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ABSTRACT

We have developed a new method that uses wavelet analyséentove interference fringe patterns from
images. This method is particularly useful for flat fieldshe tommon case where fringes vary between the
calibration and object data. We analyze the efficacy of tréthmd by creating fake flats with fictitious fringes
and removing the fringes. We find that the method removes $abedringe pattern if its amplitude is equal to
the random noise level and 60% if the fringe amplitude i$/10 of the noise level. We also present examples
using real flat-field frames. A routine written in IDL that itements this algorithm is available from the
authors and as an attachment to this paper.

Subject headings: methods: data analysis — technique: image processing

1. INTRODUCTION

The current class of telescopes with primary mirrors larger
than ~8 m in diameter allows researchers to attain an un-
precedentedly high signal-to-noise ratios. In additiorgre
increasing computer capabilities have permitted qudivita
analyses able to distinguish trends weaker than the naisk le
This has not only allowed observations of fainter objects, b
also observations of weak sources spatially indistingabsh
from a bright source, such as the spectrum of an extrasolar
planet orbiting a main-sequence star. In such cases, system
atic errors that would not have been of importance when ana-
lyzing the bright source are of concern when considering the
fainter source. Previously ignored systematic errors teus
quire algorithms able to correct them.

One such systematic effect is the appearance of fringes in
data arrays. The strength of these fringes varies fromunstr
ment to instrument; we have seen it range from less than 1/10
of the noise amplitude to roughly 5 times the noise amplitude

Fringe correction methods found in the literature are ei- Column number
ther specific to the instrument or assume a globgl f“”ge P&~ k6. 1.— Failure of flat field to correct fringesTop: Debiased spectrum
riod (e.g., Malumuth et al. 2003a,b; Mellau & Winnewisser frame. Bottom: Spectrum frame after flat field and bias correction. The
1995). The latter correction type makes uses of Fourier fil- fringe pattern is still visible. These images are subsastiof a spectrum
tering, a technique that is less than satisfactory in the-com frame obtained with NIRSPEC at the Keck telescope. The botat white
mon case where the pattern’s period or amplitude varies ovetgﬁse;?oﬁ ,{,?gjpe‘:””ms trace. The bright, white, vertioas are the sky
the image. Another common approach has simply been to
ignore the fringes in the hope that division of the debiased ) ) ) _
data array by the flat field frame will eliminate the pattern, erty, the algorithm isolates the fringe pattern in wavepetce,
which is supposed to remain the same. However, flat fieldsdoes an inverse transform, and then obtains a clean image by
and object frames do not always share the same fringe pattergubtracting the reconstructed fringe pattern. The chgéen
because flexure and variations in the illumination geometryis to do this correctly in the presence of noise. The algo-
can change the pattern’s amplitude or period even on shortithm presented here is not tuned to any specific data set and
timescales (Figs. 1 and 2). Therefore, flat-field divisionldo ~ has been tested on flat-field frames from ISAAC (Moorwood
add a second set of fringes rather than correct the first set. ~ €tal. 1998) at the Very Large Telescope (VLT) and NIRSPEC

Here we present an algorithm to clean two-dimensional (McLean etal. 1998) at the Keck telescope.

(2D) arrays that uses the wavelet transform, a local sdectra The algorithm also provides the framework for an exten-

technique (e.g., Starck & Murtagh 2002; Torrence & Compo Sion to remove fringes from object frames by interpolating

199¢"). Making use of the wavelet transform’s linearity prop- the fringe pattern over spectra or point sources. Such an ex-
tension requires the design of another algorithm to intetpo

L Center for Radiophysics and Space Research, Cornell Uitiygthaca, fringe parameters, which is beyond the scope of the present
NY 14853-6801 USA; pato@das.uchile.cl, jh@physics. otf.e work. Thus, our method improves the quality of extracted

? Departamento de Astronomia, Universidad de Chile, Ca88kD, San-  gata when the fringes in the flat fields differ from the fringes
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3 current address; Department of Physics, University of Central Florida, ;?iggzsﬂﬁt%ebgétglgr:]:; :?el\g?gt:iﬁcrg‘r?tbl\?vz Scf?(gr\]l\lptlﬁgiltyl’lle;tehg
Orlando, FL 32816-2385 _ . 5

4 See http://atoc.colorado.edu/research/wavelets/ many cases where the fringes change between arrays obtained

at different times.
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hand, the non-reflected intensity)(is proportional to the in-
coming intensity k) in the same coordinate, thugx,y) =
b(x,y)li(x,y). Due to energy conservation, the proportional-
ity constanto(x,y) is restricted by the previous assumption to

comply with
a(x,y) +b(x,y) = s(x,y), 4

wheres(x,y) < 1 accounts for losses due to scattering and ab-
sorption. Omitting the dependence wandy for clarity, we
find for each position

Rows

la=bl; +al; +21;v/abcosy) (5)
=|; {s+2\/£cos(27rx/P+§)} (6)
=li[s+F], (7
where
F = 2v/abcos(2rx/P+¢) (8)

is the oscillating fringe term. When interacting with theete
tor array, Eq. 7 is modulated to obtain the detected intgnsit

0 100 200 300 l4. Including detection noise, the modulation is given by
Columns
FIG. 2.— Fringe variation in consecutive frames. Shown areectims of la= |m[S+ F] te, (9)

sky frames taken with NIRSPEC on the Keck Il telescope (43egiation). where e, which varies rapidly between pixels, includes all
The fringe pattern can be seen varying between these fraResels a, b, noise sources and includes guantum efficiency and pixel
and c were taken in consecutive order. . ’

collecting area, among other factors. On the other haxdn

We implemented our algorithm in IDL (a product of Re- P& decomposed as

search Systems, Inc., Boulder, Colorado). The package (de- =10+, (10)
fringeflat) includes tutorial documentation. It is avalebn- wheren is the smoothly varying component ang is the
der the GNU General Public License from our Web Sitasd rapidly varying component, which includes uncorrelated di
as a tar file in the electronic edition of this paper. ferences between the sensitivities of neighboring pixBlp-

Section 2 gives a mathematical model of fringe formation. ically, n, < no. Bringing it all together, we obtain
Section 3 describes the algorithm. Section 4 discussesrperf lg = lins+e +lin,F +linoF. (11)
mance in the presence of noise. Finally, 85 discusses an ap- ) _ .
plied example, summarizes the benefits and limitations, and ©Our algorithm makes use of the linearity property of

presents our conclusions. wavelets to find and subtract the telimF, which is the pre-
dominant contributor at the period of the fringe patterne Th
2. FRINGES other terms will only contribute in that frequency to a back-

ground level in the amplitude of the wavelet transform. This
background is considered in our algorithm (see step 2 in §3).

Then,ns can be corrected through flat-fielding to get the
sought intensity; with a modified noise given by

Fringes are produced by the interference of light reflecting
between parallel surfaces in an instrument. They appear in
many detectors of visible and infrared light. If we ignorelmu
tiple reflections, a mathematical formulation (Rieke 20f@3)

the total intensity of lightlg) received on the positiory of e=e+linF. (12)
the detector array is given by With typical values|in F < e.
la(X7 y) = |n(X7 y) + |r(Xa y) + 2 V In(xu y)lr(X7 y) COS’(/J(X, y)u (1) 3. ALGORITHM

wherel,, is the non-reflected intensity, is the reflected in- The main steps in our procedure are listed in Table 1. Fig-

tensity, andy is the phase difference between the two beams.ures 3 — 9 illustrate the steps of the algorithm using an ex-

We choose th& coordinate such that ample flat field. Their captions contain details regardirgy th

example array, while the main text only refers to the aldnit

V(X y) = 2mx/P(X,y) +£(X,Y), (2)  in general. The example flat field is included in the defringe-

whereP and¢ are the period and phase of the fringe’s pattern, flat package. _ _
respectively. Let; be the incoming intensity before interac- All array borders whose values are not consistent with the
tion with the instrument. Ther,(X,y) is proportional to the ~ IMage must be cropped. The fringes are allowed to have sev-

intensity incident at a nearby position: eral different patterns, which do not need to look like g
lines. There are only two requirements. First, the peri®d (
I (X,y) = a(x+0x,y +oy)li(x+ X,y +dy), 3) of the fringe term (eq. [8]) should change smoothly across th

array; and second, only on a per-row basis, the period must be
at least several pixels, but it must also have at least a feils 0s
lations per row. To attain the second condition it is acdelpta
fo rotate the image by 90 There are no constraints on how
the phas& can change across rows or the range over which
P can vary. Hence, the algorithm can handle many patterns
5 See http://www.das.uchile.ehpato/sw/ or that do not look like plane waves, such as patterns reseqiblin
http://physics.ucf.edw/jh/ast/software.html wood grain.

where §x and oy are small displacements and the factor
includes reflectivity. Note also tha <« 1. If we can as-
sume that the incoming intensity field and the reflection ge-
ometry are homogeneous on very short spatial scales, the
a(x+ox,y+oy)li(x+dox,y +oy) ~ a(x,y)li(x,y). On the other
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TABLE 1
STEPS OF THEDEFRINGINGALGORITHM
Step Description Figure
0... Original image with fringe Fig. 3
1... Foreachrow
Compute enhanced row Fig. 4 3
Compute wavelet transform Fig. 5 E
2...  For each pixel in row :
Fit fringe transform’s profile Fig 6 2
3... For thewhole array
Smooth fit parameters (optional) Fig. 7
4... For each row
Reconstruct wavelet array Fig. 5
Inverse transform Figs. 5, 8
For the whole array

Subtract fringe pattern to obtain clean image Fig. 9

250
25 WWNWMMMWWWMMMMWWMWW §
-300

Ampl.(DN)

0 200 400 600 800 1000
Column number

FiIG. 4.— Top: Enhanced rows. Each pixel of the array in Fig. 3 is
first replaced by the median average of the 41 closest pireflse vertical
direction. A polynomial fit to each row is then subtractedeTlinge pattern
is enhanced and some bad pixels are removed. Note that thée dmta
area is reduced by 20 rows on the top and bottom because ofe¢haging.
Bottom: Middle (512th) row.

800

600

information. For this particular example, we used the Morle
wavelet because its functional form is the familiar quantum
mechanical wave packet

\I/(t) - 7T—l/4e—t2/2—iu.)ot , (13)

which makes it well suited for smoothly varying periods.
Here,t andwg are non-dimensional. For the Morlet basis,
wo is the only parameter; it dictates the minimum number of
ggggEWWWWMWWWMWMMWWMM% | oscillations per row. The Morlet basis also has the advantag
2000 of being compact in the frequency domain.

0 200 400 600 800 1000 In addition, the accompanying code allows the user to

Column number choose from several other popular wavelets as they could be

Fic. 3.—Top: Sample image with fringes. This flat field was obtained better suited for particular data. Steps 2 and 3 are computed

indicated in the captions from Figs. 3 to 9 were found to be rtiest .
appropriate for this particular example, but will need tambe for different phases of the Complex array must be stored for use in step 4.

images. Columns 901-1024 and rows 0-149 and 951-1024 were vi o )
gnetted and thus were cropped before analysis. Periodiaitybe estimated Sep 2: Parametric Fit of Fringe Transform
by eye at~ 40 pixels in the center of the imagBottom: Middle (512th) row.

Row number

400

200

(=]

Ampl.(DN)

At the period of the fringe pattern, the wavelet array will
Sep 1: Enhanced Row and Wavelet Transform contain a prominent “fringe transform” pattern traversing
columns. Its amplitude depends on the amplitude of the éring
For each image row we combine several surrounding rows topattern (Fig. 5). This algorithm’s success rests on our abil
suppress random noise and remove bad pixels. To do this, wety to distinguish this feature from the background noisele
replace each pixel in the row with the median of a & sub- of the wavelet array. The fringe transform may vanish for
image centered on the pixel and traversmgows (the bin particular columns, but it should be clearly distinguidiedh
width). We then subtract a polynomial fit from the median- most of each wavelet's array. Improved sampling in period
averaged row to obtain an “enhanced row” (Fig. 4). This can be obtained by interpolation or by decreasing the spacin
subtraction significantly diminishes the large-periodnMdo  between discrete scales in the wavelet transform. A compro-
frequency) oscillations of each row (and their correspogdi  mise should be chosen; the latter approach is more accurate
wavelet amplitudes), allowing the next step to proceed morebut demands more computer resources.
efficiently. We next either extract or fit the fringe transform’s ampli-
We then compute the wavelet transform of each enhancedude versus period for a given column (Fig. 6). Starting from
row. The result for each row is a two-dimensional, complex a reference column, the fringe profile is isolated by finding
array, whose two dimensions are column number and periodthe first local minima on both sides of the reference period.
There are several real and complex wavelet bases to chooséhen one method is chosen to represent the profile within the
from, but step 2 of this algorithm requires a complex basis be minima: either we use the actual data within the minima (the
cause real bases are not able to separate phase from amplitudtrueshape” method) or a parametric function can be fitted to
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Column number Fic. 6.— Cross—section along a column of the wavelet arrdpp:
FiG. 5.— Wavelet transform of an enhanced row. In the centessptbe Components diagram. Crosses are the amplitude of the wapeists.
dotted line marks the COI; wavelet values below this boundhaould not be The data points surrounding the region labeled as “fringesiorm” are
tr_usted. The da_shed line shows the fitted traeg Middle enhanced row _of exactly what the trueshape method would reconstruct or thlegparametric
Fig. 4. (o) Amplitude of the Morlet wavelet transform ofi), The wavelet is functions will fit. The region labeled “fringe transform bagound” is
interpolated in period by a spline from the period samplifithe transform, attributable to non-fringe components; in some of the tiéstsms used for
and the fringe transform, a coherent pattern corresponiregfringe with the wavelet reconstruction (keep) and in some it was notg@pk Bottom:

a period of 35 pixels, is clearly visible c)(Reconstructed fringe transform  Gaussian fit (with background) to the region between the nmani Crosses
using a Gaussian fit (cf. Fig. 6)d)Fringe pattern after applying an inverse are as above, and the solid line is the fitted profile.
wavelet transform tod), plotted over the input data.
the fitted parameters. First, we “patch” each of the paramete
the profile. Only the latter approach will allow execution of arrays by finding outliers beyond a given number of standard
the optional step 3. The value of the profile must be zero out-deviations from the neighborhood median and replacing them
side the fringe transform. Inside, on the other hand, itds re by that median value. Then, we smooth the array with a box-
ommended that the fringe transform profile exclude a back- car filter. Figure 7 shows an example.
ground level (attributable to non-fringe image compongents
see discussion in §2). The highest point in the profile is used Step 4: Reconstruction of the Fringe Pattern
as the new reference period for the next column. The proce- ) .
dure is repeated for the whole fringe transform, extendingi ~ We next evaluate the parameters to obtain the fringe’s
both directions from the reference column to the cone of in- waveletamplitudes (Fig. 5). Far from the reconstructetei
fluence (COI) boundary, beyond which the wavelet values aretransform the amplitude must be zero because any non-zero
significantly contaminated by edge effects. value there will cause unwanted noise in the reconstructed
To fit the profile we have experimented with plain Gaus- fringe. In particular, if a keep method is chosen, the recon-
sian fits with variable center (Gaussian with Variable Cente structed amplitude is set to zero outside the local minima.
“GVC”) and Gaussian functions in which the center is fixed Finally, we apply an inverse wavelet transform to the recon-
at the maximum height (Gaussian with Fixed Center, “GFC"). structed wavelet amplitude and the corresponding complex
Both Gaussian alternatives were considered without a conPhases (see step 1). _ _
stant background parameteroback), and with this parame- ~ We repeat these steps for every row to obtain the image’s
ter. In the latter case, the background value can be kept ofsolated-fringe pattern (Fig. 8). Due to the optional snheot
not when reconstructing (“keep” and “nokeep” respectiymy Ing, the method to obtain _the enhanced_ rows, and the COI
In total, we have implemented six parametric fitting methods boundary, the recovered-fringe pattern will have smalter b
(that can be smoothed or not in step 3) and two trueshape fitglers than the original image. The fringe pattern can now be
(nokeep and keep), for a total of 14 fitting methods. The Gaus-subtracted from the original image (Fig. 9). Figure 10 shows
sian shape was chosen not only because it is a natural choic@nother example of this algorithm for a flat field from NIR-
to fit a peak, but also because it is the frequency-domain rep-SPEC at Keck.
resentation of the Morlet wavelet. The relative fringe-osa
efficiency of these fits and of trueshape is discussed in §4. 4. PERFORMANCE TESTS
The ratio of fringe-pattern amplitude to the pixel-to-gdixe
Sep 3: Optional Parameter Smoothing variation (or noise) level varies among different instruntse
We tested the algorithm’s performance at different noise le
If a functional parametric fit was used in the previous step, els by using a synthetic image consisting of a fringe pattern
one can reduce the effects of noise by forcing the recon-a background intensity, and random noise with a Gaussian
structed fringe’s parameters to vary smoothly. After réjpga distribution that mimics pixel-to-pixel flat-field variatis and
steps 1 and 2 for every row, a 2D array is obtained for each ofphoton noise.
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FiG. 8.— Top: Reconstructed fringe pattern (cf. Fig. Egttom). Bottom:
Middle (512th) row.
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FIG. 7.— Gaussian height parameter smoothifigp: Gaussian fit height FiG. 9.—Top: Cleaned image: flat field of Fig. 3 minus the fringe pattern
parameter for central portion of example imagdliddie. Parameter after ~ Of Fig. 8. Note that some of the edges remain uncorrected¢sgeBottom:
replacing all values more thatil.5¢ from the local median level with that ~ Middle (512th) row.
level (patched array)Bottom: Patched array after smoothing with a 19 pixel
boxcar filter. This procedure is repeated for each of therdBaussian fit ) . o
parameters. We define noise strength as the standard deviation of the

Gaussian noise divided by the standard deviation of theenois
The fringe pattern was created using an analytic functionless fringe pattern (2/2A, due to its sinusoidal nature). Fig-
that mimics the oscillating pattern in our example imags. It ure 11 shows the fraction of remnant fringe after running

450

400

350 L B T |
200 300 400 500 600 700 800 0
Column number

Ampl.(DN)

functional form is the algorithm on simulated data with different fitting func-
— Aci tions and varying noise strength. The remnant fringe level
F(x,y) = Asin( (X, y)x+&(y)), 14 ishot strongly dependent on noise strength and all methods

wherex andy are the position indices in the arra(...) and show very similar behavior with slight numerical differexsc
v(...) are linear functions fit to the phase and frequency, re- when the noise strength is belew8. However, GFC consis-
spectively, of our example’s fringe pattern, afvds the am- tently gives the best results in all cases, even improvingrwh
plitude. For these tests we keep the amplitude constant, busmoothing at high noise levels. Most of the methods remove
there is no reason foh to be constant in a real image, nor over 95% of the fringe at noise strength =f0.5 and over

is there any reason for a non-constant amplitude to adyersel 55% at a noise strength ef 9 (equivalent to Fig. 3's noise
affect our algorithm. The background level is a doubledine strength). The plot in Figure 11 (bottom) confirms the intu-
function in both thex- andy-directions and has an edge taper. itive result that the method yields better absolute redolts
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Fic. 10.— Example of fringe removal from a second instrument.e Tiames present a portion of a debiased flat-field frame from arder of the
high-resolution NIRSPEC spectrograph at the Keck Il telpscTop: Original flat field. Bottom: Same flat field defringed by our method. The algorithm had to
be applied twice; once for a fringe of peried20 pixels and then for a fringe of peried 40 pixels.
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FiG. 11.— Remaining fringe for varying noise strengths. Onlyf éhe 14
methods are shown above, for clarity. Omitted methods ar#ssito plotted
methods and fall within the range of traces shown. The tweapknethods
give the best results. In general, all methods give simdauits for low noise
strength, but smoothed nokeep methods are better for hige strength.
Top: Fraction of fringe remainingBottom: Absolute fringe remaining when
noise level is scaled to 1.

smaller initial fringe amplitudes.
Figure 12 shows the effect of varying the bin width.
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FIG. 12.— Remaining fringe for different enhanced-row bin \u&lt The

panels show the same synthetic fringe pattern as Fig. 1lreg #elected
noise levels. Line styles are the same as in Fig. 11.

the width is too small when computing the enhanced row, the
noise is insufficiently suppressed. For low noise, a bin fvidt
that is too large will begin to average out the fringe.

The algorithm is limited by the degree to which the analytic
profile fitting function mimics the data. Figure 13 shows an
example of a difficult profile, which gives very different fits
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Interpolated data| 4

unimportant when analyzing only the bright source are of
i R T GFC | concern when considering the fainter source. Hence, those
100 - a e errors must be reduced either in the instrument design or in
— — GVCnoback | ] the data analysis. To that effect, we have developed a genera
1 algorithm to remove fringe patterns from imaging data such
as flat-field frames while preserving other patterns. Clagni
flat fields is especially useful when the fringe pattern \arie
between them and the object data.

Consider the particular example of trying to detect the spec
tral modulation of an extrasolar planet as it transits itg st
using an instrument like ISAAC at the VLT. The equivalent
noise strength for a flat field of this instrumenti9. On the
other hand, no fringe was detected on the object framesupto a
level equivalent to a noise strengthefl.5. Hence, according
0 Lo to Figure 11, removing the fringe in the flat fields through our

20 30 40 50 60 70 method would reduce the systematic noise in the data frame
Period (pixels) by atleast 40%. Considering the flat-field intensity, thess-
FiG. 13.— Different fitting methods applied to a profile with a quifcated Iates_ into residual noise n the data framd.25% of th.e In-
shape. Such shapes are due to noise and are the main linaititay for this tensity of the star. A typical molecular spectral variatisn
algorithm. This profile comes from the fringe transform fowr798, column still below that level, of order 10 times the stellar intensity.

627 of our example array. Crosses show the data points, ttgleolid line However, it will now be easier to use the constancy of the
is the interpolated profile. Other lines are explained inkixe The profiles ’

are only fitted within the local minima at both sides of theerehce period. glltal‘\zg}ary signal over many frames to attain the required sen

There are three main limitations of this algorithm when ap-
plied to a flat field. First, the shape of a fringe in wavelet
space may be much more complicated than any reasonable
fitting function, resulting in a partially corrected fring8ec-
ond, to be able to follow the trace, the change in the fringe’s
period must be smooth. Finally, there is a region along the
borders where the fringe pattern cannot be recovered.

The algorithm could be improved by finding a parameter-
space interpolation mechanism that would allow defringing
of object frames. Also, a method could be found to fit the en-
tire fringe transform pattern simultaneously in the 3D wate
space of row, column, and period. The 2D wavelet transform
may be more appropriate for this approach.

Our IDL implementation of this algorithm and its documen-
tation appear as an electronic supplement to this articte. U
dated versions are available on our Web sites or by e-malil
request.

80T
60T

40

Wavelet amplitude (DN)

20

Period (pixels)

Period (pixels)

0 200 400 600 800
Column number

FIG. 14.— Example of missed trac@op: Wavelet array from row 798 of
Fig. 4. Around column 650 the trace goes in the wrong directtowards
a short period, and disappears around column Bfitom: Wavelet array
from row 799 of Fig. 4. The array is similar to the top plot, maw the
trace is correct through the last column. Patching in steqliRely to correct
cases like this.

. _ o . This material is based on work supported by the National
when using the different fitting functions. Another soure o Aeronautics and Space Administration under grant NAG5-
error is the potential for the algorithm to miss the correate 13154 issued through the Science Mission Directorate. The
in the presence of high noise in the wavelet array (Fig. 14). example flat field was obtained from public archives of the
Also, the reconstructed fringe patternis smaller thanitbet  European Southern Observatory. Data presented herein were
data due to the factors listed in step 4. For the example ofobtained at the W. M. Keck Observatory from telescope time
Figure 3, this area isz 85% of the cropped input image, or allocated to the National Aeronautics and Space Administra
over 90% if only considering the pixels lost for each sum@yi  tion through the agency’s scientific partnership with thé-Ca
row, on average. ifornia Institute of Technology and the University of Cali-
fornia. The Observatory was made possible by the gener-

0. DISCUSSION AND CONCLUSIONS ous financial support of the W.M. Keck Foundation. We
Seeking a signal from a faint source that is spatially indis- also wish to thank the referee for insightful comments on the
tinguishable from a bright source is a long-standing obser- manuscript.
vational challenge. Systematic errors that would have been Facilities: VLT:Antu (ISAAC), Keck:Il (NIRSPEC)
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