Loop Quantization:
~an Analysis and Algorithm

Alexander Aiken:'=
Alexandru Nicolaut
87-821

March 1987

Department of Computer Science
Cornell University
Ithaca, New York 14853-7501

*Supported in part by an IBM fellowship.

tSupported in part by NSF grant DCR-8502884 and the Cornell NSF Supercomputing
Center.

Abstract

Loop unwinding is a well-known technique for reducing loop overhead, exposing paral-
lelism, and increasing the efficiency of pipelining. Traditional loop unwinding is limited to
the innermost loop of a set of nested loops and the amount of unwinding is either fixed or
must be specified by the user. In this paper we present a general technique, loop quantization,
for unwinding multiple nested loops, explain its advantages over other transformations, and
illustrate its practical effectiveness. An abstraction of nested loops is presented which leads
to results about the complexity of computing quantizations and an algorithm.

Indez Terms-parallel processing, loop unwinding, transformation, Loop Quantization,

compilation, compaction

1 Introduction

Loop unwinding is known as an effective technique for improving the utilization of pipelined
machines. More recently loop unwinding has emerged as a technique for exploiting fine-grain
parallelism within loops—notably for Very Large Instruction Word machines, a class of very
tightly coupled multiprocessors [1]. Loop unwinding helps exploit fine-grain parallelism by
providing a large number of operations (the unwound loop body) for scheduling by operation-
level code transformations such as Trace Scheduling [2] or Percolation Scheduling [3]. The
operations in the unwound loop body come from previously separate iterations and are thus
freer of the order imposed by the original loop. Inside this unwound loop-body operations
may be scheduled for parallel execution subject only to data dependencies. Considerable
parallelism too irregular to exploit using traditional methods (e.g., vectorization) may be
found in this way.

The basic technique is very simple. The body of the loop and the control code (counter
and exit-tests) are replicated a number of times. Figure 1b shows the effect of unwinding the
loop in Figure la three times. This form of unwinding is usually used for simple for loops,
but other forms of iteration can be dealt with in similar fashion.

The unwound loop may sometimes be simplified by removing the intermediate tests and
jumps introduced by unwinding. This may require compile-time knowledge of the number
of iterations executed. For example, if the user knows that the loop in Figure la executes a
multiple of three times, the extra tests and jumps in Figure b may be removed. Alternatively,
if the pattern of memory references of the loop can be determined by static analysis (using
disambiguation techniques [4,5]), additional memory locations may be allocated to allow extra
iterations of the unwound loop to execute safely. Even if no information about the bounds of
the loop in Figure la is available at compile time, adding two extra elements to array A allows
the tests and jumps to be removed. Note that the additional storage required is a function
of the number of times the loop is unwound, not of the number of times the original loop is
executed. More complex methods for removing tests and jumps from unwound loops exist,
including testing the loop bounds at run-time and then executing an appropriately unwound
loop. While they introduce some overhead, such methods deal effectively with statically
unpredictable loops and references.

The above description surveys current uses of loop unwinding. One of the major dis-

advantages of current techniques is that multiple nested loops cannot be unwound. This

Fori = x, y,3 Do
Ali] : = expr(i);
If i>y Then Goto exit;
Ali+1]: = expr(i+ 1);
If i+1>y Then Goto exit;
Ali+2]:= expr(i +2);

Fori = x, ydo
Ali] - = expr(i); End;
End; exit:
(a) Original Loop (b) Loop Unwound three times

Figure 1: Simple loop unwinding.

significantly limits the usefulness of loop unwinding, particularly for architectures designed to
exploit fine-grain parallelism (i.e., VLIW’s [6,7], ROPE (8], Microflow [9] and Alliant [10}). It
is often the case that parallelism is found across several nested loops; this situation is illus-
trated in Section 3. In the rest of this paper we present a technique, called loop quantization,
that overcomes the problem by allowing correct multiple-loop unwinding for arbitrary nested

loops. !

Quantization allows the extraction of parallelism that was previously believed to be de-
tectable only at runtime [11]. Furthermore, quantization can extract significant amounts of
fine-grain parallelism in cases where higher-level parallelism exploitation methods (i.e., vec-
torization and loop interchange) do not apply.

Loop Quantization can help achieve significant speedups in scientific code. The main loop
of weather code is naturally amenable to quantization, as are the Livermore loops[12] in their
nested context. Several of the Livermore loops (e.g., 5,6,11,24) are considered “hazard bound”
[13] and do not yield to previous techniques. These loops can be successfully quantized, allow-
ing fine-grain paralellization. Using Percolation Scheduling to exploit the fine-grain parallelism
exposed by loop quantization, the speedups achieved in our experiments range from four to six
over code produced for the Cray-1 by the CIVIC compiler. The amount of parallelism exposed
is often limited only by the hardware resources available. Because quantization rearranges the
order of execution of the loop iterations less dramatically than other transformations and be-

cause it can expose even irregular fine-grain parallelism, quantization is applicable to a large

'Loop unwinding should not be confused with loop jamming (fusion), a transformation that merges the

bodies of two loops into a single loop, thus reducing loop overhead.

class of programs. Furthermore, quantized loops naturally map onto parallel architectures
with hypercube or cube-connected-cycles topologies (e.g., Cosmic-cube[14], Microflow[9]).
The remainder of this paper is divided into six major sections. Section two describes
and presents correctness conditions for loop quantization. Section three develops two exam-
ples. Section four presents an abstract representation of loops that captures the information
required for quantization. In section five this representation is used to prove a number of
properties of loop quantization and to develop an algorithm. The appendix contains proofs

of the technical theorems and details of the algorithms.

2 Loop Quantization

Given enough processors, optimal speedups can be achieved if all nested loops are fully un-
wound. Because no artificial constraints are introduced by the indexing order, limitations are
imposed only by data dependencies. Techniques such as Percolation Scheduling can then be
applied to exploit the available parallelism. Unfortunately, complete unwinding is not usually
feasible because of processor and memory limitations and because loop bounds are not always
known at compile time. Still, even if the amount of unwinding is limited, the ability to unwind
all loops is necessary. Unwinding the innermost loop exposes parallelism only in that loop.
This is not satisfactory, because the parallelism is often available between several of the outer
loops.

The basic idea of loop quantization is to unwind a few iterations of all nested loops. The

unwinding is constrained by three factors:
1. Correctness. Quantization must not alter the execution order of dependent statements.
2. Awvailable parallelism. The unwinding should maximize the parallelism exposed.

3. Space considerations.

2.1 Formalization of Loop Quantization

Consider n nested loops as shown in Figure 2. Loop n is the innermost; loop 1 is the outermost.
A loop indez I; and an increment K, are associated with each loop /. Values of I; and K are

denoted by ¢, and k; respectively. The loops are assumed initially to be normalized to range

from 1 to IV; with increments of 1; an algorithm for bringing loops into this normal form is
well-known [15].

In the following discussion we assume that the n loops are the only ones affected by the
quantization and that indirect references are linear functions of the iteration vectors. (An
iteration- or index-vector [16] consists of the setting of the induction variables that uniquely
identify an iteration of the nested loops.) We also assume that two references to an array
Alty,19,. .. 1) and A[j1, ja2,- .., jn] are equal if and only if ¢, = ji,49 = Jo,...,%, = jn. That
is, no ambiguous equivalence and common statements are used.

To unwind loop ¢ k; times, the loop-body is duplicated k; times. In the first duplication of
the original body the index I; is unchanged; in the second, each occurrence of I; is replaced
by I; + 1, and so on, up to I; — k; — 1. The loop increment K; is set to k;. For the next
outermost loop, (i — 1), the newly unwound body is itself replicated k;_; times, with indexes
Ii_y toI;_y + ki_1 — 1 replacing I;_,. This is essentially equivalent to unwinding all nested
loops fully when the upper bounds are kq,....k,.

For this unwinding to be useful, it must preserve the semantics of the original loop. In-
formally, this requires that each statement S executed for some original index-vector value
1= (%1,-.-,%,) use the same data in the original and unwound loops. In particular, if the
statement accesses a value computed in an iteration preceding it (i.e., calculated by a state-
ment with an index vector j < i, where < denotes lexicographic ordering), it should access
this value in the unwound loop. The goal is to find a set of loop unwindings such that the
quantized loops preserve the semantics of the original loops.

If only the innermost loop is unwound no problems arise; this preserves the execution
order of the iterations. However, when other loops are also unwound, an iteration of the
quantized loop consists of a n-dimensional box B with dimensions k; by k; by ... by k, (see
Figure 2). All statements in B are executed before the box is shifted (by a “quantum jump”)
along any of the dimensions. The movement along the n dimensions, while quantized, is still
in normal loop order (i.e., first along dimension n, then along dimension n — 1, etc.). This
obviously alters the order of execution. For example, if loop 1 is unwound a statement S; in
the original iteration (¢; +1,...,1,) is executed before a statement S, in the original iteration
(31,--.,tn+kn). The quantization preserves the program’s semantics if S; does not require the
results of S, and 53 does not use information that is altered by S;. If such dependencies exist

the quantization is illegal, although other quantizations may succeed. The execution order of

Forj = 1,Ny, k;do i

Fori = 1,N,, k> do
S('«l) 179 6 00 0000060000 eeaeo0
S(i+1,;) “ e o ® o o 0 0 00 000 00
Sirka-1,) e
SGj+ 1) el
S(|+1l‘+1) ® 0 0 0 00 00000000 e
S(i+k2.111+]) ki §7 ¢ o o @ ;“:_o—_-_: : . : : : : :
Forj = 1,N; do ::::::::::J:::"'
g?fl=1,N2d0 .0..00'0000‘0.0:::
End I,]) S(i,,J‘+k[-1) e o 0 o -;o ¢ o o o o!o * 0o 0 0 o i
End; S(i+kp-1,j +ky-1) _] 2 _J?'“ 2
End I“ ateration 2iteration
End
Iteration Space for the loop
a) Original loo b) Quantized loo ¢) Quantum box (k1 by k2
p p y

Figure 2: Sample two-dimensional loop quantization.

dependent statements in the same iteration of a quantized loop is preserved by quantization.

If a quantization is illegal because of conflicting references, it may be possible to increase
the size of the “box” to include any dependent references. However, this may require un-
winding a loop fully. In many applications one loop—of several nested loops—is executed
relatively few times; hence, full unwinding on that loop may be feasible. In cases where full

unwinding is not practical, limited unrollings must be chosen to ensure correctness.

2.2 Loop Quantization Conditions

2.2.1 Dependencies

Assuming that useless writes to memory are eliminated by dead-code removal, two types of

dependencies may be violated as a result of loop quantization: ?

1. Write-before-Read: A memory location is written in iteration i, and in iteration j > i

the same memory location is read.

2. Write-after-Read: A memory location is read in iteration 7, and in iteration 7 > 7 the

same memory location is written.

The execution order of such dependent statements must be preserved to ensure correctness.

The order of independent statements is irrelevant.

?Useless writes arise because of output dependencies [17]. Our techniques apply directly to output depen-

dencies that cannot be eliminated; we have made this simplification only for notational brevity.

To determine whether a dependency exists between two statements and to establish the
dependency type, reads in one statement are compared with writes in the other. Because
scalar variable accesses are invariant with respect to loops, they cannot affect the semantic
correctness of the quantization. Furthermore, dependencies between references in the same
iteration are not affected by quantization. Thus, it is sufficient to consider only dependen-
cies caused by indirect references occurring in different iterations; these are the loop-carried
dependencies of Kuhn [16].

Techniques for determining (to the extent possible at compile time) whether two indirect
references might access the same memory location may be found in [4,5]. For notational sim-
plicity we assume that index references are reduced to the primitive form (a i, + by, ..., api, +
b,), where ¢ is the iteration vector and the a;’s and b’s are constants. The following discussion

applies to arbitrary array indexes.

2.2.2 Quantization Conditions

Given two conflicting indirect references A[ali; +b1,...,a.i, +0b]] and A[alj; +b],...,a"j. +

b;], we can express the second iteration vector j as a function of the first iteration vector z by

@t + (b — b)) apin + (b, — b))

7= ,) = (@11 + b1,y apin+b,) = (G1s-- -1 dn)

"
an

ay
for values of the 7;’s such that the j;’s are all integers. This must be possible; otherwise, there
cannot be a conflict.

Equating i and j element-wise from left to right, we may determine whether i - j,ori > j.
For a quantization to be legal, we must ensure that the order of the conflicting references is

preserved by the quantization.

Definition 2.1 Let the lower bound of a box B be the index vector of the quantized loop
for which the original loop iteration with index vector 7 is executed. Assume that original
iteration ¢ occurs in a box with lower bound L = (l4,...,1,) and original iteration j occurs
in a box with lower bound L' = (/,...,l'). We say the quantization is legal if one of the

following conditions holds:
1. if ¢ >j then L ~ L' or 2. if :< j then L <L’

Because the i.’s runs from 1 to N, and the new indexes run from 1 to N, by increments

of k., we obtain:

— 11— 1
L=

in— 1
kn

jn“ 1
kn,

— i— 1
|kn +1), and L':(L]lk—ljkﬁ—l,...,[

Jei4+1,...,] Jkn +1).

As with the original iterations, the lower bounds of the quantized boxes are ordered lexi-
cographically. That is, the box associated with L is executed before the box associated with
L' ifand only if L < L. Using symbolic element-wise comparison we can determine if either

of the two conditions above is satisfied.®

2.3 The Use of Loop Quantization Conditions

The conditions presented above may be used in several ways. The simplest is to let the
system perform a prespecified unwinding using some fixed k.’s, modified by range analysis of
the bounds of arrays and loops. A deficiency of this approach is that it does not provide any
information about what k.’s may be appropriate or how to unwind so as to best utilize the
space we trade for speed.

A more reasonable approach, which we are incorporating into our percolation scheduling
compiler, improves efficiency and applies even when loop bounds are unknown. We notice
that a > b implies |£| > | 2|. Furthermore, a - b > k implies |2] > [2]. These rules can be
used to compare L and L’ symbolically, without computing specific values for each iteration.
This can also help in picking the right unwinding (i.e., pick k. < k). Doing such symbolic

comparison, we may determine that:

e L > L' If this is the condition needed to ensure the legality of the transformation, the

quantization may be performed, using arbitrary k.’s.

e L < I'. If this is the condition needed to ensure the legality of the transformation the

quantization may be performed using arbitrary k.’s.

o Undetermined situation. This occurs if there is no strict ordering; none of <, >, or
= hold between L and L', and there are some <’s and >’s between various elements.
T — 1 b T _ b+1 | 1
For example, for L = (L“—I;ILJ, L)) and L' = ([2], [7:;—]) we have L“—ljl—J > |&] and
|&] < [5EL]. This is undetermined, because
2 2

*In this context symbolic comparison is simply proving statements about the relationship between two
(linear) functions. For instance, if fi(¢,7) = 25 + 3¢ ~ 4 and f, = ¢ + 3, our system can prove Vi,j > 0 :

fi(3,7) > f2(2)-

-1

o~

=L whena=1,k =ky=3,b=1;
L >L"whena=2k =ky=3,b=1;
L<L' whena=1,k =ky=3,b6=2.

In this example correctness may be ensured by not unwinding on the first dimension
(ky = 1). This preserves the order of references because L“—dlij > |1]. If ky is greater

than one, than the second dimension (on b) must be fully unwound.

When a conflict occurs, the system compares L and L' and decides which dimension(s) (if
any) may be fully unwound to satisfy the conditions. For example, if there is a value e such
that for all ¢ where 7 < e, ; > Il and [, = I, then the safety of quantization is undetermined.
If full unwinding on dimension e is feasible, doing so forces [= I. because for any original
iterations i, and j, %e < N, and j. < N.. That is, for all 7. and j., {. = [.. The conflict on
the et* dimension is eliminated because all potentially conflicting references are in the same
box.

There is no reason to unwind on a dimension if dependencies exist on that dimension
that prevent software pipelining or parallelization. This indicates that there is no possible
performance gain for the statements under consideration. To decide if the unwinding will
achieve any speedup, all statements in the loop body must be considered. Even when no
major overlap can occur, exit-tests might still be eliminated, and initialization and tests from
several original iterations might be done in parallel.

Quantization may be hindered by the presence of arbitrary conditional jumps in the loop
body that limit the ability to disambiguate dependencies at compile time and to accurately
evaluate the run-time speedup achieved by a given unwinding. The accuracy can be signif-
icantly improved by the use of conditional-jump probability information. Such information
can be obtained by the system using test runs or analysis, or it can be supplied by the user.

We have found such information to be easily available in typical scientific code.

3 Examples

3.1 Example 1

Consider how loop quantization techniques deal with recurrences. A simple program is shown

in Figure 3. Transformations such as loop interchange or vectorization do not apply here.

Do i=1,n
Do j=1,n
(1) Ti=X[i+16,j];
(2) T2=X[i+1,j]; /* Notice that statements (2 and 4) form a recurrence */
(3) Ti1=T1+T2;
(4) X[i+1,j+1]1=T1;
0d; 0d;

Figure 3: Original recurrence code.

For example, in the original loops, X[17,2] is read in iteration (: = 1,j = 2), and written
in iteration (¢ = 16,5 = 1). Because the loop on j is innermost, iteration (i = 1,5 = 2)
occurs before (i = 16,5 = 1); a read before a write. Reversing the loops will write X[17,2]
in iteration (j = 1,7 = 16) and read it in iteration (j = 2,7 = 1); the write occurs before the
read, which is incorrect. Vectorization is infeasible, even if expansion and loop distribution
are used. The first statement can be vectorized, but this only reduces the execution from 4 xn?
to 3xn? + 1 steps, even for a processor array of size n. This is wasteful if n is large. A similar
speedup (3 * n? execution steps) can be obtained on a multiprocessor by running the first
two statements in parallel; attempting to distribute the loop on a traditional multiprocessor
with more than two processors will incur very high communication overhead due to the tight
dependencies between the iterations.

The loops may be quantized by unwinding on both i and j, which exposes enough fine-
grain parallelism to keep the available processors busy (e.g., in a VLIW machine, or any
other type of tightly coupled multiprocessor). Quantization succeeds because it preserves the

relative order of execution of the critical statements inside the “box”. By comparing

(1) T1:= X[i + 16, j]

and

(4) X[+1,5' + 1] := T1;

the disambiguator can determine that conflicts between iteration h = (i,j) and &' = (&', ;')

Do i=1,n,15
Do j=1,n,15
T1=X[i+16,j]; /* j+0, i+0 */
T2=X[i+1,j];
T1=T1+T2;
X[i+1,j+1]1=T1;
T29=X[i+2,j+15]; /* j+15,i+0 =/
T30=X[i+1,j+15];
T29=T29+T30;
X[i+1,j+16]1=T29;

........................

T1=X[i+31,j]; /* j+0, i+15 */
T2=X[i+1,3j];
T1=T1+T2;
X[i+16,j+1]1=T1;
T29=X[i+31,j+15]; /* j+15,i+15 =*/
T30=X[i+16,j+15];
T29=T29+T30;
X[i+16,j+16]=T29;
0d; 04;

Figure 4: Same recurrence with quantized unwinding.

10

can occur when i’ =i — 15 and j' = j + 1. Since i > ¢, it follows that A > A’ and thus

i—1 j-1
K; - K;

|K; + 1)

must be greater or equal to

1 — 16

e

JKi+1, |2 K;+ 1)
K;
if quantization is to be allowed. In general this is not the case, as

=2

but
j-1 7

< | L=

Ul <)

and thus there is no definite ordering for arbitrary K; and K;. However, because 7 — 7' = 15,

choosing K; = 15 ensures that
T - 1J . T — 16J
>
15 - 15

and therefore L > L'. K; has no influence in this case; any value chosen for it preserves

correctness. For this example we assume that K; = 15 as well. The other dependency that
must be examined is between

(2) T2:= X1+ 1,j]

and

(4) X[i"+ 1,5 +1]:=T1;

where h = (4,5), A = (¢’ = 4,5' = j — 1), and thus A > h'. Since i = ¢ and j > j', it
follows that L > L’ allowing semantically correct quantization. The resulting loop is shown
in Figure 4.

Our system will decide that the 15 unwindings along ¢ (¢ to ¢ + 14) are independent of one
another and can be done in parallel. Applying folding and balancing (tree height reduction
[17,18,19]) techniques to each such group (for j to j+14), each group can, resources permitting,
be executed in 6 steps: 1 for loading, 4 for computing sums and storing, and 1 for storing

the last results (see Figure 5). To fully exploit this parallelism, 16 processors are needed per

1l

X[i*-! J+15]
Store

/ \
NN *“*,';;::
/\ X[",léjt*olr]e

AYAYS \/ \

Figure 5: Balanced tree for i, j..j+14

unwinding on ¢, for a total of 15*16 processors®. The speedup achieved is from 4 x n? steps
to 6 «(n/ky) * (n/ky). (In this example, k; = ky = 15.) If more resources are available, the

quantization may be greater, resulting in even more dramatic speedups.

3.2 Example 2

This example illustrates how Loop Quantization can expose parallelism previously observable
only at runtime [11].

Consider the loop in Heuft and Little’s example, shown in Figure 6. To simplify the
discussion we assume that intermediate exit-tests have been removed by any of the methods
described above. The upper bound for each of the nested loops is nine in the original example;
because quantization is trivial for such a loop, we have made the bounds of the outer two loops
arbitrary. In the section on mitred quantization we show how the example may be quantized
even if the inner loop has unknown bounds.

The tests described in section 2.3 show that the loop can be quantized safely. The details
of the quantization of this loop are similar to those of the previous example and are omitted.

Based on symbolic analysis, the system can determine a correct and effective quantization

*By reducing the speedup slightly, from 6 to 8 time steps per unwinding of 7, we could do with only 15*8

processors by adding 2 extra steps for initial and intermediate storage of results.

12

DO 100 I1 =0, N

DO 100 I2 = 0, N

DO 100 I3 =0, 9
S1: A(I1,12+1,1I3] = B(I1,I2,I3+2) * C(I1,I2) + U(I1,I2) * V(I1,I2)
S2: B(I1+1,I2,I3) = A(I1,I2,I3+6)* D(I1,I3)

100: CONTINUE

Figure 6: Sample loop from [HeuLitt82]

subject to the data-dependencies present and the resources available. Assuming that enough

d .

rocessors are available® the quantization shown in Figure 7 yields optimal speedups.
P q g y 1Y p P

4 An Abstraction of Nested Loops

The remainder of this paper investigates properties of loop quantization. In this section
an abstract representation of loops is developed; the abstraction captures information about
loop-carried dependencies [16]. Our representation is quite general and is particularly powerful
when applied to loop quantization. We prove a number of properties of loop quantization using
the abstraction.

The final section uses the abstraction to develop an algorithm for computing a strict
quantization. A quantization is said to be strict if all the unwound copies of the original
loop body are data-independent for all possible executions of the quantized loop body; the
unwound iterations can always be executed in parallel. Thus, the compacted version of a
strictly quantized loop may be represented as a list of unwindings and the compacted body of
the original loop—no explicit unwinding is necessary. Note that a strict quantization is not
necessarily vectorizable; there may be dependencies between iterations of the original loop
that occur in different iterations of the quantized loop.

In what follows, L is a set of n nested loops, A is an n-dimensional array, and
A[fi,..-, fa] is a reference to A where f; is an expression for the jth subscript of A4 us-

ing iteration variable ¢;. We assume for simplicity that all arrays have the same number of

>Three hundred are required for this example, under the same assumptions as in [11]

13

DO 100 I1

»

o, N, 9
o, N, 9
0, 9, 9

DO 100 I2 =
DO 100 I3 = 0, 9,
S1: A(I1,I2+1,I3] = B(I1,I2,I3+2) * C(I1,I2) + U(I1,I2) * V(I1,I2)
S2: B(I1+1,12,I3) = A(I1,I2,I3+6)* D(I1,I3)
Si: A(I1+49,12+10,I3+9] = B(I1+9,I2+9,I3+11) * C(I1+9,I2+9)
+ U(I1+9,I2+49) * V(I1+9,I2+9)
S2: B(I1+10,12+9,1I3+9) = A(I1+9,I2+49,I3+15)* D(I1+9,I3+9)

100: CONTINUE

S1 in iteration (i1,i2,i3) depends on S2 from iteration (i1-1,i2,i3+2)

S2 in iteration (i1,i2,i3) depends on S1 from iteration (il1,i2-1,i3+6)

Figure 7: Quantized Loop and Dependency Pattern

dimensions.

The abstraction consists of a comparison table and a distance table for L. The comparison
table captures the ordering of read and write references across iterations. The distance table
describes the “distance” (in numbers of iterations) between conflicting references.

Comparison tables are based on the “direction vectors” of Wolfe [15]. Comparison tables
have also been defined independently by Kennedy [20]; he uses “direction matrices” to explore
vectorization. Distance vectors (also called “difference vectors”) were originally defined by
Lamport [21]. Cytron makes use of what are essentially distance tables to develop an algorithm

for computing delays in DO-ACROSS loops [22].

4.1 Comparison Tables

Definition 4.2 The time at which an element [j,,...,J,] of array A is addressed by the
reference A[fi,..., f,]is the tuple (f'(41),- .- £ (4n)), if all of the inverses exist. Times are

ordered lexicographically.

Loop quantization requires that the read and write references of an array in L be compared;

we present a concise notation for comparing references. We assume that the upper and

14

lower bounds of index variables are unknown, and that array references contain no constant
subscripts. Thus, the inverses in Definition 4.2 are always well-defined. These restrictions
are included to make the development concise; our techniques can be easily extended to
accommodate constant references and knowledge of upper and lower loop bounds.

A quantization is correct if and only if it preserves the order of reads and writes for each
memory location. We begin, therefore, by defining a notation for discussing this order for a

particular location.

Definition 4.3 Let A[r] and A[w] be a read and write reference (respectively) of a one-
dimensional array A in L. Let p be the pair (r, w). Then z?, the order of reads and writes at

location = with respect to p, is:

=% = rHz)=wl(z)AI
N -%wwvw-l(z)
>, & riz)>w 1(:c)/\I
<o = 1(1') (ll?)/\I

where [is the predicate r~!(z) e N Aw™l(z) € N

If 7 is =, then z is both read and written in the same iteration. The relation <, specifies
z is read before it is written, >, that it is written before it is read. #, indicates that there is
no conflict at z.

The generalization to multi-dimensional arrays is straightforward.

Definition 4.4 Let A[rq,...,r,]and A[w,,...,w,]be a read and write reference of 4 in L.
Let p be the tuple (p1,...,p,) where p, = (rg,wi). If £ = (z1,...,2,) is a location in array

A, then z? = (20',. .. zP").

Having categorized the possible read/write orderings for a pair of references with respect
to a single location, we can express the possible read/write orderings for a pair of references

over all possible locations.

Definition 4.5 Let B[r] and B[w] be a read and a write reference (respectively) of a one-

dimensional array B in L. B[r| and B[w| are compared as follows:

15

s if Yz e Nzinw) = £,

=5 if YzeNzimw == vQ

>s if Yee Nzimw) = . vQ

Ve e Nzimw) = < v Q

=5 if Je,y,z€ N st.z(m) = 5 Aylmw) — o A Zmw) = =

S O e W N
N
o
—
-

7% if Jz,y e N stz = > Ayl = o)

where Q is the predicate (") = #o. The value of §(r, w) is the lowest numbered case which

applies.

The order notation has been used in the definition for clarity. In practice, standard
diophantine equation analysis may be used to compute é(r,w). (It is easily verified that
exactly one case holds for all » and w.) We will frequently write r>;w for §(r,w) = >.

Elements are read and written in the same iteration if r=sw. The relation #; is included
for completeness; clearly there is no dependency between two references if r#£sw. We assume
that all such read/write pairs are eliminated from consideration. The relation r<sw indicates
elements are read before being written. The interpretation of » >sw is symmetric. 7?sw holds
if and only if for some elements y and z, y is read before it is written (r~(y) < w™!(y)) and
z is written before it is read (77'(z) > w™!(z)). In this case no a priori order of references
can be established. The relation r?=sw is included to distinguish the case where references
can occur in either order and there is an element u where r~!(u) = w™!(u).

This case analysis is similar to, but more refined than, the method of Wolfe [15]. We
have added the relations 75 and ?=5. We use the more complex analysis because our methods
apply even if r?5w or r?=sw. The inclusion of 75 and ?=;, however, greatly complicates
the technical presentation. We have chosen to omit these from most of what follows; the
extensions necessary to accommodate 75 and ?7=; are included in the appendix.

The following definition extends the comparison of references to multi-dimensional arrays.

Definition 4.6 Let A[ry,...,7,] and A{w;,...,w,|be a read and write reference of A in L.

Then
8(A[ry,...,rpl, Alwy, ..o, w,))= (8(r1,w1),y ..o, 8(Tn, wn))

This is a comparison tuple.

16

For example, if the statement A[z,y—4, z] := A[z+3,2y+1, z] appears in L, the comparison

tuple for this read/write reference pair is (<5 75 =¢).

Definition 4.7 Let ¢ = (c1,...,¢,) be a comparison tuple, where each ¢; is >5, <s, or =4.
Let j be the least index such that c; is not =4.
If there is such a j then ¢ is a defining position for ¢ if ¢j, = ciA\Vz < k,c, = =5V, = cj.

If the is no such j, then n + 1 is taken to be ¢’s only defining position.

A defining position of a comparison tuple is an entry that determines the lexicographic
ordering of read and write references. For instance, let ¢ = (=5 <5 =5 <5 >5). The defining
positions are c¢; and c4; this comparison tuple indicates that locations are read before being
written. Intuitively, any legal quantization must preserve this order by not unwinding “too

much” on one of ¢y or ¢4. This will be formalized in the next section.

Definition 4.8 A comparison table of C for loop L contains a comparison tuple
(5(Ak{7'1, ceey 'I’n], Ak[wl, ey wn])

for every distinct pair of read and write references of each array A;. C;; is the jth component

of tuple :.

As an example, consider Figure 3. There are two pairs of read and write references—
(X[E+ 1,5, X[¢+ 1,5 +1]) and (X[¢ + 16,5], X[t + 1,5 + 1]). It is easily verified that the
comparison table for this loop is:

>§

Il
o

<5 >
4.2 Distance Tables

In this section we describe the distance table, which is used in conjunction with the comparison
table to compute quantizations.

For the computation of the unrolling of each loop, a notion of “distance” (in time) between
references to the same array element is needed. A one-dimensional array B is used to introduce

the idea.

17

Definition 4.9 Let B[r] and B[w]| be read and write references of B in L using iteration

variable . We say a k-unwinding of loop /; is strict if and only if

Ve e N r~l(z)Ow (2)A Q = [r_lk(Z)J . {w';(w)J

where O is either < or > and Q is the predicate r!(z) e N A w™l(z) € V.

A quantization is said to be strict if the execution of the quantized loop does not contain
dependent array references in an iteration of the quantized loop that were not in the same

iteration of the original loop.

Definition 4.10 Let B[r] and B[w]| be read and write references of B in L.

p(r,w)= max Vze N7 '(z)0w (z)AQ = [T_lz(z)J 0 [w—l(Z)J

z€ZtuU{oo} z

where O is either < or > and Q is the predicate 7 '(z) e N Aw™(z) € N.

Thus p(r,w) is the greatest strict unwinding of a loop with respect to r and w. Note that
oo is a possible value. This is introduced to handle the case where there is no greatest strict
unwinding; oo is taken to be greater than any value of Z 7.

The value of p(r, w) depends on é(r, w). For example, if §(r, w) = =4, then p(r,w) = oo.
This follows trivially because all dependent references occur in the same iteration if r=sw.
p(r,w) can be computed for the other cases of §(r,w). Interestingly, it is possible to have
strict unwindings greater than one even if r?sw or r?=sw. The details are included in the
appendix.

We now define distance tuples and tables analogous to the comparison tuples and tables

introduced earlier.

Definition 4.11 Let A[rq,...,r,] and A[wi,...,w,]| be a read and write reference (respec-

tively) of A in L. Then

p(A[ry, ... rp], Alwy, .. wa])= (p(r1,w1), - -y p(Tr, wh))
This is a distance tuple.
Definition 4.12 A distance table D for loop L contains a distance tuple

S(Ak[rr,y ..oy rnl, Ag[wy, - . oy wy])

18

for every distinct pair of read and write references of each array Aj. The order of the tuples
in the table is assumed to be compatible with the comparison table for L. D;; is the jth

component of tuple <.

As an example, consider once more Figure 3. The distance table is:

oo 1

15 1

4.3 Correspondence Between Tables and Loops

From the previous discussion it should be clear that C and D can be computed for every L. In
this section we show that every compatible C and D pair corresponds to some L (compatibility
is a simple well-formedness condition). This permits us to dispense with loops entirely and

work only with the abstract representation.

Definition 4.13 Let C be a comparison table and D a distance table, with the elements of

C restricted to >4, <5, =s. C and D are compatible if and only if

1. C and D have the same dimensions
2. Cij € {<,5, >5} = Dij cZ"

3. C,’j € {:5} = Dij = 00
The following shows how to compute a compatible comparison and distance table from L.

Definition 4.14 Let L be a set of n nested loops. Then L%, a comparison table, and L?, a
distance table, are defined for L:

o) i
L;; = ‘5(7']‘,101')

where r; is the jth component of the read reference of the ¢th read-write reference pair (w; is

similarly defined).

Theorem 4.15 For every compatible pair of comparison and distance tables C and D, there

exists an L such that L¢ = C and L? = D.

19

Proof: For each pair of tuples ¢; of C and d; of D construct a statement R; := W,, where
R; is a read reference and W, a write reference of an array A4; such that é(R;, W;) = ¢; and
p(R;, W;) = d;. This can be done as each component of the tuple is independent of the others

and C and D are compatible. O

5 Computing Quantizations

In this section we prove several results about the complexity of computing quantizations, and
develop an algorithm for computing strict quantizations.

The order notation must be extended to work with comparison tuples rather than read/write
reference pairs. z¢, where z is a location and c is a comparison tuple for a read/write refer-
ence pair p, is defined to be zP. z{ is the ¢th component of z¢. The reader may question this
change; after all, a particular ¢ represents many possible reference pairs. The following key

lemma justifies the change in notation.

Lemma 5.16 Let c and d be compatible comparison and distance tuples. For simplicity, we
assume that ¢ has no 75 or 7=4 entries. If the quantization unrolls loop /; more than d; times
then there is a location z such that z{ = =, in the quantized loop. If the quantization unrolls
loop [; less than d; times then z{ in the quantized loop and z{ in the original loop are always

equal.

Proof: Follows immediately from the definition of d;. O

We will also make use of the fact that regardless of the unwinding of a loop /; and compari-
son tuple ¢, there is always some element z such that z{ is the same in both the quantized and
original loops. This is true because we assume upper and lower loop bounds are arbitrary, and
therefore loops may not be fully unwound. As stated before, our techniques can be extended

to cover the case where loop bounds are known.

20

5.1 Properties of Loop Quantization

We now prove some general properties of loop quantization. The development is geared toward

pinpointing exactly which quantizations can be feasibly computed.

Definition 5.17 A quantization q of L is an n-tuple (¢1,...,qn), ¢ € Z% U {00}, where

/

g; = oo indicates that loop /; may be unwound an arbitrary number of times.

Definition 5.18 Let p and ¢ be quantizations of L. Then p < ¢ = Vj p; < ¢, (i.e., the

product ordering). We take oo to be greater than any element of Z+.

A quantization g is said to be mazimal if it is a legal quantization and there is no quan-
tization ¢’ that is legal and ¢ < ¢’. A quantization ¢ is mazimum if it is legal and for any

other legal quantization ¢’, ¢’ < q.
Fact 5.18.1 For every L, there exists a maximal quantization.

Lemma 5.19 There exists an L such that L has maximal quantizations ¢; and ¢, and q; £ ¢

and ¢2 £ q1-

Proof: Let C = [>5 >5 <s] and U = [111]. Then (0o 1 oo) and (1 oo oo) are both
maximal quantizations.

To see this, assume that ¢; > 1 and ¢ > 1. Applying Lemma 5.16, there is a location z
such that z¢ = (=, =, <,) in the quantized loop. However, z¢ = (>, >, <,) in the origi-
nal loop, showing that the quantization does not preserve the order of conflicting references.
Another check shows that if ¢¢ = 1 or ¢; = 1 the order of references is preserved. Thus both

quantizations are maximal. O

Barring the existence of a unique maximum, what should be the criteria for an optimal
quantization? Ideally, we would like to maximize two things: the number of co entries in the
quantization and the product of the other components. Maximizing the number of components
that are oo permits the greatest leeway in code generation for an arbitrary machine and
generally provides the greatest speedup (subject to the length of dependency chains induced
by loop-carried dependencies).

Let the infinity number |q|, of quantization ¢ be the number of components that are oo.

21

Definition 5.20 A quantization g of L is best if ¢ is legal and
Vq's.t. ¢ is legal, [¢loo > 4]0 V (Igloo = 1€/l A] @2])
A qleZ+

Theorem 5.21 Computing a best quantization of a set of nested loops L is NP-hard.

Proof: In appendix. O

It is unfortunate that computing best quantizations is NP-hard. However, careful exam-
ination of the proof reveals that the exponential cost is proportional only to the number of
dimensions of the largest array involved. If a loop contains references to n-dimensional ar-
rays, a brute-force algorithm can compute a best quantization by performing 2" simple tests.
(The approach is to check every possible subset of the columns of D and C to find the one
that optimizes |¢|.,—see the appendix.) Because array dimensions rarely exceed five or six in
practice this is a reasonable approach. We will present a polynomial time algorithm to com-
pute a maximal strict quantization (a simple variation computes a maximal quantization);

nevertheless, computing a best quantization is probably feasible in practice.

5.2 Strict Quantizations

Following the line of development of the previous section, we say a quantization q is mazimal
strict if ¢ is strict and there is no other strict quantization ¢’ such that ¢ < ¢’. A quantization
q is mazimum strict if q is strict and for all other strict quantizations ¢’, ¢' < ¢q. Finally, a

quantization is best strict if it is strict and

Vg’ s.t. q' is strict,|gloo > |g'loo V (lgloo = 19/l A [] @2 [])
€2t ql€Zt

These definitions parallel those from the previous section.
Theorem 5.22 The following are true:

1. For every L there is a maximal strict quantization.
2. There exists an L with no maximum strict quantization.

3. Computing the best strict quantization of L is NP-hard.

22

Proof: = We develop an algorithm to compute a maximal strict quantization in the next

section. Proofs of 2 and 3 mirror proofs from the previous section. O

The problems in this and the previous section stem from the difficulty of defining an
“optimal” quantization. Three definitions were proposed for both the general and strict cases:
maximal, maximum, and best. The structure of the two problems is identical. Maximal is
computable in polynomial time, maximum does not always exist, and best is NP-hard. The
questions that need investigation are: How often does a maximum exist in real programs?
How often is a maximal quantization substantially worse than the maximum? If a loop has
a maximum, then the following corollary shows that we can efficiently compute an optimal

quantization.
Corollary 5.23 If a maximum quantization q exists for L then:

1. ¢ is best

2. q is computable in polynomial time

Proof: One is trivial by the definitions of maximum and best. Two follows from the fact

that a maximum must be the unique maximal quantization. O

5.3 Computing a Maximal Strict Quantization

We now develop an algorithm for computing a maximal strict quantization. As stated pre-
viously, a strict quantization is useful because the loops need not be unrolled to perform
compaction; the unrolled iterations are always independent. The algorithm also illustrates
one application of the comparison and unrolling tables to quantization. A slightly modified
algorithm computes a maximal quantization.

The algorithm consists of two passes over the tables. In the first pass a simple greedy
heuristic computes an approximate quantization. The second pass refines this to a maximal

strict quantization. We assume for technical simplicity that there are no 75 or 7=; entries in

C.

23

The algorithm makes use of the fact that any strict quantization must preserve strictness

in a defining position of every comparison tuple. This is formalized in the following theorem.

Theorem 5.24 Let C and D be compatible comparison and distance tables of size m x n. Let
C; be a tuple in C. If C; has a defining position less than n + 1, then any strict quantization
g must satisfy:

Jk s.t. C;i is a defining position of C; A qx < D;i

Proof: Straightforward application of Lemma 5.16 and the definition of a defining position.

a

The strategy of pass one is as follows. Consider each column of C and D in order for

j=1l..n. Let
A; = {D;j|Cjjis the leftmost defining position of tuple ¢} (1)
Then

if A; #0
then ¢; — MIN(A;)

else ¢; — oo;

The idea behind this computation is simple. Let ¢ be a tuple in C. If ¢ is defined
at position k, then the relation ¢, specifies the lexicographic ordering of references for the
read/write reference pair which c represents. One way to preserve strictness is to unwind
strictly on dimension k& with respect to c. Note that strictness also guarantees independence
of the iterations. For example, let ¢ be the tuple (=5 =5 <5 =5 >4). c is defined at c3. By
unwinding strictly with respect to ¢ on the third dimension, we guarantee that conflicting
references occur in the correct order (reads before writes) and in separate iterations. The first
phase enforces strictness at the first defining position of each tuple.

Minimizing over the set A; gives an unrolling which satisfies the above requirements for
all tuples. If A; = 0, then the column under consideration has no impact on the order of
references (as determined be g; ... q;_1) and may be unwound arbitrarily. Note that this may

occur before the algorithm has passed a defining point of all tuples. For example, consider

24

the comparison and distance tables:

<§ =§ =§ > 1 oo oo 1
C = =5 =5 <§ =5 D = o0 OO 1 o0
> s =§ =& 1 1 [SEe o}

In this case, pass one generates ¢ = (1 oo 1 00), although the second tuple is not defined until
column three. The reason is that because pass one unrolls strictly on column one, the correct
order of reads and writes for tuple three is already guaranteed. Column one is called tuple
three’s selected defining position. Tuples one and two do not require any particular unwinding
for column two; thus, g3 = oo.

Pass one does not, in general, compute a maximal strict quantization. A counterexample:

C - <s <§ <s D 111
=5 >s5 <s 1 1 1

In this example, pass one computes ¢ = (1 1 oo); however, ¢’ = (0o 1 00) is also strict
and ¢’ > ¢. The problem is that ordering and strictness for the first tuple can be satisfied by
unrolling strictly on any dimension. The second pass fixes this problem.

The second pass considers each column from right to left (n..1). Fix a column j. Let J
be the set of comparison tuples with a selected defining position less than j. For each C; € J,
check if g;, C;j, and D;; together guarantee the strictness of C;—i.e., whether j is a defining
position of C;, and D;; > ¢;. If so, then let z be the current selected defining position of C;.
Set C;’s selected defining position to j, and recompute g, without considering C;,. Note that
g; need not be recomputed—the unwinding of dimension j is already sufficient to guarantee
the strictness of C;.

The idea is that the first pass establishes strictness as “early” as possible—at the leftmost
defining position. The second pass then moves the selected defining position as far right as
possible while maintaining consistency with the quantization. In the example above, it is
easily confirmed that this yields ¢ = (0o 1 00), which is maximal (and maximum).

An algorithm to compute a maximal strict quantization appears in Figure 8. We assume
without loss of generality that all tuples containing #5 have been removed from C.

We outline a proof of correctness for this algorithm.

Proof: [Correctness| Let ¢ be the quantization computed by the algorithm. By con-
struction this is a legal strict quantization. To show that it is maximal we show that any

> ¢ is not a legal strict quantization.

25

Input: C m x n comparison table

D m x n distance table

declare array defined[1..m], unroll[1..n], ¢1..n|
Vi defined[i] — nil
(* Pass 1 *)
for j = 1to ndo
if Vi(defined[t] v Clt, 5] = =5)
then ¢fj] — oo
else g[j] — ming yefinedpsj=nity D% 3l;
for i = 1 to n do if Cfi,j] € {<s, >5} A defined[i] = nil
then definedt] — j;
(* Pass 2 *)
for j =ntoldo
for each tuple C;
if j is a defining position of C; and D[z, j] > q[j] and defined[i] < j
then
¢ — defined[il;
defined[i] — j;
qlz] — ming gofnedy—y Dl 2);

Figure 8: Algorithm for computing a maximal strict quantization

26

Let ¢' = g. The there is an j such that q; - q;. Clearly ¢; < oo. Consider g; after columns
n..j+1 have been processed by pass two. There is at least one tuple C; with the following prop-
erty:

(*) Cy’s defining position is j and j is the least such position.

If C;’s selected defining position cannot be moved by the pass two examination of column
J, then it follows that there is no defining position k of C; greater than j that also has a
strict unrolling for C; (i.e., gx < D;i). Thus, by property (*) and Theorem 5.24, j is the only
defining position of C; that preserves strictness (and possibly legality, too). Choose C; from
all tuples satisfying these criteria so that U;; is minimized. Then ¢; = D;;, and by Lemma

5.16 no larger unrolling is permissible. O

Extensions for the relations 75 and ?=; are included in the appendix.

Turning once more to Figure 3, the maximal strict quantization computed by the algo-
rithm for this example is (15 1). A simple variation on this algorithm computes a maximal
quantization, the difference being that the constraint on the unwinding is to preserve legality

rather than strictness. A maximal (and maximum) quantization for the example is (15 oo).

6 Mitred Quantization

In practice, the important loop carried dependencies are generated by array references of the
form A[I + c] for an iteration variable I and a constant c. References of this form are said to
be affine. If some references are affine, we can make use of a technique, mitred quantization,
that greatly increases the power of loop quantization.

Thus far it has been impossible (without unwinding fully on at least one dimension) to

quantize a loop containing a statement of the following form:

(x) Afs,5] — f(A[i = k,j + K']);

The quantization tables for these statements are[<5 s] { kE k'] and[S5 <] [k k'
Any loop containing (*) may be unwound at most k times on loop L;. The problem is that
the execution order of two dependent statements is reversed if L; is unwound “too much”.

However, if subscript expressions of the dependencies that prevent quantization are affine,

27

then the corresponding dependent statements must lie on lines in the iteration space. In this
case the quantization box can be skewed to include any dependent statements. An illustration
is given in Figure 9.

The following lemma limits the cases we must consider.

Lemma 6.25 Let C be a comparison table for loop L with affine references. Assume further
that for any tuple ¢; of C, there is no k and [such that ¢;z = >5 and ¢;; = <. Then any

quantization is legal for L.

Proof: Trivial. O

The lemma implies that the only cases of concern are of the type presented above (nothing
more can be done if a tuple contains 75 or 7=4). We limit our discussion to the two-dimensional
case; the technique extends to arbitrary dimensions, but the essential ideas are illustrated
best with examples that can be drawn in a plane. The resulting algorithm can be used
to generate arbitrarily large quantizations of any loop where the dependencies preventing
arbitrary quantization consist of affine references. In particular, this allows arbitrarily large
quantizations of any loop with only affine references.

Consider a loop L with a read reference Afi+1,,j+j.| and a write reference At +1y, j+Juw)-
We assume that L consists of two nested loops, with j being the induction variable of the
outer loop. The slope of the dependency of a read/write reference pair is defined to be

Jr = Jw
U — Ty

If the slope of a dependency is negative, then the corresponding comparison tuple must
be [<s >g] or [>5 <s|. Let p be the read/write reference pair with the smallest negative slope
s. It can be shown that our method ensures correctness for all dependencies if correctness is
ensured for p.

The presentation of the technique involves arguments about what statements are depen-
dent on a point (7,7) in the iteration space. The iteration space can be depicted as a plane;
however, the convention that loops are normalized to iterate from 1 to N puts the first in-
teresting point of this plane at the point (1,1) instead of the origin. We have respected this
convention here; some of the formulas, however, are simpler if expressed assuming loops iterate

from 0 to N.

28

\\\\\\\
\\\\\\\\
\\\\\\\\

\\\\\\\

\\\\\

.\\\\ \\\\\ \\\\
.\\\\ SOV \\\\\
.\\\\ AR RS \\\\\
SUNNNLRVNAY WNVAR

(a) Normal quantzation “cuts” a dependency illegally.

(b) Skewed boxes capture dependent statements.

Figure 9: Quantization with affine references. Arrows represent dependencies.

29

Let Aj and A7 be unwindings of L; and L; respectively. We require that Aj satisfy the
constraint that A_j-—;l is an integer. The dependencies of p lie on lines of the form j = si + ¢
for some constant c. With an unwinding Aj the point (A¢, Aj) must be executed after all
points on the line j — Aj = s(i — A7) such that 1 < ¢ < At. These are exactly the dependent
statements that would be executed before (A:, Aj) in normal loop execution order.

The i-intercept of the line 7 = 1 is

Aj -1

+ Az

This is to the right of the point (A¢,1) as s is negative. If we wish to execute the point
(Aj, Ai), we must either include in the quantization box, or have executed in an earlier box,
all dependent statements on the line between the points (Aj, A¢) and (éf:—1~ + AZ,1). We
choose the the limits of the quantization box to be the parallelogram bounded by the points
(1,A7), (Ai + 1, Aj), (é_-L;l +1,1), (A}:—l + Ai+1,1). An illustration is given in Figure 10.
Note that all dependent references are included in the box or are satisfied by executing boxes
in normal loop order (i.e., first along the 7 dimension, then the j dimension).

One detail that must be covered is what happens to the points in the iteration space
that are not in the skewed boxes at the limits of the loop (area M in Figure 10). These are
executed, in normal loop order, as a prologue and epilogue to executions of the quantized loop
L;. In general, it will be necessary have a prologue for loop L; as well, as Aj will not evenly
divide the upper bound of loop L;. A general scheme for a quantization (Aj, A¢) is given in
Figure 11. Note that there is an upper bound, computable at compile time, on the number
iterations executed in the prologues and epilogues; thus these “extra” loops may themselves
be quantized, up to and including full unwinding.

As stated earlier, this method can be extended to higher dimensions. We do not discuss the
general case here, except to mention that there are several added difficulties in the analysis,
but the resulting algorithm is similar to the one presented. Using this method we can, for

example, obtain arbitrary quantizations of the example in Figure 6 when the upper bound of

the inner loop is unknown.

6.1 Dimension Reversal

Another simple trick further increases the power of quantization. Consider a two-dimensional

iteration space as above. If there are no dependencies of the form [=s <4] or [=5 >5], then

30

(1.4) (ai + 1,4))

(1’1) /N /
(aj-1)/-s Ai

Figure 10: Computation of the skewed box for Aj and A:

the innermost loop L; may iterate either from 1 to N; or N; to 1. Reversing the direction of
the loop also changes the dependencies with negative slope; thus if mitred quantization fails,
reversing the loop L; may allow mitred quantization to succeed. Even if mitred quantization
is not applicable in either case, it is possible that reversing the direction of L; may result in

a better (normal) quantization. The idea extends to outer loops and higher dimensions.

7 Conclusions

Loop Quantization is being integrated into an environment for scientific programming un-
der development at Cornell [23]. The early results are very encouraging, suggesting that
loop quantization combined with compaction techniques form a viable complement or even
alternative to higher-level, more monolithic transformations.

We are currently exploring other aspects of loop quantization. A number of important
questions are still open; most important perhaps is the question of how much, in general, of
a quantized and compacted loop can be computed symbolically (i.e., without actually having
to unwind and compact). We are also exploring applications of the comparison and distance

tables to other transformations.

31

(%

Original loop is

for J=1,Ny loop Ly
for I=1,N; loop Ly
B;

*)
(*Ly prologue x)
for J =1, Ny mod Aj
for I = 1,N;
B;
for J = (Nymod Aj) + L, Ny, Aj
(*Ly prologue—computes area M in Figure 10 x)
for j=J,J+Aj -1
for i=1,8=1 | =D 4 (N mod Ai)
B; where jreplaces J, i replaces I

(xThe skewed quantization box. x)

for I = 2&=1 L (N; mod Ai) + 1, Ny, Ai

BOOv

Bou;

Bi,ai-1; where [+ — [-f;J replaces Iin Bj;
Byq; J + j replaces J in Bj;
Baj-1,8i-1;

(L epilogue %)
forj=J+1,J+Aj -1
for i = Ny — | =0 N,

B; where 1 replaces I, tj replaces J

Figure 11: Scheme for arbitrary two-dimensional quantization Aj, As.

32

A Appendix

A.1 Computation of p(r,w)

Lemma A.26 Let 7(i) = a,i + b.,a, # 0 and w(i) = ayi + b.,a, # 0.
Then the following statements hold:

1. r=sw=0p

Proof: The first two cases are trivial; we prove only the third.
Fact A.26.1 r<;w < a, = a, A b, > b,

If no lower bounds are known, then (i) = w(%) + (b, — b,). Dividing by (b, — b,,) and

taking floors we get:

e (2[5

From this it immediately follows that

r(z) | _ | _w(=) J)
vee (|70 = [+
So b, — b, is strict for » and w. To see that it is also the largest value, note that using
el
b, — b, +1

lw(z) + b, — wa
b, — b, +1

) -
br_bw+1 B br—bw+1

so b, — b, + 1 is not strictness preserving. O

b, — b, + 1 results in

and

If we choose z = 0 then

33

10 —

9 iterations
time L

B R e L T

o171 1| | | |
0 element 10

Figure 12: Comparing references A[10z| and A[z].

The most complicated cases have not been treated—what if 775w or r?=zw ? Although
reads and writes may occur in either order in these cases, it is still possible to have strict
unwindings greater than one.

As an example, assume the statement A{10z] := A[z] appears in L. A graph of the time
functions for the read and write references is shown in Figure 12. Two conflicting references
are shown. One is at element zero, but it occurs in the same iteration (time zero) for both
references and is therefore preserved by any quantization. The other conflict is at element ten.
A[10z] writes it at time one; A[z] reads it at time ten. Thus the loop [, could be unwound nine
times and still preserve strictness. This follows because conflicting references in the positive
direction must be more than nine iterations apart. A symmetric argument shows the same to

be true in the negative direction.

Note that if the lower bound of z were something other than one the loop could be
unwound more and still preserve strictness. If, for instance, the loop began with z = 0
the greatest strictness-preserving unwinding would be ten. If the loop began at z = 2 the
conflict at element ten would not exist and the unwinding could be as great as eighteen (the
next conflict is at element twenty). The method we present can be easily extended to take
advantage of knowledge of the upper and lower bounds of loop indexes; for the moment we
continue to assume nothing is known about these bounds.

The generalization of the example requires a few simple facts about integer-valued linear

functions. We state these facts without proof.

Definition A.27 Let r(z) = az + b, where a and b are rationals. We define the set of integer

34

solutions of r to be

I(r) = {ylye N Nay + bc N'}

There are linear expressions without integer solutions—e.g., z + % We exclude these from

consideration.

Fact A.27.1 Let r(z) = az + b, where a and b are rationals and a # 0. Let z; be any integer

solution of r. Let z, be the smallest integer solution of r greater than z;. Then
I(r) = {a(e1 + Azz — 21)) +blA € N}
(z2 — z1) is called the period of r and is denoted by #.

Lemma A.28 Let r(z) = a,z + b, and w(z) = a,z + b, be two linear expressions.
If I(r)NZ(w) # 0
then Z(r)NZ(w) = {A-lem(?,d) + z|]A € N}
where 2z € I(r) N I(w)

Proof: Omitted. O

We can now describe how to compute the greatest strict unrolling when r?5w (or ?=5).
From the previous discussion, it is clear that the objective is to compute the minimum vertical
distance between r~! and w™! at a common integer solution; this corresponds to the “closest”
conflicting reference. More precisely, if 775w or r?7=sw then Min;e7(r)nZ(w) lr=1(5) — w1(5)]

may be computed as follows:

1. Compute any integer solution k in Z(r) N Z(w). This can be done using standard

diophantine equation analysis.
2. Compute a = lem(?,w).
3. Compute p = the intersection point of r~! and w™!. p is a real number.

4. Using k and a, compute the smallest common integer solution greater than p. Call this

g. The formula is:

g=k+a [E;—k] if p is not a common integer solution

g=p+a if p is a common integer solution

35

common
Integer
solutions

Figure 13: Computation of p(r, w).

5. Compute the largest common integer solution less than p. This is

h =g —a if pis not a common integer solution

h =p—a if pis a common integer solution
6. Set p(r,w) = min(|r~(g) - w(g)l, [} (k) — w(h)).

Figure 13 illustrates the values computed by the algorithm.

We will not present a formal proof of correctness for this algorithm. The idea of the proof
is to note that the smallest “distance” in iterations must occur near the intersection point
of the two lines. In fact, it must be with lem(7,w) on either side of the intersection point.
Thus we need only consider the two common integer solutions lying on either side of the

intersection.

A.2 Extensions to the Maximal Strict Quantization Algorithm

Unfortunately, p(r, w) does not provide enough information to extend the algorithm for com-

puting a maximal strict quantization to handle ?5.

Definition A.29 Let

z€Ztu{oo}

pe(mu) = max VreNrTl@)<wl(@)nQ = [(z)J < lw”(z)J

36

z€Z+U{oo} z

p”(r, w)= max VzeN r“l(z) o w—l(z) AQ = {%‘QJ - [w‘ (‘B)J

where Q is the predicate r~(z) € N A w™l(2) € N.

The values p<(r,w) and p”(r,w) are the arguments of the minimum in step six of the
algorithm to compute p(r,w) when r?sw. We extend the definition of distance tables to
include pairs (p<(r, w), p”(r,w)) for 75 entries in a compatible comparison table.

The following lemma extends Lemma 5.16 for ?5 and motivates the need for (p<, p~) pairs

in the distance table.

Lemma A.30 Let ¢ and d be compatible comparison and distance tuples with ¢; = 75
or 7=5. Assume ¢; is computed from r; and w;. Let ¢ be a quantization of L. If ¢; >
p<(ri,w;) (resp.p”(r;,w;)), then there is an z s.t. z¢ = <, (>,) in the original loop and

z{ = =, in the quantized loop.

Proof: The result follows from the definition of p<(r;,w;) and p~ (r;, w;). O

Consider the comparison and distance tables:
C=1[%>s]D =1[(2,1) 2]

What is a maximal strict quantization for these tables? The obvious thing to do is to unwind
strictly on the first dimension and arbitrarily on the second. Thus one possibility is gmes =
(1 00). Another possibility is gmar = (2 2); the first component guarantees the strictness
for locations ¢ where z{ = <,, the second component guarantees the strictness for all other
locations. This is why we need more information to handle ?5; the fact that (2 2) is a maximal
strict quantization could not be inferred if the distance entry for ?5 was p(r, w).

Now consider the tables:
C = [?5 >§ >6 >5]D = [<2,1>222}

A best quantization is (1 co oo oo). The quantization (2 2 co 00) is maximal strict for this
example, as are (2 0o 2 o00) and (2 oo oo 2). In this example, every position can act like a

defining position. The 75 component is the most important— it demands a strict unwinding

37

that at least protects the read/write order for locations ¢ where z{ = <,. However, because
all the other components in the table are >-;, the first dimension need not be unrolled to
ensure strictness for locations z where 2§ = >,. This can be done by unwinding strictly on
any other dimension.

The relation ?=4 is not as difficult to handle, as the following lemma shows.
Lemma A.31 Let 7?=s5w. Then p~(r,w) = p”(r, w).

Proof: A simple geometric argument based on the fact that the intersection point of r~!

and w~! is a common integer solution. O

Thus p(r, w) provides enough information when 7?=sw.

Consider the tables:
C:[?:6?26>6 >6}D:{1lll}

There are only two maximal quantizations for this example: ¢mae = (1 1 1 ©) O Gmar =
(11001).

This deserves some explanation. If ¢; were greater than one, then, by Lemma A.30, there
would be a location z where z{ = >, in the original loop and z§ = =, in the quantized loop.
Therefore we may choose values of the iteration variables of the quantized loop such that
z° = (=, <o ---); an unrolling greater than one for ¢, interchanges the read/write order for
at least one point. A similar argument shows that g, must be one.

One of g3 and ¢4 must be one. This follows because the first two components of the
comparison tuple are 7=5. By definition, there is a location z such that z¢ = (=, =, ...).
Guaranteeing strictness here requires a strict unwinding in either the third or fourth dimen-
sion.

Most of the lemmas and definitions presented thus far require only trivial modifications
to allow for 75 and ?=5. One that requires considerable change is the definition of a defining

position.

Definition A.32 Let ¢ be a comparison tuple of length n. Let j be the least index such that
¢; is not =5 or 7=4. If there is no such j, then ¢’s only defining position is n 4 1.

If ¢; # 75, then ¢ is a defining position for ¢ if ¢ = ¢; AVz,j < z < k,c, € {=s,¢;}

38

If ¢; = 75, then j is the primary defining position of c. Let ¢; be the least index greater
than j that is not =5 or 7=4. If ¢; is either <5 or >4, then ¢ is a secondary defining position

ofcifey, = c;AVz,i < 2z < kyc, € {=5,¢;}

The following lemmas may be proved by straightforward application of Lemmas 5.16 and

A.30.

Lemma A.33 Let c and d be compatible comparison and distance tuples. Let j be the
least defining position of ¢. If there is a position ¢k s.t. k < j A ¢, = ?=¢, then any strict

quantization ¢ must satisfy g, < dj.

Lemma A.34 Let c and d be compatible comparison and distance tuples. Let j be the least
defining position of ¢ and let ¢; = ?5. Let d; = (p<, p”). Then any strict quantization ¢ must

satisfy one of the following
L. g; < min(p*<,p”)
2. ¢; < p< and there is a secondary defining position ¢ s.t. ¢ = >5 and ¢ < d.
3. ¢; < p~ and there is a secondary defining position cj s.t. ¢ = <5 and qr < dk.

The revised algorithm is shown in Figure A.2. The proof of correctness is similar to the

proof for the previous algorithm. Lemmas A.33 and A.34 are used to cover the new cases.

A.3 Computing a Best Quantization is NP-hard

Proof: = We actually prove a stronger statement: computing the infinity number of a best

quantization is NP-hard. To help motivate the proof, consider the following tables:

Lo - [11 Lol]LD: [11 b 13}
> >s5 <s 1 1 1
In these tables, the /; are column labels. Let A[ri,r;,73] and A[w;, we, w3] be the read and
write references which generate these tables. Clearly, one of [; or /3 cannot be unrolled more
than once if the quantization is to be legal. To see this, assume that both /; and [, are
unwound k times, where k¥ > 1. Then, by Lemma 5.16, there is a location z such that
zlmw) = (=6 =6 <o) in the quantized loop and z{"*) = (>0 >0 <o) in the original loop. By

unwinding more than once on /; and [/, the quantization interchanges the order of references

for at least one point.

39

Input: C m X n comparison table

D m x n distance table

declare array defined[1..m|, unroll[l..n|, g(1..n]
Vi, j if Dli] = (p<,p")
then select(D[z, j|) — min(p,p”)
else select(D[i,j]) — D[1,j];
Vi defined[i] — nil
(* Pass 1 *)
for j =1tondo
if Vi(definedi] v C[t, 7] = =5)
then ¢[j] — oo
else ¢[j] — ming, ge fined(i =nit} select(D[, 7));
for i = 1 to n do if Cl4, j] € {<s, >5, 75} A defined[i] = nil
then defined[i] — j;
(* Pass 2 *)
for j =ntoldo
for each tuple C;
if j is a defining position of C;, D[, j| > q(j], defined[t] < j, and Cli, j] # 75 then
z — defined[i];
defined[i] — j;
qz] — Ming jefinedii)=z} Dfg, z];
if j is a defining position of C; and C[s, j] = 75, and k is a secondary defining
position s.t. select(D[i, k]) < ¢[k] then
let (p°,p”) = D,
if Cli, k] = >5 then select(D[i,j]) = p<;
if Cli, k] = <5 then select(D[i,j]) = p~;
i) = i de finedsi—gy elect Dl)

Figure 14: Extended algorithm for computing a maximal strict quantization

40

The problem of computing the maximum infinity number is equivalent to selecting a

minimum number of components of the quantization which must be set to some finite number.

We can transform Hitting Set [24] to this problem.

Hitting Set: Given a finite set S and Ty,...,Ty subsets of S, what is the smallest

cardinality of a set which contains at least one element of each of the T;’s.

Reduction: We construct a comparison table C of size N x |§|+ 1. Each row corresponds

to a T; and each column (except the last) to an element of S.

>s if element s; is in set T;

<s if 7 =1|S] + 1 (the last column)

=s otherwise

We also need a distance table of the same size:

Let

LemmaA.35 H=N-1

Proof:

1 ifCi # =5
Dj; = i7
oo otherwise
H = minimum hitting set cardinality of the T}’s

C looks like:

maximum infinity number of quantization for C and U

<s

<s

(3)

From the previous discussion, if a tuple in C has >; entries at (say) positions ¢, j, and &,

then a legal quantization must be strict in component 7, j, or k. Thus a legal quantization

corresponds in the obvious way to selecting a hitting set for the T;’s. Minimizing the size

of the hitting set corresponds to maximizing the infinity number—in fact, the size of the

minimum hitting set is the same as the number of components which must be set to a finite

number in a best quantization. O

41

To complete the proof, note that by Theorem 4.15 a quantization table can be mapped to

a loop in polynomial time, thus completing the reduction. O

References

1]

(6]

[7]

(8]

(9]

J. A. Fisher, J. R. Ellis, J. C. Ruttenberg, and A. Nicolau, “Parallel processing: a smart

compiler and a dumb machine,” in Proceedings of the 1984 SIGPLAN Symposium on
Compiler Construction, pp. 37-47, June 1984.

J. A. Fisher, The Optimization of Horizontal Microcode within and beyond Basic Blocks:

an Application of Processor Scheduling with Resources. PhD thesis, New York University,
1979.

A. Nicolau, “Uniform parallelisin exploitation in ordinary programs,” in Proceedings of

the 1985 International Conference on Parallel Processing, pp. 614-618, Aug. 1985.

U. Banerjee, “Speedup of ordinary programs,” Tech. Rep. UIUCDS-R-79-989, University
of Illinois at Urbana-Champaign, Oct. 1979.

A. Nicolau, Parallelism, Memory Anti-Aliasing and Correctness for Trace Scheduling

Compilers. PhD thesis, Yale University, 1984.

A. E. Charlesworth, “An approach to scientific array processing: the architectural design

of the AP-120b/FPS-164 family,” IEEE Computer, vol. 14, no. 3, pp. 18-27, 1981.

J. A. Fisher, “Very long instruction word architectures and the ELI-512,” Tech. Rep. 253,
Yale University, 1982.

A. Nicolau and K. Karplus, “ROPE: a statically scheduled supercomputer architecture,”

in Proceedings of the First International Conference on Supercomputing Systems, (St.
Petersburg, FL), Dec. 1985.

J. Solworth and A. Nicolau, “Microflow: a fine-grain parallel processing approach,” Tech.

Rep. 85-710, Cornell University, 1985.

(10] Product Summary. Alliant Computer Systems Corporation, Acton Mass., Jan. 1985.

42

[11] R. W. Heuft and W. D. Little, “Improved time and parallel processor bounds for Fortran-
like loops,” IEEFE Trans. Computers, vol. C-31, Jan. 1982.

(12] F. H. McMahon, Lawrence Livermore National Laboratory FORTRAN Kernels:
MFLOPS. Livermore, CA., 1983.

[13] J. R. Goodman, J. Hsieh, K. Liou, A. R. Pleszkun, P. B. Schechter, and H. C. Young,
“PIPE: a VLSI decoupled architecture,” in Proceedings of the 12th Annual International
Symopsium on Computer Architecture, pp. 20-27, June 1985.

(14] C. L. Seitz, “The Cosmic Cube,” Communications ACM, vol. 28, Jan. 1985.

(15] M. J. Wolfe, Techniques for Improving the Inherent Parallelism in Programs. Master’s
thesis, University of Illinois at Urbana-Champaign, July 1978.

(16] R. H. Kuhn, Optimization and Interconnection Complezity for: Parallel Processors,
Single-Stage Networks, and Decision Trees. PhD thesis, University of Illinois at Urbana-
Champaign, 1980.

17] D. Kuck, “Parallel processing of ordinary programs,” in Advances in Computers, pp. 119-
8 g

179, Academic Press, 1976.

(18] Y. Muraoka, “Parallelism exposure and exploitation in programs,” Tech. Rep. 71-424,
University of Illinois at Urbana-Champaign, 1971.

[19] R. Brent, “The parallel evaluation of general arithmetic expressions,” J. ACM, vol. 21,
pp. 201-206, 1974.

[20] K. Kennedy, “Compiling scientific programs for execution on parallel machines,” Jan.
1987. Notes from a lecture presented at the 1987 SIGACT-SIGPLAN Symposium on

Principles of Programming Languages.

(21] L. Lamport, “The parallel execution of DO loops,” Communications ACM, vol. 17,
pp- 83-93, Feb. 1974.

[22] R. Cytron, “Doacross: beyond vectorization for multiprocessors,” in Proceedings of the

1986 International Conference on Parallel Processing, pp. 836-844, Aug. 1986.

43

[23] A. Nicolau, “A development environment for scientific parallel programs,” Applied Math-

ematics and Computation, vol. 20, pp. 175-183, Sep. 1986.

[24] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, 1979.

44

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif
	pdftemp/0033.tif
	pdftemp/0034.tif
	pdftemp/0035.tif
	pdftemp/0036.tif
	pdftemp/0037.tif
	pdftemp/0038.tif
	pdftemp/0039.tif
	pdftemp/0040.tif
	pdftemp/0041.tif
	pdftemp/0042.tif
	pdftemp/0043.tif
	pdftemp/0044.tif
	pdftemp/0045.tif
	pdftemp/0046.tif
	pdftemp/0047.tif

