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ABSTRACT
We have developed a new method that uses wavelet analysis to remove interference fringe patterns from

images. This method is particularly useful for flat fields in the common case where fringes vary between the
calibration and object data. We analyze the efficacy of this method by creating fake flats with fictitious fringes
and removing the fringes. We find that the method removes 90% of the fringe pattern if its amplitude is equal to
the random noise level and 60% if the fringe amplitude is≈ 1/10 of the noise level. We also present examples
using real flat-field frames. A routine written in IDL that implements this algorithm is available from the
authors and as an attachment to this paper.
Subject headings: methods: data analysis — technique: image processing

1. INTRODUCTION

The current class of telescopes with primary mirrors larger
than∼8 m in diameter allows researchers to attain an un-
precedentedly high signal-to-noise ratios. In addition, ever-
increasing computer capabilities have permitted quantitative
analyses able to distinguish trends weaker than the noise level.
This has not only allowed observations of fainter objects, but
also observations of weak sources spatially indistinguishable
from a bright source, such as the spectrum of an extrasolar
planet orbiting a main-sequence star. In such cases, system-
atic errors that would not have been of importance when ana-
lyzing the bright source are of concern when considering the
fainter source. Previously ignored systematic errors thusre-
quire algorithms able to correct them.

One such systematic effect is the appearance of fringes in
data arrays. The strength of these fringes varies from instru-
ment to instrument; we have seen it range from less than 1/10
of the noise amplitude to roughly 5 times the noise amplitude.

Fringe correction methods found in the literature are ei-
ther specific to the instrument or assume a global fringe pe-
riod (e.g., Malumuth et al. 2003a,b; Mellau & Winnewisser
1995). The latter correction type makes uses of Fourier fil-
tering, a technique that is less than satisfactory in the com-
mon case where the pattern’s period or amplitude varies over
the image. Another common approach has simply been to
ignore the fringes in the hope that division of the debiased
data array by the flat field frame will eliminate the pattern,
which is supposed to remain the same. However, flat fields
and object frames do not always share the same fringe pattern
because flexure and variations in the illumination geometry
can change the pattern’s amplitude or period even on short
timescales (Figs. 1 and 2). Therefore, flat-field division could
add a second set of fringes rather than correct the first set.

Here we present an algorithm to clean two-dimensional
(2D) arrays that uses the wavelet transform, a local spectral
technique (e.g., Starck & Murtagh 2002; Torrence & Compo
19984). Making use of the wavelet transform’s linearity prop-
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FIG. 1.— Failure of flat field to correct fringes.Top: Debiased spectrum
frame. Bottom: Spectrum frame after flat field and bias correction. The
fringe pattern is still visible. These images are subsections of a spectrum
frame obtained with NIRSPEC at the Keck telescope. The horizontal white
pattern is the spectrum’s trace. The bright, white, vertical lines are the sky
emission lines.

erty, the algorithm isolates the fringe pattern in wavelet space,
does an inverse transform, and then obtains a clean image by
subtracting the reconstructed fringe pattern. The challenge
is to do this correctly in the presence of noise. The algo-
rithm presented here is not tuned to any specific data set and
has been tested on flat-field frames from ISAAC (Moorwood
et al. 1998) at the Very Large Telescope (VLT) and NIRSPEC
(McLean et al. 1998) at the Keck telescope.

The algorithm also provides the framework for an exten-
sion to remove fringes from object frames by interpolating
the fringe pattern over spectra or point sources. Such an ex-
tension requires the design of another algorithm to interpolate
fringe parameters, which is beyond the scope of the present
work. Thus, our method improves the quality of extracted
data when the fringes in the flat fields differ from the fringes
in the data, but will not solve the problem completely if the
fringes in the data array are significant. We show that there are
many cases where the fringes change between arrays obtained
at different times.
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FIG. 2.— Fringe variation in consecutive frames. Shown are subsections of
sky frames taken with NIRSPEC on the Keck II telescope (45 s integration).
The fringe pattern can be seen varying between these frames.Panels a, b,
and c were taken in consecutive order.

We implemented our algorithm in IDL (a product of Re-
search Systems, Inc., Boulder, Colorado). The package (de-
fringeflat) includes tutorial documentation. It is available un-
der the GNU General Public License from our Web sites5 and
as a tar file in the electronic edition of this paper.

Section 2 gives a mathematical model of fringe formation.
Section 3 describes the algorithm. Section 4 discusses perfor-
mance in the presence of noise. Finally, §5 discusses an ap-
plied example, summarizes the benefits and limitations, and
presents our conclusions.

2. FRINGES

Fringes are produced by the interference of light reflecting
between parallel surfaces in an instrument. They appear in
many detectors of visible and infrared light. If we ignore mul-
tiple reflections, a mathematical formulation (Rieke 2003)for
the total intensity of light (Ia) received on the positionx,y of
the detector array is given by

Ia(x,y) = In(x,y) + Ir(x,y) + 2
√

In(x,y)Ir(x,y)cosψ(x,y), (1)

whereIn is the non-reflected intensity,Ir is the reflected in-
tensity, andψ is the phase difference between the two beams.
We choose thex coordinate such that

ψ(x,y) = 2πx/P(x,y) + ξ(x,y), (2)

whereP andξ are the period and phase of the fringe’s pattern,
respectively. LetIi be the incoming intensity before interac-
tion with the instrument. Then,Ir(x,y) is proportional to the
intensity incident at a nearby position:

Ir(x,y) = a(x + δx,y + δy)Ii(x + δx,y + δy), (3)

whereδx and δy are small displacements and the factora
includes reflectivity. Note also thata ≪ 1. If we can as-
sume that the incoming intensity field and the reflection ge-
ometry are homogeneous on very short spatial scales, then
a(x + δx,y + δy)Ii(x + δx,y + δy) ≈ a(x,y)Ii(x,y). On the other

5 See http://www.das.uchile.cl/∼pato/sw/ or
http://physics.ucf.edu/∼jh/ast/software.html

hand, the non-reflected intensity (In) is proportional to the in-
coming intensity (Ii) in the same coordinate, thusIn(x,y) =
b(x,y)Ii(x,y). Due to energy conservation, the proportional-
ity constantb(x,y) is restricted by the previous assumption to
comply with

a(x,y) + b(x,y) = s(x,y), (4)

wheres(x,y) . 1 accounts for losses due to scattering and ab-
sorption. Omitting the dependence onx andy for clarity, we
find for each position

Ia = bIi + aIi + 2Ii

√
abcosψ (5)

= Ii

[

s + 2
√

abcos
(

2πx/P + ξ
)

]

(6)

= Ii [s + F] , (7)

where
F = 2

√
abcos

(

2πx/P + ξ
)

(8)

is the oscillating fringe term. When interacting with the detec-
tor array, Eq. 7 is modulated to obtain the detected intensity
Id. Including detection noise, the modulation is given by

Id = Iiη [s + F] + ǫ, (9)

where ǫ, which varies rapidly between pixels, includes all
noise sources andη includes quantum efficiency, and pixel
collecting area, among other factors. On the other hand,η can
be decomposed as

η = η0 + ηr, (10)

whereη0 is the smoothly varying component andηr is the
rapidly varying component, which includes uncorrelated dif-
ferences between the sensitivities of neighboring pixels.Typ-
ically, ηr ≪ η0. Bringing it all together, we obtain

Id = Iiηs + ǫ+ IiηrF + Iiη0F. (11)

Our algorithm makes use of the linearity property of
wavelets to find and subtract the termIiη0F , which is the pre-
dominant contributor at the period of the fringe pattern. The
other terms will only contribute in that frequency to a back-
ground level in the amplitude of the wavelet transform. This
background is considered in our algorithm (see step 2 in §3).

Then,ηs can be corrected through flat-fielding to get the
sought intensityIi with a modified noisēǫ given by

ǭ = ǫ+ IiηrF. (12)

With typical values,IiηrF ≪ ǫ.

3. ALGORITHM

The main steps in our procedure are listed in Table 1. Fig-
ures 3 – 9 illustrate the steps of the algorithm using an ex-
ample flat field. Their captions contain details regarding the
example array, while the main text only refers to the algorithm
in general. The example flat field is included in the defringe-
flat package.

All array borders whose values are not consistent with the
image must be cropped. The fringes are allowed to have sev-
eral different patterns, which do not need to look like straight
lines. There are only two requirements. First, the period (P)
of the fringe term (eq. [8]) should change smoothly across the
array; and second, only on a per-row basis, the period must be
at least several pixels, but it must also have at least a few oscil-
lations per row. To attain the second condition it is acceptable
to rotate the image by 90◦. There are no constraints on how
the phaseξ can change across rows or the range over which
P can vary. Hence, the algorithm can handle many patterns
that do not look like plane waves, such as patterns resembling
wood grain.
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TABLE 1
STEPS OF THEDEFRINGINGALGORITHM

Step Description Figure

0. . . Original image with fringe Fig. 3
1. . . For each row

Compute enhanced row Fig. 4
Compute wavelet transform Fig. 5

2. . . For each pixel in row
Fit fringe transform’s profile Fig 6

3. . . For the whole array
Smooth fit parameters (optional) Fig. 7

4. . . For each row
Reconstruct wavelet array Fig. 5
Inverse transform Figs. 5, 8

For the whole array
Subtract fringe pattern to obtain clean image Fig. 9

FIG. 3.— Top: Sample image with fringes. This flat field was obtained
with the ISAAC instrument at the VLT. Each of the numeric parameters
indicated in the captions from Figs. 3 to 9 were found to be themost
appropriate for this particular example, but will need to change for different
images. Columns 901–1024 and rows 0–149 and 951–1024 were vi-
gnetted and thus were cropped before analysis. Periodicitycan be estimated
by eye at∼ 40 pixels in the center of the image.Bottom: Middle (512th) row.

Step 1: Enhanced Row and Wavelet Transform

For each image row we combine several surrounding rows to
suppress random noise and remove bad pixels. To do this, we
replace each pixel in the row with the median of a 1×n sub-
image centered on the pixel and traversingn rows (the bin
width). We then subtract a polynomial fit from the median-
averaged row to obtain an “enhanced row” (Fig. 4). This
subtraction significantly diminishes the large-period (low-
frequency) oscillations of each row (and their corresponding
wavelet amplitudes), allowing the next step to proceed more
efficiently.

We then compute the wavelet transform of each enhanced
row. The result for each row is a two-dimensional, complex
array, whose two dimensions are column number and period.
There are several real and complex wavelet bases to choose
from, but step 2 of this algorithm requires a complex basis be-
cause real bases are not able to separate phase from amplitude

FIG. 4.— Top: Enhanced rows. Each pixel of the array in Fig. 3 is
first replaced by the median average of the 41 closest pixels in the vertical
direction. A polynomial fit to each row is then subtracted. The fringe pattern
is enhanced and some bad pixels are removed. Note that the usable data
area is reduced by 20 rows on the top and bottom because of the averaging.
Bottom: Middle (512th) row.

information. For this particular example, we used the Morlet
wavelet because its functional form is the familiar quantum-
mechanical wave packet

Ψ(t) = π−1/4e−t2/2−iω0t , (13)

which makes it well suited for smoothly varying periods.
Here, t andω0 are non-dimensional. For the Morlet basis,
ω0 is the only parameter; it dictates the minimum number of
oscillations per row. The Morlet basis also has the advantage
of being compact in the frequency domain.

In addition, the accompanying code allows the user to
choose from several other popular wavelets as they could be
better suited for particular data. Steps 2 and 3 are computed
over the complex array amplitudes (the wavelet array). The
phases of the complex array must be stored for use in step 4.

Step 2: Parametric Fit of Fringe Transform

At the period of the fringe pattern, the wavelet array will
contain a prominent “fringe transform” pattern traversingthe
columns. Its amplitude depends on the amplitude of the fringe
pattern (Fig. 5). This algorithm’s success rests on our abil-
ity to distinguish this feature from the background noise level
of the wavelet array. The fringe transform may vanish for
particular columns, but it should be clearly distinguishable in
most of each wavelet’s array. Improved sampling in period
can be obtained by interpolation or by decreasing the spacing
between discrete scales in the wavelet transform. A compro-
mise should be chosen; the latter approach is more accurate
but demands more computer resources.

We next either extract or fit the fringe transform’s ampli-
tude versus period for a given column (Fig. 6). Starting from
a reference column, the fringe profile is isolated by finding
the first local minima on both sides of the reference period.
Then one method is chosen to represent the profile within the
minima: either we use the actual data within the minima (the
“trueshape” method) or a parametric function can be fitted to
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FIG. 5.— Wavelet transform of an enhanced row. In the center plots, the
dotted line marks the COI; wavelet values below this boundary should not be
trusted. The dashed line shows the fitted trace. (a) Middle enhanced row of
Fig. 4. (b) Amplitude of the Morlet wavelet transform of (a). The wavelet is
interpolated in period by a spline from the period sampling of the transform,
and the fringe transform, a coherent pattern correspondingto a fringe with
a period of 35 pixels, is clearly visible. (c) Reconstructed fringe transform
using a Gaussian fit (cf. Fig. 6). (d) Fringe pattern after applying an inverse
wavelet transform to (c), plotted over the input data.

the profile. Only the latter approach will allow execution of
the optional step 3. The value of the profile must be zero out-
side the fringe transform. Inside, on the other hand, it is rec-
ommended that the fringe transform profile exclude a back-
ground level (attributable to non-fringe image components,
see discussion in §2). The highest point in the profile is used
as the new reference period for the next column. The proce-
dure is repeated for the whole fringe transform, extending in
both directions from the reference column to the cone of in-
fluence (COI) boundary, beyond which the wavelet values are
significantly contaminated by edge effects.

To fit the profile we have experimented with plain Gaus-
sian fits with variable center (Gaussian with Variable Center,
“GVC”) and Gaussian functions in which the center is fixed
at the maximum height (Gaussian with Fixed Center, “GFC”).
Both Gaussian alternatives were considered without a con-
stant background parameter (noback), and with this parame-
ter. In the latter case, the background value can be kept or
not when reconstructing (“keep” and “nokeep” respectively).
In total, we have implemented six parametric fitting methods
(that can be smoothed or not in step 3) and two trueshape fits
(nokeep and keep), for a total of 14 fitting methods. The Gaus-
sian shape was chosen not only because it is a natural choice
to fit a peak, but also because it is the frequency-domain rep-
resentation of the Morlet wavelet. The relative fringe-removal
efficiency of these fits and of trueshape is discussed in §4.

Step 3: Optional Parameter Smoothing

If a functional parametric fit was used in the previous step,
one can reduce the effects of noise by forcing the recon-
structed fringe’s parameters to vary smoothly. After repeating
steps 1 and 2 for every row, a 2D array is obtained for each of

FIG. 6.— Cross–section along a column of the wavelet array.Top:
Components diagram. Crosses are the amplitude of the wavelet points.
The data points surrounding the region labeled as “fringe transform” are
exactly what the trueshape method would reconstruct or whatthe parametric
functions will fit. The region labeled “fringe transform background” is
attributable to non-fringe components; in some of the testsit was used for
the wavelet reconstruction (keep) and in some it was not (nokeep). Bottom:
Gaussian fit (with background) to the region between the minima. Crosses
are as above, and the solid line is the fitted profile.

the fitted parameters. First, we “patch” each of the parameter
arrays by finding outliers beyond a given number of standard
deviations from the neighborhood median and replacing them
by that median value. Then, we smooth the array with a box-
car filter. Figure 7 shows an example.

Step 4: Reconstruction of the Fringe Pattern

We next evaluate the parameters to obtain the fringe’s
wavelet amplitudes (Fig. 5). Far from the reconstructed fringe
transform the amplitude must be zero because any non-zero
value there will cause unwanted noise in the reconstructed
fringe. In particular, if a keep method is chosen, the recon-
structed amplitude is set to zero outside the local minima.
Finally, we apply an inverse wavelet transform to the recon-
structed wavelet amplitude and the corresponding complex
phases (see step 1).

We repeat these steps for every row to obtain the image’s
isolated-fringe pattern (Fig. 8). Due to the optional smooth-
ing, the method to obtain the enhanced rows, and the COI
boundary, the recovered-fringe pattern will have smaller bor-
ders than the original image. The fringe pattern can now be
subtracted from the original image (Fig. 9). Figure 10 shows
another example of this algorithm for a flat field from NIR-
SPEC at Keck.

4. PERFORMANCE TESTS

The ratio of fringe-pattern amplitude to the pixel-to-pixel
variation (or noise) level varies among different instruments.
We tested the algorithm’s performance at different noise lev-
els by using a synthetic image consisting of a fringe pattern,
a background intensity, and random noise with a Gaussian
distribution that mimics pixel-to-pixel flat-field variations and
photon noise.
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FIG. 7.— Gaussian height parameter smoothing.Top: Gaussian fit height
parameter for central portion of example image.Middle: Parameter after
replacing all values more than±1.5σ from the local median level with that
level (patched array).Bottom: Patched array after smoothing with a 19 pixel
boxcar filter. This procedure is repeated for each of the other Gaussian fit
parameters.

The fringe pattern was created using an analytic function
that mimics the oscillating pattern in our example image. Its
functional form is

F(x,y) = Asin(ν(x,y)x +φ(y)), (14)

wherex andy are the position indices in the array,φ(. . .) and
ν(. . .) are linear functions fit to the phase and frequency, re-
spectively, of our example’s fringe pattern, andA is the am-
plitude. For these tests we keep the amplitude constant, but
there is no reason forA to be constant in a real image, nor
is there any reason for a non-constant amplitude to adversely
affect our algorithm. The background level is a double-linear
function in both thex- andy-directions and has an edge taper.

FIG. 8.— Top: Reconstructed fringe pattern (cf. Fig. 5,bottom). Bottom:
Middle (512th) row.

FIG. 9.— Top: Cleaned image: flat field of Fig. 3 minus the fringe pattern
of Fig. 8. Note that some of the edges remain uncorrected (seetext). Bottom:
Middle (512th) row.

We define noise strength as the standard deviation of the
Gaussian noise divided by the standard deviation of the noise-
less fringe pattern (2−1/2A, due to its sinusoidal nature). Fig-
ure 11 shows the fraction of remnant fringe after running
the algorithm on simulated data with different fitting func-
tions and varying noise strength. The remnant fringe level
is not strongly dependent on noise strength and all methods
show very similar behavior with slight numerical differences
when the noise strength is below≈ 8. However, GFC consis-
tently gives the best results in all cases, even improving when
smoothing at high noise levels. Most of the methods remove
over 95% of the fringe at noise strength of≈ 0.5 and over
55% at a noise strength of≈ 9 (equivalent to Fig. 3’s noise
strength). The plot in Figure 11 (bottom) confirms the intu-
itive result that the method yields better absolute resultsfor
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FIG. 10.— Example of fringe removal from a second instrument. The frames present a portion of a debiased flat-field frame from one order of the
high-resolution NIRSPEC spectrograph at the Keck II telescope.Top: Original flat field.Bottom: Same flat field defringed by our method. The algorithm had to
be applied twice; once for a fringe of period∼ 20 pixels and then for a fringe of period∼ 40 pixels.

FIG. 11.— Remaining fringe for varying noise strengths. Only 6 of the 14
methods are shown above, for clarity. Omitted methods are similar to plotted
methods and fall within the range of traces shown. The two nokeep methods
give the best results. In general, all methods give similar results for low noise
strength, but smoothed nokeep methods are better for high noise strength.
Top: Fraction of fringe remaining.Bottom: Absolute fringe remaining when
noise level is scaled to 1.

smaller initial fringe amplitudes.
Figure 12 shows the effect of varying the bin width. If

FIG. 12.— Remaining fringe for different enhanced-row bin widths. The
panels show the same synthetic fringe pattern as Fig. 11 at three selected
noise levels. Line styles are the same as in Fig. 11.

the width is too small when computing the enhanced row, the
noise is insufficiently suppressed. For low noise, a bin width
that is too large will begin to average out the fringe.

The algorithm is limited by the degree to which the analytic
profile fitting function mimics the data. Figure 13 shows an
example of a difficult profile, which gives very different fits
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FIG. 13.— Different fitting methods applied to a profile with a complicated
shape. Such shapes are due to noise and are the main limiting factor for this
algorithm. This profile comes from the fringe transform for row 798, column
627 of our example array. Crosses show the data points, whilethe solid line
is the interpolated profile. Other lines are explained in thekey. The profiles
are only fitted within the local minima at both sides of the reference period.

FIG. 14.— Example of missed trace.Top: Wavelet array from row 798 of
Fig. 4. Around column 650 the trace goes in the wrong direction, towards
a short period, and disappears around column 720.Bottom: Wavelet array
from row 799 of Fig. 4. The array is similar to the top plot, butnow the
trace is correct through the last column. Patching in step 3 is likely to correct
cases like this.

when using the different fitting functions. Another source of
error is the potential for the algorithm to miss the correct trace
in the presence of high noise in the wavelet array (Fig. 14).
Also, the reconstructed fringe pattern is smaller than the input
data due to the factors listed in step 4. For the example of
Figure 3, this area is≈ 85% of the cropped input image, or
over 90% if only considering the pixels lost for each surviving
row, on average.

5. DISCUSSION AND CONCLUSIONS

Seeking a signal from a faint source that is spatially indis-
tinguishable from a bright source is a long-standing obser-
vational challenge. Systematic errors that would have been

unimportant when analyzing only the bright source are of
concern when considering the fainter source. Hence, those
errors must be reduced either in the instrument design or in
the data analysis. To that effect, we have developed a general
algorithm to remove fringe patterns from imaging data such
as flat-field frames while preserving other patterns. Cleaning
flat fields is especially useful when the fringe pattern varies
between them and the object data.

Consider the particular example of trying to detect the spec-
tral modulation of an extrasolar planet as it transits its star
using an instrument like ISAAC at the VLT. The equivalent
noise strength for a flat field of this instrument is≈ 9. On the
other hand, no fringe was detected on the object frames up to a
level equivalent to a noise strength of≈ 1.5. Hence, according
to Figure 11, removing the fringe in the flat fields through our
method would reduce the systematic noise in the data frame
by at least 40%. Considering the flat-field intensity, this trans-
lates into residual noise in the data frame≈ 0.25% of the in-
tensity of the star. A typical molecular spectral variationis
still below that level, of order 10−4 times the stellar intensity.
However, it will now be easier to use the constancy of the
planetary signal over many frames to attain the required sen-
sitivity.

There are three main limitations of this algorithm when ap-
plied to a flat field. First, the shape of a fringe in wavelet
space may be much more complicated than any reasonable
fitting function, resulting in a partially corrected fringe. Sec-
ond, to be able to follow the trace, the change in the fringe’s
period must be smooth. Finally, there is a region along the
borders where the fringe pattern cannot be recovered.

The algorithm could be improved by finding a parameter-
space interpolation mechanism that would allow defringing
of object frames. Also, a method could be found to fit the en-
tire fringe transform pattern simultaneously in the 3D wavelet
space of row, column, and period. The 2D wavelet transform
may be more appropriate for this approach.

Our IDL implementation of this algorithm and its documen-
tation appear as an electronic supplement to this article. Up-
dated versions are available on our Web sites or by e-mail
request.

This material is based on work supported by the National
Aeronautics and Space Administration under grant NAG5-
13154 issued through the Science Mission Directorate. The
example flat field was obtained from public archives of the
European Southern Observatory. Data presented herein were
obtained at the W. M. Keck Observatory from telescope time
allocated to the National Aeronautics and Space Administra-
tion through the agency’s scientific partnership with the Cal-
ifornia Institute of Technology and the University of Cali-
fornia. The Observatory was made possible by the gener-
ous financial support of the W.M. Keck Foundation. We
also wish to thank the referee for insightful comments on the
manuscript.
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