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Abstract 
 
This report describes the calibration and validation of a spatially distributed watershed 
model of the Cannonsville Reservoir Basin.  The Soil and Water Assessment Tool 2000 
(SWAT2000) was selected as the watershed model.  A set of SWAT2000 inputs 
representative of the watershed conditions was derived from a wide array of data sources.  
Important methods were developed for converting available information to SWAT2000 
inputs for groundwater soluble phosphorus concentrations, initial soil phosphorus levels 
and daily manure application.   
 
The Cannonsville Reservoir is a New York City water supply reservoir located in upstate 
New York that has historically experienced water quality problems associated with 
phosphorus loading.  As a result, the watershed has been subjected to multiple water 
quality regulations including a recent Total Maximum Daily Load (TMDL) assessment 
for phosphorus.  The reservoir watershed covers an 1178 km2 area and is dominated by 
agriculture, particularly dairy farming.  The SWAT2000 model of the Cannonsville 
Reservoir Watershed is a valuable tool that can be used to help identify and quantitatively 
evaluate the long-term effects of various phosphorus management options for mitigating 
loading to the reservoir. 
 
SWAT2000 was developed by the Agricultural Research Service of the United States 
Department of Agriculture.  SWAT2000 simulates through time the daily soil water 
balance, growth of plants, build-up and subsequent transport of soil nutrients to surface 
waters in response to agricultural management practices.  The simulated mass balance of 
soil phosphorus in SWAT2000 is an important aspect of any watershed model that is to 
be used for regulatory purposes.  The authors modified a few of the SWAT model 
equations to better simulate measured flows, sediment loading and phosphorus loading 
during the winter. 
 
The model was calibrated and validated for the prediction of dissolved and particulate 
phosphorus transport, and therefore also flow and sediment transport, against a large set 
of monitoring data.  Extensive continuous flow and water quality data over a 10-year 
period from multiple locations within the basin were used for model calibration and 
validation.  Sensitive model parameters were adjusted within their feasible ranges during 
calibration to minimize model prediction errors for daily flows and monthly sediment and 
phosphorus loading.  At the main flow gauging station in the basin (Walton), draining 
almost 80% of the watershed, daily calibration resulted in model predictions of average 
flow within 1.0% of the measured average flow while the daily Nash-Sutcliffe (NS) 
measure was 0.79.  Daily validation results at Walton showed the model predicted 
average flow within 4.5% of the measured average flow with a NS of 0.78.  At the main 
water quality gauging station in the basin (Beerston), just downstream of Walton, the 
calibration results showed the model predicted the average monthly sediment and total 
phosphorus loading within 3% and 6% of their respective measured average monthly 
loadings.  The monthly calibration NS values at Beerston for sediment and total 
phosphorus loading were 0.66 and 0.68, respectively.  Validation results at Beerston 
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showed the model predicted the average monthly sediment and total phosphorus loading 
within 27% and 9% of their respective measured average monthly loadings.  The monthly 
validation NS values at Beerston for sediment and total phosphorus loading were 0.51 
and 0.61, respectively.  The largest errors in model predictions for phosphorus and 
sediment loading were always associated with peak flow prediction errors. Model 
predictions were also shown to qualitatively replicate bi-weekly sampling of total 
phosphorus concentrations taken from 10 different locations across the watershed.  
 
Model simulation results over the calibration and validation period (1990-2000) 
highlighted a number of useful findings.  The model predicted that 68% of the total 
phosphorus loading to surface waters in the watershed originates from active agricultural 
lands.  Corn land use was simulated as the major source of agricultural phosphorus 
loading even though it covered only 1.2% of the watershed area.  Areas North and East of 
the Town of Delhi tended to have the largest phosphorus loading rates per unit area.  
Areas immediately surrounding the Cannonsville Reservoir that are not monitored were 
simulated to have substantially lower non-point source phosphorus unit area loading rates 
than the monitored portion of the watershed. 



 
 

iv

Acknowledgements 
 
Many organizations and people contributed to this modeling effort.  This project was 
sponsored by the Delaware County Board of Supervisors under the Delaware County 
Action Plan (DCAP) and co-funded by the US Environmental Protection Agency, 
through the New York State Department of Environmental Conservation, and Cornell 
University.  Christine Shoemaker and Keith Porter supervised project work.  In addition, 
the work was supported by the US Army Corps of Engineers, graduate fellowships 
administered through Cornell, and volunteer efforts by students.  The authors are 
especially thankful for the Delaware County Board of Supervisors for giving us the 
opportunity to work under DCAP on this project.   
 
Jennifer Benaman initiated the modeling work on this project and developed model 
versions for flow and sediment predictions as part of her Cornell PhD research, which 
was funded by an EPA Star Fellowship.  The authors are indebted to her for the great 
amount of work that she put forth to find, organize and then transform data to create the 
initial version of the Cannonsville SWAT model for flow and sediment transport.  Keith 
Porter and Steve Pacenka from the Water Resources Institute at Cornell University were 
instrumental in this work by providing data, guidance and advice throughout the 
modeling effort.  Pat Bishop of NYSDEC contributed also in multiple ways.  She 
provided NYSDEC continuous monitoring data for Town Brook and Beerston water 
quality stations as well as data on the point sources in the basin.  In addition, her 
comments on the modeling work throughout the process and particularly in the review of 
an earlier draft of this document were very helpful.  Dean Frazier was crucial to this 
effort as he was our coordinating link to the stakeholders whom this modeling effort was 
intended to benefit. 
  
Paul Cerosaletti of Cornell Cooperative Extension put forth considerable effort to provide 
us with critical data and valuable comments on dairy cattle phosphorus inputs.  His work 
was also supported through DCAP funding.  In addition, Dale Dewing (Cornell 
Cooperative Extension Watershed Agricultural Program), with respect to farm 
information, and Art DeGaetano (Director of Northeast Regional Climate Center) with 
respect to climatological understanding, provided input data and spent a significant 
amount of time to discussing and clarifying model inputs. 
 
Andrew Sharpley, Ray Bryant and Bil Gburek of Penn State USDA Agricultural 
Research Service met with us on multiple occasions and provided valuable feedback on 
the modeling work.  In addition, Bil Gburek provided insightful review comments on an 
earlier draft of this document.   
 
Contacts from the NYCDEP were also instrumental in this modeling effort as NYCDEP 
provided land use maps that formed the basis for model inputs.  Elliot Schneiderman, G. 
Mendoza, D. Thongs and M. Zion (NYCDEP Terrestrial Modeling staff) provided 
insightful review comments on an earlier version of this document while W. Stasiuk and 



 
 

v

C. Stepczuk provided spatially distributed phosphorus monitoring samples for model 
development.   
  
Special thanks to all members of the Delaware County Scientific Support Group who are 
not listed above as they helped guide and improve this work by supplying feedback and 
data during model development.  Thanks to Karl Czymmek, Quirine Ketterings, Gary 
Lamont and Tom Tylutki who provided information for the modeling through personal 
communications with the authors.  The authors would also like to thank Jeff Arnold, 
SWAT model developer, for comments on the model source code changes.  The 
programming and modeling work by Cornell students Ziyin Shen, Mike Sorenson and 
Marcelo Cerucci helped with defining and entering various model inputs. 
 
Finally, we would like to acknowledge and sincerely thank all the reviewers of an earlier 
draft of this document for their willingness to review the document and for their truly 
insightful and helpful commentaries.  Pat Bishop, Elliot Schneiderman, G. Mendoza, D. 
Thongs, M. Zion and Bil Gburek, David Wells (Office of Water, USEPA), Betty 
McQuaid and Kerry Robinson (both from Natural Resources Conservation Service - 
United States Department of Agriculture) each reviewed the earlier draft.  The over 20 
total pages of detailed review comments from the reviewers led to very substantial 
improvements, not only in the model report, but also the model performance for flow, 
sediment and phosphorus prediction.   
 



 
 

vi

Readers of the electronic version of this document should note that it contains active 
cross-references or links.  All references in text to numbered Sections, Figures or Tables 
(including the Table of Contents, Figures and Tables) are linked to the original location 
in the document and can be immediately viewed by one left mouse click on the number (a 
pointing finger icon appears at the linked number). 
 
TABLE OF CONTENTS 

ABSTRACT ..........................................................................................................II 

ACKNOWLEDGEMENTS .................................................................................. IV 

List of Figures.................................................................................................................... x 

List of Tables ................................................................................................................... xii 

List of Acronyms used in Report:................................................................................. xiv 

List of Personal Communication References and Affiliations................................... xvi 

OUTLINE OF REPORT ...................................................................................XVII 

1 EXECUTIVE SUMMARY .....................................................................XVIII 

1.1 Model Applications and Analyses ................................................................... xxii 
1.1.1 Application 1: Comparing Measured and Modeled Annual Phosphorus ........
 Loads........................................................................................................... xxii 
1.1.2 Application 2: Estimating Phosphorus Loading from Different Land Uses.....  
 .................................................................................................................... xxiii 
1.1.3 Application 3:  Basin-wide Phosphorus Loading Estimates to Reservoir ........  
 ................................................................................................................... xxvii 
1.1.4 Application 4: Spatial Variation in Phosphorus Loading .......................... xxix 
1.1.5 Future Modeling Analyses.......................................................................... xxx 

1.2 Summary........................................................................................................... xxxi 

2 CASE STUDY INTRODUCTION................................................................1 

2.1 Purpose of Modeling............................................................................................. 2 

2.2 Quality Assurance................................................................................................. 2 

3 SOIL AND WATER ASSESSMENT TOOL (SWAT) VERSION 2000 .......4 

3.1 Previous Applications of SWAT.......................................................................... 5 



 
 

vii

4 MODEL INPUTS ........................................................................................7 

4.1 Model Input File Generation using the SWAT2000 Arcview Interface 
(AVSWAT) ............................................................................................................ 7 

4.2 Land uses ............................................................................................................... 9 
4.2.1 Additional Modifications to Land Use Classification .................................. 10 

4.2.1.1 Trout Creek Corn Area Modification ....................................................... 10 
4.2.1.2 Subdividing NYCDEP Grass Land Use ................................................... 10 

4.3 Soils....................................................................................................................... 15 

4.4 Climate Inputs..................................................................................................... 16 
4.4.1 Adjustments and Corrections to Raw Temperature and Precipitation Data . 18 

4.4.1.1 Walton Precipitation Data ‘Observer Shifting’ Correction ...................... 19 
4.4.1.2 Temperature Adjustments for Correct Precipitation Type Classification. 19 
4.4.1.3 Climate Data Adjustments for Large Precipitation Events....................... 20 
4.4.1.4 Summary of Climate Data Adjustments and Corrections......................... 20 

4.5 Point Sources of P ............................................................................................... 21 

4.6 Groundwater Phosphorus .................................................................................. 23 

4.7 Agricultural P Sources and Management Practices ........................................ 27 
4.7.1 Manure Production Estimates ....................................................................... 27 

4.7.1.1 Cannonsville Cattle Population................................................................. 28 
4.7.1.2 Manure Production Factors....................................................................... 30 
4.7.1.3 Manure Application to HRUs ................................................................... 32 

4.7.2 Starter Corn Fertilization .............................................................................. 35 
4.7.3 Tillage, Crop Growth and Harvest Scheduling............................................. 35 

4.8 Atmospheric N and P Deposition....................................................................... 37 

4.9 Model Initial Conditions..................................................................................... 38 
4.9.1 Initial Soil Phosphorus Levels ...................................................................... 39 

4.9.1.1 Labile Soil P Levels for Agricultural Lands ............................................. 40 
4.9.1.2 Labile Soil P Levels for Forests, Grass-shrub and Idle Agriculture ......... 41 
4.9.1.3 Total Mineral Soil P Levels for all Land Uses ......................................... 42 
4.9.1.4 Organic Soil P Levels for all Land Uses................................................... 43 
4.9.1.5 Total Soil P Levels for all Land Uses ....................................................... 43 

5 SWAT2000 SOURCE CODE MODIFICATIONS/CORRECTIONS ..........45 

5.1 Modification 1: Implement Efficient Daily Manure Spreading ..................... 45 

5.2 Modification 2: Ensure Plant Growth Simulated in all Years........................ 45 

5.3 Modification 3: Winter Surface Runoff Adjustment on Frozen Soils ........... 45 



 
 

viii

5.4 Modification 4: Soil Water Above Field Capacity in Frozen Soils................. 46 

5.5 Modification 5: Orographic Adjustment of Average Monthly Subbasin 
Temperatures ...................................................................................................... 46 

5.6 Modification 6: Correct Snowmelt Logic when Elevation Bands Simulated 47 

5.7 Modification 7: Change the MUSLE Snow Cover Adjustment Equation..... 47 

5.8 SWAT2000 Model Modification Summary...................................................... 49 

6 CALIBRATION AND VALIDATION.........................................................50 

6.1 Monitored Flow and Water Quality Data ........................................................ 50 
6.1.1 ‘Measured’ TSS and P Loading.................................................................... 52 

6.2 Equivalence of SWAT Outputs with Monitoring Data ................................... 53 
6.2.1 Sediment ....................................................................................................... 53 
6.2.2 Phosphorus.................................................................................................... 54 

6.3 Calibration........................................................................................................... 55 
6.3.1 General Approach ......................................................................................... 55 
6.3.2 Data-Driven Input/Parameter Modifications ................................................ 57 

6.3.2.1 Data-Driven Land use Crop/Plant Covers and Related Parameters.......... 57 
6.3.2.2 Data-Driven Flow, Sediment and Phosphorus Parameters ....................... 59 
6.3.2.3 Miscellaneous Data-Driven Parameters.................................................... 63 

6.3.3 Performance Optimization Parameter Modifications ................................... 64 
6.3.3.1 Hydrology Performance Optimization Parameters................................... 64 
6.3.3.2 Sediment Performance Optimization Parameters ..................................... 67 
6.3.3.3 Phosphorus Performance Optimization Parameters.................................. 69 

6.3.4 Model Calibration Summary......................................................................... 70 

6.4 Calibration Results ............................................................................................. 71 
6.4.1 Hydrology Calibration Results ..................................................................... 71 
6.4.2 Sediment Calibration Results........................................................................ 75 
6.4.3 Temporal Phosphorus Calibration Results ................................................... 79 
6.4.4 Spatially Distributed Analysis of Total Phosphorus Predictions.................. 84 

6.4.4.1 Spatially Distributed Phosphorus Calibration Results.............................. 85 

6.5 Validation Results ............................................................................................... 89 
6.5.1 Hydrology Validation Results....................................................................... 89 
6.5.2 Sediment Validation Results......................................................................... 91 
6.5.3 Temporal Phosphorus Validation Results..................................................... 92 
6.5.4 Spatially Distributed Phosphorus Validation Results ................................... 94 
6.5.5 Validation Summary ..................................................................................... 96 

7 DISCUSSION...........................................................................................97 



 
 

ix

7.1 Comparison of Model Performance with Related Modeling Application ..... 97 
7.1.1 Monthly Sediment Predictions in Williams and Berndt (Williams and ..........

 Berndt 1977) ................................................................................................. 98 
7.1.2 Monthly Flow, Sediment and P Predictions in Santhi et al. (2001).............. 98 

7.2 Potentially Important Processes and Phosphorus Sources Excluded from 
Model.................................................................................................................. 100 

7.3 Model Limitations............................................................................................. 101 
7.3.1 Hydrology Predictions ................................................................................ 102 
7.3.2 Suspended Sediment Predictions ................................................................ 102 

7.3.2.1 Management Representation in Model ................................................... 102 
7.3.2.2 Process Representation in the Model...................................................... 103 

7.3.3 Phosphorus, Sediment and Hydrology Interdependencies.......................... 104 

7.4 Summary of Future Model Improvements and Modeling Analyses ............ 107 

8 CONCLUSIONS.....................................................................................108 

9 REFERENCES.......................................................................................110 

10 APPENDICES........................................................................................114 

10.1 Soil Property Derivation from SSURGO and STATSGO Intersection....... 114 

10.2 Precipitation and Temperature Data Adjustments and Corrections........... 116 
10.2.1 Details on Walton Precipitation Data ‘Observer Shifting’ Correction ....... 116 
10.2.2 Details on Temperature Adjustments for Correct Precipitation Type 
Classification............................................................................................................... 118 
10.2.3 Details on Climate Data Adjustments for Large Precipitation Events ....... 119 

10.3 Model Performance Statistics .......................................................................... 121 

10.4 Additional Details on Derivation of Select Data-Driven Parameter Values    
or Ranges ........................................................................................................... 122 

10.4.1 SFTMP Parameter....................................................................................... 122 
10.4.2 Locally Derived Cattle Feed Estimate ........................................................ 123 

10.5 Additional Time Series Plots of Measured and Simulated Quantities......... 124 
10.5.1 Daily Measured and Simulated Flows at Walton ....................................... 124 
10.5.2 Monthly Measured and Simulated Average Flows..................................... 127 

 



 
 

x

List of Figures 

Figure 1.1.1.  Measured and SWAT predicted annual total phosphorus loading at 
Beerston by water year (Oct. 1 – Sept 30) from 1992 to 2000.  1996 contained 
an extreme event as discussed in the text above. ................................................... xxiii 

Figure 1.1.2.  SWAT simulated percentage of total land area, NPS sediment and 
NPS phosphorus load to streams for each land use category from 1994-2000. ......xxv 

Figure 1.1.3.  Relative contributions from all phosphorus sources to the total 
phosphorus loading to streams and rivers in the Cannonsville Basin as 
simulated by SWAT from 1994-2000......................................................................xxv 

Figure 1.1.4.  Measured and unmonitored portions of the Cannonsville Basin............ xxvii 
Figure 1.1.5.  Estimated total phosphorus loads to the Cannonsville Reservoir from 

monitoring data and a combination of monitoring data and SWAT model 
predictions for water years (Oct. 1 – Sept 30) from 1992 to 2000. ....................... xxix 

Figure 1.1.6.  Average annual non-point source (NPS) total phosphorus loading 
rates per hectare of subbasin for the Cannonsville Basin from 1994-1999. ............xxx 

Figure 1.2.1.  The Cannonsville Basin in NY State.............................................................1 
Figure 4.1.1.  Cannonsville Basin subbasin delineation, climate station, and 

phosphorus point source locations. ..............................................................................8 
Figure 4.2.1.  Land uses in the Cannonsville Basin as categorized by NYCDEP. ..............9 
Figure 4.3.1.  STATSGO soil classes in the Cannonsville Basin. .....................................15 
Figure 4.4.1.  Source of subbasin precipitation inputs.......................................................17 
Figure 4.5.1.  Time series of monthly point source total P loadings input to SWAT........22 
Figure 4.6.1.  NYCDEP water quality (WQ) stations and corresponding subbasin 

groupings for estimating groundwater dissolved phosphorus concentrations 
(see text for definition of groups) ..............................................................................24 

Figure 4.7.1.  1992 Farm locations in the Cannonsville Basin (NRCS Unpublished 
data)............................................................................................................................28 

Figure 4.7.2.  Pattern of basin-wide total manure application in SWAT for the 
calibration period. ......................................................................................................34 

Figure 4.7.3.  Definition of upland and lowland areas in Cannonsville Basin. .................36 
Figure 5.7.1.  Comparison of sediment yield adjustments under snow cover for 

various surface runoff volumes (SurQ) between the original SWAT2000 model 
code and the modified model code (New Eq.) proposed for the Cannonsville 
Basin. .........................................................................................................................49 

Figure 6.1.1.  Continuous flow and water quality monitoring stations in the 
Cannonsville Basin as listed in Table 6.1.1. ..............................................................52 

Figure 6.4.1.  Comparison of average monthly baseflows as a fraction of streamflow 
between simulated and measured flows at Walton for period Jan. 1994 to Sept. 
2000............................................................................................................................72 

Figure 6.4.2.  Time series of measured and simulated daily hydrology calibration 
results at Walton for water years 1995, 1997 and 1998.............................................73 

Figure 6.4.3.  Change in TSS model performance at Beerston when the MUSLE 
snow cover erosion prediction adjustment is modified to better represent 
months with snowmelt. ..............................................................................................76 



 
 

xi

Figure 6.4.4.  Time series of monthly measured and simulated sediment calibration 
results at A) Beerston and B) Town Brook water quality stations for the period 
1994 to 2000.  Please see the discussion in Section 6.4.2 regarding the extreme 
Jan. 96 event...............................................................................................................78 

Figure 6.4.5.  Time series of monthly measured and simulated A) TDP B) PP C) 
total P calibration results at Beerston water quality station for the period 1994 
to 2000.  Please see the discussion in Section 6.4.2 regarding the extreme Jan. 
96 event......................................................................................................................80 

Figure 6.4.6.  Time series of monthly measured and simulated A) TDP B) PP C) 
total P calibration results at Town Brook water quality station for the period 
Oct. 1998 to Sept. 2000..............................................................................................82 

Figure 6.4.7.  Measured and simulated average total P concentrations for selected 
NYCDEP mainstem WBDR water quality stations during the calibration 
period (Jan. 1994 – Dec. 1999 only) and validation period (Jan. 1990 – Dec. 
1993). .........................................................................................................................88 

Figure 6.5.1.  Time series of measured and simulated daily hydrology validation 
results at Walton for the period 1990-1993. ..............................................................90 

Figure 6.5.2.  Time series of monthly measured and simulated sediment validation 
results at Beerston for the period Oct. 1991 to Dec. 1993.........................................92 

Figure 6.5.3.  Time series of monthly measured and simulated A) TDP B) PP C) 
total P validation results at Beerston for the period Oct. 1991 to Dec. 1993.............93 

Figure 7.3.1.  General relationships between the simulated export of quantities from 
HRUs in SWAT2000. ..............................................................................................105 

Figure 7.3.2.  Scatter plot comparing the percent error of total P monthly load 
predictions with the percent error of peak daily flow predictions for the months 
in Table 7.3.1. ..........................................................................................................107 

Figure 10.1.1.  Averaged representation of the soil profile for STATSGO map unit 
NY056......................................................................................................................115 

Figure 10.5.1.  Scatter plots measured and simulated of Walton flows for the 
calibration and validation period. ............................................................................125 

Figure 10.5.2.  Time series of measured and simulated daily flows for calibration 
period. ......................................................................................................................126 

Figure 10.5.3.  Time series of monthly measured and simulated hydrology 
calibration results at A) Walton B) Delhi and C) Little Delaware for the period 
1994 to 2000. ...........................................................................................................127 

Figure 10.5.4.  Time series of monthly measured and simulated hydrology 
calibration results at A) Town Brook B) East Brook and C) Trout Creek for the 
period 1994 to 2000. ................................................................................................128 

 



 
 

xii

List of Tables 

Table 1.0.1.  Summary of SWAT2000 model performance measures for the 
calibration and validation periods............................................................................ xxi 

Table 1.1.1.  Basin-wide area-weighted average annual SWAT predicted loading 
rates to the surface waters in the Cannonsville Basin............................................ xxiv 

Table 4.2.1.  Comparison of estimated land use areas for the Cannonsville Basin 
based on the 1992 US Census of Agriculture for Delaware County and the 
1992 NYCDEP GIS land use map for the Cannonsville Basin. ................................12 

Table 4.2.2.  Final SWAT2000 land use input summary for the Cannonsville Basin.......14 
Table 4.5.1.  Average annual water year total P loading (kg) from all modeled point 

sources within the Cannonsville Basin from 1990 through 2000. .............................22 
Table 4.6.1.  Groundwater soluble P concentrations assigned to subbasins in both 

the calibration and validation period..........................................................................25 
Table 4.7.1.  Average assumed beef and dairy cattle animal weights. ..............................30 
Table 4.7.2.  Dairy and beef manure production rates, characteristics and sources. .........31 
Table 4.7.3.  Summary of model annual application rates across land use types for 

the model calibration period in English tons of wet manure/acre1 and (kg dry 
manure/ha). ................................................................................................................34 

Table 4.7.4.  Summary of non-fertilization agricultural management inputs for 
SWAT model during calibration and validation........................................................37 

Table 4.9.1.  Initial state variable values specified differently than SWAT defaults. .......39 
Table 4.9.2.  Model calibration and validation initial labile (soluble) P 

concentrations in mg P/kg soil for the top two soil layers averaged (area-
weighted) across all soils. ..........................................................................................42 

Table 4.9.3.  Model calibration and validation initial mineral P concentrations 
(labile P + active mineral P + stable mineral P) in mg P/kg soil for the top two 
soil layers averaged (area-weighted) across all soils and using PSP=0.25................43 

Table 4.9.4.  Model calibration and validation initial total soil P concentrations in 
mg P/kg soil for the top two soil layers averaged (area-weighted) across all 
soils. ...........................................................................................................................44 

Table 6.1.1.  Summary of stream monitoring data used in model calibration and 
validation....................................................................................................................51 

Table 6.2.1.  Forms of P in SWAT. ...................................................................................54 
Table 6.3.1.  SWAT2000 land uses and corresponding crop cover type in the 

Cannonsville Basin. ...................................................................................................58 
Table 6.3.2.  Data-driven crop parameters changed from default SWAT2000 values. .....59 
Table 6.3.3.  Data-driven flow, sediment and phosphorus related parameters. .................60 
Table 6.3.4.  Base CN2 values assigned to all HRUs. .......................................................62 
Table 6.3.5.  Performance optimization calibrated hydrology parameters. .......................65 
Table 6.3.6.  Performance optimization calibrated sediment parameters. .........................68 
Table 6.3.7.  Performance optimization calibrated phosphorus parameters. .....................69 
Table 6.4.1.  Daily hydrology calibration results at six USGS gauge stations for the 

period 1994 to 2000 (see Figure 6.1.1 for gauge locations). .....................................72 
Table 6.4.2.  Daily hydrology calibration results by water year for the Walton 

USGS station for the period 1994 to 2000.................................................................74 



 
 

xiii

Table 6.4.3.  Monthly hydrology calibration results at six USGS gauge stations for 
the period 1994 to 2000 (see Figure 6.1.1 for gauge locations). ...............................75 

Table 6.4.4.  Monthly sediment calibration results at continuous water quality 
monitoring stations for the period 1994 to 2000 (see Figure 6.1.1 for 
locations)....................................................................................................................77 

Table 6.4.5.  Monthly phosphorus calibration results at continuous water quality 
monitoring stations for the period 1994 to 2000 (see Figure 6.1.1 for 
locations)....................................................................................................................83 

Table 6.4.6.  Comparison of measured and simulated average total P concentrations 
for headwater subbasins for the Jan. 1994 through Dec. 1999 period.......................86 

Table 6.5.1.  Hydrology validation results at Walton (USGS gauge 01423000) over 
the period Jan. 1990 to Dec. 1993..............................................................................89 

Table 6.5.2.  Monthly sediment validation results at Beerston over the period Oct. 
1991 to Dec. 1993. .....................................................................................................91 

Table 6.5.3.  Phosphorus validation results at the Beerston monitoring station for 
the period Oct. 1991 to Dec. 1993. ............................................................................93 

Table 6.5.4.  Comparison of measured and simulated average total P concentrations 
for headwater subbasins for the validation period (Jan. 1990 to Dec. 1993).............94 

Table 7.1.1.  Monthly calibration and verification results from Santhi et al (2001) 
for the Hico Watershed in Texas compared with monthly results for the 
Cannonsville SWAT2000 model in this study (in brackets). ....................................99 

Table 7.3.1.  Monthly sediment load and peak daily flow prediction errors for all 
months over the calibration and validation period in which the total 
phosphorus load was not predicted by the model within ±2000 kg.........................106 

Table 10.2.1.  Correlation analysis of precipitation depths at Walton, Delhi and 
Deposit for the original data and the corrected data at Walton after January 
1998..........................................................................................................................116 

Table 10.2.2.  Precipitation adjustments at Walton prior to January 1, 1998. .................117 
Table 10.2.3.  Climate input data adjustments and justification for large 

precipitation events. .................................................................................................120 
Table 10.4.1.  Analysis of (A) Walton and (B) Delhi climate station data for range 

of possible SFTMP values. ......................................................................................123 



 
 

xiv

List of Acronyms used in Report: 

Table I.  List of institutional acronyms. 
Acronym Full name 
ARS Agricultural Research Service 
ASAE American Society of Agricultural Engineers 
DCAP Delaware County Action Plan 
NRCS Natural Resource Conservation Service 
NYCDEP New York City Department of Environmental Protection 
NYSDEC New York State Department of Environmental Conservation 
SCS Soil Conservation Service 
USDA United States Department of Agriculture 
USGS United States Geological Society 
WAP Watershed Agriculture Program for NYC watersheds 
WRI NY State Water Resources Institute at Cornell University 

 



 
 

xv

Table II.  Additional acronyms used in report. 
Acronym Full name 

AP2 Labile P in the soil in mg labile P/kg soil 
AVSWAT SWAT2000 Arcview Interface 
AU Animal Units 
BS Base Saturation as a percentage 
D Percent Difference 
DEM Digital Elevation Map 
DMR National Pollutant Discharge Elimination System Discharge 

Monitoring Report 
ENS Nash-Suttcliffe Coefficient 
GIS Geographic Information System 
HRU Hydrologic Response Unit 
MUSLE Modified Universal Soil Loss Equation 
N Nitrogen 
P Phosphorus 
PP Particulate Phosphorus 
PSP Soil Phosphorus Sorption Coefficient in SWAT model 
QAPP Quality Assurance Project Plan 
r2 Coefficient of Determination 
Snoi Snow water equivalent depth (mm) of an HRU snowpack on day i 
SRP Soluble Reactive Phosphorus 
TSS Total Suspended Sediments 
SSURGO Soil Survey Geographic Database 
STATSGO State Soils Geographic Database 
SurQi Surface runoff depth (mm) from an HRU on day i 
SWAT Soil and Water Assessment Tool 
TDP Total Dissolved Phosphorus 
USLE Universal Soil Loss Equation 
WBDR West Branch Delaware River 
WQ Water Quality 
WWTP Wastewater Treatment Plant 
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Developer of SWAT 
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Department of Animal Science 

Sr. Extension Associate 
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Outline of Report 
 
This document is written to explain a model analysis of the Cannonsville Basin for 
describing the sources and transport of phosphorus to the Cannonsville Reservoir.  The 
methodology described can be useful in other nutrient transport modeling studies.  The 
Executive Summary (Section 1) and Case Study Introduction (Section 2) are general and 
are intended to be accessible to policy makers as well as to hydrologic scientists and 
modelers.  Readers may refer to the Executive Summary of the report (Section 1) for a 
summary of model performance.  Policy makers may be specifically interested in the 
example modeling applications listed in Section 1.1 that demonstrate the understanding 
and benefits gained by developing a watershed model.  The remainder of the report 
details the hydrologic science driving the model predictions, model inputs and model 
output comparisons with measured data. 
 
The report sections after Section 2 are written mainly for hydrologic scientists and 
modelers.  Section 3 introduces the watershed model used in this work (SWAT) and 
highlights previous SWAT applications in the US.  The extensive input data descriptions 
in Section 4 are written to be detailed enough to be useful for other modelers developing 
SWAT model inputs for this basin.  As such, some modelers may need to refer the 
SWAT model documentation (see SWAT references in Section 3) in order to gain a 
complete understanding of specific model inputs.  Section 4, outlines the development of 
model inputs in a way that should be helpful to modelers developing similar types of 
model inputs for the Cannonsville Basin or other NYC Watersheds.  Furthermore, 
agricultural stakeholders in the basin should find interest in the material in the 
agricultural input sections (Sections 4.7, 4.9.1).  Section 5 outlines all modifications to 
the original watershed model source code that were mainly required to improve the 
representation of physical processes simulated by the model.  Section 6 provides an 
extensive array of spatially and temporally distributed model calibration and then 
validation results.  Section 7 compares model performance to other SWAT modeling 
applications, critically evaluates some of the model shortcomings and then briefly 
summarizes future modeling work.  Section 8 is the report conclusions and Section 9 lists 
all references.   
 
The Appendix to this document (Section 10) contains more detailed descriptions of some 
of the material in this report as well as other supplementary information.  Tables I and II, 
which immediately precede this outline, define the various institutional acronyms and 
other general acronyms used throughout this report.  All personal communication 
references cited in this report, along with their affiliations, are listed in Table III, which 
follows Table II.  The affiliations for each reference are also provided to show their 
qualifications and demonstrate that they are a credible reference. 
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1 Executive Summary 
 
This report describes a spatially distributed watershed model of the Cannonsville Basin 
that has been developed using SWAT2000 (Neitsch et al. 2001a) to describe phosphorus 
transport to the Cannonsville Reservoir in upstate New York.  SWAT2000 was 
developed by the Agricultural Research Service of the United States Department of 
Agriculture and is distributed by the US Environmental Protection Agency for watershed 
management.   
 
The Cannonsville Reservoir is a New York City water supply reservoir that has 
historically experienced severe water quality problems due to excessive phosphorus 
loading.  Effective phosphorus management is crucial in the Cannonsville Basin because 
economic activity in Delaware County (which contains nearly all of the watershed area) 
is subject to multiple water quality regulations including a recent Total Maximum Daily 
Load (TMDL) assessment for phosphorus (Kane 1999).  Additional regulations are 
imposed on the County through a Memorandum of Agreement (MOA) with New York 
City if reservoir phosphorus concentrations become too high.  These MOA regulations 
can restrict future economic growth in the basin when the growth directly or indirectly 
increases phosphorus loading to surface waters in the basin.   
 
Among many other processes represented in SWAT2000 (see Section 3), SWAT2000 
simulates through time the daily soil water balance, growth of plants, build-up of 
nutrients in the soil due to agricultural management practices and subsequent erosion and 
transport of nutrients to streams and rivers.  The soil nutrient mass balance in SWAT2000 
results in temporally varying levels of soil nutrients due to either nutrient depletion or 
excessive nutrient application rates.  The rate of phosphorus export from soils to rivers 
increases as soil phosphorus levels increase.  The simulated mass balance of soil 
phosphorus in SWAT2000 is an improvement in physical process representation over 
simplified watershed loading function models like GWLF (Haith et al. 1992) that assume 
constant soil nutrient levels over the period of time simulated by the model.  The spatially 
distributed nature of SWAT2000 means that the above processes are represented 
independently in different regions across the basin. There are 758 different regions 
(called HRUs) in this application.  A set of SWAT2000 inputs representative of the basin 
has been developed and successfully tested against measured flow and water quality data.  
The model will be used to spatially and temporally evaluate the performance of a wide 
range of phosphorus management options in order to help local decision-makers allocate 
resources and efficiently reduce phosphorus loading to the reservoir.   
 
The overall goal of the application of SWAT to the Cannonsville Watershed has three 
parts: 

a. To understand the phosphorus budget, its inputs, outputs to watercourses, 
and storage within the watershed; 

b. To identify and evaluate quantitatively the effects of management options 
on phosphorus loading to the Cannonsville Reservoir; 
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c. To assist in evaluating the results of the adoption and implementation of 
management options in improving water quality in the Basin. 

 
In addition to overall goal above, this modeling work and report has other general 
benefits such as: 

• This comprehensive report completely documents the modeling work for 
Delaware County and will serve as a guide to transferring all data files associated 
with this modeling effort for those who would like to use the model in the future. 

• Model phosphorus inputs are summarized to be useful to local decision-makers 
even without utilization of the model.  This will help facilitate understanding and 
communication between all stakeholders. 

• The basis for phosphorus input information is outlined in sufficient detail for 
future modelers in the basin to repeat the input development when new input data 
become available or if a future model of the basin (related to or independent of 
SWAT) is developed. 

• Spatially distributed modeling approach can also be utilized to help direct future 
monitoring efforts in the basin. 

• Provides a means for investigating assumptions made in previous modeling and 
monitoring work that currently form the basis of the regulatory framework in the 
basin. 

• SWAT basin modeling approach provides the scientific framework for compiling 
and integrating the Delaware County Action Plan (Delaware County Board of 
Supervisors 1999).The modeling effort will hopefully help to improve the general 
SWAT2000 watershed model. 

 
Model Input 
 
Model development first consisted of developing extensive model inputs.  Most input 
development focused on input information about phosphorus that was derived mainly 
from basin specific data.  For example, model phosphorus inputs (see Section 4) that 
were assigned based on available basin specific data included wastewater treatment plant 
phosphorus discharges, spatially distributed groundwater soluble phosphorus 
concentrations, cattle population estimates, manure production factors, manure 
phosphorus characteristics and initial soil phosphorus levels.  Agricultural management 
practices are also specified based on generalized management practices representative of 
Delaware County.   
 
SWAT2000 Model Modification  
 
In addition to standard model parameter adjustments, a number of improvements were 
made to the default SWAT characterization of the basin (e.g. default model input or 
parameter settings outlined in Section 6.3.2).  Furthermore, the SWAT2000 model was 
enhanced in this modeling effort by a few modifications to the model equations that were 
required to better represent processes in the Northeast US (see Section 5).  The final stage 
of model development involved selecting a relatively small number of model parameters 
for calibration of the model predictions relative to the monitored data (see Section 6). 
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Calibration and Validation Results 
 
The model is calibrated and validated against river water quality monitoring data over a 
number of years and at multiple locations within the basin.  For streamflow, the model is 
calibrated against measured USGS flow data from 1994 to 2000 at six different locations 
in the basin and validated at Walton (which drains about 80% of the basin area) from 
1990 to 1993.  Suspended sediment, total dissolved phosphorus and particulate 
phosphorus loading are calibrated against measured data from the New York State 
Department of Environmental Conservation (NYSDEC 2001) from 1994 to 2000 at two 
locations in the basin (Beerston and Town Brook) and validated at Beerston from 1991 to 
1993.  In addition, the spatially distributed performance of the model for total phosphorus 
is qualitatively checked against periodic water quality sampling data distributed across 
the basin from 1990 to 1999 and provided by New York City Department of 
Environmental Protection (NYCDEP Unpublished data).   
 
Model calibration involves the determination of model parameter values that result in 
model predictions that best reproduce a set of measured data (e.g. daily flows, monthly 
total phosphorus loads).  Model validation is the process of testing model performance of 
the calibrated model parameter set against an independent set of measured data.  The 
measured validation and calibration data sets cover different time periods or involve 
separate spatial locations.  Good validation results support the usefulness of the model to 
predict future conditions (i.e. phosphorus loading) under alternative management 
scenarios and future climates.  Since validation assesses the performance of the calibrated 
model parameter set against a set of independent measured data, it is typically more 
difficult to get good validation performance in comparison to calibration.   
 
Table 1.0.1 summarizes the model predictive performance measures for flow at Walton 
and sediment, total dissolved phosphorus and total phosphorus at Beerston over the 
model calibration and validation period.  The percent difference (D), coefficient of 
determination (r2) and Nash-Suttcliffe simulation efficiency (ENS) (Nash and Suttcliffe 
1970) are the three performance measures used to assess model predictions relative to 
measured data.  Briefly, D measures how well the model predicts the average of the 
measured data while the r2 and ENS are alternative measures of how well the model 
predicts the observed trends through time in the measured data.  A value of 0% is best for 
D while a value of 1.0 is the maximum or best value for both r2 and ENS.  All three 
performance measures are defined mathematically in Section 10.3. 
 
Model performance with respect to daily flow predictions during calibration is quite good 
while model performance in validation is very similar to the calibration performance.  At 
the main flow gauging in the basin (Walton) the calibration results showed the model 
predicted average flow within 1.0% of the measured average flow while the r2 and ENS 
values were 0.80 and 0.79, respectively.  The r2 and ENS values approaching 1.0 indicate 
good results.    Validation results at Walton showed the model predicted average flow 
within 4.5% of the measured average flow the r2 and ENS values were 0.79 and 0.78, 
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respectively.  Note that the monthly ENS for prediction at Walton was 0.89 for calibration 
and 0.94 for validation. 
 

Table 1.0.1.  Summary of SWAT2000 model performance measures for the calibration 
and validation periods.  

Modeled Quantity (simulation period) Percent (%) 
Difference1 r2 ENS 

Daily Flow (Calibration) 1.0 0.80 0.79 
Daily Flow (Validation) 4.5 0.79 0.78 
Monthly Sediment (Calibration) -2.2 0.71 0.66 
Monthly Sediment (Validation) -26.5 0.66 0.51 
Monthly Total Dissolved Phosphorus (Calibration) 16.1 0.77 0.73 
Monthly Total Dissolved Phosphorus (Validation) 13.4 0.93 0.90 
Monthly Total Phosphorus (Calibration) -6.1 0.72 0.68 
Monthly Total Phosphorus (Validation) -9.2 0.70 0.61 
1. A positive percent difference means the model over-predicted the average while a 

negative percent difference means the model under-predicted the average. 
 
The measured sediment and phosphorus loading data are estimated from samples that are 
not taken every day.  Therefore, the model was calibrated based on a monthly, rather than 
daily, time step.  Model performance with respect to monthly sediment predictions during 
calibration and validation is reasonable based on comparisons with performance levels in 
other studies (see Section 7.1.1).  At the main water quality station in the watershed 
(Beerston), located approximately 8 km downstream of Walton, the calibration results 
showed the model predicted the average monthly sediment load within 2.2% of the 
measured average monthly sediment load while the r2 and ENS values were 0.71 and 0.66, 
respectively.  Validation results at Beerston showed the model predicted the average 
monthly sediment load within 26.5% of the measured average monthly sediment load 
while the r2 and ENS values were 0.66 and 0.51, respectively. 
 
Model performance with respect to monthly phosphorus loading predictions during 
calibration is generally good while model performance in validation is better than 
calibration performance for total dissolved phosphorus.  The calibration and validation 
performance measures for total dissolved phosphorus are compared in Table 1.0.1.  The 
calibration and validation total phosphorus results at Beerston show that total phosphorus 
loading predictions are very good.  At Beerston, the calibration results showed the model 
predicted the average monthly total phosphorus load within 6.1% of the measured 
average monthly total phosphorus load while the r2 and ENS values were 0.72 and 0.68, 
respectively.  Validation results at Beerston showed the model predicted the average 
monthly total phosphorus load within 9.2% of the measured average total phosphorus 
load while the r2 and ENS values were 0.70 and 0.61, respectively.  Particulate phosphorus 
results closely resemble the suspended sediment results since particulate phosphorus is 
carried in the stream as suspended sediment. 
 
Sections 6.4 and 6.5 examine the performance of the model in more detail than the above 
performance summary.  Relative to similar published modeling studies with available 
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performance statistics, the performance of the Cannonsville Basin model is satisfactorily 
comparable (see Section 7.1).  Furthermore, some of the observed model limitations and 
inaccuracies are discussed in Sections 7.2 and 7.3.  Overall, the model predictive 
performance is observed to be good.  Therefore, the model can be used with some 
confidence to evaluate phosphorus loading to the Cannonsville Reservoir under future 
climate and/or management conditions.   
 

1.1 Model Applications and Analyses 

This section focuses on providing some example applications and analyses with the 
Cannonsville Basin model.  These demonstrate the utility of the SWAT model for 
evaluating future phosphorus management options.   
 
1.1.1 Application 1: Comparing Measured and Modeled Annual Phosphorus Loads 

The current NYSDEC water quality monitoring station at Beerston provides phosphorus 
concentrations that are used by NYSDEC to calculate annual phosphorus loading 
estimates from areas upstream of Beerston.  The Beerston water quality station monitors 
the water quality from approximately 80% of the Cannonsville Basin.  The measured 
phosphorus loading data from Beerston are compared with phosphorus loading at 
Beerston that is predicted by the SWAT model in Figure 1.1.1.  The results in Figure 
1.1.1 are presented on an annual water year basin from 1992 through 2000.  A water year 
is from October 1 through September 30.  
 
The comparison in Figure 1.1.1 demonstrates a few important points.  First of all, the 
SWAT model predicts phosphorus loads that approximate the temporal pattern of 
measured phosphorus loads.  For example, the model correctly predicts that 1996 has the 
highest phosphorus loading and 1995 has the lowest phosphorus loading.  The ability of 
the model to predict historic phosphorus loading reasonably well is required in order to 
have confidence that the model can be used to predict future phosphorus loading.  
Secondly, there are some years in which the model predictions are not that close to 
measured phosphorus loading, most notably 1996.  Although the model correctly predicts 
1996 to have the highest phosphorus loading of any water year between 1992 and 2000, 
the model predicted load is only 43% of the measured load.  During this year the 
devastating flood of Jan. 19-20, 1996 occurred.  Since SWAT is not designed to represent 
such extreme flooding it would be unsound to attempt to calibrate the model for such an 
extreme event.  See Section 6.4.2 for a brief description of this flood and further 
explanation of why the model under-predicted phosphorus loading. 
 
A purpose in this study is to develop a model that can be used to evaluate future 
phosphorus loading relative to a regulatory phosphorus loading standard (called the Total 
Maximum Daily Load, or TMDL, allowable load) under various phosphorus management 
strategies.  The model accurately predicts that annual phosphorus loading from the 
extreme Jan. 1996 event will result in phosphorus loading to the reservoir that greatly 
exceeds the TMDL allowable load of 46,944 kg.  The last important point presented in 
Figure 1.1.1 is that when the average annual phosphorus loading rates from 1992-2000, 
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not including Jan. 1996, are compared, the SWAT model is observed to under-predict 
measured phosphorus loading by about 7%.  This small bias should nevertheless be 
accounted for when the model is used to evaluate whether future phosphorus 
management scenarios result in TMDL compliance.  In other words, SWAT estimated 
total phosphorus loading to the Cannonsville Reservoir should be scaled up to adjust for 
this under-prediction.  Failure to adjust for this model tendency could lead to overly 
optimistic predictions of future phosphorus management scenario effectiveness. 

Figure 1.1.1.  Measured and SWAT predicted annual total phosphorus loading at 
Beerston by water year (Oct. 1 – Sept 30) from 1992 to 2000.  1996 contained an extreme 

event as discussed in the text above. 
 
Finally, it should be mentioned that the measured total phosphorus loads at Beerston are 
actually estimated loads.  Actual total phosphorus (and sediment) loads are difficult if not 
impossible to measure with certainty as discussed in Section 6.1.  Therefore, we cannot 
assume that the measured phosphorus loads are always accurate. 
 
1.1.2 Application 2: Estimating Phosphorus Loading from Different Land Uses 

The model provides estimates of sediment and phosphorus non-point source (NPS) 
loading rates to streams for each land use.  Although other factors impact model 
predictions (e.g. land slope and soil type), it can be useful to determine the relative 
importance of land use in the basin with respect to sediment and phosphorus loading to 
surface waters.  As an example, model output over the period from 1994 to 2000 is 
analyzed.  Table 1.1.1 shows the loading rates of sediment and total phosphorus to 
streams from various land uses in the basin.  For a description of the land uses in Table 
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1.1.1 see Section 4.2.  Clearly, the model predicts that corn sediment and phosphorus 
loading rates are generally more than an order of magnitude higher than loading rates 
from other land uses.  Although the corn sediment loading rate is high, it is close to 
results in previous modeling by the NYCDEP (Schneiderman et al. 1998) where corn 
sediment loading rates in the Cannonsville Basin were modeled at about 5.2 mt/ha.  
However, the SWAT modeled average corn sediment loading rate is less than the average 
annual sediment loading rate for continuous corn measured at 13 mt/ha in a long-term 
field study (Ghidey and Alberts 1998).  The soil type and management in this field study 
were very similar to the conditions simulated for corn in this SWAT model application.   
Forested lands generate the lowest sediment and phosphorus loads of all land uses. 
 
Table 1.1.1.  Basin-wide area-weighted average annual SWAT predicted loading rates to 

the surface waters in the Cannonsville Basin. 
Land use Sediment load (mt1/ha) Phosphorus load2 (kg/ha) 
Pasture 0.16 0.59 

Hay 0.08 0.36 
Corn 7.52 16.66 

Grass-shrub 0.07 0.20 
Idle Agriculture 0.10 0.25 
Deciduous forest 0.04 0.04 
Coniferous forest 0.04 0.03 

Urban 1.73 1.04 
1. mt is metric tons, which is equivalent to 1000 kg. 
2. The phosphorus load is total phosphorus and includes groundwater phosphorus 

delivered to surface waters from each land use. 
 
The data in Table 1.1.1 are informative when adjusted to reflect the areas of the land uses 
such that relative total loading rates can be evaluated.  Figure 1.1.2 shows the results of 
this adjustment and compares the relative magnitudes of land area, sediment and 
phosphorus loading across the eight land uses.  Figure 1.1.2 shows that even though corn 
only covers about 1% of the basin area, the extremely high sediment and phosphorus 
loading rates per hectare in Table 1.1.1 result in corn predicted as accounting for 58% of 
the basin-wide NPS sediment and phosphorus load to surface waters.  Conversely, 
although deciduous forests cover 53% of the basin area, the model predicts that 
deciduous forests account for only 15% of the basin sediment load and 7% of the basin 
phosphorus load.  This is due to the very small unit area loading rates for forests in Table 
1.1.1. 
 
The previous phosphorus loading summaries by land use are aggregated together in more 
general categories and then compared with the other sources of phosphorus in the SWAT 
model as shown in Figure 1.1.3 for 1994-2000.  Active agricultural land in Figure 1.1.3 is 
composed of corn, hay and pasture land use.  The forest category includes both deciduous 
and coniferous forests.  The idle and successional agricultural land use category in Figure 
1.1.3 combines the grass-shrub land use and idle agricultural land use categories in 
Figure 1.1.2.  Note that in contrast with the previous NPS phosphorus loading 
comparisons in Table 1.1.1 and Figure 1.1.2, the groundwater phosphorus in Figure 1.1.3 
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is now disassociated from each land use and the groundwater load is simply summed 
together across all land uses in the basin.  Thus, phosphorus loading from other land uses 
in Figure 1.1.3 do not include groundwater phosphorus.   

Figure 1.1.2.  SWAT simulated percentage of total land area, NPS sediment and NPS 
phosphorus load to streams for each land use category from 1994-2000. 

Figure 1.1.3.  Relative contributions from all phosphorus sources to the total phosphorus 
loading to streams and rivers in the Cannonsville Basin as simulated by SWAT from 

1994-2000. 
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Figure 1.1.3 shows the model predictions of the relative contributions from all 
phosphorus sources to the total phosphorus loading to basin rivers.  Groundwater 
phosphorus accounts for 8% of the basin-wide total phosphorus loading to rivers in the 
Cannonsville Basin.  Surface runoff from active agricultural land is responsible for 68% 
of the total phosphorus loading to rivers in the Cannonsville Basin.  The point sources in 
the SWAT model (see Section 4.5) include wastewater treatment plants (WWTPs) and 
account for 9% of the phosphorus loading to rivers.  Note that due to the tightened water 
quality standards imposed on WWTPs, the point sources currently account for 
significantly less than 9% of the total phosphorus loading to rivers.  Surface runoff from 
urban lands accounts for only 1% of the total phosphorus load to rivers because the urban 
land area in the basin is very small.  Forests generate very little surface runoff in the 
basin.  Therefore, only 4% of the total phosphorus load to rivers is derived from forest 
surface runoff.  Note that most of the groundwater phosphorus comes from groundwater 
generated underneath forests. 
 
There are other much less significant sources of phosphorus in the Cannonsville Basin 
that are not explicitly modeled in the current SWAT model of the basin.  These include 
septic systems and highway runoff phosphorus.  Although septic system phosphorus 
loading is not explicitly modeled, groundwater phosphorus loading implicitly includes at 
least a portion the septic system phosphorus loaded to basin surface waters based on the 
methodology for setting groundwater phosphorus concentrations in the model (see 
Section 4.6).  The phosphorus loading to surface waters from urban land includes the 
phosphorus loading in urban stormwater and at least a portion of the phosphorus derived 
from highway runoff.  However, since most of the highways in the basin are not 
identified as urban land in the spatial data, SWAT does not explicitly model the 
phosphorus loading from highways.  The SWAT model uses a simplified approach for 
estimating urban phosphorus loading.  In addition, no data were available to evaluate the 
accuracy of SWAT urban land use loading estimates.  Preliminary loading estimates 
before modeling with SWAT showed that urban stormwater and highway runoff 
phosphorus were quite small relative to other estimated sources.  The magnitude of these 
preliminary estimates suggests that urban stormwater might account for 2% of the total 
reservoir phosphorus load while highway runoff phosphorus could account for, at the 
very most, 7% of the total reservoir phosphorus load.  It is however, important to note 
that highways can act as a conduit that carries phosphorus otherwise destined for the 
basin streams by natural flows (e.g. carrying runoff from adjacent forested land), rather 
than act purely as a source of phosphorus.  The current modeling treatment for septic 
systems, urban land and highways is deemed appropriate for this modeling study given 
the lack of available data and the relatively low estimated phosphorus loading rates from 
these sources.   
 
Future modeling of the Cannonsville Basin with SWAT could explicitly incorporate 
septic systems, highways and a more detailed model of urban lands if this is deemed 
worthwhile.  
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1.1.3 Application 3:  Basin-wide Phosphorus Loading Estimates to Reservoir 

This application shows that the SWAT model can be used to predict phosphorus loads for 
the unmonitored area (measured loads are unavailable) of the Cannonsville Basin (see 
Figure 1.1.4) that are considered more appropriate than an alternative method based only 
on extrapolating monitoring data.  In fact, the SWAT model predicts substantially lower 
phosphorus loads entering the reservoir from these unmonitored areas than estimates 
derived from the alternative method.  The analysis is outlined in detail in the following 
paragraphs. 
 
The current NYSDEC water quality monitoring station at Beerston provides annual 
phosphorus loading estimates to the reservoir from areas upstream of Beerston.  
However, the Beerston drainage area is just under 80% of the total drainage area of the 
basin (see Figure 1.1.4).  Thus, loading for the other 20% of the basin must be estimated.  
Figure 1.1.4 outlines the areas of the basin that are measured (or monitored) and 
unmonitored for phosphorus loading.  In the absence of actual monitoring data, probably 
the most reliable way to estimate the loading from unmonitored areas is to use a spatially 
distributed model such as SWAT to predict the loading.  This approach takes into account 
the intrinsic differences in land uses and phosphorus sources between the measured  and 
unmonitored areas shown in Figure 1.1.4.   
 
Evaluation of TMDL compliance requires estimating total annual loads to the reservoir.  
The current phosphorus TMDL for the basin using a reservoir concentration of 20 µg/L is 
53,650 kg per year while the available or allowable load to the reservoir (which is the 
TMDL minus a margin of safety) is 46,944 kg/yr (see Kane 1999).  To comply with the 
TMDL, total loading to the reservoir must be less than the allowable load.   
 

Figure 1.1.4.  Measured and unmonitored portions of the Cannonsville Basin. 
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Given the available monitoring data at Beerston and the developed SWAT model there 
are two relatively simple methods for estimating basin-wide total phosphorus loading to 
the Cannonsville Reservoir in previous years.  The first method involves utilizing only 
the NYSDEC monitored phosphorus loading at Beerston and then extrapolating the 
estimated NPS phosphorus load at Beerston to the unmonitored subbasins by assuming 
the NPS phosphorus loading per unit area of the unmonitored subbasins is assumed equal 
to the measured NPS phosphorus loading per unit area of the Beerston drainage area.  
This method will be referred to as the data extrapolation approach.  The data 
extrapolation approach has been previously used to estimate basin-wide total phosphorus 
loading to the Cannonsville Reservoir (Delaware County Board of Supervisors 1999).  In 
the absence of any watershed model, the data extrapolation approach based completely 
on monitoring data is probably the best approach.  A second method is possible when a 
spatially distributed watershed model like SWAT is used to model phosphorus loading 
from the unmonitored subbasins.  In this case, when both Beerston monitoring data and 
model output from SWAT are available, the measured phosphorus load at Beerston and 
the SWAT simulated phosphorus load from the unmonitored subbasins (e.g. downstream 
of Beerston) can simply be added together to estimate the total phosphorus load to the 
Cannonsville Reservoir.  This approach will be referred to as the data and model 
approach.  Of course, in the absence of any monitoring data at Beerston, a third method 
to estimate basin-wide phosphorus loading to the reservoir would be to use the SWAT 
model to predict phosphorus loading from the entire reservoir basin. 
 
Figure 1.1.5 compares the TMDL allowable load to the estimated total phosphorus loads 
to the Cannonsville Reservoir derived from the data and model approach and the data 
extrapolation approach for water years 1992 through 2000.  The data extrapolation 
approach estimates reservoir phosphorus loading levels that are always higher than the 
phosphorus loading estimated when the measured data are combined with the SWAT 
model phosphorus loading for the unmonitored subbasins.  On average, from 1992-2000, 
the data extrapolation approach estimates the unmonitored subbasin phosphorus load to 
be 11,600 kg/yr while the data and model approach estimates only 3,500 kg/yr.  Thus, the 
data extrapolation approach estimates 8,100 kg/yr more phosphorus (or 230%) than the 
SWAT model for the unmonitored subbasins.  This finding is particularly important 
because an estimate of the phosphorus loading from the unmonitored subbasins is 
required to determine if there is a TMDL violation.  For example, consider the reservoir 
phosphorus loading estimates for the year 2000 in Figure 1.1.5.  The measured data 
extrapolation approach suggests the TMDL allowable load was violated by 
approximately 3,500 kg while the measured data and SWAT approach suggests that the 
loading was below the TMDL allowable load by approximately 1900 kg. 
 
A closer examination of the available spatial input data disaggregated by measured 
(Beerston drainage area) and unmonitored subbasins demonstrates why the measured data 
extrapolation approach generates phosphorus loading estimates to the reservoir that 
appear to be much too high.  First of all, land uses in the two regions are significantly 
different.  For example, forested land makes up 72% of the area in the unmonitored area 
while forested land in the Beerston drainage area accounts for only 57% of the area.  The 
increased forested proportion of area in the unmonitored subbasins replaces agricultural 
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land.  Available cattle population data (see Section 4.7.1.1) show a substantially lower 
density of cattle, and thus reduced manure application, in the unmonitored subbasins.  
Also, no urban land use occurs in the unmonitored subbasins.  Table 1.1.1 shows that 
significantly different land uses can lead to significantly different loading rates.  These 
intrinsic differences in land use and phosphorus inputs between the Beerston drainage 
area and unmonitored subbasins are incorporated in SWAT model predictions but are not 
incorporated in the data extrapolation approach.  These results show that predictions of 
the phosphorus loading from the unmonitored subbasins must take into account the 
specific land use and phosphorus inputs found in the unmonitored subbasins. 
 

Figure 1.1.5.  Estimated total phosphorus loads to the Cannonsville Reservoir from 
monitoring data and a combination of monitoring data and SWAT model predictions for 

water years (Oct. 1 – Sept 30) from 1992 to 2000. 
 
1.1.4 Application 4: Spatial Variation in Phosphorus Loading   

The current NYSDEC water quality monitoring station at Beerston monitors the 
cumulative phosphorus loading of all areas upstream of Beerston.  However, this 
monitoring does not give any insight into the relative magnitudes of the phosphorus 
loading rates in the various locations or subbasins within the Beerston drainage area.  
With a spatially distributed model like SWAT, independent model predictions of 
phosphorus loading are made for subregions (called subbasins) within the watershed 
being modeled.  Therefore, an area that has a relatively high percentage of agricultural 
land will be predicted to generate more phosphorus loading to streams than an equivalent 

46944

0

10000

20000

30000

40000

50000

60000

70000

80000

1992 1993 1994 1995 1996 1997 1998 1999 2000

Water Year

To
ta

l P
ho

sp
ho

ru
s 

to
 R

es
er

vo
ir 

(k
g)

Measured Data at Beerston & Data Extrapolation for Unmonitored Subbasins
Measured Data at Beerston & Simulated (SWAT model) for Unmonitored Subbasins
TMDL Allowable Load

173,000 kg

146,000 kg



 
 

xxx

area of forests.  Being able to identify critical areas of the basin where phosphorus 
loading is highest allows decision-makers to focus on the most significant problem areas 
and therefore make the most efficient management decisions. 
Figure 1.1.6 shows the NPS total phosphorus load from each subbasin per unit area of 
each subbasin.  Figure 1.1.6 demonstrates that upstream subbasins (especially subbasins 
1, 4, 6 and 30) tend to have the highest NPS total phosphorus loading rates per unit area 
while many of the smaller subbasins around the reservoir have the lowest NPS total 
phosphorus loading rates per unit area.  The spatial output displayed in Figure 1.1.6 is a 
sample of the spatial information that is output from the SWAT model.  The effectiveness 
of management practices can also be evaluated spatially.  The spatial output from SWAT 
can be used by Delaware County to locate high intensity phosphorus loading areas and 
also determine the areas in the basin that are predicted to respond best to various 
management practices. 

Figure 1.1.6.  Average annual non-point source (NPS) total phosphorus loading rates per 
hectare of subbasin for the Cannonsville Basin from 1994-1999. 

 
1.1.5 Future Modeling Analyses 

The preceding analyses serve as informative examples to both modelers/scientists and 
decision-makers.  There are a number of other useful modeling analyses (see Section 7.4) 
that can be conducted.  For example, a critical examination of model uncertainties may be 
important to take into account when evaluating model predictions for management 
decisions.  A later report will discuss and compare forecasts of future phosphorus loading 
under a variety of potential management strategies. 
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1.2 Summary 

In summary, the validation results are encouraging.  SWAT also gives a useful account of 
the spatial distribution of the loadings of phosphorus within the basin.  The previous 
model applications demonstrate a few of the useful and insightful findings that were only 
made possible by the SWAT modeling approach employed in this study. 
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2 Case Study Introduction 
 
The purpose of this report is to provide a comprehensive account of the current watershed 
modeling effort of the Cannonsville Basin initiated under the Delaware County Action 
Plan (DCAP) (Delaware County Board of Supervisors 1999).   More specifically, this 
document reports the status of the modeling efforts completed as of September 2003.  
This version of the modeling report is the final version of a draft report that was peer 
reviewed by 5 agencies in the summer of 2002.  The intended audience of this current 
report is experienced watershed modelers and scientists and those with prior knowledge 
of input or monitoring data specific to the Cannonsville Basin.  However, Sections 1 and 
2 are written for a more general audience. 
 
The Cannonsville Reservoir is one of NY City’s largest drinking water reservoirs and is 
located in Delaware County in the Catskill region of Upstate NY.  Figure 1.2.1 shows a 
general map of the Cannonsville Basin.  The 1178 km2 Cannonsville Reservoir Basin is 
primarily forest and agricultural while less than 0.5% of the basin is urban.  The major 
villages in the basin are Walton, Delhi, Hobart and Stamford.  The elevation of the basin 
varies from 285 m above mean sea level in the lowland areas to around 995 m for the 
hilltops and the average slope of basin lands is approximately 19%. 
 

Figure 1.2.1.  The Cannonsville Basin in NY State. 
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2.1 Purpose of Modeling 

The Cannonsville Reservoir has historically experienced severe water quality problems 
due to excessive phosphorus loading.  In addition to improving drinking water quality for 
New York City residents, effective phosphorus management is crucial in the 
Cannonsville Basin for two other reasons.  First, Delaware County (containing nearly all 
of the watershed area), is subject to multiple water quality regulations including a recent 
Total Maximum Daily Load (TMDL) assessment for phosphorus (Kane 1999).  
Additional regulations are imposed on the County through a Memorandum of Agreement 
(MOA) with New York City (http:// www.cwconline.org/about/moa/moaindex.htm) if 
reservoir phosphorus concentrations become too high.  These MOA regulations have in 
the recent past triggered a ‘phosphorus restriction’ in Delaware County, which restricts 
future economic growth in the basin when the growth directly or indirectly increases 
phosphorus loadings.  Secondly, if water quality levels in New York City’s reservoirs are 
not satisfactory, New York City may need to construct a water filtration plant with costs 
approaching 10 billion dollars. 
 
Whole-basin scale modeling of phosphorus will assist in identification, adoption and 
evaluation of management measures proposed in the Delaware County Action Plan 
(DCAP) (Delaware County Board of Supervisors 1999).  The DCAP is available at 
http://wri.eas.cornell.edu/projects/nycwshed/delaware/.  Results from the model will help 
evaluate and guide the phosphorus reduction program.  In addition, the modeling work 
will predict reductions in phosphorus loadings that can otherwise only be identified over 
a considerably longer time frame by monitoring.  This modeling work has been done with 
reference to previous TMDL modeling work of the Cannonsville Basin by New York 
City Department of Environmental Protection (NYCDEP) (Schneiderman et al. 1998, 
Schneiderman et al. 2002) and in conjunction with the New York State Department of 
Environmental Conservation (NYSDEC) tributary monitoring and loading analyses. 
 
The main goal of this modeling is to describe and explain the cause and effects of 
existing and prospective land uses on loading of phosphorus delivered to the reservoir. 
Meeting this goal initially requires the development and validation against measured data 
of a suitable watershed model.  Therefore, the main purpose of this report is to outline the 
development of the SWAT Cannonsville Basin Model and then demonstrate that model 
performance is reasonably accurate to evaluate various phosphorus management options 
in the basin. 
 

2.2 Quality Assurance 

The project principals filed a Quality Assurance Project Plan (QAPP) with NYSDEC and 
US EPA Region 2 (NYSWRI and DCPD 2001).  The QAPP is available at 
http://wri.eas.cornell.edu/projects/nycwshed/delaware/. 
 
The QAPP indicates that the primary success criterion for watershed modeling will be the 
acceptance of the calibrated model for strategic planning purposes, such as allocation of 
implementation funds across source categories.  The acceptance must come from the 

http://www.cwconline.org/about/moa/moaindex.htm
http://www.cfe.cornell.edu/wri/projects/nycwshed/delaware/default.html
http://www.cfe.cornell.edu/wri/projects/nycwshed/delaware/
http://www.cfe.cornell.edu/wri/projects/nycwshed/delaware/
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Scientific Support Group, NYSDEC and other state regulators, NYCDEP, and US EPA.  
The county agencies and municipal elected officials must also be comfortable that the 
model gives a reasonable representation of local conditions.  The work leading to this 
report is intended to provide a scientifically sound model application and sufficient 
understanding within constituent agencies to put the work to productive use within the 
various watershed management programs. 
 
The QAPP committed to several aspects of model application and consultation, which 
have been followed closely: 
 

• The basin model has been calibrated using standard techniques against hydrologic 
data collected by USGS (United States Geological Society) at six gauge stations, 
and water quality data collected by NYSDEC at two stations.  Bi-weekly 
phosphorus sampling results from many NYCDEP water quality stations have 
also been taken into account in developing model inputs and qualitatively 
assessing model performance. 

• The calibration process used graphical representations (maps and time series 
plots) and standard mathematical measures of goodness of fit between measured 
and simulated time series. 

• Co-operator reviews have been initiated, via this report and meetings. 
• Discussions about software and data installation at four selected co-operator sites 

have been initiated. 
• Consultations with the Delaware County Phosphorus Study Committee and the 

Scientific Support Group have continued, most recently in June 2002 when 
management scenarios were discussed. 

 
Going beyond the published QA plan (which only covered through March 2002), the 
project proceeded to perform standard types of model "validation" which involves 
validation of the calibrated model against measured data not included in the calibration 
process.  This is analogous to NYCDEP's GWLF calibration/validation approach 
(Schneiderman et al. 1998) using different time periods.  NYCDEP's work has been 
accepted for major regulatory purposes, including the phosphorus TMDL process. 
 



 
 

4

3 Soil and Water Assessment Tool (SWAT) Version 2000 
 
The Soil and Water Assessment Tool version 2000 (SWAT2000) is a continuous time, 
physically based, distributed watershed model developed by the Agricultural Research 
Service of the United States Department of Agriculture (USDA).  SWAT, which was 
preceded by the Simulator for Water Resources in Rural Basins, requires a significant 
amount of data and parameters for development and calibration.  The principle purpose of 
SWAT is computation of runoff and loadings from rural watersheds, especially those 
dominated by agriculture (Williams and Arnold 1993, Arnold et al. 1998).   Although the 
model time step is daily, SWAT was designed as a long-term yield model and is not 
designed to accurately simulate detailed, single-event flood routing (Neitsch et al. 2001a). 
 
SWAT was selected for this modeling because model predictions are distributed spatially.  
A simpler alternative to a spatially distributed model is a lumped watershed model.  
Lumped models make a single prediction that only applies at the watershed outlet and 
therefore provide no additional spatial information regarding the upstream sources of the 
modeled quantities.  For example, the GWLF watershed model, which was previously 
applied to the Cannonsville Basin (Schneiderman et al. 1998, Schneiderman et al. 2002), 
is a lumped watershed model.  Another reason for selecting the SWAT model was that it 
has been widely applied throughout the United States (see Section 3.1).  The United 
States Environmental Protection Agency (USEPA) considers the model to be an 
acceptable tool for development of Total Maximum Daily Loads (TMDLs).  More 
recently, the model was used for TMDL development in Texas (Santhi et al. 2001).  
SWAT2000 has been integrated into the latest version of the USEPA's publicly available 
environmental analysis system software package, BASINS 3.0, which can be found at 
http://www.epa.gov/waterscience/BASINS/. 
 
SWAT2000 allows for two different watershed discretizations.  In this application, two 
levels of discretizations are used.  First, the watershed is subdivided into a number of 
subbasins.  This is the spatial scale at which the model routes constituents through the 
channel network.  These subbasins are further divided into hydrologic response units 
(HRUs), which are units of unique intersections of land use and soils.  For example, all 
the corn land on soil type A in a certain subbasin is one HRU.  HRUs are not necessarily 
contiguous land areas and no channel routing is simulated between HRUs.  Most 
computations in SWAT occur at the HRU spatial scale where the state variables in each 
HRU, such as soil water, plant biomass and soil phosphorus concentrations, are updated 
daily. 
 
The model inputs for SWAT2000 are developed with the aid of the SWAT2000 
Arcview© Interface Program (DiLuzio et al. 2001) that automatically assigns default 
model parameter values and creates input files based on various Geographic Information 
System (GIS) map layers provided to the interface.  In addition, the SWAT2000 
Arcview© Interface Program (AVSWAT) can be used to run the model and map the 
results in within Arcview©. 
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Some of the major watershed processes are simulated in this SWAT2000 application as 
follows: 

• Surface water runoff is calculated using the Soil Conservation Service (SCS) 
curve number equation (SCS 1972).   

• Potential evapotranspiration is estimated using the Priestly-Taylor equation 
and is corrected for land cover, based on simulated plant growth, to give 
actual evapotranspiration (Neitsch et al. 2001a).   

• Percolation occurs when soil water content exceeds field capacity and 
determines the amount of water moving from one soil layer to the next using a 
storage routing method (Neitsch et al. 2001a).   

• SWAT simulates two groundwater aquifers in each subbasin:  an unconfined, 
shallow aquifer that contributes to stream flow and a deep aquifer that does 
not add to stream flow within the modeled watershed (Arnold et al. 1993).   

• Lateral subsurface flow is simulated using a kinematic storage model for 
subsurface flow (Neitsch et al. 2001a).    

• Sediment erosion from each HRU is simulated using the Modified Universal 
Soil Loss Equation (MUSLE) (Williams and Berndt 1977).  This equation 
replaces the traditional Universal Soil Loss Equation’s (USLE) rainfall factor 
with a runoff factor in order to estimate event-based sediment yield estimates.  
MUSLE predicts sediment erosion for each day there is surface water runoff 
and reduces the erosion estimates when there is snow cover. 

• Plant growth and nutrient uptake. 
• Mineral phosphorus and organic phosphorus cycling in the soil between six 

different pools of soil phosphorus. 
 
For more details on the entire suite of processes modeled in SWAT, as well as model 
usage instructions, the reader is referenced to the following documents: 
 

• SWAT2000 Theoretical Documentation (Neitsch et al. 2001a). 
• SWAT2000 User’s Manual (Neitsch et al. 2001b). 
• SWAT2000 Arcview Interface Guide (DiLuzio et al. 2001). 

 
All of the above documents and associated programs can be downloaded from 
http://www.brc.tamus.edu/swat.  In general, for the remainder of this document, the 
acronym SWAT will refer to the SWAT2000 model unless otherwise stated. 
 

3.1 Previous Applications of SWAT 

Most of the applications of SWAT in the current literature are based on versions of 
SWAT that precede version 2000.  Various versions of SWAT have been applied 
throughout the United States, primarily in Midwest and Southwest regions, including the 
Mississippi River basin, Illinois, Indiana, Texas, Oklahoma, and Wisconsin (Arnold and 
Allen 1996, Bingner 1996, Bingner et al. 1997, Mamillapalli 1998, Manguerra and Engel 
1998, Srinivasan et al. 1998, Arnold et al. 1999, Arnold et al. 2000, FitzHugh and 
Mackay 2000, Santhi et al. 2001, Kirsch et al. 2002).  SWAT has also successfully been 

http://www.brc.tamus.edu/swat
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applied in Europe (Shepherd et al. 1999) and has been successfully adapted and modified 
for European conditions (Eckhardt and Arnold 2001).  Most of the previous research has 
only focused on hydrology simulation in these regions, with only a few recent 
publications on additional constituents such as sediment or nutrients (Bingner 1996, 
Bingner et al. 1997, Srinivasan et al. 1998, FitzHugh and Mackay 2000, Santhi et al. 
2001, Kirsch et al. 2002).  The few studies applying SWAT in Northeastern climates 
have centered primarily in northeast Pennsylvania (Cho et al. 1995, Peterson and Hamlett 
1998).  SWAT was applied to a 250 km2 subwatershed of the Delaware River in 
Northeast Pennsylvania (the ultimate receiving water for the Cannonsville Reservoir 
outflow) in order to simulate hydrology and nitrogen (Cho et al. 1995).  Peterson and 
Hamlett (1998) focused their work on modeling a catchment in Pennsylvania that was 
dominated by fragipan soils and experienced ‘severe’ snowmelt events throughout the 
winter and spring. 
 
Of the SWAT studies mentioned previously, the one that is perhaps most comparable 
with this one in terms of monitoring data quality and quantity for nutrients and sediment 
loads, in addition to hydrology, is the study by Santhi et al. (2001).  Although the other 
previous studies provide reasonable general references for SWAT applications, the study 
by Santhi et al. (2001) provides the most useful information and approaches for model 
development.  For example, the area modeled by Santhi et al. (2001) is approximately the 
same size as the Cannonsville Basin and the area is dominated by dairy farming.  
Furthermore, based on the data availability and the accurate model performance in Santhi 
et al. (2001), their paper provides the most useful comparison case for evaluating the 
performance of SWAT on the Cannonsville Basin relative to any other application of 
SWAT currently in the literature.  Therefore, the study by Santhi et al. (2001) is closely 
compared to this one in terms of model predictive performance.  The study by Kirsch et 
al. (2002) is also briefly discussed.  Comparisons to these two studies can be found in 
Section 7.1.  
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4 Model Inputs 
 
Benaman (2002) initially developed the Cannonsville Basin SWAT model for hydrology 
and sediment using SWAT version 99.2.  The model was initially calibrated to hydrology 
and sediment data only (Benaman and Shoemaker 2003a, Benaman et al. 2003b).  The 
current report is based on upgrading the version 99.2 model to version 2000, re-
calibrating hydrology and sediment and then calibrating the model for phosphorus.  In 
addition, the current model/report was updated and improved based on a peer review of a 
July, 2002 draft of the report. 
 
This section of the report outlines the development of the model inputs.  Specifically, this 
section outlines the raw data sources utilized, translation of these raw data inputs to 
original SWAT2000 ASCII input files, deviations from default model settings, initial 
conditions in the model and any optional physical processes selected for simulation in 
SWAT.  A considerable effort was made to generate the most representative model inputs 
as possible given the vast data available for the Cannonsville Basin.  Much of this derived 
input data will be beneficial to any future watershed models of the Cannonsville Basin. 
 
Model simulations covered the period from Jan. 1990 through Sept. 2000 and were made 
up of separate model runs over two time periods.  Inputs had to be specified for both the 
model calibration period (Jan. 1994 to Sept. 2000) and a model validation period (Jan. 
1990 to Dec. 1993) as defined in Section 6.  Although model inputs for both periods were 
the same in most cases, there are instances where model inputs were different.  Each of 
the following input sections clearly outlines to which period the inputs apply. 
 

4.1 Model Input File Generation using the SWAT2000 Arcview Interface 
(AVSWAT) 

AVSWAT (DiLuzio et al. 2001) was used to create the initial model input files.  
AVSWAT processes mapped land use (Section 4.2) and soils (Section 4.3) data as well as 
a Digital Elevation Map (DEM) to create a set of default model input files.  The DEM 
can be utilized by AVSWAT to delineate basin (or watershed) and subbasin boundaries, 
calculate subbasin average slopes and delineate the stream network.  NYCDEP supplied a 
30-m DEM, derived from 1:24,000-scale USGS quadrangle sheets, used in this 
application.  The DEM was utilized to delineate watershed boundaries and calculate 
subbasin average slopes.  However, the subbasin average slopes were replaced by HRU 
specific slopes in this application (see Section 6.3.2.2).  The stream network was defined 
using the AVSWAT ‘burn in’ option based on US Census TIGER files for the 
Cannonsville Basin.  Modeled subbasins were delineated based mainly on those 
designated by the NYCDEP that cover the major tributaries entering the WBDR and 
Cannonsville Reservoir.  Additional subbasins were created using AVSWAT in order to 
subdivide the mainstem of the WBDR into multiple subbasins to enable more accurate 
routing and climate inputs along the mainstem.  Additionally, some subbasins were also 
re-defined to coincide with various monitoring locations.  A total of 43 subbasins were 
used to represent the Cannonsville Basin and are displayed in Figure 4.1.1. 
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Within each subbasin, HRUs are created by AVSWAT.  HRU creation in AVSWAT 
requires land use and soil threshold inputs (DiLuzio et al. 2001) in order to define the 
level of spatial detail to include in the model.  These thresholds are applied to each 
subbasin and function to control the size and number of HRUs created.  For example, if a 
subbasin has an area of deciduous forest in the original land use data that covered less 
than the land use threshold, the AVSWAT processing would convert the deciduous forest 
to the other land uses in the basin, proportional to their relative sizes, that were above the 
land use threshold.  For a more detailed description of the AVSWAT land use and soils 
threshold application refer to the AVSWAT manual (DiLuzio et al. 2001).  The land use 
and soils threshold values used in this application were 1% and 5%, respectively, and 
were selected in order to keep the number of HRUs to a reasonable number while 
modeling most of the important agricultural cover types.  Application of these thresholds 
eliminated a few of the land uses and soils that covered relatively small areas in the basin 
and created a total of 482 HRUs.  HRUs are not necessarily contiguous parcels of land.  
The model calculated surface runoff and nutrient transport is unique to each HRU (e.g. 
influenced by the land use, soil and subbasin). 
 

Figure 4.1.1.  Cannonsville Basin subbasin delineation, climate station, and phosphorus 
point source locations. 
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4.2 Land uses 

NYCDEP provided a 25-m grid land use coverage derived by supervised classification of 
1992 and 1993 thematic mapper satellite imagery (see Figure 4.2.1).  Forests, mainly 
deciduous, cover 59% of the Cannonsville Basin.  Land associated with agriculture 
(grass, corn and alfalfa) cover 27% of the basin while successional agricultural land 
(referred to as grass_shrub in the original NYCDEP data) covers 11% of the basin.  The 
remaining areas in the basin are covered by water (3%) and urban land (<1%).  The 
NYCDEP data were processed by the SWAT2000 Arcview Interface (AVSWAT) to 
create an initial set of HRUs (see Section 4.1).  AVSWAT processing slightly modified 
the original land use data by completely eliminating alfalfa (< 0.05% of the basin) and 
mixed forest (< 0.05% of the basin) as a land use in the model.  The resultant agricultural 
HRUs in the model were either corn or grass. 
 

Figure 4.2.1.  Land uses in the Cannonsville Basin as categorized by NYCDEP. 
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waters from corn are an order of magnitude higher than other land uses in the basin (e.g. 
see Section 1.1.2).  As a result, not modeling 16% of the total corn area would potentially 
force the model to misappropriate a large amount of P to other land uses.  Therefore, to 
avoid losing corn area due to AVSWAT processing of land use data, the NYCDEP GIS 
data were reprocessed outside of AVSWAT and 22 new HRUs representing the originally 
eliminated corn HRUs were added to the model resulting in a total of 504 HRUs.  This 
approach minimized the number of HRUs in the model since the 1% AVSWAT threshold 
for land use was still applied to all other land uses. 
 
4.2.1 Additional Modifications to Land Use Classification 

Land use classification of HRUs determines the type of plant that grows on the HRU and, 
if the HRU is agricultural, how the crop is managed.  As such, default model parameters 
for plant growth, runoff and sediment erosion depend on the specified land use.  Since 
land use classification is such a critical input to the model the available NYCDEP land 
use data were closely scrutinized before the land use inputs in the model were finalized.  
This process showed that two general categories of land use input modifications were 
necessary to better estimate the actual land uses in the Cannonsville Basin. 

4.2.1.1 Trout Creek Corn Area Modification 

Trout Creek (subbasin 19) is not monitored by NYSDEC and empties directly into the 
Cannonsville Reservoir.  It was determined during initial model runs that subbasin 19 
was generating an inordinately high concentration of total phosphorus in the flow leaving 
the subbasin.  This simulated result was in strong disagreement with the available data 
from NYCDEP (see Section 6.4.4.1).  A detailed investigation showed that the corn area 
in subbasin 19 was responsible for nearly 80% of the total phosphorus load.  
Furthermore, subbasin 19 contained 11% of the total corn area identified in the NYCDEP 
land use data even though it is only 5% of the total land area in the Cannonsville Basin.  
Dale Dewing (Personal Communication) noted that according to Watershed Agricultural 
Program records, there were no more than 36 ha of corn in subbasin 19 in the recent past.  
NYCDEP spatial land use data showed 158 ha of corn in subbasin 19.  Therefore, given 
the simulated model result for Trout Creek was in complete disagreement with available 
water quality data and available farm records suggest that the corn area in Trout Creek is 
greatly over-estimated by the NYCDEP land use data, it was deemed necessary to reduce 
the area of corn modeled in subbasin 19 from 160 ha to 36 ha.  The three original 
NYCDEP corn HRUs were all reduced to 23% of their original size and the removed area 
was redistributed evenly to NYCDEP grass and grass-shrub land uses. 

4.2.1.2 Subdividing NYCDEP Grass Land Use 

Unfortunately, the NYCDEP data do not distinguish all types of agricultural land use 
within the Cannonsville Basin.  The typical farm in the basin has both pasture (grasses 
grazed by cattle) and hay (grass cut 2 or 3 times a year for cattle forage) and the hay is 
either continuous hay or rotated with corn.  Hay and pasture are managed very differently 
with respect to the timing and application rates of manure.  Rotated and non-rotated lands 
must be distinguished in order to model and evaluate the impact of crop rotations.  In 
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order to independently represent pasture, rotated hay and non-rotated hay land use areas 
in SWAT2000 it was necessary to further edit and reclassify some of the HRUs derived 
from the NYCDEP land use data. 
 
Local agricultural stakeholders and the 1992 US Census of Agriculture data for Delaware 
County were used to guide the reclassification of the initial grass HRUs derived from the 
NYCDEP land use.  The overall reclassification was accomplished in the following steps: 

1. The 1992 US Census of Agriculture was used to estimate the areas of pasture and 
hay located in the Cannonsville Basin and it was assumed that all hay and pasture 
in the basin were included within the NYCDEP grass land use category. 

2. Grass HRUs were partitioned to create new HRUs that could be modeled as 
rotated corn-hay land use so that 100% of the corn HRUs could be rotated with 
hay using typical rotation lengths while keeping the total area of corn constant in 
each year of the model simulation.  These new HRUs, along with the original corn 
HRUs, represent the area of rotated corn-hay land use. 

3. The remaining grass HRUs not yet reclassified were defined as either continuous 
hay, pasture or idle agricultural land so as to approximate the basin-wide areas of 
hay and pasture determined in step 1. 

 
STEP1.  A summary of the available data used to define the SWAT2000 modeled areas 
of agriculture land uses (active and successional) is given in Table 4.2.1.  Table 4.2.1 
compares estimated agricultural land use areas for the Cannonsville Basin from the 1992 
US Census of Agriculture for Delaware County and from the original NYCDEP GIS 
data.  Although corn area estimates from both sources are reasonably close, the estimated 
hay+pasture area from the 1992 US Census of Agriculture is only 68% of the area 
identified as grass in the NYCDEP data.  The NYCDEP grass data probably include other 
types of agriculture.  However, data from the 1992 Census of Agriculture suggest that 
areas of other types of agriculture (Oats, vegetables harvested and berries) are only about 
200 ha in the Cannonsville Basin and therefore cannot account for this discrepancy.  This 
discrepancy can be partly explained by the fact that in any given year there are a 
significant number of fields of idle or unmanaged grasses, that are not necessarily 
successional agricultural land, but are also not reported as hay or pasture in US Census of 
Agriculture (Personal Communication, Dale Dewing).  Another cause for the discrepancy 
is that NYCDEP data likely include grasses that are not managed for agriculture such as 
front lawns and parks.  In fact, it is more likely that the hay+pasture area in the 1992 US 
Census of Agriculture is closer to 60% of the area identified as grass in the NYCDEP 
data considering that the 1992 US Census of Agriculture data for pasture includes areas 
of brush that presumably would have been categorized as grass-shrub in the NYCDEP 
data.  Therefore, the assumption that 100% of the hay and pasture in the basin is located 
completely within the NYCDEP grass land use is reasonable.  Further, it is reasonable to 
assume that a fourth subtype of agricultural land use within NYCDEP grass is idle 
agricultural land.  Consequently, the NYCDEP land use category of grass-shrub was 
assumed to be 100% successional agricultural land that is not managed. 
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Table 4.2.1.  Comparison of estimated land use areas for the Cannonsville Basin based on the 1992 US Census of Agriculture for 
Delaware County and the 1992 NYCDEP GIS land use map for the Cannonsville Basin. 

Cannonsville Basin Area (ha) 
Generic 

Land use 
Name 

Equivalent US 
Census of 

Agriculture Name 
and Description 

Area from 1992 US 
Census of 

Agriculture for 
Delaware County 

(ha) 

Upper bound estimate 
based on 1992 US 

Census of Agriculture 
for Delaware County1  

NYCDEP GIS data for 
1992 (equivalent 

NYCDEP land use 
name) 

Area modeled 
in 

SWAT20002 

Corn Corn for silage or 
green chop + corn 
for grain or seed 

43003 1927 1519 (corn) 1387 

Hay Hay - alfalfa, other 
tame, small grain, 
wild, grass silage, 

green chop etc. 

24196 10840 See Hay+Pasture below 15020 

Pasture  Cropland pasture + 
permanent pasture 

or rangeland 

212574 9523 See Hay+Pasture below 3542 

Hay + 
Pasture 

See above 
descriptions 

49753 20462 30305 (grass5) 18562 

Successional 
Agriculture 

NA NA NA 12534 (grass-shrub6) 12269 

1. Estimated at 45% of Del. County 1992 US Census of Agr. based on ratio of total farms in Cannonsville Basin (Delaware 
County Board of Supervisors 1999) to farms in 1992 US Census of Agr. for Delaware County = 321/716.  A lower bound 
estimate would be based on the ratio of the areas of Cannonsville Basin to Delaware County (~30%). 

2. SWAT2000 areas are the result of AVSWAT processing and other land use reclassification outlined in Sections 4.1 and 4.2. 
3. Corn for silage or green chop (~90% of total) + corn for grain or seed (~10%). 
4. Cropland pasture (~50%) + permanent pasture or rangeland (~50%).  Permanent pasture or rangeland includes brush. 
5. NYCDEP description of grass land use: Includes turf, pasture and grass hay. 
6. NYCDEP description of grass-shrub land use: Successional land composed of grasses, forbs and woody shrubs. 
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STEP 2.  The second step of the grass HRU reclassification involved the creation of a set 
of HRUs that could be used to specify corn-hay crop rotations in the basin.  This step was 
accomplished based on the following assumptions and modifications: 

• Total area of modeled corn in SWAT should be constant in all simulation years 
and should be equal to the NYCDEP corn land use area after the Trout Creek corn 
area reduction outlined in Section 4.2.1.1. 

• Rotations occur within a subbasin. 
• HRUs should be created so that 100% of the modeled corn in the basin can be 

simulated under rotation with hay. 
• HRUs within a rotation all have the same soil type as dictated by the soil type of 

the original corn HRU. 
• Upland and lowland soils (see Figure 4.7.3) were assumed to have rotations that 

were 2 years corn / 8 years hay and 3 years corn / 6 years hay, respectively.  
• In the six cases where there was not enough area in the grass HRUs to define 

multiple hay HRUs that would satisfy the assumptions above, either A) the corn 
HRU area was lumped into another corn HRU with a different soil type (1 ha of 
corn land had reassigned soil type) or B) the required grass HRU areas were 
increased by reducing the size of grass-shrub HRUs on the same soil type (152 ha 
of new grass HRUs created). 

 
STEP 3.  The remaining grass HRUs that were not reclassified as potential rotated corn-
hay HRUs had to be reclassified as pasture, continuous hay or idle agricultural land.  The 
pasture land use area in the Cannonsville Basin estimated at about 9500 ha from the US 
Census of Agriculture overestimates the area of actively grazed pasture in the basin 
(Personal Communication, Paul Cerosaletti).  As noted above, this is at least partly due to 
the fact that some of the pasture area in the 1992 US Census of Agriculture includes 
brush.  Assuming an average area of pastured cropland of 14 ha/farm for Delaware 
County (derived from Watershed Agriculture Program data as summarized in Delaware 
County Board of Supervisors (1999)) and 226 beef and dairy farms in the Cannonsville 
Basin (see Section 4.7.1.1), a better estimate of pasture (as grass) in the basin would be 
about 3200 ha.  Therefore, reclassification of the remaining NYCDEP grass HRUs 
focused on generating a total area of pasture in the basin that was closer to 3200 ha 
instead of 9500 ha.   
 
A reclassification algorithm was developed to complete Step 3 and operated on each 
subbasin independently.  After Step 2, there were between one and four remaining grass 
HRUs in each subbasin to be reclassified as pasture, continuous hay or idle agricultural 
land.  The algorithm was guided by the areas of the grass HRUs and the total area of corn 
HRUs within the subbasin.  The resulting reclassified HRUs in each subbasin always had 
the following characteristics: 

• All subbasins with corn HRUs had grass HRUs reclassified such that there was at 
least one pasture and one continuous hay HRU. 

• If there were no corn HRUs in the subbasin, in which case there were also no 
cattle located in the subbasin (see Section 4.7.1.1), then all remaining NYCDEP 
grass HRUs were reclassified as idle agricultural land.   

• The smallest grass HRUs tended to be reclassified as pasture. 
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• Grass HRUs reclassified as idle agricultural HRUs, were within an order of 
magnitude of the total area of continuous hay HRUs within the subbasin. 

 
In summary, the reclassification outlined in Steps 1, 2 and 3 above functioned to generate 
a reasonable set of HRUs to independently represent areas of continuous and rotated hay, 
idle agriculture and pasture.  The reclassified basin-wide land use areas modeled in 
SWAT are reasonable because they appear to be in general agreement with the available 
data (see Table 4.2.1) and are an attempt to independently represent each of the major 
agricultural land uses that are known to exist in the Cannonsville Basin.  The 
reclassification of NYCDEP grass HRUs did not improve the spatial accuracy of the four 
grass land use subcategories.  However, the impacts of this spatial inaccuracy were 
deemed acceptable in order to represent the four subcategories of grass land use in 
SWAT2000.  This representation of grass land use is an improvement over a lumped 
approach which models the NYCDEP grass land use with one set of model inputs and 
parameters as in previous Cannonsville Basin modeling (Schneiderman et al. 1998). 
 
The finalized land uses and their corresponding areas used as inputs in the SWAT2000 
model of the Cannonsville Basin resulting from the cumulative land use modifications 
described above are summarized for the agricultural land uses in Table 4.2.1 and for all 
land uses in Table 4.2.2.  In total, 758 HRUs are used to represent the entire Cannonsville 
basin.  The final area of hay and pasture modeled in SWAT as shown in Table 4.2.1 is 
now much closer to the hay and pasture area estimated by the 1992 US Census of 
Agriculture for Delaware County.  The data in Table 4.2.2 show that only about 17% of 
the basin is modeled in SWAT as managed agriculture (hay, pasture and corn).  Land use 
data were assumed constant for both the calibration and validation periods. 
 

Table 4.2.2.  Final SWAT2000 land use input summary for the Cannonsville Basin 
Modeled Land 

Use 
Area in km  

(percent of total) 
Deciduous forest 622 (52.8) 
Coniferous forest 77 (6.5) 

Grass-Shrub 124 (10.5) 
Idle Agriculture 123 (10.4) 

Hay1 150 (12.7) 
Pasture 35 (3.0) 
Corn 14 (1.2) 
Urban 4 (0.4) 
Water 29 (2.4) 

1. All hay in this version of the model is continuous and the total area modeled is 
equal to the sum of the areas of hay HRUs created for rotation and those that were 
classified as continuous (see following paragraph for further explanation). 

 
The HRUs in the current version of the model were defined to accommodate crop 
rotations.  However, the current model input files do not specify crop rotations such that 
all corn and hay are simulated as continuous crops.  Crop rotations can be incorporated at 
a later date by modifying the HRU management file inputs. 
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4.3 Soils 

SWAT uses the State Soils Geographic Database (STATSGO) to describe the physical 
characteristics of soils.  STATSGO spatial data (current as of 1994) downloaded from the 
USDA/Natural Resource Conservation Service (NRCS) website 
(http://www.ncgc.nrcs.usda.gov/branch/ssb/products/statsgo/index.html) were utilized to 
map the various NY STATSGO soils (see Figure 4.3.1).  STATSGO spatial data are 
available at a 1:250,000 resolution.  The STATSGO data files formatted for SWAT for 
each soil type were downloaded from the SWAT homepage 
(http://www.brc.tamus.edu/swat). 
 
The STATSGO soil properties assigned to the initial set of model HRUs (482) were 
based on the most common soil component (or soil series) within each STATSGO map 
unit.  This approach resulted in soil properties that were not representative of the true 
area-weighted average soil properties across the STATSGO map unit.  For example, the 
most common soil series in each STATSGO map unit usually accounted for only 10 to 20 
percent of the total area defined by each map unit.  This default SWAT approach was 
judged to be a major deficiency in this study and required correction. 
 

Figure 4.3.1.  STATSGO soil classes in the Cannonsville Basin. 
 
One alternative to overcome the STATSGO soil deficiency is to replace STATSGO soils 
with the more detailed Soil Survey Geographic Database (SSURGO).  SSURGO soils 

STATSGO Soils Map Unit
NY000
NY026
NY027
NY056
NY059
NY099
NY126
NY127
NY129
NY132
NY133
NY136
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http://www.ncgc.nrcs.usda.gov/branch/ssb/products/statsgo/index.html
http://www.brc.tamus.edu/swat
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data maps out each soil series while STATSGO data groups together up to 21 similar soil 
series in each STATSGO map unit.  A method for incorporating SSURGO data into 
SWAT is available (http://waterhome.tamu.edu/NRCSdata/SWAT_SSURGO/).  
However, the large scale of this modeling effort did not justify such an increase in soil 
detail since the study outlined on the above website recommends incorporating SSURGO 
soil data for small-scale modeling efforts only.  Furthermore, since there are more than 10 
times as many SSURGO soil map units than STATSGO soil map units in the 
Cannonsville Basin, using SSURGO soils to define HRUs would have increased the 
number of input files and model execution time by roughly one order of magnitude. 
 
In order to assign more representative soil properties while minimizing the number of 
HRUs modeled in SWAT, the STATSGO soil map units were retained to represent the 
spatial extents of various soil types but the soil properties in each map unit were derived 
from the specific SSURGO soil series that occurred within each STATSGO map unit.  
SSURGO spatial data at a 1:24,000 resolution and data tables used in this study were 
downloaded from http://www.ncgc.nrcs.usda.gov/branch/ssb/products/ssurgo/.  A GIS 
analysis was performed to intersect the STATSGO soil map units with SSURGO soil 
map units to determine the Cannonsville Basin specific soil series and their 
corresponding areas that occur within each STATSGO map unit.  This intersection 
generated the necessary information for calculating more representative area-weighted 
soil parameters.  Since SWAT also models up to 10 soil layers, the SSURGO data had to 
be analyzed to determine an appropriate number of soil layers to represent within each 
STATSGO map unit.  Since there was a maximum of four soil layers in the SSURGO 
soils found in the basin, each STATSGO map unit was represented with four soil layers.  
Area-weighted average soil layer depths were first derived for each STATSGO map unit.  
Then, area- and depth-weighted average soil properties for each STATSGO map unit 
were computed for each soil layer.  A more complete description of this methodology is 
given in the Appendix (Section 10.1).  The result of this approach was to estimate soil 
properties for the STATSGO map units that better approximated the cumulative basin-
wide soil properties that could be derived independently using only the detailed SSURGO 
soil data.   
 
It should be noted that the current methodology for averaging soil properties preserves 
only the basin-wide area-weighted SSURGO values.  Average soil properties within a 
subbasin are not necessarily the average values that would be derived from SSURGO 
soils data within the subbasin.  Therefore, in the future, the spatial accuracy of the soil 
properties input to SWAT could be further improved if the methodology developed here 
was employed in each subbasin independently. 
 

4.4 Climate Inputs 

In addition to precipitation inputs, climate inputs are utilized in SWAT for a number of 
calculations including the prediction of crop growth, evapotranspiration and snowmelt.   
Daily climate data inputs required for this SWAT model application were minimum and 
maximum temperature, precipitation depths, solar radiation and relative humidity.  All 
four of these inputs were based completely on measured data within or close to the 

http://waterhome.tamu.edu/NRCSdata/SWAT_SSURGO/
http://www.ncgc.nrcs.usda.gov/branch/ssb/products/ssurgo/
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Cannonsville Basin.  Care was taken to ensure that the model climate inputs were based 
purely on measured data (or filled in data from nearby stations) instead of allowing the 
model to randomly generate missing data.  The two sources of the climate data were the 
Northeast Regional Climate Center (NRCC) at Cornell University and the National 
Climatic Data Center (NCDC).  When both data sources had the same type of data 
available on the same day precedence was given to the NRCC data.   
 
Four climate stations provided climate inputs that covered the model calibration and 
validation periods.  All available climate data from within the Cannonsville basin were 
utilized.  Precipitation data were taken from the Walton, Delhi and Stamford precipitation 
stations while temperature data were taken from the Walton and Delhi temperature 
stations.  The location of the Walton, Delhi and Stamford climate stations are given in 
Figure 4.1.1.  Precipitation and temperature data at the Deposit climate station, which is 
just outside of the basin and a few kilometres west of the reservoir, was used to supply 
missing data and to check data quality at the Walton station.  The climate station at 
Binghamton, NY, which is approximately 60 km due east of the reservoir/watershed 
outlet, provided solar radiation and relative humidity inputs.   
 
SWAT2000 assigns climate inputs to each subbasin in the model based on the closest 
climate station to the centroid of the subbasin.  Thus, solar radiation and relative humidity 
input data for all subbasins in the model is from the Binghamton station.  Subbasins 38 
and 43, and all subbasins to the west of these, receive temperature inputs from the Walton 
climate station.  All subbasins east of subbasins 38 and 43 receive temperature inputs 
from the Delhi climate station.  Figure 4.4.1 shows the source of the precipitation input 
for all subbasins. 

Figure 4.4.1.  Source of subbasin precipitation inputs. 
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SWAT2000 allows users the option to model the orographic changes (variations with 
elevation) in precipitation and temperature across the basin.  Since there are significant 
elevation differences between the location of the climate stations and the subbasins they 
represent (sometimes over 200 m), orographic changes in temperature are modeled in this 
application.  Orographic changes in precipitation are not modeled.  Modeling orographic 
temperature changes requires SWAT inputs for weather station elevations, latitude and 
the definition of elevation bands for each subbasin.  Ten elevation bands were created in 
each subbasin by subdividing the subbasin elevation range into ten equally spaced 
elevation bands.  The elevation change within each elevation band was 1/10th the entire 
elevation range of the subbasin.  The subbasin elevation ranges and fraction of subbasin 
area within each elevation band was determined from the AVSWAT elevation report.   
 
The simulation of orographic changes in minimum and maximum daily temperatures 
involves adjusting subbasin temperatures based on the temperature lapse rate and the 
difference in elevation between the subbasin elevation bands and the elevation of the 
recording temperature station.  The SWAT default temperature (or environmental) lapse 
rate of –6 °C/km is used in this application.  The only processes in SWAT2000 modeled 
separately for each individual elevation band are the accumulation, sublimation and 
melting of snow. 
 
The total Walton climate record is made up of Walton (Pre-1997) and Walton2 (after 
1996) climate stations.  Climate station locations are essentially the same spatially but the 
elevations of Walton and Walton2 are 378 m and 451 m, respectively.  Thus, the average 
elevation of 414.5 m was input to the model as the elevation of this station.  The 
elevation of the Stamford precipitation station is 558 m while the elevation of the Delhi 
climate station (measuring both precipitation and temperature) is 438 m.  Modeling 
orographic temperature change is important in this application because 89% of the 
Cannonsville Basin has an elevation greater than the Delhi climate station.  In fact, the 
median elevation in the basin is 580 m.  This means that, based on the fixed SWAT 
default of –6 °C/km for the temperature lapse rate, 50% of the basin has a temperature 
that is at least 0.9 °C colder than what was measured at Delhi.     
 
4.4.1 Adjustments and Corrections to Raw Temperature and Precipitation Data 

The precipitation and temperature inputs for the model derived from the original data 
sources were found to require multiple adjustments and corrections to be used reliably in 
this application.  In all, there were four different categories of modifications made to the 
original data.  The first modifications involved filling in measured data for days when 
temperature or precipitation data were missing from both data sources.  There were 
relatively few days in the calibration and validation period where missing data were 
encountered.  Climate data recorded from nearby climate stations were utilized to fill in 
the missing data.  When missing temperature data were filled in, the data were adjusted 
for the elevation differences between the climate stations based on a temperature lapse 
rate of –6 °C.  After filling in missing data, the temperature and precipitation input data 
time series required three additional types of modifications. 
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4.4.1.1 Walton Precipitation Data ‘Observer Shifting’ Correction 

Precipitation data from the Walton2 precipitation station was observed to be one day out 
of phase with both the Delhi and Deposit precipitation station observations for 84% of the 
period of record between January 1, 1998 and Sept 30, 2000.  Walton2 is found nearly 
equidistant between the Deposit and Delhi stations and therefore should be reporting 
most rainfall events the same day as both of these stations.  This problem was confirmed 
with the climatologist in charge of archiving the NRCC data (Personal Communication, 
Dr. Art DeGaetano) and is caused by ‘Observer Shifting’ of the precipitation data.  In 
other words, the precipitation was recorded by the station observer based on his/her 
judgement as to what calendar day the precipitation fell on instead of based on NRCC 
standards that are followed at the other climate stations.  The Walton2 precipitation data 
were therefore corrected or ‘unshifted’ such that the Walton2 data precipitation data were 
in phase with the Delhi and Deposit data.  In addition, a few precipitation events at the 
original Walton station were identified to have this problem and were also corrected in a 
similar fashion.  This analysis and correction procedure is outlined in the Appendix 
(Section 10.2.1). 

4.4.1.2 Temperature Adjustments for Correct Precipitation Type Classification 

The SWAT model classifies the precipitation depth input (in water equivalent) for each 
subbasin as either snow or rain based on the SWAT snowfall temperature parameter 
SFTMP and the average temperature for the day.  When temperatures are above SFTMP, 
the precipitation is simulated by SWAT to be rain; otherwise it is simulated as snow.  
This model approach is reasonable with limited climate data.  However, for much of the 
period of record, Delhi and Walton have measurements of the depth of snow that fell 
each day in addition to the water equivalent precipitation depth.  This meant that for a 
large number of days, it was relatively clear as to whether the precipitation fell mainly as 
snow or rain.  Furthermore, it was also observed that for a significant fraction of these 
days when the type of precipitation was known with relative certainty, the SWAT model 
would misclassify the precipitation type for any calibrated value of the SFTMP 
parameter.  Therefore, it was deemed necessary to find a method for forcing the model to 
correctly assign the precipitation type on days when the main type of precipitation was 
known from the available climate data. 
 
The methodology applied in this study to force the correct classification of the 
precipitation type in SWAT is outlined in detail in the Appendix (Section 10.2.2) and 
only briefly outlined below.  Rather than modify the model source code it was 
determined that the SFTMP parameter could be fixed at 1° C (SWAT default value) and 
then small adjustments could be made to the temperatures input to the model in order to 
force the model to correctly classify the precipitation type at Walton and Delhi.  
Temperature adjustments were bounded so that they were relatively minor.  In addition, 
adjustments were only made on days at Walton and/or Delhi when there was at least 2.5 
mm of water equivalent precipitation recorded and when the bulk of the precipitation for 
the day could be classified with confidence as either rain or snow.  This approach resulted 
in minor temperature adjustments on 67 days at the Walton stations and 69 days at the 
Delhi station over the calibration and validation period (January 1, 1990 to September 30, 
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2000).  These minor temperature adjustments from the measured data were judged to 
have a smaller impact on model predictions than the alternative option that was to allow 
the model to misclassify the precipitation type. 

4.4.1.3 Climate Data Adjustments for Large Precipitation Events 

During the calibration process, there were a number of storm events for which daily 
simulated flows were in serious disagreement with available measured flows.  For these 
events, the temperature and precipitation inputs were closely scrutinized.  The event 
inputs were closely scrutinized against three data sources to make sure precipitation and 
climate inputs were representative.  These three data sources were: 

• Nearby climate stations for relative consistency. 
• Descriptions of large storms events from the NCDC Storm Event database for 

New York (http://www4.ncdc.noaa.gov/cgi-win/wwcgi.dll?wwevent~storms). 
• Hourly precipitation data from a nearby climate station (Sydney, New York). 
 

Results of the comparison showed that the temperature or precipitation inputs for six 
large precipitation events at either Walton, Delhi and/or Stamford warranted some 
adjustment to better approximate the information in one or more of the three data sources 
above.  These modifications were generally required because this application of SWAT 
uses a daily time step and these events actually occurred within a period of time 
significantly shorter than 24 hours or within a 24-hr period that was split between two 
days in the climate records.  For example, a large rainfall event at Sydney, New York was 
observed to most of the precipitation over a 14 hr period, however, the same event was 
recorded at Stamford with the total storm precipitation split almost evenly across two 
days.  In this case, in was deemed necessary to change the Stamford precipitation so that 
most of the precipitation fell on one day instead of two.  The original and modified 
climate input data, as well as a justification for the input data change, for each of these 
adjusted events is given in the Appendix (Section 10.2.3).   

4.4.1.4 Summary of Climate Data Adjustments and Corrections 

The development of the above methodology for adjusting and correcting the climate data 
was initiated due to observed model errors encountered during the model calibration 
process.  However, the methodology and assumptions behind all of the above changes to 
the climate data, with the exception of those outlined in Section 4.4.1.2, were determined 
using only the available climate data as opposed to iteratively refining the methodology 
by referring to model predictive performance for flows across the basin.  In other words, 
problems in the climate data were first identified and then corrected for in a systematic 
fashion, and calibration of the model continued by varying the model parameters in 
Section 6.3.3.  The approach to correctly classify the precipitation type was only slightly 
influenced by model performance before being fixed and was then followed by the model 
parameter calibration in Section 6.3.3.  All of the above climate adjustments and 
corrections resulted in significantly improved model predictions of daily and monthly 
hydrology. 
 

http://www4.ncdc.noaa.gov/cgi-win/wwcgi.dll?wwevent~storms
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4.5 Point Sources of P 

Point source inputs in SWAT can vary daily, monthly or annually or be constant and 
require average loading rates of water, suspended sediments and nutrients.  Since most 
point source measured loading rates are available at the monthly time scale, point source 
inputs in the model were defined monthly.  Therefore, point source data varied between 
the calibration and validation periods.  Monthly data from NYSDEC and the State 
Pollutant Discharge Elimination System Discharge Monitoring Reports (DMRs), as 
provided in a computer spreadsheet file by Pat Bishop (Personal Communication), were 
utilized to define monthly loading rates for the point sources.  Some of the point source 
data in this computer file has been previously described and used in Longabucco and 
Rafferty (Longabucco and Rafferty 1998).  In addition, the recommendations for 
Cannonsville Basin modeling point source inputs of P as outlined in Table 6 of 
(NYSWRI 2002b) were also adopted.  Note that the P point source paper NYSWRI 
(2002b) is available at the New York State WRI public website 
http://wri.eas.cornell.edu/projects/nycwshed/delaware/.  DMRs for the basin, can be 
found on the EPA’s Surf Your Watershed website for Delaware County 
http://cfpub.epa.gov/surf/huc.cfm?huc_code=02040101.   
 
Walton, Delhi, Stamford and Hobart wastewater treatment plants (WWTPs), as well as 
Kraft cooling water discharge, are included in the model and were the only significant 
point sources in the basin.  The point source locations are given in Figure 4.1.1.   Total P 
loads at each point source are defined in SWAT as mineral P and organic P and were 
assumed to represent, respectively, measured total dissolved phosphorus (TDP) and 
particulate phosphorus (PP).  Walton WWTP P was assumed to have a TDP fraction of 
0.6 while the remaining WWTPs were assumed to have a TDP fraction of 0.92 
(Longabucco and Rafferty 1998).  Kraft P load was assumed to be entirely TDP. 
 
NYSDEC and DMR data as provided by Pat Bishop (Personal Communication) were 
both available to specify Walton WWTP inputs.  The DMR data are the facility’s self 
monitoring data.  NYSWRI (2002b) outlines all differences in these data sets.  Since 
NYSDEC WWTP sampling was most frequent, the NYSDEC data for the WWTPs was 
used when available.  For months where NYSDEC Walton data were missing, DMR data 
were used.  For months where no monthly data were available from either source, the 
annual average loading rates in NYSWRI (2002b) were used to derive monthly loading 
rates.  Finally, for months where no monthly or annual data are available, the average 
annual loading rate for the period containing the missing data (before or after the Walton 
P treatment upgrade) was used to replace the missing values. 
 
Loading rates for the other WWTPs were defined with either NYCDEP or DMR data 
(NYSWRI 2002b) and missing data were handled in a similar fashion as Walton missing 
data.  Annual loading rates from Kraft, as estimated by NYCDEP, and the DMRs for the 
facility were used to derive monthly loading rates instead of NYSDEC data based on the 
recommendations in NYSWRI (2002b).   
 
Figure 4.5.1 shows the monthly time series of total P loadings used as inputs for the point 
sources.  A straight line generally indicates that monthly loading rates were assumed 

http://www.cfe.cornell.edu/wri/default.html
http://www.cfe.cornell.edu/wri/projects/nycwshed/delaware/default.html
http://www.cfe.cornell.edu/wri/projects/nycwshed/delaware/
http://cfpub.epa.gov/surf/huc.cfm?huc_code=02040101
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constant for that point source and were estimated from an annual loading rate.  
Historically, Walton WWTP was the largest point source of P.  Currently, Walton and 
Delhi discharge roughly the same total P load to the WBDR.  Also note that Kraft's 
cooling water discharge is now assumed to contain no added phosphorus, based on their 
discharge monitoring reports.  There is some pass-through phosphorus from their intake 
water.  Table 4.5.1 summarizes the data in Figure 4.5.1 by water year over the calibration 
and validation periods and shows that P loading from point sources in the late 1990s was 
less than half the P loading from these sources in the early 1990s. 
 

Figure 4.5.1.  Time series of monthly point source total P loadings input to SWAT. 
 

Table 4.5.1.  Average annual water year total P loading (kg) from all modeled point 
sources within the Cannonsville Basin from 1990 through 2000. 

Water 
Year 

Stamford 
WWTP 

Hobart 
WWTP 

Delhi 
WWTP 

Walton 
WWTP 

Kraft Cooling 
Water 

Discharge 

Point 
Source 
Total P 

1990 550 215 1672 10478 3058 15973 
1991 550 215 1672 10478 3058 15973 
1992 550 215 1672 11753 3058 17249 
1993 550 216 1621 3369 3058 8813 
1994 550 237 1514 1927 3058 7286 
1995 274 193 1403 1690 3058 6619 
1996 458 225 1297 1049 184 3212 
1997 550 154 1572 1404 55 3734 
1998 550 147 1672 1050 75 3495 
1999 451 134 1723 1230 33 3571 
2000 499 138 1644 1178 2 3461 
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4.6 Groundwater Phosphorus 

SWAT requires constant groundwater soluble P concentrations as inputs for each HRU.  
All groundwater that is predicted by SWAT to enter the stream is then assigned to carry 
this constant concentration of soluble P.  NYCDEP bi-weekly water quality grab 
sampling data, as provided in a computer spreadsheet file (NYCDEP Unpublished data), 
in conjunction with USGS flow data were utilized to estimate spatially distributed 
groundwater soluble P concentrations.  Groundwater soluble P concentrations are 
assumed constant within each subbasin.   
 
Little groundwater P sampling data are available for the Cannonsville Basin.  Therefore, 
groundwater soluble P concentrations had to be estimated from surface water quality 
TDP samples (or TDP estimated from another form of P sampled) that were taken across 
the basin at times when the flow was largely due to groundwater baseflow.  Flow data at 
the Walton USGS gauge was analyzed with a baseflow separation program (Arnold and 
Allen 1999) to determine periods of low flow where the majority of flow is derived from 
groundwater.  Here, flow was assumed to be essentially baseflow if results showed that 
the estimated baseflow percentage of total streamflow was greater than 80% for at least 6 
days. P Water quality data that were sampled on dates falling within these baseflow 
periods were then further analyzed to derive groundwater soluble P concentrations. 
 
In most of the NYCDEP water quality samples TDP concentrations are not directly 
measured.  Therefore, the continuous monitoring data summary provided in Longabucco 
and Rafferty (1998) was used to derive conversion factors for estimating TDP from either 
total P or soluble reactive phosphorus (SRP) concentrations during baseflow conditions.  
The baseflow P data in Longabucco and Rafferty (1998) shows that the ratio of average 
SRP over average TDP concentration is 0.5 while the ratio of the average TDP over total 
P concentration is 0.8.  These factors were used in the following methodology to estimate 
a TDP concentration from some form of NYCDEP sampled P: 

• If an SRP concentration was sampled and greater than the detection limit, TDP 
was estimated as SRP/0.5. 

• If SRP/0.5 was greater than or equal to the measured total P concentration, then 
TDP was instead estimated as 0.8*total P. 

• If no SRP concentration was measured, TDP was estimated as 0.8*total P. 
 
This approach generated estimated ‘sample’ TDP concentrations even when TDP was not 
measured or when SRP was below the detection limit of 3 µg/L.  When NYCDEP 
samples were available during baseflow dominated flow conditions (and therefore 
utilized in this analysis), all TDP or total P samples were above their respective detection 
limits. 
 
Although TDP concentrations could be estimated from NYCDEP water quality data at 
over 20 locations across the basin not all of the water quality data could be utilized in this 
analysis.  For some of the NYCDEP water quality sampling locations, the sampled TDP 
concentrations approximately represented the groundwater soluble P concentrations.  
Such sampling locations were not downstream of any significant point sources of P and 
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are referred to as Group 1 subbasins.  Conversely, some of the NYCDEP sampling 
locations were not suitable for this analysis because their samples either did not represent 
a specific subbasin or group of subbasins or the measured P concentrations could not 
reasonably be separated from upstream point source loadings.  However, at some of the 
mainstem WBDR NYCDEP water quality stations, additional flow analyses and resultant 
mass loading estimates of TDP were used to derive groundwater soluble P estimates for 
additional subbasins.  These subbasins are referred to as Group 2 subbasins and are 
subdivided into smaller groups based on the different sampling locations used to estimate 
their groundwater soluble P concentration. 
 
Figure 4.6.1 shows the locations of the water quality stations that were utilized for this 
analysis and presents the subbasins as groups one through four.  The subbasins are 
grouped based on the stations and/or methodology for estimating groundwater soluble P 
concentrations.  A single iteration through the steps above generates one calculated TDP 
concentration, based on P sampling data, for a group 2 subgroup.  A groundwater soluble 
P concentration is assigned to the subbasins in that subgroup equal to the arithmetic 
average of the subgroups calculated TDP concentrations.  The three arithmetic averages 
of the group 2 subgroups are based on 2-6 calculated TDP concentrations. 

Figure 4.6.1.  NYCDEP water quality (WQ) stations and corresponding subbasin 
groupings for estimating groundwater dissolved phosphorus concentrations (see text for 

definition of groups) 
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Table 4.6.1 outlines the NYCDEP water quality stations, as well as their associated 
subbasins, and the groundwater soluble P concentration value derived from this analysis.  
The methodology for estimating groundwater soluble P concentrations must be explained 
independently for each subbasin group. 
 

Table 4.6.1.  Groundwater soluble P concentrations assigned to subbasins in both the 
calibration and validation period. 

Subbasin Group 
Name1 

Subbasin 
Number 

Corresponding NYCDEP 
water quality stations 

(Figure 4.6.1) P 
concentration derived from 

Soluble 
groundwater 

P Conc. (µg/L)

Group 1 1 WDSTA2 21.6 
Group 1 4 CWB 24.5 
Group 1 8 C-38 17.2 
Group 1 10 CPB 13.7 
Group 1 12 CTB 13.6 
Group 1 18 C-8 12.4 
Group 1 19 C-7 9.9 
Group 1 27 C-79 & CLDG3 12.4 
Group 2a 11, 38, 39, 43 WDLFA, WDLFB, WSPA, 

CTB 
12.7 

Group 2b 5-7, 33-36, 42 DTPA, PQTPA, CDG, CWB, 
C-38, C-79 & CLDG 

7.9 

Group 2c 3, 28, 31, 32 SKTPA, PQTPA 7.7 
Group 3 2, 9, 13, 16, 26, 

30, 37, 40, 41 
Area-weighted subbasin 

average 
12.0 

Group 4 14, 15, 17, 20-
25, 29 

- 3.0 

1. Locations of subbasin groups are shown Figure 4.6.1. 
2. It is assumed that WDSTA represents all of subbasin 1 groundwater soluble P levels 

even though it drains only about 1/3 of the subbasin. 
3. Two water quality stations close to one another measured Little Delaware total P over 

the period of record. 
 
GROUP 1 SUBBASINS.  The arithmetic averages of sampled TDP from each NYCDEP 
water quality station monitoring a headwater subbasin that was free of interference from 
significant upstream point sources of P was assumed to directly represent the 
groundwater soluble P concentration in the respective subbasin.  The number of baseflow 
TDP estimates used to generate the average TDP concentrations ranged from 11 to 17.  
For example, at the CWB water quality station, the average of the sampled TDP 
concentrations from 15 baseflow periods that with water quality samples was 24.5 µg/L. 
 
GROUP 2 SUBBASINS.  Estimates of groundwater soluble P concentrations from group 
2 subbasins required a pairing of mainstem WBDR NYCDEP water quality stations.  
Furthermore, no significant point sources discharge to the WBDR between group 2 
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subbasins and any group 1 subbasins draining to the WBDR between a pair of group 2 
subbasins must be accounted for.  Group 2 is subdivided into groups 2a, 2b, and 2c based 
on the pair of water quality stations utilized.   
 
The methodology for estimating the groundwater soluble P concentration for each group 
2 subgroup is the same and requires the calculation of approximate TDP concentrations 
in each baseflow period as follows: 

• Steady flow conditions are assumed and all water quality sampling locations are 
verified to have samples taken on the same day. 

• A flow value is estimated for all water quality stations involved in the TDP 
concentration calculation based on a unit area flow extrapolation using the 
average of the daily flows over the period as measured at the nearest 
representative USGS gauge. 

• For each water quality station, estimated flows and TDP concentrations are 
multiplied together to estimate an average TDP mass loading. 

• Based on mass balance considerations, the TDP mass and volume of water 
originating between the paired water quality stations can be calculated provided 
that any group 1 subbasins emptying to the WBDR between the paired group 2 
water quality stations are accounted for in the TDP and water mass balance. 

• Provided the calculated mass load was greater than zero (in some cases it was 
not), a TDP concentration representative of the groundwater in the subbasins 
between the paired water quality stations (except for any intermediate group 1 
subbasins) could be calculated based on the TDP mass and flow volume. 

 
A single iteration through the steps above generates one calculated TDP concentration, 
based on P sampling data, for a group 2 subgroup.  A groundwater soluble P 
concentration is assigned to the subbasins in that subgroup equal to the arithmetic 
average of the subgroups calculated TDP concentrations.  The three arithmetic averages 
of the group 2 subgroups are based on 2-6 calculated TDP concentrations. 
 
GROUP 3 and 4 SUBBASINS.  Group 3 and 4 subbasins do not have suitable or 
available data that can be used as above for group 1 or 2 subbasins to estimate 
groundwater soluble P concentrations.  Instead, the groundwater soluble P concentrations 
of groups 3 and 4 subbasins are assumed based on the groundwater soluble P 
concentrations determined for groups 1 and 2.  Group 3 subbasins are those that have 
manure spread on the land surface while group 4 subbasins are those around the reservoir 
that do not have manure spread on the land.  Since group 4 subbasins also have a 
relatively smaller concentration of septic systems than the rest of the subbasins, group 4 
subbasins are assumed to have the lowest groundwater soluble P concentration in the 
basin at a value of 3.0 µg/L.  Since group 3 subbasins are generally the same as groups 1 
and 2 in terms of P inputs to the land, group 3 subbasins are assigned a groundwater 
soluble P concentration equal to the area-weighted average of the groups 1 and 2 
groundwater soluble P concentrations (12 µg/L). 
 
Overall, the area-weighted basin-wide average soluble P concentration in groundwater 
determined by this analysis was 10.9 µg/L.  For the Beerston water quality station 
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drainage area, the area-weighted average soluble P concentration in groundwater was 
estimated as 12.0 µg/L.  This value compares well with the soluble P concentration in 
groundwater (13 µg/L) assumed for the Beerston drainage area in the modeling work by 
Schneiderman et al. (1998). 
 
The baseflow periods identified in this analysis occurred in both the model calibration 
and validation time periods.  However, since this analysis yielded a relatively small 
number of samples representing groundwater soluble P, no attempt was made to estimate 
groundwater soluble P concentrations that differed between the calibration and validation 
period.  Instead, the groundwater soluble P concentrations derived in this analysis were 
assumed to be equal for both the calibration and validation period. 
 

4.7 Agricultural P Sources and Management Practices 

Agricultural sources of P and agricultural management option inputs must be provided to 
SWAT in order to simulate reasonably representative agricultural practices.  Agricultural 
management practices simulated in this SWAT model are manure application, tillage, 
starter corn fertilization and hay cutting.  All agricultural management practices were 
selected to represent the average conditions or typical management behaviour of farmers 
in the basin. 
 
Since manure is the largest potential source of P to the reservoir, much of the modeling 
work was focused on the realistic representation of manure production and distribution 
across the watershed.  SWAT manure inputs in each subbasin were generated based on 
the five following general steps: 

1. Estimate the cattle counts and convert to total live animal mass. 
2. Identify basin manure characteristics such as production rate and manure solids 

and P content. 
3. Based on 1 and 2, calculate the total manure solids load produced in the basin. 
4. Allocate the manure solid load in 3 to be either directly deposited by cattle in 

actively grazed pastures or be collected for spreading. 
5. Based on the behaviour of the typical farmer in Delaware County, spread the 

collected manure to the appropriate HRUs according to season, land use priority 
and a maximum application rate. 

 
Each of these five steps is described in detail in the following sections.  The mass balance 
approach described above ensures that only the available manure is distributed to the land 
surface as opposed to simply assuming a manure spreading rate associated with each 
agricultural land use regardless of the presence of a cattle population nearby required to 
produce the manure. 
 
4.7.1 Manure Production Estimates 

Spatially variable manure production rates were estimated based on a surveyed/estimated 
cattle population for the watershed and a number of manure production factors.  
Whenever possible, manure production factors were based on factors derived from 
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Cannonsville Basin agricultural data, otherwise standard values in the agricultural 
literature were used. 

4.7.1.1 Cannonsville Cattle Population 

A NRCS agricultural survey in Cannonsville Basin conducted from 1992 to 1994 (NRCS 
Unpublished data) was used as the basis for estimating subbasin specific cattle 
populations suitable for the model simulation period.  The researcher in charge of 
conducting the survey estimated that the survey included at least 90% of the cattle farms 
in the basin (Personal Communication, Gary Lamont).  Survey results summarized each 
farm’s primary operation and provided ranges for the livestock population.  Beef and 
dairy cattle were counted independently if a farm had both types of animal.  Only beef 
and dairy arms were considered here since they make up the majority of farms in the 
basin (Delaware County Board of Supervisors 1999).  The survey identified 226 total 
farms for beef or dairy (141 dairy and 85 beef) in the basin.  Survey results were 
available spatially (see Figure 4.7.1) such that farm locations could be attributed to a 
particular subbasin.  It was assumed that the cattle and resultant manure were confined to 
the subbasin that each farm was located in.   
 

Figure 4.7.1.  1992 Farm locations in the Cannonsville Basin (NRCS Unpublished data) 
 
The cattle populations on each farm were sub-characterized as cows, heifers or calves and 
reported as ranges instead of point estimates.  The survey snapshot of these animal types 
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was assumed to be representative of the cattle herd at all times of the year such that the 
number of calves surveyed would be the effective number of calves present across an 
entire year.  Generally, the midpoints of each animal type population range were used to 
represent the estimated number of animals.  The upper range in the survey for dairy cows 
was open ended at greater than 100 animals per farm.  A point estimate of animals in this 
category was assumed to be 110 animals per farm.  This approach was reasonably 
representative of the survey results except for two outlier dairy farms that, although 
included in the survey, had a much higher population of dairy cattle (Personal 
Communication, Gary Lamont).  Based on recommendations from Gary Lamont, dairy 
population inputs were adjusted to account for these outlier farms as described below. 
 
The true size of the combined dairy herd on these two outlier farms was known to be 
about 1600 mature cows and 800 heifers and calves during the validation period 
(Personal Communication, Gary Lamont).  Accurate representation of these two outliers 
is important considering that these two farms account for roughly 10% of the total dairy 
population in the basin in 1992.  One of these two farms ceased operations in 1998 or 
1999, which is about ¾ of the calibration period.  To represent this change while keeping 
the dairy population constant during the calibration period, the combined dairy herd size 
at these two farms was assumed to be 1200 mature cows and 500 heifers and calves 
during the calibration period.  However, due to privacy concerns, the exact location of 
these farms could not be identified.  As a result, survey results were analyzed to 
determine all possible farm locations of these two outliers.  The eight largest dairy farms 
were identified from the survey to have more than 100 mature cows and more than 50 
heifers and calves.  It was assumed that the two outlier farms were two of these eight 
farms.  Accordingly, the estimated calibration and validation period dairy populations 
from these two outliers were distributed evenly across these eight farms.  These eight 
farms were located in subbasins 1, 6, 11, 30, 34 and 43.  As a result, the dairy population 
will be greatly under-estimated in one or two of these six subbasins and moderately over-
estimated in four or five of these six subbasins. 
 
Cattle populations are often summarized in terms of the number of animal units (AU) 
where 1 AU is 1000 lbs of live animal weight.  Summarizing the population in AUs was 
necessary to compare population estimates with other sources and estimate manure 
production rates.  Representative weights assumed for each type of animal are given in 
Table 4.7.1.  Based on this, it was estimated that the total number of dairy cattle in the 
Cannonsville Basin was 20,100 AU for 1992.  Based on a count of the dairy animals, the 
estimated 1992 population was 10,400 cows and 9100 heifers and calves.  The initial 
resulting beef cattle AU for the basin was deemed much too small relative to the dairy 
numbers based on the 11:1 dairy to beef ratio estimated in DCAP (Delaware County 
Board of Supervisors 1999).  Therefore, numbers somewhat higher than the midpoints of 
the beef population ranges in the NRCS Cannonsville Basin survey were used to derive 
beef population estimates per subbasin.  This adjustment yielded a total of 1000 beef AU 
for 1992.  Further upwards adjustments to the beef survey results were not made since 
they were deemed to misrepresent the survey results.   
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Table 4.7.1.  Average assumed beef and dairy cattle animal weights. 
Animal Type Animal Mass (lbs)1 

Dairy Cow (milking) 1400 
Dairy Cow (Non-milking) 1300 

Dairy Heifer & Calf 700 
Beef Cow 1000 

Beef Heifer & Calf 600 
1. Source of estimates: Paul Cerosaletti (Personal Communication). 

 
The simulation period for calibration and validation is from 1990 to 2000.  Therefore, a 
representative cattle population should be used to represent each year in this period.  The 
estimated 1992 beef and dairy cattle populations derived in the previous paragraphs are 
assumed to adequately approximate the true cattle population over the model validation 
period (i.e. constant cattle population from Jan. 1990 - Dec. 1993).  Comparison of the 
1992 and 1997 US Agriculture Survey numbers for Delaware County (USDA 1994, 
1999) showed that the cattle population in the County, and therefore the Cannonsville 
Basin, were not constant between these periods.  For example, the number of dairy farms 
and dairy cows both decreased by 21% from 1992 to 1997.  Conversely, the number of 
beef farms and beef cows both increased by 33% over the same period.  Therefore, the 
estimated 1992 beef and dairy populations in the Cannonsville Basin are adjusted to 1997 
based on these observed changes in the US Agriculture Survey Delaware County cattle 
data from 1992 to 1997.  This adjustment was applied equally across all 1992 estimated 
subbasin beef and cattle populations. 
 
The cattle population estimated for 1997 was a total of 15,300 dairy AU and 1300 beef 
AU.  Based on a count of the dairy animals, the estimated 1997 population was 7900 
cows and 7000 heifers and calves.  The estimated 1997 cattle population estimate is 
assumed representative during the entire model calibration period (i.e. constant cattle 
population from Jan. 1994 to Sept. 2000).  The 2002 basin-wide dairy cow population 
was estimated by an independent source to be between 7000 and 8000 animals 
(Cerosaletti 2002).  This encompasses the 1997 estimate of 7900 dairy cows for the basin.  
These dairy cow population estimates are in good agreement and suggest the dairy cow 
population has remained relatively static or has decreased only slightly in the basin from 
1997 to 2002.  Therefore, the assumption of a constant dairy population for 1997 to 2000 
is demonstrated to be reasonable. 

4.7.1.2 Manure Production Factors 

Manure production rates and characteristics were needed to derive manure loading to the 
subbasins from the subbasin cattle populations.  These rates and factors were estimated 
from Cannonsville Basin data whenever possible.  Manure production rates and factors 
for beef and cattle were estimated independently.  In some cases, production factors also 
vary between grazing (May 1 to Oct 31) and non-grazing season.  The various rates, 
factors and sources for each are presented in Table 4.7.2 and are applied to both the 
calibration and validation period. 
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Data taken from ASAE (1998) represent the averages of a number of surveys nationwide.  
However, basin specific data for some manure characteristics are available from a 1998 
survey of manure at six dairy farms in the Cannonsville Basin (Dewing 1998).  Samples 
of manure at each farm were taken in the summer (grazing) and winter (non-grazing) to 
assess characteristics in each season.  The study provided seasonal values for manure 
solids content, total P content and total N content.  These were averaged across the six 
study farms and assumed to represent the manure characteristics of all dairy farms in the 
basin.  Basin specific data were used whenever available.  This approach yielded an 
estimated annual manure P production rate for the basin of 224,000 kg from dairy cattle 
and 20,000 kg from beef cattle during the calibration period (1994-2000).  During the 
validation period (1990-1993), the annual manure P production rate for the basin was 
estimated as 295,000 kg from dairy cattle and 15,000 kg from beef cattle. 
 

Table 4.7.2.  Dairy and beef manure production rates, characteristics and sources. 

Quantity Units 
Dairy Values 
for Summer 

(grazing) 

Dairy Values 
for Winter 

(non-grazing) 

Beef Values 
(all year) 

Manure 
Production 

Rate 

kg of total manure 
produced per day per 

1000 kg of live animal 
mass 

901&2 901&2 581 

Manure 
Solids Fraction of total manure 0.1413 0.1143 0.1471 

Manure P 
Content 

Fraction of solid manure 
that is P 

0.00703 
[0.0080]4 

0.00863 
[0.0080]4 0.01081 

Mineral P 
content 

Fraction of total P that is 
mineral P 

0.755 
[0.625]4 

0.755  
[0.625]4 0.3301 

Organic P 
content 

Fraction of total P that is 
organic P 

0.255  

[0.375]4 
0.255  

[0.375]4 0.6701 

Mineral N 
content 

Fraction of solid manure 
that is mineral N 

0.0133 
[0.007]4 

0.0193 
[0.007]4 0.0101 

Organic N 
content 

Fraction of solid manure 
that is organic N 

0.0173 
[0.031]4 

0.0253 
[0.031]4 0.0301 

Cows 
Milking 

Fraction of dairy cow 
herd being milked 0.856 0.856 - 

1. Based on national average rates for beef and dairy (ASAE 1998) as provided in 
the SWAT manual (Neitsch et al. 2001b). 

2. Includes manure from animals at 86 kg/day (ASAE 1998)+ 4 kg/day to represent 
animal bedding that is also collected and spread with the manure (Personal 
Communication, Tom Tylutki). 

3. From Cannonsville Basin data (Dewing 1998). 
4. Default SWAT2000 values for these inputs. 
5. Based on Cannonsville Basin data (Kleinman 1999). 
6. Estimated for Cannonsville Basin (Personal Communication, Paul Cerosaletti). 
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The resulting beef and dairy manure production rates estimated for each subbasin are 
summed and managed together.  This approach allows realistic manure production rates 
to be estimated even though the different management styles of beef and dairy farms are 
not simulated.  The concentration of mineral and organic P in the manure should be a 
function of the relative amounts of dairy and beef manure.  Such an approach would 
require defining in the SWAT model a different manure type for each subbasin in each 
season (close to 100 manure types).  In order to simplify this cumbersome approach, only 
3 types of cattle manure are defined in the model: beef, winter dairy and summer dairy.  
If a subbasin had >50% dairy manure, then dairy manure (winter or summer depending 
on the season) was spread in the model, otherwise beef manure was spread.  Although 
this simplified approach created a minor error in the amount of total P applied to the 
basin in the model, the error was acceptably small because most subbasin manure loads 
are >90% dairy.  During the model calibration period, the manure P distributed to the 
HRUs in the SWAT model is 242,000 kg (1.1% less than the projected annual P load 
from cattle manure calculated in the previous paragraph).  During the model validation 
period, the manure P distributed to the HRUs in the SWAT model is 307,000 kg (1.0% 
less than the projected annual P load from cattle manure calculated in the previous 
paragraph). 
 
Since the HRU concept combines similar crops from both beef and dairy farms, 
simulating beef and dairy farms differently is not currently possible in the model and also 
not warranted given the minor contribution of beef to the total manure load in the basin.  
Spreading only beef manure on only beef pastures would require excessive initial GIS 
processing outside of AVSWAT and would increase the number of HRUs by 
approximately 50%. 

4.7.1.3 Manure Application to HRUs 

SWAT model inputs for manure application are dry manure application rates per hectare 
and mineral and organic P fractions in the dry manure.  Each of these can be determined 
from data in Table 4.7.2, the areas of the HRU types in each subbasin receiving manure 
and the allocation of the manure between agricultural land uses.  Total manure loads in 
each subbasin are allocated to the subbasin agricultural lands in a way that attempts to 
replicate the behaviour of the typical farmer from 1990 to 2000.  Under the guidance of 
Paul Cerosaletti and Dale Dewing (Personal Communication), agricultural practices in 
the basin representative of practices prior to the implementation of whole farm plans 
were identified.  Based on these practices, as well as SWAT model considerations, the 
following assumptions were made in order to generally characterize the application of 
manure to agricultural HRUs in the SWAT model: 

• Manure is not stored and spreading occurs 365 days a year.  This was considered 
to be reasonable since an upper estimate of farms with manure storage currently is 
around 25% and many of those would have had storage facilities constructed after 
the year 2000. 

• Weather does not influence the timing of manure spreading.  Although this is not 
necessarily true in agricultural practice, preprocessing the weather data and 
determining a representative management response to all weather conditions was 
deemed too time consuming. 
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• All manure produced was either directly deposited by cattle in pasture HRUs or 
collected and available for spreading to any agricultural HRU. 

• The grazing season for beef and dairy cattle are assumed the same because beef 
and dairy manure are managed together in the model.  The grazing season defined 
in this application is from May 1 to Oct 31. 

• During grazing, beef and dairy cattle were assumed to directly deposit 60% and 
45%, respectively, of the daily manure produced in pasture HRUs.  This 
difference reflects the fact that beef cattle spend more time in pasture than dairy 
cattle.  The remaining manure was collected and subject to further management. 

• All manure is surface applied. 
 
Furthermore, the timing and distribution of collected manure to agricultural HRUs must 
be defined.  Since the manure availability differs between subbasins, a general set of rules 
was developed with the aid of Dale Dewing and Paul Cerosaletti (Personal 
Communication) that attempts to replicate the typical behaviour of farmers.  These rules 
are evaluated in order to distribute or spread the total collected manure loads over 
agricultural land in each subbasin as follows: 
1. Annual manure season begins October 1 and each year is divided into four manure 

management periods.  In each manure management period: 
I. First priority is given to allocate manure to corn silage HRUs (at a constant 

daily spreading rate) until a maximum of 7000 kg/ha of dry manure (24.5 
English tons/acre of wet manure) is spread for the year. 

II. Second priority is given to allocate manure to hay HRUs (at a constant daily 
spreading rate) until a maximum of 10,000 kg/ha of dry manure (35 English 
tons/acre of wet manure) is spread for the year. 

III. Then, the remaining manure, if any, is applied to pasture HRUs or idle 
agriculture HRUs if pasture HRUs are not available for spreading. 

2. These priorities are followed except under the following conditions: 
• When a specific land cover is not available in a subbasin. 
• Corn is never manured from May to September (corn growing season). 
• Collected manure is not distributed to pasture when the cows are grazing. 

 
These rules depend on the growing season for corn (see Section 4.7.3) and grazing season 
for cattle.  Since these seasons do not match exactly, there were three periods per year 
with distinct manure production and application rates.  Since SWAT schedules 
management practices on an annual calendar, the winter period was split into two periods 
making a total of four manure management periods per year in which SWAT inputs must 
be defined.  For each management period, subbasin and HRU, a daily manure application 
rate, along with the appropriate manure type, was input to SWAT.   
 
A compact summary of the resulting manure application pattern during the calibration 
period is provided in Table 4.7.3 and Figure 4.7.2.  Table 4.7.3 shows that corn receives 
manure at the highest average rate and that the application rate varies little between 
subbasins (because the maximum and average application rates are very close).  Table 
4.7.3 also shows that although hay and pasture manure application rates are lower 
compared to corn, the application rate varies more between subbasins.  In the calibration 
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period, hay areas are extensive enough in each subbasin to receive all remaining collected 
manure after distribution to corn HRUs.  Therefore, collected manure is not applied to 
pasture or idle agriculture HRUs in the calibration period.  The same holds true during 
the validation period. Figure 4.7.2 shows that the bulk of total manure goes to hay, then 
corn and then pasture HRUs.  It also shows that hay is mainly fertilized from January to 
September while 2/3 of the basin-wide manure applied to corn is applied from October 
through December.  Manure spreading is similar for the validation period except that 
manure application rates are elevated since a higher manure production rate was 
estimated.  
 

Table 4.7.3.  Summary of model annual application rates across land use types for the 
model calibration period in English tons of wet manure/acre1 and (kg dry manure/ha). 

Land Use Area-Weighted Average 
Manure Application Rate 

Maximum Manure 
Application Rate 

Pasture 6.4 (1824) 22.8 (6516) 
Idle Agriculture 0.0 0.0 

Corn 23.6 (6745) 24.5 (7000) 
Hay 3.5 (1006) 15.3 (4358) 

1. These units are used since they are common in the field.  All necessary conversions 
are made before data input to SWAT. 

 

Figure 4.7.2.  Pattern of basin-wide total manure application in SWAT for the calibration 
period. 
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4.7.2 Starter Corn Fertilization 

Farmers in the basin generally apply starter corn fertilization (Personal Communication, 
Karl Czymmek and Dale Dewing).  To simulate this in SWAT, it was assumed that 
starter fertilizer was applied each year on the same day that corn is planted.  Based on 
recommendations from Karl Czymmek and Dale Dewing (Personal Communication), 
39.3 kg/ha of Nitrogen (N) and 17.1 kg/ha of P is applied to corn HRUs and 99% of N 
and P is incorporated to the soil layer under the top 10 mm of soil.  These corn 
fertilization inputs were assumed constant between the calibration and validation periods.  
The application of starter corn fertilizer adds a total of 23,700 kg of P or approximately 
25% of the total P added to corn silage HRUs from manure and starter corn fertilizer. 
 
4.7.3 Tillage, Crop Growth and Harvest Scheduling 

According to local agricultural planners some farm management inputs vary depending 
on whether the farm is located in a lowland valley or on upland slopes.  Farms in the 
basin are therefore classified as either lowland or upland farms.  In order to represent the 
differences in management practices between these farm types, the HRUs in the SWAT 
model must be classified as either upland or lowland.  It was assumed that the HRUs on 
the NY099, NY127 and NY136 STATSGO soil types were lowland since they were 
located in the valleys while the remaining HRUs were upland.  The lowland and upland 
areas in the model are shown in Figure 4.7.3.  Although this representation of upland and 
lowland areas is imperfect, it is deemed appropriate for this scale of watershed model.   
 
The available spatial data provide the precise spatial location of corn land use in the 
basin.  Therefore, all corn silage HRUs can be classified as either upland or lowland with 
relative certainty.  In contrast, the precise spatial location of pasture and hay land use in 
the basin is not known.  The definition of hay HRUs in Section 4.2.1.2 allows for easy 
incorporation of crop rotations into the SWAT model in the future.  This approach 
created hay HRUs that should be in rotation as well as hay HRUs that should be 
continuous hay in future model versions.  As explained in Section 4.2.1.2, all hay HRUs 
in the current version of the model are assumed to be continuous hay.  The definition of 
these hay HRUs that could be rotated with corn was based on the corn and hay having 
like STATSGO soil types.  Therefore, these ‘rotation’ hay HRUs are also classified as 
either upland or lowland HRUs.  The approach outlined in Section 4.2.1.2 for 
disaggregating the remaining grass land use category (after the definition of ‘rotation’ 
hay HRUs) into pasture, continuous hay and idle agriculture HRUs arbitrarily assigns 
these HRUs to be located on either upland or lowland soils.  Therefore, it was deemed 
more representative of this imprecise knowledge to characterize these pasture and hay 
HRUs as lumped upland and lowland HRUs with management inputs that represent a 
compromise or average of the inputs from upland and lowland HRUs.  Hay HRUs were 
therefore categorized as upland, lowland or lumped upland/lowland while pasture HRUs 
were all categorized as lumped upland/lowland. 
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Figure 4.7.3.  Definition of upland and lowland areas in Cannonsville Basin. 
 
Based on information from various agricultural experts familiar with local management 
practices (Dale Dewing and Karl Czymmek, Personal Communication) management 
inputs for each agricultural HRU type were assigned and are outlined in Table 4.7.4.  The 
shorter growing season on upland HRUs is reflected in the later planting and tillage dates 
for upland corn silage HRUs and in the reduced rates of hay harvest for upland hay 
HRUs.  Since all hay in this model is grown continuously, there is no tillage on hay 
HRUs.  The harvest index values for hay and pasture were selected such that the total 
basin-wide harvested biomass represented a reasonable proportion of the estimated dry 
matter intake rate of the basin-wide cattle population (see Section 10.4.2 for more 
discussion on this issue). 
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Table 4.7.4.  Summary of non-fertilization agricultural management inputs for SWAT 
model during calibration and validation. 

Modeled 
Land 
Use 

SWAT 
Crop/Plant 

Cover 
Modeled 

Upland or 
lowland 

HRU 

Planting 
Date 

Harvest Dates 
(Harvest 
Index1) 

Tillage 
Dates 

Corn Corn Silage Lowland May 5 Sept. 25 Apr. 232 
May 32 

Corn Corn Silage Upland May 20 Sept. 25 May 82 
May 182 

Hay Timothy Lowland -3 
May 20 (0.5) 
July 1 (0.4) 

Aug. 15 (0.4) 
- 

Hay Timothy Upland -3 June 10 (0.5) 
July 30 (0.4) - 

Hay Timothy Lowland / 
Upland -3 

May 20 (0.3) 
July 1 (0.5) 

Aug. 15 (0.2) 
- 

Pasture Timothy4 Lowland / 
Upland -3 

May 20 (0.45)5 
July 1 (0.55) 5 

Aug. 15 (0.45) 5 
Sept. 30 (0.35) 5 

- 

1. The harvest index or HIOVR parameter in SWAT is used to specify the fraction of 
above ground biomass removed in each hay cutting operation. 

2. The corn silage tillage operations for both upland and lowland farms, in order of 
occurrence, are tillage with a moldboard plow to 150mm in depth and then tillage 
with a tandem disk to 75mm in depth. 

3. Timothy is a perennial plant and starts growth once spring temperatures warm 
enough. 

4. Some timothy crop parameters for pasture were set differently than timothy crop 
parameters for hay (see Section 6.3.2.1 for details). 

5. Pasture grazing management inputs (e.g. biomass removal) represented in this SWAT 
model by harvesting pasture. 

 

4.8 Atmospheric N and P Deposition 

Available data show that atmospheric N and P deposition rates to basin soils are 
significant.  Atmospheric N and P deposition rates for the various locations are monitored 
as part of the National Atmospheric Deposition Program (NADP) and are available 
through http://nadp.sws.uiuc.edu/.  The monitoring station closest to the Cannonsville 
Basin is site NY68 in Ulster County, NY.   
 
Atmospheric N deposition is input to SWAT as the RCN parameter, which is the constant 
concentration of nitrate (NO3) in rainfall falling across the basin.  NADP data are 
available for nitrate deposition rates as kg/ha and nitrate precipitation-weighted 

http://nadp.sws.uiuc.edu/
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concentrations in rainfall as mg of nitrate per litre.  NADP data are also available for 
ammonium (NH4) deposition rates as kg/ha.  The average annual deposition rates for 
nitrate and ammonium at NY68 from 1983-2002 are approximately 18 kg/ha and 2.5 
kg/ha, respectively.  Converting these to N deposition rates yields average annual 
deposition of 4.1 kg/ha of nitrate-N and 1.6 kg/ha of ammonium-N.  The average annual 
precipitation-weighted concentration of nitrate at NY068 from 1983-2002 is 
approximately 1.5 mg/L.  Since ammonium-N accounts for about 1/3 of the atmospheric 
N deposition measured at this station, it was deemed important to account for this N 
addition to basin soils.  Therefore, the nitrate N concentration was adjusted by 
1.5/0.67=2.25 mg/L and input to SWAT as the value of the RCN parameter.  This 
adjustment forced the SWAT input of atmospheric N to represent the total measured 
atmospheric N deposition at NY68 at the expense of ignoring the fact that about 33% of 
the N is from ammonium rather than nitrate. 
 
NADP atmospheric P data were much less abundant for NY68.  In fact, P data are not 
available directly on the NADP website and are only available by contacting the NADP 
program office through their website.  The available P data are deposition rates in kg/ha 
of PO4.  Unfortunately, 94% of the weekly samples of atmospheric P O4 deposition rates 
were below the detection limit.  The NADP estimated the average annual PO4 deposition 
rates by substituting ½ the detection limit for samples with PO4 under the detection limit.  
The resulting annual average deposition rate of P from PO4 is calculated as 0.024 kg P/ha 
based on estimated annual averages from 1990-2001.  Based on the high proportion of 
non-detects in this data set, another source of atmospheric P deposition rates is needed. 
 
Independent of the NADP atmospheric P deposition data at NY68, a P budget study of 
Northeast US forests by Yanai (1992) provides a second estimate for atmospheric P 
deposition.  Yanai (1992) estimates that atmospheric P is deposited at an average annual 
rate of 0.04 kg P/ha.  This is relatively close to the estimate using NADP data.  To be 
conservative in terms of the simulated model inputs of P, it is assumed that atmospheric P 
is deposited on all basin soils at an annual rate of 0.04 kg/ha.  Therefore, a total of 
approximately 4,700 kg of P/yr is added to the basin via atmospheric P deposition.  This 
P deposition is added to model soils by specifying a fertilization operation on all basin 
soils with 0.04 kg of pure P fertilizer on December 31 each year.  Since model 
predictions of P loading during calibration were not sensitive to this minor addition, this 
one-time addition of P to soils in the model is a reasonable way to approximate the year-
round deposition of atmospheric P to basin soils. 
 

4.9 Model Initial Conditions 

Any SWAT model run should include a warm-up period in which the model is allowed to 
initialize and then approach reasonable starting values for model state variables.  For 
example, the warm-up period allows the model to deposit sediment in the river network 
and fill the soil partially with soil water before simulation results are considered realistic.  
Model predictions should only be compared to measured data after the simulation warm-
up period.  After some initial tests, it was deemed necessary to have at least a two-year 
warm-up period in the model for reasonable initial channel sediment levels.  Furthermore, 
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due to the uncertainty associated with exact initial phosphorous levels the warm-up 
period was extended to be 3 years.  The longer the model warm-up period, the less impact 
highly uncertain initial model inputs have on simulation results. 
 
At the beginning date of both the model calibration and validation simulations (e.g. the 
first day of the model warm-up period) all model state variables are left at their SWAT 
default initial values except for the state variables listed in Table 4.9.1 below and the P 
state variables discussed in Section 4.9.1.  State variables set in Table 4.9.1 were set to 
initial values deemed more reasonable than the model default values.  Calibration and 
validation simulations begin on January 1 with no crops growing, and plant growth on all 
land covers begins in the spring of the first simulated year.  Model predictions are not 
evaluated in accordance with the 3-year warm-up period until 3 full years have been 
simulated. 
 

Table 4.9.1.  Initial state variable values specified differently than SWAT defaults. 
SWAT 

Variable 
Name 

Variable Description Initial Variable 
Value 

Model Default 
Value 

RSD_IN Initial mass of biomass residue 
in top 1 cm soil layer (kg/ha) 

5000 for forests & 
3000 for all other 

land uses 

0 for all land 
covers 

FFCB 
Initial soil water storage 

expressed as a fraction of field 
capacity 

0.5 0.0 

 
4.9.1 Initial Soil Phosphorus Levels 

Considerable effort was made to specify initial soil P levels that were representative of 
the spatially variable soil P conditions in the Cannonsville Basin.  Unpublished soil test P 
data collected by the Watershed Agriculture Program (WAP) for the New York City 
Watersheds and analyzed by the Cornell Nutrient Analysis Laboratory, Department of 
Soil, Crop, and Atmospheric Sciences, Ithaca NY was utilized for the purposes of 
specifying initial soil P conditions for agricultural land covers.  The database for the 
Cannonsville Basin was provided with all spatial references removed to protect privacy 
of farmers.  The database contains over 2800 entries of soil test Morgan’s P levels in 
lbs/acre and each entry has a corresponding date, crop cover and soil type associated with 
it.  Forest sampling data (mg Morgan’s P /kg) taken from two farm-scale research sites in 
the basin (NYSWRI 2002a) were used to specify initial forest and grass-shrub soil P 
levels.  Only 14 forest sites in the NYSWRI (2002a) sampling effort were deemed 
representative of unmanaged forested land.  Other land cover types in the model (urban 
land and water make up less than 3% of the basin) are initialized with model default 
SWAT soil P levels.   
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4.9.1.1 Labile Soil P Levels for Agricultural Lands 

Since over 95% of the Delaware County soil test database entries represent soil 
conditions between 1995 and 1998, no values were available for direct specification of 
soil P levels at the beginning of either the calibration or validation period.  Instead, it was 
assumed that the average soil test P levels in the database are representative of the initial 
soil P levels at the start of both the calibration (Jan. 1991) and validation period (Jan. 
1987) simulations.  Based on the crop cover and soil type, groups of soil test P values 
were formed and their averages were assumed representative of each crop cover/soil 
combination.  Since SWAT uses STATSGO soils (which combine the more specific soil 
types referenced in the Delaware County soil test database), these averages had to be 
converted to represent the STATSGO soils in Delaware County.  This was achieved by 
taking a weighted average of the crop cover/SSURGO soil averages, based on the 
SSURGO soil type composition percentages for each of the STATSGO soil types.  The 
result of the analysis is unique soil test P levels for each STATSGO soil on all 
agricultural HRUs (e.g. corn silage, hay and pasture).  For example, all NY056/corn 
silage HRUs were assigned the same initial soil P level to begin the simulation regardless 
of the subbasin the HRUs are located in. 
 
The Morgan’s P samples are assumed representative of a 15 cm plough layer.  Thus, the 
soil test database is only used to initialize soil P levels in the top two soil layers of 
agricultural soils.  These top two soil layers in SWAT are represented with a surface layer 
1.0 cm in depth and a second soil layer ranging from 14.4 to 17.6 cm in thickness across 
the basin.  Note that initially, the properties of the top two layers are identical for 
agricultural lands since SWAT actually generates this top layer of soil based on the top 
layer of soil given in the STATSGO database.  The top 1 cm of soil is the only soil layer 
in which the model assumes interacts with surface water runoff.  For all soil layers below 
second layer, SWAT default values are used to initialize soil P levels. 
 
SWAT models six pools of soil P throughout the simulation.  These include the mineral 
soil P pools of labile (or soluble) P, active mineral P and stable mineral P and the organic 
P pools of fresh organic P and the active and stable organic P pools associated with soil 
humus.  Morgan’s P samples do not represent the sum of all P in the soil as represented in 
SWAT.  However, Morgan’s P soil tests can be converted to estimate the labile P 
concentration in the soil.  First, the Morgan’s P levels in lbs/acre are converted to mg 
Morgan’s P /kg soil by the common soil test laboratory conversion factor:  
 
 1 mg Morgan’s P/kg soil = 2 lbs Morgan’s P/acre   
 
(Quirine Ketterings, Personal Communication).  Then, Morgan’s P levels in mg/kg soil 
are converted to labile P concentrations in the soil by the conversion: 
 
 1 mg labile P/kg soil = 0.4 mg Morgan’s P/kg soil 
 
(Andrew Sharpley, Personal Communication).  Although these conversion factors can 
vary between sample sites and lab, they were assumed reasonable for the purposes of 
estimating initial labile P levels that are averages under similar land cover/soil type 
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conditions instead of a single sample associated with a specific sampling location.  The 
resulting input area-weighted averages (across soil STATSGO soils) and ranges used as 
initial labile P concentrations for all agricultural land uses are summarized in Table 4.9.2. 

4.9.1.2 Labile Soil P Levels for Forests, Grass-shrub and Idle Agriculture 

Data collected at two forested sites in the Cannonsville basin (NYSWRI 2002a) were 
assumed to be representative of all forested land across the basin even though the 
sampling sites are representative of only upland forest soil P conditions.  Most of the 
forest sampling results are assumed to represent deciduous and coniferous forests while 
some of the samples are more representative of grass-shrub land use rather than forested 
land.  Although the forest sampling effort distinguished between the humus layer (mainly 
organic soil from leaf litter) and first mineral soil layer, the humus layer P samples were 
not used here.  Instead, the mineral soil P levels sampled were assumed to represent the 
soil P levels in the two upper layers of soils modeled by SWAT.  This is reasonable 
because the equations for P transport in SWAT are developed for mineral, not humus, 
soils and the measured soil P levels in the humus layer were greater than the measured 
soil P levels for corn.  This approach was advocated by soil P expert Andrew Sharpley 
(Personal Communication).  The same assumptions from Section 4.9.1.1 are also used 
here to estimate initial labile P concentrations for forest and grass-shrub soils in both the 
calibration and validation period.  Forest and grass-shrub soil labile P concentrations are 
also summarized in Table 4.9.2 below. 
 
Soil P samples were not available for idle agricultural land and had to be estimated.  The 
idle agricultural land was assumed to have previously been pasture or hay since this land 
use is a subcategory of the NYCDEP grass land use (see Section 4.2.1.2).  Therefore, the 
initial soil P levels are assumed to be closely related to the levels measured on hay and 
pasture on the same STATSGO soil map unit.  In addition, it is assumed that idle 
agriculture land should have initial soil P levels that are slightly higher than the measured 
grass-shrub levels.  Therefore, initial labile P concentrations for idle agriculture  
(Sol Pidle agr, i ) on each STATSGO soil type i were calculated based on the following 
equation: 
 

Sol Pidle agr, i = {Sol Pgrass-shrub + (Sol Phay, i + Sol Ppasture, i)/2}/2 
 
The above equation averages the soil type hay and pasture values for labile P because the 
idle agricultural land could have previously been hay or pasture. 
 
Table 4.9.2 shows that the relative magnitudes of the labile P levels for forests and 
agricultural lands (corn, hay, and pasture) appear reasonable since soluble P levels of the 
forests, which do not receive P inputs, are approximately ¼ of the average levels in 
agricultural lands, which have P applied to them.   
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Table 4.9.2.  Model calibration and validation initial labile (soluble) P concentrations in 
mg P/kg soil for the top two soil layers averaged (area-weighted) across all soils. 

Land Use Area-weighted 
Average Minimum Maximum 

Forest 5.6 5.6 5.6 
Grass-shrub 7.4 7.4 7.4 

Corn, hay, and pasture1 18.4 8.6 65.1 
Corn 43.6 22.3 65.1 
Hay 22.2 9.8 31.2 

Pasture 13.9 10.5 19.1 
Idle agriculture 12.0 8.6 16.3 
All land covers2 9.4 5.6 65.1 

1. Corn, hay and pasture areas represent all active agricultural lands across the basin. 
2. SWAT Default P levels assigned to urban land are not considered in this total.  

However, their impact would be negligible on this estimate. 

4.9.1.3 Total Mineral Soil P Levels for all Land Uses 

The initial total mineral P levels in SWAT (active and stable mineral P in addition to 
labile P) are calculated by the model depending on 1) the initial labile P concentrations as 
determined in the previous section and 2) a soil P sorption coefficient (PSP) which is a 
model parameter that is applied at a constant value across all basin soils.  Using some 
basin specific soil characteristics, reasonable bounds can be determined for PSP as 
described below. 
 
The soil phosphorus cycling algorithms in SWAT are incorporated from the EPIC model 
(Williams et al. 1984).  The PSP coefficient, which is defined as the fraction of fertilizer 
P remaining in the labile pool after the initial rapid phase of P sorption is complete, can 
be predicted from a set of equations related to general soil characteristics.  A reasonable 
equation for predicting PSP in slightly weathered, non-calcareous soils that are 
representative of the Cannonsville Basin is given in Sharpley et al. (1984) as: 
 

PSP = 0.0043 BS + 0.0034 AP2 + 0.11 PH – 0.7 
 
where BS is the base saturation as a percentage, AP2 is the labile P in the soil in mg 
labile P/kg soil and PH is the soil PH.  Using the basin wide area-weighted average 
concentration of 9.4 mg labile P/kg soil from Table 4.9.2 above, assuming an average soil 
pH of 6.0 based on Delaware County agricultural soil data collected by Kleinman et al. 
(1999) and assuming a base saturation of 40 to 100 percent, the PSP value predicted by 
the equation above ranges from 0.16 to 0.42.  In order to calculate the initial total mineral 
P concentrations in the soil the final PSP value for this model, which is assumed 
determined in Section 6.3.2.2 to be 0.25, is required. 
 
Based on the PSP value of 0.25 and the initial labile P concentrations in Section 4.9.1.2, 
the area-weighted averages and ranges of initial total mineral P concentrations are given 
in Table 4.9.3 for all land uses.  Again, as in the Table 4.9.2 above, the mineral P levels 
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in Table 4.9.3 below seem reasonable with respect to forest relative to agricultural land 
mineral soil P concentrations. 
 
Table 4.9.3.  Model calibration and validation initial mineral P concentrations (labile P + 
active mineral P + stable mineral P) in mg P/kg soil for the top two soil layers averaged 

(area-weighted) across all soils and using PSP=0.25. 

Land Use Area-weighted 
Averages Minimum Maximum 

Forest 90 90 90 
Grass-shrub 118 118 118 

Corn, hay, and pasture1 294 137 1042 
Corn 698 358 1042 
Hay 355 158 498 

Pasture 223 169 306 
Idle agriculture 192 137 260 
All land covers2 150 90 1042 

1. Corn, hay and pasture areas represent all active agricultural lands across the basin. 
2. SWAT Default P levels assigned to urban land are not considered in this total.  

However, their impact would be negligible on this estimate. 

4.9.1.4 Organic Soil P Levels for all Land Uses 

There is little basin-specific data available for setting initial soil organic P levels in the 
model.  However, rather than having SWAT set default initial organic P levels that may 
be inconsistent with the total mineral P derived above, it was deemed more appropriate to 
set initial organic P levels that were related to the initial total mineral P levels.  As above, 
organic P levels are only derived for the first two soil layers (approximately the top 15 
cm of soil) in SWAT and model default values are used to initialize organic P levels in 
soil below the second layer. 
 
It is assumed that the organic P content of soils, relative to total soil P, is highest for 
forest soils and lowest for cropped land like corn.  The organic P fraction of total soil P 
for forest, grass-shrub, idle agricultural, hay, pasture and corn silage are assumed to be 
0.7, 0.7, 0.6, 0.5, 0.5 and 0.25, respectively.  These organic P content assumptions are 
generally consistent with the basin-specific soil P data collected for corn and forest by 
Kleinman (1999).   

4.9.1.5 Total Soil P Levels for all Land Uses 

The SWAT model only requires inputs for initial soil P levels for labile P and 
active+stable organic P.  These inputs are derived above.  Table 4.9.4 gives the average 
initial soil total P levels each land use in this study.  Corn land use is modeled with the 
highest initial total P concentration while forests are modeled with the smallest.  
Agricultural land uses have a higher initial total P concentration than non-agricultural 
land uses.  The average, area-weighted soil total P level of approximately the top 15 cm 
of basin soils was about 400 mg P/kg soil.  Note that Table 4.9.4 does not include a small 
amount (no more than 10 mg P/kg) of fresh organic P in the initial residue on the surface 
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layer of the soil.  These basin specific, data-driven soil P levels are significantly higher 
than the SWAT model default soil P levels. 
 

Table 4.9.4.  Model calibration and validation initial total soil P concentrations in mg 
P/kg soil for the top two soil layers averaged (area-weighted) across all soils. 

Land Use Area-weighted 
Averages Minimum Maximum 

Forest 300 300 300 
Grass-shrub 393 393 393 

Corn, hay, and pasture1 603 256 1389 
Corn 931 477 1389 
Hay 709 315 997 

Pasture 446 337 612 
Idle agriculture 481 343 650 
All land covers2 395 209 1389 

1. Corn, hay and pasture areas represent all active agricultural lands across the basin. 
2. SWAT Default P levels assigned to urban land are not considered in this total.  

However, their impact would be negligible on this estimate. 
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5 SWAT2000 Source Code Modifications/Corrections   
 
The SWAT2000 model source code is distributed with the download of the model 
executable program.  This means that any changes to the model equations or calculation 
methods deemed necessary were possible to implement.  This also means that the model 
can be recompiled so that it runs using a minimum amount of computer processing time 
and so that it can be linked with supplementary programs such as those to be used for 
auto-calibration or uncertainty analysis of the SWAT2000 model.  Although the purpose 
of the calibration and validation was not to modify the equations in the SWAT2000 
model, it became apparent that seven source code modifications were necessary for either 
convenience, improved model performance or because an error in the original 
SWAT2000 source code required correction.   
 

5.1 Modification 1: Implement Efficient Daily Manure Spreading 

In order to efficiently specify daily spreading of manure the model source code related to 
implementing the grazing management option in the SWAT2000 model was slightly 
modified.  After this modification, the grazing management option could be used to only 
spread manure on all crop types (e.g. WMANURE input variable > 0) and the removal of 
plant biomass by cattle was not simulated (BMEAT input variable = 0) at all times of the 
year.  Although grazing of cattle does currently occur in the basin, it is assumed that 
simulating grazing with the model was unnecessary since general grazing management 
practices within the basin result in only small changes in erosion (Karl Czymmek, 
Personal Communication).  Furthermore, the grazing management option in SWAT2000 
is new and relatively untested against observed grazing data (Jeff Arnold, Personal 
Communication). 
 

5.2 Modification 2: Ensure Plant Growth Simulated in all Years 

Initial model runs showed that plant growth in a number of corn and forest HRUs was not 
occurring in at least one year of the simulation.  This non-growth produced highly 
excessive sediment and P loads from affected HRUs due to the loss of plant cover 
protection from erosion.  After consulting with model developers, this model behavior 
was deemed unique and should not be occurring (Jeff Arnold, Personal Communication).  
Furthermore, it would be unreasonable relative to actual conditions in the basin to 
simulate one or more years where corn HRUs were fallow and forests do not grow.  The 
only solution to this observed problem was to make a minor modification to the source 
code of the model nutrient stress evaluation routine. 
 

5.3 Modification 3: Winter Surface Runoff Adjustment on Frozen Soils 

The default SWAT2000 approach is to increase predicted surface runoff volumes when 
the second soil layer (not the top 1 cm soil layer) is frozen.  This approach was thought to 
be the cause of flow over-predictions observed for multiple, late fall and spring events in 
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the calibration period.  These events occurred in November and April and therefore 
occurred when the soil temperatures were very close to freezing near the soil surface.  
Since SWAT2000 simulates the increase in surface runoff based on soil a temperature 
threshold being crossed, model predictions change drastically for simulated soil 
temperatures just above freezing and just below freezing.  Therefore, it was deemed 
appropriate to change the model such that increases in surface runoff were only triggered 
when it was relatively certain that most of the soil profile was frozen.  This change 
involved calculating a depth-weighted average soil profile temperature and then 
comparing this temperature to the freezing mark in order to determine if surface runoff 
volumes would be triggered to increase. 
 

5.4 Modification 4: Soil Water Above Field Capacity in Frozen Soils 

In SWAT2000, for any non-frozen soil layer, when the soil water content exceeds the 
field capacity of the soil, the excess soil water is partitioned between lateral flow and 
percolation to the next soil layer.  Percolation from the last soil layer goes to 
groundwater.  When a soil layer is calculated to have a temperature below freezing, the 
default SWAT2000 approach is to: 

1. Assume no lateral flow occurs. 
2. Assume soil layer can hold excess water above field capacity until soil 

saturation is reached (presumably based on assumption that all water freezes 
in the soil). 

3. Assume that for a frozen saturated soil layer, additional percolated water from 
above passes through the layer to become percolate to the next soil layer. 

 
The end result of the above approach is that rainfall or 55 simulated as percolate (as 
opposed to surface runoff) on a frozen and saturated soil profile goes entirely to 
groundwater and the transfer of this percolate to the stream is greatly delayed.  In fact, it 
was observed that the default SWAT2000 approach described above was responsible for 
transferring too much of the winter precipitation to streamflow in the early summer.   
 
The most efficient model modification to make the handling of percolate into a frozen 
soil layer more reasonable was to allow the model to predict lateral flow in frozen soils.  
In other words, the model partitioning of water above field capacity into percolate and 
lateral flow is not affected by soil layer temperature.  This change in the SWAT2000 
code produced more accurate flow predictions relative to the measured data.  Model 
performance improvement, relative to measured flows, associated specifically with this 
change is evaluated explicitly at the end of Section 6.4.1. 
 

5.5 Modification 5: Orographic Adjustment of Average Monthly Subbasin 
Temperatures 

Average monthly maximum and minimum temperatures in the SWAT2000 weather 
generator input files (or “.wgn” files) are used by the model for soil temperature 
calculations.  However, the default SWAT2000 approach does not adjust these for 
elevation differences between the weather generator climate station and the average 
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subbasin elevation to which they are assigned.  In order to be consistent with the 
simulation of orographic impacts on temperature, the source code was modified to adjust 
average monthly maximum and minimum temperatures for elevation differences between 
the weather generator climate station and the average subbasin elevation. 
 

5.6 Modification 6: Correct Snowmelt Logic when Elevation Bands Simulated 

It was discovered that the default SWAT2000 model logic for estimating snowmelt is 
inconsistent depending on whether elevation bands are simulated.  Specifically, when 
elevation bands are not simulated, the model allows snowfall and snowmelt to occur on 
the same day depending on the model parameters for these processes (SFTMP and 
SMTMP).  However, when elevation bands are simulated, regardless of the SFTMP and 
SMTMP parameters, the default SWAT2000 code does not allow snowmelt to occur on 
days when the precipitation type is classified as snow.  Since snowmelt is computed in 
SWAT2000 as a function of both average and maximum daily temperature, there are days 
when the average temperature suggests snowfall and the maximum temperature suggests 
that snowmelt also occurred.  To allow simulation of this reasonable phenomenon, the 
source code for snowfall and snowmelt computation in elevation bands was modified to 
be replicate the SWAT2000 logic for snowfall and snowmelt computation when elevation 
bands are not simulated. 
 

5.7 Modification 7: Change the MUSLE Snow Cover Adjustment Equation 

During model calibration (Section 6.3) it became apparent that the MUSLE equation 
adjustment for erosion prediction under snow cover (equation 13.3.1 in Neitsch et al. 
(2001a)) was unsuitable for prediction of snowmelt erosion in the Cannonsville Basin 
based on comparison of the predicted and measured sediment loads for snowmelt months 
and consideration of the nature of the MUSLE equation adjustment.  For example, during 
the most extreme sediment loading month on record (January 1996) the initial model 
predictions showed almost no significant sediment load (relative to other months) at 
Beerston but does predict a significantly larger than average flow for the month. 
Although the model is not expected to perform accurately under this extreme month, it 
should predict at least some increase sediment load when flows are significantly higher 
than the average. 
 
The failure of the model to predict any sediment load increase during this month was 
directly attributable to the MUSLE snow cover adjustment equation.  For example, 
consider the behavior of the SWAT2000 snow cover adjustment equation plotted in 
Figure 5.7.1.  At a snow cover depth of 50 mm of snow water equivalent, the MUSLE 
predicted erosion is reduced by 99.7% in the original SWAT2000 model regardless of the 
surface runoff depth for the day.  While this may be reasonable for relatively small 
snowmelt events, this relationship becomes more unreasonable as the surface runoff 
depth increases relative to the snow cover water equivalent.  For example, during the 
January 1996 event, many HRUs were predicted to have approximately 50 mm of surface 
runoff in a single day where on the order of ½ the snow water equivalent melted.  Surely, 
with this volume of water draining over the soil surface, significant erosion should be 
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occurring – even if the soil was initially frozen.  Similar situations were observed in other 
simulated snowmelt periods.   
 
Clearly, the larger than average snowmelt events should produce some significant 
sediment erosion.  In fact, other studies in the literature suggest that MUSLE predictions 
of erosion under snow cover should not necessarily be reduced (Johnson et al. 1985, 
McConkey et al. 1997).  Perhaps the best argument for modifying the SWAT2000 model 
erosion predictions under snow cover is the total inability of the model to predict higher 
than average sediment loads for snowmelt months where the measured sediment loads 
were the highest recorded.  Therefore, various attempts were made to find a more 
representative adjustment to MUSLE sediment erosion under snow cover.  Modifying the 
default SWAT2000 MUSLE adjustment equation for snow cover is reasonable because 
this equation appears to be empirically (rather than physically) based.  The model 
adjustment was selected to account for the idea that as the fraction of the snowpack that 
melts increases, so too should the sediment erosion that occurs on that day.  Furthermore, 
it was assumed that a snowpack of any depth provides some minimum level of protection 
from erosion.  The new adjustment to MUSLE sediment erosion estimates under snow 
cover is based on the depth of surface runoff relative to the depth of the snow cover and 
is given by the following equation: 
 

MUSLEi` = MUSLEi * min (0.95, [SurQi / Snoi]0.25) 
 
where MUSLEi` is the final snow cover adjusted sediment yield for a given HRU on day 
i, MUSLEi is the sediment yield predicted with the original MULSE equation (Williams 
and Berndt 1977) on day i, SurQi is the surface runoff depth (mm) on day i and Snoi is the 
snow water equivalent depth (mm) of the snowpack on day i.  The constants in the 
equation above were iteratively refined in the calibration process until monthly simulated 
winter sediment loads more closely replicated measured winter sediment loads. 
 
The new equation for adjustment to the MUSLE sediment erosion estimates under snow 
cover is plotted for various surface runoff depths in Figure 5.7.1.  For example, with 
reference to the conditions simulated for the January 1996 event discussed above, for an 
HRU with 100 mm of snow cover water equivalent and a surface runoff depth of 40 mm, 
the new equation above reduces the MUSLE predicted sediment load by only 20% 
instead of by 99.7% as predicted in the original SWAT2000 model code.   
 
This change in the SWAT2000 code did produce more realistic sediment load predictions 
relative to the measured data.  Model performance improvement, relative to measured 
sediment, associated specifically with this change is evaluated explicitly in Section 6.4.2. 
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Figure 5.7.1.  Comparison of sediment yield adjustments under snow cover for various 
surface runoff volumes (SurQ) between the original SWAT2000 model code and the 

modified model code (New Eq.) proposed for the Cannonsville Basin. 
 

5.8 SWAT2000 Model Modification Summary  

All of the above source code modifications were thoroughly checked to ensure that the 
desired results were achieved and so that no other simulated processes were adversely 
affected.  Except for the modification related to daily manure spreading through grazing, 
the above modifications should be viewed as improvements over the alternative of using 
the original version of SWAT2000.  The changes above have been discussed with the 
lead model developer (Dr. Jeff Arnold) who did not disagree with any of the 
modifications.  Thus, the changes to the SWAT2000 model listed above were assumed 
reasonable for the purposes of this study.  All other changes to the model source code 
only involved printing internal model variables to output files for the purposes of 
checking model simulation results that are not available in standard model output files. 
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6 Calibration and Validation 
 
Watershed models contain many parameters, some of which cannot be measured. 
In order to utilize any predictive watershed model for estimating the effectiveness of 
future potential management practices the model must be first calibrated to measured data 
and should then be tested (without further parameter adjustment) against an independent 
set of measured data.  This testing of a model on an independent data set is commonly 
referred to as model validation.  Model calibration determines the best, or at least a 
reasonable, parameter set while validation ensures that the calibrated parameter set 
performs reasonably well under an independent data set.  Provided the model predictive 
capability is demonstrated as being reasonable in both the calibration and validation 
phases, the model can be used with some confidence for future predictions under 
somewhat different management scenarios. 
 

6.1 Monitored Flow and Water Quality Data 

A large amount of data, both spatial and temporal, exists to aid in the calibration and 
validation of the Cannonsville SWAT2000 watershed model.  This calibration effort 
focused on utilizing all available monitoring data for model calibration and validation.  
Stream monitoring data were available from a number sources and are all listed in Table 
6.1.1. 
 
USGS streamflow data and NYSDEC continuous water quality monitoring data 
(NYSDEC Unpublished data) on total suspended sediments (TSS), total dissolved 
phosphorus (TDP) and particulate phosphorus (PP) were used in model calibration and 
validation.  Portions of the NYSDEC data set have previously been published in 
Longabucco and Rafferty (Longabucco and Rafferty 1998).  As discussed in Section 4.6, 
the NYCDEP water quality grab sample data (NYCDEP Unpublished data) were used to 
specify spatially distributed groundwater TDP concentrations across the basin.  The same 
NYCDEP water quality data were also used to qualitatively test the spatially distributed 
performance of the model during calibration and validation for total P predictions.  Figure 
6.1.1 shows the location of available USGS flow stations and the NYSDEC water quality 
monitoring stations while the locations of the NYCDEP water quality monitoring stations 
used for spatially distributed calibration and validation of total P are provided in Figure 
6.4.7. 
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Table 6.1.1.  Summary of stream monitoring data used in model calibration and 
validation. 

Data Locations (drainage area) Period of 
Record 

Supplying 
Agency 

Continuous 
TSS, TDP and 
PP Monitoring 

Beerston (913 km2) 
Town Brook (37 km2) 

1991-pres 
1998-pres. 

New York 
Department of 
Environmental 
Conservation 
(NYSDEC)1 

Bi-weekly 
Phosphorus 
Monitoring 

Over 20 locations of bi-weekly grab-
samples taken across the basin 1988-1999 

New York 
Department of 
Environmental 

Protection 
(NYCDEP)2 

Streamflow 
Monitoring 

WBDR @ Walton, 014230003 
(860 km2)4 

WBDR upstream of Delhi, 01421900 
(347 km2) 

Little Delaware, 01422500 
(135 km2) 

East Brook, 01422747 
(64 km2) 

Trout Creek, 0142400103 
(54 km2) 

Town Brook, 01421618 
(37 km2) 

1950-
present 
1997-

present 
1997-

present 
1998-

present 
1997-

present 
1997-

present 

USGS4 

1. NYSDEC (Unpublished data). 
2. NYCDEP (Unpublished data). 
3. USGS gauge number. 
4. Available at http://water.usgs.gov. 
 
 
 
 

http://water.usgs.gov/
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Figure 6.1.1.  Continuous flow and water quality monitoring stations in the Cannonsville 
Basin as listed in Table 6.1.1. 

 
6.1.1 ‘Measured’ TSS and P Loading 

NYSDEC continuous water quality monitoring data (NYSDEC 2001) are calculated 
monthly loading estimates of TSS, PP and TDP.  NYSDEC does not measure monthly 
sediment or nutrient loading explicitly.  Therefore, the NYSDEC data are not strictly 
measured loading although in the remainder of the report they are referred to as 
‘measured loadings’ in order to clearly distinguish these quantities from the simulated 
model results.  NYSDEC calculates all loading estimates from measured USGS flow data 
and instantaneous water quality sampling data.  Loading estimates are essentially the 
product of flow and a concentration.  The NYSDEC calculation and sampling 
methodology for load estimation is outlined in detail in Longabucco and Rafferty 
(Longabucco and Rafferty 1998).  It should be noted that although the NYSDEC water 
quality sampling methodology has recently been changed (automatic samplers are usually 
now used), nearly all of the NYSDEC estimated loadings for TSS and P used in this 
report were based on the sampling methodology as outlined in Longabucco and Rafferty 
(Longabucco and Rafferty 1998). 
 
The main issue with respect to measured loadings is that they are in fact estimated or 
calculated loadings and are subject to some estimation error.  The NYSDEC event-based 
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continuous monitoring strategy and loading analyses described in Longabucco and 
Rafferty (Longabucco and Rafferty 1998) is a great improvement over loading estimates 
derived from fixed interval sampling (i.e. weekly or bi-weekly sampling).  However, the 
NYSDEC calculated loadings are still estimates that contain some error.  For example, 
Longabucco and Rafferty (Longabucco and Rafferty 1998) report that NYSDEC water 
quality sampling at Beerston consisted of collecting a sample at approximately mid-
channel by immersing a 4-L plastic jug in the water.  This approach yields approximate 
estimates of the true channel cross-sectional TSS or P concentrations.  Furthermore, 
although flow data are measured every 15 or 60 minutes by the USGS, TSS and P 
concentrations are sampled much less frequently.  For example, over the entire 
calibration and validation period, the average NYSDEC water quality sampling 
frequency is 1 sample every two days.  It should be noted that the NYSDEC sampling 
frequency during days classified as flow-event days is much higher at about 2 samples 
per flow-event day.   Errors in water quality concentration samples combined with errors 
in flow result in NYSDEC TSS and P loading estimates that are subject to larger errors 
than the monitoring errors for flow.  Therefore, differences between simulated and 
measured TSS and P loading are expected to be larger in relative magnitudes than the 
differences in simulated and measured flows.   
 
Of course, on a practical level, measuring an integrated cross sectional water quality 
sample and/or sampling water quality continuously at 15 min or 60 minute intervals are 
not feasible approaches for the NYSDEC continuous monitoring program of the WBDR 
and its tributaries.  The purpose of this discussion is not to suggest that improvements in 
the sampling methodology are required.  Instead the purpose is to explain some of the 
reasons why differences between model results and measured loadings are expected to be 
less for flows than for TSS and P (true in all watershed modeling applications). 
 

6.2 Equivalence of SWAT Outputs with Monitoring Data 

Comparing simulated model results with monitoring data collected in the basin requires a 
careful examination as to the equivalence of the modeled quantity and the measured 
quantity.  In the case of streamflow, monitored streamflow and modeled streamflow are 
equivalent and recorded on the same time scales and thus can be directly compared.  
However, special considerations are required when comparing sediment and phosphorus 
monitoring data with model predictions of these quantities.  
 
6.2.1 Sediment 

The total sediment load (particulate organic and inorganic matter) transported by rivers is 
made up of total suspended sediment (TSS) and bedload sediment.  TSS is composed of 
organic and inorganic particulate matter that is transported in the water column while 
bedload is larger sediment particles that are transported along the river bottom.  Although 
bedload can be greater than the total suspended sediment transport in smaller mountain or 
glacier fed streams, given the different nature and size of the WBDR, it is assumed that 
the TSS load accounts for at least 90% of the WBDR total sediment load. 
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SWAT simulates the loading of sediment to streams from the MUSLE equation.  The 
MUSLE equation simulates total sediment erosion from land.  In addition, SWAT 
simulates channel bed and bank sediment erosion and deposition.  SWAT sediment 
routing equations simulate the transport of the total sediment loads (MUSLE equation 
estimated sediment loading and channel bed and bank derived sediments) through the 
stream network.  Therefore, the model estimates of sediment loading are for total 
sediment loading.  In comparison, the NYSDEC sediment monitoring data measures only 
total suspended sediment (TSS).  However, since bedload sediment transport is estimated 
to be a small portion of the total sediment load, the model simulated sediment loading is 
assumed to be directly comparable with measured TSS loads.  Since SWAT simulated 
sediment loading is assumed to be at least 90% TSS, simulated sediment loading is 
usually referred to as simulated TSS in the remainder of the report. 
 
6.2.2 Phosphorus 

With respect to P, NYSDEC water quality samples were analyzed for total P, soluble 
reactive P (SRP) and total dissolved P (TDP).  Filtration of samples through a 0.45 µm 
membrane filter isolated the TDP fraction prior to analysis and particulate P (PP) was 
computed as the difference between total P and TDP (Longabucco and Rafferty 1998).  
SRP data are not used in calibration or validation of the SWAT model. 
 
SWAT simulates six forms of P in the soil (see Table 6.2.1) and assumes groundwater 
soluble P concentrations for each HRU are constant through time.  These seven forms of 
P are loaded to the stream network from the HRUs and are aggregated into two general 
forms of P for summary in the main model output files (*.rch and *.bsb files).  These 
general P forms are called mineral P and organic P in SWAT model documentation and 
output.  Mineral P loading to a subbasin stream from an HRU is the sum of P loading 
from GWsolP, Psol and MinPact while organic P is the sum of OrgPact, OrgPsta, OrgPfrsh 
and MinPsta.  Based on the components of SWAT mineral and organic P, it is clear that 
SWAT organic P is a misnomer since it includes MinPsta (Stable mineral P).  SWAT 
assumes that, except for solution P, all other forms of P in the soil are attached to 
sediment particles upon entering the stream. 
 

Table 6.2.1.  Forms of P in SWAT. 
Name of P Form SWAT Variable Acronym 
Active mineral P1 MinPact

  
Stable mineral P1 MinPsta 

Solution P1 Psol 
Active organic P1 OrgPact

  
Stable organic P1 OrgPsta 
Fresh organic P1 OrgPfrsh 

Groundwater soluble P GWsolP 
Mineral P2 MINP_out 
Organic P2 ORGP_out 

1. Forms of P in the soil. 
2. Forms of P routed in channel network. 
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SWAT simulated total P (mineral + organic P forms) and monitored data for total P are 
assumed equivalent.  However, SWAT simulated loading predictions of the P 
components in the stream (SWAT mineral and organic P) may not exactly represent the 
component P forms monitored by NYSDEC.  SWAT simulated mineral P includes active 
mineral P that is attached to sediment particles transported in surface runoff to the 
channel.  If SWAT mineral P is to be directly compared to monitored TDP, then it must 
be assumed that 100% of active mineral P is completely desorbed from soil particles once 
surface runoff reaches the channel.  Dr. Andrew Sharpley (Personal communication) 
commented that the amount of active mineral P desorbing from soil particles in the 
stream is probably significantly less than 100% of the available active mineral P.  
Assuming this is true and a significant amount of active mineral P remains bound to 
sediments transported in the channel, then the SWAT model mineral P form is likely to 
over-estimate monitored TDP and consequently under-estimate monitored PP.   
 
As a result, the calibration to phosphorus data focuses mainly on total P.  However, 
comparison of the simulated and measured phosphorus components should still show 
good agreement with respect to similar trends in the data.  Significant deviations in 
simulated organic and mineral P loads from the corresponding PP and TDP monitoring 
data will be judged to be acceptable provided the simulated total P closely replicates the 
monitored total P load. 
 
For brevity, simulated P results are mainly referred to as simulated TDP and simulated 
PP in the remainder of the report. 
 

6.3 Calibration 

6.3.1 General Approach 

Benaman (2002) initially calibrated the model for flow and sediment.  The authors of this 
report substantially modified the initial flow and sediment calibration by Benaman (2002) 
and also calibrated the model to phosphorus data.  This section outlines the overall 
calibration approach and the following sections describe the calibration approach (i.e. 
model parameter changes from default values) in more detail.  The final calibrated model 
accuracy with respect to the measured data are summarized using multiple numerical 
performance indicators and time series plots in Section 6.4. 
 
Model inputs and parameters were adjusted in multiple stages.  First, independent of 
numerical calibration (e.g. adjusting model parameters to optimize the model 
performance measures), model inputs and parameters, as outlined in Section 4, were 
updated.  Second, in addition to the changes outlined in Section 4, there were a number of 
other model inputs and parameters adjusted to better represent known conditions in the 
watershed.  These additional adjustments are described in Section 6.3.2.  Model input and 
parameter changes listed in Section 4 and 6.3.2 are referred to in the remainder of this 
document as data-driven parameters.  Data-driven parameters are grouped together 
because their final model default value was governed by available data or known 
conditions in the watershed rather than model predictive performance of measured flow 
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or water quality data.  Lastly, a relatively small group of model parameters were selected 
as performance optimization parameters and their values were iteratively adjusted to best 
match measured flow, sediment and phosphorus data.  Performance optimization 
parameters were selected because their values are more uncertain relative to other 
parameters and they were previously identified in the literature as sensitive model 
parameters (Neitsch et al. 2001b, Benaman 2002).  Section 6.3.3 lists the performance 
optimization parameters.  In a few special cases, parameters were classified as both a 
data-driven and performance optimization parameter.  Therefore, the final values for 
these data-driven/performance optimization parameters were determined by considering 
both known information regarding their ranges and the predictive performance of the 
model.  All data-driven and performance optimization parameters discussed below are 
constant in the calibration and validation periods.  All SWAT2000 model parameters that 
were not identified as data-driven or performance optimization parameters were left at 
their model default values and were either observed or assumed to have relatively small 
impacts on model predictions. 
 
In the process of fine-tuning the performance optimization parameters, it was observed 
that certain model prediction deficiencies could not be overcome by parameter 
adjustment alone.  Further investigation into these deficiencies resulted in the 
identification of the model source code modifications outlined in Section 5. 
 
The final values of the performance optimization parameters in this work were fine-tuned 
by a trial and error approach as opposed to any automatic calibration procedure.  As a 
result, the number of performance optimization parameters modified during the 
calibration was kept to a minimum relative to the total number of SWAT parameters 
available for calibration (e.g., non data-driven parameters).  Performance optimization 
parameters were modified iteratively, within SWAT2000 ranges, and generally one at a 
time, until no further significant improvement in model predictive performance was 
evident.  The performance optimization parameters in the model were generally 
calibrated to measured hydrology, sediment and phosphorus data in that order.  Model 
predictive performance relative to available measured data are evaluated for each 
constituent by calculating the percent difference (D) between average measured and 
simulated time series, the coefficient of determination (r2) and the Nash-Suttcliffe 
simulation efficiency (ENS) (Nash and Suttcliffe 1970).  These three measures of model 
performance are defined in the appendix (Section 10.3) and were selected because 
together they measure how well the model predicts the average and temporal trends in the 
measured data.  The goal of the calibration was to find values of performance 
optimization parameters that, for flow, sediment and phosphorus, resulted in a percent 
difference between average simulation and average measured data over the calibration 
period that was reasonably small (generally less than about 10%) and a r2 value that was a 
maximum.  Although model performance is mainly fine-tuned with respect to the 
performance measures for the entire year, seasonal performance measures were also 
assessed. 
 
Hydrology calibration was focused on reproducing measured daily flows while sediment 
and phosphorus calibration was focused on replicating measured monthly loads.  The 
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monthly time step is used for water quality calibration because of the reduced sampling 
frequency for water quality, relative to flow measurements, discussed in Section 6.1.1.  
The calibration effort generally focused on results at the Beerston/Walton monitoring 
stations since these most closely represented the sediment and P loading to the 
Cannonsville Reservoir and provided the longest time series of data.  Therefore, 
performance optimization parameters were generally only adjusted to either improve 
model accuracy at Beerston/Walton or to improve the overall model performance at most 
or all of the monitoring locations.  In other words, model performance at the monitoring 
stations other than Beerston/Walton were not optimized independently. 
 
In addition to simulating measured daily flows, model calibration for hydrology 
considered baseflow predictions.  Total streamflow is composed of baseflow and storm 
flow.  To compare model predicted baseflow with measured baseflow, estimates of 
baseflow volumes from both the simulated and measured flow data are required.  Based 
on the approach outlined by SWAT developers in Santhi et al. (2001), a baseflow 
analysis program by Arnold and Allen (1999) was used to analyze both the measured and 
simulated flows at the Walton USGS station and then compare the baseflows estimated 
from the measured and simulated data.  Model prediction of baseflow was evaluated on 
an average annual and average monthly basis.   
 
Sediment calibration was completed in two general steps.  First, the model was calibrated 
to simulate measured monthly sediment loads in the summer.  Second, the model 
predictions of monthly winter sediment loads were adjusted to better match the measured 
loads by adjusting the coefficients in the new MUSLE equation adjustment for erosion 
prediction under snow cover given in Section 5.7. 
 
Phosphorus calibration was also completed in two general steps.  First the model was 
calibrated to simulate measured monthly total P loads.  Secondly, other performance 
optimization parameters were adjusted to try and improve model predictions of TDP and 
PP without significantly degrading model predictive performance for total P.   
 
6.3.2 Data-Driven Input/Parameter Modifications 

All SWAT2000 inputs and parameters listed in Section 4 are considered data-driven and 
will not be repeated in this Section.  The remaining data-driven parameters are separated 
into three groups based on the primary model process affected by each parameter.  All 
data-driven inputs and parameters listed below are assigned constant values over the 
calibration and validation periods. 

6.3.2.1 Data-Driven Land use Crop/Plant Covers and Related Parameters 

SWAT2000 simulates the growth of specific plants on each HRU.  The plants that were 
simulated on each land use for the Cannonsville Basin are summarized in Table 6.3.1 and 
were assigned based on consultations with local agricultural planners/experts.  The plants 
growing on each land use were selected from the original SWAT2000 crop database.  
Hay and pasture plants were modeled as timothy while corn was modeled as corn silage.  
Coniferous and deciduous forests were modeled as evergreen and deciduous forests, 
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respectively.  Idle agricultural HRUs were modeled as timothy and grass-shrub HRUs 
were also modeled as timothy because no other plant in the SWAT crop database could 
be identified that represented this land use.  In addition, it was assumed that idle 
agricultural and grass-shrub land uses have greater protection from erosion than 
harvested or grazed agricultural grasses due to more extensive biomass ground cover.  
Thus, the SWAT minimum USLE C factor (USLE_C) parameters for timothy grown on 
idle agricultural and grass-shrub HRUs were increased from their defaults.  The grass-
shrub USLE_C parameter was set as the average of the default SWAT USLE_C values 
for deciduous forest and timothy while the idle agricultural cover factor was set as the 
average of the grass-shrub USLE_C and the default SWAT USLE_C value for timothy.  
The final values of these USLE_C parameters are given in Table 6.3.2. 
 

Table 6.3.1.  SWAT2000 land uses and corresponding crop cover type in the 
Cannonsville Basin. 

Modeled Land 
Use 

SWAT Crop/Plant Covers 
Modeled (4 letter code) 

Deciduous forest Deciduous forest (FRSD) 
Coniferous forest Coniferous forest (FRSE) 

Grass-shrub Timothy A1 (GRSH) 
Idle agriculture Timothy A (TIMU) 

Hay2 Timothy B1 (TIMC) 
Pasture Timothy B (TIMP) 
Corn Corn silage (CSIL) 
Urban High density residential areas 

and Altai wildrye grass (RYEA) 
Water - 

1. Timothy A represents unmanaged grasses and shrubs while Timothy B represents 
managed grasses.  Differences in their growth and erosion parameters are outlined 
in Table 6.3.2. 

 
Urban areas in the Cannonsville Basin vary from relatively dense areas of 
commercial/industrial buildings to relatively sparse areas of residential land.  Since the 
available NYCDEP land use data classified all urban land as one type and the total area 
of urban land was only 0.4% of the entire basin, only one type of cover was modeled for 
urban land.  It was assumed that the SWAT urban land use category called Residential-
High Density was representative of all urban land uses lumped together.  The fraction of 
this area considered impervious is 0.6 (default value) and the pervious areas were 
modeled as a perennial grass (Altai wildrye).  Impervious areas were simulated with the 
build-up and wash off process option in SWAT2000 for urban sediment and nutrient 
loading.  SWAT2000 default parameters for this urban land use were used without 
modification. 
 
Each plant cover in the SWAT2000 crop database has default growth parameters 
associated with it.  After consultations with the model developer and local agricultural 
experts it was determined that some of the crop growth parameters should be modified 
from their defaults.  Table 6.3.2 outlines the crop growth parameter changes.  The 
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SWAT2000 model developer (Dr. Jeff Arnold, Personal Communication) suggested 
modifications to the SWAT temperature-based growth parameters while a report by 
Cerosaletti (2002) outlines the lab analysis results for corn silage and hay forage for dairy 
cattle on four farms within the basin.  The average forage P contents of corn silage (44 
samples) and hay (135 samples) from these farms were assumed to best represent the P 
content of all corn silage and timothy grown in the Cannonsville Basin. 
 

Table 6.3.2.  Data-driven crop parameters changed from default SWAT2000 values. 
SWAT Parameter 

(short variable name) Description of Change SWAT Crop Cover:  
Modified Value (Default Value) 

Minimum USLE C 
factor (USLE_C) 

Decreased to reduce 
erosion from idle and 

successional agricultural 
land relative to erosion 

from hay or pasture 

FRSD: no change (0.001) 
TIMC & TIMP: no change (0.003) 

GRSH: 0.0020 (none) 
TIMU: 0.0025 (none) 

Optimal temperature 
for plant growth in °C 

(T_opt) 

Changed to account for 
Northeast climate 

FRSD: 25 (30) 
FRSE: 25 (30) 
TIM*1: 20 (25) 

Minimum (base) 
temperature for plant 

growth in °C (T_base) 

Changed to account for 
Northeast climate 

FRSD: 6 (10) 
FRSE: 4 (0) 
TIM*1: 5 (8) 

Normal fraction of 
phosphorus in yield in 

kg P/kg yield 
(CPYLD) 

Increased based on 
Cannonsville Basin data 
for locally grown corn 

silage and hay 
(Cerosaletti 2002) 

CSIL: 0.0025 (0.0016) 
TIMC & TIMP: 0.0040 (0.0033) 

Phosphorus uptake 
parameter #1 (BP1) 

Increased by same 
relative amount as 

CPYLD increase above 

CSIL: 0.0075 (0.0048) 
TIMC & TIMP: 0.0046 (0.0038) 

Phosphorus uptake 
parameter #2 (BP2) 

Increased by same 
relative amount as 

CPYLD increase above 

CSIL: 0.0028 (0.0018) 
TIMC & TIMP: 0.0030 (0.0025) 

Phosphorus uptake 
parameter #3 (BP3) 

Increased by same 
relative amount as 

CPYLD increase above 

CSIL: 0.0022 (0.0014) 
TIMC & TIMP: 0.0023 (0.0019) 

1. TIM* is all Timothy – GRSH, TIMC, TIMU and TIMP. 

6.3.2.2 Data-Driven Flow, Sediment and Phosphorus Parameters 

Three flow related, four sediment related and one phosphorus related data-driven 
parameters were not fully described in Section 4.  These parameters and their final or 
reduced parameter ranges are summarized in Table 6.3.3 and the basis for their 
modifications are discussed in more detail in the paragraphs below. 
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Table 6.3.3.  Data-driven flow, sediment and phosphorus related parameters. 
Parameter, Units 
(SWAT variable 

name) 

Basis for 
Modification 

SWAT2000 
Default Value 

Final Value  
(Range) 

 

Snowfall temperature, 
°C 

(SFTMP) 

Precipitation, 
precipitation type and 
temperature data @ 
Delhi and Walton 
Climate Stations 

1.0 1.0 
(0.0-2.2) 

Main and Tributary 
Channel Manning’s n 
(CH_(2) & CH_(1)) 

Table 6.2 in Neitsch 
et al. (2001a)  0.014 0.05 

(0.025-0.065) 

Base or Initial SCS 
Curve Numbers for 

all land covers1 (CN2)  

Default CN2s for idle 
agricultural and 

grass-shrub land use 
needed and corn 

silage CN2s refined 
for each STATSGO 

map unit   

Varies based on 
Table 6.2 in 
Neitsch et al. 

(2001a) 

See Table 6.3.4 

HRU slope fraction2 
(SLOPE) 

Calculate actual HRU 
slopes from DEM 

Average 
subbasin slope  Varies by HRU 

Corn silage biological 
mixing coefficient 

(BIOMIX) 

Tilled agricultural 
land has less 

biological activity 
than land with no-till 

0.20 0.05  
(NA) 

USLE equation 
support practice factor  

(USLE_P) 

Represent erosion 
control practices on 
corn silage and hay 

1.0 
Varies by HRU 

according to slope.  
See this Section text. 

Sediment 
concentration in 

lateral and 
groundwater flow, 
mg/L (LAT_SED) 

NYCDEC monitoring 
data for during non-
events (Longabucco 
and Rafferty 1998) 

0.0 See Section 6.3.3 
(0.0-5.3) 

Fraction of fertilizer P 
remaining in labile 

pool after initial rapid 
phase of P sorption 

complete (PSP) 

Multiple Sources (see 
Section 4.9.1.3) 0.40 0.25  

(0.16-0.42) 

1. The base SCS curve numbers are modified further as outlined in Section 6.3.3.1. 
2. The SWAT parameters SLSOIL and SLSUBBSN are reassigned based on the 

new HRU slopes (see paragraphs below for details). 
 
The snowfall temperature parameter in SWAT2000 (SFTMP) determines whether 
precipitation falls as snow or rain.  If the temperature of a subbasin is greater than 
SFTMP then precipitation in the model is classified as rain, otherwise it is classified as 
snow.  Available weather data were analyzed to determine that the probable SFTMP 
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range was between 0 and 2.2 °C.  Refer to appendix  (Section 10.4.1) for details of this 
analysis.  Since the default SFTMP value of 1.0 °C falls close to the middle of the 
probable range, the default of 1.0 °C was used for this parameter.  Fixing the SFTMP 
parameter simplified the approach outlined in Section 4.4.1.2 for forcing the model to 
correctly classify precipitation type when it is known with relative certainty based on 
available data.  
 
Default SWAT2000 Manning's n values for all basin stream channels were set at 0.014.  
Table 6.2 in Neitsch et al. (2001a) shows that for natural streams with few trees, stones or 
brush a nominal Manning’s n value for channel flow is 0.05.  Therefore, Manning’s n 
values for all main and tributary channels in the model were assigned a Manning’s n 
value of 0.05.   
 
The Soil Conservation Service (SCS) Curve Number (CN2) parameter in SWAT 
influences the amount of surface runoff calculated for each rainfall or snowmelt event.  
CN2 varies by land use and soil type in SWAT.  The base AVSWAT generated values 
for hay, corn silage and pervious urban lands were accepted as reasonable base values 
and are given in Table 6.3.4 for each soil hydrologic group.  CN2 values in Table 6.3.4 
are referred to as base values because they are further modified in Section 6.3.3 by a 
constant multiplicative factor that is considered a performance optimization parameter.  
Based on Table 20.2 in Neitsch et al. (2001a), new base CN2 values for pasture, idle 
agriculture, grass-shrub and forest were identified to replace to default AVSWAT CN2 
values.  All forested land was assumed to be in good hydrologic condition while all 
pasture land was assumed to be in fair to good (average) hydrologic condition.  These 
assumptions for forest and pasture result in the base CN2s for the land uses given in 
Table 6.3.4.   Idle agriculture and grass-shrub CN2s were calculated by averaging CN2s 
for other land uses as shown in Table 6.3.4.   All HRUs with water as a land use are 
assigned AVSWAT default CN2s of 92. 
 
Corn silage base CN2s in Table 6.3.4 for soil hydrologic groups A, B, C and D were used 
to estimate more accurate base CN2s that were unique to each STATSGO map unit.  
More accurate CN2s for corn silage were deemed important because initial simulation 
results showed corn silage HRUs have surface runoff and erosion rates that were the 
much higher (an order of magnitude for sediment erosion) than any of the other land uses.  
Corn silage base CN2s for each soil hydrologic group in Table 6.3.4 were assigned to the 
SSURGO soils and then the STATSGO map unit CN2s were calculated by an area-
weighted average of the SSURGO soil CN2s within each STATSGO map unit.   
 
HRU specific slopes were estimated for the 482 initial HRUs and the 22 manually added 
corn HRUs (see Section 4.2).  New, subdivided grass HRUs derived from this initial set 
of HRUs were all assigned slopes equal to the HRU they were derived from.  Default 
AVSWAT slope estimates were based on average subbasin slopes such that steep 
forested valley walls and agricultural lands in the relatively flatter valley bottoms were 
assigned the same slopes.  Therefore, the average subbasin slopes are overestimates for 
the agricultural HRUs that are often concentrated along rivers and tributaries.  
Hydrologic, sediment and therefore P model predictions are sensitive to the HRU slope 
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estimates.  Since other sediment erosion parameters are assigned at the HRU level, the 
subbasin average slopes were replaced with HRU specific slopes calculated from 
additional GIS processing.  Analysis of the HRU specific slopes verified the significant 
difference between forest and agricultural HRU slopes.  For example, the average forest 
HRU slopes are approximately twice as steep as the average corn silage, hay and pasture 
HRU slopes. 
 

Table 6.3.4.  Base CN2 values assigned to all HRUs. 
 Land Use 

Soil 
Hydrologic 

Group1 

Pasture Hay Corn 
Silage2

Idle 
Agr.3 

Grass-
Shrub4 

All 
forest 

Urban5 
(Pervious) 

B 65.0 59.0 77.0 59.5 57.0 55.0 59.0 
C 76.0 72.0 83.0 72.5 71.0 70.0 72.0 

1. The most common hydrologic group derived for each STATSGO soil map unit as 
described in Section 4.3 was either group B or C.  Soils in STATSGO map unit 
NY099 are classed as hydrologic group B and all others as hydrologic group C. 

2. To refine corn silage base CN2s further, base CN2 for soil hydrologic group A 
(67.0) and group D (83.0) were required.  The refined base CN2s assigned to corn 
silage HRUs on STATSGO map units NY026, NY027, NY056, NY059, NY099, 
NY127, NY129, NY132, NY133 and NY136 were 82.2, 80.6, 82.9, 82.4, 73.4, 
73.9, 82.4, 81.1, 83.0 and 79.7, respectively.  

3. Idle agriculture CN2 set equal to: 
 ½[grass-shrub CN2 + ½(hay CN2 + pasture CN2)]. 

4. Grass-shrub CN2 set equal to: ½[All forest CN2 + hay CN2].   
5. Urban CN2 applied to pervious grass areas only (impervious area CN2 fixed in 

model at 98). 
 
The SWAT parameters SLSOIL and SLSUBBSN are adjusted for the new HRU specific 
slopes.  The default SWAT2000 approach functions to assign SLSOIL and SLSUBBSN 
values based on the default slope values assigned by AVSWAT.  Therefore, the original 
AVSWAT default values for these parameters are replaced with values that correspond to 
the new HRU specific slopes. 
 
The biological mixing parameter (BIOMIX) for corn silage was reduced relative to 
BIOMIX for all other land uses (all of which were assigned the default BIOMIX value of 
0.20) since corn silage is the only land use that is tilled in the model.  Tilled land has less 
biological activity, and thus less biological mixing, compared with land that is not tilled. 
 
The USLE equation support practice factor (USLE_P) in SWAT is used to represent the 
impact of various farming management practices on MUSLE estimates of HRU sediment 
erosion.  USLE_P values are reduced from the SWAT default of 1.0 for corn silage and 
hay HRUs to represent the fact that crops in the Cannonsville Basin, although not 
contoured, are also not managed as straight up-down slope farming (Karl Czymmek, 
Personal Communication).  The USLE_P factor values for contoured crops on various 
slopes can be found in Table 20.4 of Neitsch et al. (2001b).  To account for some erosion 



 
 

63

control, the USLE_P factors for corn silage and hay HRUs were set to values between 1.0 
(which represents no erosion control) and the value for contoured fields of the specific 
HRU slope.  The corn silage USLE_P factors were set as the sum of the value from Table 
20.4 of Neitsch et al. (2001b) and 50% of the range between this value and 1.  For 
example, if the value in Table 20.4 of Neitsch et al. (2001b) was 0.6 for a corn silage 
HRU, corresponding to a slope of between 9 and 12 percent, then the USLE_P value for 
that HRU would be input as 0.6 + (1-0.6)*0.5 = 0.80.  Similarly, the USLE_P factor for 
hay was set as the sum of the value from Table 20.4 of Neitsch et al. (2001b) and 75% of 
the range between this value and 1.  Corn silage and hay USLE_P factors are adjusted 
differently to account for the fact that corn silage fields are more intensively managed 
than hay fields.  In other words, more erosion control practices are followed on corn 
silage fields. 
 
The concentration of sediment (or TSS) in lateral and groundwater flow (LAT_SED) is 
input as a constant parameter in the SWAT2000 model.  Data in Longabucco and 
Rafferty (1998) show that in periods when the flow at Beerston would have been 
composed almost entirely of lateral and groundwater flow (i.e. non-event period) the 
flow-weighted average TSS concentration in the early 1990s was 5.3 mg/L.  A significant 
portion of this average measured TSS concentration at Beerston would have been derived 
from sources other than groundwater or lateral flow.  In particular, sources would have 
included point sources and channel bed and bank erosion.  Therefore, a value of 5.3 mg/L 
is taken as an upper bound for the LAT_SED parameter and a calibrated LAT_SED value 
is determined in Section 6.3.3. 
 
The phosphorus availability index (PSP) parameter in SWAT governs the equilibration of 
soil phosphorus between the solution and active mineral pool and also functions to 
initialize mineral P levels in the basin soils.  The probable range of this parameter value 
for the Cannonsville Basin was derived from data in the basin as 0.16 to 0.42 in Section 
4.9.1.3.  Given that this parameter controls initial soil P levels and influences the flux of 
phosphorus between soil P pools, calibrating this parameter to achieve desirable results 
would be particularly difficult.  Therefore, a value of 0.25 was assumed because it 
resulted in reasonable levels of total soil P and because it is close to the midpoint of the 
estimated range. 

6.3.2.3 Miscellaneous Data-Driven Parameters 

After the original AVSWAT model default ASCII input files were created it was 
determined that a few of the default inputs were not representative of the conditions or 
physical characteristics of the basin and therefore required modifications.  These 
modifications were generally completed manually outside of AVSWAT.  The 
modifications are as follows: 
1. The default AVSWAT routing file required a new routing file to be created in order 

to route the tributaries into the mainstem WBDR in the correct locations. 
2. Subbasin elevations were modified.  AVSWAT subbasin elevation defaults were 

assigned as the elevation of the subbasin centroid.  Given the variations in subbasin 
elevations it was assumed that average subbasin elevations were more representative 
inputs. 
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3. Average historical monthly minimum and maximum temperatures for Walton and 
Delhi were substituted for the default temperatures in the weather generator input 
files.  These monthly temperature inputs impact soil temperature calculations. 

4. The harvest rates for timothy and pasture in Table 4.7.4 were assigned to approximate 
estimated basin-wide local feed for cattle.  Calculations outlined in the Appendix 
(Section 10.4.2) show how these local cattle feed consumption rates were determined. 

 
6.3.3 Performance Optimization Parameter Modifications 

The performance optimization parameters in the model were generally calibrated to 
measured hydrology, sediment and phosphorus data in that order.  However, since many 
of these parameters impacted all three of these modeled quantities, the latter stages of the 
calibration involved modifying parameters that often influenced all three quantities.  The 
performance optimization parameters are summarized in Table 6.3.5, Table 6.3.6 and 
Table 6.3.7 on the following pages and are combined based on the modeled quantity the 
parameters affected most directly.  All performance optimization parameters will 
generally be referred to by their short variable names for the remainder of this document.  
However, their full descriptive names are given in Table 6.3.5, Table 6.3.6 and Table 
6.3.7.  All performance optimization parameters are modified within their acceptable 
ranges as found in either the model user’s manual (Neitsch et al. 2001b) or in the 
literature (see Benaman (2002) for a summary). 
 
It is noteworthy, that in some cases, it would be reasonable in future modeling to consider 
some of the data-driven parameters as performance optimization parameters with a 
reduced range that encompasses the point estimates of the data-driven parameters given 
Section 6.3.2 and even some of those in Section 4.  In fact, this approach would likely 
result in at least a small improvement in model performance.  However, given the high 
number of parameters available for calibration in SWAT2000, reclassifying some of the 
data-driven parameters as optimization parameters should only be attempted if some type 
of automatic calibration algorithm is used to optimize model parameters. 

6.3.3.1 Hydrology Performance Optimization Parameters   

Hydrologic performance optimization parameters are defined and their final calibrated 
values are given in Table 6.3.5.  Parameter modifications were either a constant value 
input across the basin or, for parameters whose base or initial value varied spatially, the 
base parameter values were modified by a multiplicative factor that was constant across 
the basin.  This second type of parameter adjustment retained the relative differences in 
values of the parameter across the basin.   
 
Calibration to estimated baseflow of measured Walton flows required the modification of 
four groundwater parameters.  The groundwater parameters in Table 6.3.5 (BF_ALPHA, 
GW_DELAY, GWQMN and REVAPMN) all proved to be sensitive parameters with 
respect to baseflow.  However, even with the calibration of these four parameters, 
baseflow predictions were still poor until implementing the source code modification for 
soil water excess in frozen soils (Section 5.4).   
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Table 6.3.5.  Performance optimization calibrated hydrology parameters.  
Parameter 

(SWAT variable name) Change Final Value 
(Default Value) 

SCS Curve Number (CN2) 
multiplicative adjustment 

factor 

Reduced base CN2s outlined in Section 
6.3.2.2 by 20% (relative to their base 

value) 
Varies by HRU 

Manning’s n for overland flow 
(OV_N) 

Constant value for all land uses due to 
extremely short model simulated time 

of concentrations for majority of HRUs 

0.20 
(varied by land use) 

Snowpack temperature at 
which snowmelt begins 

(SMTMP) 

Increased in order to ‘delay’ snowmelt 
until warmer temperatures persisted 1.75 °C (0.5) 

Melt factor for snow on June 
21 (SMFMX) Decreased to reduce snowmelt rate 3.0 mm H2O/ºC-day (4.5) 

Melt factor for snow on 
December 21 (SMFMN) 

Decreased to reduce snowmelt rate and 
so that winter snowmelt rate < spring 

melt rate 
2.9 mm H2O/ºC-day (4.5) 

Surface runoff lag coefficient 
(SURLAG) 

Reduced so that some portion of 
surface runoff is lagged one day before 

reaching the channel 
1.0 (4.0) 

Lateral flow travel time 
(LAT_TIME) 

Fixed for all HRUs so that lateral flow 
lag time was greater than surface runoff 

lag time 

4.0 days 
(calculated by model and 

varied by HRU) 

Available water capacity for 
all soils (AWC)1 

Increased base values (data-driven) by 
70% for layer 1 inputs2 & 30% for all 
other layers so soil could hold more 
water; change related to decrease in 
rock fragment volume in Table 6.3.6 

Varies by HRU soil type 

Soil evaporation compensation 
factor (ESCO)1 

Reduced to allow more evaporation 
from lower soil layers 0.70 (0.95) 

Maximum potential leaf area 
index (BLAI)1 

Increased to simulate more plant uptake 
of soil water 

All forest: 7 (5) 
TIM*3: 6 (4) 
CSIL: 6 (4) 

Potential Heat Units for 
selected land uses (PHU)1 

Increased to ensure plant uptake of soil 
water into the fall 

All forest: 3000 (1580) 
GRSH: 3000 (1600) 
TIMU: 3000 (1600) 

Maximum Stomatal 
conductance (GSI)1 

Increased to simulate more plant uptake 
of water during crop growth 

CSIL: 0.0071 (0.0070)  
TIM*3: 0.0055 (0.0050) 

All units are m/s 
Baseflow alpha factor 

(BF_ALPHA)1 
Increased to simulate steeper 

hydrograph recession 0.15 (0.048) 

Groundwater delay time 
(GW_DELAY)1 

Decreased so that groundwater return 
flow occurs more quickly 10 days (31 days) 

Threshold depth of water in 
shallow aquifer for return flow 

to occur (GWQMN)1 

Increased to create groundwater storage 
capacity  90 mm (0 mm) 

Threshold depth of water in 
shallow aquifer for ‘revap’ to 

occur (REVAPMN)1 

Increased over GWQMN so that 
groundwater return flow occurs before 

‘revap’ (transfer of groundwater to 
upper soil layers) 

100 mm (1.0 mm) 

1. Parameters modified to improve model predictions of groundwater and summer low flows. 
2. Layer 1 soil inputs are applied to approximately the top 15 cm of soil, including the 1 cm 

surface layer. 
3. TIM* is all timothy – GRSH, TIMC, TIMU and TIMP. 
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The surface runoff parameters adjusted to replicate daily flows at Walton were OV_N, 
CN2 multiplicative factor, SURLAG, LAT_TIME and the snowmelt parameters 
SMTMP, SMFMX and SMFMN.  After fixing the OV_N parameter in SWAT at a 
constant value across the basin, the CN2 multiplicative factor, SURLAG and LAT_TIME 
parameters were adjusted so that peak flows were reasonably well predicted.  Although 
adjustments of these three factors were made to improve daily flow predictions year 
round, more importance was attached to prediction of late spring, summer and fall flows 
because the snowmelt parameters could be adjusted to correct winter and late spring flow 
predictions.  The base CN2 values in Table 6.3.4 proved to be much too high for the 
basin as peak daily flows for spring, summer and fall were almost always over-predicted 
by 100% or more and the hydrograph recessions were much too steep.  Even after 
reducing CN2 values by 20% for all HRUs, which was deemed to be the maximum 
reduction due to impacts on winter peak flows, the SURLAG parameter had to be 
reduced to its minimum value of 1.0 in order to force the model to simulate a small lag in 
the delivery of surface runoff to the channel.  The resulting area-weighted average CN2 
value for the entire basin after base CN2 values were reduced by 20% is 57.0.  The 
resulting basin-wide area-weighted average fraction of surface runoff reaching the 
channel on the day it was generated using a SURLAG value of 1.0 is 0.61.  More than 
50% of the basin is simulated to have a fraction of surface runoff reaching the channel on 
the day it was generated that is greater than 0.73.  Simulating a lag in delivery to the 
channel for less than half of the surface runoff is deemed reasonable considering that 
rainfall events that occur or extend late into the evening would no doubt generate some 
surface runoff that was not delivered to the channel until the next calendar day.  The 
default SWAT approach is to calculate LAT_TIME for each HRU rather than assigning a 
constant value.  However, this approach, combined with a SURLAG parameter setting of 
1.0, resulted in lateral flow reaching the channel more quickly than surface runoff for 
approximately 1% of the basin area.  To correct this physically improbable result, and 
improve daily flow prediction at Walton, a constant value of LAT_TIME equal to 4.0 
was used.  When compared with the default LAT_TIME approach, a value of 4.0 for 
LAT_TIME functioned to slightly reduce the area-weighted average lag time for lateral 
flow delivery to the stream. 
 
Late summer and fall flows tended to be over-predicted under the above parameter 
settings.  To correct this, it was determined that more soil storage of water and more end 
of season evapotranspiration of soil water was required.  The parameters soil water 
storage parameter AWC and the evapotranspiration parameters ESCO, BLAI, PHU and 
GSI were adjusted as described in Table 6.3.5 to reduce late summer and fall flows.  In 
addition, out of the three available potential evapotranspiration calculation methods in 
SWAT2000, the Priestly-Taylor method was selected because it resulted in the highest 
late summer/early fall evapotranspiration rates. 
 
Finally, the snowmelt parameters in Table 6.3.5 were adjusted to improve winter flow 
predictions.  The SMTMP parameter change improved the timing of simulated snowmelt.  
The SMFMX and SMFMN parameter changes improved the peak flow predictions.  
During the calibration of winter flows, the four winter flow related source code 
modifications presented in Sections 5.3, 5.4, 5.5 and 5.6 were identified and the model 
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deficiency with respect to correctly classifying precipitation type (Section 4.4.1.2) was 
also identified.  The most significant source code modification was the change for soil 
water excess in frozen soils (Section 5.4). 
 
In addition to the parameter changes listed above, the iterative analysis of model 
prediction errors throughout the flow calibration process suggested a detailed re-
examination of climate input data quality.  This re-examination resulted in the corrections 
and modifications to the climate inputs outlined in Section 4.4.1.  It is important to note 
that climate data input changes were only implemented when data or information other 
than measured flows across the basin suggested such changes were warranted.  In other 
words, in the absence of supporting data, climate inputs were not modified to simply 
improve prediction of flows at Walton or any other USGS flow station.  

6.3.3.2 Sediment Performance Optimization Parameters 

SWAT sediment performance optimization parameters are related to erosion from the 
land surface on each HRU, the TSS concentration in lateral/groundwater flow or channel 
sediment erosion and deposition processes.  Table 6.3.6 outlines and defines all modified 
sediment performance optimization parameters.  TSS calibration involved a number of 
steps.  First, the HRU sediment generation parameters APM and ROCK were adjusted to 
predict late spring, summer and early fall TSS loads.  In the second TSS calibration step, 
the winter TSS predictions were increased to better replicate measured TSS loads by 
iteratively adjusting the coefficients A and B in the new MUSLE snow cover adjustment 
equation described in Section 5.7 and given again in Table 6.3.6.  The third step in TSS 
calibration involved assigning values to the LAT_SED and channel erosion parameters 
(CH_EROD and CH_COV) such that reasonably small amounts of TSS were derived 
from these sources.  Lastly, the APM factor was refined so that the average simulated 
TSS load approximated the average measured TSS load.   
 
Under default values in Table 6.3.6, TSS loads were greatly over-predicted.  Therefore, 
the APM parameter was reduced significantly to reduce TSS loads from all HRUs.  In 
addition, the ROCK parameter representing the percentage rock by volume in the first 
and second soil layer was reduced basin-wide by approximately 50% relative to the base 
ROCK values determined for each HRU as described in Section 4.3.  The change in 
ROCK was assumed related to the AWC parameter change in Table 6.3.5.  Note that the 
AWC parameter is for the entire soil layer including rock fragments.  AWC and ROCK 
within a soil layer are inversely correlated since they both occupy soil volume.  
Therefore, increasing AWC of soil layer 1 should be accompanied by a decrease in rock 
fragment volume (ROCK).  The base rock fragment parameter values were often close to 
40% for soil layer 1 in many soils.  Although an average rock fragment content of 40% in 
the plough layer (approximately the top 15 cm) may be reasonable, the rock fragment 
content in the 1 cm surface layer of soil should be reduced given the increased organic 
matter content in the surface layer.  Therefore, independent of the AWC adjustment, the 
base values for rock fragment volume of the first soil layer were deemed to require some 
significant reduction since they were also applied to the 1 cm surface layer of soil.  Base 
rock fragment volumes input for soil layer 2 and below were not changed because they 
have no impact on model calculations. 
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Table 6.3.6.  Performance optimization calibrated sediment parameters. 
Parameter 

(SWAT variable 
name) 

Change Final Value 
(Default Value) 

Peak rate adjustment 
factor for sediment 

routing (APM)1 

Decreased in order to reduce total 
sediment loading from HRUs 0.55 (1.0) 

Soil layer 12 rock 
fragments as a % of 
soil layer volume 

(ROCK)1 

Decreased base values (data-driven) by 
approximately 50% in association with 
AWC increase in layer 1 in Table 6.3.5 

Varies by HRU soil 
type 

MUSLE equation 
erosion predictions1 

Estimate coefficients A and B in the 
equation in Section 5.7: 

MUSLEi = MUSLEi` * min (A, [SurQi / Snoi]B) 

A = 0.95 
B = 0.25 

Sediment 
concentration in 

lateral and 
groundwater flow 

(LAT_SED) 

Increased within derived bounds in 
Table 6.3.3 so that lateral flow and 

groundwater contain low levels of TSS 

2.5 mg/L for all 
HRUs 
(0.0) 

 Channel erodibility 
factor (CH_EROD)3 

Increased to allow for small amount of 
stream channel erosion 0.0003 (0.0) 

Channel cover factor 
(CH_COV)3 

Increased to allow for small amount of 
stream channel erosion 1.0 (0.0) 

1. Parameters related to HRU sediment erosion. 
2. Layer 1 soil inputs are applied to approximately the top 15 cm of soil, including the 1 

cm surface layer. 
3. Parameters related to stream channel erosion. 
 
Quantitative data were unavailable to estimate the significance of channel bed and bank 
erosion.  However, Pat Bishop (Personal Communication) reported that some erosion of 
the stream channel does occur in the WBDR and estimated that it most likely accounts 
for no more than 10% of the total annual sediment load.  Therefore, reasonable channel 
sediment parameters were deemed to be those that erode the stream channel (as opposed 
to net sediment deposition in the channel) such that no more than 10% of the average 
annual total annual sediment load was produced from stream channel erosion.  The 
calibration effort showed that good model performance could be achieved by modifying 
only the two channel erosion parameters that are outlined in Table 6.3.6.  The product of 
the parameters CH_EROD and CH_COV (which is between 0 and 1) determines how 
protected the stream channel is from erosion.  A value of 0 indicates that the stream 
channel is never eroded while a value of one indicates that there is no channel protection.  
Since the product of these parameters controls channel erosion, an infinite number of 
CH_EROD and CH_COV parameter combinations exist that would produce exactly the 
same simulated TSS loads.  The product of CH_EROD (set at 0.0003) and CH_COV (set 
at 1.0) equal to 0.0003 was determined to produce good model performance while 
simulating reasonable amounts of stream channel erosion.  Other channel erosion 
parameters that were considered as performance optimization parameters but were 
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ultimately not modified from their default values because their modification did not result 
in significantly better model predictions were the SPCON, SPEXP and PRF parameters. 
 
A value of 2.5 mg/L for the LAT_SED parameter was selected since it was 
approximately the midpoint of the bounds determined for LAT_SED in Section 6.3.2.2. 

6.3.3.3 Phosphorus Performance Optimization Parameters 

Phosphorus performance optimization parameters modified from their default values are 
outlined in Table 6.3.7.  Adjustment of the CMN parameter resulted in a small 
improvement in model predictions of total, total dissolved and particulate phosphorus.  
The ERORGP default is to calculate the phosphorus enrichment ratio for each storm.  
However, a constant ERORGP value of 2.0 improved model P predictions. 
 
The SWAT2000 option to simulate instream nutrient reactions was investigated 
thoroughly in the calibration process.  However, the simulation of instream reactions 
under various instream reaction parameter sets all resulted in large increases in total P 
loading at Beerston.  The simulation of instream reactions should function to transform P 
between dissolved and particulate forms without significant changes in total P loading.  
Since this model behaviour was unexpected and could not be explained, instream 
reactions were not used in this study.   
 
Three additional phosphorus parameters were considered as performance optimization 
parameters.  Adjustments to the SWAT parameters PHOSKD and PPERCO, which relate 
to the calculation of dissolved phosphorus concentrations in surface runoff and percolate, 
respectively, and the UBP parameter, which defines the depth in which plant roots extract 
the phosphorus from soils, were investigated but were ultimately not modified from their 
default values because their modification did not result in significantly better model 
predictions. 
 

Table 6.3.7.  Performance optimization calibrated phosphorus parameters. 
Parameter 

(SWAT variable 
name) 

Change Final Value 
(Default Value) 

Rate factor for humus 
mineralization of 

active organic 
nutrients (CMN) 

Increased to increase rate of P 
mineralization in the soil 0.001 (0.0003) 

Phosphorus 
enrichment ratio for 

loading with sediment 
(ERORGP) 

Changed so that the model 
enrichment ratio did not change with 

storm magnitude 
2.0 (0.0) 
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6.3.4 Model Calibration Summary 

Any future modeling effort with SWAT2000 attempting to replicate some or all of the 
model inputs and parameters used in this report should refer to the inputs described in 
Section 4, the data-driven and performance optimization parameters outlined above in 
Section 6.3 and the changes to the model source code outlined in Section 5. 
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6.4 Calibration Results 

Unless otherwise noted, all calibration (and validation) performance statistics are 
calculated for the entire period of time over which measured data were available.  In 
other words, performance is not always assessed separately for season or for each year 
unless noted below.  In some cases below, when seasonal performance statistics are 
reported, performance is analyzed for what is referred to as the summer and winter 
seasons.  The summer season refers to the period between May 1 and Oct. 31 while 
winter season refers to the period between Nov. 1 and Apr. 30. 
 
6.4.1 Hydrology Calibration Results 

Baseflow predictions were evaluated on a seasonal and annual basis for the Walton 
USGS station only.  The baseflow filter program by Arnold and Allen (1999) generates a 
range of predicted baseflow volumes.  On an annual basis, the measured flow at Walton 
is estimated as 42% to 66% baseflow over the calibration period.  In comparison, the 
simulated flow at Walton is estimated as 42% to 68% baseflow over the calibration 
period.  Therefore, the calibrated model was deemed to generate acceptable predictions of 
baseflow on an annual basis. 
 
The baseflow estimates from the Arnold and Allen (1999) program were averaged for 
each month over the calibration to determine seasonal performance and the average 
baseflow component of streamflow for each month was calculated.  Again, since a range 
of baseflow estimates are estimated from the baseflow filter program, the seasonal 
baseflow analysis compared the range of the average monthly baseflow component of 
streamflow.  This seasonal comparison is presented in Figure 6.4.1 and shows good 
seasonal agreement of estimated baseflows between the simulated and measured flows. 
 
Calibrated model predictive performance for daily flows is summarized in Table 6.4.1 
under the calibration parameter values outlined in Section 6.3 and the changes to the 
model source code in outlined in Section 5.  Predictive performance is assessed at all six 
USGS gauging stations although the calibration focused mainly on improving predicted 
flows at Walton. 
 
Simulated results were matched to the six USGS gauge stations by the closest SWAT 
subbasin outlet location.  Since not all subbasin outlets were located at the exact location 
of the USGS gauging stations, some measured flows had to be slightly prorated to the 
nearest subbasin outlet based on the change in drainage area between the USGS gauge 
and the subbasin outlet.  Thus, measured flows for the WBDR at Walton, WBDR at 
Delhi, Little Delaware and Trout Creek, were multiplied by a factor of 1.003, 1.005, 
1.052 and 1.025, respectively, in order to compare with simulated flows.  All reported 
measured flow statistics in the calibration and validation apply to the prorated measured 
flows. 
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Figure 6.4.1.  Comparison of average monthly baseflows as a fraction of streamflow 
between simulated and measured flows at Walton for period Jan. 1994 to Sept. 2000. 

 
Table 6.4.1.  Daily hydrology calibration results at six USGS gauge stations for the 

period 1994 to 2000 (see Figure 6.1.1 for gauge locations). 

Location  
(USGS gauge #) 

Days of 
Measured 

Data 

Mean 
Measured 

DataA 
(m3/s) 

Mean 
Simulated 
ResultsA 

(m3/s) 

Percent 
Difference 
between 

Measured & 
SimulatedB 

r2 ENS 

WBDR at Walton 
(01423000) 2465 17.8 18.0 1.0 0.80 0.79 

WBDR at Delhi 
(01421900) 1396 7.1 6.9 -2.7 0.72 0.72 

Little Delaware 
(01422500) 1349 2.8 2.6 -7.3 0.78 0.78 

East Brook 
(01422747) 731 1.1 1.3 15.7 0.62 0.57 

Trout Creek 
(0142400103) 1396 1.1 1.0 -2.3 0.64 0.63 

Town Brook 
(01421618) 1096 0.8 0.8 -5.8 0.59 0.59 

A) Calculated based only on the days with measured data for each station. 
B) Calculated with higher precision than the reported mean measured data and mean 

simulated results. 
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The calibration results demonstrate that the model predicts daily flows across the basin 
quite well.  Flow statistics are best at the three largest USGS stations (Walton, Delhi and 
Little Delaware).  Flow predictions at Town Brook and East Brook are least accurate.  
However, this is probably due to their small size and could also be a result of the shorter 
period of record (by at least a year) when compared with the other stations.  Given that 
the calibration focused on Walton and no attempt to independently calibrate to flow data 
at other USGS stations was attempted, the model performance at all locations is deemed 
acceptable. 
 
A visual comparison of the daily simulated and measured flow time series at Walton is 
presented in Figure 6.4.2 for select water years.  Water years 1995, 1997 and 1998 are 
presented in Figure 6.4.2 because they demonstrate the range of annual model 
performance and typical model inaccuracies.  The annual model performance is worst 
during water year 1995 and best in water year 1997.  Time series plots for flow at Walton 
during the other water years in the calibration period are shown in the Appendix (Figure 
10.5.2).  Table 6.4.2 provides various performance statistics for the water years during 
the calibration period.   
 

Figure 6.4.2.  Time series of measured and simulated daily hydrology calibration results 
at Walton for water years 1995, 1997 and 1998. 

 

0
20
40
60
80

100

19
94

.1
0.

01
19

94
.1

0.
08

19
94

.1
0.

15
19

94
.1

0.
22

19
94

.1
0.

29
19

94
.1

1.
05

19
94

.1
1.

12
19

94
.1

1.
19

19
94

.1
1.

26
19

94
.1

2.
03

19
94

.1
2.

10
19

94
.1

2.
17

19
94

.1
2.

24
19

94
.1

2.
31

19
95

.0
1.

07
19

95
.0

1.
14

19
95

.0
1.

21
19

95
.0

1.
28

19
95

.0
2.

04
19

95
.0

2.
11

19
95

.0
2.

18
19

95
.0

2.
25

19
95

.0
3.

04
19

95
.0

3.
11

19
95

.0
3.

18
19

95
.0

3.
25

19
95

.0
4.

01
19

95
.0

4.
08

19
95

.0
4.

15
19

95
.0

4.
22

19
95

.0
4.

29
19

95
.0

5.
06

19
95

.0
5.

13
19

95
.0

5.
20

19
95

.0
5.

27
19

95
.0

6.
03

19
95

.0
6.

10
19

95
.0

6.
17

19
95

.0
6.

24
19

95
.0

7.
01

19
95

.0
7.

08
19

95
.0

7.
15

19
95

.0
7.

22
19

95
.0

7.
29

19
95

.0
8.

05
19

95
.0

8.
12

19
95

.0
8.

19
19

95
.0

8.
26

19
95

.0
9.

02
19

95
.0

9.
09

19
95

.0
9.

16
19

95
.0

9.
23

19
95

.0
9.

30

Date (Year.Month.Day)

Fl
ow

 (m
3 /s

) Measured
Simulated

0
50

100
150
200
250
300
350
400

19
96

.1
0.

01
19

96
.1

0.
08

19
96

.1
0.

15
19

96
.1

0.
22

19
96

.1
0.

29
19

96
.1

1.
05

19
96

.1
1.

12
19

96
.1

1.
19

19
96

.1
1.

26
19

96
.1

2.
03

19
96

.1
2.

10
19

96
.1

2.
17

19
96

.1
2.

24
19

96
.1

2.
31

19
97

.0
1.

07
19

97
.0

1.
14

19
97

.0
1.

21
19

97
.0

1.
28

19
97

.0
2.

04
19

97
.0

2.
11

19
97

.0
2.

18
19

97
.0

2.
25

19
97

.0
3.

04
19

97
.0

3.
11

19
97

.0
3.

18
19

97
.0

3.
25

19
97

.0
4.

01
19

97
.0

4.
08

19
97

.0
4.

15
19

97
.0

4.
22

19
97

.0
4.

29
19

97
.0

5.
06

19
97

.0
5.

13
19

97
.0

5.
20

19
97

.0
5.

27
19

97
.0

6.
03

19
97

.0
6.

10
19

97
.0

6.
17

19
97

.0
6.

24
19

97
.0

7.
01

19
97

.0
7.

08
19

97
.0

7.
15

19
97

.0
7.

22
19

97
.0

7.
29

19
97

.0
8.

05
19

97
.0

8.
12

19
97

.0
8.

19
19

97
.0

8.
26

19
97

.0
9.

02
19

97
.0

9.
09

19
97

.0
9.

16
19

97
.0

9.
23

19
97

.0
9.

30

Date (Year.Month.Day)

Fl
ow

 (m
3 /s

) Measured
Simulated

0
50

100
150
200
250
300

19
97

.1
0.

01
19

97
.1

0.
08

19
97

.1
0.

15
19

97
.1

0.
22

19
97

.1
0.

29
19

97
.1

1.
05

19
97

.1
1.

12
19

97
.1

1.
19

19
97

.1
1.

26
19

97
.1

2.
03

19
97

.1
2.

10
19

97
.1

2.
17

19
97

.1
2.

24
19

97
.1

2.
31

19
98

.0
1.

07
19

98
.0

1.
14

19
98

.0
1.

21
19

98
.0

1.
28

19
98

.0
2.

04
19

98
.0

2.
11

19
98

.0
2.

18
19

98
.0

2.
25

19
98

.0
3.

04
19

98
.0

3.
11

19
98

.0
3.

18
19

98
.0

3.
25

19
98

.0
4.

01
19

98
.0

4.
08

19
98

.0
4.

15
19

98
.0

4.
22

19
98

.0
4.

29
19

98
.0

5.
06

19
98

.0
5.

13
19

98
.0

5.
20

19
98

.0
5.

27
19

98
.0

6.
03

19
98

.0
6.

10
19

98
.0

6.
17

19
98

.0
6.

24
19

98
.0

7.
01

19
98

.0
7.

08
19

98
.0

7.
15

19
98

.0
7.

22
19

98
.0

7.
29

19
98

.0
8.

05
19

98
.0

8.
12

19
98

.0
8.

19
19

98
.0

8.
26

19
98

.0
9.

02
19

98
.0

9.
09

19
98

.0
9.

16
19

98
.0

9.
23

19
98

.0
9.

30

Date (Year.Month.Day)

Fl
ow

 (m
3 /s

) Measured
Simulated



 
 

74

Table 6.4.2.  Daily hydrology calibration results by water year for the Walton USGS 
station for the period 1994 to 2000. 

Water 
Year 

Percent Difference between 
Measured & Simulated r2 

19941 5.6 0.81 
1995 10.0 0.74 
1996 2.6 0.75 
1997 -8.4 0.91 
1998 -2.7 0.84 
1999 8.2 0.74 
2000 0.2 0.76 

1. A partial water year: January 1 to September 30, 1994. 
 
Results in Figure 6.4.2 show very good general agreement between the measured and 
simulated trends in Walton flows.  There are some notable periods and events in which 
model predictions are not in good agreement with the measured flows.  Summer peak 
flows tend to be over-predicted by the model as shown for water year 1995 at Walton in 
Figure 6.4.2.  Note that for summer flows in 1997 and late summer flows in 1998 are also 
over-predicted even though it is not obvious in Figure 6.4.2 because the flow (y-axis) 
scale is compressed in these water years.  Considering all summer seasons over the 
calibration period together, the model over-predicted Walton flow by 4.2% and the daily 
r2 coefficient was 0.82. 
 
An examination of the entire calibration period (e.g. see Figure 10.5.2 also) shows that 
the model usually under-predicts the largest flow events.  This result is easier to visualize 
with reference to the scatter plot of measured versus simulated flows at Walton over the 
calibration period in the Appendix (see Figure 10.5.1).  For example, Figure 10.5.1 shows 
that of the 18 daily flows over 130 m3/s, 17 were under-predicted and of these, 16 were 
under-predicted by at least 18%.   The majority of the large flow event under-predictions 
are winter related flow events such as the events in January 1996, November 1996, 
January and March 1998, January 1999 and March 2000.  Considering all winter seasons 
over the calibration period all together, the model under-predicted Walton flow by 0.4% 
and the daily r2 coefficient was 0.77.   
 
Many studies often present hydrology calibration on a monthly time step.  Therefore, 
model performance statistics are also calculated for all six USGS flow stations on a 
monthly time step and are provided in Table 6.4.3.  In addition, plots of monthly average 
measured and simulated flows at all USGS stations are provided in the Appendix in 
Figure 10.5.3 and Figure 10.5.4. 
 
Over the calibration period, the simulated basin-wide water balance components on an 
annual average basis are as follows: 

• 1194 mm of precipitation (250 mm of which was snow). 
• 538 mm of evapotranspiration. 
• 653 mm of water yield (i.e. streamflow leaving the basin) made up of: 

 97 mm of surface runoff (15% of water yield). 
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 306 mm of lateral flow (47% of water yield). 
 253 mm of groundwater flow (39% of water yield). 

 
Not included in the above simulated water balance are the very minimal losses of water 
to deep aquifer percolation, sublimation and channel transmission, which total less than 
1% of the annual precipitation. 
 

Table 6.4.3.  Monthly hydrology calibration results at six USGS gauge stations for the 
period 1994 to 2000 (see Figure 6.1.1 for gauge locations). 

Location (USGS gauge #) Months of 
Measured Data r2 ENS 

WBDR at Walton (01423000) 81 0.89 0.89 
WBDR at Delhi (01421900) 45 0.87 0.86 
Little Delaware (01422500) 44 0.90 0.89 

East Brook (01422747) 24 0.82 0.76 
Trout Creek (0142400103) 45 0.81 0.81 
Town Brook (01421618) 36 0.81 0.81 

 
The model source code change for handling soil water excess in frozen soils outlined in 
Section 5.4 proved to be critical in achieving the above model calibration results.  Model 
predictions under the exact same model conditions as the calibrated model, except for the 
model source code change in Section 5.4, showed dramatically different simulated flows 
and major reductions in model performance statistics.  These included: 

• Seasonal simulated baseflows that were much worse in comparison with 
simulated seasonal baseflows in Figure 6.4.1. 

• Seasonal flows were much worse as summer flows were over-predicted by 
47% while winter flows were under-predicted by 16%. 

• The surface runoff component of basin-wide water yield increased from 
15% in the calibrated model to 41% of water yield. 

• The r2 and ENS model performance statistics for Walton daily flows were 
reduced to 0.59 and 0.50, respectively. 

 
6.4.2 Sediment Calibration Results 

The January 19-20, 1996 flood event was the largest streamflow on record and the 
estimated return period of the event is 70 years for the Walton USGS gauge (Lumia 
1998).  In addition the estimated return period for the event as measured at the Delhi and 
Little Delaware USGS gauges were both more than 100 years (Lumia 1998).  As a result, 
this event caused widespread overbank flow and initiated transport of huge amounts of 
floodplain phosphorus and sediment.  Longabucco and Rafferty (1998) report that the 
two-day event accounted for approximately 75% of the TSS and particulate phosphorus 
loads recorded for the entire 1996 year.  Since SWAT is not designed to simulate such an 
extreme event the calibration effort focused on the improving model performance 
measures that did not include measured and simulated TSS and phosphorus loads during 
January 1996.  This approach is consistent with Schneiderman et al. (1998) (although not 
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as extreme) whose approach to handling this event involved eliminating comparisons 
between model and data for January, February and March of 1996.  Model calibration 
performance measures for TSS and phosphorus are reported in the following sections 
with and without January 1996 results. 
 
Section 5.7 describes the change made to the MUSLE snow cover erosion prediction 
adjustment.  Before evaluating the cumulative model performance under the final 
calibrated parameter set it is useful to show the improvement in model performance 
achieved directly from the model modification described in Section 5.7.  Figure 6.4.3 
shows the impact of this change by comparing model simulation results against measured 
data at Beerston for two simulation runs in which the only difference was the change to 
the MUSLE snow cover adjustment.  It should be noted that although the simulation runs 
plotted in Figure 6.4.3 do not use exactly the same calibrated parameter values as 
outlined in Section 6.3, the parameter values are quite close to the final set of calibrated 
parameters.  The purpose of Figure 6.4.3 is to point out the model improvement during 
most winter months with a high TSS load measured at Beerston.  For example, that 
model accuracy was most significantly improved in Mar-94, Apr-94, Jan-96, Dec-96, 
Jan-98, Mar-98, Jan-99 and Feb-00.  In contrast, model accuracy was significantly 
decreased in only a few months (e.g. Feb-94, Feb-96, Mar-96, Mar-99).  The model 
inaccuracy in these four months is at least partially due to the fact that the highest and/or 
second highest daily peak flows in these months are over-predicted by at least 40%.  
Therefore, the over-predictions in these four months are in fact expected and can only be 
partially attributed to the new MUSLE snow cover adjustment equation.  The 
modification to the MUSLE snow cover adjustment equation was deemed a good 
approach to improve SWAT sediment load predictions and was utilized for all model 
simulations. 
 

Figure 6.4.3.  Change in TSS model performance at Beerston when the MUSLE snow 
cover erosion prediction adjustment is modified to better represent months with 

snowmelt.  
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Monthly model predictions for TSS under the calibration parameter values outlined in 
Section 6.3 are summarized in Table 6.4.4 and plotted in Figure 6.4.4.  Measured TSS 
taken at Beerston and Town Brook corresponded exactly to SWAT subbasin outlets and 
therefore simulated TSS and measured TSS could be compared without further 
adjustments.  The model performance measures for Beerston in Table 6.4.4 are given 
with and without January 1996 to show the impact this event has on the values of the 
performance measures. 
 
Table 6.4.4.  Monthly sediment calibration results at continuous water quality monitoring 

stations for the period 1994 to 2000 (see Figure 6.1.1 for locations). 

Location  
 

Months 
of 

Measured 
Data 

Mean 
Measured 

DataA 
(metric t) 

Mean 
Simulated 
ResultsA 
(metric t) 

Percent 
Difference 
between 

Measured & 
Simulated 

r2 ENS 

Beerston: 
without Jan. 

1996 
80 1204 1177 -2.2 0.71 0.66 

Beerston 
including Jan. 

1996 
81 1926 1248 -35.2 0.42 0.22 

Town Brook  24 194 93 -52.2 0.43 0.27 
A) Calculated based only on the days with measured data for each station. 
 
Figure 6.4.4 shows the monthly time series of simulated and measured TSS at the 
Beerston and Town Brook NYSDEC continuous water quality monitoring stations.  
Although the model predicted sediment loads are less accurate than the corresponding 
flow predictions at Beerston and Town Brook, the model still replicates the trend in 
measured data fairly well.  This is especially true at Beerston and is also evident at Town 
Brook if the TSS loading in Sept-99 is ignored.  Results in Table 6.4.4 suggest that the 
model performance at Town Brook is degraded relative to Beerston performance.  Even 
when model performance at Town Brook and Beerston are compared over the same time 
period (Oct-98 through Sept-00), the r2 at Beerston of 0.54 is still significantly higher 
than the r2 at Town Brook (0.43) and Beerston TSS loads are predicted within 10% of 
measured TSS loads.  Degraded model performance for TSS and phosphorus is expected 
at Town Brook given that daily flow predictions at Town Brook were substantially worse 
than Beerston daily flow predictions.  Town Brook TSS predictions could be improved in 
the future by independently calibrating the Town Brook subbasin to the measured data.   
 
A comparison of Town Brook and Beerston TSS loading for July through September of 
1999 in Figure 6.4.4 suggests the measured data appear inconsistent.  These three months 
are the only months over the Oct-98 through Sept-00 period that Town Brook TSS 
loading is measured greater than Beerston TSS loading.  This result is unexpected 
because the Town Brook drainage area is only 4% of the Beerston drainage area.  In the 
remaining 21 months with Town Brook monitoring data, measured Town Brook TSS 
loading accounts for 8% of the measured Beerston TSS loading.  In comparison, for July 



 
 

78

through September of 1999, measured Town Brook TSS loading is 197% of the measured 
Beerston TSS loading.  This apparent anomaly suggests that either A) most of the TSS 
load from Town Brook during July through September of 1999 period did not reach 
Beerston and was deposited in the mainstem WBDR before Beerston or B) the measured 
data over this period at Beerston and/or Town Brook are inaccurate.  If case A above is 
true, the model is unable to simulate the proper magnitude of sediment deposition in the 
stream channel.  Alternatively, if case B above is true, the sizable TSS loading prediction 
errors at Town Brook and/or Beerston for July and September of 1999 are actually not as 
severe as the current measured TSS data suggests.  In the absence of additional data, it is 
impossible to determine if case A or B above is true.  Therefore, the TSS loading 
prediction errors at Town Brook and Beerston for July and September of 1999 cannot 
currently be wholly attributed to the model and may in fact be due to errors in the 
measured data.  The discussion in this paragraph also applies to Town Brook and 
Beerston total phosphorus loading data for July and September of 1999. 
 

Figure 6.4.4.  Time series of monthly measured and simulated sediment calibration 
results at A) Beerston and B) Town Brook water quality stations for the period 1994 to 
2000.  Please see the discussion in Section 6.4.2 regarding the extreme Jan. 96 event. 

 
Consistent with hydrology results, Figure 6.4.4 demonstrates that at Beerston the model 
tends to under-predict TSS loading in months associated with snowmelt.  The most 
severe errors in predicted TSS loads (e.g. Jan-96, May-96, Nov-96, Jan-98, July-98, Jan-
99, July-99 and Feb-00) all occur in months where there are large predictive errors in the 
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(B) TSS at Town Brook
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peak daily flows.  In fact, as discussed further in Section 7.3.3, the TSS predictive errors 
in each of these months are positively correlated with peak daily flow predictive errors of 
±20% or worse.  Therefore, errors in TSS predictions are largely a result of errors in peak 
flow prediction. 
 
Considering all summer seasons over the calibration period together, the model over-
predicted Beerston TSS by 6.7% and the monthly r2 coefficient was 0.69.  Considering all 
winter seasons over the calibration period all together, the model under-predicted 
Beerston TSS by 5.8% and the monthly r2 coefficient was 0.71.  Therefore, model 
performance levels were approximately the same in each season considered. 
 
Although model TSS calibration performance focused on maximizing monthly r2 and ENS 
coefficients, the calibrated model TSS predictions compared well with measured TSS 
data on a daily time scale.  Daily model performance measures for Beerston TSS over the 
calibration period (excluding January 1996) are r2 and ENS coefficients of 0.54 and 0.53, 
respectively.  Similarly, the daily TSS r2 and ENS coefficients at Town Brook for the Oct. 
1998 through Sept. 2000 period are 0.49 and 0.37, respectively. 
 
The simulated TSS load is composed of sediments in lateral flow and groundwater, 
channel bed and bank derived sediments, point sources and soil erosion by surface runoff.  
Over the calibration period, the basin-wide TSS load is composed of: 

• 10% from lateral flow and groundwater. 
• 3% from channel bed and bank erosion. 
• 1% from point sources. 
• 86% from erosion of soils by surface runoff. 

 
6.4.3 Temporal Phosphorus Calibration Results 

Monthly model predictions for total dissolved, particulate and total phosphorus (TDP, PP, 
and total P, respectively) loads at Beerston and Town Brook under the calibration 
parameter values outlined in Section 6.3 are compared against measured monthly data in 
Figure 6.4.5 for Beerston and Figure 6.4.6 for Town Brook on the following pages.  In 
addition, Table 6.4.5 summarizes the model performance measures for phosphorus at 
Beerston and Town Brook.  Unless otherwise noted, results in Table 6.4.5 do not include 
January 1996.   
 
Figure 6.4.5 shows the monthly time series of model predictions and measured data for 
total dissolved, particulate and total phosphorus at the Beerston NYSDEC continuous 
water quality monitoring station.  Although some effort was made to calibrate to TDP 
and PP, based on Section 6.2.2 the main concern of the calibration effort was to match 
total P loads at Beerston.  For example, while Beerston TDP loads are over-predicted by 
about 16% and PP loads are under-predicted by about 19%, the total P loads are predicted 
to within 6%.  These relatively higher percent differences between measured and 
simulated TDP and PP loads are acceptable based on the discussion in Section 6.2.2 and 
the small percent difference between the measured and simulated total P load.  
Furthermore, no parameter set could be identified that resulted in further improvements 
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to the percent difference measures for TDP and PP.  Overall, the trend in total P loading 
at Beerston is predicted fairly well by the model. 

Figure 6.4.5.  Time series of monthly measured and simulated A) TDP B) PP C) total P 
calibration results at Beerston water quality station for the period 1994 to 2000.  Please 

see the discussion in Section 6.4.2 regarding the extreme Jan. 96 event. 
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(C) Total Phosphorus (Total P) at Beerston
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(B) Particulate Phosphorus (PP) at Beerston
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Simulated total P loads in Figure 6.4.5 are generally under-predicted during peak 
snowmelt months.  The under-predictions of total P during snowmelt months are 
consistent with the under-predictions of hydrology and sediment in those same months.  
The dependence of TDP and PP loads on each other and on flow (surface runoff) and 
TSS make interpreting all TDP and PP prediction inaccuracies difficult.  Consistent with 
the largest observed TSS predictive errors, the largest errors in PP are positively 
correlated with peak daily flow predictive errors of ±20% or worse.  Therefore, errors in 
PP predictions are largely a result of errors in peak flow prediction.  To a lesser extent, 
the largest errors in TDP predictions also seem to be associated with errors in peak flow 
predictions.  However, based on the discussion in Section 6.2.2, it is better to compare 
errors total P prediction to errors in peak daily flow predictions.  For the most part, the 
largest errors in total P prediction occur in the same months and show the same pattern as 
the largest monthly TSS prediction errors identified in Section 6.4.2.  The largest TSS 
and total P errors observed in the calibration are directly compared with peak daily flow 
errors in Section 7.3.3. 
 
Results for Town Brook P predictions in Figure 6.4.6 are significantly worse in 
comparison to Beerston P predictions in Figure 6.4.5.  These differences in performance 
are evident in the comparison of numerical model performance at each location in Table 
6.4.5.  Since the daily flow predictions at Town Brook are substantially less accurate than 
the daily flow predictions at Beerston, the model predictions for total P at Town Brook 
are expected to be worse than Beerston total P predictions.  Although Figure 6.4.6 shows 
the trend in the measured total P data are somewhat replicated by the model, especially 
after Sept. 1999, the model seriously under-predicts the measured peak monthly total P 
loads in January, July and September of 1999.  The biggest discrepancy between 
simulated and measured TDP, PP and total P occurs in September of 1999.  As a result, 
over the entire period of record for Town Brook, total P loads are under-predicted by 
49%. 
 
It appears that P loads taken earlier in the monitoring history of the Town Brook water 
quality station may have been measured with significantly less accuracy than the later P 
loads – in which case model performance at Town Brook would be considered fairly 
good.  In fact Pat Bishop (Personal Communication) confirmed that early in the Town 
Brook water quality sampling program, the sampling coverage of events was sometimes 
inadequate.  For water year 1999, there are approximately 160 NYSDEC water quality 
samples used to estimate TSS and phosphorus loading at Town Brook.  In comparison, 
for water year 2000, a total of almost 330 water quality samples (approximately 70% of 
which are NYSDEC samples and 30% USGS samples) are used to estimate TSS and 
phosphorus loading.  Since the average sampling frequency used by NYSDEC for load 
estimation from October 1999 through September 2000 is more than double that of the 
previous water year, it is reasonable to expect that NYSDEC measured (or estimated) 
monthly loads for water year 2000 are significantly more accurate than those for water 
year 1999.  Therefore, the improved model performance for water year 2000 (monthly r2 
coefficient of 0.61 and total P load under-predicted by 23%) over water year 1999 (e.g. 
compare two water years in Figure 6.4.6) may be an indication that overall Town Brook 
model predictions are acceptable. 
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Figure 6.4.6.  Time series of monthly measured and simulated A) TDP B) PP C) total P 
calibration results at Town Brook water quality station for the period Oct. 1998 to Sept. 

2000. 
 
Similar to measured TSS data, measured total P loading in July of 1999 for Town Brook 
and Beerston appear to be inconsistent.  In July 1999, Town Brook total P loading is 
105% of the Beerston total P loading.  In comparison, for the other 23 months of record 
at Town Brook, Town Brook total P loading is only 9% of the Beerston total P loading. 
Therefore, based on the discussion and conclusion in Section 6.4.2 regarding the same 
data inconsistency for TSS, the total P loading prediction errors at Town Brook and 
Beerston for July of 1999 cannot currently be wholly attributed to the model and may in 
fact be due to errors in the measured data. 
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(C) Total Phosphorus (Total P) Loading at Town Brook

0
500

1000
1500
2000
2500

O
ct

-9
8

N
ov

-9
8

D
ec

-9
8

Ja
n-

99
Fe

b-
99

M
ar

-9
9

A
pr

-9
9

M
ay

-9
9

Ju
n-

99
Ju

l-9
9

A
ug

-9
9

S
ep

-9
9

O
ct

-9
9

N
ov

-9
9

D
ec

-9
9

Ja
n-

00
Fe

b-
00

M
ar

-0
0

A
pr

-0
0

M
ay

-0
0

Ju
n-

00
Ju

l-0
0

A
ug

-0
0

S
ep

-0
0

Date

M
on

th
ly

 T
ot

al
 P

 
Lo

ad
 (k

g)

Measured
Simulated

(B) Particulate Phosphorus (PP) at Town Brook

0
400
800

1200
1600
2000

O
ct

-9
8

N
ov

-9
8

D
ec

-9
8

Ja
n-

99
Fe

b-
99

M
ar

-9
9

A
pr

-9
9

M
ay

-9
9

Ju
n-

99
Ju

l-9
9

A
ug

-9
9

S
ep

-9
9

O
ct

-9
9

N
ov

-9
9

D
ec

-9
9

Ja
n-

00
Fe

b-
00

M
ar

-0
0

A
pr

-0
0

M
ay

-0
0

Ju
n-

00
Ju

l-0
0

A
ug

-0
0

S
ep

-0
0

Date

M
on

th
ly

 P
P

 L
oa

d 
(k

g)

Measured
Simulated



 
 

83

Model performance measures for Town Brook and Beerston are summarized in Table 
6.4.5.  The Beerston performance measures are given with and without the extreme 
phosphorus loading for January 1996.  Based on the r2 and ENS coefficients at both 
locations, model predictions for TDP more closely replicate the trend in the data as 
compared to PP.  This result is expected given that PP predictions are directly related to 
both flow and TSS predictions while TDP is mainly dependent on flow predictions.  At 
Beerston, model performance measures for TDP prediction are actually better when 
January 1996 is included in the performance measure computation.  This is because the 
model only slightly under-predicts TDP loading during January 1996.  Given the 
tendency of the model to under-predict daily peak flows, the 6% under-prediction of total 
P loading at Beerston is quite reasonable.  The total P r2 and ENS coefficients for Beerston 
of 0.72 and 0.68, respectively, indicate good model performance. 
 

Table 6.4.5.  Monthly phosphorus calibration results at continuous water quality 
monitoring stations for the period 1994 to 2000 (see Figure 6.1.1 for locations). 

Phosphorus 
Fraction, 
Location  

Months 
of 

Measured 
Data 

Mean 
Measured 

DataA 
(kg) 

Mean 
Simulated 
ResultsA 

(kg) 

Percent 
Difference 
between 

Measured 
& 

Simulated

r2 ENS 

TDP,  
Beerston 80 1244 1444 16.1 

(13.5) B 
0.77 

(0.82)B 
0.73 

(0.81)B 
PP,  

Beerston  80 2094 1690 -19.3 
(-43.4)B 

0.65 
(0.43)B 

0.57 
(0.20)B 

Total P, 
Beerston  80 3338 3135 -6.1 

(-26.5)B 
0.72 

(0.52)B 
0.68 

(0.33)B 
TDP, Town 

Brook 24 86 63 -26.8 0.59 0.52 

PP, Town 
Brook  24 235 101 -57.0 0.43 0.22 

Total P, Town 
Brook 24 321 164 -49.0 0.46 0.29 

A. Calculated based only on the days with measured data for each station. 
B. Performance measure includes January 1996. 
 
Model performance measures for predicting total P were similar in the summer and 
winter seasons.  Considering all summer seasons over the calibration period together, the 
model under-predicted Beerston total P by 3.1% and the monthly r2 coefficient was 0.70.  
Considering all winter seasons over the calibration period all together, the model under-
predicted Beerston total P by 7.4% and the monthly r2 coefficient was 0.72.   
 
Although model total P calibration performance focused on maximizing monthly r2 and 
ENS coefficients, the calibrated model total P predictions compared well with measured 
total P data on a daily time scale.  Daily model performance measures for Beerston total 
P over the calibration period (excluding January 1996) show an r2 and ENS coefficient 
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both equal to 0.53.  Similarly, the daily total P r2 and ENS coefficients at Town Brook for 
the Oct. 1998 through Sept. 2000 period are 0.49 and 0.38, respectively. 
 
Further efforts to calibrate the model for phosphorus at Town Brook should only be 
attempted when another year of water quality monitoring data is available.  As with TSS, 
phosphorus predictions at Town Brook could be improved by independently calibrating 
the subbasin parameters to the measured data.  The Town Brook results for total P are 
less important relative to Beerston results since the latter represent most of the 
phosphorus delivered to the Cannonsville Reservoir. 
 
The total simulated basin-wide phosphorus load during the calibration period is broken 
down by land use and sources in Section 1.1.2. 
 
6.4.4 Spatially Distributed Analysis of Total Phosphorus Predictions 

Model calibration focused mainly on results at Walton/Beerston.  The calibration results 
observed at Town Brook for phosphorus loads were generally a byproduct of the 
calibration effort at Beerston.  Due to this, and the fact that no continuous monitoring 
data at Town Brook is available for the validation period, there is little evidence that the 
spatially distributed model predictions for phosphorus are reasonable.  Therefore, 
NYCDEP bi-weekly water quality grab sampling data, as provided in a computer 
spreadsheet file NYCDEP (Unpublished data) were utilized to perform a qualitative 
check on the spatially distributed model predictions for relative total phosphorus levels in 
the basin tributaries and along the WBDR mainstem. 
 
NYCDEP data were available at over 20 locations across the basin.  Of these, suitable 
sampling locations were selected to evaluate spatially distributed performance based on 
data availability and data suitability.  Only water quality stations that sampled over 
approximately the same period of time, and therefore have approximately the same 
number of samples, are compared in this analysis.  For the paired NYCDEP water quality 
stations that are immediately upstream and downstream of point sources, the downstream 
station is not used in this analysis to avoid samples where the stream cross-section may 
not be fully mixed.  In addition, only NYCDEP water quality stations that could be 
reasonably associated with corresponding model subbasin outlets were selected.  The 
NYCDEP water quality stations selected for this analysis were categorized as either a 
headwater water quality station (no upstream subbasin modeled) or a mainstem WBDR 
water quality station. 
 
The bi-weekly and single sample nature of this spatially distributed data precluded its use 
for direct comparison with simulated daily phosphorus loading results.  Instead the data 
were analyzed to generate long-term arithmetic averages for total P concentrations over 
the periods of interest.  These averages can be used for relative comparisons with 
simulation results over the same periods given that the sampling data were collected bi-
weekly, generally on the same day for all water quality stations such that a storm event 
was usually either sampled or not sampled at all NYCDEP stations in the basin.  Namely, 
the average relative total P concentrations measured at each location can be compared to 
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average relative model simulated total P concentrations at each location.  In other words, 
this assessment functions to make sure the highest and lowest relative total P 
concentrations measured in the basin are reasonably replicated by the model predictions 
for total P concentrations.  The NYCDEP data for total P concentrations were 
arithmetically averaged while the simulation results from SWAT were only available as 
flow-weighted concentrations.  Although the nature of the averages differ, since they 
were constant within each data set (measured and simulated) the relative nature of the 
concentration of total P is retained and the comparison is valid. 
 
Spatially distributed phosphorus calibration results are presented in Section 6.4.4.1 for 
the calibration period and Section 6.5.4 for the validation period. 

6.4.4.1 Spatially Distributed Phosphorus Calibration Results 

Water quality data for a subset of NYCDEP stations was available from the start of the 
calibration period (January 1994) to December of 1999.  Therefore, model calibration 
simulation results are only analyzed through the end of 1999 in this comparison.  A total 
of ten NYCDEP water quality stations had suitable data over the Jan. 1994 through Dec. 
1999 time period to be included in this analysis.  One of these selected water quality 
station (WDHOA - close to the subbasin 1 drainage outlet) is considered here to be both a 
mainstem WBDR and headwater water quality station.  Of the remaining nine selected 
locations, five of the NYCDEP monitoring locations are headwater water quality stations 
and four of the locations are mainstem WBDR water quality stations.  The locations of 
the NYCDEP water quality stations used in this analysis are shown in Figure 6.4.7. 
 
Table 6.4.6 summarizes the analysis for headwater water quality stations over the 
calibration comparison period.  A comparison between the absolute magnitudes of the 
measured and simulated total P average concentrations at each location shows that 
modeled total P is always higher than measured total P.  Based on the different nature of 
each average this behavior is expected.  NYCDEP water quality data do not cover all 
high flow events and will therefore tend to miss sampling many of the higher 
concentration flow events.  In contrast, the model simulates the entire period, and 
therefore most of the high flow/high concentration events.  As a result, the simulated 
average total P concentrations will tend to include the highest concentrations while the 
measured average total P concentrations will not include most of the high concentrations.   
 
Of all ten water quality stations used in the calibration comparison period, the highest 
average measured total P concentration occurs at WDHOA (79 µg/L) and the lowest 
occurs at C-8 (14 µg/L) and model performance at both of these locations is evaluated in 
Table 6.4.6.  The last two columns in Table 6.4.6 rank the average total P concentrations 
for the measured data and simulated results.  Comparing the ranks is one way to 
qualitatively evaluate the model performance.  Results show excellent agreement 
between the ranks of the measured data and simulated results as all locations are ranked 
the same for both sets of average total P concentrations. 
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Table 6.4.6.  Comparison of measured and simulated average total P concentrations for 
headwater subbasins for the Jan. 1994 through Dec. 1999 period. 

NYCDEP 
Water 

Quality 
Station 
Name 

SWAT 
Subbasin 
Outlet #1 

Average2 
Measured 

Water 
Quality 

Station total 
P (µg/L) 

Average3 
Simulated 
Subbasin 

Outlet 
total P 
(µg/L) 

Relative 
Rank4 of 

Measured 
total P 
conc. 

Relative 
Rank4 of 

Simulated 
total P 
conc. 

WDHOA 1 79 133 1 1 
CWB 4 35 98 2 2 
C-38 8 33 76 3 3 
C-8 18 14 49 7 7 
C-7 19 16 55 6 6 

C-79+CLDG5 27 20 55 5 5 
WSPA6 38+43+11+12 31 68 4 4 

1. Corresponds to adjacent NYCDEP water quality station location. 
2. Arithmetic average of 147 to 151 samples (except 137 and 173 samples for C-38 and 

C-79+CLDG, respectively). 
3. Flow-weighted average. 
4. Rank of 1 corresponds to the highest total P concentration location. 
5. Two water quality stations close by each other measured Little Delaware total P over 

period of record – both used in computation of average total P. 
6. For comparison purposes, the mainstem WBDR location with the lowest average 

measured total P concentration is included.  This station is upstream of the Walton 
WWTP and is therefore compared to SWAT results that do not include the WWTP. 

 
Initial simulation results from the Jan. 1994 through Dec. 1999 period showed that the 
model predicted average flow-weighted total P concentrations for subbasin 19 (Trout 
Creek subbasin, water quality station C-7) that were in total disagreement with the 
measured average total P concentrations in Table 6.4.6.  These initial simulation results 
predicted that the average total P concentration for subbasin 19 was the second highest of 
all ten locations used in the comparison and was nearly equal to the highest simulated 
average total P concentration for subbasin 1 (WDHOA).  In comparison with the 
available data, this result was deemed to be a serious discrepancy and prompted further 
investigation to try to determine the cause.  The investigation included a re-examination 
of the spatial land use in subbasin 19 and found that independent farm records (Dale 
Dewing, Personal Communication) strongly suggested the actual corn land use area in 
subbasin 19 is greatly over-estimated in the original NYCDEP land use data (by over 4 
times).  Based on the independent data on corn land use provided by Dale Dewing 
(Personal Communication) and the serious model prediction errors observed for subbasin 
19, the corn land use areas input to the model for subbasin 19 were deemed incorrect and 
were reduced.  The magnitude of the reduction in corn land use area was based 
completely on the data provided by Dale Dewing (Personal Communication) and is 
outlined in Section 4.2.1.1.  The corrected corn land use areas input to subbasin 19 
resulted in the much-improved simulated average total P concentration for subbasin 19 in 
Table 6.4.6. 
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The measured and simulated average total P concentrations at five NYCDEP mainstem 
WBDR water quality stations over the calibration comparison period are compared 
spatially and graphically in Figure 6.4.7.  Figure 6.4.7 also shows the results for 
mainstem WBDR water quality stations in the validation period that are discussed further 
in Section 6.5.4.  Only the results in the calibration period chart in Figure 6.4.7 will be 
discussed in this section.  The measured (arithmetic) data for the calibration period in 
Figure 6.4.7 show that there is a significant dilution of total P moving downstream until a 
the increase at WDBN.  Measured (arithmetic) total P concentrations at WSPA and 
WDLFB are less than 50% of those at WDHOA.  This dilution of total P in the 
downstream direction is also apparent in the simulated average total P concentrations at 
the five locations.  For example, simulated total P concentrations at WSPA and WDLFB 
are approximately 50% of those at WDHOA.  However, the simulated data show no 
significant difference between the concentrations at WSPA and WDBN where as the 
measured (arithmetic) average total P concentration increases at WDBN by almost 50% 
over the WSPA total P concentration.   
 
An alternative average can be computed for the measured data by weighting the bi-
weekly samples of total P by the measured USGS flow at the Walton flow-gauging 
station (very close to WSPA) for the corresponding day.  This alternative average is 
computed and plotted for the calibration period in Figure 6.4.7 for the WDLFB, WSPA 
and WDBN stations.  Note that the Walton USGS measured flows are assumed to be 
representative weighting factors for these three stations because of their proximity to the 
Walton USGS station.  Calculating weighted average total P concentrations based on 
Walton USGS flows at other NYCDEP water quality stations was deemed inappropriate 
given their distance from the Walton USGS station.  The flow-weighted average total P 
concentrations for the measured data at WDLFB, WSPA and WDBN show that there is 
only a very minimal increase in total P concentration between WSPA and WDBN.  The 
trend in the simulated total P results between WDLFB and WDBN closely resembles the 
trend in the flow-weighted measured total P concentrations.  It is not clear whether the 
arithmetic or flow-weighted average of measured total P concentrations at WDLFB, 
WSPA and WDBN are most representative of the trend in actual total P concentrations 
between these locations.  Therefore, since model predictions resemble the trend observed 
between WDLFB, WSPA and WDBN when flow-weighted total P concentrations are 
considered, the simulated results along the mainstem WBDR were deemed to be 
acceptable. 
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Figure 6.4.7.  Measured and simulated average total P concentrations for selected 
NYCDEP mainstem WBDR water quality stations during the calibration period (Jan. 

1994 – Dec. 1999 only) and validation period (Jan. 1990 – Dec. 1993). 
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6.5 Validation Results 

Validation is the process of testing model performance of the calibrated model parameter 
set against an independent set of measured data.  Validation was somewhat limited by 
data availability in both time and space.  Validation results against continuous monitoring 
data for all constituents can only evaluated at the Walton/Beerston stations.  The 
validation period selected was from January 1990 through December 1993 (48 months).  
Flow data were available for this entire period while TSS and phosphorus data were only 
available from October 1991 to December 1993 (27 months).  Measured NYCDEP data 
were also available over the entire validation period to qualitatively validate spatially 
distributed total P predictions.  Note that although flow data are available before 1990, a 
four year validation period for flow was assumed acceptable.   
 
Model validation was conducted using the same warm-up period length (3 years), initial 
conditions, inputs and parameter values used or determined during model calibration 
except for the following: 

• Appropriate climate data from 1987 to 1993 are used for the validation period. 
• 1990 monthly point source loads are also used to represent the loads from 

January 1987 to December 1989. 
• Manure generation rates per subbasin from 1990 to 1993 were assumed 

represented by the manure generation rates estimated from the 1992 cattle 
population in the basin (see Section 4.7.1.1).  As a result, the total manure P 
applied to basin soils in validation is 27% higher than the manure P applied in 
the calibration period. 

 
6.5.1 Hydrology Validation Results 

Model validation performance measures for flow at Walton are presented for a daily and 
monthly time step in Table 6.5.1.  The results show good model performance.  The daily 
performance measures are just slightly lower than the corresponding performance 
measures in the calibration period.  The monthly r2 and ENS coefficients for validation 
(0.94) are both somewhat higher than the corresponding coefficients in the calibration 
period (0.89). 
 

Table 6.5.1.  Hydrology validation results at Walton (USGS gauge 01423000) over the 
period Jan. 1990 to Dec. 1993. 

Time Step for 
Model 

Performance 
Measures 

Mean 
Measured 

Data 
(m3/s) 

Mean 
Simulated 

Results 
(m3/s) 

Percent 
Difference 
between 

Measured & 
Simulated 

r2 ENS 

Daily 16.0 16.7 4.5 0.79 0.78 
Monthly - - - 0.94 0.94 

 
Daily measured and simulated flows at Walton are plotted for each calendar year in the 
validation period in Figure 6.5.1.  Model performance measures by calendar year for the 
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validation flow predictions range from 0.70 to 0.83 for the r2 coefficient and –1.5% to 
13.4% for the percent difference in average daily flows.  Late summer flows (September 
and October) tend to be over-predicted by the model, especially in 1991 and 1992.  In 
fact, considering all summer seasons (May-Oct) over the validation period together, the 
model over-predicted Walton flows by 24.5% and the daily r2 coefficient was 0.78.  
Performance across all winter seasons (Nov-Apr) in the validation period is better as 
flows are predicted within 1% and the daily r2 coefficient is 0.74.   
 

Figure 6.5.1.  Time series of measured and simulated daily hydrology validation results at 
Walton for the period 1990-1993. 

 
Figure 6.5.1 shows that in all calendar years except for 1993, the two largest peak daily 
flows in each year are significantly under-predicted by the model.  The tendency of the 
model to under-predict peak flows is consistent with the calibration results.  The scatter 
plot in the Appendix (Figure 10.5.1) of measured versus simulated daily flows at Walton 
over the validation period highlights these under-predictions more clearly.  For example, 
of the eight daily flows in the validation period that were greater than 130 m3/s, all were 
under-predicted and seven of these were under-predicted by more than 21%.  As in the 
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calibration, many of these under-predicted peak flows were associated with snowmelt 
events. 
 
Figure 6.5.1 also shows that the largest peak flow event in the validation period in late 
March of 1993 is severely under-predicted (by more than 50%) by the model.  This 1993 
event is associated with a melting snowpack that was measured at 37 inches of snow at 
the Walton climate station and 28 inches of snow at the Delhi climate station on March 
14 and decreased steadily at both locations to a depth under 2 inches by the end of March.  
This under-prediction is consistent with the calibration results, that also showed the 
model tends to under-predict peak flows of large snowmelt related flow events.  This 
March 1993 peak flow under-prediction does not appear to be due to errors in 
precipitation inputs since the cumulative measured and simulated flows at Walton 
between March 20, 1993 and April 30, 1993 are within 5% and within 1% between 
March 20, 1993 and May 15, 1993. 
 
6.5.2 Sediment Validation Results 

Validation results for TSS are outlined in Table 6.5.2 and plotted against measured TSS 
in Figure 6.5.2.  Although the temporal variation in the measured TSS loading during the 
validation period (see Figure 6.5.2) is somewhat reduced in comparison to the calibration 
time series at Beerston in Figure 6.4.4, predictions for TSS generally display the same 
characteristics as in model calibration.  Validation results show that model performance 
is fairly good with monthly r2 and ENS coefficients of 0.66 and 0.51, respectively.  Over 
the validation period, the model under-predicts monthly TSS loads by about 26.5% on 
average.  This under-prediction is mainly due to the model inability to predict the 
extreme sediment load in March 1993.  The large under-prediction in March 1993 is 
largely due to the peak flow under-prediction for this month as discussed in Section 6.5.1.  
Figure 6.5.2 shows that, with the exception March 1993, the simulated TSS trend closely 
matches the trend in the measured TSS data.  The measured load for TSS in Nov. 1991 is 
highly uncertain relative to other monthly measured loads due to poor sampling coverage 
of high flow events (Pat Bishop, Personal Communication).  Therefore, the disagreement 
between the simulated and measured TSS load in Nov. 1991 is acceptable. 
 
Table 6.5.2.  Monthly sediment validation results at Beerston over the period Oct. 1991 to 

Dec. 1993. 

Time Step for 
Model 

Performance 
Measures 

Months 
of 

Measured 
Data 

Mean 
Measured 

Data 
(metric t) 

Mean 
Simulated 
ResultsA 
(metric t) 

Percent 
Difference 
between 

Measured & 
Simulated 

r2 ENS 

Monthly 27 1266 931 -26.5 0.66 0.51 
Daily 27 - - - 0.35 0.29 

A) Calculated based only on the months with measured data. 
 
As in the calibration, the largest monthly TSS prediction errors are positively correlated 
with the errors in peak daily flows for the corresponding month.  For example, when TSS 
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loads are under-predicted in Nov-91 and Mar-93, peak daily flows in these months are 
also significantly under-predicted.  Furthermore, when TSS loads are over-predicted in 
Jan-92 and Oct-92 through Dec-92, peak flows are significantly over-predicted.  This 
correlation is more closely examined in Section 7.3.3. 
 

Figure 6.5.2.  Time series of monthly measured and simulated sediment validation results 
at Beerston for the period Oct. 1991 to Dec. 1993. 

 
6.5.3 Temporal Phosphorus Validation Results 

Validation results for phosphorus are outlined in Table 6.5.3 and plotted against 
measured data in Figure 6.5.3.  Table 6.5.3 shows that, consistent with calibration results, 
the model is over-predicting TDP (13.4% on average) and under-predicting PP (27.1% on 
average) while still matching average total P loads to within 10%.  Again, since the 
model tends to under-predict peak daily flows, the 9% under-prediction of average total P 
loading is expected.  When the validation period r2 and ENS values in Table 6.5.3 are 
considered, model performance for predicting P was approximately the same as or better 
than the calibration period performance.  For example, although model performance for 
total P prediction in each period was similar (r2 from 0.72 in calibration to 0.70 
validation, ENS from 0.68 to 0.61), TDP results improved significantly (r2 from 0.77 to 
0.93, ENS from 0.73 to 0.90). 
 
Figure 6.5.3 plots the measured and simulated TDP, PP and total P for the validation 
period.  The simulated TDP loads very closely match the trends in the measured TDP 
data and the model performs well in the two most extreme months (March and April 
1993).  Consistent with the severe TSS under-prediction in March 1993, simulated PP in 
this month is also severely under-predicted.  Figure 6.5.3 shows that the simulated total P 
trend follows the trend in the total P data closely.  However, consistent with the peak 
daily flow and monthly TSS load, model predictions for total P during March 1993 are 
severely under-predicted. 
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Table 6.5.3.  Phosphorus validation results at the Beerston monitoring station for the 
period Oct. 1991 to Dec. 1993. 

Phosphorus 
Fraction (Time 
Step for Model 
Performance 

Measures) 

Months of 
Measured 

Data 

Mean 
Measured 
Data (kg) 

Mean 
Simulated 
ResultsA 

(kg) 

Percent 
Difference 
between 

Measured & 
Simulated 

r2 ENS 

TDP (monthly) 27 1658 1880 13.4 0.93 0.90
PP (monthly) 27 2091 1525 -27.1 0.56 0.43

Total P (monthly)  27 3749 3405 -9.2 0.70 0.61
TDP (daily) 27 - - - 0.52 0.44
PP (daily) 27 - - - 0.30 0.26

Total P (daily)  27 - - - 0.36 0.35
A) Calculated based only on the months with measured data. 
 

Figure 6.5.3.  Time series of monthly measured and simulated A) TDP B) PP C) total P 
validation results at Beerston for the period Oct. 1991 to Dec. 1993. 
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(C) Total Phosphorus (Total P)
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(B) Particulate Phosphorus (PP)
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6.5.4 Spatially Distributed Phosphorus Validation Results 

The analysis described in Section 6.4.4 is repeated here for the validation period.  Water 
quality data for a subset of NYCDEP stations was available for the entire validation 
period (Jan. 1990 through Dec. 1994).  A total of eleven NYCDEP water quality stations 
had suitable data over the validation period to be included in this analysis.  In addition to 
the WDHOA water quality station, four of the eleven selected NYCDEP monitoring 
locations are headwater water quality stations and six of the locations are mainstem 
WBDR water quality stations.  The locations of the NYCDEP water quality stations used 
in this analysis are shown in Figure 6.4.7. 
 
Table 6.5.4 summarizes the analysis for headwater subbasins over the validation period.  
The results in Table 6.5.4 show average simulated total P concentrations are always 
greater than average measured total P concentrations. As discussed previously in Section 
6.4.4.1, these results are expected and are an indication of good model performance.   
 

Table 6.5.4.  Comparison of measured and simulated average total P concentrations for 
headwater subbasins for the validation period (Jan. 1990 to Dec. 1993). 

NYCDEP 
Water 

Quality 
Station 
Name 

SWAT 
Subbasin 
Outlet #1 

Average2 
Measured 

Water 
Quality 
Station 
total P 
(µg/L) 

Average3 
Simulated 
Subbasin 

Outlet total 
P (µg/L) 

Relative 
Rank4 of 

Measured 
total P 
conc. 

Relative 
Rank4 of 

Simulated 
total P 
conc. 

WDHOA 1 107 110 1 1 
C-38 8 36 68 2 2 
C-8 18 15 37 6 6 
C-7 19 17 37 5 5 
C-79 27 21 46 4 4 

WSPA5 38+43+11+12 33 55 3 3 
1. Corresponds to adjacent NYCDEP water quality station location. 
2. Arithmetic average of 98 to 102 samples for all water quality stations. 
3. Flow-weighted average. 
4. Rank of 1 corresponds to the highest total P concentration location. 
5. For comparison purposes, the mainstem WBDR location with the lowest average 

measured total P concentration is included.  This station is upstream of the Walton 
WWTP and is therefore compared to SWAT results that do not include the WWTP. 

 
Of all eleven water quality stations used in the validation period, the highest average 
measured total P concentration occurs at WDHOA (107 µg/L) and the lowest occurs at 
C-8 (15 µg/L).  These are the same locations identified in the calibration period with the 
highest and lowest average measured total P concentrations.  As in the calibration period, 
simulated results in Table 6.5.4 show that the model also correctly predicts these 
locations to have the most extreme average total P concentrations.   
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The last two columns in Table 6.5.4 rank the average total P concentrations for the 
measured data and simulated results at all headwater water quality station locations.  
Results show excellent agreement between the ranks of the measured data and simulated 
results as all locations are ranked the same for both sets of average total P concentrations.   
 
One of the most important results in Table 6.5.4 is that the corn land use reduction for 
Trout Creek (subbasin 19) resulted in excellent agreement between measured and 
simulated average total P concentrations over the validation period for this subbasin 
(water quality station C-7).  As in the calibration results, the measured data suggest that 
relative to other locations, subbasin 19 has a very low average total P concentration.  The 
relative ranks for this location are both 5 for the measured total P and simulated total P 
concentrations indicating that subbasin 19 is correctly simulated to have relatively low 
average total P concentrations.  Also important, the simulated average total P 
concentrations for C-7 and C-8 water quality station locations are approximately the same 
magnitude, which is consistent with the relationship for these locations in the measured 
average total P concentrations.  These results are good additional evidence that the land 
use change in Trout Creek (outlined first in Section 4.2.1.1 and then Section 6.4.4.1) is 
warranted. 
 
The measured and simulated average total P concentrations at seven NYCDEP mainstem 
WBDR water quality stations over the calibration comparison period are compared 
spatially and graphically in Figure 6.4.7.  Figure 6.4.7 also shows the results for 
mainstem WBDR water quality stations in the calibration period.  Unless otherwise 
noted, all results discussed below refer to the measured and/or simulated average total P 
concentrations plotted in Figure 6.4.7 for the validation period.  Similar to measured data 
in the calibration period, measured data over the validation shows there is a significant 
dilution of total P moving downstream until the increase at WDBN.  In the validation 
period, the increase in both the measured and simulated average total P concentration at 
WDBN can be attributed to the high total P loading levels in the effluent from the Kraft 
cooling water discharge and Walton WWTP that are both discharged between the WSPA 
and WDBN locations.  Note that the total P loading levels from these two point sources 
are greatly reduced in the calibration period (see Figure 4.5.1).  Figure 6.4.7 shows that 
for the validation period the simulated average total P concentrations closely match the 
trend in measured average total P concentrations along the mainstem WBDR.   
 
The only location in Figure 6.4.7 showing a minor disagreement between the measured 
and simulated average total P concentrations is the WDHOA water quality station.  Based 
on the expectation that average simulated total P concentrations should be somewhat 
higher than average measured total P concentrations at the same location (discussed 
previously in Section 6.4.4.1), the simulated total P concentration at WDHOA (110 µg/L) 
should likely be even higher than it is now relative to the measured concentration (107 
µg/L).  One potential reason for this is that Stamford WWTP (which discharges into 
subbasin 1) total P loading levels for the validation period are not measured and had to be 
assumed in Section 4.5.  The assumed total P load from the Stamford WWTP accounts 
for nearly 25% of the total P loading over the validation period.  Therefore, if the actual 
total P loading rates from the Stamford WWTP were higher than the assumed total P 
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loading rates over the validation period then the actual total P loading rates input to the 
model would result in a significantly higher simulated average total P concentration at 
WDHOA.  It is noteworthy that this problem does not occur at WDHOA during the 
calibration period - for which measured data are used to estimate much of the Stamford 
WWTP total P loading rates over the period.  As a result, the minor disagreement 
between the measured and simulated average total P concentrations at the WDHOA water 
quality station in the validation is acceptable. 
 
6.5.5 Validation Summary 

Model performance levels for phosphorus, TSS and flow at Beerston/Walton in the 
validation period are approximately the same as model performance levels during the 
calibration period.  The improved TDP predictions in the validation period are promising.  
Overall, spatially distributed phosphorus validation results are also very good.  The 
validation results above are good evidence that the current set of model inputs and 
parameter values are fairly robust with respect to temporal and model predictions at 
Walton/Beerston as well as spatially distributed model predictions. 
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7 Discussion 
 
Two general aspects that must be considered when evaluating the performance of the 
SWAT2000 Cannonsville Basin model are the nature of the loading data and the model 
performance statistics relative to similar published modeling studies.  The NYSDEC 
TSS, TDP, and PP loading data are not directly measured and are instead calculated.  
This distinction is discussed in detail in Section 6.1.1.  The Cannonsville Basin model is 
compared to model performance statistics in the following sections. 
 

7.1 Comparison of Model Performance with Related Modeling Application 

Since all modeling studies predict results with some error, it is useful to compare the 
numerical results obtained in Section 6 with previous published modeling studies in order 
to evaluate the generally accepted levels of model performance.  Although there are 
numerous studies comparing monthly flow predictions with measured monthly data, there 
are very few that compare monthly sediment loads with measured monthly data.  There 
are even fewer studies that compare monthly P load predictions with measured monthly 
data.  The main reason for this is the lack of continuously monitored sediment and P 
loading data. 
 
The main study selected for comparison here is a study by (Santhi et al. 2001) since they 
use SWAT and calibrate the model for flow, sediment and P.  The study by Williams and 
Berndt (Williams and Berndt 1977), which provided some of the original testing of the 
MUSLE equation predictive accuracy for watershed monthly sediment loading, is also 
discussed. 
 
A study by Kirsch et al. (2002) uses a modified version of SWAT 98.1 to simulate runoff, 
sediment and phosphorus loading in a mainly agricultural watershed in eastern 
Wisconsin.  Kirsch et al. (2002) calibrated their model against five years of annual P 
loading data and achieved annual r2 and ENS coefficients of 0.95 and 0.07, respectively, 
and on an average over-prediction of total P of 22%.  For comparison purposes, the 
annualized calibration r2 and ENS values over a period of six years (1994-1999), including 
the January 1996 flood event, achieved in this study at Beerston were 0.93 and 0.46, 
respectively.  In addition, over this same period, the Cannonsville model under-predicted 
total P by 28%.  Overall, annual model performance for total P loading is better in this 
study based on the large difference in the annual ENS coefficients. 
 
A detailed comparison with the NYCDEP developed GWLF model of the Cannonsville 
Basin (Schneiderman et al. 1998) would be insightful.  However, suitable performance 
statistics for model comparison are not available in the published NYCDEP report 
(Schneiderman et al. 1998).  The only reported statistics in their report are for validation 
and are given as the coefficient of model efficiency.  Since a comparison based on this 
single validation statistic for hydrology, sediment and phosphorus is not complete, the 
results of the two Cannonsville models are not compared here. 
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7.1.1 Monthly Sediment Predictions in Williams and Berndt (Williams and Berndt 
1977) 

The MUSLE equation is the foundation of sediment prediction in SWAT and is used to 
predict the amount of sediment reaching the stream channels.  Williams and Berndt 
(Williams and Berndt 1977) set out to test the predictive accuracy of the equation when a 
hydrologic model was used to estimate runoff volumes.  Although the hydrologic model 
utilized in conjunction with the MUSLE equation differed from SWAT and the MUSLE 
equation was applied in a lumped fashion as opposed to a distributed approach (as in 
SWAT), the comparison with the Cannonsville SWAT2000 model is sensible because the 
MUSLE equation is an integral part of SWAT sediment loading predictions.  More 
importantly, the MUSLE equation is a widely accepted approach for estimating 
temporally variable sediment loads.  Many applications of MUSLE are common in the 
literature (Johnson et al. 1985, McConkey et al. 1997).  Therefore, the performance 
accuracy of the MUSLE equation as outlined in Williams and Berndt (Williams and 
Berndt 1977) can be interpreted as an acceptable level of predictive capability with 
respect to temporally varying sediment loads. 
 
Williams and Berndt (Williams and Berndt 1977) evaluated the performance of the 
MUSLE equation against data from 27 watersheds.  They found that the average annual 
MUSLE predicted sediment yield was from 57% less than or 45% more than the average 
annual measured sediment yield.  Monthly r2 values were only available from nine 
watersheds and ranged from 0.95 to 0.32 with 1/3 of them having an r2 less than 0.51.  
The Cannonsville SWAT2000 model performance measures fall well within the ranges of 
MUSLE equation performance statistics from Williams and Berndt (Williams and Berndt 
1977).  For example, average sediment loads predicted by the model at Beerston during 
calibration and validation were within 35% of the measured loads including January 1996 
or 27% if January 1996 was not included.  The r2 values for Beerston during calibration 
and validation were 0.71 (no January 1996) and 0.66, respectively.  The comparable 
performance statistics to those in Williams and Berndt (Williams and Berndt 1977) show 
that sediment predictions are quite reasonable given the general acceptance of the 
MUSLE equation under similar performance levels. 
 
7.1.2 Monthly Flow, Sediment and P Predictions in Santhi et al. (2001) 

A recent modeling effort in Texas by the developers of the SWAT model (Santhi et al. 
2001) is the most similar SWAT application to this study in the literature.  The Hico 
Basin drainage area as reported in Santhi et al. (2001) is 926 km2 (nearly the same size as 
the Beerston drainage area) and has a comparable data record length used in calibration.  
Furthermore, they had good continuous data on flow, TSS and P as in this study.  Lastly, 
their study area was a major dairy producing area in Texas and thus involved similar 
management practices.  Some of the main differences between the two studies are that 
New York and Texas climate and soils are very different, Santhi et al. (2001) used an 
older version of SWAT (SWAT98.1) and their validation period is only 12 months in 
length. 
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Calibration and validation results from Santhi et al. (2001) for the Hico Basin are 
summarized in Table 7.1.1.  Model performance statistics in Santhi et al (2001) were 
based on loading rates per unit area and it is assumed that the quantities they reported 
(sediment, organic P and mineral P) correspond to the quantities TSS, PP and TDP as 
defined in this study.  Comparing calibration performance measures, the Cannonsville 
model results for flow and TDP and better than the Hico model.  However, the Hico 
model outperforms the Cannonsville model (with respect to r2 and ENS only) for TSS and 
PP predictions over their respective calibration periods.  Similar relative performance 
levels are observed when the model performance levels are compared over the validation 
periods.  The observation that the Cannonsville model TDP validation results are 
significantly better than the Hico results is noteworthy considering the fact that the 
validation results in Santhi et al. (2001) are biased towards good results with respect to r2 
and ENS since only 1 month out of the 12 month period they selected had significantly 
different measured quantities for flow, TSS and P. 
 
Hydrology, TSS, TDP and PP percent differences in Table 7.1.1 are all significantly 
smaller in magnitude for the Cannonsville model validation results compared to Hico.  
This suggests that, in some respects at least, the Cannonsville model is performing more 
accurately for prediction of the model outputs considered.  Model prediction accuracy in 
validation is particularly important since validation attempts to assess model performance 
under new conditions and new independent measured data.  When model accuracy is 
preserved in validation, confidence in the accuracy of additional model forecasting (e.g. 
management scenarios) increases. 
 
Table 7.1.1.  Monthly calibration and verification results from Santhi et al (2001) for the 

Hico Watershed in Texas compared with monthly results for the Cannonsville 
SWAT2000 model in this study (in brackets). 

Constituent 
(period) 

Months 
of 

Measured 
Data 

Percent 
Difference 
between 

Measured & 
Simulated 

r2 ENS 

Flow (calibration) 60 (81)A -2.5 (1.0)A 0.80 (0.89)A 0.79 (0.89)A 
TSS (calibration) 60 (80) -15.6 (-2.2) 0.81 (0.71) 0.80 (0.66) 
PP (calibration) 60 (80) -13.9 (-19.3) 0.71 (0.65) 0.70 (0.57) 

TDP (calibration) 60 (80) -19.2 (16.1) 0.60 (0.77) 0.59 (0.73) 
Flow (validation) 12 (48) -22.4 (4.5) 0.92 (0.94) 0.87 (0.94) 
TSS (validation) 12 (27) -44.4 (-26.5) 0.98 (0.66) 0.70 (0.51) 
PP (validation) 12 (27) -46.5 (-27.1) 0.95 (0.56) 0.72 (0.43) 

TDP (validation) 12 (27) -50.0 (13.4) 0.83 (0.93) 0.53 (0.90) 
A) For all rows in columns 2 through 5, the first number is for the Hico Watershed 

model and the number in brackets is for the Cannonsville Watershed model. 
 

These results indicate that the SWAT2000 model has good performance relative to the 
Hico Basin study.  Cannonsville model performance is more impressive given that there 
are a number of reasons why the Hico Basin application of SWAT would be expected to 
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generate better numerical performance in comparison with the Cannonsville Basin 
SWAT model.  These are as follows: 

• SWAT was originally developed in Texas and thus applications there are likely to 
be more accurate than locations in states with significantly different conditions.   

• For the Cannonsville Basin, SWAT is forced to simulate snowmelt processes.  
From the hydrology calibration and validation results is clear that much of the 
poor performance by SWAT is related to snowmelt processes.    

• The original developers of SWAT are authors of the paper.  They are therefore 
more experienced SWAT modelers and should be expected to generally produce 
more accurate results than a relatively less experienced SWAT modeler. 

• There are 5-7 temperature and precipitation stations are used for climate inputs in 
the Hico Basin, while only 3 precipitation stations and 2 temperature stations are 
available for the Cannonsville Basin model.  In other words, since the drainage 
areas of the models are nearly the same, the spatial resolution of the climate 
inputs in the Hico model is nearly double that in the Cannonsville model. 

 
Overall, the SWAT application comparison showed that relative to a high quality, similar 
SWAT modeling study (Santhi et al. 2001) the SWAT2000 model of the Cannonsville 
Basin generates results of comparable quality. 
 

7.2 Potentially Important Processes and Phosphorus Sources Excluded from 
Model 

There are some potentially important processes and phosphorus sources that are not 
included or represented explicitly in the model of the Cannonsville Basin that warrant 
additional discussion.  These were omitted from the basin model based on either time or 
model constraints.  The following processes and phosphorus sources were not modeled or 
represented in the SWAT model of the Cannonsville Basin: 

• Crop rotations. 
• Concentrated source areas of P on farms. 
• Septic systems. 
• Instream nutrient reactions. 

 
Crop rotations are an important management practice that reduces soil erosion and 
nutrient buildup on agricultural fields.  Steps were taken to incorporate corn-hay crop 
rotations in the model.  However, due to time constraints the current version of the model 
does not simulate crop rotations.  The current model HRUs are defined in such a way that 
in future versions of the model, corn-hay rotations can be simulated without modifying 
the number or size of the HRUs while simultaneously holding the modeled areas and corn 
and hay constant throughout the simulations.  It is probable that the future inclusion of 
crop rotations will reduce the current sediment and P loading rates simulated to originate 
from corn silage HRUs.  The model currently simulates nearly 60% of the non-point 
source sediment and total P loading as originating from corn silage HRUs.  This issue is 
important to consider when the current model is used to evaluate phosphorus 
management options that are applied to corn silage. 
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Concentrated source areas of P on farms (e.g. milk house wastes and barnyards, 
respectively) are not modeled currently because of the additional model inputs required 
by each.  Point sources could be included given inputs such as average point source P 
discharge rates while barnyards could be modeled as HRUs given other estimates of 
barnyard areas per subbasin and fractions of the total manure produced that are not 
collected from the barnyard.  Given the mass balance approach to manure, alternative 
allocations of manure P could be incorporated into the model.  However, the current 
model inputs are assumed reasonable since all estimated manure produced in a subbasin 
is distributed onto the land surface somewhere in the subbasin. 
 
SWAT2000 does not explicitly model nutrient inputs due to septic systems.  However, 
the data based subbasin groundwater soluble P inputs to the model do represent, at least 
partially, the impact of septic system P on groundwater.  An alternative septic system 
model that can be linked with SWAT is currently being considered that would estimate 
subbasin septic P loads to the river based on the septic system characterization in the 
subbasin.  This model output would be incorporated into SWAT as a point source input.  
However, it is not yet clear how the corresponding groundwater P concentrations input to 
the model should then be reduced. 
 
The option for simulating instream nutrient reactions in SWAT2000 was investigated in 
this study.  However, suitable parameters controlling the conversion of P between 
particulate and dissolved forms could not be identified and the current instream nutrient 
equations in SWAT2000 were deemed unsuitable for the Cannonsville Basin.  As 
discussed in Section 6.2.2, a related issue for improving model predictions of the forms 
of phosphorus in the stream (measured PP versus SWAT simulated organic P and 
measured TDP versus SWAT simulated mineral P) is the questionable model assumption 
that 100% of active mineral P is completely desorbed from eroded soil particles once 
surface runoff reaches the channel.  Any future work focused on improving the model 
predictions for the fractionation of phosphorus between PP and TDP should evaluate this 
modeling assumption closely before or in conjunction with attempting to simulate 
instream nutrient reactions. 
 

7.3 Model Limitations 

Although model performance is generally quite good, there are some significant 
limitations that are evident from the model calibration and validation results.  It is 
important to try to account for the model limitations for two reasons.  First, assuming 
their correction is to be considered, the cause of the limitation requires determination.  
Secondly, since this model is to be used for management option evaluations, more 
confidence in future predictions can be attained if the significant model limitations can be 
partly explained by conditions that will not be present in the future management option 
simulations. 
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7.3.1 Hydrology Predictions 

Model predictions of the largest daily flows (i.e. greater than 130 m3/s) over the 
calibration and validation period are almost always much too low.  In contrast, the largest 
peak summer flows are usually over-predicted.  These limitations are a function of at 
least two sources. 
 
Model prediction accuracy of winter snowmelt events appears to be limited.  This can be 
partly attributed to the manner in which SWAT applies various parameters.  For example, 
it was clear from the measured climate data analysis (see Section 10.4.1) and from the 
calibration effort (see Section 6.3) that optimal settings for some of the snowmelt 
parameters differed between the Northeastern-most and Southwestern-most basin flow 
gauges.  These parameters included the temperature that defines whether precipitation fell 
as snow or rain (SFTMP) and the temperature at which the snowpack begins to melt 
(SMTMP).  However, since these parameters are applied basin-wide in SWAT, there is 
currently only one value used to represent each parameter.  This approach should be 
considered in the future. 
 
The final calibrated CN2 values in the model (SWAT parameter controlling surface 
runoff generation) were identified by balancing the over-predictions of peak daily flows 
in the summer and fall with the under-predictions of peak daily flows in the winter and 
spring.  If the seasonal values of the CN2 parameter were allowed to vary in the model, 
model predictions could be significantly improved in all seasons.  Although the SCS 
curve number approach used in SWAT adjusts surface runoff predictions for season and 
antecedent soil moisture conditions, the previous observation suggests that the current 
SWAT approach for seasonal or soil moisture adjustments to surface runoff predictions 
requires modification if peak flows across all seasons are to be more accurately predicted.  
 
7.3.2 Suspended Sediment Predictions 

7.3.2.1 Management Representation in Model 

The static scheduling of agricultural management options in SWAT is meant to represent 
the ‘average’ management behavior on a typical basin farm.  However, this does not 
capture the year-to-year variations in management, especially the timing of management 
operations, which the typical farm would undergo simply due to climate variation.  In 
general, tillage, planting and harvesting of crops are all dependent on antecedent climate 
conditions.  Thus, the model representation of agricultural management practices likely 
deviates significantly from the actual management practices in at least a few months of 
the model simulations.  As a result, a few of the most significant model inaccuracies 
could be at least partially due to this problem.  For example, consider the following: 

• Although very infrequent, in years where weather conditions are perfect, up to 
10% of fields in the basin could be tilled in the fall according to Dale Dewing 
(Personal Communication).  This is not represented in model inputs.  This could 
account for some of the severe under-predictions of sediment loading measured in 
November 1991 and 1996.  Tillage in the fall removes erosion protecting crop 
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residue from the top of the soil and thus exposes soil to more erosion until the 
next growing season. 

• Tillage is scheduled in the model at the end of April and beginning of May of 
each year.  However, in reality, the actual dates for tillage vary based on climate.  
Therefore, some discrepancies in April and May sediment load predictions are 
possible.  Consider that in April-96 sediment loads were slightly over-predicted 
while in May-96, sediment loads were significantly under-predicted.  This could 
be due to the combination of significant rainstorms observed in the climate data at 
the end of April-96 and the model scheduled tillage at the end of that month 
which potentially did not happen because of the rain.  If all tillage that year was 
pushed into May, then the model under-prediction of May sediment loading is at 
least partially due to the erroneous model scheduling of a tillage operation in 
April. 

 
In agricultural practice there is a relationship between climate (or even forecasted 
climate) and timing of management operations on the farm.  Failure to represent this in 
model development almost certainly accounts for some of the model problems.  Failure to 
account for this relationship in the evaluation of management scenarios could also 
generate unreasonable results.  Therefore, work is required to evaluate the sensitivity of 
model results to management timing around large storms and then consider if 
management operations should be implemented as a function of antecedent climate 
conditions.  In other words, model simulations should perhaps also mimic the average 
farmer’s response to variable climate conditions.  

7.3.2.2 Process Representation in the Model 

The general under-prediction of sediment loads during winter was partially corrected by 
the change in the MUSLE snow cover erosion adjustment equation (see Sections 5.7 and 
6.4.2).  Another cause of sediment load under-predictions in winter is the under-
prediction of peak daily flows in winter.  In addition, a number of other potential causes 
for this under-prediction are given as follows: 

• SWAT is unable to simulate floodplain erosion during overbank flow. 
• SWAT does not simulate the erosion of soils in colder climates due to freeze-thaw 

effects. 
• SWAT does not distinguish between manure spread directly on snow versus 

manure spread directly on the soil surface. 
 
The change made to the model code to increase sediment erosion in months affected by 
snowmelt is a reasonable empirical correction for the erosion of soils due to freeze-thaw 
affects.  However, this correction is not entirely suitable for correcting the model for the 
other issues. 
 
Failure to predict overbank flow erosion should not be considered a model shortcoming 
because the SWAT2000 model purpose clearly states that it is not designed to do this.  
Furthermore, based on the enormous 1996 flood event measured PP load (75% of the 
total PP for the year), a watershed model is not needed to predict that sediment and 
nutrient loading during an extreme overbank flow event will be extremely high.  In other 
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words, given that a flow event is predicted to so dramatically exceed the banks of the 
WBDR, it is quite reasonable to assume that there will be water quality problems (i.e. 
TMDL violation) despite the application of the best management options available to 
Delaware County. 
 
Failure of the model to track the amount of manure spread directly on snow is a 
shortcoming since it is easy to envision that sediment and nutrients from manure 
incorporated in a snowpack is readily available for transport to the stream during 
snowmelt without requiring energy to detach it from the soil surface.  SWAT2000 
currently incorporates manure into the first soil layer (1 cm in depth) regardless of the 
season or depth of snow on the soil surface at the time of manure application.  Based on 
the calibration period climate station data for Delhi, on average, there are 60 days each 
winter season where the snowpack was one or more inches deep.  Based on the manure 
production assumptions outlined in Section 4.7.1 and daily spreading of manure over 60 
days, an estimate of the manure spread directly onto snow is approximately 4000 mt of 
dry manure for an average winter season.  Assuming more than 50% of this snowpack 
applied manure was transported to streams, this would account for a significant part of 
the TSS under-estimation in many of the problematic months identified in Figure 6.4.3. 
 
Clearly, there are multiple processes contributing to the sediment (and therefore PP) 
loading of the reservoir.  Although the cumulative representation of sediment loads at 
Beerston is currently reasonable, further work may be necessary to ensure the model 
physically represents the application of manure on snow and the subsequent transport of 
this manure sediment to the stream during snowmelt.  This is a particularly important 
consideration if the model is to be used to evaluate future management scenarios that 
focus on changing manure spreading practices during the winter and early spring periods. 
 
An alternative to modifying the MUSLE snow cover erosion adjustment equation is to 
investigate a change in the SWAT2000 source code so that the spreading of manure on 
snow is accounted for and modeled as a physical process.  This would require tracking 
manure in the snowpack as a new state variable and predicting the resulting fraction of 
snowpack manure transported in snowmelt and runoff.  This would potentially replace 
the current model code change to the MUSLE snow cover adjustment equation (see 
Section 5.7).  However, such a drastic change in model coding is best left to the SWAT 
model developers. 
 
7.3.3 Phosphorus, Sediment and Hydrology Interdependencies  

Simulation results for sediment and phosphorus are largely dependent on flow.  Figure 
7.3.1 below shows a general schematic that represents the most significant general 
relationships between the quantities of interest in this study simulated by SWAT.  The 
boxes represent the quantity modeled while the directional arrows identify which 
quantities are dependant on one another.  For example, a change in the surface runoff 
volume predicted in any HRU will cause a direct change in the predicted sediment and 
dissolved phosphorus load leaving the HRU in surface runoff.  In addition, since 
sediment predictions increased, so too will particulate phosphorus predictions.  Figure 
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7.3.1 does not show all possible interactions between simulated quantities.  One such 
relatively minor relationship would be that changes in soil P levels could impact 
hydrology results because of the resulting changes in plant growth and thus changes in 
the water balance of the HRU.  The purpose of Figure 7.3.1 is to simply highlight the 
most significant relationships that can be inferred by evaluation of the SWAT2000 model 
equations.  Model performance can be evaluated more rigorously when consideration is 
given to the relationships in Figure 7.3.1. 
 

Figure 7.3.1.  General relationships between the simulated export of quantities from 
HRUs in SWAT2000. 

 
Figure 7.3.1 shows that any errors in hydrology propagate to create errors in all other 
modeled constituents.  In fact, predictions for both forms of P are impacted by hydrology 
and sediment prediction errors.  While the prediction error propagation form (e.g. linear 
or exponential) is not evaluated exactly here, it is clear that P prediction errors are 
strongly dependent on hydrology and sediment prediction errors. 
 
The simulated results and measured data for flow, TSS and total P demonstrate that the 
above statement is generally true.  To show this is the case, the months in both the 
calibration and validation period that have the largest absolute deviations between 
simulated and measured total P loads at Beerston are analyzed more closely.  An absolute 
value of 2000 kg was arbitrarily chosen to distinguish a subset of large deviations and 
resulted in 15 out of 81 months in calibration and 5 out of 27 months in validation being 
selected for closer analysis.  These 20 selected months and their respective simulated and 
measured total P load deviations and percentage errors are given in the first three 
columns of Table 7.3.1.  The largest absolute deviations were used as a criterion for 
selecting these months (as opposed to percent error) because improving model 
predictions in months with the largest absolute deviations in simulated and measured total 
P would make the greatest improvement in model performance measures.  For example, 
if the model could somehow predict the exact measured total P loadings in the 15 months 
from the calibration period selected for this analysis, then the calibration performance 
measures for total P would improve drastically – from 0.52 to 0.996 for the r2 coefficient, 
0.33 to 0.97 for the ENS coefficient and –26.5% to 2.4% for the percent difference when 
January 1996 is included. 
 
For each of the selected months in Table 7.3.1, the deviation in simulated and measured 
monthly TSS loading, the percent error of the monthly TSS deviation and the percent 
error in the simulated peak flow for the month, relative to the measured peak flow, are 

Hydrology 
(surface runoff) 

Sediment 

Total Dissolved 
Phosphorus 

Particulate 
Phosphorus 
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also presented.  The results in Table 7.3.1 are sorted so the largest monthly under-
predictions of total P (i.e. the largest negative deviation of simulated and measured total 
P) appear at the top of table and the largest monthly over-predictions appear at the bottom 
of the table.  All negative percent errors for total P occur in months when there are large 
negative percent errors for TSS and large negative errors for peak daily flows.  Similarly, 
all positive percent errors for total P occur in months when there are large positive 
percent errors for TSS and large positive errors for peak daily flows.  These observations 
qualitatively demonstrate the positive correlations between the model predictive errors of 
total P, TSS, and peak daily flow. 
 
Table 7.3.1.  Monthly sediment load and peak daily flow prediction errors for all months 

over the calibration and validation period in which the total phosphorus load was not 
predicted by the model within ±2000 kg. 

Total Phosphorus 
load for Month 

Sediment (TSS) 
load for Month Month-Year 

(C or V)1 Sim – Meas2 
(kg) 

% 
Error3

Sim – Meas2 
(metric t) 

% 
Error3

% Error in Peak 
Measured Daily 
Flow for Month4 

Jan-1996 (C) -80576 -82 -52812 -88 -65 *5 
Mar-1993 (V) -14628 -57 -9036 -71 -45 
Nov-1996 (C) -14528 -56 -5810 -55 -30 
Jan-1998 (C) -10152 -50 -3886 -51 -50 
Nov-1991 (V) -9922 -68 -4147 -75 -35 
Feb-2000 (C) -6902 -50 -4576 -64 -45 
Jan-1999 (C) -4480 -31 -2065 -35 -20 
July-1998 (C) -4246 -43 -2131 -44 -25 
May-1996 (C) -2711 -32 -2261 -47 -35 
May-1997 (C) -2136 -55 -400 -38 -30 
Dec-1992 (V) 2097 69 769 143 35 
Dec-1998 (C) 2120 624 717 1320 420 * 
Feb-1994 (C) 2271 105 1073 281 230 
Mar-1996 (C) 2393 152 1210 406 150 * 
Mar-2000 (C) 2491 46 958 43 60 
June-1992 (V) 2716 159 626 441 155 
Oct-1992 (V) 2855 279 1087 1351 235 
Mar-1999 (C) 3316 106 1337 115 30 
June-1996 (C) 3605 64 897 34 30 * 
July-1999 (C) 3908 204 1993 429 120 

1. C indicates calibration period, V indicates validation period. 
2. Sim – Meas = simulated monthly load – measured monthly load. 
3. % Error = 100 x (Sim – Meas) / Meas. 
4. Computed as in (3) above except that the peak daily simulated (Sim) and measured 

flows (Meas) do not always occur on the same day.  Precision reduced to reflect this. 
5. The asterisk (*) beside the value indicates that the error applies to the 2nd largest peak 

daily measured flow in the month (e.g. largest peak flow accurately simulated). 
 

A quantitative measure of the correlation between these errors can be assessed by 
constructing scatter plots and computing the r2 coefficients between the percent errors for 
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all pairs of the total P, TSS and errors in peak daily flow values given in Table 7.3.1.  
Figure 7.3.2 is a scatter plot comparing the percent errors between monthly total P and 
daily peak flows and clearly shows the strong positive correlation between these 
quantities (an r2 coefficient of 0.89).  Similar scatter plots between the percent errors in 
TSS and total P as well as TSS and errors in peak daily flow both show strong positive 
correlations. 

Figure 7.3.2.  Scatter plot comparing the percent error of total P monthly load predictions 
with the percent error of peak daily flow predictions for the months in Table 7.3.1. 

 
The demonstrated relationships between the largest errors in simulated monthly total P 
loads (and TSS) and the errors in simulated peak daily flows show that model predictive 
errors in TSS and total P are largely due to errors in peak flow predictions.  This finding 
is intuitive because most of the total P and TSS load is transported in the peak flow 
events.  Therefore, if further work is conducted on this model to improve total P or TSS 
predictions, it should be first focused on improving the simulated daily peak flow 
accuracy for the months identified in Table 7.3.1. 
 

7.4 Summary of Future Model Improvements and Modeling Analyses 

Any future work to improve the SWAT2000 model should refer to the processes and 
phosphorus sources that are not currently modeled (as outlined in Section 7.2) as well as 
the potential approaches outlined in Section 7.3 to address the current model limitations.  
Future phosphorus management scenarios for the Cannonsville Basin that have been 
evaluated with the calibrated SWAT2000 model include temporal changes in the cattle 
population, reduced inorganic phosphorus fertilizer spreading to corn silage, manure 
export from the basin, WWTP upgrades and precision feeding of dairy cattle among 
others. 

r2 = 0.89
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8 Conclusions 
 
The current version of the SWAT2000 Cannonsville Basin Model has been calibrated and 
validated successfully.  The model has been shown to reasonably represent the temporal 
and spatial nature of the measured flow and water quality data at multiple locations in the 
basin.  In addition, model performance was comparable and better in some cases to the 
performance reported in a recent application of SWAT to another watershed by the 
SWAT model developers (Santhi et al. 2001).  Therefore, the model in its current form 
could be used to evaluate potential management strategies for reducing P loading to the 
Cannonsville Reservoir.   
 
A number of important benefits to Delaware County stakeholders as well as other users 
of the general SWAT2000 model are the result of this comprehensive modeling effort.  
They are as follows:     

• The spatially distributed modeling approach used in SWAT allows evaluation of 
management options that vary spatially across the basin.  This is particularly 
important given that Delaware County has a finite amount of resources to manage 
phosphorus in the basin and would therefore be interested in the most cost 
effective management strategies. 

• Model phosphorus inputs are summarized in a way that is potentially useful to 
local decision-makers in the absence of a basin model and will help facilitate 
understanding and communication between all stakeholders.  

• The SWAT basin modeling approach provides the scientific framework for 
compiling and integrating the Delaware County Action Plan (Delaware County 
Board of Supervisors 1999). 

• The basis for phosphorus input information is outlined in sufficient detail for 
future modelers in the basin to repeat the input development when new input data 
become available or if a future model of the basin (with or without SWAT) is 
developed. 

• The spatially distributed modeling approach can also be utilized to help direct 
future water quality monitoring efforts in the basin. 

• The modeling work described here provides a means for investigating 
assumptions made in previous modeling and monitoring work that currently form 
the basis of the management restrictions in the basin. 

• This model could provide improved inputs to the more complex reservoir model 
currently being investigated by the NYCDEP.  In other words, this advancement 
parallels the advancement being made over the relatively simple NYCDEP Phase 
II TMDL reservoir model (Kane 1999). 

• This comprehensive report completely documents the model development work 
for Delaware County and will serve as a guide to transferring all data files 
associated with this modeling effort. 

• The results of the modeling effort will hopefully help to improve the general 
SWAT2000 watershed model. 
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As a cautionary note, this model should not be expected to be able to simulate the exact 
impact of all possible management alternatives for phosphorus in the basin.  Any model 
is a simplification of reality and its forecasts are based on available information, which is 
always limited.  Furthermore, there may be management options that can be easily 
assessed outside of the model.  However, the model does provide the most thorough 
characterization of the watershed to date and therefore forms the foundation required to 
evaluate a variety of phosphorus management scenarios.   
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10 Appendices 
 
Discussions about data sharing are currently underway.  Therefore, not all input data 
derived for the model are provided in this report.  To obtain the latest information 
regarding further data/model input availability, contact Bryan Tolson (bat9@cornell.edu). 
 

10.1 Soil Property Derivation from SSURGO and STATSGO Intersection 

The methodology used in the calculation of area- and depth-weighted soil properties for 
STATSGO soil map units from the SSURGO soils database is explained as follows with 
reference to Figure 10.1.1:  

• All soils in the model are represented with 4 soil layers.   
• The soil layer boundaries for each STATSGO map unit were calculated as area-

weighted averages of the Cannonsville Basin SSURGO soil series within the 
STATSGO map unit. 

• SSURGO soil layers that occurred outside of the idealized, area-weighted average 
soil layer depths (i.e. boundaries in Figure 10.1.1) did not influence the average 
soil properties computed for that layer.   

• Figure 10.1.1 shows the averaged representation for STATSGO soil map unit 
NY056.  As an example, consider the SSURGO soil series ElE (11th from left) in 
Figure 10.1.1.  The properties in the third layer in ElE do not impact the average 
properties calculated for layer 3 of the NY056 map unit – instead layer 2 
properties of ElE are used in the computation of average properties for layer 3 of 
NY056.  Similarly, the ElE layer 2 and 3 properties are depth-weighted (2/5 for 
layer 2, 3/5 for layer 3) in order to calculate soil properties for ElE in the idealized 
4th layer of NY056.  Then the depth-weighted average ElE properties for the 
idealized 4th layer are used in the area-weighted computation of average soil 
properties for layer 4 in NY056. 

• Bedrock occurs as the last soil layer in 20% of the SSURGO soil data available 
for the basin.  In these cases, the depth to bedrock was less than 2 m below the 
soil surface.  The only available soil properties in the SSURGO database for the 
bedrock layers are the layer depth and the saturated hydraulic conductivity.  
Therefore, these bedrock layers were not included in the calculation of the 
average soil layer properties. 
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Figure 10.1.1.  Averaged representation of the soil profile for STATSGO map unit 
NY056. 
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10.2 Precipitation and Temperature Data Adjustments and Corrections 

The details provided in Sections 10.2.1, 10.2.2 and 10.2.3 below expand on the climate 
data adjustments introduced briefly in Sections 4.4.1.1, 4.4.1.2 and 4.4.1.3, respectively. 
 
10.2.1 Details on Walton Precipitation Data ‘Observer Shifting’ Correction 

The observer shifting problem at the Walton2 precipitation station is not consistent from 
January 1998 through September 2000.  Some portions of the precipitation record over 
this period do not exhibit this problem.  Therefore, this problem could not be solved by 
simply shifting all precipitation recorded at Walton2 after January 1998 by one day.  
Instead, the precipitation over this period was closely examined to identify periods in 
time where the recorded data required ‘unshifting’ (moving the data one day forward) so 
that it was in phase with the data at Delhi and Deposit.  In total, 84% of the days at 
Walton2 had recorded precipitation out of phase with Delhi and Deposit.   
 
Table 10.2.1 shows the calculated coefficients of determination (r2) between various 
precipitation depths recorded at pairs of precipitation stations over different time periods.  
With the original precipitation data, from 1990-1997, all three pairings of the 
precipitation stations (Walton, Delhi and Deposit) show highly correlated daily 
precipitation depths with r2 values over 0.59.  From 1998-2000, the original precipitation 
data at Delhi and Deposit are similarly correlated.  However, the original precipitation 
data at Walton2 from 1998-2000 show almost no correlation with the Delhi and Deposit 
stations, as the r2 coefficient is 0.06 for both pairings.  These low r2 coefficients in 
comparison with the high values for the 1990-1997 period, as well as the high values for 
Delhi versus deposit from 1998-2000, clearly demonstrate that a problem exists at 
Walton2.  After correction of the observer shifting problem at Walton2, Table 10.2.1 
shows that much higher r2 coefficients (≥ 0.60) are observed between Walton2 and the 
other stations.  The higher r2 coefficients are a good indication that the corrective 
procedure implemented here worked as desired.  
 
Table 10.2.1.  Correlation analysis of precipitation depths at Walton, Delhi and Deposit 

for the original data and the corrected data at Walton after January 1998.  
Original Precipitation Data Precipitation Data After Correction 
Stations 

Correlated 
Period of 

Comparison 
r2 Stations Correlated Period of 

Comparison 
r2 

WaltonA vs Delhi 1990-1997 0.77 
WaltonA vs Deposit 1990-1997 0.63 
Delhi vs Deposit 1990-1997 0.59 

 

Walton2 vs Delhi 1998-2000 0.06 Walton2 vs Delhi 1998-2000 0.63 
Walton2 vs Deposit 1998-2000 0.06 Walton2 vs Deposit 1998-2000 0.60 
Delhi vs Deposit 1998-2000 0.70  

A) In this period, Walton precipitation data are from the original Walton and Walton2 
precipitation stations. 
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In addition to this chronic problem after January 1998, this issue appeared sporadically 
before 1998 at the Walton precipitation station.  There were seven significant 
precipitation events at the Walton precipitation station that were recorded out of phase 
with the Delhi and Deposit stations and were deemed important to correct.  These events 
were identified for correction because they each had the following characteristics: 

• Walton peak storm precipitation was greater than 10 mm. 
• The Walton peak precipitation was at least twice as large as the precipitation 

recorded on the preceding and following days at Walton.  This criterion 
avoided excessive modifications to the Walton precipitation data during multi-
day precipitation events with a relatively constant daily rainfall rate. 

• Walton precipitation occurred one day before both the Delhi and Deposit peak 
precipitation. 

 
Table 10.2.2 below outlines the original precipitation depths recorded at Delhi, Deposit 
and Walton and shows how the Walton precipitation depths were modified for the seven 
events at Walton prior to January 1, 1998.  The adjustment to the precipitation data at 
Walton only functioned to shift the out of phase precipitation recorded at Walton to a 
different day and did not change the total depth of precipitation recorded at Walton.  The 
seven precipitation events are distinguished from one another in Table 10.2.2 by the 
horizontal lines.  The Walton precipitation was adjusted (Walton – FIX column in Table 
10.2.2) so that each storm event at Walton looked like the average storm event that 
occurred at Delhi and Deposit. 
 

Table 10.2.2.  Precipitation adjustments at Walton prior to January 1, 1998. 
Original precip data in mm

Year Julian day Deposit Delhi Walton Walton - FIX (mm)
1995 181 0.0 0.0 0.0 0.0
1995 182 0.0 0.1 19.8 0.0
1995 183 3.8 26.4 7.1 26.9
1995 184 0.0 0.0 0.0 0.0
1996 301 0.0 0.0 0.5 0.0
1996 302 1.3 1.5 10.9 0.5
1996 303 9.1 6.9 0.0 10.9
1997 34 0.0 1.3 0.0 0.0
1997 35 0.0 0.0 15.7 0.0
1997 36 14.0 18.5 0.5 15.7
1997 37 1.0 0.3 0.0 0.5
1997 128 0.0 0.0 1.5 0.0
1997 129 3.6 2.5 11.7 2.8
1997 130 8.4 22.6 2.0 11.0
1997 131 1.8 4.3 0.8 2.2
1997 138 0.0 2.3 1.8 1.1
1997 139 20.1 9.7 36.3 13.2
1997 140 23.9 29.0 0.0 23.8
1997 201 0.0 0.0 0.0 0.0
1997 202 0.0 0.3 14.2 0.0
1997 203 8.4 10.2 0.0 14.2
1997 207 0.0 0 0 0
1997 208 0.0 0.0 17.0 0.0
1997 209 9.4 1.5 0.1 17.1
1997 210 0.0 0.0 0.0 0.0
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10.2.2 Details on Temperature Adjustments for Correct Precipitation Type Classification 

The methodology applied in this study to force the correct classification of the 
precipitation type in SWAT is outlined here.  Rather than modify the model source code 
it was determined that the SWAT SFTMP parameter could be fixed at 1° C (SWAT 
default value) and then small adjustments could be made to the temperatures input to the 
model in order to force the model to correctly classify the precipitation type at Walton 
and Delhi.  Based on the fixed SFTMP value and the time series of precipitation 
minimum and maximum daily temperatures at either Delhi or Walton, the type of 
precipitation the model would simulate was assessed (outside of the model) and then 
compared to available measured data on snowfall depths to determine if the model 
classification would be incorrect.  This comparison and subsequent adjustment 
methodology were implemented as follows:  

• Adjustments to temperature inputs were only made on days at Walton and/or 
Delhi when there was at least 2.5 mm of water equivalent precipitation recorded.  
The assumption here is that misclassification of the precipitation type in small 
precipitation events does not warrant changing the measured temperatures. 

• When considering a change to force model to classify precipitation as rain, the 
measured snowfall depth must have been < 2 times the precipitation water 
equivalent depth.  In other words, if a typical snowfall density was assumed to be 
10% (e.g. 1 inch deep snow = 0.1 inch melted water), then 80% or more of the 
precipitation for the day would have had to fall as rain to trigger an adjustment to 
the minimum and maximum observed temperature data. 

• When considering a change to force model to classify precipitation as snow, the 
measured snowfall depth must have been > 6 times the precipitation water 
equivalent depth.  In other words, if a typical snowfall density was assumed to be 
10% (e.g. 1 inch deep snow = 0.1 inch melted water), then 60% or more of the 
precipitation for the day would have had to fall as snow to trigger an adjustment 
to the minimum and maximum observed temperature data. 

• When the above criteria were met and temperatures were to be adjusted, the 
temperature station average temperature was fixed at 0.1 °C higher or lower than 
SFTMP and the adjusted minimum and maximum daily temperatures were 
calculated as follows: 

o When forcing precipitation to fall as rain, the daily average temperature 
was fixed at 1.1 °C, the adjusted maximum daily temperature was set as 
the max (the measured maximum for the day, 2.2 °C) and the adjusted 
minimum daily temperature was calculated from the adjusted average and 
maximum temperatures.  This approach limited the increase in the 
maximum temperature so that the impact of this temperature adjustment 
on snowmelt was minimized. 

o When forcing precipitation to fall as snow, the daily average temperature 
was fixed at 0.9 °C, the maximum daily temperature was not adjusted and 
the minimum daily temperature was calculated from the adjusted average 
and unadjusted maximum temperatures. 
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10.2.3 Details on Climate Data Adjustments for Large Precipitation Events 

Adjustments to climate data outlined in this section were mainly identified based on 
supplementary information from descriptions of large storms events from the NCDC 
Storm Event database (http://www4.ncdc.noaa.gov/cgi-win/wwcgi.dll?wwevent~storms) 
for New York unless otherwise noted below.  In some cases hourly precipitation data 
from a nearby climate station (Sydney, New York) also highlighted the need to modify 
the climate data.  In other cases the adjustment was guided by nearby climate stations 
within the Cannonsville Basin.  All of these cases where climate adjustment was required 
for large storm events are described below in Table 10.2.3. 
 
 

http://www4.ncdc.noaa.gov/cgi-win/wwcgi.dll?wwevent~storms
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Table 10.2.3.  Climate input data adjustments and justification for large precipitation events. 
Original Input Data Adjusted Input Data 

Climate 
Station 

Date 
(Yr-M-D) 

Max 
Temp 
(°F) 

Min 
Temp 
(°F) 

Precip. 
(in.) 

Max 
Temp 
(°F) 

Min 
Temp 
(°F) 

Precip. 
(in.) 

Justification for Adjustment of Climate Inputs 

Walton 1994-8-18 - - 1.15 - - 1.64 

Walton 1994-8-19 - - 1.31 - - 0.82 

Flash flood recorded starting at 10 am Aug 18. Walton  peak precip. not on 
same day as Delhi and Deposit.  Make Walton precip. occur like avg. 
storm recorded at Delhi and Deposit.  57.5% of Delhi & 75.8% of Deposit 
event precip. on 18th, rest on 19th.  Keep event precip. total at Walton same 
but make 66.7% event precip. on 18th , rest on 19th for Walton. 

Walton 1995-11-15 38 31 1.15 38.0 29.4 - Heavy snowfall event: assume Walton precip. fell as snow, adjust 
temperatures according to procedure in Section 10.2.2. 

Delhi 1995-11-15 37 30 0.86 37.0 30.4 - Same as above for Delhi. 
Walton 1996-1-19 57 27 0.26 - - 2.41 
Delhi 1996-1-19 55 44 0.28 - - 2.33 

Walton 1996-1-20 27 13 2.16 - - 0.0 
Delhi 1996-1-20 56 13 2.05 - - 0.0 

1 in 75 year flood event, high rainfall.  All precip. from 19th and 20th  
moved to occur on 19th for Delhi and Walton so that observed temperatures 
make it fall as rain instead of snow. 
Stamford precip. good since mainly fell on 19th. 

Walton 1996-1-27 46 20 0.62 45.7 28 - 

Delhi 1996-1-27 45 19 0.65 45 28 - 

27th and 28th are heavy rain from Spring-like storm.  Adjust temperatures at 
Walton & Delhi such that due to orographic effects, all locations in the 
basin with elevations less than the average basin elevation will receive 
rainfall on these days.  Locations higher than avg. elevation receives snow. 

Walton 1996-1-28 36 17 0.90 51 22.7 - 
Assume most rain fell early in day - based on flood time, Walton 
temperature is 10 hrs behind precip. reporting time so replace Walton max 
temp. with Delhi max temp. 

Delhi 1996-1-28 51 16 0.62 51 22 - Same as 27th above for Delhi. 
Stamford 1999-1-16 - - 2.61 - - 0.67 

Stamford 1999-1-17 - - 1.28 - - 3.22 

Hourly precip. from East Sidney shows 80% of storm precip. there fell 
over 14 hour period.  Also, % of storm precip on peak day (17th) for Delhi 
= 78% and Walton2=80% compared to Stamford (64%).  Make peak 
precip. at Stamford higher and look like avg. of Delhi & Walton: 79% of 
15th–17th rain (4.08 in)  moved to 17th.  Total Stamford precip. unchanged. 

Delhi 1999-3-22 43 30 1.53 43.0 24.4  Heavy snowfall event: assume Delhi precip. fell as snow, adjust 
temperatures according to procedure in Section 10.2.2. 

Walton2 1999-3-22 44 20 1.33 44.0 23.4  Same as above for Walton. 
Walton2 1999-3-23 42 27 0.66 42.0 25.4  Same as above for Walton (note Delhi climates good this day). 

Delhi 2000-4-9 73 22 1.34 - - 0.09 
Walton2 2000-4-9 74 23 1.28 - - 0.12 
Stamford 2000-4-9 - - 3.18 - - 1.7 

Delhi 2000-4-10 31 22 0.25 - - 1.5 
Walton2 2000-4-10 33 22 0.34 - - 1.5 
Stamford 2000-4-10 - - 0.02 - - 1.5 

Precip. started as rain but quickly went to snow and then very heavy snow 
with a max of 15 in. in Del County for event.  Temperatures on 9th too high 
to modify so make bulk of precip. fall on the 10th such that at a snow 
density of 10%, 15 inches of snow = 1.5 in of water equivalent.  1.5 in of 
precip. across basin on the 10th.  Total event precip. unchanged. 
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10.3 Model Performance Statistics 

The three numerical model performance measures used in this study are the percent 
difference (D), coefficient of determination (r2 coefficient) and the Nash-Suttcliffe 
simulation efficiency (ENS) (Nash and Suttcliffe 1970). 
 
The percent difference measures the average difference between the simulated and 
measured values for a given quantity over a specified period (usually the entire 
calibration or validation period in this study).  The percent difference for a quantity (D) 
over a specified period with n total days is calculated from the measured and simulated 
values of the quantity in each model time step as: 
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A value close to 0% is best for D.  However, higher values for D are acceptable if the 
accuracy in which the measured data were gathered is relatively poor. 
 
The r2 coefficient and ENS simulation efficiency measure how well the trends in the 
measured data are reproduced by the simulated results over a specified time period and 
for a specified time step.  For example, in this study, these measures were computed for a 
daily, monthly and sometimes annual time step.   
 
The r2 coefficient for n time steps is calculated as: 
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The range of values for r2 is 1.0 (best) to 0.0.  The r2 coefficient measures the fraction of 
the variation in the measured data that is replicated in the simulated model results.  A 
value of 0.0 for r2 means that none of the variance in the measured data is replicated by 
the model predictions.  On the other hand, a value of 1.0 indicates that all of the variance 
in the measured data is replicated by the model predictions.   
 
The ENS simulation efficiency for n time steps is calculated as: 
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ENS values range from 1.0 (best) to negative infinity.  ENS is a more stringent test of 
performance than r2 and is never larger than r2.  ENS measures how well the simulated 
results predict the measured data relative to simply predicting the quantity of interest by 
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using the average of the measured data over the period of comparison.  A value of 0.0 for 
ENS means that the model predictions are just as accurate as using the measured data 
average to predict the measured data.  ENS values less than 0.0 indicate the measured data 
average is a better predictor of the measured data than the model predictions while a 
value greater than 0.0 indicates the model is a better predictor of the measured data than 
the measured data average. 
 

10.4 Additional Details on Derivation of Select Data-Driven Parameter Values or 
Ranges 

10.4.1 SFTMP Parameter 

SFTMP is the mean air temperature at which precipitation is equally likely (e.g. 
probability of 0.5) to be rain as snow/freezing rain.  Thus, if a climate station has 
temperature and precipitation depths and type (as snow or rain) the frequency of snow or 
rainfall can be estimated for each discrete temperature measurement.  Analysis of climate 
data at Walton and Delhi enabled the identification of the range of values for SFTMP 
specific to the Cannonsville Basin.  The results of this analysis are summarized in Table 
10.4.1 below.  For example, for the Walton station from 1956 to 1990, of the 130 days 
when the temperature was recorded at 1.7 °C, the precipitation fell mainly as rain in 57 
days.  Thus, the frequency of rain at 1.7 °C is then 57/130=0.44.  Since only one value of 
SFTMP can be input to SWAT the results of the analysis at both stations must be 
aggregated.  The highlighted cells at each station yield the possible values of SFTMP 
where the observed frequency of rain is approximately equal to the observed frequency of 
snow.  This gives a possible SFTMP range of approximately 0 to 2.2 °C. 
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A) Walton
        Record: 1956 - 1999         Record: 1990 - 1999

Avg Daily 
Temp 
(deg C)

# Days with 
Precip as Rain

Fraction 
Precip days as 
Rain

# Days with 
Precip as Rain

Fraction Precip 
days as Rain

-1.7 16 0.13 6 0.19
-1.1 10 0.08 6 0.18
-0.6 19 0.18 6 0.21

0 26 0.27 10 0.31
0.6 39 0.27 18 0.44
1.1 45 0.34 15 0.43
1.7 57 0.44 18 0.56
2.2 56 0.50 14 0.70
2.8 63 0.59 23 0.74

B) Delhi
        Record: 1926 - 2000         Record: 1990 - 2000

Avg Daily 
Temp 
(deg C)

# Days with 
Precip as Rain

Fraction 
Precip days as 
Rain

# Days with 
Precip as Rain

Fraction Precip 
days as Rain

-1.7 34 0.31 6 0.33
-1.1 52 0.36 6 0.27
-0.6 51 0.40 11 0.38

0 55 0.45 12 0.57
0.6 65 0.52 11 0.42
1.1 101 0.66 23 0.70
1.7 106 0.74 22 0.85

 
Table 10.4.1.  Analysis of (A) Walton and (B) Delhi climate station data for range of 

possible SFTMP values. 
 
10.4.2 Locally Derived Cattle Feed Estimate 

Based on discussions with Co-operative Extension scientist Paul Cerosaletti, factors were 
identified to estimate the amount of dry biomass consumed by cattle in the Cannonsville 
Basin.  This consumption rate was then used to guide the setting the SWAT2000 model 
inputs controlling the amount of harvested and grazed dry biomass.  The purpose of this 
comparison was to ensure that the annual average simulated amount of harvested plus 
grazed dry biomass was reasonably close to the amount of dry biomass that the cattle in 
the basin are estimated to consume each year.   
 
The assumed factors used to estimate the total locally grown dry matter consumed by the 
basin cattle population are: 

• Dry matter consumed/day as a % of animal mass by milking dairy cows = 3.3. 
• Dry matter consumed/day as a % of animal mass by other cattle = 2.5. 
• Dairy and beef population estimates derived in Section 4.7.1.1. 
• Animal masses given in Table 4.7.1. 
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• 85% of dairy cows are milking. 
• 50% of total dry matter intake for basin cattle derived from locally grown forage. 

 
Based on the above factors, in 1997, the total mass of the milking dairy cow herd was 
estimated as 4.2x106 kg and the total mass of the rest of the dairy and beef cattle herds 
was estimated as 3.5x106 kg.  The resulting total dry matter consumption rate for the 
basin was estimated at 8.1x107 kg/yr, 50% of which (4.0x107 kg/yr) was derived from 
locally grown forage. 
 
The final values of the harvest indices for pasture and hay HRUs given in Table 4.7.4 
were set with reference to the estimated 4.0x107 kg/yr of locally grown forage over the 
calibration period.  The calibrated model simulated a total of 5.2x107 kg/yr of harvested 
and grazed dry biomass removed from basin soils.  Of this simulated dry biomass total, 
56% is from harvested hay, 25% is from grazed pasture and 19% is from harvested corn 
silage. 
 
The simulated dry biomass removal rate of 5.2x107 kg/yr from basin soils would account 
for approximately 65% of the estimated basin-wide cattle population dry matter 
consumption.  This is somewhat higher than the model independent estimated locally 
grown dry matter consumption of 50% (or 4.0x107 kg/yr) of the total dry matter intake of 
the cattle population.  This model result was deemed reasonable for two reasons.  First, 
the harvest indices in Table 4.7.4 are already set to relatively low values so reducing 
them further was considered unreasonable.  Secondly, the manure production rate in 
Table 4.7.2 includes animal bedding (hay) that is not fed to animals but is harvested from 
local fields.  Therefore, the simulated biomass removal rate of 5.2x107 kg/yr from basin 
soils includes some biomass that is not fed to the local cattle population. 
 
The harvest indices in Table 4.7.4 were used in both the calibration and validation period.  
Therefore, during the validation period, although dry biomass was removed from basin 
soils at approximately the same rate as in the calibration period, the locally grown forage 
content of the basin-wide dry matter intake of cattle was reduced relative to the 
calibration period since the cattle population was higher in validation.  During the 
validation period (1990-1993), the simulated dry biomass removal rate accounted for 
approximately 55% of the estimated basin-wide cattle population dry matter consumption 
(compared to 65% in the calibration period).  In other words, this approach simulates a 
higher proportion of imported cattle feed in the basin cattle diet from 1990-1993 
compared to 1994-2000. 
 

10.5 Additional Time Series Plots of Measured and Simulated Quantities 

10.5.1  Daily Measured and Simulated Flows at Walton 

The calibration and validation scatter plots of the daily Walton flows are shown in Figure 
10.5.1.  Time series of the simulated and measured daily flows by water year at Walton 
for the entire calibration period are given in Figure 10.5.2 
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Figure 10.5.1.  Scatter plots measured and simulated of Walton flows for the calibration 
and validation period. 
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Figure 10.5.2.  Time series of measured and simulated daily flows for calibration period. 
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10.5.2  Monthly Measured and Simulated Average Flows 

 

Figure 10.5.3.  Time series of monthly measured and simulated hydrology calibration 
results at A) Walton B) Delhi and C) Little Delaware for the period 1994 to 2000. 
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Figure 10.5.4.  Time series of monthly measured and simulated hydrology calibration 
results at A) Town Brook B) East Brook and C) Trout Creek for the period 1994 to 2000. 
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(B) East Brook
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(C) Trout Creek
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