fig 1.15.4) turn abruptly at the edge of the capacitor. In fact, the exact
solution is undefined at this sharp corner. Except in the immediate vicinity of this sharp corner
the finite element solution reasonably approximates the conformal mapping result. Compute

the conjugate problem (Fig 1.15.5) by swapping the boundaries of zero gradient and constant
potential.

Reference: Field Theory Handbook (Moon and Spencer, 1971, p65 and Moon and Spencer, 1961,
p341)



Project 16: Conducting cylinder in a uniform electrostatic
field.

Folder: ElectroCylinder
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Fig 1.16.1 Conductor in uniform field

Let's look at an electrostatics problem which occurs in nearly every introductory textbook on
electromagnetic theory. Suppose a conducting cylinder is placed perpendicular to a uniform
electrostatic field.

This is a planar problem with results which agree well (10%) with the theoretical solution for the
problem with a very coarse mesh. Some thought shows that the problem is symmetric about two
axis; it is, therefore, possible to reduce computing time by modeling only one quadrant of the
problem. There are at least two ways of dividing the problem space into regions. We have used
the one which creates one triangular region and one curvilinear quadrilateral region with the
entire quarter circle in it. The other division creates two mirror images along a line starting at
the center of the circle and ending in the extreme corner of the problem space. At 91 D.O.F. the
problem solves quickly.

For the case where the size of the conductor is small compared to the distance between the field-
generating plates, the theoretical solution of the problem is found to be:
2
a cosq
V=- Ejrcosqg + EO—
where Bo = incident field

a = the radius of the cylinder
and r and q are cylindrical coordinates measured from the conductor’s center.



E field

o=
"

-

N

b

Fig 1.16.2 Conductor in uniform field
Fig 1.16.2 shows the symmetry about both axes.

You can achieve greater accuracy with less computation time if you use the symmetry of a
problem to your advantage. In this case, you need model only one of the four quadrants of the
problem, the other three being available through reflections across one or both axes. Use a radius
of 2.5 meters for the conductor and an x-axis size of 10.0 meters. The quadrant we chose is shown

in Fig 1.16.3.
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Fig 1.16.3 Generating region alternatives

Notice the line AG which divides the problem into two regions, both of which have the requisite
eight points on their perimeters and neither of which has more than four sides. This division
enables you to select curvilinear quadrangle ABCDEFGM as one region and (degenerate)
quadrangle AMGHIJKL as the other region.

WARNING: USE THE SAME POINTS ON THE COMMON BOUNDARY FOR REGION
GENERATION OR ERRORS RESULT!

MacPoisson prompts you for node per side values for all the borders of the problem. However,
the nodes per side for sections CDE, AMG, and IJK are all set concurrently because they are



constrained by common side AMG. The geometry of the problem causes the greatest variations
in field strength to occur near the conductor; it is, therefore, wise to concentrate nodes (and

therefore computing resources) on the arc.

Fig 1.16.4 Constant potential lines

The electrostatic field produced by two conductors of opposite potential leads to the condition
that the potential on the conducting cylinder and on the y-axis is zero. Therefore, we can model
the situation in one quadrant by setting sides CDE and EFG to zero potential and setting side KLA
to an appropriate potential to generate the desired field, i.e., for a 10V/m field, set V| a to 100
volts since there is a 10 meter separation between it and the zero potential line.

Using a fine mesh (dof=580), the program produces results (Fig 1.16.4) which agree with the
theoretical solution within 10% everywhere except at the immediate boundary of the cylinder.

Pugh, E.M. and E.W. Pugh. 1970. Principles of Electricity and Magnetism. 2nd. Addison-Wesley
Pub. Co. p100.



Project 17: Spheres in a uniform electrostatic field.
Folder: Spherel, Sphere2, Sphere3

Consider now the axisymmetric case of a sphere in an initially uniform field.

Mz2]

Fig 1.17.1 Mesh



Using the mesh shown in Fig 1.17.1 and the boundary conditions of Fig 1.17.2, we obtained the
solution.

Moon and Spencer (1961, p226) present the Legendre polynomial solution (where the boundaries
are a large distance from the sphere) as follows:

f=V+Eyrcosq[1- (a/n?

=

———

Fig 1.17.2 Spherical conductor
Compare this result with the prolate spheroid considered in Project 18.



Fig 1.17.3 Spherical cavity

Suppose we consider the related problem of electric conduction (Moon and Spencer, 1961, p229)
through a large casting having a spherical cavity. The solution is shown in Fig 1.17.3.

d=Eyr[1+{121(aln |cos B

Finally, suppose that a metal sphere is introduced into a uniform field and maintained at 0 volts
at a point where the undistorted field was 100 volts (Moon and Spencer, 1961, p228). In this case
symmetry exists about the polar axis only. The resulting field is shown in Fig 1.17.4.



f=V(@/n+K(@1-alr)+Eyr[1- (a/1’ cosq
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Fig 1.17.4 Electric field when sphere voltage is specified

Reference: Moon, Parry and Domina Eberle Spencer. 1961. Field Theory for Engineers. D. van
Nostrand Co. Princeton. , pp. 226, 229



Project 18: Prolate spheroid dielectric in a uniform field.
Folder: Prolate Spheroid
E, ¢

Py, 8

Fig 1.18.1 Dielectric spheroid in initially uniform field

Consider a prolate spheroid dielectric (Moon and Spencer, 1961, p252) of permittivity e, placed in

an initially uniform electrostatic field Eg in a medium of permittivity ;. The major axis is
aligned with the field. What is the potential distribution inside and outside the spheroid?

Suppose the semi-minor and semi-major axes are 2.0 and 4.0, respectively, thate, =10 and €; =1,
and that the potential is zero along the plane of the semi-minor axis and 100 volts at z = 10. This
problem illustrates the use of the ellipse generation tool in geometry.
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Fig 1.18.2a Mesh
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Fig 1.18.2b Mesh

Fig 1.18.2 Depicts the mesh used.

Fig 1.18.3a Properties
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Fig 1.18.3b Constraints

Fig 1.18.3 shows the constraints.

Fig 1.18.4 shows the computed field. We have added the boundary of the spheroid. You can
automatically overlay the mesh as an aid to understanding the performance of the mesh.

Fig 1.18.4a Computed fields
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Fig 1.18.4b Computed fields
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Fig 1.18.5 Composite plot

Notice the effect (Fig 1.18.5) of the dielectric on the field.



Project 19: Step change in boundary potential

Folder: Square

dfdx =00
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Fig 1.19.1 General
This problem illustrates the handling of an abrupt change in the boundary potential (Fig 1.19.1).

Fig 1.19.2 shows the mesh; Fig 1.19.3 depicts the boundary condition and solution. At the top
right corner of the unit square, the potential makes an abrupt change between 0 and 1. We
assigned the average value (0.5) as the boundary condition at the corner where the jump occurs
because the series solution converges to the average.

Square - Generated Mesh
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Fig 1.19.2 Mesh
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Fig 1.19.3a Constraint

Square - Nodal Potentials

Fig 1.19.3 Constraint and solution




Project 20: Torsion of a square shaft.

Folder: Torque
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Fig 1.20.1 Square shaft

This example illustrates the application of Prandtl’s theory to the twisting of a solid, noncircular
shaft. A detailed discussion of this example has been presented by Segerlind (1984, 100-114). This
problem is governed by Poisson’s equation if the conductivity terms are unity, the stress function
(or potential) is zero on the shaft boundary, and the “source term” is 2 times the shear modulus
times the twist per unit length. The torque is calculated as twice the integral of the stress
function over the cross-section.

Fig 1.20.1 depicts a 1 cm square shaft. By symmetry you only need consider one-eighth of the
cross section. Three mesh generating regions (Fig 1.20.2) generated the mesh (Fig 1.20.3). The two
triangular regions are degenerate quadrilaterals. The boundary conditions (Fig 1.20.4) are zero on
the outside boundary, and the gradient is zero elsewhere (Fig 1.20.5). MP reports the torque for
the eighth section (24.5 N cm) in the Solve window and at the end of the nodal potential file.

The calculated torque (196 N cm) matches theory.

Reference: Timoshenko and Goodier, 1970, Theory of Elasticity. p313).
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Fig 1.20.2 Generating regions

TorquelD3 - Generated Mesh

Fig 1.20.3 Mesh




Torque03 - Boundary Conditions: Input

Fig 1.20.4 Boundary conditions

TorqueD3 - Nodal Stress Functions
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Fig 1.20.5 Constant stress function lines
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