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Precise gene regulation is essential for a wide variety of transient, developmen-

tal, and homeostatic processes. The majority of gene regulation is mediated by

cis-regulatory elements, both distal (enhancers), and proximal (promoters & en-

hancers). Developments in biochemical assays, gene editing techniques, and

sequencing technology have enabled genome-wide profiling of regulatory ele-

ments over a wide variety of in vivo conditions. In this tripartite work, I present

separate statistical frameworks for analyzing how these repertoires of regula-

tory elements work at both physiological, and evolutionary timescales.

The first part describes the use of PRO-seq to characterize rapid changes

in the transcriptional landscape of human cells to celastrol, a compound that

has potent anti-inflammatory, tumor-inhibitory, and obesity-controlling effects.

By exploiting the ability of PRO-seq to detect nascent RNAs, I characterize the

transcriptional response at both genes and enhancers, and leverage statistical

models to detect transcription factors that orchestrate it. I implicate several tran-

scription factors in early transcriptional changes, including members of the E2F

and RFX families. PRO-seq also allows us to detect an increase in transcription

start site proximal pausing, suggesting that pause release may be a mechanism

for inhibiting gene expression during the celastrol response. This work demon-

strates that a thorough analysis of PRO-seq time-course data can provide novel

insight into multiple aspects of a complex transcriptional response.



The second part develops a statistical model for determining whether con-

stituent enhancers of a “super-enhancer” exhibit synergy and thus address the

question “Is a super-enhancer greater than the sum of its parts?” In this work

I reconcile two works with seemingly opposing theses by finding that we can-

not confidently reject synergy-free models for super-enhancers. Furthermore, I

demonstrate that thoughtful consideration of null models for synergy in gene

regulation is critical for furthering our understanding of ensembles of regula-

tory elements.

In the final section, I develop evolutionary models for cis-regulatory func-

tion as quantified by genome-wide biochemical assays. I apply a noise-aware

phylogenetic model to analyze the evolution of H3K27Ac and H3K4me3 his-

tone marks as proxies of enhancer and promoter function. I estimate relative

turnover rates for a variety of functional element categories and show that gene

expression and sequence constraint correlate with turnover rate. I also propose

that dosage sensitivity of target genes can explain the discrepancy between se-

quence and histone mark turnover rates of associated CREs.

This work illustrates the important role statistical models play in under-

standing gene regulation at all levels and suggests a potential path towards

unified models of gene regulation and evolution.
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CHAPTER 1

NASCENT RNA SEQUENCING REVEALS A DYNAMIC GLOBAL

TRANSCRIPTIONAL RESPONSE AT GENES AND ENHANCERS TO THE

NATURAL MEDICINAL COMPOUND CELASTROL

Note: With the exception of a few minor changes, this chapter contains the

same text as the previously published work “Nascent RNA sequencing reveals

a dynamic global transcriptional response at genes and enhancers to the natural

medicinal compound celastrol” in Genome Research (Volume 27, Number 11).

1.1 Abstract

Most studies of responses to transcriptional stimuli measure changes in cellu-

lar mRNA concentrations. By sequencing nascent RNA instead, it is possible

to detect changes in transcription in minutes rather than hours, and thereby

distinguish primary from secondary responses to regulatory signals. Here, we

describe the use of PRO-seq to characterize the immediate transcriptional re-

sponse in human cells to celastrol, a compound derived from traditional Chi-

nese medicine that has potent anti-inflammatory, tumor-inhibitory, and obesity-

controlling effects. Celastrol is known to elicit a cellular stress response resem-

bling the response to heat shock, but the transcriptional basis of this response

remains unclear. Our analysis of PRO-seq data for K562 cells reveals dramatic

transcriptional effects soon after celastrol treatment at a broad collection of both

coding and noncoding transcription units. This transcriptional response oc-

curred in two major waves, one within 10 minutes, and a second 40-60 min-

utes after treatment. Transcriptional activity was generally repressed by celas-

trol, but one distinct group of genes, enriched for roles in the heat-shock re-
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sponse, displayed strong activation. Using a regression approach, we identified

key transcription factors that appear to drive these transcriptional responses,

including members of the E2F and RFX families. We also found sequence-

based evidence that particular TFs drive the activation of enhancers. We ob-

served increased polymerase pausing at both genes and enhancers, suggesting

that pause release may be widely inhibited during the celastrol response. Our

study demonstrates that a careful analysis of PRO-seq time-course data can dis-

entangle key aspects of a complex transcriptional response, and it provides new

insights into the activity of a powerful pharmacological agent.

1.2 Introduction

The technique of perturbing cells and then measuring changes in their patterns

of gene expression is a reliable and widely used approach for revealing mecha-

nisms of homeostatic regulation. In mammalian cells, a wide variety of stimuli

that induce striking changes in transcription are routinely applied, including

heat shock, hormones such as estrogen, androgen and cortisol, lipopolysaccha-

ride, and various drugs. Regardless of the stimulus, transcription is commonly

assayed by measuring concentrations of mature mRNA molecules, typically us-

ing RNA-seq. This approach is now relatively straightforward and inexpensive,

and allows for the use of standard analysis tools in detecting many transcrip-

tional responses(Oshlack et al., 2010; Ozsolak and Milos, 2011).

Nevertheless, these mRNA-based approaches are fundamentally limited in

temporal resolution owing to the substantial lag between changes in transcrip-

tional activity and detectable changes in the level of mRNAs. This lag results in

2



part from the time required for transcription and post-transcriptional process-

ing, and in part because pre-existing mRNAs buffer changes in mRNA concen-

tration. For a typical mammalian gene, significant changes may require hours

to detect, making it difficult to distinguish primary responses to a signal from

secondary regulatory events. A possible remedy for this limitation is instead to

make use of GRO-seq (Core et al., 2008), PRO-seq (Kwak et al., 2013), NET-seq

(Churchman and Weissman, 2011; Mayer et al., 2015; Nojima et al., 2015), or re-

lated methods (Dolken et al., 2008; Rabani et al., 2011; Li et al., 2016) for assaying

nascent RNAs. These assays have the important advantage of directly measur-

ing the production of new RNAs, rather than concentrations of mature mRNAs.

As a consequence, they can detect immediate changes in transcriptional activ-

ity, and they permit time courses with resolutions on the order of minutes rather

than hours (Danko et al., 2013; Hah et al., 2011; Jonkers et al., 2014; Mahat et al.,

2016). An additional benefit of nascent RNA sequencing is that it is effective

in detecting unstable noncoding RNAs, including enhancer RNAs (eRNAs), to-

gether with protein-coding transcription units (Hah et al., 2011, 2013; Core et al.,

2014). As a result, both active regulatory elements (which are generally well

marked by eRNAs) and transcriptional responses can be detected using a single

assay (Danko et al., 2015).

In this study, we sought to use PRO-seq to characterize the immediate,

dynamic transcriptional response to the compound celastrol. Celastrol (also

known as tripterine) is a pentacyclic triterpenoid isolated from the root extracts

of Tripterygium wilfordii (thunder god vine), which has been used for millen-

nia in traditional Chinese medicine for treatment of fever, joint pain, rheumatoid

arthritis, bacterial infection, and other ailments (Westerheide et al., 2004). Dur-

ing the past few decades, celastrol has shown promise as an anti-inflammatory
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agent in animal models of collagen-induced arthritis, Alzheimer’s disease,

asthma, systemic lupus erythematosus, and rheumatoid arthritis (Guo et al.,

1981; Allison et al., 2001; Xu et al., 2003; Li et al., 2005; Sethi et al., 2007). In

addition, celastrol is known to inhibit the proliferation of tumor cells, including

those from leukemia, gliomas, prostate, and head/neck cancer (Sethi et al., 2007;

Nagase et al., 2003; Yang et al., 2006; Fribley et al., 2015). Recent research has

also demonstrated striking obesity-controlling effects in mice (Liu et al., 2015;

Ma et al., 2015).

Celastrol is known to activate the mammalian heat shock transcription fac-

tor HSF1 and stimulate the heat shock response(Westerheide et al., 2004; Trott

et al., 2008) as well as the unfolded protein response (Fribley et al., 2015; Mu

et al., 2008). In addition, celastrol activates a battery of antioxidant response

genes (Trott et al., 2008). At the same time, celastrol inhibits the activities of

other transcription factors, including androgen receptor (Hieronymus et al.,

2006), glucocorticoid receptor (Trott et al., 2008) and NF-KB (Sethi et al., 2007).

Thus, in several respects, the cellular response to celastrol resembles other well-

known stress responses, including, in particular, the response to heat shock.

Indeed, this heat-shock-like behavior appears to explain, in part, the cytopro-

tective properties of celastrol. Nevertheless, it remains unclear exactly what

distinguishes the celastrol response from heat shock and other stress responses.

In particular, little is known about the immediate transcriptional effects or pri-

mary targets of celastrol. Thus, an examination using PRO-seq provides an op-

portunity for a deeper understanding of the specific mechanisms underlying

the activity of this potent compound, with potential therapeutic implications.

With these goals in mind, we collected PRO-seq data for K562 cells at tightly
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spaced time points after treatment with celastrol and analyzed these data us-

ing a variety of computational methods. Our analysis sheds new light on the

immediate transcriptional response to celastrol at both regulatory elements and

target genes. More generally, it demonstrates that time-courses of PRO-seq data

together with appropriate bioinformatic analyses can be used to dissect key as-

pects of a complex transcriptional response.

1.3 Results

1.3.1 Celastrol induces broad transcriptional repression and

more limited up-regulation

We prepared PRO-seq libraries for K562 cells before celastrol treatment and af-

ter 10, 20, 40, 60, and 160 minutes of celastrol treatment, with two biological

replicates per time point (Figure 1.1A). To ensure that we could normalize read

counts even in the presence of global changes in transcription, we spiked the

same number of permeable Drosophila cells into each sample prior to run-

on (Booth et al. 2016). Samples were sequenced to a total combined depth

of 334.3M reads, with an average replicate concordance of r2 = 98% (Supple-

mental Figure 1.8). About 0.5M of these reads (0.1%) were derived from the

Drosophila spike in. To obtain gene models appropriate for our cell types and

conditions, we developed a probabilistic method, called tuSelector, that con-

siders all GENCODE-annotated isoforms for each gene and identifies the most

likely gene model given our PRO-seq data (Supplemental Figure 1.9, Supple-

mentary Methods). This step was particularly important for analyses that de-
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Figure 1.1: Characterizing the dynamic transcriptional response to celastrol
using PRO-seq. (A) PRO-seq was applied to K562 cells collected before celas-
trol treatment (untreated / 0 minutes) and at 10, 20, 40, 60, and 160 minutes af-
ter celastrol treatment. Two biological replicates were performed for each time
point. (B) Distribution of log expression ratios (treated vs. untreated) for each
time point (rlog is a regularized log2 estimate obtained from DESeq2). Only
genes classified as differentially expressed (DE) throughout the time course are
represented. Notice that most DE genes (FDR ≤ 0.01) are down-regulated upon
celastrol treatment. (C) A UCSC Genome Browser display showing raw PRO-
seq data for two differentially expressed genes, EGR1 and KDM3B. EGR1 is
rapidly and strongly repressed (immediate decrease of v 80%), whereas KDM3B
is more gradually repressed, losing v 50% of its expression by 160 minutes.
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pend on an accurate transcription start site for each gene. We identified a total

of 12,242 protein-coding genes from GENCODE as being actively transcribed in

one or more time-points (Methods). Of these genes, 75.4% were active across

all six time points, 11.7% were active in a single time-point, and the remaining

12.9% were active in 2-5 time-points. Thus, our PRO-seq data and computa-

tional analyses indicate that more than half of all protein-coding genes are tran-

scribed either in the basal condition or during the celastrol response in K562

cells.

The genes that are differentially transcribed in response to celastrol were of

particular interest for further analysis. To measure transcriptional activity spe-

cific to each time point, we used counts of PRO-seq reads mapping to the first 16

kb of each gene body, omitting the first 500 bp to avoid the effects of promoter-

proximal pausing. Because RNA polymerase travels at an average rate of 2

kb/min (Singh and Padgett 2009; Danko et al. 2013; Jonkers et al. 2014; Veloso

et al. 2014) and our time points are separated by at least 10 minutes, this strategy

conservatively considers new transcription only, yet maintains sufficient statis-

tical power for downstream analysis (see Methods). By applying DESeq2 (Love

et al. 2014) to these 16-kb read counts, we identified 6,516 (56%) of the active

genes as being differentially expressed (DE) relative to the untreated condition

(FDR ≤ 0.01). Interestingly, v 80% of these DE genes were down-regulated.

Many genes showed rapid and dramatic down-regulation, with decreases in

expression by half or more at 3.5% of DE genes within 10 minutes, at 7.8% of

DE genes within 20 minutes, and at 48.1% of DE genes within 160 minutes (1.1

1B&C). By contrast, many fewer genes showed substantial increases in expres-

sion; for example, only 0.03%, 1.9%, and 7.7% of DE genes had doubled in ex-

pression after 10, 20, and 160 minutes, respectively. Nevertheless, extreme up-
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and down-regulation were both rare, with < 1% of DE genes showing increases

and < 1% showing decreases in transcription by factors of eight or more. These

observations are reminiscent of findings for the heat shock response, which have

included general decreases in transcription together with up-regulation of se-

lected stress-response elements (Hieda et al. 2004; Mahat et al. 2016b), but the

effect of celastrol is somewhat less dramatic. We conclude that celastrol broadly

inhibits transcription within minutes after administration but also rapidly acti-

vates a set of genes that may be important for continued cellular viability.

1.3.2 Celastrol activates heat shock more strongly and directly

than it activates the unfolded protein response

Celastrol has been reported to activate stress response pathways such as the

heat shock and unfolded protein responses (Westerheide et al. 2004; Trott et

al. 2008; Mu et al. 2008; Fribley et al. 2015). To see whether these effects

were detectable at the transcriptional level immediately after treatment with

celastrol, we examined our PRO-seq data at genes activated by heat shock

factor protein 1 (HSF1) and genes involved in the three branches of the un-

folded protein response (UPR), corresponding to activating transcription factor

6 (ATF6), inositol-requiring enzyme 1 (ERN1), and endoplasmic reticulum ki-

nase (EIF2AK3) (Figure 1.2A). Because the initial stages of the UPR and heat

shock response are non-transcriptional, we looked for downstream activity of

the first group of transcription factors activated in each pathway, using targets

reported in the Reactome pathway database (Fabregat et al. 2016). Most direct

targets of HSF1 were up-regulated within 160 minutes (Figure 1.2B). Genes en-
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Figure 1.2: Induction of cellular stress responses by celastrol. (A) Illustration
showing key aspects of the unfolded protein response (UPR) and heat shock re-
sponse (HSR), both of which have been reported to be induced by celastrol (Mu
et al. 2008; Trott et al. 2008). Expected transcriptional targets are shown inside
the nucleus, with targets of HSF1, the key transcription factor (TF) activated in
the HSR, in red, and targets of the TFs associated with the three major branches
of the UPR-XBP1, ATF4, and ATF6-in green, purple, and blue, respectively. As-
terisks indicate genes that were differentially expressed in our experiments with
FDR ≤ 0.01. (B) PRO-seq-based log fold changes in expression in K562 cells after
160 minutes of treatment by celastrol for numerous known targets of the same
four TFs: XBP1, ATF4, ATF6, and HSF1. Genes labeled are the same as those
listed in (A). Only targets of HSF1 display strong up-regulation.
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coding chaperone protein HSPH1 and proteinase inhibitor CBP1 were among

the HSF1 targets showing the strongest initial response, with the gene encoding

HSPH1 almost quadrupling its expression in 10 minutes and that for SERPINH1

increasing more than eight-fold in 160 minutes. Most direct targets of the main

UPR TFs (ATF4, ATF6, and XBP1), however, were not strongly induced during

our time course. There were some exceptions to this general rule, such as genes

encoding transcription factor ATF3, chaperone HSPA5, and apoptosis inhibitor

DNAJB9, which more than doubled in expression. It is possible that these tar-

gets are activated earlier than other targets, perhaps by other TFs. In any case,

our observations suggest that celastrol induces a pronounced, rapid transcrip-

tional response in the heat shock pathway, and has a much less pronounced

transcriptional effect on the UPR, although some targets of the UPR are acti-

vated.

Celastrol produces distinct temporal patterns of transcriptional response

Our PRO-seq data for closely spaced time points enabled us to examine the

temporal patterns of transcriptional response to celastrol treatment across the

genome. To group our v6,500 DE genes by shared transcriptional trajectories

across the five time points following celastrol treatment, we used the autore-

gressive clustering algorithm, EMMIX-WIRE, which considers both expression

values at each time point and the correlation of these values over time (Wang

et al., 2012). EMMIX-WIRE identified four clusters of DE genes showing dis-

tinct patterns of transcription (see Methods; Figure 1.3A). Only one of these

clusters (cluster #1) displayed dramatic and sustained up-regulation. In con-

trast, cluster #2 showed rapid and pronounced down-regulation, cluster #3
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Figure 1.3: Clusters of genes showing distinct temporal patterns of response
to celastrol. (A) Differentially expressed genes (FDR ≤ 0.01) clustered by time
series of log2 fold change (LFC) in expression relative to the untreated condition
(0 minutes). Each gene is represented by a blue line, and the red lines indicate
the mean expression per time-point per cluster. Below each cluster is a sum-
mary of the enriched terms in the Reactome ontology (Fabregat et al. 2016)
(FDR ≤ 0.01; see Supplementary Material for details). (B) ChIP-seq data from
Vihervaara et al. (2013) describing binding of HSF1 in K562 cells under normal
(left) and heat-shock (right) conditions, stratified by our cluster assignments.
Each line represents an average over all genes in the cluster in the region of the
TSS, with lighter-colored bands representing 95% confidence intervals obtained
by bootstrap sampling. Notice that cluster one is unique in showing a strong
enrichment for heat-shock-induced binding of HSF1.
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showed delayed down-regulation, and cluster #4 displayed moderate, contin-

uous down-regulation. Interestingly, the expression patterns for these clusters

suggested that the transcriptional response to celastrol occurs largely in two dis-

tinct waves: one within the first ten minutes, and a second between 40 and 60

minutes after treatment. It is possible, however, that additional waves occur but

are undetectable at the resolution of our time points. These findings were robust

to the number of clusters selected, with similar overall behavior for five-, six-,

and seven-cluster models (Supplemental Figures 1.11-1.13).

Each of these clusters was enriched for genes with a distinct biological func-

tion, according to Reactome, a carefully curated database of gene-pathway re-

lationships (Figure 1.3A). To identify these enrichments, we labeled genes with

their associated pathways from Reactome, then used permutation testing to find

pathways overrepresented in each of the four clusters relative to the other three.

Cluster #1 is enriched for genes responsible for the HSF1 response, including

the HSPA family (Supplemental Figure 7). Consistent with this observation,

genes in this cluster have been shown, by ChIP-seq, to bind by HSF1 under heat

shock conditions in K562 cells (Figure 1.3B) (Vihervaara et al., 2013). Cluster

#2 is enriched for a wide variety of terms corresponding to ribosomal assem-

bly, translational initiation, and peptide elongation. The pronounced transcrip-

tional repression of this cluster, together with activity of HSPB1 (HSP27) and

HSPA2 (HSP70), is consistent with reports that celastrol activates the heat shock

response and thereby inhibits translation via HSPB1 in the absence of HSP70

(Cuesta et al. 2000) (Supplemental Figure 1.15,1.16). Cluster #3 is enriched

for pathways that enable DNA replication (e.g., MCM family) and cell cycle

progression (e.g., CDK family; Supplemental Figure 1.17). The delayed down-

regulation of these genes may occur as the cell is preparing to enter replicative
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arrest and, potentially, senescence, consistent with observations that celastrol in-

duces cell cycle arrest and potentiates apoptosis (Feng et al., 2013; Fribley et al.,

2015; Kannaiyan et al., 2011). This transcriptional pattern is also consistent with

our observation that celastrol-treated cells failed to replicate and mostly died

within three days (Supplemental Figure 1.18). Finally, cluster #4 contains es-

sential elements of the RNA splicing machinery (e.g., CD2BP2, CLP1, and the

SRSF kinase family) (Supplemental Figure 1.18). Down-regulation of this clus-

ter is consistent with previous reports that splicing is inhibited under heat shock

(Shalgi et al., 2013). Similar patterns of enrichment were observed with five-,

six-, and seven-cluster models. Overall, these results demonstrate that the com-

ponents of a complex, multi-layered transcriptional response can be disentan-

gled, to a degree, by identifying groups of genes that display distinct temporal

patterns of gene expression.

Several key transcription factors are associated with the celastrol response

Can the distinct transcriptional responses in these clusters of genes be traced to

particular transcription factors (TFs)? To address this question, we used linear

regression to explain the estimated transcription levels at each time point based

on the TFs that apparently bind in the promoter region of each gene (Figure

1.4A). We used two orthogonal sources of information about TF binding: (1)

ChIP-seq peaks for untreated K562 cells (Dunham et al., 2012); and (2) scores

from DeepBind, a machine-learning method that is trained on a combination of

ChIP-seq and in-vitro data and predicts TF-specific binding affinity based on the

DNA sequence alone (Alipanahi et al., 2015). In both cases, we considered the

interval between 500bp upstream and 200bp downstream of the transcription

13



Untreated Treated

Induced activating TFs Transient activating TFs Induced represive TFs

−0.05

0.00

0.05

0.10

0 10 20 40 60 16
0 0 10 20 40 60 16

0 0 10 20 40 60 16
0

Time(min)

β tim
e,

 T
F 

D00328.018(CTCF)
D00470.005(HSF1)
D00471.002(HSF2)
D00619.003(RFX5)
D00660.005(SRF)

D00347.005(E2F4)
D00650.005(SP1)

D00423.005(GMEB2)
D00504.005(MAX)
D00587.002(POU2F1)
D00799.001(REST)

= + +

Expression Gene { { {Time TF Binding A�nity

Gene 3, Time 1

Gene 3, Time 2

TF

= 1 
= 0

Indicator Variables

Real Valued 
Constants

K

-K
E(gene, time)  =       f1(gene)     +    f2(time)      +  Σ (βtime, TF · Bind. A�gene, TF) 

A.

B.
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start site of each active gene. Our regression model included a coefficient for

each TF at each time point. A positive estimate of this coefficient indicated that

increased affinity for a TF was associated with increased expression at a given

time point, whereas a negative estimate indicated that increased affinity for a

TF was associated with decreased expression at that time point.

Between the two TF binding datasets, we identified over twenty TFs as being

significantly associated with changes in gene expression and having a large ef-

fect size (Figure 1.4B, Supplemental Figure 1.20). Of these TFs, E2F4 stood out as

showing a particularly pronounced impact on expression in both datasets. E2F4

is associated with incrementally increased expression between 0 and 60 min-

utes, and with decreased expression thereafter, similar to the expression pattern

of genes in cluster #3, which are associated with cell cycle control. This obser-

vation is consistent with reports that E2F4 is an activator in some contexts but

primarily acts as a repressor responsible for maintaining G2 arrest (Lee et al.,

2011; Polager and Ginsberg, 2003). In addition, we found that the dimerizing

TFs MYC (from ChIP-seq data) and MAX (from DeepBind predictions), were

both associated with an immediate increase in gene expression, followed by de-

creased expression within 20 minutes (Figure 1.4B). This delayed decrease in

expression of MYC- and MAX-bound genes could result from the known dis-

ruption of MYC-MAX dimerization by celastrol (Westerheide et al., 2004; Wang

et al., 2015a). Finally, genes predicted to be bound by SRF also displayed el-

evated gene expression after 40 minutes. SRF has been previously associated

with early and transient induction of cytoskeletal genes in response to heat

stress in murine embryonic fibroblasts (Mahat et al., 2016).

We also found that the paralogous TFs RFX1 (from ChIP-seq) and RFX5
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(from DeepBind) were both associated with increases in expression. Both of

these TFs have been implicated in regulating the expression of immunity-

related human leukocyte antigen (HLA) genes and both have context-specific

transcriptional repression and activation mechanisms (Katan et al., 1997; Vil-

lard et al., 2000; Xu et al., 2006), so it is possible that they contribute to celastrol’s

anti-inflammatory effects. However, RFX1 was not tested with DeepBind and

its motif is quite similar to that of RFX5, so it is impossible to know from our

data whether one or both of these TFs are important in the celastrol response

(notably, they do have different binding patterns in vivo in the untreated condi-

tion; Supplemental Figure 1.20B,C). Nevertheless, our regression framework is

useful in providing a list of candidate TFs whose binding preferences correlate

with aspects of the celastrol response.

1.3.3 Increased polymerase pausing is broadly associated with

transcriptional repression

Promoter-proximal pausing of RNA polymerase is a rate-limiting and indepen-

dently regulated step in productive transcription (Andrulis et al., 2000; Wu et al.,

2003). Notably, the peaks of paused RNA polymerase at DE genes doubled in

height during our time course (Figure 1.5A, Supplemental Figure 1.21). Accord-

ingly, we found that the “log pause index,” or log2 ratio of average read depth

at the pause peak to that in the proximal gene body, increased by more than 1

(corresponding to a fold-change of more than 2 in the pause index) in DE genes

by 160 minutes (Figure 1.5B). Together, these observations indicate that most

DE genes undergo increased pausing after celastrol treatment, suggesting that
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Figure 1.5: Increased promoter-proximal pausing is associated with transcrip-
tional repression in the response to celastrol. (A) Mean PRO-seq signal at pro-
moters for all active genes, grouped by time point and oriented with respect to
the direction of transcription of the gene. X-axis represents distance to the cen-
ter of the divergent transcription start site (see Methods). Intervals around each
line represent 95% confidence intervals obtained by bootstrap sampling. Notice
the general increase in the height of the pause peaks with time. (B) The distri-
bution of changes in the log fold index with respect to the untreated condition
(∆LPI; see Methods) for all active genes at each time point. The notch corre-
sponds to median +/− 1.58 · IQR/

√
n, roughly a 95% confidence interval of the

median. (C) The distribution of ∆LPI for all DE genes (FDR ≤ 0.01) by cluster
and time-point. Notice that all clusters show an increase in the pause index with
time, except for cluster #1. Error bars indicate the 25th and 75th percentiles of
the data.
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pause release may be widely inhibited during the celastrol response.

To see if particular expression patterns were associated with changes in

pausing, we separately examined the changes in log pause index during the

time course for each of our six gene expression clusters. Interestingly, we found

that pausing increased in all clusters with the exception of cluster #1 (Figure

1.5C), the only strongly up-regulated cluster (see Figure 1.3A), where pausing

decreased for the majority of genes, but increased or remained unchanged for

a significant fraction of them (Supplemental Figure 1.21B). Thus, changes in the

log pause index are generally negatively correlated with changes in expression

across clusters. This observation suggests that decreases in the rate of release

of paused Pol II to productive elongation could contribute to increased pausing

and, hence, to down-regulation of transcription, while the absence of such an

effect (in cluster #1) might permit up-regulation of transcription (Mahat et al.,

2016; Zeitlinger et al., 2007). As cluster #1 is strongly associated with the HSF1

response, this finding is consistent with previous reports that HSF1 regulates

transcription by increasing the rate of release of paused RNA polymerase into

productive elongation (Mahat et al., 2016). Nevertheless, it is also possible that

the inverse correlation between pausing and expression is a consequence of

“mass action” of available Pol II (see Discussion).

1.3.4 Heat shock induces a similar, but more pronounced, tran-

scriptional response than celastrol

Celastrol is known to mimic heat-shock in many respects (Westerheide et al.,

2004), but it remains unclear how similar the transcriptional responses to these
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Figure 1.6: Celastrol downregulates most of the same genes as heat shock,
but upregulates many different genes. (A) Venn diagram of genes that are
up-regulated after 30 minutes of heat shock vs. after 40 minutes of celastrol
treatment. (B) Venn diagram of genes that are down-regulated after 30 minutes
of heat shock vs. after 40 minutes of celastrol treatment.

two stimuli are. To address this question more directly, we obtained PRO-seq

data for heat-shock treated K562 cells from a recently published study (Viher-

vaara et al., 2017) and processed it identically to our celastrol data. We focused

on comparing the heat-shock data for 0 and 30 minutes (the only time points

available) with our celastrol data for 0 and 40 minutes, additionally consider-

ing our 60- and 160-minute time-points for some analyses (Supplemental Fig-

ure 1.22A&B). In general, heat shock induced a broader response than celastrol

treatment, with twice as many genes differentially expressed after 30 minutes

of heat shock (4,604) vs. after 40 minutes of celastrol treatment (2,302). Of the

1,301 genes that were up-regulated in response to either treatment, 21% were

shared between the heat shock and celastrol responses, and of the 4,230 that

were down-regulated in response to either treatment, 25% were shared (Figure

1.6). As with celastrol treatment, the pause index significantly increased after 30

minutes of heat shock. Taken together, these results suggest that there are many

commonalities between the early transcriptional responses to the heat shock
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and celastrol treatments, but also many differences.

We then sought to characterize the pathways underlying major differences

between the celastrol and heat shock responses. Using Reactome, we tested

for functional enrichments among shared and non-shared DE genes, sepa-

rately considering up- and down-regulated genes. We found that genes down-

regulated only in the celastrol response were enriched for mitochondrial en-

ergy production and translation of mitochondrial genes (Supplemental Figure

1.23A). By contrast, down-regulated genes specific to the heat-shock response

were enriched for MAP kinase signaling and cell-cycle progression (Supple-

mental Figure 1.23B), whereas down-regulated genes that were shared in both

responses were strongly enriched for ribosomal formation and translation (Sup-

plemental Figure 1.23C). For the up-regulated genes, the heat-shock-only genes

were enriched for GPCR signaling, and the shared genes were dominated by

heat-shock response pathways in agreement with the analyses discussed above

(Supplemental Figure 1.24A&B); no pathways were significantly enriched in the

celastrol-only response.

Finally, we searched for pathways whose genes tended to change expres-

sion in opposite directions in the heat shock and celastrol responses. We com-

pared the 40, 60, and 160-minute time-points for celastrol to the 30-minute heat-

shock time-point. One pathway, cholesterol biosynthesis, emerged from this

analysis as down-regulated in celastrol at both 60 and 160 minutes but up-

regulated in heat-shock (Supplemental Figure 1.25A). This observation is con-

sistent with previous findings for mammalian cells that heat shock increases ac-

tivity of the MVA pathway, a key cholesterol biosynthesis pathway (Shack et al.,

1999). The central regulatory enzyme in the MVA pathway, HMGCR, is clearly
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up-regulated in heat shock and down-regulated at 60 minutes in celastrol. We

investigated whether sterol response element binding factor 1 (SREBF1), an im-

portant TF for cholesterol biosynthesis genes (Brown and Goldstein, 1997), was

a potential mechanism for decreased genic expression in the celastrol response

by asking if genes bound by SREBF1 in untreated cells showed decreased ex-

pression relative to those not bound across the celastrol time-course (Supple-

mental Figure 1.25B). We found that genes that were strongly bound by SREBF1

in untreated cells, in comparison to unbound genes, went from being more

highly expressed in the untreated condition, to having similar mean expres-

sion at 60 minutes of treatment, and lower mean expression at 160 minutes of

treatment. These results demonstrate that despite having many similar effects,

celastrol and heat shock have opposite effects on the expression of genes in-

volved in cholesterol biosynthesis.

1.3.5 Enhancers show similar functional associations and paus-

ing patterns to genes

Previous studies have shown that putative enhancers are divergently tran-

scribed, producing nascent RNAs that can be detected via PRO-seq (Danko

et al., 2015; Core et al., 2014; De Santa et al., 2010). Using dREG (Danko et al.,

2015), which predicts divergent transcription start sites (dTSS) from stranded

GRO/PRO-seq data, we identified 25,891 apparent dTSS from our PRO-seq

data, pooling calls across time points. Based on the distance from nearest an-

notated genic TSS, we classified 7,334 of these dTSS as likely transcribed en-

hancers, 15,941 as likely promoters, and the remaining 2,616 as ambiguous. For
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Figure 1.7: Response to celastrol at predicted transcribed enhancers. (A) Di-
vergent transcription start sites (dTSS) that were classified by distance-based
rules as likely enhancers or promoters show distinct patterns of histone marks
in untreated K562 cells. Shown are H4K4me1 (enriched at enhancers), H3K4me3
(enriched at promoters), and H3K27ac (enriched at both). PRO-seq read counts
are shown for comparison. X-axis is oriented by direction of transcription of
nearest gene. (B) Gene Ontology (GO) biological processes associated with dif-
ferentially expressed enhancers using GREAT (McLean et al. 2010). Bar plot
represents –log10 p-values for enrichment, with numerical fold enrichments in-
dicated at right. (C) Metaplot of PRO-seq signal at all enhancers, centered on
the dTSS, per time-point. Units of PRO-seq signal are average numbers of reads
per 10bp bin. Intervals around each line represent a 95% confidence interval ob-
tained by bootstrap sampling. (D) The distribution of DeepBind scores for HSF2
and JUND for transcriptionally activated and unchanged sets of enhancers. The
notch corresponds to the median +/− 1.58 · IQR/

√
n, roughly a 95% confidence

interval of the median.
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validation, we examined ChIP-seq data from ENCODE for untreated K562 cells,

and found, as expected, that enhancer and promoter classes were both strongly

enriched for acetylation of histone H3 at lysine 27 (H3K27ac), and that the pro-

moter class was more strongly enriched for RNA polymerase and trimethy-

lation of histone H3 at lysine 4 (H3K4me3) (Figure 1.7A). The enhancer class

also showed moderate enrichment for monomethylation of histone H3 at ly-

sine 4 (H3K4me1). These observations confirm that PRO-seq serves as an effi-

cient single-assay approach for characterizing both transcribed enhancers and

protein-coding genes in our system (Danko et al., 2015).

To better understand the role of the non-coding regulatory elements in the

celastrol response, we further examined 1,479 ( 20%) of the 7,334 dTSS-based en-

hancers that were classified as differentially transcribed. We attempted to find

functional enrichments for potential target genes of these differentially tran-

scribed enhancers using the Genome Regions Enrichment of Annotations Tool

(GREAT, Ver. 3.0; see Methods), which associates candidate regulatory elements

with likely target genes according to distance-based rules and then tests those

genes for functional enrichments (McLean et al., 2010). GREAT identified en-

richments for processes relating to apoptosis, translational regulation, and re-

sponses to various environmental stresses (Figure 1.7B), in general agreement

with our analysis of DE genes. We also found that our set of putative enhancers

displayed an accumulation of paused polymerase after celastrol treatment (Fig-

ure 1.7C, Supplemental Figure 1.26). Although the functional significance of

pausing at enhancers is unknown, this observation suggests that global shifts in

pause levels at genic TSS are also reflected at enhancers.

Finally, we sought to determine which TFs influenced activity at enhancers.
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Because sparse data at enhancers resulted in noisier estimates of transcription-

ally engaged RNA polymerase than at genes, we focused in this case on a rel-

atively small group of 480 enhancers that showed little activity at 0 minutes

but greatly increased activity by 160 minutes (see Methods). We compared

DeepBind scores for these activated enhancers with those for non-DE enhancers

that had similar absolute expression levels and found six TFs whose motifs had

significantly elevated scores for sequence elements in the activated enhancers:

HSF1/2, JUND, FOSL2, MAFK, STAT3, and THRA (Supplemental Figure 1.27;

1.7D). Of these TFs, HSF2, was also associated with increased expression in

genes, while JUND and FOSL2 are subunits of AP-1, a TF previously found

to regulate cellular growth and senescence (Shaulian and Karin, 2001). Because

these TFs were identified simply based on their sequence preferences, TFs with

similar motifs are also potential regulators. For example, it is possible that JUN,

whose expression increases over the time course and which is known to be ac-

tivated by HSF1 (Sawai et al., 2013), is actually responsible for the apparent

association with JUND, which does not appear to be activated. We also cannot

effectively distinguish between HSF1 and HSF2 binding here. In addition, since

this analysis was limited to TFs that increased transcription at enhancers, it is

unsurprising that it did not identify TFs associated with decreased expression

in the genic response, such as MAX. Despite these caveats, these results demon-

strate that PRO-seq can be used to detect transiently activated enhancers and

identify candidate TFs that may drive the enhancer response.
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1.4 Discussion

This study represents the first genome-wide assessment of the immediate tran-

scriptional effects of celastrol, including transcribed regulatory elements as well

as genes, shedding light on some of the possible primary targets and mech-

anisms of action of this potent therapeutic compound. We find that celastrol

treatment results in pervasive transcriptional down-regulation, with nearly half

of expressed genes being down-regulated within 160 minutes. A much smaller

group of genes, roughly 10% of those expressed, are up-regulated during the

same time interval. By analyzing the sequences nearby transcription units, we

were able to identify several transcription factors whose binding patterns par-

tially explain these transcriptional responses. We also observed a clear impact

from celastrol on polymerase pausing at both genes and enhancers, which is

negatively correlated with changes in transcriptional activity. While there are

limits to what can be learned from PRO-seq data alone, we have shown that

when these data are collected at relatively high temporal resolution and ana-

lyzed together with other data for the untreated condition, they can provide

valuable insights into a multifaceted, multistage cellular response to a transcrip-

tional stimulus.

We find that celastrol treatment generally induces a similar response to

heat shock, consistent with previous reports (Trott et al., 2008; Westerheide

et al., 2004). Heat-shock has also been observed to induce widespread down-

regulation in mammalian cells (Hieda et al., 2004; Mahat et al., 2016; Vihervaara

et al., 2017). Moreover, many of the same genes that are up-regulated upon

celastrol treatment are also bound by HSF1 after heat shock or participate in

heat-shock pathways. In addition, sequences associated with HSF1 binding are
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associated with increased gene expression, according to our regression anal-

ysis. Finally, our direct comparison showed that both treatments lead to up-

regulation of genes involved in the heat shock response, and down-regulation

of genes involved in ribosomal formation and translation.

Together, these findings suggest that HSF1 is activated soon after celastrol

treatment, whereupon it activates a large group of genes. These observations

suggest that, in part, the transcriptional response to celastrol may simply be a

general cellular stress response. Cellular stress responses are known to affect

a broad range of cellular functions, including cell cycle arrest, transcription of

molecular chaperones, activation of DNA damage repair pathways. removal of

irretrievably damaged macromolecules, and apoptosis upon severe damage (de

Nadal et al., 2011), and they are relevant in many diseases, including cancer (Bi

et al., 2005), proteotoxic diseases (Mu et al., 2008), and autoimmune disorders

(Todd et al., 2008). Previous studies have investigated cellular stress responses

at the delayed transcriptional (Mahat et al., 2016; Teves and Henikoff, 2011),

post-transcriptional (Gardner, 2008), translational (Shalgi et al., 2013), and post-

translational levels (Golebiowski et al., 2009; Urano et al., 2000). Together with

similar studies of heat shock (Mahat et al., 2016), our study helps to illuminate

specific features of the early transcriptional response to stress.

Nevertheless, we observed several differences between the heat shock and

celastrol responses. The most striking difference was that genes associated with

the cholesterol synthesis pathway are activated by heat shock but repressed by

celastrol. This observation is consistent with reports that celastrol decreases en-

dogenous cholesterol in mice and reduces obesity (Ma et al., 2015; Liu et al.,

2015; Zhang et al., 2016). Further analysis suggested that loss of SREBF1 bind-
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ing may be responsible for the difference in the celastrol response. Given that

SREBFs are activated via proteolytic cleavage from an intermembrane protein

when sterols are scarce (Wang et al., 1994), it is possible that celastrol inhibits

cholesterol synthesis by inhibiting SREBF1 cleavage and release. Alternatively,

or in addition, celastrol could inhibit cholesterol synthesis by decreasing the

stability of the SCAP-SREBF complex (Kuan et al., 2017; Zhang et al., 2009).

Another apparent difference between the heat-shock and celastrol responses

has to do with the kinetics at genes that appear to be regulated by SRF, a tran-

scription factor associated with HSF1/2-independent up-regulation after heat-

shock. We observed an enrichment for SRF binding sites in the core promoters

of genes that displayed elevated expression after 40 minutes of celastrol treat-

ment. By contrast, previous findings for heat shock (Mahat et al., 2016) have

indicated that SRF-mediated up-regulation occurs much more rapidly, as early

as 2.5 minutes after treatment. Finally, our analysis suggests that the loss of

binding by MYC-MAX may be responsible, in part, for the broad transcrip-

tional repression we observe within 20 minutes of celastrol treatment. To our

knowledge, MYC-MAX inhibition has not been reported to be important in the

heat-shock response. The finding for celastrol is supported by previous studies

showing that celastrol directly inhibits MYC-MAX functionality (Wang et al.,

2015b). Since MYC-MAX is a strong transcriptional activator and is bound at

over 6,000 promoters of active genes in K562, its inhibition may be an impor-

tant contributing factor to widespread down-regulation after celastrol treatment

(Amati et al., 1992, 1993).

A major strength of our experimental approach is that it allows us to observe

transient as well as sustained transcriptional responses. For example, we found
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that E2F4, a transcriptional repressor, was quickly down-regulated after celas-

trol treatment, reducing in expression by half within 20 minutes. Despite loss

of this repressor, target genes of E2F4 were increasingly down-regulated (rather

than up-regulated, as expected) after 60 minutes (Lee et al., 2011). These ob-

servations suggest that the apparent increased repression activity of E2F4 dur-

ing the celastrol response may have a non-transcriptional basis. Interestingly,

previous studies have shown that celastrol inhibits CDK4, and that CDK4 over-

expression disrupts E2F4 DNA-binding ability (Peng et al., 2010; Scimè et al.,

2008). Thus, it is possible that celastrol increases the DNA binding of E2F4 to

DNA, which in turn could contribute to cell-cycle arrest (Lee et al., 2011; Polager

and Ginsberg, 2003).

Another advantage of our densely sampled PRO-seq time course is that it

allows us to measure changes in promoter-proximal RNA polymerase pausing.

We observed that pause indices increased by more than two-fold at differen-

tially expressed genes during our time course. We also found that increase

pausing was associated with decreased transcription in genes, as previously

reported for heat-shock conditions (Mahat et al., 2016), although we did not ob-

serve a converse association between decreased pausing and up-regulation of

genes. A possible mechanism that could contribute to this increased pausing

in down-regulated genes is the celastrol-induced disruption of the MYC-MAX

complex, which has been shown to recruit P-TEFb, which in turn broadly facil-

itates pause release (Kanazawa et al., 2003). This mechanism could in principle

affect down-regulated genes only, for example, if up-regulated genes recruit P-

TEFb independently of MYC-MAX (e.g., through the activity of HSF1; Lis et al.

(2000)).
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While it is possible that increased pausing causes decreased expression, by

limiting productive elongation and therefore reducing transcription levels, an

alternative possibility is that increased pausing is a consequence of “mass ac-

tion”—that is, decreased transcriptional activity across many genes results in

increased availability of free Pol II, some of which ends up being loaded on pro-

moters and coming to rest at pause sites (Mahat et al., 2016). In other words,

the negative correlation between pausing and expression could be explained

by causality in either direction, or perhaps in both directions. Additional ex-

periments will be needed to establish the causal basis of these correlations. In

any case, our observations suggest that changes in pausing are widespread and

broadly associated with transcriptional repression, and therefore may play an

important role in the celastrol response.

1.5 Materials and Methods

1.5.1 Celastrol treatment

K562 cells were cultured at 37◦C in RPMI media (Gibco) containing 10% FBS

(Gibco), Pen Strep (Gibco) and 2 mM L-Glutamine (Gibco). Biological replicate

cell cultures were prepared as follows: after thawing K562 cells and seeding

a fresh culture, cells were split into two separate flasks, which would remain

separated through six passages and expansions until treatment and collection

for preparation of PRO-seq libraries. Cells from each expanded replicate were

seeded onto six 30-mL dishes (one for each time point) at a density of 5x105

cells/mL and then incubated for an additional doubling cycle (v20 hrs). For
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treatments, fresh celastrol was dissolved in DMSO at a final concentration of

20 mM. Celastrol-treated samples received celastrol (Sigma) at a final concen-

tration of 3 µM, whereas untreated (0-minute) samples received an equivalent

volume of DMSO. Cells remained in culture dishes in the incubator during the

time course. Time-course treatments were carried out in reverse order so that

all samples would be collected at the same time (starting with 160-minute time

point and ending with the untreated).

1.5.2 Cell permeablization and PRO-seq

Samples were then prepared for precision run-on reactions by subjecting cells to

permeablizing conditions. Briefly, cultures were spun down and resuspended

in ice cold 1xPBS. Samples were spun again and washed in 5 mL wash buffer (10

mM Tris-Cl, pH 7.5; 10 mM KCl; 150 mM sucrose; 5 mM MgCl2; 0.5 mM CaCl2;

0.5 mM DTT; 1x Protease inhibitor cocktail (Roche); 20 units RNase inhibitor

(SUPERase In, Invitrogen)). Cell pellets were then resuspended in permeabliza-

tion buffer (10 mM Tris-Cl, pH 7.5; 10 mM KCl; 250 mM sucrose; 5 mM MgCl2;

1 EGTA; 0.05% Tween-20; 0.1% NP40; 0.5 mM DTT; 1x Protease inhibitor cock-

tail (Roche); 20 units RNase inhibitor (SUPERase In, Invitrogen)) and left on ice

for 5 minutes. Cells were checked for penetration by trypan blue to assess per-

meability (v99% permeable). Cells were then washed two times in 5 mL wash

buffer before being resuspended in 200 µL storage buffer (50mM Tris-Cl, pH

8.3; 40% glycerol; 5 mM MgCl2; 0.1 mM EDTA; 0.5 mM DTT). A one-to-fifty

dilution was prepared using 2 µL of each sample and used to take OD600 mea-

surements. All samples were then diluted to an equal density (OD600 = 0.181)

in a final volume of 110 µL of storage buffer. 5x104 pre-permeabilized S2 cells
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were then spiked in to each cell count-normalized sample before flash-freezing

the permeablized cells and storing them at -80◦C. Stored permeable cells with

spike-ins were thawed on ice and each sample was subjected to the precision

run-on protocol (Mahat et al. 2016a). Run-on reactions incorporated only bi-

otinylated NTPs with no un-modified NTPs. All libraries were subjected to nine

cycles of PCR amplification before size selection and gel purification.

1.5.3 Cell counting

Cells were either treated with 3µM celastrol, DMSO, or left untreated for four

days. Live/dead cells were determined based on trypan blue staining. Counts

were measured with an automatic cell counter (Bio-rad).

1.5.4 Read mapping

All filtered reads were removed from each fastq file, then cutadapt (v1.9.1) was

run with the following options:

cutadapt -a TGGAATTCTCGGGTGCCAAGG -m 15

to remove the Illumina adapters and discard all remaining reads that were less

than 15bp in length. All reads were then trimmed to 34bp in length using

fastx timmer (v0.0.13.2) to avoid biasing read mapping away from gene pro-

moters. The trimmed reads were then aligned to the joint hg19/bdgp6 genome

using the STAR aligner (v2.4.0i) (Dobin et al., 2013). Reads aligning to hg19 and

bdgp6 were then separated and bigwigs were created by converting each read
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to a single count at its 5’ end. While human assembly hg19 was used for read

mapping, we do not expect the use of the more recent hg38/GRCh38 would

have an appreciable impact on our results, as the major differences between

these assemblies concern alternative haplotypes and centromeric regions.

1.5.5 Detection and resolution of dTSS

dREG was run on each sample as described previously (Danko et al., 2015), pro-

ducing a set of genomic intervals corresponding to predicted divergent tran-

scription starts sites (dTSS). These initial dREG calls had fairly coarse resolu-

tion, ranging in size from several hundred to thousands of bases. We therefore

applied a heuristic scanning method to identify one or more higher-resolution

dTSSs within each dREG call. Briefly, this method involved sliding a window

along a dREG interval and considering the relative read counts among three

subintervals: a peak, a flank, and center. To identify pairs of divergent peaks,

the test was applied simultaneously to each strand in a strand-specific manner,

and the results were combined. Specifically, for a scan initiated at base i, the

center was defined as the interval [i, i + 110), the shoulder as [i − 50, i), and the

flank as [i − 250, i − 150). Three one-sided binomial tests were performed, test-

ing that there are fewer reads in the center than the flank, the center than the

shoulder, and the flank than the shoulder. The sum of the resulting six negative

log p-values (three for each strand) then became the per-base score. The best

scoring window in a dREG region was taken as a dTSS. In addition, up to two

other dTSSs were called if their score exceeded 20.
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1.5.6 Classifications of dTSS

dTSS were classified as either enhancers or promoters based on their relative

distance from the set of all TSSs annotated in GENCODE v19. To classify each

dTSS, the following rules were applied: (1) if the dTSS was greater than 1 kb,

and at most 1 Mb, away from the nearest annotated promoter, it was classified

as an enhancer; (2) if the dTSS was within 200 bp of an annotated promoter, or

it was within 1 kb of an annotated promoter and it was the closest dTSS to the

promoter, it was classified as a promoter; (3) if the dTSS was between 600bp and

1 kb away from the nearest annotated promoter, and not the closest dTSS to the

promoter, It was classified as an enhancer; (4) otherwise, the dTSS was classified

as unknown.

1.5.7 Selection of active transcripts in K562 cells

Selection of transcripts was performed by a new program, called TuSelector.

First, a list of potential transcripts was obtained from GENCODE v19. The genic

regions and data were partitioned into 100bp intervals. For each gene, a set

of coarse-grained overlapping transcript models was created, where for each

transcript model and interval, the interval was assigned to the transcript model

if, and only if, it overlapped the corresponding annotated transcribed region

by more than 50% at the nucleotide level. Next, the PRO-seq read counts in

each 100 bp interval were summarized by a 1 if there were reads aligned to

the interval or a 0 otherwise. TuSelector computed a likelihood for each of the

possible coarse-grained transcript models at a given gene, as follows:

L(T ) =

∫
θt

P(θt)

∏
i

P(X = xi|θt)δ(i,T )

 dθt ·

∫
θu

P(θu)

∏
i

P(X = xi|θu)1−δ(i,T )

 dθu
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where T is the transcript model, the products range across genomic intervals i,

xi is the summary of the data in interval i (0 or 1), δ(i,T ) is an indicator func-

tion that takes value 1 when interval i is included in T and 0 otherwise, X is

a Bernoulli random variable, and θt and θu are the parameters for this random

variable in the transcribed and untranscribed states, respectively. P(θt) is as-

sumed to be uniform over the interval (0.3, 1), and P(θu) is assumed to be uni-

form over the interval (0.01, 0.03). In practice, we discretized θu into segments of

size 0.01 and θt into segments of size 0.05, and approximated the integrals with

finite sums. Finally, in addition to the annotated transcripts, we considered a

competing model representing a completely untranscribed gene.

TuSelector was run separately for each replicate and time point, and poten-

tially produced discordant transcript calls across these runs. Therefore, we se-

lected at most one “consensus” transcript model per gene for use in further anal-

ysis, as follows. To be considered a consensus call, TuSelector had to identify

the same transcript model at least 80% of the time with at least 50% of replicate

pairs both having the same transcript call. Two transcript models were consid-

ered “the same”if their endpoints differed by less than 500bp. If no transcript

model met these criteria, the gene was not considered in further analysis.

1.5.8 Estimating expression and detecting differentially ex-

pressed genes

For all active, protein-coding transcripts, reads were taken from up to the first

16 kb of the gene, minus the first 500bp to avoid an influence from promoter-

proximal pausing. This strategy allowed us to focus on the most recent tran-
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scription at each time point and avoid averaging over time. The maximum in-

terval of 16 kb was based on a minimum interval between time points of 10

minutes and an average polymerase transcription rate of v2 kb/min, minus a

few kilobases of “padding”. Any genes that were shorter than 700 bp were re-

moved from the analysis. A size factor for each sample was obtained by taking

the number of spike in reads per sample divided by the median number of spike

in reads per sample. To estimate expression of transcriptional enhancers, reads

were taken from 310 bases (assuming a 110-base spacing between dTSS as re-

ported by Core et al. plus 100bp to either side) centered on the dTSS. Both sets

of read counts were fed jointly into DESeq2, and enhancers and genes were sub-

sequently separated for further analysis. An enhancer or gene was called as DE

with an FDR ≤ 0.01 using a likelihood ratio test.

1.5.9 Clustering differentially expressed genes

Gene expression log-fold changes were computed relative to the untreated

(zero-minute) time-point using the DESeq-based estimates of absolute expres-

sion (rlog values). All DE genes were then fed into the autoregressive clustering

program EMMIX-WIRE using default settings. Likelihood values for between

two and ten clusters were computed. We selected four clusters as a value at

which the increases in likelihood with the number of clusters began to decline.

To check for the robustness of our selection we repeated our analyses with five

and seven clusters and found that they were not highly sensitive to the cluster

number.
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1.5.10 Computing functional enrichment for gene clusters

Reactome (v52) was used to assign genes to functional categories. Genes that

were not annotated in Reactome were removed. The background set for all

enrichments was the set of DE genes present in Reactome. Odds ratios were

computed per cluster (c) and pathway (p) as:

OR =
Xc,p/Xc,¬p

X¬c,p/X¬c,¬p

where X represents a count and c and ¬c denote the sets of genes in, and not in,

cluster c, respectively, and, similarly, p and ¬p denote the sets of genes in, and

not in, pathway p. An empirical null distribution of odds ratios was computed

by randomly shuffling the gene assignments to pathways 100,000 times. P-

values were then computed from this distribution and the Benjamini-Hochberg

procedure was applied to estimate false discovery rates (FDRs).

1.5.11 Characterizing genic regulation

ChIP-seq data was downloaded from the ENCODE website (https://www.

encodeproject.org) in narrowPeak format (optimal idr) on Sep. 30th, 2016.

Scores for each gene-TF pair were computed by taking the peaks with the max-

imum signal that intersected [-200,+500] around the promoter. DeepBind v0.11

was run over [-200,+500] around the promoter with standard settings using all

non-deprecated motifs for DNA binding proteins (Alipanahi et al., 2015). Deep-

Bind and ChIP-seq scores were then standardized to control for differences in

range. To analyze TFs that may be involved in different regulatory patterns

we linearly regressed genic expression (as estimated by DESeq2) against scores

from ChIP-seq or DeepBind with time point specific coefficients for each TF and
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a time agnostic, gene-specific coefficient to capture the fixed effect of unmod-

eled regulation (Alipanahi et al., 2015; Neph et al., 2012). In this framework, the

expected expression of a given gene i at time j is expressed as:

Yi, j = βi + β j +
∑

k

βi jkxik

where βi is the gene-specific expression bias term, β j is a time-specific bias term,

and βi jk is the coefficient for the time-point specific effect of a TF k. Standard

deviations for each coefficient were estimated via 1000 bootstraps. Finally, the

list of TFs was filtered to keep those with FDR ≥ 0.01 in at least one time point

and with a maximal change between any two coefficients in the 90th percentile.

This procedure selected for TFs having an effect that was both statistically sig-

nificant and of large magnitude. A set of per TF F-statistics was also calculated

and are available as supplemental tables (Supplemental Table 1.1,1.2).

1.5.12 Identification and analysis of genic pause peaks

To locate pause peaks, we scanned each active transcript (see above) greater

than 1 kb in length in the region of the annotated TSS ([TSS-200,TSS+200]), tak-

ing the number of reads in a 50-bp sliding window, with a sliding increment

of 5 bp. The window with the largest number of reads in the untreated con-

dition (0-minute time point) was designated as the pause peak. To compute

a log2 pause index (LPI), we subtracted the DESeq-estimated log2 read count

(the “rlog” value) for the gene body from the equivalent DESeq-estimated log2

read count at the peak. Furthermore, to compute changes in this value over

time, we subtracted the LPI for the zero time-point from the LPI for each subse-

quent time point; that is, the change in LPI at time t, denoted ∆LPIt, was given
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by ∆LPIt = LPIt–LPI0. Notice that normalizing changes in the pause peak by

changes in the gene body in this way only increases if the number of reads in

the peak increases by more than the number of reads in the gene body.

1.5.13 Analysis of heat shock data

PRO-seq heat shock gene expression values were computed in an identical man-

ner to the celastrol data with the exception of the computation of size factors,

which obtained directly from a previous analysis (Vihervaara et al., 2013) Gene

transcripts were the same as those used for the celastrol data. P-values were

(re-)computed using the Wald test instead of the LRT for both the celastrol and

heat-shock data to allow for a single time-point analysis. Differences in the dis-

tributions of gene expression within a pathway between HS and celastrol re-

sponses were evaluated using the Kolmogorov-Smirnov test.

1.5.14 Estimating expression in enhancers

To prevent contamination from genic transcription, all dTSS previously anno-

tated as enhancers were extended by 1 kb to either side and removed if any

part of the extended enhancer was within 5 kb of a gene body. DESeq was used

to estimate the transcription level in the enhancer peaks, tails, and the whole

enhancer body. The enhancer peak was defined as ±250 bp from the center of

the enhancer, the tail was ±400 to ±1000 bp from the center, and the whole en-

hancer was 0 to ±1000 bp from the center of the enhancer. Read counts were

summed from both strands for each region (i.e., peak = plus strand [0,+250]+
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minus strand[-250,0]), and then DESeq2 was used to estimate fold changes. En-

hancers were called as strongly activated if they were differentially expressed

with FDR ≤ 0.01, rlog(expression at 0 min) ≤ 1, and were in the 90th percentile

for fold change between 0 and 160 minutes. To get the same number of simi-

larly expressed non-differentially expressed enhancers, we performed rejection

sampling on enhancers that were differentially expressed with FDR ¿ 0.5 using

their average expression values between 0 and 160 minutes and probabilities

calculated from a kernelized histogram of the activated enhancer’s expression

at 160 minutes.

1.5.15 Data Access

The sequencing data from this study have been submitted to the NCBI Gene Ex-

pression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) under

accession number GSE96869.
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1.6 Supplemental Figures

Figure 1.8: Concordance in read-counts between replicates in gene bodies on
the negative strand.
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Figure 1.9: Example of tuSelector call in the presence of multiple GEN-
CODE transcripts. (A) Illustration of the coordinates of each uniquely iden-
tifiable candidate transcript model (obtained from GENCODE annotations) for
C1orf122. All models differ in state (transcribed vs. untranscribed) in at least
one bin. (B) The posterior probability of each transcript model as computed
by tuSelector. (C) The raw PRO-seq data labeled with the state calls (tran-
scribed/untranscribed) for the most likely transcript model. Notice in this case
that there is a weak indication of transcription near the start of the longest tran-
script model, but the absence of transcription in the middle region, and the dif-
ference in read depth compared with the stronger evidence at the right (in red),
suggest that a shorter transcript model is much more likely overall. (D) Some
performance metrics to compute how well the data matches the most likely an-
notated transcript. GOF is the fraction of bins at which an independent predic-
tion of transcription (not considering other bins) agrees with the corresponding
state in the most likely transcript model. LNMG is the longest non-matching
group of consecutive bins whose individual state calls do not agree with the an-
notated state in the most likely model. Each dot matches a 50-bp bin of reads. If
labeled “true,” the independent state calls agree with the state in the most likely
model, and if labeled “false,” they do not agree.
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Figure 1.10: Validation of choice of 16 Kb interval for estimating transcription
levels of genes. Here we compare 16 Kb intervals with alternative intervals
of 8 Kb and 32 Kb, in all cases starting 500bp after the TSS (to avoid pausing
artifacts). For example, the 8Kb label indicates that reads were counted in the
interval [TS S + 500,TS S + 8500). (A) Overlap between gene sets called as dif-
ferentially expressed (DE) using the likelihood ratio test (LRT) at FDR ≤ 0.01
for different interval lengths. (B) Total numbers of genes called as DE using the
likelihood ratio test (FDR ≤ 0.01) for different interval lengths. (C) Numbers of
genes called as DE per interval length at each individual time-point using the
Wald test, since our LRT aggregates across time-points (FDR ≤ 0.01). The results
are similar across interval lengths, but the shorter lengths result in somewhat
decreased numbers of DE genes at later time points due to reduced statistical
power deriving from consideration of fewer sequencing reads. At the same
time, the shorter lengths result in slightly improved sensitivity for differential
expression at 10 minutes. Overall, the 16 Kb length cutoff appears to strike a
good balance between sensitivity for immediate changes of large effect and sen-
sitivity for delayed changes of modest effect.
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Figure 1.11: Clustering of DE genes into five clusters and summary of en-
riched cluster-specific terms.

Figure 1.12: Clustering of DE genes into six clusters and summary of enriched
cluster-specific terms.
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Figure 1.13: Clustering of DE genes into seven clusters and summary of en-
riched cluster-specific terms.
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Figure 1.14: Full set of Reactome terms enriched in cluster #1 with respect to
the other clusters (FDR ≤ 0.05). Annotation similarity indicates what fraction
of genes (based upon the term associated with less genes) are shared between
two terms.
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Figure 1.15: Expression of HSPB1 and HSPA2, key genes in heat-shock in-
duced translational repression. (A) Expression of HSPB1 with each library
normalized by size factor and replicates for each time point added together. (B)
Expression of HSPA1 with each library normalized by size factor and replicates
for each time point added together.
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Figure 1.16: Full set of Reactome terms enriched in cluster #2 with respect to
the other clusters (FDR ≤ 0.05). Annotation similarity indicates what fraction
of genes (based upon the term associated with less genes) are shared between
two terms.

48



G−protein beta:gamma signalling

Synthesis of PIPs at the plasma membrane

Signaling by Type 1 Insulin−like Growth Factor 1 Receptor
(IGF1R)

IRS−related events triggered by IGF1R

IRS−related events

IRS−mediated signalling

IGF1R signaling cascade

Insulin receptor signalling cascade

Signalling by NGF

NGF signalling via TRKA from the plasma membrane

Prolonged ERK activation events

Downstream signal transduction

DAP12 interactions

DAP12 signaling

Inositol phosphate metabolism

Ca2+ pathway

Signal Transduction

Loss of proteins required for interphase microtubule
organization from the centrosome

Loss of Nlp from mitotic centrosomes

Anchoring of the basal body to the plasma membrane

Assembly of the primary cilium

Regulation of PLK1 Activity at G2/M Transition

Recruitment of mitotic centrosome proteins and complexes

Mitotic G2−G2/M phases

Centrosome maturation

G2/M Transition

Polo−like kinase mediated events

Signaling by Rho GTPases

RHO GTPase Effectors

RHO GTPases Activate Formins

M Phase

Mitotic Anaphase

Mitotic Metaphase and Anaphase

Mitotic Prometaphase

Resolution of Sister Chromatid Cohesion

Adaptive Immune System

The role of Nef in HIV−1 replication and disease
pathogenesis

G2/M Checkpoints

Activation of ATR in response to replication stress

Cell Cycle

Synthesis of DNA

DNA strand elongation

S Phase

M/G1 Transition

DNA Replication Pre−Initiation

DNA Replication

Activation of the pre−replicative complex

Cell Cycle, Mitotic

G1/S Transition

Mitotic G1−G1/S phases

Resolution of AP sites via the multiple−nucleotide patch
replacement pathway

Resolution of Abasic Sites (AP sites)

Repair synthesis of patch ~27−30 bases long by DNA
polymerase

Repair synthesis for gap−filling by DNA polymerase in TC−NER

PCNA−Dependent Long Patch Base Excision Repair

Gap−filling DNA repair synthesis and ligation in TC−NER

Base Excision Repair

Gap−filling DNA repair synthesis and ligation in GG−NER

Telomere Maintenance

Telomere C−strand (Lagging Strand) Synthesis

Removal of the Flap Intermediate

Processive synthesis on the lagging strand

Lagging Strand Synthesis

Chromosome Maintenance

Extension of Telomeres

10.50

Annotation Similarity

Fu
nc

tio
na

l A
nn

ot
at

io
n

1 2 3 4 5 6 7
OR

Functional annotation of cluster 3

Figure 1.17: Full set of Reactome terms enriched in cluster #3 with respect to
the other clusters (FDR ≤ 0.05). Annotation similarity indicates what fraction
of genes (based upon the term associated with less genes) are shared between
two terms.
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Figure 1.18: Celastrol inhibits cell proliferation. (A) Images of cell cultures
over 4 days, two replicates of three conditions: untreated, DMSO, and 3µM
celastrol. (B) Number of live cells in each cell culture as counted by an automatic
cell counter (TC20, Bio-Rad).
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Figure 1.19: Full set of Reactome terms enriched in cluster #4 with respect to
the other clusters (FDR ≤ 0.05). Annotation similarity indicates what fraction
of genes (based upon the term associated with less genes) are shared between
two terms.
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Figure 1.20: TFBS regression model with ChIP-seq data. (A) Weights from
the regression model to predict gene expression from ChIP-seq peak scores in
K562 cells. A positive weight for a TF at given timepoint means that genes at
which that TF is predicted to bind in the promoter region showed increased
expression relative to those without binding by that TF. Negative weights mean
the opposite. Time-point specific TF coefficients explain v 15% of the residual
variance not explained by gene-specific or time-point-specific terms. (B) Pre-
celastrol treatment ChIP-seq signal for RFX1 grouped by clustering based on
expression profiles. Each line represents an average over all genes in the cluster
in the region of the TSS, with lighter-colored bands representing 95% confidence
intervals obtained by bootstrap sampling. (C) Same as (B) but for RFX5.
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Figure 1.21: Increased pausing at promoters is pervasive and broadly anti-
correlated with gene expression. (A) Heatmap of fold-change in read counts
near promoters of all protein coding genes relative to the 0-minute time point.
Numbers at top indicate minutes after celastrol treatment. (B) Histogram of per-
gene Pearson correlations between log pause index (LPI) and gene expression.
Cluster labeling is from the clustering of gene expression profiles in Figure 3.
For most genes, pausing and expression are anti-correlated, but cluster #1 has a
long tail of genes with correlations near, or greater than 0.
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Figure 1.22: Heat shock induces a similar, but more pronounced, response
than celastrol. (A) Pearson correlation of gene expression after 30 minutes of
heat shock (Vivevaara et al., in press) with gene expression at each time-point
after celastrol treatment. Error bars represent 95% CIs of the mean computed us-
ing Fisher’s method for computing errors of Pearson correlation coefficients. (B)
Distribution of fold changes in gene expression after 30 minutes of heat shock
vs. after 40 minutes of celastrol treatment. (C) Distribution of log fold pause
indices for all active genes at each time point during heat shock.
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Figure 1.23: The shared repressive celastrol and heatshock response is domi-
nated by translation and nonsense mediated decay. (A) Enrichment of celastrol
(40 min.) specific repressed genes relative to all repressed genes (FDR ≤ 0.05).
(B) Enrichment of heat shock (30 min.) specific repressed genes relative to all
repressed genes (FDR ≤ 0.05). (C) Enrichment of genes repressed in both the
heat shock and celastrol treatments relative to all repressed genes (FDR ≤ 0.05).
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Figure 1.24: The shared celastrol and heat-shock response for up-regulated
genes is dominated by the HSF response. (A) Enrichment of heat shock (30
min.)-specific activated genes relative to all activated genes (FDR ≤ 0.05). (B)
Enrichment of genes repressed in both the heat shock and celastrol responses
relative to all repressed genes (FDR ≤ 0.05).
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Figure 1.25: Heat shock and celastrol have opposite effects cholesterol biosyn-
thesis associated genes. (A) Log2 fold-changes in expression in the celastrol
(left) and heat shock (right) responses of genes that are involved in cholesterol
biosynthesis and that are differentially expressed in at least one sample (FDR ≤
0.01). (B) Log2 fold-change expression of genes stratified by status of ChIP-seq
signal for SREBF1 within 500bp of the promoter, based on ChIP-seq data for un-
treated K562 cells from ENCODE. Low: <20th percentile; Medium: 20th–80th
percentile; High: > 80th percentile in peak intensity.
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Figure 1.26: Increased pausing at enhancers is pervasive. Heatmap of fold-
change in read counts relative to the 0-minute time point near all enhancers.
Numbers at top indicate minutes after celastrol treatment.

60



Figure 1.27: A subset of transcription factors is associated with enhancer acti-
vation. Activated enhancers are those that were not transcribed pre-celastrol
treatment but were strongly up-regulated at some point in the time course
whereas unchanged enhancers showed no change in expression throughout the
whole time course (matched for average expression level). DeepBind scores
are computed per TF per enhancer. The notch corresponds to median +/−
1.58 · IQR/

√
n, roughly a 95% confidence interval of the median.
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1.7 Supplemental Tables

Table 1.1: Distribution of marginal F-statistics and p-values for each motif in

the TF regression using DeepBind scores. F-statistics were computed per motif

scores (there may be multiple motifs for the same TF), summing over the effects

across all time points.
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ID TF F p

D00504.005 MAX 50.8 0.019

D00328.018 CTCF 30.3 0.032

D00471.002 HSF2 25.5 0.038

D00470.005 HSF1 23.7 0.041

D00619.003 RFX5 18.0 0.054

D00363.003 ELK4 15.6 0.062

D00760.003 FOS 13.9 0.069

D00660.005 SRF 13.3 0.072

D00587.002 POU2F1 12.5 0.076

D00789.003 NFYB 12.3 0.077

D00382.003 ETV4 12.0 0.079

D00347.005 E2F4 11.0 0.086

D00687.001 TFEB 10.8 0.087

D00384.002 ETV6 10.8 0.088

D00318.001 CEBPD 9.4 0.100

D00785.001 MYC 9.3 0.100

D00710.007 YY1 9.2 0.101

D00363.004 ELK4 8.6 0.109

Continued on next column

ID TF F p

D00535.004 NFE2 7.9 0.117

D00650.005 SP1 7.9 0.118

D00776.005 JUND 7.7 0.119

D00423.005 GMEB2 7.5 0.122

D00317.003 CEBPB 7.2 0.128

D00817.001 TBP 7.0 0.131

D00799.001 REST 7.0 0.132

D00379.001 ETV1 6.8 0.134

D00756.007 EZH2 6.4 0.142

D00560.003 NRL 6.4 0.143

D00821.001 TRIM28 6.2 0.146

D00559.001 NRF1 6.2 0.147

D00777.002 JUN 6.0 0.151

D00409.004 GABPA 6.0 0.152

D00700.001 USF1 5.9 0.154

D00616.002 RFX3 5.6 0.159

D00686.002 TFE3 5.5 0.162

D00822.001 UBTF 5.5 0.162

D00356.010 ELF1 5.5 0.164

D00504.002 MAX 5.3 0.168

Continued on next column
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ID TF F p

D00487.003 JDP2 5.3 0.169

D00808.004 SMC3 5.2 0.172

D00739.001 ATF3 5.1 0.175

D00796.001 RAD21 5.0 0.177

D00815.001 TAL1 4.9 0.179

D00813.009 TAF1 4.7 0.187

D00442.003 HMX3 4.7 0.189

D00501.003 MAFF 4.6 0.192

D00825.001 ZBTB33 4.5 0.193

D00501.004 MAFF 4.5 0.195

D00507.002 MEF2D 4.4 0.198

D00709.002 XBP1 4.4 0.199

D00768.001 GTF2F1 4.3 0.201

D00766.002 GATA2 4.3 0.203

D00816.001 TBL1XR1 4.3 0.204

D00672.001 TCF3 4.1 0.209

D00417.005 GCM1 4.1 0.211

D00748.001 CBX3 4.0 0.213

D00755.003 EP300 3.8 0.224

D00606.002 PRRX2 3.8 0.225

Continued on next column

ID TF F p

D00761.001 FOXA1 3.8 0.226

D00755.005 EP300 3.7 0.228

D00805.001 SIRT6 3.7 0.232

D00613.002 RAX 3.5 0.241

D00780.001 KDM5B 3.4 0.247

D00394.003 FOXD2 3.4 0.249

D00505.003 MEF2A 3.4 0.250

D00361.001 ELK3 3.3 0.252

D00433.003 HEY2 3.3 0.257

D00753.001 CTCFL 3.2 0.257

D00807.001 SMARCB1 3.2 0.260

D00292.001 ALX4 3.1 0.266

D00582.001 PITX3 3.1 0.269

D00700.006 USF1 3.0 0.271

D00765.001 GATA1 3.0 0.271

D00483.001 IRX5 3.0 0.274

D00537.001 NFIB 2.9 0.278

D00758.001 FOSL1 2.9 0.279

D00685.003 TFCP2 2.9 0.282

D00475.006 IRF3 2.8 0.287

Continued on next column
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ID TF F p

D00503.014 MAFK 2.8 0.289

D00323.002 CPEB1 2.8 0.290

D00492.003 LEF1 2.8 0.292

D00317.009 CEBPB 2.7 0.299

D00714.003 ZBTB7A 2.6 0.304

D00353.005 EGR2 2.6 0.306

D00383.002 ETV5 2.5 0.312

D00546.003 NKX3-1 2.5 0.320

D00673.001 TCF4 2.5 0.321

D00395.002 FOXD3 2.4 0.322

D00824.001 WRNIP1 2.4 0.324

D00632.001 SHOX2 2.4 0.329

D00630.003 SCRT1 2.3 0.338

D00626.005 RXRA 2.3 0.342

D00356.005 ELF1 2.3 0.343

D00404.002 FOXO1 2.3 0.343

D00762.001 FOXA2 2.2 0.345

D00592.003 POU3F2 2.2 0.350

D00691.001 TGIF2 2.2 0.353

D00421.003 GLIS2 2.2 0.353

Continued on next column

ID TF F p

D00787.002 NFIC 2.1 0.358

D00581.002 PITX1 2.1 0.365

D00490.003 KLF16 2.0 0.371

D00468.003 HOXD8 2.0 0.373

D00660.007 SRF 2.0 0.373

D00779.001 KDM5A 2.0 0.376

D00538.001 NFIL3 2.0 0.381

D00678.001 TEAD3 1.9 0.391

D00559.006 NRF1 1.9 0.394

D00677.003 TEAD1 1.8 0.399

D00774.001 IKZF1 1.8 0.403

D00324.003 CREB3L1 1.8 0.404

D00818.003 TCF12 1.8 0.404

D00626.009 RXRA 1.8 0.411

D00409.003 GABPA 1.7 0.417

D00512.001 MEIS3 1.7 0.418

D00326.002 CREB3 1.7 0.422

D00601.003 PRDM4 1.7 0.424

D00398.001 FOXJ2 1.7 0.427

D00663.002 TBX15 1.7 0.430

Continued on next column
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ID TF F p

D00293.003 ARNTL 1.6 0.440

D00654.003 SPDEF 1.6 0.440

D00408.003 FOXP3 1.6 0.440

D00680.001 TEF 1.6 0.441

D00600.004 PRDM1 1.6 0.448

D00752.001 CTBP2 1.6 0.449

D00812.001 SUZ12 1.5 0.451

D00345.002 E2F2 1.5 0.452

D00328.003 CTCF 1.5 0.469

D00577.002 PAX9 1.5 0.471

D00523.003 MSC 1.4 0.472

D00782.001 MEF2C 1.4 0.473

D00529.004 MYBL2 1.4 0.480

D00529.001 MYBL2 1.4 0.481

D00405.003 FOXO3 1.4 0.483

D00653.003 SP8 1.4 0.487

D00488.003 KLF13 1.4 0.487

D00407.003 FOXO6 1.3 0.493

D00652.004 SP4 1.3 0.495

D00769.001 HDAC1 1.3 0.497

Continued on next column

ID TF F p

D00368.007 EN2 1.3 0.498

D00304.003 BATF3 1.3 0.499

D00763.001 FOXM1 1.3 0.499

D00321.003 CENPB 1.3 0.500

D00320.001 CEBPG 1.3 0.509

D00364.002 EMX1 1.3 0.513

D00547.003 NKX3-2 1.3 0.515

D00540.002 NFKB1 1.3 0.517

D00406.002 FOXO4 1.3 0.517

D00614.001 RFX2 1.2 0.520

D00552.006 NR2C2 1.2 0.526

D00631.002 SCRT2 1.2 0.532

D00750.001 CHD1 1.2 0.536

D00539.001 NFIX 1.2 0.536

D00788.001 NFYA 1.2 0.537

D00770.002 HDAC2 1.2 0.538

D00704.001 VDR 1.2 0.540

D00344.005 E2F1 1.1 0.548

D00508.004 MEIS1 1.1 0.552

D00430.003 HES7 1.1 0.557

Continued on next column
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ID TF F p

D00810.001 STAT3 1.1 0.559

D00744.001 BCLAF1 1.1 0.561

D00349.002 E2F8 1.1 0.570

D00652.003 SP4 1.1 0.570

D00575.003 PAX6 1.1 0.572

D00459.003 HOXC10 1.0 0.579

D00461.003 HOXC12 1.0 0.581

D00619.007 RFX5 1.0 0.586

D00783.001 MTA3 1.0 0.590

D00809.002 SP2 1.0 0.593

D00340.003 DMBX1 1.0 0.594

D00651.003 SP3 1.0 0.594

D00746.004 BHLHE40 1.0 0.598

D00429.003 HES5 1.0 0.602

D00335.003 DLX2 0.9 0.608

D00692.002 THRA 0.9 0.611

D00329.002 CUX1 0.9 0.613

D00689.003 TGIF1 0.9 0.616

D00416.005 GBX2 0.9 0.618

D00655.002 SPI1 0.9 0.625

Continued on next column

ID TF F p

D00381.003 ETV3 0.9 0.631

D00771.001 HDAC6 0.9 0.633

D00396.003 FOXG1 0.9 0.635

D00819.002 TCF7L2 0.9 0.640

D00435.003 HIC2 0.8 0.647

D00503.004 MAFK 0.8 0.648

D00348.003 E2F7 0.8 0.649

D00533.003 NFAT5 0.8 0.651

D00558.002 NR4A2 0.8 0.652

D00655.006 SPI1 0.8 0.664

D00370.003 ERF 0.8 0.671

D00522.002 MNX1 0.8 0.671

D00591.002 POU3F1 0.8 0.674

D00351.001 EGR1 0.8 0.676

D00299.003 ATF7 0.8 0.679

D00510.003 MEIS2 0.8 0.680

D00801.001 SAP30 0.7 0.693

D00794.047 POLR2A 0.7 0.693

D00542.005 NHLH1 0.7 0.701

D00366.003 EN1 0.7 0.703

Continued on next column
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ID TF F p

D00424.002 GRHL1 0.7 0.703

D00611.001 RARG 0.7 0.707

D00710.002 YY1 0.7 0.715

D00740.002 BACH1 0.7 0.720

D00695.002 TP63 0.6 0.735

D00441.003 HMX2 0.6 0.739

D00759.001 FOSL2 0.6 0.748

D00412.002 GATA5 0.6 0.749

D00681.002 TFAP2A 0.6 0.752

D00775.001 JUNB 0.6 0.758

D00600.001 PRDM1 0.6 0.767

D00741.001 BATF 0.6 0.772

D00642.003 SOX18 0.5 0.778

D00541.001 NFKB2 0.5 0.779

D00565.002 ONECUT2 0.5 0.782

D00524.002 MSX1 0.5 0.786

D00754.003 E2F6 0.5 0.793

D00747.001 BRCA1 0.5 0.796

D00337.001 DLX4 0.5 0.803

D00351.006 EGR1 0.5 0.804

Continued on next column

ID TF F p

D00318.004 CEBPD 0.5 0.809

D00635.001 SMAD3 0.5 0.813

D00489.002 KLF14 0.5 0.814

D00519.002 MLXIPL 0.5 0.819

D00401.003 FOXK1 0.5 0.820

D00484.003 ISL2 0.5 0.826

D00516.002 MESP1 0.5 0.827

D00664.002 TBX19 0.4 0.829

D00705.003 VENTX 0.4 0.833

D00772.001 HMGN3 0.4 0.847

D00713.003 ZBTB49 0.4 0.850

D00583.002 PKNOX1 0.4 0.851

D00743.001 BCL3 0.4 0.852

D00662.003 TBR1 0.4 0.853

D00506.003 MEF2B 0.4 0.857

D00393.003 FOXC2 0.4 0.881

D00784.004 MXI1 0.3 0.885

D00595.001 POU4F1 0.3 0.888

D00495.003 LHX6 0.3 0.890

D00749.001 CCNT2 0.3 0.893

Continued on next column

68

Table 1.1 (Continued)



ID TF F p

D00792.001 PHF8 0.3 0.900

D00665.002 TBX1 0.3 0.902

D00599.006 POU6F2 0.3 0.902

D00767.001 GTF2B 0.3 0.903

D00802.001 SETDB1 0.3 0.905

D00681.004 TFAP2A 0.3 0.916

D00478.003 IRF7 0.3 0.923

D00344.002 E2F1 0.3 0.927

D00790.001 NR2F2 0.3 0.928

D00556.003 NR3C1 0.3 0.930

D00535.003 NFE2 0.3 0.937

D00432.003 HEY1 0.2 0.940

D00410.009 GATA3 0.2 0.950

D00351.009 EGR1 0.2 0.954

D00623.003 RUNX2 0.2 0.963

D00347.003 E2F4 0.2 0.965

D00552.002 NR2C2 0.2 0.969

D00517.002 MGA 0.2 0.970

D00346.003 E2F3 0.2 0.971

D00410.003 GATA3 0.2 0.975

Continued on next column

ID TF F p

D00305.003 BCL6B 0.2 0.976

D00418.003 GCM2 0.2 0.979

D00650.007 SP1 0.2 0.979

D00745.001 BDP1 0.1 0.987

D00791.001 PBX3 0.1 0.988

D00505.006 MEF2A 0.1 0.990

D00797.001 RBBP5 0.1 0.993

D00536.003 NFIA 0.1 0.994

D00793.002 PML 0.1 0.997

D00475.003 IRF3 0.1 0.997

D00528.001 MYBL1 0.1 0.997

D00679.004 TEAD4 0.1 0.998

D00431.002 HESX1 0.0 1.000

Concluded
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Table 1.2: Distribution of the marginal F-statistics and p-values for each motif
in the TF regression using ChIP-seq scores. F-statistics were computed per
motif scores (there may be multiple motifs for the same TF), summing over the
effects across all time points.
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TF F p

POLR2A 227.6 0.004

MYC 77.6 0.013

RFX1 67.4 0.015

TBP 49.3 0.020

CCNT2 45.8 0.022

UBTF 43.6 0.023

RAD21 40.8 0.024

E2F4 35.1 0.028

PHF8 34.8 0.028

SP1 32.5 0.030

PML 30.3 0.032

MXI1 30.2 0.032

SUZ12 25.3 0.039

CHAMP1 25.2 0.039

RCOR1 24.2 0.040

MLLT1 23.5 0.041

MAX 23.0 0.042

SAP30 21.9 0.044

Continued on next column

TF F p

C11orf30 21.0 0.046

NFYA 20.5 0.047

HDAC1 18.5 0.052

ZBTB40 16.6 0.058

ZBTB33 16.1 0.060

ESRRA 15.9 0.060

NFYB 15.7 0.061

ZNF318 15.5 0.062

GTF2B 12.9 0.074

ELF1 12.9 0.074

ATF1 12.8 0.074

RAD51 12.3 0.077

TRIM24 12.0 0.079

YY1 11.8 0.080

L3MBTL2 11.4 0.083

SMAD5 11.2 0.084

COPS2 10.6 0.089

RBBP5 10.5 0.090

CREM 9.7 0.097

IRF2 9.6 0.098

Continued on next column
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TF F p

CEBPZ 9.2 0.101

TAF1 9.0 0.104

BMI1 8.1 0.114

MAZ 8.1 0.114

GABPA 7.6 0.122

NFE2 7.5 0.124

BACH1 7.2 0.127

TEAD4 7.1 0.130

YBX1 7.0 0.130

USF1 7.0 0.131

TARDBP 6.6 0.139

GATA1 6.6 0.139

NRF1 6.5 0.140

HDAC2 6.2 0.145

FOXK2 6.2 0.146

ATF3 6.2 0.146

CHD1 6.2 0.146

GTF3C2 6.1 0.149

PKNOX1 6.0 0.151

CTCFL 6.0 0.151

Continued on next column

TF F p

SIN3A 5.9 0.153

SMARCA4 5.8 0.156

SMARCA5 5.7 0.157

GATA2 5.7 0.158

SREBF1 5.6 0.159

MAFK 5.5 0.163

SIX5 5.5 0.163

TAF7 5.4 0.164

ZNF143 5.4 0.166

SP2 5.0 0.177

EP300 4.9 0.179

BDP1 4.9 0.181

CTCF 4.9 0.181

RNF2 4.8 0.184

SRF 4.8 0.185

KDM5B 4.7 0.186

ZBTB7A 4.7 0.188

ZHX1 4.5 0.196

FOS 4.1 0.210

TRIM28 4.0 0.216

Continued on next column
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TF F p

EGR1 4.0 0.216

ZBTB11 3.9 0.218

CEBPB 3.9 0.220

E2F6 3.8 0.223

NFRKB 3.8 0.226

CDC5L 3.7 0.228

DPF2 3.6 0.236

GTF2F1 3.5 0.242

SETDB1 3.4 0.246

EZH2 3.3 0.251

HDGF 3.1 0.268

SMARCB1 2.9 0.278

CBX3 2.9 0.284

RUNX1 2.9 0.284

POLR3G 2.8 0.289

HDAC6 2.7 0.302

ARID3A 2.6 0.303

NR2F6 2.6 0.309

NR2C2 2.6 0.309

CHD2 2.4 0.326

Continued on next column

TF F p

SPI1 2.4 0.328

NBN 2.4 0.332

DDX20 2.2 0.348

IKZF1 2.2 0.349

REST 2.2 0.356

MEF2A 2.1 0.366

STAT5A 2.0 0.374

TCF7 2.0 0.375

MAFF 2.0 0.379

BCLAF1 1.9 0.386

POLR3A 1.9 0.389

BHLHE40 1.9 0.391

MIER1 1.9 0.396

YBX3 1.8 0.407

KDM1A 1.8 0.410

MYNN 1.7 0.416

THAP1 1.6 0.449

MCM3 1.5 0.461

JUN 1.5 0.467

ZEB2 1.5 0.469

Continued on next column
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TF F p

SMC3 1.4 0.480

ETV6 1.4 0.487

KLF16 1.3 0.498

HES1 1.3 0.504

TAL1 1.3 0.505

BCOR 1.2 0.522

TBL1XR1 1.2 0.535

ELK1 1.2 0.536

SMARCE1 1.1 0.570

CBX5 1.0 0.577

NR2F2 1.0 0.585

ZMIZ1 0.9 0.609

FOSL1 0.9 0.618

MCM7 0.9 0.642

MBD2 0.8 0.645

ZNF24 0.8 0.648

DEAF1 0.8 0.650

MITF 0.8 0.668

MCM5 0.8 0.671

SMAD2 0.8 0.678

Continued on next column

TF F p

ARNT 0.7 0.692

BRF2 0.7 0.714

JUNB 0.7 0.717

NCOA1 0.6 0.735

ZNF274 0.6 0.742

KAT8 0.6 0.753

JUND 0.6 0.760

MTA2 0.4 0.878

SIRT6 0.4 0.880

USF2 0.3 0.885

ZNF263 0.2 0.960

LEF1 0.1 0.983

CBX1 0.1 0.987

ZKSCAN1 0.1 0.990

RFX5 0.0 1.000

HMBOX1 0.0 1.000

HMGN3 0.0 1.000

KDM4B 0.0 1.000

Concluded
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CHAPTER 2

IS A SUPER-ENHANCER GREATER THAN THE SUM OF ITS PARTS?

Note: With the exception of the preface, the introduction, and few minor

changes, this chapter contains the same text as the previously published work

“Is a super-enhancer greater than the sum of its parts?” in Nature Genetics (Vol-

ume 49, Number 1).

2.1 Preface

This chapter is somewhat unusual, both in its origin and its brevity. It was

conceived of based on a comparison between two papers, Shin et al. (2016)

and Hay et al. (2016), during a lab journal club. This discussion convinced Dr.

Brad Gulko to do some preliminary analysis the following weekend, and see-

ing promising results, the three first authors jointly performed the work for the

super-enhancer paper. In early 2018, based on requests from other groups for

help performing similar analysis, the author of this thesis wrote the superEn-

hancerModelR R package (Dukler, 2018).

2.2 Introduction

The first enhancer was described in 1980, based on deletion studies of a 72-bp

sequence in Simian Virus 40 genome (Benoist and Chambon, 1981; Gruss et al.,

1981). Shortly thereafter, an example was found in mammalian cells and the

ability of enhancers to act in a distance independent fashion was established

(Banerji et al., 1983; Gillies et al., 1983; Mercola et al., 1983). Given that enhancers
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could be quite far from the gene that they regulated, locating them could be a

major challenge. The first next major advance on this front came during the

early short read sequencing era, when work from Gregory Crawford’s and Bing

Ren’s groups discovered that the histone H3K4me1 modification and p300 bind-

ing were indicative of enhancer function (Heintzman et al., 2007). Shortly there-

after additional genomic signatures of enhancers were identified, which further

facilitated genome-wide enhancer discovery (Heintzman et al., 2009; De Santa

et al., 2010; Kim et al., 2010).

The term “super-enhancer” was coined by Whyte et al. (2013) to describe

their observation that a small fraction of enhancers were strongly enriched for

binding master regulators (Oct4, Sox2, Nanog) and Mediator (Med1), and that

these elements seemed to regulate cellular identity. Additional work charac-

terizing super-enhancers suggested that they also played an important role in

disease (Hnisz et al., 2013, 2015; Vahedi et al., 2015). As papers about super-

enhancers proliferated (from 15 in 2013 to 182 in 20161), so did ways of detect-

ing and defining them. For example, Hnisz et al. (2013) used H3K27Ac signal,

not TF binding, to locate individual enhancers, and H3K27Ac enrichment in-

stead of Med1 enrichment to filter for super-enhancers. Independently Parker

et al. (2013) described a similar concept, the “stretch-enhancer”, characterized

by long regions of chromatin (≥ 3kb) with an enhancer signature. Like super-

enhancers, “stretch-enhancers” showed a tendency to be cell type specific and

enrich for disease variants (Parker et al., 2013; Quang et al., 2015). Despite their

similarities “super-enhancers” and “stretch-enhancers” had several notable dif-

ferences including there being an order of magnitude more “stretch-enhancers”

than “super-enhancers”, leading to debate in the community about whether ei-

1Based on Web of Science search for term “super-enhancer”
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ther concept represented a truly novel mechanism of gene regulation beyond

the existing enhancer literature (Pott and Lieb, 2015).

By this point a large body of evidence had accumulated that enhancers

played a key role in both development and disease (Smith and Shilatifard, 2014).

Combined with recent developments in gene editing technology (TALENs,

CRISPR), this led to a wave of studies attempting to characterize these elements

in vivo (Canver et al., 2015; Shin et al., 2016; Hay et al., 2016; Moorthy et al., 2017).

Two of these studies, Shin et al. (2016) and Hay et al. (2016), focused on the

Wap and α-globin respectively, which were well characterized and thus valuable

model systems. The α-globin locus contains HBZ (ζ-hemoglobin), HBA2 (α2-

hemoglobin), HBA1 (α1-hemoglobin) and HBQ1 (θ-hemoglobin) genes which

are specifically expressed in erythroid cells. Previous work on this region had

shown evidence of multiple distal cis-regulatory elements under selective pres-

sure (Hughes et al., 2005) that looped to α-globin promoters (Hughes et al.,

2014). The Wap super-enhancer is able to induce the Wap gene, which code

for a core whey protein (Simpson et al., 2000), over 1000-fold specifically in

mammary tissue during pregnancy (Burdon et al., 1991). Given the controversy

over the nature of super-enhancers, the enhancer-dependant inducibility and

cell type specificity of both loci made them obvious candidates for dissecting

the “super-enhancer” concept.

2.3 Letter to the editor

The recent back-to-back articles by Hay et al. (2016) and Shin et al. (2016) both

addressed the important question of how the constituent enhancers of a so-
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called “super-enhancer” combine to activate the expression of a target gene.

Super-enhancers are collections of closely spaced genomic regions that exhibit

hallmarks of enhancers, such as binding by the Mediator complex and acetyla-

tion of histone H3 at lysine 27 (H3K27ac)(Hnisz et al., 2013; Whyte et al., 2013;

Heinz et al., 2015). As these authors noted, there is continuing controversy over

whether super-enhancers genuinely represent a new paradigm in transcrip-

tional regulation or whether they may essentially just be clusters of conven-

tional enhancers that together produce a strong transcriptional response(Pott

and Lieb, 2015).

At the heart of this question is whether the activity of a super-enhancer

is simply given by the sum of its constituent enhancers—that is, whether it

is additive—or whether these components instead exhibit some kind of syn-

ergy. Indeed, this question of additivity is of general interest, whether or not

super-enhancers are qualitatively distinct from other loci. Hay et al. (2016) and

Shin et al. (2016) addressed this question by carefully dissecting the highly ex-

pressed α-globin and Wap loci , respectively, andmeasuring the reductions in

gene expression resulting from several individual and combined knockouts of

constituent enhancers. Both articles described highly variable effects on gene

expression from different individual knockout experiments, and both reported

that it was necessary to disable multiple enhancers to abolish, or nearly abolish,

expression. On the question of additivity, however, the two articles reached

strikingly different conclusions: Hay et al. reported that the constituent en-

hancers at the α-globin locus acted “independently and in an additive fashion,”

whereas Shin et al. reported that their observations of the Wap super-enhancer

supported a “temporal and functional hierarchy” of constituent enhancers that

is presumably non-additive.
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It was notable that neither of these articles offered a precise definition for

“additivity” or “hierarchy”. Moreover, neither article explicitly compared a

null hypothesis of additivity against an alternative hypothesis. In reviewing

these two works, we became interested in the various ways in which a super-

enhancer’s activity could plausibly be modeled using a linear function of the

activity of its constituent enhancers, possibly together with a simple nonlinear

“link” function(Nelder and Wedderburn, 1972), and in whether the data would

allow a null hypothesis of such generalized linearity to be formally rejected.

Here we show, by reanalyzing these two data sets, that they are both consistent

with a generalized linear model that has a simple biophysical interpretation and

does not require any hierarchy or synergy among constituent enhancers. Thus,

we argue that it still remains to be demonstrated that a super-enhancer is greater

than the sum of its parts.

Perhaps the simplest linear model would assume each constituent enhancer

makes an additive contribution directly to the expression level of the target

gene, such as might be the case if the constituent enhancers separately con-

tribute to transcription. (This appears to be the model that Hay et al. (2016)

had in mind.) Specifically, let us define the “activity” of the super-enhancer by

the affine (linear plus constant) function,

A(x) = β0 + β1x1 + β2x2 + · · · + βnxn, (2.1)

where x = (x1, . . . , xn)′ is a vector of binary variables indicating whether each

constituent enhancer xi is present (xi = 1) or absent (xi = 0) and β = (β1, . . . , βn)′ is

a corresponding vector of real-valued coefficients, with β0 as an intercept term.

Then, we can model measurements of the expression of the target gene, R(x),
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as a combination of this activity function and a variable ε representing some

combination of biological and experimental noise.

Thus, we write,

R(x) = A(x) + ε. (additive model) (2.2)

In practice, we consider alternative noise models and find that a log-normal

model fits the data best for all of the models that we consider (see Supplemen-

tary Note for details).

Another plausible scenario is that the constituent enhancers combine multi-

plicatively, rather than additively, in determining R(x). This multiplicative re-

lationship might be expected, say, if the constituent enhancers act to promote

transcription in a sequential manner, with each step having the opportunity to

amplify or dampen the outputs of previous steps. This relationship can be cap-

tured simply by making R(x) an exponential, rather than an additive, function

of the activity A(x). Because the scale of A(x) is determined by free parameters,

the base associated with the exponent is unimportant. By convention, we use

base e and write,

R(x) = eA(x) + ε. (linear-exponential model) (2.3)

Equation 2.3 can be considered a generalized linear model with inverse link

function ex (in the language of GLMs (Nelder and Wedderburn, 1972)). Im-

portantly, it is fully determined by a linear activity function, with no explicit

consideration of interactions between the constituent enhancers.

Notably, this model can be given an alternative biophysical interpretation.
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Let us assume a physical system with two broadly defined “states,” a low-

energy state associated with active transcription and a higher-energy baseline

state. (The model is abstract: in reality, these “states” may each correspond

to large ensembles of particular configurations of molecules.) Furthermore, let

us interpret A(x) as a measure of the reduction in energy of the transcription-

associated state relative to the baseline state. Statistical mechanics tells us that

the occupancy of the low-energy state should be given by a Boltzmann distribu-

tion and be proportional to eA(x)/Z, where Z is the partition function. If we fur-

ther assume that the system is far from its optimum, then the occupancy of the

low-energy state will be approximately proportional to eA(x). Equation 2.3 can

therefore be interpreted as the model that results from assuming transcription

is proportional to occupancy of the low-energy state in this suboptimal regime.

This physical interpretation, with a two-state system and a linear energy

function, leads naturally to a third generalized linear model. In this case,

we abandon the “suboptimal” approximation and consider the full Boltz-

mann distribution for the system(Lässig, 2007; Phillips, 2015). In the two-

state model, we can explicitly calculate the partition function Z and write,

eA(x)/Z = eA(x)/
(
1 + eA(x)

)
= 1/

(
1 + e−A(x)

)
, which is known as a logistic function

of A(x). Thus, we can fully describe the fraction of time the low-energy state

is occupied using a generalized linear model with the logistic function as the

inverse link function. Assuming again that gene expression is proportional to

the occupancy of the low-energy state, we write,

R(x) =
γ

1 + e−A(x) + ε, (linear-logistic model) (2.4)

where γ defines the maximum expected level of gene expression (for a similar
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model applied to enhancers, see Crocker et al. (2016)). Equation 2.4 will behave

similarly to equation 2.3 when A(x) is far from its optimum but it will capture

the phenomenon of diminishing returns in transcriptional output as the ener-

getics of productive transcriptional elongation approach an optimum and gene

expression is limited by other features of the system (saturation).

We fitted these three models (equations 2.2–2.4) to the raw data from Hay

et al. (2016) and Shin et al. (2016) by maximum likelihood using a numerical

algorithm for optimization. The data consisted of all replicates for each tested

configuration (wild type and knockout) of the three constituent enhancers of the

Wap super-enhancer and the five constituent enhancers of the α-globin super-

enhancer (see Supplementary Note for complete details). We compared the

goodness-of-fit of the models using the Bayesian Information Criterion (BIC),

which penalizes more complex models for their additional parameters. (Here,

the linear-logistic model has one additional parameter, γ.)

For the α-globin data set (Hay et al., 2016), for which the authors claimed

additivity, we found that the additive model did indeed fit the data fairly well

(Figure 2.1A). Nevertheless, the linear-logistic model was preferred over the ad-

ditive model according to the BIC, despite its additional parameter. For the Wap

data set (Shin et al., 2016), the linear-logistic model is the best-fitting model by

a substantial margin. Thus, for both of these data sets, the linear-logistic model

explains the observed data better than any other generalized linear model (Fig-

ure 2.1B&C), and therefore is a better null model than the additive model. No-

tably, the linear-logistic model explains both data sets well despite several im-

portant differences between the two loci (e.g., the Wap component enhancers

are substantially more tightly clustered and closer to the TSS than those for α-
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globin) and between the knock-out strategies used (Shin et al. deleted STAT5-

binding sites whereas Hay et al. deleted larger DNase-I hypersensitive regions),

which underscores the flexibility and generality of this simple model.

But do the data of Shin et al. (2016) for the Wap super-enhancer truly sup-

port something more complex than a generalized linear relationship, as the au-

thors seem to claim? We attempted to address this question quantitatively in

our framework by introducing interaction terms for the two pairs of constituent

enhancers that were simultaneously knocked out in that study (∆E1a/∆E2 &

∆E2/∆E3). We found that models allowing for interactions between constituent

enhancers do have slightly higher likelihoods than the simple linear-logistic

model, as they must, but, according to the BIC, these improvements are not

sufficient to justify the use of an additional parameter (Figure 2.1D; see Sup-

plementary Note for details). Thus, we find not only that the linear-logistic

model fits both the α-globin and Wap data sets reasonably well, but also that

this model cannot confidently be rejected in favor of one that allows for interac-

tions between constituent enhancers.

It is possible, of course, that interactions between component enhancers do

occur in reality, but the data collected so far are insufficiently abundant or pre-

cise to reject a generalized linear null model. In addition, our models are limited

in that they address only the knockout data from these studies. In particular,

our models do not address Shin et al.’s observation that the E1 enhancer is oc-

cupied by key transcription factors first during pregancy, suggesting possible

non-additivity in temporal establishment of the Wap super-enhancer, if not in

its subsequent regulatory behavior. Finally, it is worth emphasizing that our

abstract modeling approach provides no direct mechanistic insights into tran-
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Figure 2.1: Comparing model fits for the α-globin and Wap super-
enhancers.(A) Model fit for the α-globin (blue) and Wap (green) data sets, mea-
sured as the Bayesian Information Criterion (BIC) for the additive model minus
the BIC for the additive (0 by definition), linear-exponential, and linear-logistic
models. (B) Predicted expression at the α-globin locus (black line, with blue
boundaries indicating 0.05–0.95 quantiles) under the best-fitting linear-logistic
model. The actual data points are shown in red, with replicates aligned verti-
cally. (C) Same for the Wap locus. In (B) and (C), the wild-type configuration
appears as the collection of data points farthest to the right. Notice that the def-
inition of the x-axis depends on the linear coefficients estimated for each model.
(D) Model fit, measured by BIC, for the Wap data set for the linear-logistic model
shown in (A) relative to alternative models with interaction terms for either E1a
& E2 or E2 & E3

scriptional regulation at either of these loci. Nevertheless, we have shown that

the observed knockout data for both of these super-enhancers can be explained
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fairly well by a very simple generalized linear model, and this observation can

at least constrain the family of possible mechanistic models. More broadly, we

argue that the transcription field would benefit from clearer definitions of null

models and more rigorous criteria for rejecting them before concluding that

complex behaviors occur.

Note: The computer code originally developed for this analysis is available on

GitHub (https://github.com/CshlSiepelLab/super-enhancer-code).

Additionally, since the publication of the original article an R package

has been created and is available at https://github.com/ndukler/

superEnhancerModelR.

2.4 Supplemental Materials

2.4.1 Model design

We designed three models (additive, linear-exponential, and linear-logistic) to

predict gene expression, each as a transformation of an affine function A(x).

With xi as indicator variables for the presence of individual enhancers and βi

as the coefficients that estimate the relative enhancer contributions to gene ex-

pression, the activity function A(x) is written:

A(x) = β0 + β1x1 + β2x2 + · · · + βnxn,

Each model predicts gene expression T (x) as a monotonically increasing

function of A(x): T (x) = g−1(A(x)), where g() is a link function and g−1() is its
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inverse (following the conventions of generalized linear models(Nelder and

Wedderburn, 1972). The measured expression level, R(x), is then assumed to

be a combination of the true level T (x) and some noise ε (see next section). The

additive model is simply defined by the identity inverse link function:

T (x) = A(x).

The linear-exponential model is given by:

T (x) = eA(x).

Finally, the linear-logistic model is given by:

T (x) =
γ

1 + e−A(x) .

2.4.2 Error models

For each generalized linear model we specified normal and log-normal error

models. The normal error model is defined by assuming that:

R(x) = T (x) + ε,

where the noise ε is normally distributed with mean zero and variance σ2, that

is, ε ∼ N(0, σ2). This is equivalent to saying that a measurement of gene expres-

sion for a particular value of x, R(x), is assumed to be normally distributed with

mean T (x) and variance σ2. Thus, the density function for R(x) is:

f (R(x)) =
1

σ
√

2π
exp

[
−

(R(x) − T (x))2

2σ2

]
.
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By contrast, the log normal error model assumes that the noise is normally

distributed on a log scale, that is,

log R(x) = log T (x) + ε,

where, again, ε ∼ N(0, σ2). This is equivalent to saying that R(x) has a log-

normal distribution with density function,

f (R(x)) =
1

R(x)σ
√

2π
exp

[
−

(log R(x) − log T (x))2

2σ2

]
.

We found that the log-normal error model fit the data substantially better

than the normal error model in all cases (Supplemental Fig. ??), and we used

it for all results discussed in the main text. Note that measuring error on a log

scale, as in the log-normal model, makes sense when PCR amplification makes

a large contribution to measurement error, as may be the case for the data from

Shin et al. (2016).

2.4.3 Interaction Parameters

Shin et al. (2016) proposed a “functional hierarchy within the STAT5-driven Wap

super-enhancer”. Within our framework we defined hierarchical relationship

between two enhancers as indicator variables whose state depended jointly on

the presence of both enhancers. To test Shin et al.’s claims, we defined a set of

augmented models that included additional indicator variables xi j (defined for

i < j) where: 
xi j = 1 if xi = 1 ∧ x j = 1

xi j = 0 otherwise
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We created two linear-logistic models with log-normal error, one that in-

cluded x12, and one that included x23. We did not fit a separate model for x13

since there was no data for an E1 − E3 deletion. Each of these models had five

centrality (non-error) parameters. Given that the dataset for the Wap super-

enhancer only contains six conditions, we could not fit multiple interaction

terms at once without over-fitting.

2.4.4 Model optimization

For all three models (additive, linear-exponential, and linear-logistic) we fit two

error models, normal and log-normal, by maximum likelihood. All models were

fit in R using the differential evolutionary algorithm package DEoptim (Mullen

et al., 2011). The variance parameter σ was estimated as well as the coefficients

(β0, . . . , βn). All replicates were considered simultaneously. A population with

20 times as many members as there were parameters was created and run for

10,000 steps. The best solution was then further optimized by running gradi-

ent descent (L-BFGS-B) until convergence. The Bayesian Information Criterion

(BIC) was computed for each model using the formula:

BIC = −2 log(L) + k log(N)

where L is the likelihood of the data with the parameters obtained via optimiza-

tion, k is the number of free parameters, and N is the number of data points.
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2.5 Supplemental Figures

Figure 2.2: Bayesian Information Criterion (BIC) for all models. (A) α-globin
locus. (B) Wap locus.
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Figure 2.3: Additive model with normal and log-normal error models fit to
α-globin locus data. (A) Normal error model. (B) Log-normal error model.

Figure 2.4: Linear-exponential model with normal and log-normal error mod-
els fit to α-globin locus data. (A) Normal error model. (B) Log-normal error
model.
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Figure 2.5: Linear-logistic model with normal and log-normal error models fit
to α-globin locus data. (A) Normal error model. (B) Log-normal error model.

Figure 2.6: Additive model with normal and log-normal error models fit to
Wap locus data. (A) Normal error model. (B) Log-normal error model.

91



Figure 2.7: Linear-exponential model with normal and log-normal error mod-
els fit to Wap locus data. (A) Normal error model. (B) Log-normal error model.

Figure 2.8: Linear-logistic model with normal and log-normal error models fit
to Wap locus data. (A) Normal error model. (B) Log-normal error model.
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CHAPTER 3

CHARACTERIZING THE GENOMIC DETERMINANTS OF

CIS-REGULATORY ELEMENT EVOLUTION WITH PHYLOGENETIC

MODELS

3.1 Introduction

Cis-regulatory elements (CREs) govern gene regulation and thereby phenotype

to a large degree, accounting for the vast majority (v 80%) of narrow sense trait

heritability (Gusev et al., 2014). As such, the evolutionary processes that govern

the turnover of these elements have been of intense interest at both mechanistic

and epigenetic levels.

Work using signatures of inter-species sequence conservation in mammals

to locate CREs has estimated that at least 5% of the human genome has under-

gone purifying selection (Lindblad-Toh et al., 2011). However these approaches

suffer from two main limitations: (1) they are unable to resolve the tissue(s) in

which the CRE is active and (2) they have limited power to locate where the

constrained regions actually are, especially in non-coding regions where selec-

tion may be weaker and act on shorter regions. Regions under positive selec-

tion have also been of great interest, with studies in the human lineage finding

human-specific accelerated regions are mostly in non-coding regions (Pollard

et al., 2006), and similar work in eutherian mammals finding evidence of accel-

eration in enhancers associated with neuronal development (Holloway et al.,

2016).

However, it has been shown that comparative sequence based methods may
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be missing a majority of regulatory elements (McGaughey et al., 2008) and

there have been many examples across multiple species of enhancer activity

being conserved without obvious sequence conservation (Fisher et al., 2006;

Yang et al., 2015; Ludwig et al., 2000; Hare et al., 2008). As a result, there has

been considerable interest in predicting enhancer function from sequence (Chen

et al., 2017), to provide a deeper understanding of how mutation at the sequence

level can lead to compensation and maintenance of robust enhancer functional-

ity (Khoueiry et al., 2017; Duque et al., 2014). Most of these studies have focused

on well characterized systems in which either the key TFs or the architecture of

relevant CREs is already known thereby limiting their use in a broader context.

In an attempt to bypass the need for either sequence conservation or lo-

cus specific knowledge, some recent studies have focused on understanding

the genome-wide effects of CRE evolution using epigenetic marks which are

thought to be proxies for regulatory activity. Recent work on DNA methyla-

tion (Qu et al., 2018) used a phylogeny-aware approach to detect gain and loss

of methylation, reporting an expansion of methylation in mammals with lin-

eage specific properties. Other studies which have focused on characterizing

CREs with histone modifications (Villar et al., 2015) or nascent RNAs (Danko

et al., 2018) in mammals and primates, used heuristic methods to report higher

turnover rates in enhancers than promoters, as well as a wide variety of proper-

ties related to constraint on regulatory architectures. In addition to work char-

acterizing the static landscape of regulatory activity some work has considered

the conservation of dynamic responses in immune induction across the primates

and reported relatively high conservation (Danko et al., 2018). However, it re-

mains unclear how to create a general and robust, yet reasonably simple mod-

eling approach for analyzing comparative epigenetic data.
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In this work, we develop a new framework for analyzing comparative epige-

nomic data and apply it to a subset of histone modification data from Villar

et al. (2015). We report on variety of results comparing the evolution of en-

hancers, promoter, and between subsets of promoters and enhancers based on

characteristics of their associated genes. We also report on potential causes for

discordance between sequence and functional constraint.

3.2 Results

3.2.1 Inferring evolutionary dynamics of epigenetic marks

with a phyloHMM

We developed a phylogenetic hidden Markov model, epiPhyloHMM, to recon-

struct the evolutionary histories of enhancers and promoters. PhyloHMMs are

hidden Markov models whose hidden states define distinct phylogenetic mod-

els drawn from a finite set, allowing them to jointly consider how substitu-

tions (and gains/losses) occur along branches of the phylogeny, and adjacent

genomic sites (Siepel and Haussler, 2005; Felsenstein and Churchill, 1996). The

epiPhyloHMM model consists of two components: a mixture negative binomial

emission model for ChIP-seq peak calling, and a transition model with probabil-

ities defined by an evolutionary process. Using a phyloHMM to model multi-

species epigenetic data helps address issues caused by gaps in the alignment

and the noisiness from variable quality ChIP-seq data.

The core idea behind epiPhyloHMM is that we can model evolutionary gain
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Figure 3.1: The epiPhylo model (A) State transition diagram of the epiPhylo
model, illustrating the sparse transition between the state with no elements
present in any species and any single state with an element present in one or
more species. The red star indicates the selected state for the focal site illus-
trated in the cartoon data. (B) Example of state calls on real H3K4me3 ChIP-seq
data on a subset of species from Villar et al. (2015).

& loss of epigenomic marks in a manner similar to the classic DNA substitution

models, but handle the spatial distribution of epigenetic marks with an HMM.

This is accomplished by labeling the tips of a phylogenetic tree using a two

character 0/1 (absent/present) model to construct a state space (fig. 3.1) for

the HMM. The probability of each state is then computed using the stationary

probability of the characters on the tree π1 (π1 = 1 − π0), and the turnover rate γ.

In our model γ is the instantaneous rate of a gain or loss under a continuous time

Markov process. To prevent the state space from being exponential (2N) in the

number of species, and thus intractable for explicit calculations using the HMM,

we enumerated only a subset of tip labelings on the tree based on scenarios that

could occur with three or fewer mutations on the tree.

We used epiPhyloHMM to analyze ChIP-seq data, so the noise model for raw

read counts given 0/1 characters at the tips of the tree was a mixture negative

binomial distribution, which has become widely used for modeling the vari-
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ance in sequencing count data (Love et al., 2014; Anders et al., 2013). For the 0

state we used a single component mixture model and three components to han-

dle peaks of different heights for the 1 state. A separate emissions model was

trained in each species using data aligned to a subset of its native genome. Once

the data was lifted over to a central reference genome, the emission model was

augmented with a scale parameter ζ, to accommodate alignment gaps between

species which result in missing data in the frame of the reference genome. The

evolutionary parameters π0, γ, and the state autocorrelation parameter ρ0, are

then fit using the data mapped to the central reference genome (see Methods).

3.2.2 Simulation Study

To test the power of our model to recover the true peak calls and parameters,

we simulated data under the model used for inference, allowing for all 2N states,

given a variety of genome sizes, phylogenetic trees, and values of the turnover

parameter (γ). We fixed the parameters for the peak calling model to their true

values to isolate the ability of the model to correctly estimate the evolutionary

parameters of interest.

With regard to calling peaks at the species level, we found that epiPhylo per-

formed well by both precision and recall metrics but suffered slightly at higher

turnover rates (fig. 3.2). Model predictions were evaluated on a per-bin basis so

that a prediction was considered a true prediction if the model’s state call for a

bin in a particular species matched that bin’s state in the simulation. Each bin in

a multi-bin element was evaluated separately. Across a broad range of rate pa-

rameters and tree topologies, estimates of γ converged to an inflated, but stable
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Figure 3.2: EpiPhylo performance as a function of rate for simulated data.
(A) Precision of the epiPhylo model based on the number of 250bp bins for
each species with correct state calls across three different trees. (B) Recall of the
epiPhylo model based on the number of 250bp bins for each species with cor-
rect state calls across three different trees. For both calculations, the state that
epiPhylo calls is used to assign active elements across species which are then
compared to the true peaks at the species level. All possible species configu-
rations were simulated, and the epiPhylo model was fit with all configurations
that required three or fewer mutations.

estimate of γ with as little as 250KB when γ was large and as much as 250MB

when γ was small (fig. 3.7). The stationary probability for an absent element

π1 was systematically underestimated while estimates of the autocorrelation ρ1,

converged to the true values given as little as 2.5MB of data (fig. 3.8-3.9). Sys-

tematic biases in the fitted values of γ and π1 occur to accommodate due to a

ridge in the likelihood surface (fig. 3.10), however this does not greatly impact

the recovery of true regulatory elements in our simulation.

3.2.3 Decoupling the HMM and phylogenetic models for rigor-

ous hypothesis testing and ancestral reconstruction

Next we became interested in using an evolutionary framework for comparing

turnover rates between groups of elements with different annotations. While
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phyloHMMs are powerful for segmenting the genome, the cost of fitting more

parameters with epiPhyloHMM becomes expensive, and the bias in the param-

eter estimates prevents recovery of the true parameters. To address these issues

we adapted the standard phylogenetic model to accommodate probablistic state

labels on the tips of the tree. Then we used the genomic segmentations provided

by epiPhyloHMM to create a single epigenetic state in each species per contigu-

ous epiPhylo element. First we grouped adjacent bins with the same state, then

computed a joint likelihood across all bins conditioned first on the absent state,

then on the present state. The procedure to test for different rates of turnover

between subgroups of elements is as follows: (1) group epigenetic elements to-

gether by one or more annotations and fit a shared rate across all groups with

all other parameters fit separately for each annotation to represent the null hy-

pothesis of a uniform evolutionary rate across the annotated groups, and (2)

as the alternative hypothesis, we can refit the models with separate rates for

each annotation a ∈ A, then (3) compare the models using a likelihood ratio test.

The alternative models are then nested within the null model by breaking the

symmetry between rate parameters (γ) for all groups of elements and adding

|A| − 1 degrees of freedom. This provides an efficient and rigorous method to

detect differences in turnover rate for disjoint groups of epigenetic marks with

one additional degree of freedom.

Another advantage of using a phylogenetic approach for analyzing epige-

netic data over previous heuristic approaches is the ability to identify gain/loss

events that occur on non-terminal branches of the tree. To accommodate the

probabilistic allele labels computed by epiPhylo, we applied the previously de-

scribed altered phylogenetic model to accommodate probabilistic allele labels

at the tips. To accommodate potential differences in phylogenetic parameters
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Figure 3.3: Distribution of state calls by epiPhyloHMM. (A) The distribution
of state calls from epiPhyloHMM for the H3K4me3 mark. (B) The distribution
of state calls from epiPhyloHMM for the H3K27Ac mark.

between enhancers and promoters we partitioned the sites with an H3K27Ac

mark in one or more species into enhancers and promoters based on proximity

to transcriptional start sites (TSS) in humans (fig. 3.11). We note that due to the

human centric nature of the alignment framework, we tend to observe increas-

ing numbers of losses on branches with a longer time to most recent common

ancestor (TMRCA) with human (fig. 3.12). This provides that caveat that lin-

eage specific rate tests may be unreliable if not constructed carefully.

3.2.4 Promoters show deeper epigenetic conservation than en-

hancers

We ran epiPhyloHMM on previously published comparative H3K4me3 and

H3K27Ac ChIP-seq data from placental mammals, producing a genome wide

segmentation. This analysis produced an average of ~16, 000 and ~47, 000 ele-

ments per species for the H3K4me3 and H3K27Ac mark respectively (fig. 3.13).

The excess of H3K27Ac sites was in line with previous findings as the H3K27Ac
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mark covers both enhancers and promoters while the H3K4me3 mark is more

specific to promoters. The distributions of state assignments were also highly

distinct, with the fully conserved state being the most common for the H3K4me3

mark while being the ninth most common state for the H3K27Ac marks, with a

much lower frequency than most of the single species states. The observation

of lower rates of turnover in enhancers than promoters is in line with previous

literature suggesting that promoters are more deeply conserved than enhancers

(Villar et al., 2015).

To more directly investigate the differences in turnover rate between en-

hancers and promoters we partitioned the sites with an H3K27Ac mark based

on proximity to transcriptional start sites (TSS) in humans as previously de-

scribed (fig. 3.11). We then applied our likelihood ratio framework to derive

rigorous estimates of turnover rate in each group and tested directly for a differ-

ence in rate using a tree based on real divergence times. We estimated a turnover

rate of roughly 0.0075 events/mya for enhancers and 0.0035 events/mya for

promoters (fig. 3.4A). We also estimated the half-life for enhancers and promot-

ers and found that the half life for promoters was 424mya while the half life for

enhancers was 302mya (see Methods). The enhancer half-life estimate is similar

to previous estimate from Villar et al. (2015) of 296mya, however the promoter

estimate is considerably shorter than the previous estimate of 939mya. The dif-

ference in the promoter half-life estimates may be partially explained by the

epiPhyloHMM model being unable to fully accommodate the noisy nature of

the H3K27Ac mark, resulting in an excess of gain/loss events thus increasing

the estimated turnover rate. However, we do not see a similar effect on our es-

timate of enhancer half-life so we cannot easily select one estimate as superior

to the other.
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Figure 3.4: Promoters show greater epigenetic conservation than enhancers.
Rates of turnover inferred for enhancers and promoters using the H3K27Ac
mark on an ultrametric tree with branches scaled by chronological divergence
times (Kumar et al., 2017). Error bars correspond to the maximum likelihood
rate estimate +/− one standard error. The enhancer turnover rate is roughly
twice as high as the promoter rate (p � 10−300 via likelihood ratio test).

3.2.5 Pleiotropy and mutational intolerance of associated genes

correlate with CRE turnover

Next, we investigated how tissue specificity of expression and sequence con-

straint of genes affected the turnover of putatively linked CREs. Each enhancer

and promoter was assigned to a single gene based on a combination of distance

based rules. Genes that were in the neighborhood of more than one gene were

excluded from this analysis (fig. 3.11).

First we sought to determine whether stability of gene expression across tis-

sues correlated with promoter turnover rates. Based on GTEx data, we anno-

tated genes as being housekeeping, intermediate, or variable, based on their

expression variance across tissues. Then, using the H3K4me3 mark, we com-

pared the turnover rates of promoters for mean-expression-matched variable

and housekeeping genes, and found that the promoters for housekeeping genes
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turned over at roughly half the rate of genes with variable expression (fig. 3.5A).

This result agrees with previous literature and is consistent with the idea that

highly pleiotropic loci are under stronger constraint than non-pleiotropic loci

(Villar et al., 2015). Notably we do not see any difference in the turnover rate of

putatively linked enhancers (H3K27Ac) of housekeeping and variable genes (fig

.3.15). One possible explanation for this observation is that most housekeeping

genes are primarily regulated by their promoters and any enhancers they do

have tend to be close to the promoter and thus are filtered out or mis-annotated

by our pipeline (Zabidi et al., 2015).

Next we investigated whether the promoter conservation across species was

related to gene intolerance for ultra-rare loss of function (LoF) mutations. Since

ultra-rare variants are almost always only present in single copies, genic intoler-

ance for ultra-rare mutation is a proxy for haploinsufficiency. We compared frac-

tion of elements associated with heterozygous LoF intolerant genes (pLI ≥ 0.9;

Samocha et al. (2014)) to the number of species which had an active element for

both promoters and enhancers (H3K27Ac) based on epiPhylo. We found that

for both enhancers and promoters, being present in more species increased the

chance that the associated gene is intolerant to heterozygous LoF mutations,

although the effect was stronger in promoters than enhancers (fig. 3.5A-B). To-

gether, these results indicate that the turnover rate of both enhancers and pro-

moters decrease as selection on the sequence and pleiotropy of associated genes

increases.
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Figure 3.5: Tissue specificity of gene expression and selection on coding se-
quence correlate with conservation of cis-regulatory elements. (A) Estimated
rates for promoter turnover based on the H3K4me3 mark where associated
genes are classified as being housekeeping or tissue specific and matched for
average expression (p � 10−30). (B) Fraction of haploinsufficient genes based
on genewise pLI scores for promoters with the H3K27Ac mark. pLI scores are
a measure of intolerance to rare mutations. A pLI score ≥ 0.9 suggests that a
gene is haploinsufficient. The probability of a gene having a pLI score ≥ 0.9
increases by 1.7% for each additional species the mark is conserved in. (C) Frac-
tion of proximal enhancers with H3K27Ac mark associated with a haploinsuf-
ficient gene (pLI ≥ 0.9). The probability of a gene having a pLI score ≥ 0.9
increases by 1.3% for each additional species the mark is conserved in. Error
bars for (B) and (C) represent the mean +/- one standard error.

3.2.6 Dosage sensitivity causes divergence between sequence

and epigenetic conservation at promoters

Next we sought to investigate directly whether gene dominance affects se-

quence and epigenetic conservation. To get a list of genes with known domi-

nance effects, we used a previously curated list of disease genes that were clas-

sified as having either a dominant or recessive mode of action (Berg et al., 2013;

Blekhman et al., 2008). First we tested whether all disease genes showed a lower

rate of turnover at promoters (H3K27Ac) than non-disease genes and found a

roughly 25% decrease in rate (fig. 3.6A). We tested whether dominance of dis-

ease genes affected turnover rates of H3K27Ac marks at promoters and found
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that it did not (fig. 3.6B), likely because loss of promoter severely decreases, if

not abolishes gene expression which is deleterious in a disease gene. In this line

of reasoning we then theorized that while disease genes are equally intolerant

of whole CRE turnover regardless of dominance status, recessive gene should

tolerate smaller changes of expression while dominant one may not. This is be-

cause dominance status can be thought of as an indicator for dosage sensitivity

as mutations with a recessive mode of action are likely insensitive to halving

the expression of the wild type allele while dominant mutations are likely sen-

sitive. Therefore CREs of genes that are highly dosage sensitive should exhibit

stronger sequence conservation than those that are not, even when controlling

for epigenetic conservation. To assess the strength of selection directly on the

sequence we took the mean 100way-phastCons scores in the same sets of dis-

ease gene associated elements. We found that the promoter sequences of genes

that were highly dosage sensitive (had a dominant mode of action), were under

stronger constraint than those that were not (fig. 3.6C).

Another possible explanation for the observed difference in sequence con-

servation between CREs of dominant and recessive gene is different densities

of regulatory sequence. To rule out this possibility we used putative TFBS an-

notated by the ENSEMBL regulatory build to compare the density of TFBS be-

tween the promoters of disease genes with recessive and dominant mechanisms,

and found no difference (fig. 3.6D). Despite similar TFBS densities, we observed

a decreased density eQTLs in the promoters of dominant disease genes relative

to recessive ones, indicating a depletion of regulatory variants of sufficient effect

size for detection (fig. 3.16). Together, these two lines of evidence suggest that

selection on gene regulation occurs differently at multiple levels, dependent on

the mechanism that mediates the deleterious phenotype.
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Figure 3.6: Promoters of disease associated genes show decreased turnover
rates, but the effect of dominance can only be seen at the sequence, not the
epigenetic level. (A) Comparison of promoter turnover rate between disease
and non-disease associated genes. Promoters are based on the H3K27ac mark
(p � 10−30). (B) Comparison of promoter turnover rates (H3K27ac) between
disease genes with dominant vs. recessive mode of action (p = 0.61). (C) Com-
parison of sequence conservation in promoter elements between disease genes
with dominant vs. recessive mode of action (p = 7.9 · 10−8). (D) Percent of
promoter nucleotides covered by TFBS from the ENSEMBL regulatory build for
disease genes with dominant vs. recessive mode of action.

We then sought to test our hypothesis that differential dosage sensitiv-

ity leads to different patterns of sequence and epigenetic conservation on an

orthogonally defined group of genes. Two groups that have been used a

model for differential dosage sensitivity are genes involved in metabolism

(low dosage sensitivity) and transcriptional regulation (high dosage sensitiv-

ity)(Wilkie, 1994; Veitia et al., 2018). We compared the epigenetic turnover rate

of promoters marked with H3K27Ac and found that it turned over slightly more

rapidly for metabolism than transcription genes. This observation suggests that,

unlike with the dominant/recessive disease genes, there are differences in se-
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lection on the whole molecular function, therefore dominance is not the only

differential selection relevant factor(fig. 3.17A). However, once we control for

the number of turnover event at a given site as a proxy for epigenetic constraint,

we see greater selection on the sequence in the promoters of transcription genes

than metabolic genes, in line with expectations of greater dosage sensitivity for

transcription genes (fig. 3.17B). Together, these results suggest that dominance

is one of the factors driving differences between levels of sequence and epige-

netic conservation.

3.3 Discussion

Changes in the activity of cis-regulatory elements which alter gene expression

have been shown to drive phenotypic divergence between species (Prescott

et al., 2015; Wray, 2007). Understanding the observed patterns of turnover and

constraint of CREs is therefore informative for understanding the broader prin-

ciples that govern the evolution of gene expression. The development of tech-

niques such as ChIP-seq, STARR-seq, and various forms of BS-seq, for mea-

suring evidence of regulatory function at the whole-genome level have opened

up new opportunities for understanding the evolution of regulatory elements

(Marinov and Kundaje, 2018; Arnold et al., 2014; Pai et al., 2011). Previous

works have performed heuristic analysis of CRE evolution and gene expres-

sion, finding a positive correlation between the stability of gene expression and

CRE conservation, as well as evidence of enhancer emergence correlating with

adaptation (Berthelot et al., 2018; Villar et al., 2015). There have also been some

model based approaches, focusing on integrating phylogenetic information for

a variety of traits including replication timing and methylation (Yang et al., 2018;
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Qu et al., 2018).

In our work we demonstrate a general framework for inferring relative lev-

els of constraint on regulatory elements using a probabilistic model that inte-

grates uncertainty from the raw data and alignments, then, by pooling infor-

mation across regulatory elements, detects differences in turnover rate. By ap-

plying this framework we recapitulate previous work showing that enhancers

turnover more rapidly than promoters (Villar et al., 2015), although we derive

shorter half-life estimates, probably partially due to the noisy nature of the data.

We also found that stability of gene expression across tissues correlates with

conservation across species for promoters but not enhancers. The positive cor-

relation between promoter conservation and gene expression is in agreement

with previous work which found that conservation of gene expression was ele-

vated in housekeeping genes (Berthelot et al., 2018). There are several possible

technical reasons for the difference between enhancers and genes (e.g. imperfect

enhancer-gene assignment, and noisy data) due to housekeeping genes having

a fundamentally different regulatory architecture than tissue specific genes. For

example, previous work has suggested that enhancers of house-keeping gene

are much more likely to be in the core promoter region or the 5’ UTR, character-

istics that could result in them being labeled promoters under our rules (Zabidi

et al., 2015).

We also find several interesting results from the comparison of sequence and

functional conservation. Our two key results were that (1) promoter and prox-

imal enhancer conservation is higher for haploinsufficient genes and (2) even

among essential genes, haploinsufficient genes show elevated levels of sequence

conservation after controlling for epigenetic conservation. We propose that this
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result is due to sequence and epigenetic conservation being indicators of funda-

mentally different types of constraint. While no essential gene can afford to lose

its promoter (indicated by loss of the epigenetic mark), and thus expression,

it has been well documented that some genes which are less dosage-sensitive

can tolerate more potentially expression altering sequence mutations (Petrovski

et al., 2015). Thus this divergence between epigenetic and sequence constraint

is potentially informative about the mode of selection at that locus.

There are a number of caveats for our work. First, all data is aligned to the

human reference genome and uses human annotations for all analysis. This

strategy creates a reference bias and makes lineage specific tests difficult to per-

form. This limitation may be overcome by using a meta-genome that represents

all genomes equally well, for example by using a slight variant of the HAL for-

mat (Hickey et al., 2013). More broadly, the quality of cross-species alignments

and the systematic biases often present in them (e.g. alignments being better

near genes), require careful consideration when performing analysis. There

is also the noisiness of the data itself, which can seen in the large number of

slightly offset peaks which clearly mark the same regulatory element. In our

analysis we tried to address these concerns to some degree by only performing

tests between elements that were marked with the same histone modification

and therefore had similar noise properties, but this noise still almost certainly

increased our estimates of turnover rate. Errors in the cross-species alignment

and the data combine to make analysis especially difficult in the HMM frame-

work, which requires data features be well aligned. Although we have tried to

address both of these problems they remain in need of further work.

Second, all of our mark annotation and gene assignments are based on dis-
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tance rules with respect to the human TSS annotations. In addition to the previ-

ously discussed reference bias, its is also likely that a significant number of en-

hancers (and to a lesser degree promoters) are mis-assigned. Experimental work

to link enhancers to the correct genes, either via 3D-chromatin capture (Sanyal

et al., 2012; Jin et al., 2013; Mifsud et al., 2015), or large scale genome editing

(Fulco et al., 2016), may address some of these issues although the requirement

to perform such assays across multiple species in well matched tissue samples

may prove difficult.

Third, although histone marks such as H3K27Ac and H3K4me3 are strongly

associated with genomic function, they are noisy, imperfect measures of regula-

tory activity (Benton et al., 2017). Assays that measure genomic function with

improved specificity and and cover a narrower span of DNA should provide

better quantification of CRE evolution and make it easier to link sequence and

functional evolution.

In summation, this work presents a general framework for analyzing epige-

netic traits, and applies that framework to learn features of CRE evolution and

investigate the relationship between sequence and functional evolution. Our

observations are largely qualitatively consistent with previous work and the-

ory (Villar et al., 2015; Petrovski et al., 2015), and provide a way forward for

studying regulatory evolution.
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3.5 Methods

3.5.1 ChIP-seq Data Preparation

All ChIP-seq data obtained from Villar et al. (2015). Reads were then aligned

to their native genomes (Mikkelsen et al., 2007; Consortium, 2002; Peng et al.,

2014; Consortium et al., 2014; Lindblad-Toh et al., 2005, 2011; Consortium, 2004;

Yan et al., 2011) (obtained from the UCSC genome browser) using bowtie2 (v

2.2.9) (Langmead and Salzberg, 2012). Each read is then collapsed to cover the

single base at the center of the read and lifted over to central reference genome

using liftOver (Hinrichs et al., 2006) (currently hg38). The lifted-over reads are

then converted to a bigwig of read coverage. Finally, reads are summed into

bins of 250bp. Regions that were not mappable in any other species besides

human (hg38) were excluded from this analysis, leaving 2.97Gb remaining in

the multiple alignment.

3.5.2 Peak Caller Model

A simpler peak calling HMM is used to pre-fit some values to simplify the latter

fitting of the epiPhyloHMM model. The probability of state p (peak/no-peak)

at bin j is a negative binomial mixture model computed as:

P(x̃ j|µ̃p, γ j, w̃p, θD, s̃) =
∑

m

wm ·
∏

r

nbinom
(
x j,r|µp,mγ jsr, f (µp,mγ jsr, θD)

)
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where x̃ j is the read counts for each replicate. The mean for a given state p

and mixture component m is µp,m. Each component m is given weight wm where∑
m wm = 1. Since some sites will not be mappable between genome we introduce

γ j which scales up,m by the fraction of bases in bin j that are mappable between

the native and central reference genome. To account for inter-library differences

in sequencing depth we introduce sr, which is calculated as:

sr =
1

max(~s)

∑
j

x j,r

To account for documented differences in the dispersion of replicates for dif-

ferent mean depths, we subsample the genome to get roughly similar numbers

of low, medium, and high coverage sites, then pre-estimate a mean-dispersion

function using DESEQ2. We then use the parameters of that function θD, to

compute the dispersion for all mixture components m and loci j.

The transition model is a simple two state model with auto-correlation ρA for

the peak state and ρI for the background state.

3.5.3 epiPhyloHMM Model

The epiPhyloHMM model enumerates a finite set of states {s1, ..., sE} at the tips of

the tree based on a fixed maximum number of “mutation” events that partition

the species tree. The emission probability for a given state se at site j is computed

as
∏

t P(x|se,t), the joint probability of tip t in having the label specified by state

se, for all tips t. More explicitly it is written as

P(x̃ j|se, µ̃, γ j, w̃, θD, s̃) =
∏

t

∏
p

[
P(x̃ jt|µ̃pt, γ jt, w̃pt, θD, s̃t)δ(p=se,t)

]
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However, where there is a large alignment gap in a species (set to 5Kb for overall

model fitting), the probability of an active element in that region is forced to 0

for within that species, presuming a deletion.

The transition matrix is parameterized along the diagonal by ρI for the fully

inactive state and ρA for all other states. The probability of entering any other

state from the fully inactive state I is (1− ρI) · P(z). P(z) is the probability of state

z computed by Felsenstein’s algorithm given a set of “base” (peak/no-peak)

frequencies π and mutation rates γ and normalized by
∑

z,I P(z). The rate of

transitions from any tree with one or more active elements to the fully inactive

state is (1 − ρA). All other elements of the transition matrix are 0, preventing the

direct transition between any two different trees with active elements.

3.5.4 Model fitting

The epiPhyloHMM model is fit in several successive steps for efficiency. First,

the peak calling models are fit separately for each species using the reads

mapped to a subset of the native genome (125Mb) using the L-BFGS-B algo-

rithm. The negative binomial mixture parameters of the peak calling model, w

and µ, are then saved for use in the full epiPhyloHMM model.

The genome is then split into twenty similarly sized chunks, with chunk

break-points determined by long regions where there is no alignment to the

human genome by any other species. Bins with less than 15% of their sequence

aligning to the human genome are treated as missing data on a per species basis.

Then the ρA, ρI , π0, and γ parameters in the epiPhyloHMM model are fit with the

peak calling parameters held constant using L-BFGS-B. The resulted are then
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cleaned by masking out small element calls caused by peak fragmentation using

the following heuristic.

1. Sets of elements that are only seperated by a single bin (a gap enforced by

model sparsity) are grouped together.

2. A sum of scale factors for over all species for each element in the group is

then computed

3. The element with the greatest alignability to the genome based on the sum

of scale factors is kept

4. Additional elements are kept if their score exceeds a threshold t (t = 16).

5. Regions containing discarded elements are masked by setting their scale

factors to 0.

The model then undergoes a second round of fitting post cleaning. The model

is then re-run genome-wide using the median values of the ρA, ρI , π0, and γ pa-

rameters to obtain a final set of calls.

3.5.5 Extracting and computing allele probabilities from epi-

Phylo

Histone mark elements were annotated based on the viterbi path from a fitted

epiPhylo model. A single element probability was computed per allele by tak-

ing the product of the allelic probabilities from each bin.
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3.5.6 Site annotation and gene association for enhancers and

promoters

All distances were based on the Ensembl build 93 (Zerbino et al., 2018), accessed

via BiomaRt (Durinck et al., 2005, 2009). Transcriptional start sites (TSS) for all

transcripts were expanded by +/- 1.5kb and grouped by gene to create a pro-

moter region. H3K4me3 elements that overlapped with only one promoter were

annotated as promoter and associated with that gene. H3K4me3 elements that

overlapped with more than one gene’s promoter were annotated as an unasso-

ciated promoter (promoter UA). H3K4me elements that did not overlap with

any promoters were annotated as unknown (unk).

For H3K27Ac marks the same rules were used to label an elements as pro-

moter or promoter UA. For enhancer annotations the TSS were expanded by

+/- 10kb. H3K27Ac elements that overlapped with only one expanded pro-

moter were annotated as a proximal enhancer (enhancer proximal) and associ-

ated with that gene. H3K27Ac elements that overlapped with more than one

gene’s expanded promoter were annotated as an unassociated proximal en-

hancer (enhancer proximal UA). H3K27Ac elements that did not overlap with

any promoters but were still within 100Kb of a TSS were annotated as distal

enhancers and associated with the closest gene (enhancer distal). H3K27Ac el-

ements that met none of these criteria were labeled as unknown. This scheme is

represented in figure 3.11.
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3.5.7 Ancestral reconstruction with probabalistic alleles and

half life estimation

To perform ancestral reconstruction we implemented a standard phylogenetic

model where the values for alleles at the tips of the tree were P(x|allele state)

instead of the standard 0/1 encoding. We then performed the standard mes-

sage passing algorithm on the phylogeny, then estimated the probabilities of a

state transition on each branch as previously described in Siepel et al.. To make

the values as comparable as possible, we used the H3K27Ac sites annotated

as enhancers and promoters, leaving out the H3K3me3 sites. To estimate half

life, estimated separate scaling factors for the enhancer and promoter trees, then

estimated their respective half-lives adjusting for the stationary distribution as

follows:

t 1
2

=
ln(2)
γ · πP

3.5.8 Enhancer vs. Promoter turnover analysis

All H3K27Ac elements annotated as any type of enhancer or promoter were fit

with the stand alone phylogenetic model, first with a joint turnover rate, then

separately. A p-value was computed using the LRT and confidence intervals are

derived using the Fisher information matrix.
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3.5.9 Housekeeping Vs. Variable gene analysis

Genes were annotated as house-keeping or variable using the GTEx v7 release

(GTEx Consortium, 2017). The variance across tissues was computed for each

gene then 20% with the smallest variance were annotated as housekeeping and

the 20% largest variable were labeled as variable. The gene sets were then

matched for mean expression across tissues using MatchIt (Ho et al., 2011).

Then, using the H3K4me3 probabilistic alleles, shared and separate rates are

fit for each set of elements on the Timetree and a p-value computed using the

likelihood ratio test. Confidence intervals are derived using the Fisher informa-

tion matrix.

3.5.10 pLI analysis

pLI values were obtained from, ExAC release 1 (ftp://ftp.broadinstitute.

org/pub/ExAC_release/release1/manuscript_data). The number of

species which contain an active element is computed using their assigned state

from the epiPhylo element. The effect of an additional species with an active

element was estimated using linear regression. Error bars were computed us-

ing method of moments estimator for the standard error of p from the binomial

distribution.

3.5.11 Dosage sensitivity gene conservation analysis

Lists of dominant and recessive genes were downloaded from the McArthur lab

GitHub gene lists (https://github.com/macarthur-lab). These list are
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the union of the Berg and Blekhman dominant/recessive lists (Berg et al., 2013;

Blekhman et al., 2008). Any genes that were in both lists were removed from the

analysis. Phylogenetic models with both separate and shared rates were fit to

compare both genes not in the list vs. genes in the list and dominant genes vs.

recessive genes using the promoter associated H3K27Ac elements. H3K27Ac

elements were mapped to grch37 using liftOver (Hinrichs et al., 2006) and mean

100way phastCons scores were calculated bwtool (Pohl and Beato, 2014). TFBS

density was computed using the Ensembl regulatory build for grch37 on the

lifted over elements (Zerbino et al., 2015).

Annotations of genes as “Metabolic” or “Generic Transcription Pathway”

were taken from Reactome 2018 (Fabregat et al., 2016). Genes with only one of

the functional annotations “R-HSA-1430728” or “R-HSA-212436” were selected

for analysis. Both the phylogenetic rate and phastCons analysis were performed

in the same manner as it was for the disease genes.
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3.6 Supplemental figures
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Figure 3.7: Estimates of γ depend on the number of expected substitutions
per site. Raw count data was simulated under the epiPhyloHMM model, with
all possible states being enumerated, for genomic regions of varying size (1,000
sites = 250KB) at varying rates for fixed ρA and πA. epiPhyloHMM converges to
inflated estimates of the correct values given increasing amounts of data, with
convergence occurring more rapidly for scenarios with a greater number of ex-
pected substitutions per site.
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Figure 3.8: Estimates of π0 are biased by mis-estimates of rate. Raw count
data was simulated under the epiPhyloHMM model, with all possible states
being enumerated, for genomic regions of varying size (1,000 sites = 250KB) at
varying rates for fixed ρA and πA. epiPhyloHMM converges to biased estimates
of the correct values depending on the rate.
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Figure 3.9: Estimates of ρA converge rapidly to the true value Raw count data
was simulated under the epiPhyloHMM model, with all possible states being
enumerated, for genomic regions of varying size (1,000 sites = 250KB) at varying
rates for fixed ρA and πA. epiPhyloHMM converges to correct estimates of the
true value of ρA.
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Figure 3.10: Example of ridge in log-likelihood surface for fitting epiPhylo
model. Log-likelihood is computed on finite grid of γ and π0 values with the
auto-correlation parameters (ρ0, ρ1) fixed to the true values of the simulated
data. The blue “X” indicates the true value while the red “X” indicates the MLE
parameter values on the computed landscape.
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Figure 3.11: Annotation scheme for epigenetic elements. All genic distances
and annotations are based on the human genome build GrCH38 (Zerbino et al.,
2018). H3K4me3 elements were annotated as promoters if they were within
+/ − 1.5kbp of a TSS. If they overlapped with TSS(s) for only one gene, they
were associated with that gene. If they overlapped with TSSs from more than
one gene, they were annotated as unassigned promoters. The same rules ap-
ply for annotating H3K27Ac marks as promoters, however there are additional
rules for annotating them as enhancers. If a H3K27Ac element was within
+/ − 10kbp but not within +/ − 1.5kbp of a TSS they were annotated as prox-
imal enhancers and assigned analogously to promoters. If an H3K27Ac mark
was between 10kbp and 100kbp away from the nearest TSS, they were anno-
tated as distal enhancer and assigned to the gene of the nearest TSS. H3K27Ac
elements further away than 100kbp were annotated as unknown.
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Figure 3.12: Ancestral reconstruction of gain/loss events on a rooted tree. Pie
chart area per branch is proportional to the fraction of total enhancer/promoter
state calls undergoing gain or loss. Numbers of gain/loss events were com-
puted from pairwise marginals of the transition matrices on each branch. (A)
Expected numbers of enhancer gains/losses based on H3K27Ac mark. (B) Ex-
pected numbers of promoter gains/losses based on H3K27Ac mark. Sites with
an H3K27Ac mark in one or more species were partitioned into enhancers and
promoters based on proximity to transcriptional start sites (TSS) in humans (fig.
3.11, see Methods).
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Figure 3.14: Distribution of epigenetic element annotations. (A) Distribution
of annotations for elements with the H3K4me3 mark. (B) Distribution of anno-
tations for elements with the H3K27Ac mark. (C) Distribution of the number
of associations with H3K27Ac active elements per gene. The relative height of
each of the color bars represents the fraction of associations that belong to each
annotation category.
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turnover based on the H3K27Ac mark where associated genes are classified as
being housekeeping or tissue specific and matched for average expression.
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CHAPTER 4

CONCLUDING PERSPECTIVE

The three chapters of this thesis represent distinct approaches to understand-

ing the biology of cis-regulation of gene expression. Chapter one analyzes cis-

regulation and gene expression from a global perspective, leveraging transcrip-

tional data to posit specific TFs as dictating particular transcriptional programs

without elucidating upon the mechanism at any individual loci. In contrast,

chapter two focuses on understanding the quantitative architecture of a sin-

gle cis-regulatory locus in a TF agnostic fashion, using gene editing data and

statistical modeling to understand the contribution of individual enhancers to

expression a specific gene. Instead of trying to understand how regulatory re-

sponses occur, chapter three seeks to understand the principles by which cis-

regulatory loci change over time, modeling epigenetic data with phylogenetic

models to compare turnover rates of different groups of CREs. This thesis lever-

ages new experimental techniques to understand how CRE function relates to

gene expression at both very short and very long timescales. By considering

each perspective, this thesis improves the state of knowledge about CREs at

both mechanistic and evolutionary levels by developing statistical methods for

data from modern experimental techniques.

Despite the progress made by recent work, there are still many open ques-

tions which further unifying the mechanistic and evolutionary perspectives on

CREs will allow the field to address. At present, it is still not well understood at

a quantitative level how cis-regulatory architectures evolve. While other work

(Villar et al., 2015; Berthelot et al., 2018; Arnold et al., 2014) and chapter three of

this thesis look at wholesale gain/loss of elements, relatively little has been done
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to assess how the strength of both individual enhancers and whole CRE ensem-

bles evolve in connection with the properties of their associated genes. Some

open questions of interest are: (1) how rapidly does the quantitative strength

of enhancers change between species? (2) under what conditions does synergy

between enhancers evolve? and (3) how do properties of associated genes, like

dosage sensitivity, shape the quantitative evolution of CREs? MPRA assays like

STARR-seq (Arnold et al., 2013) could be used in combination with continu-

ous trait models to address the first question. Detecting synergy would require

a combination of gene editing approaches like those from Shin et al. (2016) and

Hay et al. (2016), and high resolution chromatin conformation capture (Ma et al.,

2017) to associate genes and CREs with candidate loci. Understanding the rela-

tionship of genic properties to CRE evolution could then be done using the data

collected for the first two questions and devising statistical tests similar to those

presented in chapter three.

A second area that warrants considerable investigation is the importance

and prevalence of evolutionary compensation at CREs and the principles that

govern it. Previous work has reported evidence of compensation via transcrip-

tion factor binding site substitution both at individual loci (Hogues et al., 2008)

and at a genomic scale in a small number of species (Khoueiry et al., 2017).

Khoueiry et al. (2017) focused on enhancer sequence evolution as a function

of intrinsic properties of the enhancer itself and found evidence for increased

TFBS sequence turnover in TFBS dense enhancers, consistent with the TF col-

lective model (Spitz and Furlong, 2012). At present I see two major avenues to

further our understanding of evolutionary compensation: (1) investigating how

dosage sensitivity and temporal control of associated genes shapes compensa-

tion of both whole the whole CRE and underlying sequence; and (2) developing
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methods for detecting compensation without relying upon knowledge of spe-

cific TFBS, thereby sidestepping the need for specific semi-mechanistic models

of CREs. Addressing the first area to some degree is likely possible with exist-

ing datasets, either by comparing evidence of TFBS binding/CRE activity vs.

sequence turnover for subgroups of genes in a manner similar to chapter three

of this work. The second avenue might be addressed by exploiting machine

learning methods which predict CRE function from sequence and using them

to predict the activity trajectories of reconstructed ancestral sequences. These

trajectories could then be compared to a neutral model to detect excesses of

compensatory events.

Both of these areas of inquiry will become more pressing as genomewide

quantitative measures of CRE activity become more common, thus exacerbating

the need to move away from thinking of CREs using simple presence/absence

models.
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Andrulis, E. D., Guzmán, E., Döring, P., Werner, J., and Lis, J. T. (2000). High-

resolution localization of Drosophila Spt5 and Spt6 at heat shock genes in

vivo: Roles in promoter proximal pausing and transcription elongation. Genes

& Development 14:2635–2649.

132



Arnold, C. D., Gerlach, D., Spies, D., Matts, J. A., Sytnikova, Y. A., Pagani, M.,

Lau, N. C., and Stark, A. (2014). Quantitative genome-wide enhancer activity

maps for five Drosophila species show functional enhancer conservation and

turnover during cis-regulatory evolution. Nature Genetics 46:685–692.

Arnold, C. D., Gerlach, D., Stelzer, C., Boryń, L. M., Rath, M., and Stark, A.
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Scimè, A., Li, L., Ciavarra, G., and Whyte, P. (2008). Cyclin D1/cdk4 can in-

teract with E2F4/DP1 and disrupts its DNA-binding capacity. J. Cell. Physiol.

214:568–581.

Sethi, G., Ahn, K. S., Pandey, M. K., and Aggarwal, B. B. (2007). Celastrol,

a novel triterpene, potentiates TNF-induced apoptosis and suppresses inva-

sion of tumor cells by inhibiting NF-κB–regulated gene products and TAK1-

mediated NF-κB activation. Blood 109:2727–2735.

Shack, S., Gorospe, M., Fawcett, T. W., Hudgins, W. R., and Holbrook, N. J.

(1999). Activation of the cholesterol pathway and Ras maturation in response

to stress. Oncogene 18:6021–6028.

Shalgi, R., Hurt, J. A., Krykbaeva, I., Taipale, M., Lindquist, S., and Burge, C. B.

(2013). Widespread Regulation of Translation by Elongation Pausing in Heat

Shock. Molecular Cell 49:439–452.

Shaulian, E. and Karin, M. (2001). AP-1 in cell proliferation and survival. Onco-

gene 20:2390–2400.

Shin, H. Y., Willi, M., Yoo, K. H., Zeng, X., Wang, C., Metser, G., and Hen-

nighausen, L. (2016). Hierarchy within the mammary STAT5-driven Wap

super-enhancer. Nat Genet advance online publication.

149



Siepel, A. and Haussler, D. (2005). Phylogenetic Hidden Markov Models. In Sta-

tistical Methods in Molecular Evolution, pages 325–351. Springer-Verlag, New

York.

Simpson, K. J., Ranganathan, S., Fisher, J. A., Janssens, P. A., Shaw, D. C., and

Nicholas, K. R. (2000). The Gene for a Novel Member of the Whey Acidic

Protein Family Encodes Three Four-disulfide Core Domains and Is Asyn-

chronously Expressed during Lactation. J. Biol. Chem. 275:23074–23081.

Smith, E. and Shilatifard, A. (2014). Enhancer biology and enhanceropathies.

Nature Structural & Molecular Biology 21:210–219.

Spitz, F. and Furlong, E. E. M. (2012). Transcription factors: From enhancer

binding to developmental control. Nature Reviews Genetics 13:613–626.

Teves, S. S. and Henikoff, S. (2011). Heat shock reduces stalled RNA polymerase

II and nucleosome turnover genome-wide. Genes & Development 25:2387–

2397.

Todd, D. J., Lee, A.-H., and Glimcher, L. H. (2008). The endoplasmic reticulum

stress response in immunity and autoimmunity. Nature Reviews Immunology

8:663–674.
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