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CHAPTER V.

ON THE RESISTANCES OF FRICTION AND RIGIDITY.

§ 154. We have hitherto assumed that two bodies can only act
upon each other by forces at right angles to the plane of contact. If
the surfaces at the point of contact were perfectly mathematical, <. e.
not interrupted by the smallest irregular elevations or depressions,
this law would also be fully confirmed by experience; but because
everybody possesses a certain degree of elasticity or softness, and
because the surface of every body, even if it is smoothed or polished
in a high degree, has still some small elevations or indentures, and
in consequence of the porosity of matter, no continuity; th.erefore,
by the reciprocal action of two bodies in contact, reciprocal impres-
sions and partial penetration of the parts take place at the point of
contact, by which an adhesion of the two bodies is caused, which can
only be overcome by a distinct force, whose direction coincides with
the plane of contact.

This adhesion, produced by the impression and partial penetration
of the bodies in contact, and the resistance on the plane of contact
arising from it, has obtained the name of friction. Friction presents
itself in the motion of bodies as a passive power or resistance, because
it only impedes and checks motion, but never produces nor promotes
it. It is introduced into investigations in mechanics as a force which
is opposed to every motion, whose direction lies in the plane of con-
tact of two bodies. In whatever direction we move forward a body
resting on a horizontal or inclined plane, friction will always act
opposite to the direction of motion; for example, it will impede the
ascent as much as the descent of a body on an inclined plane. The
smallest addition of force produces motion in a system of forces in
equilibrium, so long as friction is not called into action; but when
the same exerts its eflect, a greater addition of force, dependent on’
the friction, is required to disturb the equilibrium.

§ 155. On overcoming friction, the parts in contact are compressed,
and those which protrude, bent down, torn, or broken off, &c. Fric-
tion is not only dependent on the roughness or smoothness of the sur-
faces in contact, but also on the physical properties of the bodies them-
selves. Hard metals, for instance, cause less friction than soft. We
can, jowever, lay down no general rules @ priort of the dependenee
of friction on the physical properties of bodies; it is, on the contrary,
necessary to make experiments on friction with bodies of different
substances in order to find out the friction which takes place under
various circumstances between bodies of the same substance.

The unguents which are applied to the rubbing surfaces exeért a
Pamcl‘gar influence upon the friction and on the abrasions aISing
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from the contact of bodies. The pores are filled up and other aspe.
rities diminisbed, and in general, the further penetration of the bodies
prevented by the fluid or semi-fluid unguents, such as oil, tallow, fat,
soap, &c., for which reason these occasion a considerable diminytion
of friction.*

Friction must not, however, be confounded with adhesion, ;,
with that holding together of two bodies, which takes place whep
they come into contact at many points without rectprocal pressure.
Adhesion increases with the size of the surface 1n contact, and is in-
dependent of the pressure, whilst the contrary is the case with fric-
tion. If the pressure be slight, the adhesion will be considerable i
proportion to the friction; but if the pressure be considerable, then jt
wil] constitute but a small part of the friction, and, therefore, gene-
rally may be neglected. Unguents, like all fluid bodies, increase the
adhesion, because they increase the number of the points of contact.

§ 156. Kinds of Friction.—Two kinds of friction are distinguish-
able, viz., the rolling and the sliding. Sliding friction is that kind
of resistance whicb is given out when a body so moves that all its
points describe parallel lines. Rolling friction, on the other hand, is
that resistance which arises from rolling, i. e. that motion of a body
which moves progressively and rolls at the same time, and whose
point of contact describes as great a space upon the body in motion
as upon the body at rest. A body JM supporting itself upon the plane
HR, Fig. 158, tor instance, moves sliding over the plane, and conse-
quently has to overcome sliding friction when its points, A, B, ( de-
scribe parallel spaces ./24,, BB,, CC,, &c., and therefore all these

Fig. 169.

Fig. 158.

points of the moving body come into contact with others of the sup-
port. The body M, Fig. 1569, on the other hand, rolls upon the
plane HR, and has to overcome rolling friction, when the points
A, B, &c., of the surface so move that the space .1B, = .4B = A B,
likewise 4D = AE, and B.E = B D,, &e.

The friction of axles is a particular kind of sliding friction, which
ariSes when a cylindrical axle revolves in its bearing. We distin-
guish two kinds of axles, the gudgeon and the pivot. The gudgeon
rubs against its support or envelop, wbilst its other points always
successively come into contact with the same points of the support.

* The “anti-attrition metal,” composed of copper 1 Ib,, antimony 2 lbs, and tin 3 lba,
(afterwards tengpered ormoftened by re-melting with more tin,) now very generally used
by rnachinists, in the Unite: States, performa the same office, and preventa the heating
of gulgeons, boxes, &c.—An. Eb.
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The pivot, on the other hand, presses with its circular base against
its support, where its points revolve in concentric circles.

Further, particular frictions arise when a body oscillates upon a
sharp edge, as in the balance, or when a vibrating body reposes upon
a point, as in the magnetic needle. _

Lastly, we distinguish the friction of quiescence which is to be
overcome, when a body at rest is put into motion, from the friction
of motion which opposes itself to the transmission of motion.

§ 157. Laws of Friclion.—The general laws to which friction is
subject, are the following:

1. Friction is proportional to the normal pressure between the rub-
bing bodies. Ifa body be pressed against another by a double force,
the friction is as great again; three times the pressure gives three
times the friction. If in small pressures this law varies from ob-
servation, it must be attributed to the proportionately greater effiect of
adhesion.

2. Friction is independent of the extent of the surfaces of contact.
The greater the surfaces are, the greater is the number of parts which
rub against each other; the smaller the pressure, the less the friction
of each part; the sum of the frictions of all the parts is the same for
a greater as for a less surface, in so far as the pressure and the other
circumstances remain the same. If the side surfaces of a parallelo-
pipedical brick are of the same quality, the force necessary to push it
along a horizontal plane is the same, whether it rest upon the least,
the mean, or the greatest surface. With very large side surfaces and
with small pressures, this law has exceptions, in consequence of the
effect of adhesion.

3. The friction of quiescence is indeed generally greater than that
of motion ; the last, however, is independent of the velocity ; it is the
same in small as 1n great velocities.

4. The friction of greased surfaces is generally less than that of un-
greased, and depends less on the rubbing bodies than on the unguents.

5. The friction of gudgeons revolving on their bearings is less than
the common sliding friction; the friction of rolling is in most cases so
small, that it need hardly be taken into account in comparison with
the shiding friction.

§ 1568. Co-efficient of Friction.—
From the first law laid down in the
former paragraph, the following may
be deduced. A body AC, Fig. 160,
presses against its support, first with
the force JV, and requires to draw it
along, 1. e. to overcome its friction, the
exertion of a certain force F, and se-
condly with the force JV,, and requires
the force F, to cause it to pass from a

state of rest in{o one of motion. From the foregoing we have:

E — E, and therefore F' — i . V.

F=N N

1 1
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If, by experiment, we have found the friction F, corresponding ¢,
a certain pressure JV,, we hence find, if the rubbing bodies, and
other circumstances are the same, the friction F Corresponding to
another pressure JV when we multiply this pressure by the ratio

(F.) of the values F, and JV, corresponding to the first ohser-

Y 1

1
vation. o
The ratio of the friction to the pressure, or the friction for 3 Pres.

sure = unity, a pound, for instance, is called the co-efficrent of fric.
tion, and will in the sequel be expressed by f, wherefore we may 5

nerally put F = f. N o .y
They (?o-eﬁ‘icient of friction is diflierent for different substances and

different conditions of friction, and must therefore be found out },
experiment for each particular case. o
When a body /IC is drawn a distance s over a surface, there g "
mechanical eflect Fs to perform; the mechanical eflect or work e.
quired to overcome friction is, therefore, f N, equal to the prodyct of
the co-efficient of friction, the normal pressure, and the distance along
the plane of contact. Wben the plane is also moving, we must {hen

understand by s the relative distance.

Erample—1. If by a pressure of 260 lhs., the friction amounts to 91 jbs,, the corre.

O "Ny 7
sponding co-efficient of friction is f = ;51()_ = 20 = 0,35.—2. To draw a sledge of

500 Ibs. weight along a horizontal and very smooth surface of snow, the co-efficient of
friction is f= 0,04, the required force F == 0,04 . 500 =20 Ibs.—3. If the co-eflijgn, gr
friction of a cart drawn over a paved road is 0,45 and the load amounts to 530 Ibs., ke
mechanical effiect required 0 draw it 480 feet is = f Ne = 0,45 . 500 . 480 = 10§000

ft. Ibs,

§ 159. The .Angle of Friction and the Cone of Friction.—A pog
.AC, Fig. 161, lies on an inclined plane

DRI S FH, whose angle of inclination pprR
= a, its weight G resolves itself jnto
the normal pressure V' = G cos. 4 an(
into the parallel force P = G gin, 1y
From the first force there arises the
friction F = f G cos. a, which is op-

osed to every motion upon the plape,
wherefore the force to push it upwardg
on the plane = F - P=fGCOS. a + G osin. o = (S‘in-a +fcos,u)
G, on the other hand, the force to push it downwardsis = F — p
"2 €0S. a — sin. o) G ; the last force is null, i. e. the body is sustaiped
byits friction on the p']ane, when sin. a = f ¢0s. a, 3. e. When the lang,
a=f As long as the inclined plane has an angle of inclination,
whose tangent is less than £, the body remains at rest on the plane,
but when the tangent of this angle is a little greater than /, the body
tmmed:ately begins to slide down. The angle, whose tangent is equa]
to the co-efficient of friction, is called the angle of friction or the angle
of repose. The co-efficient of friction is given by observing the angle
of friction p (for the friction of repose), wﬁen fis put = lang. p.
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In consequence of friction, the surface FH, Fig. 162, reacts not
only against the normal pressure ¥ of another
body 1B ; but also against its oblique pres-
sure P, when the deviation NVBP = ¢ of the
direction of this pressure from the normal BV
does not exeeed the angle of friction, for since
the force P gives the normal pressure BN =
P . cos. ¢, and the lateral or tangential pressure
BS = § = P sin. ¢, and there arises from the
normal pressure P cos. ¢ the friction f P cos. ¢
opposed to every motion in the plane FH, §
will therefore be unable to give rise to motion,
and will remain in equilibrium so long as f* P

cos. ¢ P sin. ¢, or f cos. ¢ > Sin. p,t.e. lang.
¢is . fior¢ < p. If theangleof repose CBD = ¢ be made to revolve

about the normal CB, it will describe a cone, which we may call the
cone of friction or resistance. The cone of resxstancg includes all
those directions of force by which a perfect counteraction of the ob-

lique pressure takes place.

Fig.t162.

Ezxample. To draw a filled cask weigbing 200 lbs. up an inclined wooden plane of
30°, the force required with a co-efficientof friction f==0,48 is=P=(fc0s. a{-4in.a) G
= (0,48 cos. 50° 4~ #in. 50°) . 200 = (0,308 4- 0,766) . 2000 =215 lbs.; to let it down, or
10 prevent it8 sliding down, the forcerequired, on the other hand, is: (P = J‘ c08.62 —51in. a)
G = — (sin. 50° — 0,48 . cos. 50°) 200 = — (0,766 — 0,308)t. 200= — 91,5 Ibs.

§ 160. Ezperiments on Friction.—Experiments on friction have
been made by many philosophers, the most extensive of which, and
on the greatest scale, are those of Coulomb and Morin. To find out
the co-efhicients of friction for sliding motion, these two made use of
a sledge slidingon a horizontal surface, which was pulled forward by
a cord, passing over a fixed pulley, from which weights were sus-
pended, as in Fig. 163, where 1B represents the way, CD the sledge,
E the pulley, and G the weight.
To obtain the co-efficient of fric-
tion for diflerent substances, the
surfaces in contact, not only of
the sledge, but also of the way
forming the support, were cov-
ered with the smoothest possible
pieces of the substances under

experiment, such as wood, iron,

&c. &c. The co-efficients of
the friction of repose were given by the weight which was necessary

to cause the sledge to pass from a state of rest into one of motionl, snd
the co-efficient of the friction of motion by the time ¢, which the sledge

required to pass over a certain space s. If G be the wei%h.t of the
sledge, and P the weight required to draw it, we have the Iriction =
o G, it there-

S G, the motive force — P_— f G, and the mass M= 3

fore follows from § 65, that the acceleration of the uniformly accele-
13*
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rated motion arising, is : p = _IiiG_g, and inversely, the co-eff;.

P+ G
cient of friction f = 'g P 2 S -§= But s = & pt*(§ 11), there.
23 P P+ G 2s
fore,p=t7,andf=G_ G

To measure the co-efficient of friction, for.axle friction, a fixeq
pu“e .HCB’ Fig. 164,.15 rpade use Of, over
which a cord passes, which 1s stretched by the
weights P and Q. From the sum of the weights,
the pressure P + Qisgiven, and from their dif-
ference P — Q the force at the circumference of
the pulley, which is in equilibrium with the fric-
tion of the axle, F=_f (P + Q), ifnow C4 —
a the radius of the pulley, and CD = r that of
the axle, we have from the equality of momepts
(P—Q)a= Fr =f(P+PQ) ",Qaﬂd therefore
s — a
the friction of repose; f =prQ 7 O the

Fig. 164.

other hand, for that of motion, if the weight P falls a space s in th,
time (¢), and Q rises as much, f — (f: :2 ;2) -

r

Remark. Bofore Coulomb, Amontons, Camus, Biilffinger, Muschenbroek, Fergusou
Vince, and others turned their attegtion to and made experiments on friction. The re:
sults of all these investigalions are of little value in practice, because they were con.
ducted upon too sinall a scale. The experiments of Ximenes, which were made about the
same time as those of Coulomb, also fail in this respect. The results are to be found in
a work, “ Teoria e Pratica delle resistenze de’ solidi ne’ loro attriti,” Pisa, 1782. The
experiments of Coulomb are fully described in his work, “ Théorie des Machines gjr,.
ples,” 1821, The latest experiments upon friction are those of Rennie and Morin
Rennie used for his experiments partly, a sledge upon a horizontal surface, and partl);
upon an inclined plane, from which the bodies were allowed to slide down, and by
which the amount of the friction was deduced from the angle of friction. Rennie's ayx.
periments extend to substances of various kinds met with in practice, as cloth, Jeathey
wood, stones, and memls; they give important results upon the abrasion of bodies, bu:
from the apparatus and the mode of conducting these experiments, we cannot rely upon
them for that accuracy which thoseof Morin appear to have attained. The experiments
of Rennie are to be found in the “Philosophical Transactions” of 1818. The most ex.
tensive experiments, and promising a high degree of accuracy, bave been completed by
Morin, although it cannot be denied that they leave some doubts and uncertainties, and
somewhat to be desired. This is not the place to describe the methods and apparatus of
these experiments; we can only refer to the author's writings, “Nouvelles Expériences
sur le Frottement,” par Morin. An excellent article on Friction, and a full description
of all the experiments upon it, especially those of Morin, is given by Brix in the « Traps.
acuons of the Society for the Promotion of Manufacturing Industry in Prussia,” 16 and 17

Jahrgang, Berlin, 1837-8.¢

* A series of experiments on the resis ict ) ) 1
. sance of friction, particularly as applied to rail.
s“;}'mc’ari will be found in “Wood's Treatise on Railwa'ys,” 2d ed., 1832, chap. 6; Vid.
8 Am. ed, pp. 171-228.—Aw. Ep.
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FRICTION,

161

161. The following tables contain a condensed summary of the
co-efficients of friction the most useful in practice.

TABLE 1.

CO-EFFICIENTS OF THE FRICTION

OF REPOSE.

Nature of the surfaces and unguents,

8 |
s | = ’g |
2 o . b
NAMES OF BODIES. = o g | & 3
|2l &5 2| 8¢
15 (5|52 § | %
g | 2 &3 2
|5 £
E: |8
{ least, 0,30| 0,65 — { — | 0,14 8,3"; g,gg -—
mean 0,50 0,68 — 0,21 0,19 ) ’ =
Wood upon wood - jg,eat;st, 0,70/ 0,11| — | — | 0,25| 0,44| 0,40] —
\ values,
least, 0)15 - 0,11 0.15
mean 0,18 — | 0,12| 0,10 0,11} — | 0,19 —
Metal upon metal - greate'st, 0,24 — | 0,16
values,
Wood upon metal - - . . . . . . |0,60] 0,65 0,10| 0,12| 0,12 ~ | 0,10 —
least, 0,50
Hempen ropes, twisted | mean, 0,63| 0,87
or matted, upon wood | greatest, 0,80
values,
Thick sole leather,upon ghlgh at the edges, ( 0,43/ 0,62/ 0,12] — | — | — | — | 0,27
wood or iron flat or smooth, 0,62/ 0,80/ 0,13
Black strap leather, { of wood, 0,47
upon pulleys 201‘ iron, 0,54 — | T | T | — | T Lo
Stones or bricks upon ( least, 0,67
stones or bricks, greatest, 0,75
smooth worked value,
least, 0,42 5
Stones and wroughtiron { greatest, 0,49
value, |
Oak upon muschekalk - . - - | 0,64 ;
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TABLE 1L

CO-EFFICIENTS OF THE FRICTION OF MOTION,

———— —— —e, L]

p—

Nature of the surfaces and unguents
ln ’é I S‘ T , - ... -
3] |3
, A o | =
NAMES OF BODIES. - § .‘g 'Ei. , g , _§ : i~ g | Y
@ 2|3 3
SIE|E[A|E ]3] 2| p]|0
BHEIEE
] L =
|3 | & .
{ least, 8)33' 0"'2'5 — 8’82| 8’86' g 0314:-(-;,65
) | mean : 29[ ~= | 0,071 0,07} — | — 0,15] 0 12
Wood upon wood - < oroqiest, | 048] — | — 0,07) 0,08 — | — 0,16/ 015
kvalue, , .
£ \omaiy 10,15 — | 0,06] 0,07 0,07 0,06/ 0,12| — | g,
mean 0,18/ 0,31} 0,07| 0,04| 0,09 0,08/ 0,15( 0.20| o 13
WWglubon mefpl » jgreatést, 02¢( — [ 008| 0,11/ 6,11 0,08/ 0,17 Z | '3
{ value, i ’ '
 least, 0,20 — | 0,05| 0,07| 0,06] — | ~— | —— 0.10
mean 0.42| 0,24/ 0,06/ 0,07 0,08 0,08| 0,10 0,20( 0’14
Wood upon metal - jgmw',t, 0,62 — | 0,08 0,08/ 0,10 — LAl ol 016
_ value, f ’ ’
Hemp, cords, twists, on wodx], 045 0,33 5 |
&c. on iron, — | — | 0,15 — 'O'IQI
raw 0,54/ 0,36/ 0,16] — | 0,20 |
Sl e, o § 5o 850 20| |
P greasy, — | 0,25 |
The same, high at the § dry, 0,34/ 0,3t1{ 0,14 — (0,14
edges, &c. greasy, — | 0,4 | |
| i

Remark. The coeflicienss of fiiction for porous masses will be given in the Secong
Part, in the theory of the pressure of earth.

§ 162. Inclined Plane.—The theory of sliding friction has its chief
application in the investigation of the

Fig. 165. equilibrium of a body /C, on an in-

clined plane F'H, Fig. 165, 1If ip
accordance with § 135, FHR = ,,
the angle of inclination of the in-
clined plane, and POS, =3, the angle
which the force P makes with the -
clined plane, we have the norma]
force arising from the weight G of
the body N = & cos. a, on the other
hand, the force for sliding down =
8= G sin. o, further the force W,
with which P strives to draw the
body down the plane is = P sin. g,
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and the force S, with which it pushes the body up the plane = P
cos. 8. The remaining normal pressure is: N'—WN, = G co0s. a— P
stn. 8, consequently the friction F= f (G cos. a — P sin. g). If it be
required to find the force P drawing the body up the plane, then there
will be friction to overcome, and it must therefore be S, =S+ F, t. e.
P cos. 3 = G sin. a + f (G cos. a — P sin. 3). )
But if the force, which is to prevent the body from sliding down 1s
to be determined, then friction comes to its assistance, and the forceis:
S,+ F= S, i.e Pcos. 8+ S (G cos. a — P sin. ) = G sin. a.
From this the force may be determined:
For the first case: P = szn.a+fc?s.a .
cos.3 + fsin.3
sin. a —f €oS. @ @
cos.B—fsin.g
If the angle of friction pbe introduced, whilst we put S = tang.p =
Sin. a . COS. p+ COS.a. SIN. p

For the second: P =

Stn.

——p, we shall obtain P = — - . G, or from

COS. p sin. g.cos. p + cos. . sm. P

the known rules of trigonometry: P — i (a_-;p) . G, and the
cos. (B+ ¢)

upper signs are to be taken, when motion is to be brought about;
the lower, on the other hand, when motion is to be impeded.

The last formula is found by a simple application of the paral-
lelogram of forces. Since a body counteracts that force of another
body, which deviates by the angle of friction p from the normal to its
surface (§ 159), equilibrium in the foregoing case can subsist if the
resultant 0Q = Q of the components P and G makes with the
normal OJV the angle NVOQ = p. If now we put in the general

P stne GOQ
f ] —h= '] —— = O d
ormula G = win POQ GOK = GON 4 NOQ = a + s an
P

POQ = POS, + 5,0Q = g + 90°—p,wethenhave-§=

sin. (a + p) _ s Ea + p), and for a negative value of p:
sin. (B—p+ g) cos. (B—p)

P sin. (a— p) .o . .
G cos. (3 F ¢) quite in accordance with the above.

If the body reposes on a horizontal plane a = 0, therefore, the

force to push P forwardis: P = S G - S Gan p .
cos. B+ fsin.3  cos.(B—+) 4
If the force acts parallel to the inclined plane, then 8 = 0, an

therefore, P = (sin. s + f cos. a) G, = (sim ot ) . G. (compare
— cos. p

§ 159). If the force acts horizontally 3 = — a; €0s. B = €08
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(sin. a + fcos. q

o and stn. 8 = — $in a, therefore, P = el -—_l-_fsin.:° Q%
tang.
“g e if G, also = tang. (o +¢) G.
14 f tang. o F \
h a body upwards is least when the Je.

Again, the force to pus .
nominator cos. (3—p) is greatest, viz. = 1, therefore, 8 — p = 0, ;. ¢

— 5. When, therefore the direction of force deviates by the angle
of friction from the inclined plane, the force itself ts the least and —

sin. (a + 5) . G.
ressure on the axis has the prop AE, Fig. 166, 10 sustain, jn

garpie: WP to prevent a Llock of stone (a wall) ABCD, of 50()(3?13

Fig. 166. weight fron slipping down the inclined plang ¢ p

supposing the angle of the prop to the horizon ¢ be’

359 that of the inclined plane CD, 509 und the ¢o.

efficient of friction f= 0,707 Here G = 500Q , —

50°, 8 35° — 50° = — 15° and f = 0,75; ther,ef:r:
the forrmula gives:

__sn.e—f 0s. a __%in. 50°--0.75 cos. 50°
T wrB—fam B’ 0.4 590,75 sin, 150 V00
0,766—0,482 1420
: . 5000 = ——— = 1224 Js,

- :
0,9663-0,194 1,160
If the prop were horizontal, we should have § = ._

509, and tang. p = 0,75; hence p = 36° 52/, lasuly
P=G {ang. (a-—-’) = 5000 ang. (500—.360 52/) =’
5000 tang. 13° 8 = 5000 . 0,2333 = 1166 s T,

ush up the same wall vpon the supporting one by a
horizontal force, under otherwise similar circumstances, a force P would be necessary =
G tong. (atp) = 5000 tang. 86° 52’ = 5000a 18:2676 = 91338 lbs.

§ 163. Wedge.—In the wedge, friction exerts a considerable in-
fluence upon the statical relations,

Fig. 167. The section of a wedge forms an

isosceles triangle FI{R, Fig. 167,
with the edge FHR = a, the force

P acts at right angles to the back

and the weight Q at right angles to
the side Fff If we drive the wedge
upon the base HR a space s = F%"l
= HH, = RR,, the weight Q is
raised through a space CC, = DD,
= HL = HH, . sin. HH, L = s sin,
a, and force passes over HK = HH .

cos. H HK = s cos. 2: according to the principle of virtual veloci-

it

ties, and without regard to friction, P . HK = Q. DD,, t.B. P s cos.
a

% i 2 Q sn. ; €0 5
5 = Qs sin. a, therefore P = Qstn. & : = 9
= a

Cos. 2 Cos. é
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Q sia. %, which also follows from the formula in § 137, if we put in 1t
stn. 3 = 1, and cos. (a—38) = cos. ;-

There are now, however, three frictions which come into play,
viz., the friction against the sides HF' and HR, and the friction of
the body ABCD in its constrained motion. As the directions of
the force on both sides of the wedge deviate equally, the pressure
against both is equal, namely = Q, and the friction arising = f Q.
The spaces of these frictions, however, are diflerent. For the fric-
tion upon HR : s = HH,, for that upon HF = H|L = s cos. a; accord-

ingly the mechanical eflects of both frictions are: = f Qs+ £ Qs
3
cos.o=F Qs (1 +cos.a)=21Qs (cos. %) . Lastly, the friction

between CD and FH presses upon the body .4BCD at right angles
to its direction, and there produces the friction f, . fQ, if f, represent
the co-efficient of friction for its constrained motion. This friction,
however, has the same space as the weight Q, viz., DD, = s stn. a;
and to it corresponds the mechanical eflect f, f Q s sin. a. In order
now to find the extreme limits of the condition of equilibrium, we
must put the mechanical eflect of the force P equal to that of the
weight Q, plus the mechanical efliects of the fnction, therefore,

Ps cos. 3'2- = Qssin.o+2Q fs (cos. %)g+ﬂ; Qs . sin. o,
and we obtain the force:
. a aQ .
P=2Q (sm. 5 + f cos. 5 +_17'l Sin. %)

In a wedge ABC, Fig. 168, as it is used Fig.168.
for the splitting asunder and compression of
bodies, the force at the back corresponding to
the normal pressure Q against the sides .2C

and BC,isP=2Q <sin. = + f cos. %), which

2

1s given if we put the sum of the vertical com-
ponentsof Qand F= fQ,t.e. 2V, =20Q

sin. % and 2 V, =2 f Q cos. = equivalent to

2
the force P.

Ezample. The load of the wedge Q in Fig. 167 = 650 Ibs., the edge a = 25 the
co-efficient of friction f, = f=10,36. Required, the mechanical effiect necessary to move
the load Q forward about 4 a foot. ' ”

The force is P = 2°, 650 [sin. 124° + 0,36 cos. 123° + (0,36)? sin 124°]
2 e = 1300t. (0,2164 4 0,36t. 0,9763 4 0,1296t. 0,2164)

o - (0,2164 4 0,3515 4 0,0281) = 1300 . 0,5960 = 774,8 lbs. For, to the space

of th Ci . cos. 2
€ load CC, =} foot, corresponds the space of the force HK=#= "/
ce : 3
T — = -———1——— = 1,155 feet; therefore the meclianical effect and weight is

3 sine® 4.0,2164
2
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Ps = 7748 . 1,155 = 895 f}. Ibs. Without regard to friction, it would only be 650 3
= 325 ft, |bs. In consequence of friction, the mechanical eflfect expended wou)q be

nearly tripled.

§ 164. Azle Friction.—In axles, the friction of motion only s of
importance, on which account experiments on this only existh

From the following table very important results for practice may
be drawn, with axles of wrought or cast iron, moving 1n bearings of
cast iron or brass, coated with oil, tallow or hogls lard, the co-efficiept
of friction is

By continuous greasing = 0,054,
In the usual manner = 0,070 to 0,080.

The values found by Coulomd vary partially from the annexed,

TABLE IIL

CO-EFFICIENTS OF AXLE FRICTION, FROM MORIN.

Nature of the surfiaces and unguents,
5 S $ |
> ;"" 3 Oil, tallow, or | © ,g]
$ o 3 lard. |4 g
NAMES OF THE 3 o 3 g g 3
: @ Ou | 2w > :
e 2 |3E|2E| F| s |3a 2| B
- |2F|EF | 5| 7 |s8| 2 | &
s | @ | § |35 3
s | & 2 g | »8| 4
E | B R
[ g
e} Q = 6 o
Bell metalon the same| — — — 0,097 | — — — .
Cast iron upon bell
metal . .. .... — — — — 0,049
Wrought iron upon
bell metal . . . .. 0,251 |0,189 | — (0,075 |0,054 |0,090 |O0,111 -
Wrought iron upon
castiron.ee. ... | — — — 10,075 | 0,004 | — — —
Cast iron upon cast
iron . ....... — {0,137 {0,079 | 0,075 | 0,054 — — 10,137
Cast iron upon bell
metal .. ..... 0,194 (0,161 | — [0,075 0,054 |0,065 | — | 0166
Wrought iron upon
lignum vite. ... {0,188 — — (0,125
Cast iron upon lig-
num vitae . . . .. 0,185 —_ -~ (0,100 | 0,092 — (0,109 | 0,140
Lignum vite upon
castiron. . ..., —_ — — 0,116 | — —_ ~ 10,153
Lignum vit® upon
lignum vitae. , ., [ — — . — (0,070

§ 165. If we know the pressure R between an axle and its bearing,
and if further the radius r of the axle, Fig. 169, be given, the mecha-
qlcal eflect which the friction of the axle counteracts in every revolu-
tion may be calculated. The friction F == S R, the space correspond-
ing to it, the circumference 2 » r of the axle; it therefore follows
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that the mechanical eflect lost by friction in each revolutionis = f R.
2rxr=2xfRr. If the axle makes one revo-
lution per minute w, the mechanical effect ex-
pended in each second

=2xfRr. X = 2% RT _ 0105eufRr.
TR & 30 S

The mechanical efliect consumed by friction
increases, therefore, with the pressure on the
axle, in proportion to the radius of the axle and
the number of revolutions. It 1s, therefore, a
rule in practice, not to augment unnecessarily
the pressure on the axis in rotating machines by afd
heavy weights, to make the axles no stronger
than the solidity required for durability, and likewise not to make a
great many revolutionsin a minute, at least, not unless other circum-
stances require 1t.

By the application of friction wheels, which are substituted for
the bearings, the mechanical eflect of friction is much diminished.
In Fig. 170, .AB is a wheel which reposes by its axle CEE, on
the circumferences EH, E, H, lying close
to each other of the friction wheels revolv-
ing about D and D,. From the given pres-
sure R of the wheel, there follow the pres-

sures N'= N, = R

Fig. 169.

Fig. 170.

, if a be the angle

2 cos. =
2

DCD, which the central lines, or lLnes of
pressure, CD and CD, make between them.
From the rolling friction between the axle C
and the circumferences of the wheels, these
latter revolve with the axle,and there arise at
the bearings D and D, the frictions f /V and

J JV;, which together amount to - . If the radius of the wheel

€os. =
"2

DE=D, E, be represented by a,, and that of the axle DK~D, K, by
71, we shall have the force at the circumference of the wheels, or at
the circumference of the axle C resting upon these, which is requisite

to overcome £ F=21, F R whilstit il G RN

(¢ ] a (13
GOS8y —= 1 COS. —9
2

the axle C rest immediately in a socket. If we disregard the weights
of the friction wheels, the mechanical efliect of the friction by the ap-
plication of these wheels is — 1 times as great as without them.

17

14
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If we oppose to the pressure of the axle R a single friction wheg]
GH, Fig. 171, and prevent any accidental lateral forces, by the fixed

cheeks K and L, a = 0, cos. g = 1, and the above relations — 7y

a,

Ezxample. A wheel weighs ?0000 1bs., its radius g — 16 g,
and that of its axle r = 5 inches, what is the amoyp; of
force at the circumference of the wheel necessary to overcome
the friction of the axle, and 0 maintain it in umform mot;or,
and what is the corresponding expenditure of medlanica]'
effect if it makes 5 revolutions a rninuted  We may assume
the co-efficient of friction f here = 0,075, wherefore the (o,
tiOﬂfR = 0,075e 30000 = 2250 lbs, Since the diainegger of
16.12 192

Fig. 171.

the wheel is s 38,4 times as great gg it
diatneter of the axle or the arm of the friction, the axje fric-
tion reduced to the circumference of the wheel =.ﬂ
38de
22& — 58,59 Ibs. The circutnference of the axle is 3_'5 . ®
38,4 12

= 2,618 feet; consequently the path of the friction ;, S

seconde= _2;6Lg_5_ = 0,2182 feet, and its mechanical effiect during one second =
6 N

0,2182 . f R = 0,2182.2250 = 491 ft. Jbs. If the axles of this wheel rest upon friction
wheels whose radii are 5 times as great as those of the axle, aud therefore i oy
., 3

the power expended, referred to the circumference of the wheel, will only be_; . 384 —

o i 491
7,68 ft. lhs., and the mechanical effect of friction expended only .. o 98,2 f. ibs.

§ 166. The friction of an axle ACB, Fig. 172, which presses on
its bearing in one point J only, is less thap

Fig. 173. that of a new axle resting on all points of "
bearing. If no revolution takes place, the ax}ie

then presses on the point B, through which
passes the direction of the mean pressure R-
but if revolution begins in the direction AB; the
axle by its friction will rise just so high in its
bearing until the sliding force comss into equi-
librium with the friction. The mean pressure
R is decomposed into a normal pressure JV* 5nd
a tangential §'; /V'passes into the bearing and gives rise to F' = £
acting tangentially ; § puts itself in equilibrium with F; S is there.
fore = £ . According to the Pythagorean doctrine, R? is = JV¥ . S,
therc}e{fore Rtishere = (1 4 /%) /V?; inversely the normal pressure V<

Y Wil and the friction F = \/1__4__7‘3; or, if the angle of frictiop
e be introduced, £ = tang. ¢ :
- — tang. p :
D . R = tang. p cos. p R = R sin. p.

V1 4+ tang 2
. If, the axle begins to move, the point of pressure B moves forwarg
1n the bearing by the angle 2CB = ¢ in the opposite direction.
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If no forward motion took place, F would be = fR = Rlang. , =

I(I:sm. ?; consequently the friction is the cos. p times as great after
0s. p

moving forward as before the motion. Generally, f = fang. p not

quite ilf) and cos. p > 0,995, therefore the difference is not quite 1000

= _2%)6; therefore, in ordinary cases of application, we need have

no regard to the effect of this motion.

If the wheel AB revolves in a nave or eye, Fig. 173, about a fixed
axis AC, the friction is the same as if the axis
moves in a roomy nave, only the arm of the fric-
tio]n is the arm of the nave, not that of the fixed
axle.

§ 167. If the axle lies in a prismatic bearing,
there is greater pressure, and consequently more
friction, than in a round bearing. If the bearing
ADB, Fig. 174, is triangular, the axle lies ontwo

oints .4 and B, and at each there is the same
riction to overcome, the mean pressure R is de-
composed into two lateral forces Q and Q,, and each of these gives a
normal pressure JV and JV,, and each a
tangential force FF = f WVand F, = f WV, Fig. 174.
equal to the friction. According to the
former §, these frictions may be put = Q
sin. p and = Q, sin. p, we have then the
whole friction = (Q + Q,) sin. p. The
forces Q and Q, are given by the resolution
of a parallelogram constructed from Q and
Q, with the aid of the mean pressure R,
the angle of friction p, and the angle ACB
= 2 a, which corresponds to the arc A8,
lying in the bearing. If QOR = ACD — CAO = oa—p, QOR=
BCD 4 CBO=0,+p; last] ,QOQl=a.—p+a.+ P=20-
The application of the formula § 75, gives:
Q=2 sesmlis - e Q = g (e - R;
sm. 20 stn. 2 a

hence the friction sought ish

. o y R———"—. ’
F+ F, = (Q+ Q) sin p = (sin. [o—1] + sin. [s + ¢]) p-

Tt aisslin (a—p) + sin. (a 4 p) = 2 sin. o cOS. p and sin. 2 ©
2 sin. o R sin. p €OS. p

2 sin. a €OS. & i
R sin. p

GoS. O

= 2 sin. a c0S. a, therefore F + F, =

2 cos. o

The friction of a triangular beaying is from this _1_ times as great
cos. o

as that of a cylindrical one. If, for example, ADB = 60°F ACB

, which from the smallness of  may be put =
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= 180° — 60° = 120°¢ and ACD = o = 60°F we then have-

1 — twice the friction of that of a cylindrical bearing,

cos. 60° il
§ 168. With the aid of the last formula, the friction may be foynd

for a new round bearing which the axle touches at all points.* |

gl ADB, Fig. 175, be such a bearing. Let g

820 __ divide the arc .#DB, in which lie the ,4]e
and the bearing, into tnany parts, such as AN,
NO, &c., which have equal projections on the
chord .4B, and let us suppose that each ,f
these parts supports an equal amount of the

whole pressure R, viz., = E, (n being th,
n

number of parts) of the axle on the bearing,
According to the former §, the friction of tw,

opposite parts VO and N0, = -f-:- : c::n'f: :pu. But cos. D

NP
= a ON P —
e NO

, where JVP represents the projection of 4}

part NO,and VP — chord. ﬂB. It therefore follows that the fyic.

n
tion corresponding to the parts NO and N0, = —Ri_s_if'___%__g
n

n.NO 1 R sin. 2 ; . ;NO. In order now to find the frictiop for

" “chord ~  chord _
the whole arc /ADB instead of VO, we must put in the arc AD—,
R sin. 2

3ADB, because the sum of all the frictions is ; times the

sum of all the parts of the arc, it follows that the friction in a peyw

arc AD [

bearing ish F=R sin. 2 pa. TAR if we put the angle .2CB

subtended at the centre by /4B, which corresponds to the arc of the
bearing, = 2 a®, therefore the chord .AB = 2 AC. sin. o,

F-__Rszn.i’p" >, orsin.2p=2 sin, p
2 Sin. o
taken approximately
F _ R Sino p' - s .
Sin. a

* If a bearing be of an acute wedge-shape it is conceivable that an axle pressed jn1o
8uch wedge.shaped cavity would create an additional friction ; but as friction depend,
On wetght, not on extent of sarfiace, the demnonstrations of this section relative to bean'ngs
n cylind;ical cavities in which there is no wedging or tightening, but enly a distributigy,
91‘ the weight over the several parts of the surface of contact, the effect of the Moving force
11 a “new bearing” will be to relieve the pressure on one part and transfer it to another
at lhfa same cistance from the centre of motion, or centre of the axzle. To a certain extent
that is, 0athe depth of the semi-diameter of the azxle, this surface increases, but if there
he a distribution of pressure over a greater number of elementa or units of surface, 80 ia
there a less amount of pressure on each point rubbed. This law of friction, accordiug tc
pressure, and not according w© surface rubbed, agrees with all experiments.—Aat. En,
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From this the friction is the greater the deeper the axle lies in its
bearing. If, for instance, the bearing is half the circumference of the

axle, a is thenh= § x and sin. o = 1, we then have ¥ —g . R stn. p,

and because g= 1,57, therefore 1,57 times as great as that of the free

bearing. In an axle which does not rest deep in its bearing, a is
3 2

small, therefore the sin. « may be put= a-——%a= a (1 — % ), whence

it follows that :
F = (1 + gi) R sin. p, orh= R stn. p, if a be very small.

169. The axle pressure R is given generally as the resultant

of two forces P and Q, directed at right angles to each other, and
is therefore = / P*4 Q. Provided we require it only for the de-

termination of the friction f R = f / P* 4+ Q% we may be satisfied
with an approximate value of it, partly because the co-efficient f
can never be so accurately determined and depends upon so many
accidental circumstances, and partly because the whole product of
the friction /£ R is mostly only a small part of the remaining forces

of the machine resting upon the axle bearing, as the lever, pulley,
wheel and axle, &c. e doctrine which teaches us to find an

approximate expression of / P? 4 Q% is known under the name of
Poncelet’s theorem, and may be developed in the following manner:

3 P
v P4 Q2=PJ1 + (%) = P 1 4 z*, whereby z = (_Q-)’
which sup&(,)ses that P is the smaller force, therefore, z is a mere
fraction. e may now put:
v'1 4+ 22 = p + sz, and determine the co-efficients . and », answer-
ing certain conditions. The relative error is:
Y= .\/l +l"—p—v$= 1 __ P +vzh

V14 o Vi+s
For the smallest value of z, viz., z == 0, ¥ == 1 —pa, and for the great-
est, viz.z = 1, we have y=1 — pj%. If we make these errors,

corresponding to the limits of z, equal, we then obtain an equationof

conditionh, = o +_" ,Oorvs=p/2—p= 0,414, p. If we take

V2
v s e g e —
T = e the result is, that y == 1 — /2 + * = — (V&' + ' —1)
as a negative error, is greater than any other which arises by assum-
. v . . e
Ing T = -4 , that is, a little greater, or a little less than P for 1n

the latter case we have
14*
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p+p(:ia)

— ¢ 1

: 3
JoeGee)
p....—
=_( bl D5 - B 1)
v+t 2ura 4 pt A

( (W2 + o*Fuva) l)
= T W s E2uva 4 4200

ut Al
=—(J}‘2+Us__”g+vgo..——l).

If now we make this greatest negative error equal to the greategt
positive error, we shall then obtain the following second equation of
condition ;

\/P2+"2*—'1=1—P; oru + ‘/p2+y2=2.
But the first equation gives v = 0,414 4 ; it, therefore, follows that
p(14+ /14 0,414Y) = 2, 4. e

$ = = = 0,96 andh = 0,414 . 0,96 == 0,40.

1+ v1,1714

We may, therefore, put approximately +/1 + 2* = 0,96 + 0,40,
and in like manner the resultant R= 0,96 P + 0,40 Q, knowing that
we thereby commit, at most, the error +y =1—p=1—10,96 =

0,04 = four per cent. of the true value. o
This determination supposes that we know which is the greater of

the forces; but if this be unknown, we may assume /1 + z* — .
£+ 2)  Here not only the ]imit

v+ 22
r =0 gives the error = 1 —, but also the limit z = oo, the same

(1 + z), and so obtainy = 1

errorh=1 — #%f — 1 —,; butif weputz = 2 = 1, we then ob-

xr
tain the greatest negative error = ( 2‘:§ 1 )= —(rv2—1,)
and by making these errors equal: 1 —u = 4 v2—1, therefore,
__2 2 L 0,825, for which 0,83 may be pyt.

T IFos T 2,414 T 1,212
In the case where we do not know which is the greater of the forces,
R may be put = 0,83 (P + Q), and we know that the greatest error

committed will be + y = 1 — 0,83 = 0,17 per cent. = é-ofthetrue

value.
H, lastly, we know that z does not exceed 0,2, we may disregard it

altogether, and write /P%  Q* = P, but if z exceeds 0,2, then
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v/ P 4 Q is more accurately= 0,888 . P 4 0,490 . Q; in both cases
the greatest error is about two per cent.* _

§ 170. Lever.—The theory of friction above developed finds its
application in the material lever, the wheel and axle, and in other
machines. Let us, in the first place, treat of the lever, and take the
genera] case, viz., that of the bent lever ACB, Fig. 176. Let us re-
present as before (§ 127) the arm
CA of the power P by a, the arm

CB of the weight Qby b, and the
radius of the axle CH by 7, let us

put the weight of the lever = G,
its arm CE = 5, and the angles

APK and BQK, by which the
directions of the forces deviate
from the horizon = & and 8. The

power P gives the vertical pres- 1
sure P sin, a, and the weight = Q sin. 3; the whole vertical pres-

sure is, therefore, ¥ = G 4 P sin. o + Qsin.3. 'The power P giv.es
further the horizontal pressure P cos. a, and the weight Q an opposite
pressure Q cos. 3: since there remains for the horizontal pressure,
H= P cos. a — Q cos. 3, we may put the whole pressure on the axle:
R=p V4v H= p (G+ P sin. a+ Q sin. 8)+4 (P cos. a—Q cos. B),
of which the second part v (P cos. a—Q cos. 3) must never be taken
negative, and, therefore, in the case where Q cos. 8 is > P cos. a,
the sign must be changed, or rather P cos. a must be subtracted from
Q cos. 3. In order to find that value of the power which corresponds
to unstable equilibrium, so that the smallest addition of force produces
motion, we must put the moment of power equal to the moment of
weight, plus or minus the moment of weight of the machine (§ 127)

plus the moment of friction, therefore,
Pa=QbiGs+er
= Qb+ Gs+-.f(» V+v H)r, from which follows

P_‘QbiGs+f[p(G+Qsin. 3) + Q cos. ] r
a—u fr sin. a+v f7 Cos. @

If P and Q act vertically, R is simplye= P4 Q+ G, therefore,
Pa= Qb+ Gs+f (P+ Q+ G)r. 1If the lever is one-armed, P and @
act opposite to each other, then R=P—Q+ G, and consequently the
friction is less. Besides R must be put constantly positive in the
calculation, because the friction f R only impedes, but does not pro-
duce motion. From this we see that a one-armed, is mechanically
more perfect than a two-armed lever.

Fig. 176.

Ezample. If the arms of a bent lever, Fig. 176, are: a =6 ft, b=4 ft. ;’ht=Qé __itsggg

r=14% inches, the angle of inclination & = 709, 8 = 509, and further the wei bi
Ibs,, a Dd that of the lever G = 900 1bs., the power required to restore the l:ms;a e
equilibrium  is the following. Without regard to friction Pa + Gs = Qb, therefore,

* Polytechnische Mittheilungen, Heft 1, 1844,
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b—G —
we obtaines (G 4 Q sin. 8) = 0,96 (900 | 5600 stn. 50°) = 4982 lhs,, y Q ,,
= 0,40 . 5600 cos. 500 = 1440 lbs.; s #in. a == 0,06 . sin. 700 = 0,902, 4 000, & = 0,40?
c0s. 700 = 0,137. It is easy to see, that here P cos. a i8 less than Q cos. 8, for sjycq
approximately P = 3658, we have P cos€s = 1251 Ibs., al Q cos. 8 = 3600 Ibs
let us therefore take for » Q coo. f and v o2 « the lower sign ang p,;
Pe 5600e 4 — 900 . 4 fr (4982-} 1440_), Let us further take the co-efiicient of fic.-
6 — jr (0,002 — 0,173) 3
tion f = 0,075, and we shall have fr = 0,073. 7 i 0,009375, and the power sought,

22400 —4504- 60 22010 3673 1bs. Hore the vertical pressure, j
P 6 —0,00683 59932 # » i we sub.
stitute the value P = 3658 Ibs., and neglect fFiction, is ¥ = 3658e sin. 700 - 5600 fin
500 4- 900 == 3437 4290 4 900 = 8627 Ibs,on the other hany, the horizoutal pressur
A = 5600 cas. 50 — 3658 cos. 70° = 3600 — 1251 = 2349 [bs, §

Here His > 0,2 ¥, therefore, more correctly :
R = 0,888. H- 0,490 ¥ = 0,885, 8627 4 0,490e 2319 = 8811,

and it follows that the monient of friction = fr R = 0,009375.8811 = 826 1be
*?

and lastly, the power P = aa il ;50 tred S Ibs, which value varjes

little from the above.

171. Pivot Friction.—When in the wheel and axle a pressure
takes place in the direction of the axis, as in the case, for examp|e,
of upright axles, in consequence of their weight, there is a friction on
the base of the one axle. Because pressure is there exerted on points
between the pivot and its step, this friction approximates to the simple
sliding friction, and to the axle friction which we have hitherto con-
sidered, and we must put for it the co-efficients of friction given i
Table II. To find the mechanical efliect absorbed by this friction

we must know the mean space which the base /AB, Fig. 177, of such
an upright axle describes in a revolution. Let yg

Fig. 177, assume that the pressure R is equally distributed
over the whole surface, let us also suppose that gp
equal parts of the bases the frictions are equal,
Let us further divide the base by radii CD, CE,
&c., into equal sectors or triangles DCE ; to these
will correspond not only equal amounts of friction,
but also equal moments, therefore, it will be neces-
sary only to find the moment of friction of one of
these triangles. The frictions of such a triangle
may be regarded as parallel forces, for they all act
tangentially, t. e. at right angles to the radius CD,
and since the centre of gravity of a body or a surface
is nothing more than the point of application of the
resultant of the parallel forces equally distributed

over this body or surface, accordingly the centre of gravity S of the
sector or triangle DCE is here the point of application of the result.
ant ansing from its diflerent frictions. If now the pressure on this

sector = _:i., and the radius CD = CE, the base = r, it follows

that (from § 104) the moment of friction of this sector = CSB?
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= gf 'LE, and lastly, the moment of the entire friction of the axle
n
=n. %rﬁ — g fRr
n ; :
Sometimes the rubbing surface is a ring ABED, Fig. 178. Ifats
radii are C.9=r, and CD=r,, we have then to de- Fig. 178.
termine the centre of gravity S of a portion of ;
: 2y 3—
ring, and from § 109, obtain the arm CS =—?’—2—1"—,:
3rt—r,
Z‘ﬁ;’f).

3 2
ry—17,

e 2
therefore, the moment of frictione= §f R (

! r 4T
If we introduce the mean radius —3%3 = 7, and

the breadth of the ring r,—7, = b, we obtain this | AFD{T*‘ B

-

b2
moment of friction alsoe= f R (r '1_27)'
The mechanical effiect of friction for a revolution of the axle is in
the second case = 2 , . ngr= g = f R r, and in the first

4 rS—r3 : e [ A

5" SR (_12___35) Here we easily see that to diminish this loss of
£ g

mechanical effect, the upright axle or shaft must be made as light as

possible, and that a greater loss of mechanical effiect would anse if,

under otherwise similar circumstances, the friction were to take place

in a ring instead of a complete circle.

Ezample. In a turbine making 100 revolutions a minute, and 1800 lbs. weight, the
gsize of the pivot at the base, is 4 inch; bow much mechanical efliect does the friction
of this pivot consume in one second? The co-eflicient of friction being taken = 0,1
we have the friction f R = 0,1 . 1800 = 180 Ibs., the space per revolution

=% rr= i . 3,14 . _1.= 0,1745 ft lbs.,, hence the mechanical effect per revo-

3
lution = 180 . 0,1745 = 31,41 fi. lbs. But now this machine makes in a second

100 :
—_— 2 of a revohtion, hence it follows that the loss of mechanical effiect scught

60
314,1
= e 52,3 {t. lbs.

172. Pointed Azles.—If the axle ABD, Fig. 179, has conical
ends, the friction comes out greater than if
it has plane ends, because the pressure of
the axle R is resolved into the normal forces
&, W,, which produce the friction, and
which together are greater than R alone.
If the half of the convergent an%le ADC

= BDC = 4, we have 2 V' = —
$tn. «
consequently the friction of the pointed axle
= f———. Let the radius of the axle C4
$in. o

= (B at the entrance into the step be re-

Fig. 179.

, and
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presented by r,, we shall then have as before the moment of frictigy,

= g J hfﬁ_. Let this axle dip a little only into the step, the me.

Sin. o
chanical effect of this axle will be less than that of an axle with a

plane base, and on this account the gpplication of the pointed axle ;s

: d r r F
of service. When, for example, —— = -, therefore, r, = & 7 sin, a,
sin. e

the pointed axle of the radius r, causes only balf the loss of mechg.
nical effect through friction which the truncated axis of the radiug
r does.
If the pivot forms a truncated cone, Fig. 180, friction takeg place
as well at the envelop as the truncated surface, and the momept of
r—r3\2 R
friction comes out = (r,’+ ol ) 2/ 7
sin.o /3 1
place of entrance into the step, and r, = DE that of the base, and 40

the half of the convergent angle.

Fig. 180. Fig. 181. Fig. 182.
— >

, If  be the radius of the

Lastly, the pivot or upright axles (Figs. 181, 182) are very often
rounded. Although by this rounding, the friction itself is by no
means diminished, there arises nevertheless a diminution of the mo-
ment of friction, from the extremity not digping far into the step.
If we suppose a spherical rounding, we obtain by the aid of the
higher calculus for a semi-spherical step, the moment of frictiog

R . Rr; but for that of a step having a less segment

= %[1 + 0,3 <%)9]er, r being the radius of the sphere A4

= MUB, r, the radius of the step C.4 = CB.

Ezamiple. 1f the weight of the armed axle of a horse capstan R = 6000 lb,, the
radiug of the conical pivot = r = 1 inch, and the angle of convergence of the cone
Rr _2 o, _ 6000

. . - 2
2 « = 90°, then the mornent of ftiction of this pivote=— . f . ——~=_.,0,1 .
3 sm.a 3 . 459

1 100 e
8= = 47,1 &%, Ibs. This axle makes during the lifting up of a ton from g

— o e——
e

Bav

shaft or mine == u — 24 revolutions, then the mechanical effect which is expended gy

the pivot in this time by friction — 2 » v . 4 f_r-. =2x.24.47,1 =7103 i, |ps.
#in. a

§ 173. Points and Knife Edges.—To avoid as much as possible
the friction of the axle, rotatory bodies are supported on pointed
pivots, knife edges, &c. If we had only to do with perfectly rigid
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and inelastic bodies, no loss of labor would arise through friction by
this method of support or suspension, because no measurable space
here is described by the friction; but since every body possesses a
certain degree of elasticity, by the resting of such a body on a pointor
knife edge, a slight penetration takes place, and a rubbing surface is
thereby caused, upon which a space 1s described by the friction which
gives rise to a certain loss of labor, although very small. In rotations
and vibrations long sustained, bodies supported in this manner, present
similar surfaces o?friction arising from the abrasion of their points or
knife edges, and the friction must then be estimated by what has
been already mentioned. For these reasons this mode of support is
applicable only to such instruments as the compass, the balance, &c.,
where it is of importance to diminish the amount of friction, and
where motion is only allowed from time to time.

Experiments on the friction of a body resting upon a hard steel
point, and revolving about it, have been made by Coulomb. From
these, it results that the friction increases somewhat more than the
pressure, and varies with the thickness of the supporting pivot. It
is least for a granite surface, greater for one of agate and of rock
crystal, greater still for a glass surface, and greatest of all for a steel
one. For a very small pressure, as in the magnetic needle, the pivot
may be pointed to 10° or 12° of convergence. But if the pressure
is great, we must then apply a far greater angle of convergence, viz.
30° to 45°. The friction is less when the body having a plane sur-
face reposes upon alpoint than when it lies in a conical or spherical
step. Similar relations take place in the knife edge as applied to
the balance, and the beams of balances, that are intended for heav
loads, require sharp axes of 90° convergence, while an edge of 30¥
is sufficient for the lighter ones.

Remark. If we assume that the needle Fig. 183.

AB, Fig. 183, rests on the point DCE of the
pivot FCG, of the height CM = A, and
radius DM = r, and suppose that the vol-
ume § » r* A is proportionate to the pressure
R, the amount of friction may be found in
the following manner. If we put 3 » ¢
h = wp R, where ux is a number resulting

from experience, and introduce the angle of
convergence DCE = 2 &, and, therefore,

R -
put A = r colg. a, we obtain the radius of the base r =\F" Jilang %,and fr R=
T

N =
friction on the pivot increases equally with the ]

cube root of the fourth power of the pressure, Fig. 184.
and the cube root of the tangent of half the ;
angle of convergence. The amount of friction
of a beam 2B, Fig. 184, which oscillates on a
sharp edge CC,, may be found in like manner.
If « be half the angle of convergence DCM, |
the length CC, of the edge, and R the pressure,

[(P tang. a)3
d !

I3 R4 tan ‘Bu ]
e i e T JZL‘ . R § (tang. ) 3. We must, therefore, assume that the
”~

this amount is given =
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§ 174. Rolling Friction.—The theory of rolling friction is by p,
means firmly grounded; we know that 1t Increases with the pressyre,
and that it is greater for a smaller than for a larger .qzllzat})e}er of the
rolling body ; but in what algebraical demfndﬂlce this friction stap|q
to the pressure and diameter of the rolling body, cannot as yet be
considered as determined. C'oulonb made only a few experimepts

with rollers. from two to twelve inches thick, of lignum vita and elm,
: which were rolled along a gyrface

Fig. 186. of oak, by means of a thin threag
passing over the roller AR, whose

extremities were stretched by ..
equal weights P and Q, Fig_ 186.
From the resultshof these experi-
ments, rolling friction appears 1
Increase directly with the pre:-:sureb
and inversely with the dianeter of
the roller, so that the force peces.
sary to overcome this friction May

be expressed by F = f. B: if Rhe
r

the pressure, r the radius of the
roller, and f the co-efficient of frjc.
If » be given in inches, then from

tion derived from experiment.

these experiments
For rolling upon compressed wood f = 0,0189,
4 { ¢« f LT 0,0310.

(19 ¢

These formulas suppose that the force Facts at the circumference
of the roller, but if the force be applied to the axis C of the rolling
bodies, by which, as in every description of carriage, axle friction en-
sues, the required force is 2 F, because here the arm CH is only hj)f

that of KH with respect to the point of application H.

A body .ABS is moved forwards, Fig. 186, lying on the rollers ¢
B o o il e g g

Fig. 186. comes out very small, because
two rolling frictions only, viz.,
that between 2B and the rollers,
and that between the rollers and
the way HR are to be overcome.
The progressive space of the
rollers is only half that of the
load @, and on this account for
farther progression, the rollers
must be replaced under it from
before, because the points of contact A and B, by virtue of the roll-
ing, recede as much as the axis of the rollers ad vances.

If the roller .AH has revolved about an arc .40, the roller has then
mpvecl over a space 424, equal to this arc, and O comes into contact
with O,, the new point of contact O, bas, therefore, receded by .40
=40 behind the former (A). If the co-efficients of friction are _/l
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and f, the power necessary to draw the load R forward is P =

R

f+ £ =
r

Remark. The extended experiments of Morin on the resistance of carriages upon roads,
accord with the law Ly which this resistance increases equally with the pressure, and
inversely with the thickness of the roller. Another French engineer, Dwpuit, on tle
contrary, deduces from his experiments, that rolling friction increases indeed directly
with the pressure, but for the rest, only inversely proportional to the square root of the
radius of the roller. Particular theoretical views upon rolling friction may be found in
Gerstner's Mechanics, vol. i. § 537, and developed in Brix's Treatise upon Friction, art. 6.*

®* The following demonstrations are applicable to wheel carriages in general, and
especially to railway cars and locomotives. They bring into view the relation betwc:en
rolling and dragging friction, as well as the resissence of fixed obstacles to rolling
bodies.

These two kinds of friction may be illustrated by the motion of a cylinder, (Fig. 186,),
moved over any plane surface by
a force applied, first, opposite to Fig. 186..
i18 centre of gravity, and at right
angles to its axis,and secondly, op-
posite to the same centre, but in
the same direction with its axis.
The former force will, if both the
cylinder and the plane be perfectly
smooth, unyielding, and free from
foreign matter, produce a progres-
sive motion only in the cylinder.
But in every practical case such
an application of force produces
likewise a rotation,and, in propor-
tion a8 the roughness of the sur-
faces prevents or resists the slid- -
ing of one over the other, in the same proportion will the rotary, sooner or later, cor-
respond to the progressitve motion. We may easily conceive, however, that while a
body is moving forward with accelerated velocity, that is, while its centre of gravity ad-
vances with increasing rapidity, the revolution on its axis shall be uniform, and the mo-
tion of any point on the periphery may, at any given moment be either greater or less
than that of the centre of gravity. Should a cylinder, revolving ynder such circumstances,
come to apply its periphery suddenly to a part of the plane, where, from the roughness
of surface, it should be compelled to coincide in its revolving velocity with the mation of
progression, while the two motions were coming to an equality, a portion of rubbin
must take place, and the extent of surface rubbed must be equal to the difference 0
motion between the centre of gravity of the cylinder and the assumed point of the pen-
phery. Thus, if while the centre traverges a straight line of four feet, the cirevnmiference
revolved through five,in the same directton, then the extent actually rubbed over would be
one foot. If it revolved in the opposite direction to that which friction would of itself
produce, then we may conceive that each point of the plane passesover some one point
of the cylinder, and, therefore, that there is from this cause a friction through four feet
of space due to the progressive motion; and again, that each point of the cylinder rubs
Agamst some point of the plane, and produces a friction through five feet due to the rota-
tion, and consequently, that the united effects of these opposite motions W°l!'d be “l)
change the existing rotary motion into one in the opposite direction, by a quantity equao
10 a direct friction through mine feet; that is, through the sum of the two motions.
1llustrate the preceding remarks, we may easily suppose a wheel or cylinder 10 recewe:
sidden percussion, wbich shall cause a rapid progressive motion commencing fron;lm
state of rest; this motion may generate a degree of rotary motion, which may or mt?iih it
be equal to the progressive velocity, according % the nature of the surface °"e’bw e
moves. If, after a short time, the surface of the rolling body ceases 10 touch tbe \l:rhile
surface and traverses free space, the rotary motion will continue nearly “mﬁ.b"t'l'l'i e
the progressive motion may be greatly retarded, or may entirely cease. I,f t3 .“s St
the body comes again in contact with the plane, the uniform rotary motion ‘;: B
rate a friction, which will increase the rectilinear motion, bycommunicating to the centre

15
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Fig. 187. § 175. Friction O.f Cords._“’e haVe
now to investigate the fl’lCtiOH of a ﬂexib]e
body. When a perfectly tlexible ¢org :

stretched by a weight Q over the edge ¢
of a rigid body ABE, Fig. 187, and there-

by dewiates from its-original direction by
an angle DCBP=a°, thereharises at the
edge a pressure R from which a friction
F takes place, and requires: for the resto-
ration of unstable equilibrium that the
force P should be greater or less than Q

The pressure is (§ 74):
R= JvP+ Q2—2 PQ COS._;:

-

B

of gravity a part of that force which )u!d been employled. in producing rotatiog. Tl
case now supposed is precisely that which is seen i3 balisics, when a cannog Ball.ap e
having received, by traversing the gun, a rotary motion, and subsequently Beiy er
pented its force in overconiing the resistance of the air, is seen to acquire ap mie;.
tional onward velacity by coming in contact with the ground.t A similar trunsger olt:
motion from the rotary to the rectilinear clirection, through the interference of foltin
is seen, when a billiard ball is caused to retrograde on the table, by giving it an Ob]iqun'
stroke downwards in a direction which passes below” the centre of gravity, Anom;
example to the same eflect is that of a ball falling from a tower at the same timg that
it rev-olyes on some axis of its own. When itcomes to the ground the rotary is converteq
into a rectilinear inotion by the agency of friction, and the bell rolls oft horizonglly ¢ g
the spot where it first struck. T

A still more remarkable illustration of rolling friction is presented in the COMmon
rolling mill, for converting metals iuto plates, where it puts in rnotion not only the bhay of
metal rolled, but often one of the rollers also, notwithstanding all the frictionof its g]e

If the cylinder before supposed were to be moved along a plane by a force BPPIie-d

in the direction GP of its length, (Fig. 186,,) and passing through the centre of gravity
G, it would generate a real dragging finey o
The same thing would be true if the solid

_ Flg 386“_ were laid in & semicylindrical grogye or
1 hollow, (Fig. 186,) and driawn along that

grosve endwise, or caused to revolve apgyt
its axis, its surface being in contact with the

concave part of its bed, and pressing it with
a force due %0 the weight of the cylinder.
The force, then, which would be necessary
to causc this body to revolve, would be equal
to that which would be required to (Irag e
cylinder lengthwise along the plane. Every
revolution of the cylinder naust, thereforg
prodiice the same amount of friction as if ita
surface were reduced toa parallelogmn,, and
the body were dragged without revolving
through its breadth over a plane snrfhce.
Such would be the case, if the forces appjieq
to the cylinder to produce rotation were dj,
reeted in sucha imanner as neither to inCrease
nor diminish the effiect of gravity ; as, for ex-
ample, the two equal and opposite foroes act.
ing simultaneously in the directions CP any
EM, or NI and HT, or DSand KO.

But if a single weight were applied as represented at P, Fig. 186,,it is obvious that jts
own gravity woqld increase the pressure at H, and consequently, augment the friction
cansed by the weight of the cylinder, 50 that, after allowing for the friction caused by W
Wwe must make an additional ailowance for P itself; accordingto the nature of the materinls;
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consequently the friction:

F=fvP 4+ Q—2PQcos.o.
If further we put P = Q + F and P? approximately = Q* 4 2 QF,

we then obtain:
F=f\/Q’+2QFh-I- Q— 2 Q*cos.a —2FQcos. s

of which the cylinder and the bed, EHC, are composed; this allowance would again
cruse a new pressure and friction, and thus a decreasing geometrical series of weights
must be added at the point C, having for the first term such a part of W as is expressed
by the relation of pressure to friction, in the case of the given materials, and for a com-
mon ratio of the progression, the fraction expressing the same relation. The sum of all
the terms, continued to zero, will be the actual amount of P at the moment when motion
commences. The sum of all the terms folloutng the first, will be found by multiplying
together the first and second terms of the sevies, and dividing the product by their difference. The
Guotient added to the first term gives the sum of the series requered. The applicability of a
similar method of computation to the friction on the gudgeons of water wheels, mnoved
by the gravity of water, is too obvious to require demonstration.

If instead of applying a weight at P only, we should apply, as above supposed. two
equal forces, one in the direction of CP, and the other in that of EM, the amount of
friction caused by the former would be relieved by the latter, and consequently, there
would remain only the friction of the cylinder. The same would be true if the forces
were to take either the directions NIand HT, or KO and DS respectively. Supposing
the cylinder to be placed on an axis smaller in any given proportion than its own dia-
meter, as G¥, then the whole efliect of gravity would be transferred to this axis, and if
this were to be caused to revolve by a force applied tangentially to the axis itself, it must
be of the same magnitude as that which had before been applied to the cylinder when
placed in the groove. But if applied to the exterior of the cylinder, it must be as much
less than before as the diameter of the axis is less than that of the cylinder. In other
words, the difficulty of overcoming friction at the axle, is to that of overcoming the same
at the outer periphery, when, confined in a bearing, as the diameter of the axle is to that
of the cylinder. If D be the diameter of the cylinder, d of the axle, and F the relation

of weight to friction, we shall have the proportion D :d = F : aF —, the force required

to overcome the friction on the axle.

This subject may be still further illustiated by Fig. 186, where the horizontal plane
Hh, is represented as furnished at equal distances, with emall balls or prominences 8o
attached to its surface as to present equal obstructions te the dragging of heavy bodies

along that surface.
Fig. 186,.

neg;t;; :ftenor of the wheel ED is likewise represented as furnished with equal promi-
RA Dl l‘:qual dnstan.ces. When, therefore, the wheel is cornpelled to_makenon: revo.-
walll wt:t c:l‘ft advancing, as many prominences wonld be broken from its pefiphery as
through o . 3lodged from the plane surface while it advanced, without revolving

8" a space equal to its circumference. This applies to a locomotive slipping’its


http:prominenr.es

172 ROLLING FRICTION.

= f 2 (1— cos. o) (@4 QF)= 2 f sin. g ‘/_Q2+ QF’ which again

may be put = 2 f sin. % (Q+ 4 F), if we have regard to the twg

wheels on the rails in the one case, and sliding with wheels cloggedor engine reversed in
the other. But when the wheel is allowed both to revolve and to advunce in such a
maaner as to apply its periphery 10 a length of plane )ust equal to the space tra.
versed by the centre, the pruininences wWill be geeretl togetlier like tie tecth of g rack
and pinion. But in the latter case the promninences may all rernain unbroken, Bc
when the wheel rests with its whole weight on an axley as ud, the yumber of Prog ot
nences which can be disposed at the sarne distsnoes ns before, on the circumference ':;f
the axle, will be dirninished, in proportion as the radius Ed of the axle is smaller tha n
ED, that of the wheel.

When a wheel or cylinder rolls on a surface as neasly plane as it is possible for art
produce, the amount of friction, being no mera than is due te the moment of Fayis t:o
extremely small compared witli that of draxging, but the observations already ma:lea
and the exainples citesd, will be suflicient 10 show that the actual advancement tends, ), '
a force equal to that which produces the rotation, to break down the Prominences Of'tl Yy
surface, for if we consider the cylinder rolled forward by a fine thread unrolled froip i.t:
upper side, we may consider also the plane beneath to oppose a force tending to dray, it
in the oppotite direouon, and this force is friction.

In experimenting with wheel carriages, or curs descending by their own gravity alon
inclined planes, to ascertain the ratio of frictionto weight, we have to deterinine 33Paﬂlle]g
the rolling friction of wheels and axles with various weiglitsand dimneters, and (hen thgiy
influence combined with that of the insistent weiglt of cars and loads, w-hich |ateer ch F
alone produce sliding friction at the axle. The weight of the wlicela resisted only b"
the slight amount of rolling friction at the periphery,tents to accalerate the velocity 0’;.
the car and lowl. If we suppose the wheels and axle only to be placed on i plune ngo
Fig. 186,, ee little inclined as just to continue their relling metion, and afterwards ‘Imn
another # po 8o much inclined as to allow a car to descend with all the friction gt it.z:
axJes, we shall readily conceive that over the Iatter plane the wheels would, bY them.
selves, have desccnded with a constantiy accelerated mouon, and consequently, that they



http:ROLLl.NG

ROLLING FRICTION. 173

first members of the square root only. Now if F— f F sin. % is given

= 2 1 Q sin. g, then the friction sought is

would, to the extent of their accelerating force, overcome a portion of the resistance which
friction opposes to the motion of the car.

Thus, in every case where we would compute the effiect of friction by comparing the
actual diswance passed over by a carriage, with the theoretical descent as caused by the
nclination of the plane, we must consider the weight of the car and load as the cause of
friction on the axle, and the gravitating power of the wheels (and that of theaxies when
they revolve with the wheels), as aiding to overcome the friction occasioned by the load.

To compute the effiect of any obamacle of given height which a rolling body is compelled
% surmount, ss dependent on the diameter of the wheel, we may take two wheels E4D
and ead, Fig. 186,, of different heights, intended to surmount the equal obstacles 7.4 and ¢a.
Let the weights ## and w be the same for both wheels, and the powers P and p be such
as to produce an equilibrium in the wheels D.4E and dae respectively. Then since (§ 75
and 139) three forces are in equilibrium, where each is represented by the sine of tAe angle
comprehended between the directions of the ather two, the direction of gravity and that of the

' ine of trection being at right angles to each other, the sine of the aogle com-
prehended between their directions is equal w radiys, and is, therefore, represented by
Cd4 or ca. Again, the horizontal force is represented by the sine of the angle BCA or
bca, which is the line BA or ba, while the vertical force or gravitating power of W is
represented in the two cases by the sines of B.AC and bac respectively, which are the
lines BC and bc. These two forces multiplied respectively by the distance at which they
act, in a perpendicular direction from the point 4 or a, about which the wheel must re-
volve in order to surmount the obetcle, ought to give equal moments to those of Wmul-

tiplied by BA and ba. Hence B4 X W == BC X P,or P BAX W o4 bax W=

| BC
be X 'W. In order, therefore, %o know the absolute values of P and p,

be XPor P gu

we must determine the actual lengths of B4 and BC, of baand bc. BC is easily found
by mbtxnct}ng the perpendiciilar height of the obstacle from the radius, and B4 is found
by subtracting the square of BC from that of AC, and extracting the square root of the

remainder. Thus CA2 — BC*=B4#. But BC = CA — BD, therefore BCan CA3—
2C4 X BD+4 B, Subﬂiluting _illis value of BC® in the equation CAf— BC == B._i",
we obtain 2Cd X BD— B wu B#; hence Bis= V204X BD—BD. Thevalue
of P,therefore, must be LVXB Z'/,:rc(.g: _ng BI?, which is nowsmexpressed interms of
the radius and versed sine. Substituting R for the radius of the lavger wheal, and r for
that of the simaller, as also A for the perpendicular height of the obstacle in both cases, the

above expreasion of the value of P becomes Wx ﬁﬁ—i" and by a oousee of rea-

R—h
soning precisely similar, we obtain p s E"Lx v? ;h i Hence
v — !

Pip o WXV2eRA—N, WX 3rh ---h” or o V2 Rh— N1 27 --F’
~ R—k& r—A R—A r—aA
or, as the sings of the angles DC.4, dca, divided by the cosines of the same angies. And
m.me relation of sine to cosine is the same as that of tangeat to radjue, wo may ‘;’b'
stituse the proportion P : p e taug}zDC.'J : i i dmﬁ We may be aasured that this state-
r

ment is true, when we consider that the centre of gravity of the wheel, where We 8UP-
Pose the force P or p, 1o be applied, must describe the curve CNY or ony, and that ¥ tust
commence ita motion in the direction CO or co, Fig. 186, and that the Gt
Wwill be required when the centre is at Cand ¢ regpectively. Butthe mageat €0, Wh:flh
expresses the length of the inclined plane which the weight begins %0 surmount ia of tue
::me maguitude as the tangent DT of the angle DC.4, and the Succestve pisoes will

mOre nearlycoiacident with the horizontal (e Haviog, on the-fegaing principlet,

: . 150 : 08
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2 f Q sin. a
Fas — ‘)', which generally is = 2/ Q sun. 3 ( 1 4+ fsin, ‘;)

. a
l_fﬂll.:z

and indeed very often = 2 f Q sinh % In order to draw the cord

Jeterrnined the effiect of obstaclea which oppose the rolling of a wheel, we may proceed
to consider the influence of that resistance on the quantity of friction at tlu.? axle.

As carriage wheels are ordinarily constructed. and as rouds, and especinlly ruilfoads,
are commonly made, the resistance of ohsincles at the cirenmference s wmueh niore g yyjl
overcome than that of friction at the nave. ‘Thus, in Fig. 18G5, where the wheel

Fig. 186..

mDT E turng on jts axle, 20, the ling or spokes Dbecomes the proper representetivelpf 5
snepeikled lever, impelled at the upper end in the direction of stor C', P by the resistayce
of friction at s, and at the jower by the resistance of opposging obstacles, (the amount of
which resistance has just been stated,) in the direction DH. It generally happens, how.
ever, thay, except on very rough roads, the resistance from the latter cause is less than
that from the former. Hence: the wheel commences its forward metion sooner than the
axle begins to slide in the box; sa that its sliding motion i8 not (except in cases of great
resistance at the periphery), in the direction of the tangent s, but in that of 8ome other
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. (_l\ =
2fsm.2

| Qis necessaryh

over the edge, a forceP= Q + F =1+
1 — fsin.

o
2/
and inversely, to prevent the descent of the weight Q by the cord, a

line, as IT. The axle, then, ought to be found bearing not on the bottom, but on a part
back of the lowest line of the cylinder. Having been led to this eonclusion from the theory
now developed, the writer was induced to inquire of several wheelwrighte, coach-
makers, carriage-smiths, and keepers of livery stables, whether they had ever noticed the
fact, or whether they supposed it to be true, that the axle did rest in its box elsewhere
than on its jowest part; all, after a moment’s reflection, answered, that as a force was
applied to draw it forward, it must press and be most worn agrinst its fiont and lower
side; but upon examining the old axles in their posseasion, they have uniformly found
the abeve views to be confirmed by evidence which they could not doubt. Io moving a
carriage, then, the animal exerts his strength to bring the axle into such a position that it
will descend by the gravity of the load along an inclined plane as if to follow some direc-
tion, as IT. If the axle be smaller than the bex, so as to leave considerable space be-
tween them, the centre may retreat fion the vertical C, D, ascending at the same time
from C, to C,, where it exercises a gravitating force due to the weight, and in the direc-
tion C, D,, acting of course on the arm of the lever equal in length to D, and D, and
which would, if the force P were relaxed, cause the wheel to retreat and again depress
the point m towards z, describing the portion mz of a cycloidal curve. This effect is often
observed to take place. This position of the axle likewise accounts for the retrograde rota~
twon of a wheel which is sometimes observed to take place through a portion of a revo-
lution, when a heavily loeded car first passes from rough ground to smooth ice. The
gravitating force, when the centre takes the position C,, may be resolved into C; I, per-
pendicular to the side of the box, and the inclined tangent Ig; then the force which
presses‘the surface causes the friction and opposes motion, is less than when it lies on
the horlzon.tal plane &, and the friction is diininished in proportion as C, I is less than
C.8. Again, as the force P now acts in the direction C, P,, it tends to relieve even the
remaining portion C, ], in the ratio of that line 1o C‘,K’. When the fiorce Deécessarylto
surmount the obstacte becomes infinite, the centre of the axie wili take the position Cs,
but this can happen only when the height of the obstacle s equal to the radius of the
wheel. The mngent of the angle formed at the centre will then be infinite also, and the

expression before given, viz, P = 44 taﬂ}gz- DCA, will be as applicable to this extreme

case as to any other where the height of obstacle is less.

The conclusions drawn from the foregoing remarks, are, that the friction of a roller,
moving over a horizontal surface, depends on the relation between the velocity of the
Periphery and that of the centre of gravity; also, that this relation betwgen the tangen-
tial velocity and that of transportation, will depend on the smoment of inertia of the cylinder.

Agam, the advantage of a wheel over a sledge, where the same materials are em-
ployed to slide over each other as those which compose the box and axle, is asthekading
of the wheel to that of the axle.

If friction wheels be employed, the ratio just stated must be multiplied by the relation
between their diameter and that of their axles. '

The amount of friction at the axle to be overcome by the moving force will be pro-
portiona] to the weightof the load, but will depend alsc on the obstacles which oppose
the progressive rotation, and will attain its mazimmen when the height of the obstacle 18
equal to the radius of the wheel, at which moment the advantage of the wheel to sar-
mount the obatacle ia a minimum or zero,

he advanmage of a wheel to overcome any obstacle of a given height when the p lw;
over which the wheel moves, and the line of draught, are both horizontal, will be as :‘d
langent of the angle formed by a vertical drawn from the ceatre of the wheel doracords, au"
&“::"bﬂub‘amfmmmmpointwthetqq Mcawack,wbym
For a more full exposition of the views of the writer of this note on the friction of

carriage wheels, see Jourmal of the Franklin Institute, vol. v. p. 57.—Ax. E.
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2 f sin. %
force P,=Q+|1 + is requisite; therefore approximately

. (]
1 f.s'm.§
P= [l e 2fsin.e% (1 +jsin.e%)] Q, or more simply, e may pyt

P= (1 - Qfﬁn.g) Q, and

P, = 9 , O more simply
] a it 0
1 4+ 2f sin.e=m 5(1 + [ sin. §)
B Q - (l—-2fsin. ‘é) Q.
1 + 2f sm.§

If the cord passes over several edges, the forces P and P, at the
other extremity of the cord may be ip

Fig. 188, like manner calculated by the repeated
application of these formul®. et g
take the simple case of a cord .ABC
Fig. 188, passin§l over a body of ,;
edges, and at each edge making the
same small angle a. The tension of
the first portion of the cord will be Q

(1 + 2 fsin, %) Q, that of the ex.
tremity be = Q, that of the second
Q3=(1+ Qfdﬂ.g) Q1

~(1+2 fsin.e;)' Q; that of he

o 3
third Q, =(1 + 2/sin 5) @ = (1 +2fsn 5) Q therefore,

the force at the remaining extremity P = (1 + 2 f sin. '2‘)” Q, in so

far as motion takes place in the direction of the force P. If we change

P into Q, and Q into P, we obtain P, = < =y provid-

(1 + 2f sin. %)

ed only a motion in the direction of Q is to be prevented.
The friction F— P—Q is in the first case = [(1 +2 f sin. %) '—'1]

Q,and in the second = Q— P, = [(1 + 2f sin. 5)"—-1] g S
[1—=(2 +27sin )] e
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The same formul® are applicable to
a body winding round a cylinder, and

consisting of members, as, for instance,
a chain ABE, Fig. 189, where  is the

number of links in contact, the length
/B of a link = [, and the distance CA

of the axis A of a link from the centre
of the arc covered = 7, we then have

J a l
SN, — = —,
2 2r
Example. What is the amount of friction at the
circumference of a wheel 4 feet in diameter, if
twenty links of a chain, five inches long and one

inch thick, pass over it, one end of which is fixed, and the other stretched by a force of

30 Ibs.? Here P, = 50 lbs. n = 20, sin. oyl T ___5_ S ?.., let us now put for f the

2= I8F1 Do _
mean value 0,35, we then obtain the friction with which the chain acts against the wheel
in its revolution :

5\20 35 \ 20
F__—[(1+2_o35“_ _1],50=[(1 - _.1],50
49 + 490

=Y [ Gg ke ] . 50 = 2,974.50 = 149 Ibs.

§ 176. A stretched cord AB, Fig. 190, lies Fig. 190.
about a fixed and cylindrically rounded body
ACB, the friction may be likewise found from
the rule of the former paragraph. Here the
angle of deviation EDB = o° = the angle ACB
at the centre subtended by the arc of the cord
JAB; if we divide this into equal parts, and
consider the arc /4B as consisting of =n straight

lines, we have then n corners, each with a de-
O

viation of 2_, and consequently the equation be-
n

tween the power and weight, as in the former §:
P = 8t e Y22 ’
(1+2fsm. 2n) Q

From the smallness of =. we may put the sin. % .— &, whence

2n 2n ~ 2a

P= (l +&)DQ. If further we make use of the binomial series, W€

"
Obtaln .

o s —2) (S o) Q
P (1onfo o nla—l) (o, »(r—1)(n poeng
Fn e v )
dut as n is very great, therefore n—1 = n—2 = n—3 .. -~
it may be put:
P= a —r——l:——- a)? 1 a)’ ) | (S Q-
(l+f+1.2(f)+1.z.3'(f)+ )
But xz? r
- RPW:AST frhyidgrmrg sy gy

== N

4.0 .=6%5 where e denotes
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the base 2,71828 . . e of the hyperbolic system of logarithms, thepa_
fore, it may also be put: 2

1
P =¢fa, K Q,asalso Q = Pe—J4, lastly o '=lj-. h,’/P Log —Q

B ) (Log. P—Log. Q).
If the arc of the cord is not given in parts of x, but in degreeg
[ ] L) ’
we have then to substitute a = T%W . n; If lastly, it be eXpressey

by the number of coils u, we have then to put o = 2 x u.
The formula P = ef« . Q expresses that the friction of the cord

F = P — Q upon a fixed cylinder is not dependent on the diametgr
of the same, but on the number of coils of the cord, and moreover

shows that it may very easily be increased, almost to infinity. If we
put f = 4, we have:

For  of a winding P = 1,69 Q
“ & ¢4 P =285 Q
I gt P = 8,12 Q
6 ¢ P = 65,94 Q
“ 4 “ P = 4348,56 Q, &c.

Example. To let down a shafta load P of 1200
lbs. from a certein height, the rope to which this
weight is attached is wrapped 1§ times about a round
firmly -clamped holder 4B, Fig. 191, and the oy
extremity of the rope is held by the hand, Wiz
what force must this extremity be stretcbed, \hat th
load may slowly and unifiormly descend? ¢ we
put f= 0,3 we obtain this power Q — P¢~j:

11 33

-03. —~.2%» M
=1200.¢ i 8 = 1200.¢ 40 ') there.
3
fore, hyp. Log. Q =hyp. Log. 1200 % w = 70901

— 2,5018 = 4,4983 . Llog. Q = 1,9536, Q — 89,9
Ibs.

§ 177. Reigidity of Chains.—If ropes,
or other similar bodies, &c., are placed
over a pulley, or on the circumferepce of
other cylinders revolving about an axis, the cord or chain frictigp
considered in the foregoing paragraph ceases, because the circum.
ference of the wheel has the same velocity as the rope; but now the
force of bending by the winding of the rope about the pulley, and j)so
that of unbending by the unwinding, becomes perceptible. If it js 5
Chﬂil{ which winds round a drumn, there arises the resistance of the
winding and unwinding manifested in a friction of the chain‘pins, while
these_ last are revolving through a certain angle. If AB, Fig. 192, is
one link, and BG the one lying next, if, further, C is the axis of revo.
lution of the wheel on which the chain stretched by the weight Q winds
itself, if, lastly, CM and CJV are let fall perpenticularly to the longer
axes of the links /4B and BG, MCN = o is the angle through which
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the wheel revolves whilst a fresh link 1s
laid on, FBG = 180°—.ABE is the angle
by which the link BG with its bolt BD
revolves abeut the link .AB. 1If now BD
=BE=7 is the radius of the bolt, the
point of friction or pressure D describes
an arc D E=ra, and the mechanical eflect
of friction £ Q hereby produced at the
point B is f, Q. ra. The force P, ex-
pended in overcoming this friction, acting
in the direction of the longer axis BG,

describes the simultaneous space s= C/N

times the arc of the angle MCN'= CWNV . q,
and the mechanical effiect = P, . CNV . a;
by equating both labors we haveP, . CN &
« a=f . Qra, and the required force, if

a represent the radius of the drum CJV increased by half the thickness

of the chain: P,=£,Q. 11,
a

Without regard to friction, the force for a revolution of the wheel
would be P = Q, having regard to the friction in the winding up of

the chain P = Q+P, = (1+ ., 7) Q. If the chain unwinds itselfh
a '

from the drum, an equal resistance takes place; if, therefore, a wind-
ing on one side, and an unwinding on the other take place, the force

P = (1 + 7, %‘)2 Q, or approximately :

=(1+212)e

Lastly, if the pressure on the axle = R, and its radius = 7, it
follows that the force, taking into account all resistances, 1s:

P= (1+2_f; _3_) Q+f— R.

Example. What is the magnitude of a force P at the ex-
tremity of a chain passing over a pulley ACB, Fig. 193, if the
weight Q drawing verticelly downwards = 110 1bs, the
weight of the pulley with the chain 50 Ibs., the radius of the
Ptlley measured to the middle of the chain = 7 in., that of
the axle C § inch, and that the chain bolts = § in.? The
co-efficients” of (riction f = 0,075 and f, = 0,15, therefore
from the last formula we obtain the force:

P = (1+2 .0,15 . _._,83 7) . 1104-0,075 . %i'i (1104-504-P),

of, if we assume P on the right hand nearly = 110 Ibs.

l’;“ 1,016.. 110 4 0,0067 . 270 = 111,76 4 1,81 4 113,6

Fig. 193.

§ 178. Rigidity of Cords.—In bending a cord over 23 pulley or
wheel, rigidity comes in as a resistance opposed to motion. o

sale takes place, but in a far less degree, in the .unrol!ing frorri
cylinders. Amontons and Coulomb set about measuring the amoun
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of this resistance by experiment. The results obtained by them are
by no means satisfactory: partly because they are not in sufficiep
accordance with each other, and partly because they have pot that
extension so desirable for practical application. 'The experimeptg of
Coulomb, which are those only of which we shall speak, were most]

made with hempen cords, of { to  inch thick, and with pulleys 0);‘
from 1 to 4 inches diameter. Other expernnents must be made ke
fore we can know what is the resistance of rigidity of a hempen

of from 2 to 3 inches thick, when wrapped round a drum of frop, j ‘:g
6 feet in height; and also what is the amount of this resistapce ip the

case of the wire-ropes, now come generally mto use.®
Coulomnb made hish experiments jp two

Fig. 194. ways; at one time with the appara

Am{mtons, Fig.h194, where .4B I:S a t:::;]e?f
with two cords winding round it, the tengi,,
is eflected by a weight Q, and the ro]]inn
down of the cylinder by a second gpe Pg
which pulls, by means of a thin string X

; : . ng at
this roller ; at another time, with a cylinder
which was allowed to roll upon a hm‘izontal,
line, and round which a cord was woupd
and from the diflerence of the weights g,q.
pended at both extremities, which eflected .
slow rolling forward, and after abstractjop of
the rolling friction, the resistance of the figidity
was deduced.

It results from the experiments of Coulomb, that the rigidity in-
creases equally with the tension of the winding cord ; that 1t consists,
moreover, of a constant part K, which is no more than might be ex-
pected, because a certain force is necessary to bend an unstretched
cord. It also appears that this resistance increases inversely as the
diameter of the pulley; that it is, therefore, with twice the diameter
of the pulley, only half as great; with three times the diameter, one-
third, &c. The relation between the thickness and the rigidity of
the cord is only approximately given from thesehexperiments, since
the rigidity depends upon the quality of the materials, the twisting o
the strings, &c. For new ropes, the nigidity was found proportiona{
to the power d'7, for old d'*, d being the diameter of the rope. [t g,
therefore, only an approximation, when some assume that this resist-
ance increases proportionally with the thickness, others with the
square of the thickness of the rope.

§ 179. The rigidity of cords may be therefore expressed by the
formule;

8= in (K 4+ Q), where d is the thickness of the cord
a ?

a the radius of the pulley measured to the axis of the cord, 7, K and v,

* See Appendix.
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numbers from experiment. Prony deduced from Coulomb’s experi-
luents that for new cords

— " (2,454 0,053 Q), and for old
a

4 :
S, = le_(2,45 + 0,053 Q), a and d being expressed 1n
a

lines, Q and § in pounds. These expressions refer to the Paris mea-
sure; expressed in Prussian inches and pounds, they become,

dl,7 d\,‘
S = _a_(14,23 + 0,295 Q)and S, = — (6,83 + 0,141 Q).
(74

As these complicated formul® do not always give the results in
accordance with experiment, we may, until other experiments super-
sede them, put with Eytelwein

S=v. ?Q: 5(:_6025}: provided that a be expressed in

Prussian feet, and d in Prussian lines, Q and § in the same weight,
which, however, may be arbitrary. For the metrical standard

§=18,6.% @ This formula, as might be expected, will give

a
satisfactory approximative results only for great tensions, as they
generally occur in practice.

The rigidity of tarred ropes is found to be about }th greater than

that of untarredh for wetted ropes, however, there is no determinate
relation of this kind.

Example. With a tension of 350 Ibs, and a radius of the pulley of 2% inches, the
rigidity of a new rope of ® lines = 0,78 (English) inches, according to Prony, is:
S=2%.({)"7.14,234 0,205. 350) = 0,613e 47,0 = 28,8 lbs.; (according to Lytel-

wein) S = 9':;53053 '524 = 38,9 Ibs. Were the tension Q only 150 lbs., we should
have from Prony, S = 0,613 . 23,4 = 14,34 lbs.; from Eytehoein : — .20 _3 = 16,7

350
lbs,, therefore, here a better accordance. We see from these examples, how little reli-
ance is to be placed on the formula.
Remark. A farther extension of this subject, viz. in respect to the rigidity of wire
ropes, will be given under the article, windlass and capstan.

%180. Let us now apply the formula given for the rigidity of cords,
to the theory of pulleys. The radius C.4 of a fixed pulleye= a, Fig. 199,
the radius of the axle = 7, the thickness of rope |
= d, the weight Q at one extremity of the cord, Fig. 195.

(whose weighte= G,)and the power which must be
applied to the other extremity to draw it slowly
Up = P. Without friction on the axle, and with-
out rigidity, P would be = Q, but because the
axlehexerts a pressure P+ Q + G against its
bea}‘ing, there arises a friction f (P + Q + G)
which, since it acts at the radius r, makes an

increase of power fr (P+Q+ G neéessary;
a

since the rigidity of the rope must be added to this, which manifests
16 -
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itself in this, that the cord does not at once take the curvature of the
circumference of the pulley, but lays itself upon the pulley with 5
Increasing curvature, and in this manner causes an extension of ¢,
arm of Q; the arm, therefore, of the weight Q 1s not CA byt CD,

and the force at the arm CB
- C AD\ 0 Q0 4 Sm Q4 &

The complete equation between the power and the weight is 1o,
a r
P Q+~;(K+' Q)+'£‘ (P+Q+ G)

a
In the wheel and axle the power P acts at a diflerent arm 4 t, that

of the weight, whose arm == b, therefore,
Pa=Qb+a* (K++ Q) +fr(P+ Q+ G), and

P20+ Lkt @ +Li(P1at0)

Hence the force
P _ (b4 » d"+ﬁ) Q+d. K+fr G
a—fr

Erample—A weight Q = 200 lbs. is to be raised with the wheel and axle |,
power P = 50 lbs.; suppose the wheel to be 1§ feet, and the pivot § inch radiyg, Zn:;
the rope applied § an inch thick, and the weight of the whole machine 70 | .
radius must we give to the axle? It must be: ’ .

b = [Pa—d (K+ » Q—fr (P+ Q4 G)]+ Q
therefore, in numbers if we put f = 0,075,

b =[50 .48—(4)' 7. (14,234 0,295. 200)—0,075e 4 . 320] <~ 200

= [900—0,308. 73,23—12] -+ 200 = 8635,4 <= 200 = 4,327 inchcs.

Without additional resismnces & would be
= Pa— Q == 1) 4 200 = 0,375 feet == 4% inches.

CHAPTER VI.

ELASTICITY AND RIGIDITY.

§ 181. Elasticity.—The parts of a rigid body adhere to each other
with a certain force, which 1s called cohkeston, and which must be
overcome when bodies are changed in their figure and extension or
broken, The first effect which fofces produce in a body, is a change
m the position of their parts relatively to each other, and a resulting
change of form or volume of the body. If the forces acting upon
body exceed certain limits, a separation of the parts, and a breaking
of the whole body ultimately take place. The capability of bodies,
which suffer a change of form by the action of forces, to resume per.
fectly their former state after the withdrawal of the forces, is called
elasticity. The elasticityhof every body has a certain limit. If the
change of form or volume exceeds a certain amount, the body retains
an alteration of its volume, even when the forces which have eflected
it cease to act. The limit of elasticity is diflerent for diflerent bodies.
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Bodies which suffer a considerable change of form before this limit is
attained, are called perfectly elastic. Those, on the other hand, in
Whlc.h there is scarcely any appreciable change of form preceding
the limit, are called inelastic, although in reality there exist no bodies
of this kind.

It is an important rule in building and in machinery never to load
the materials to such an extent, that any alteration of their form should
attain, much less exceed, the limits of elasticity.

§ 182. Elasticity and Strength.—Different bodies present diffierent
phenomena when their form is changed beyond the limits of elasticity.
If a body be brittle, it flies into pieces. If it be ductile, as many of the
metals, 1t will admit of alterations of form beyond the limits of elas-
ticity, without suffiering a separation of its parts. Many bodies are
hard, others soft ; the one opposes a great resistance to a separation
0{) their parts, whilst the others easily allow of this to be brought
about.*

In the restricted sense of the word, we understand by elasticity, the
resistances which a body opposes to a change of form ; on the other
l}and, by strength, the resistance which a body opposes to a separa-
tion of its parts. We will accordingly, in what follows, consider each
of these separately.

According to tge way in which external forces act upon a body,
and change their form and dimensions, we distinguish the elasticity
and strength of bodies, into:

1. The absolute resistance,

2. The relative resistance,

3. The resistance to compression, and
4. The resistance to torsion.

If two external forces act by tension in the direction of the axis of
a body, it resists by its absolute elasticity and strength any extension
or rupture, If, on the other hand, these forces act at right angles to
the axis of a body, the body will resist by its relative elasticity and
St}'eng_th any bending or fracture. If, further, two forces act 1o the
direction of the axis of a body by compression, so that the body be-
comes either compressed or crushed, then there is the elasticity and
strength of compression to be overcome. If, lastly, forces strive to
turn a body in opposite directions about an axis, or which do not act
In the same plane normal to the axis, then there is the elasticity and
strength of torsion to be overcome.

. § 183, Modulus of Elasticity.—The change of volume within the
himits of elasticity, 1. e. the extension or compression of a body, 18
PTetty nearly proportional to the force exerted, but if this change ex-
ceeds that }imit, this proportionality ceases, and the change goes on
tl'}:lpldly to that of rupture or crushing. Asa measure of the elasth{t);;
ise modulys of elasticity E, is that which expresses the force whic
g"fcessary to elongate a prismatic body of a transverse section, unity
oo & Square foot, to double, or to compress it to one-half of 1ts
ginal Jength,” A different modulus corresponds to different mate-

* Ses Appendix.
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rials: for each substance it must be determined by experiment, .
the rest, we must bear in mind that the mod.ult.ls of elasticity op]
holds good for extensions and compressions Within the limit of e]as):
ticity, and its measure is one, not of observation, put of hy.
¥ig- 196.  pothesis and calculation, because it 1snot easy to find a pq
\—38  which, without exceeding tlie limit of elasticity, allows sz
reat a change of form as the modulus of elasticity SUPPoseg *
A body AC, Fig. 196, which hasthe initial length 4 @
BC = I, and the transverse section l! requires for its exten,
. sion DG=, the force E, if, however, itstransverse sectiop i-
l F, that is, if it consists of F contiglous prisins, this fOrcs
¢ |® isthen F.E. If, on the other hand, this body is to pe exe
tended a length DNV = CM =, then for the force p

-

b P:F.E =a:1lit therefore follows
1. That P= 2 F. E, and inversely, 2. 2 = __6,_ l
l Pl Yok

The same formule are also applicable to a body .4C, Fig. -197, of th
length AD = [, and the transverse section AR ;

Big- 199 if it become shortened a length a by the COmPressiq
of a force P. X
By the aid of these formul® we may calculate fron
the change of volume (a) the corresponding force p
or from the force P the quantity of the extengjop o

compression.

Ezxample. If the modulus of elasticity of brass wire aMounts
14625000 Ibs., what force is necessary to stretch A inch g w i ‘g

feet in length and § inch in thickness? {=2J5,12 = ¢go inchey ,

1. A Y wdi
g = inch conaequently_l. = a1 further f=— -~ = 0,7854

' : . 1
(_l_). = 0,0218 square inches, the required foroe accordingly is P — g - 90218,
ths, ;

6 .
lasticity of iron wire is 26325
25000 = 442 Ibs. — 2. The modulus of € y 0000
i1f43n i?on chain, 60 feet long and 0,2 inches thick, be stretched] by a force of 150 |bg., gy o
: 150 . 60 . 12 108000

same will be increased by a length A = 0,7854 . (0,2)t 263200000 31416 . 26335
?

= 0,013 inchesO= 0,156 lines.

184. Modulus of Working Load and Strength.—The force T
which a body of the transverse section unity accumulfites when its’
extension attains the limit of elasticity, i8 easily determined from th,
modulus of elasticity E and the elongation » corresponding to this
limit, for T : E = a: 1, therefore, T = 2 E. This is the strajy,
beyond which materials used in construction and machinery must pot
be loaded if they are to maintain sufficient safety together with qyra.
bility. If the transverse section of a body, which has to sustain ,

tensile strain P be = F, we have then
P

1. P = FT, and2.F=.T.

The force 7 by which we judge of the workingload of bodies, may
lbe ;ntroduced into calculations under the name of modulus waorking
oad.

* See Appendix,
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The modulus of strength K, which expresses the force by whichha
body of the transverse section unity becomes ruptured, is entirely dif-
ferent from this modulus. If the transverse section of a prismatic
body, or its least section == F, it follows that the force, for the rup-

ture of this bodys, is:
1., P, = FK, and inversely, 2. F = II)(l

Generally the strength of materials of constrnction and parts of
machines are calculated by the co-efficient K, which is divided for
security’s sake, by one of the numbers 3, 4 to 10. This makes little
difference in the result, as we may see fron a comparison of the
values found in the succeeding table, but the supposition is incorrect,
or to be justified only in so far as the modulus of strength is from 3,
4 to 10 times that of the modulus of tenacity, or generally bears a
constant relation to 1t.

f the section of the body be a circle of the diameter d, we have
therefore,

S—_— B yi
—“—4—d-2= F, SO thatd=Ji£= 1,128\/F= 1,128 T
£y 3 ’
and hence, from the load or strain P on a body, and the modplus of
tenacity 7 of its material, the strength may be found, for which the

body will not be strained beyond the limit of elasticity,

.t What load will a column of fir sustain, if it be 5 inches in breadth and 4
inches in thickness? The modulus of tenacity being taken at 3000 |bs. and the section
F being == § . 4 = 20 square inches, we obtain P = 20 . 3000 = 6000 lbs, for the
power of tenacity of this column., But if we take the modulus of strength K = 12000
‘2200 — 80000 Ibs,; but to
maintain security for a long period, we must only take one-tenthof K, and we shall then
have P = 20 . 1200 = 24000 lbs.—2, A round and wroughtiron pump-rod is to sus=
tain a weight of 4500 lbs.; what diameter ought it to have? Here 7' = 20000 lbs,

4500 9
therefore, d = 1,128 0 = 1,128, JL—TJ = 0,535 feet. The modulus of strength

Ibs., and assume a triple security, we obtain P = 20 .

for wrought iron of the medium kindt== 58000 lbs., and if we take one-sixth for the

450 0.756 inch, the

security, we then obtain X == 10000 ]bs., and d = 1,128
requisite thickness of the rod.

- §185. Strongest Form of Body.—If a vertically suspended prisma-
tic body, for example, a pole or cord, is very long, its weight G must
be added to the force of rupture, and, therefore, P 4+ G must be put

= F_'T: If now ! be the length of the body, andhy the weight of &
cubic inch of its mass, we have then G == Fiy, and, therefore, P = F

(T—Y), as inversely F = T_P 7 1fabody ABC.. G,Fig. 198,

consists of equal portions, each of the length J, its successiVe trans-
Verse sections are as follows. The section of the first portion 18 88

before F m N For the second portion, whose section is Fy

-

16*
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P4+ F
and weight Jy, P 4 F117+ Fily = F,T, hence F, = —_—'“;lé!:Pl‘f

Flly l‘y ~ s 1 3
= F ) For the third portion 1t follo
T—1, : (l - T—%, WS that

Fo= R (14 p2) =5 (1+ qorg) 1o the fourth F, =

Iy 1o iy Y and generally for the nth
<1+,T_,_Ty>_F,(l+ l)’ g y nth por.

tion; F. = F,. (1+.T_IZ.E)M or F, = —;é:{_z(l.y __’l_J --1’ .

L d

corresponding section. .
If /is very small, the portions therefore very short, we may then piit}

P I\
Fn = T(l + T) - ;
If the number of portions is very great, or if the thickness of the
body AG, Fig. 199, increases uniformly from below Upwards, we

may then (from the reasons in § 175,) put the cross section

)by nly Ly
F,,=£.e T:;.CT=—;.87

where e represents the base 2,71828 . . hof (1,
Naperien logarithms, and L the entire length of

the body. : .
A body of uniform thickness to have the sapq

tenacity throughout, must have a transverse goc.

If I/y is small as compare(

tion F = T——Ly.
with 7, T is a small fraction, so that we Imay pyt:

o2l B ()]

7[+7+(7) ]
F=z[1+7+(7) )
further, the weight of the first body is

L es 1 Ly 1_11”]5 .
=—'7—'I”"[1+§T+4(T) 77
and that of the second = F . Ly

4 Ly (Lv)]f :
hence the prismatic body is heavier, and on that account more costly
than one having at each point in its length a cross section corre.

sponding to the Joad it has to bear, and which may therefore be called
a body of uniform resistance, or a body of the strongest form.

ET“"?’{“‘fI- What cross section ought a wrought iron shaft 100 feet long w0 have,
when bea:d'ea.xts own weight it has to sustain a load P=750001bs.* The modulus of tepa.
city or sm;nelgtalégt; at T ==} K = 10311 Ibs., and the weight of a cubic inch of wrought

] ° )

12.12. 12

iron y = == 027444 |bs. The section sought is F = =
F—2ILy
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75000
0 — 17.51 square inches, and the weight of the shat G=F . Ly

10311 —1200.0,27444

= 7,01 . 1200e 0,27444 = 2473 lbs.—2. If we were to give to this shaft the form of a
P 750860

body of uniférm resistance, we should then obtain for the least section F = F = 10311

= 7,28 square inches; for the greatest section F, = 7,28 T 7,28 =

_7,28+7~513) . 329,3 =2435,5 lbs. (approxi-
2

7.513 square inches,and the weighte= (

mately),

§ 186. Numerical Values.—In the following table are given the
mean values of the diflerent moduli, of elasticity, tenacity, and
strength of the materials most commonly occurring 1n construction.

TABLE 1
THE MODULI OF ELASTICITY AND STRENGTH.

o .
0 & : £ B
=2 . = = 2
2% o2 S g |
S o S % . s i o
NAMES OF THE SUBSTANCES. %'ﬁ‘l‘“ '8.5'.“] :g&n 2M 3
& ‘o £ 'S 2
LE . 3 g |3
£ = = (A
1
Bozx, oak, fir, irm Scotch fir . 00} 1856005 3094 12373 1237.
. . 1
Iron in wires - . . . . . T80 26808964 | 21650 | 87645 | 14436
: 1
Ironinbars - - . . . . Y] 20902306 | 20622 | 59805 | 10311
Iron in plates- - . . . . : 26808969 56712 | 9280
Castiron - - . . - .. 1200 17528938 | 14436 19592 | 3094
1
Steel « « « . . . . . =35 30933420 | 37120 | 123700 | 20822
1
Hard cast steel = - . . . = 45369016 | 98987 | 150543 | 24740
goppere-.- S . 38151 | 6187
OPper wire = « o =« . . 75271 | 12370
1
Brass ®* e o e e » ° ° -1-5-2—()- 97955830 7218 18560 wga
: 1
Brass wire . . . . . . i3 | 149511830 | 20822 | 75271 13370
: -
Bellmewal . . . . . .. s 48462358 | 3093 | 35058 | 5774
: | .
Leaa . ., ., ... - 721779 | 1567 028 | 329
Leaden wire - . . . . . .1_5% 1031114 722 2062 351.
Marble . . 2062 206
R(’Pes under ] inch. : : : 2080896 9280 S
N l=—=3inches - « - 7218 | 2371
above 3 « . . _ . 5156 1753
S‘raps - . . . . . . . 299
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The values contained in the second vertical column of this table, of

the relative extension (_;_) at the limits of elasticity, give likewise

the relation _7_' of the values of the fourth and third columnsg, The

sixth column is derived from the fifth, if we divide the woods by 1q,

the metals by 6, and the cords by 3. The strength of wires is alwayg
greater than that of rods, because the enveloping crust of wires ‘jq

tronger than their nucleus. _ . |
S 1‘§ 1gS7_ Flexure of Bodies.—A prismatic body ABCD, Fig. 200,
is fixed at one extremity, for jp,.

Fig. 200. stance, imbedded in a wall, and at
the other extremity acted upon by
a force P ; strains then take pjace
in this body, in consequence of
which, one part is extended, apq
the other compressed, and the whoje
becomes deflected. If we imagine
the whole body to be decomposey
into thin lJaminz by planes para]e]
to the axis, and at right angles o
the direction of force, we may thep
assume that there is a certain mean lamina KLM, which is calle(] tpe
neutral surface or the neutral anis of the lamine, whnph IS not straipne(
by this flexure, and rermains unaltel:ed in length, while the laming 4q
the convex side undergo an extension, and tbose on the concave sj(e
a compression. Let .4 B C, D,, Fig. 201, be the longitudinal sectiop,
of the body, KL its neutral yis
Fig. 201, N0, an extended and UV, a short.
ened or coinpressed lamina. If the
flexure had taken place without 5p
change of voluine, KL would beh=
AD = NO, &c.; t. e. the ]ength
of all the lamina would be one and
the same; the body also would have
the form ABCD, but because the
body has sustained extensions gnd
compressions, certain lamin&, such
as AD, NO, &c., have undergone
- the elongations DD,, 00,, &c., an(

others, as BC and UV, the compressions CC,, VV,, &c., and the
form of the body has changed to that of ABC,D,. In every case the
elongations DD,, 00,, and the compressions cC, V¥V, &c., are pro-
portional to the distances LD, LO, LC, LV, &c., fromn the peutra)
axis. But the strains in the direction of the lamin are in the ratio
of the elongations and compressions eflected by them; we must, there.
fore, assume that these strains are proportional to the distances from

* See Appendix.
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the neutral axis. If, then, we put the strain on a fibre, or layer of
fibres, of a transverse section equal to unity (a square inch), and at a
unit of distance (one inch) from the neutral axish= §; the strain for
the distance KN'=z is 8z, and for the section F, it is F'Sz. If now
the experimental number § represents both the extension and com-
pression, we know the sum of all the strainsh= (F\z,+ Fyz,+ . ) S,
where F,, F,, &c., are the sections and z,, z,, &c., the distances from
the neutral axis. In order that the tensions may produce no pressure,
and therefore no alteration in the length, at the extremity K of the
neutral axis, which we may regard as the fulcrum of a lever, the sum
of the tensions (Fz,+ Fyz,+ . . .) S, and therefore also Fiz,+ F,2,
+ . . . mnust be = 0; t. e. the neutral axis or the neutral lamina must
Pass through the centre of gravity of the cross section of the body.

. We may now compare the condition of the body with the equi-
librlum of"a bent lever. The force P acts at the arm KH = [, the
moment is, therefore, M = Pl, and balances the collective forces of
extension and compression, whose moments are z, . F8z, z, . F 8z,
&e.,or Fz2 . S, Fz2. S, &c.; consequently we must put

M= Pl=(Fz?+ Fz*+ ...). 8.

This formula holds good for each cross
section of the body, only for ! we must
substitute its distance each time from the
point of application L of the force P.
The factor Fiz? + Fz® + ... is de-
pendent only on the cross section of the
deflected body, and may be represented
by the letter W. Hence we may put
M = Pl = WS, and assert that the
tension or strain of a transverse section
1s proportional to its distance ! from the
point of application of the force.

§ 188. From the modulus of elasticity
E, the length of a fibre ! at a unit of |
distance (an inch) from the neutral axis,
and the elongation » which it undergoes, the corresponding tension

§ = %E‘ is known. If now .4BC D, Fig. 202, is a short portion

of !he deflected bOdYa KL = lits length, and MK = ML = » its
radius of curvature, we have then DD, : KL = LD : ML, and also
00 : KL — LO: ML; ite. 00, : 1= LO:p. If we now assume
LO = 1 and OO, = », we obtain a: =1 : p, and hence J

A )
== v E = ?. If, finally, we substitute this value of S In the
formula M — WS, we have the moment M = -I—V—t—j, and inversely,
WEh= M, :

The product WE is called the moment of flexure, and hence the
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product of the moment M and the radius of curvature ; is equivajen;

to the moment of flexure for all cross sections.
If we divide the neutral axis KL, Fig. 204, into n equal parts, ag

Fig. 204,

Fig. 203.

.!, and determine the radii of Curvature

LLI’ Lng, LQLJ, &c. = =

ML, = o, M L, = p,, &c._,_g)urzsponding to the.?e parts, the angle
of curvature LML, = ¢,°, LM, L, = ¢, &c., which every two radi;
of curvature include, are known, viz. LL, = — = LL _ !

! ! E
= p,9; &c., and therefore ¢ = —— ¢ = AR &c. If, further’
2

na} 2
WE E, &c., we then obtain ¢ =

we substitute p, = _WIT’ by = M,

Ml .M,l_’ &c.; and by the summation of all these angles

AWEe® ~ nWE _ ,
we find the angle LOKh= o', by which a greater portion, or the

whole neutral axis, is deflected.
189. Elastic Curve.—If we suppose a small flexure, we may

§ ol
take the projection CLh= KH,, parallel to the initial direction of e
undeflected "beam, and equal to the length of the beam itself, ap

hikewise the projections LD,, L D,, &c., equal to the parts LL , L.L,
&c., of the neutral axis, 1. e. == —, and we obtain the moments

_ 2P M = 3 Pl &c. If we substitute these

values in the formulae for 15 Po &c., then the measures of the angles

of curvature are given:
Q __P 2 2 P13 3 I)l2 &
1 n? TV_E_h P = AWk’ $s = »® WE@ €3



ELASTIC CURVE. 191

and by addition, the measure of the whole angle of curvature KOL

= a Of the neutral axis:
PU3 PR n3 Pl
*=wwg(1+2+3+.4n)=ppr -3 = IWE"

With the assistance of the last for-
mula, we may now find the equation
to the curve formed by the neutral
axis, KL, Fig. 205. Let us divide the
absciss LN = z, commencing at the
point L, into m equal parts, and find
the parts of the ordinate Q= y cor-
responding tothem. Since theradius
of curvature QR is perpendicular to
the part of the arc QQ,, the angle
QQ,U = QRK = a,, and therefore the
part QU of the ordinate y, = QU .

tang. a,,

or QU being put = = and tang. a,
m

= e QU 2B LOK
= Oy 7. oW a,== —_—

Fig. 205.

P> Pt P A
Q o , SWE SWE SWE (2 z?); it follows

therefore, that QU = ;:2 HP;E (I*—=z?). If for z*we substitute suc-

2
cessively (f-) : (2_21')’, (ﬁ)’, &c., we then obtain by the last formula
m m m

all the parts of y, and by the addition of these, the whole ordinate :

ros () (e
T P

&)+ ]== ss [ mit— (%)?P + 2+ 3+
P

. T z3
ot m) ey B g (P 5).

By jhis formula we may calculate for every absciss z the corre-
sponding ordinate y, and likewise for the whole length CL = {, the
height of the arc CK = a. This last is:

2WE 3/ 3WE

Therefore, the height of the arc increases as the force and the cube of

the length,
If we have q by measurement, we may find from this formula the

modulus of elasticity, £ — L%

3Wa | oy
3 190. If the whole load is uniformly distributed over the beam,
S therefore, for

if each unit of length sustains a portion = ¢,
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the whole length {, Q = lg, we must substitute for the momeptg
1 2 3 l . 2! 3 31 2
~ Pl, Z Pl Z Pl, &c,, the moments 3¢ (1—1) » 39 (*n—) » &9 (H :

n n n -
&c., because the centres of gravity of the loads ¢ . ~ q. 2*1’ 7. il
n o

&c., lie in the middle of .f, ?-l, i!, the arms are, therefore, § . K 3

n non al.
?_f, . g_l. Hence we obtain
n " n

L It LN BT
’1"}'m:ﬁ §‘n3 WE"PJ &'ma&c.

And therefolx;e,

9 (1424 ., ) = W ’
a”*'n“WE( R Lty 2n3_WE'?=""'“q'"-——-
and likewise,

3
0= gwp % = g @)

From this last measure of the angles an element of the ordinate
T il 9 __(h— z’), and now for Z° putting successively

= _a3=

m m 6 WE
z\* (2z\® (3z\° z q
(R;)’(E)’(E)’Wehavey =m ©CWE
mid — is IBP4+24... 4+ m =i--—_gq_.__

) m (1° + + m’) m 6 WE

z\* m*] . qx - &
[ mil3 (m) 4], ey = cwp (Z _I)'
the equation of the curve sought.
If again we take r = l, we obtain the height of the arc
q! ql? Qs Qr
. gy ie

o= swg Y'=SWE = 8WE =% 3WE’

#ths as great as if the load Q were suspended at the extremity of th,

beam.

If the beam is loaded by a weight Q, uniformly distributed, 55,4 b
a force P at the extremity, the height of the arc is then y
pi Qe P Q\ &
= 3wg +gwe=(3 +3) Wi
If a beam AMB, Fig. 206, is supported at both extremities, a4
loaded in its middle by a weight P, both the extremities are deflecteg
upwards by the reactions § P and § P, as was 1n the former cage
(§ 189), the one extremity downwards, the formula then found Ler,

holds good, if instead of P, we put %,and instead of the whole length,

LL = I, half the length KL = % Hence the height of the arc is.
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a =—= §P E (%1)3 Rt ' Fig. 206.
IWE ¢ ol
Pl _
SHE e sixteenth of

the height of the arc of the
beam, which is loaded at its
extremity,

. If; lastly, the load Q = ¢!
18 uniformly distributedover ! '

the body.4B, Fig. 207, sup- p
ported at both extremities, we must put in the formula a = (3 -1
QY B . L .

8) W- In place Of ’ -2’ Flg- 207.

in place of P, P+ Q and

for Q, _%, because with

respect to K, the weight % at

the arm Zz is opposed to the

+ Q

reaction Il-?—at the arm

-2-1. Consequently

P+Q @\ & 5 P
“=(‘“F"" 16) 8 WE ‘(P+8Q)21‘82WE

& . : .
ForP=0,a=§. 48QWE; the load is, therefore, uniformly dis-

tributed over the whole arc, and the height of the arc is § times as
great as if the weight acted at the middle of the beam.

Y 191. Rectangular Beams.—In order to give the relations of flexure
of a beam or other prismatic body, and the elastic curve formed by 1ts
Neutral axis, the transverse section of the body must be known, and
the moment of flexure WE, calculated from 1it.

If the section of the beam be a rectangle 2BCD,
Fig. 208, of the width AB = CD = b, the height.AD  Fig-208. _
?eBSC = /, the moment of flexure WE = (F.z* + [@ '
1% + ...) E will be known if we decompose this
Cross section by lines parallel to the neutral axnsh

into 2 equal laminz, each having the area b. T
bk

———

2n; and determine the moments of these lamin, and

17




194 REDUCTION OF THE MOMENT OF FLEXURE.

add them together. Ifwe putsuccessfvely; P g for z i

bh ; :

o+ 2* E, we shall then obtain the moments of the lamin on one g,
n

of the neutral axis; but if we double their sum, we have the complete

moment of flexure

we=2. 2[()+(G) + () *b'k' - JE

n
bh h\* (13 24 B4+, +n)E = ﬁ_iE e bk
=) (—2'1;) (1% 4 2 g + ) 4.3 W'E'

The moment of flexure, therefore, of a rectangular beam jnqr wal,
as the width and the cube of the depth of the beam.
P&

If we put this value of WE into the formula ¢ = TWE of § 189,

P’ butif into the formulag—, 1 P&

we shall obtaina = 4 . TR E i T
of § 190, then a = A—L—ffl:_[:f Inversely, the modulus of elaSticity
4 P8
follows from the height of the arc a E = 373 for the one, and
PP

for the other case.

E =
4adk
Ezample—1. A wooden beam, 10 feete= 120 inches in length, 8 inches jn Wideh,
and 10 inches in height, is to be supporied at both its ends, and bear & uniforyy, load Q

= 10000 Ibs, what flexure will it undergo? The height of the arc is g =4 _Q»
TORE
— 5!h' 10000e 1203 o 20000 s 12’- = _13500000 Now Ebeing Put = 1800000 =
8 .10% E 32.8E 4 . E h

it follows that @ =— 41.31580 —0,1875 inches.—2, If a rectangularcastiron bar,Qinches

wide ande} inch thick, has been ceflected } inch by a weight P = 18 )ps. lying in g,
middle of it, whilst the distance of the supports arnounts to 5 feet, the modu]us of elas.

Pp 18. 603 18 . 609
7 5 3 ° ——— —7 e
ticity of cast iron will be £ = TR = 1.1.2.0° T ! =72.216000 —_

15552000 1bs.
§ 192. Reduction of the Moment of Flexure.—If we know the
moment of flexure of a body, 2BCD, Fig. 909

Fig. 209, about an axis JV; O,, lying without the centré

of gravity, the moment about another axis NO
passing through the centre of gravity § .1
running parallel with the former, may be found
If the distance HH, = KK, of both axes ~ 4
and the distances of the elementary urface;
F, Fy, &c., from the neutral axis O = ; ,

&C-, we sha]l have the distances from th(;l; 12;

NO,=d+ z,d+ 2, &c., and the moment
of flexure willbe W,E = [F, (d 4z 4 p

2

@+ 2P+ ...]E=[F, (& + 2dz, 4+ 2
FR(P+2z,+ )+ E(@(F+ Bt ) + 2d(F 5, ]
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Feo+..)+ (Fz* + F,z2 +...))} ButF, + F, 4 ...as the
sum of all the elements = the transverse section Fof the whole body;
further, |z, + F,z, 4+ .. . asthe sum of the moments about an axis
passing through the centre of gravity of the body = 0, and Fiz}? 4+ F;
292 +.. .18 the moment of flexure WE about the neutral axis ¥O; it
follows, therefore, that W E= (Fd* + W) E,or W,=Fad* + W;
and mversely, W = W, — F g

The measure W of the moment of flerure about the neutral azis is
equal to the measure W, of the moment of flexure about a second parallel
azis, less the product of the transverse section F and the square (d*) of
the distance of both axes. Hence it follows, that of all the moments
of flexure, that about the neutral axis is the least.

The moments of flexure of many bodies about any axis may be
easily found ; we may therefore avail ourselves of these to determine,
by means of the formul® found, the moments about the neutral axis.

§ 193. To find the moment of flexure of a
prism having a triangular transverse section
ABC, we must decompose this section by
lines parallel to the base .AB into n thin
lamina, and determine the moments of these
about the axis JV; O, passing through the point
5 Eara]lel to .3B. If A is the height CD, and
b the breadth 4B of the triangular section
ABC, we have the height of these lamine =

Fig. 210.

'
—, their lengths = 9, 2_6, ﬂ’, &e., to n_b and
n n n na n’
their distances fromJV, 0, = _’f, %, ﬂ‘, &c., to "R From these the
nan n n
areas of the laminz are F, = bl’, e - b and their,
n3 32 s nd 3
b A b A bk’
moments F z2? = T i f e 2% E o 23 = 8%, i &e.,
and the moment of flexure about the axis NV, 0, :
bh’ oh3 n! bh?
Wi = 55003 3 3 3y T A
! n4(1+2+3+..+n)_. - -

The distance of the centre of gravity S from the point Cisd=
£ A, and the area of the whole triangle F = %; therefore Fd&® =

bh 4 Qb A3 '
2°9 A = gh » and the moment of flexure about the neutral axis

NO sought is :
bh?
VE = (f,— PR E< (7L -2 Es 5 SR

a third of the moment of flexure of the rectangular beam, wl}ic{’) has
the same depth and width as the triangular one. But Slllce,thls. ef;m
has double the volume, it then follows, that under otherwisé stmi ‘"f'_
CIfCumstances, the triangular beam has $ of the moment of flexure o
the rectangular.
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We may find in the same manner the mo
ments of flexure of many other bodjes USe(i
. in construction. For the transverse section
of a T-shaped bedy 4,B,CD, Fig. 211, whage

dimensions are AB = b, .AB — A Bh— g A
+ BB1 = bl’ AD = BC = h and AD 1

M_

.BC'x = BC — CCI o= hl’ the momeni of
flexure about the lower edge .4,B, = the 0.
ment of the rectangular figure ABCD, |ess ¢,
moments of the rectangles A4,D, and B,C,_;
b1 DAY 152k  pash 2

TP 212 2 12 = T 52,
as follows, if we consider each of these rectangles as the half of
rectangles having double the height with the neutral axis JV‘IDO

Now the area .4,C;D = bh — bk, and its moment Fqg — B

_2’1_ bk . ﬁ £ _12_ (bh® — b,h,?); hence it follows that the arm MS

— = bA* — bk , the moment Fd® = } (04* — .4 %)%+ (bh—

2 (bh—b.h,) ihy),
and the moment of flexure about the neutral axis passing through ¢,
centre of gravity S .

bh* — b A} 3 2)2 _.
W= W, — F& = — 1L —} (0B — A+ (bh— b
4 (bh® — b,h7) (bh — b.h) — 3 (DA* — b.h,%)?
a4 12 (bh — b h))
- (04 — bnhlg)! — 4 bk blhl_ ()f_—_-_k_l)f
e 12 (bh — b,h,)
§ 194. Hollow Beams.—The moment of flexure of a hollow rectan-
gular beam /4BCD, Fig. 212, is determined,

. gl if we deduct from the moment of the complete

beam that of the hollow part. AB = p g the
external breadth, and BCh= A the height, and
/i, B = b, the internal breadth, and BC =

1

e 2
the height, we then have the moments of flexy,e

g 17 T, (P Ty
of bothh= 5 an 13" Y subtraction we

get the moment of flexure of the hollow beym

bh? — b}
W o p L | ]

12

We may find in an exactly similar manner e
moment of flexure of a body .ABCD, Fig. 913
hollowed out at the sides. .AB = b is the oute;
breadth and BCk= & the height; and if .AB
A,B, = b,, and B,C, = h, the sum of the breadth
and the heights of both hollows, by subtraction we
have again:
W = hS =, 4 blhls
12 '
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The moment of flexure of a body 2BCD, Fig. 214, of a cross-
shaped section, may be obtained in the same :
manner. Here .AB = b the width, and BC Fig. 214,
= h the height of the middle piece, and if ||
A B — AB = b, and .4, ), = h, are the sum
of the breadths and the height of the side ribs;
by addition we have the moment of flexure :
W — dh3 + blhls.

12

It is besides easy to see, that deep, hollow,

and ribbed or flanged sections of the same area

have a greater moment of flexure than square :
sections. Because this moment increases with the transverse section

F and the square (z*) of the distance from the neutral axis, one and
the same fibre aflords, therefore, a greater resistance to ﬂexure,.the
further it is distant from the neutral axis. If, for example,the hexg:ht
h of a massive rectangular beam be equal to double its breadth b, its
B4 2%) e gyt 256.0°

12
= } b, according as we put up the beam with the lesser breadth b,
or the greater 2 b ; in the first case, therefore, the moment of flexure
is four times greater than in the second. If we replace the massive
beam of the cross section bk by a hollow one, whose hollow bk 1s
equal to the massive part of the section bk, — bA, if, therefore, b;h,
— bh = bh, t. e. blhl = Qbh, or bl = \/§ and kl = h ﬂ, we shall

bhS—bR b /2 (h v 2)—b
v ki 12
= 3; bR, 1. e. three times as great as for the first.

§ 195. Cylinders.——The moment of flexure of a cylinder is deter-
mined in the following manner. Let .A0BW, Fig. 215, be the cir-
cular transverse section, and JN'O the neu- Fig. 216.
tral axis of the cylinder. The diameter
AB, divides this section into two equal
parts, having equal moments of flexure,
and the moment of flexure of the whole
may be found by doubling the moment of
the half .4VB. The half may be divided
by sections DE, FG, &c., parallel to /B,
and at right angles to O into thin lamina,
which may be considered as rectangular.
The moment of flexure of such a portion

DEFG, — KL1'2DE°. Now CA= CN'=r the radius of the circular

section, a quadrant AV has, therefore, the area -"——121- and if we divide

17 xR~ Phe

—

this into n equal parts, any such part DG = — . 5 T 2n

moment of flexure will be either W =

obtain the moment of flexure of the last

17*
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projection parallel to CV, GH= KL corresponds to this part, 454
may be determined by putting, GHh GDh= GKhk CG, and, there.

fore, GH = GP-GK _ < GK. Hence we have for the .

CG 2n

ment of flexure of the part (26 K)
~ _.____. = :- G .

n
If we put the variable angle corresponding to the section qp
ACG=¢°, we shall obtain the ordinate GK=r cos. ¢, and for the 5

3+4cos.2¢+c03.4’

" pcos. ¢t = .
moment of flexureh= g3 T GEES o4 g —r——

The moment of flexure of the half cylinder will be now found, if for
1 » 2h n 3 xh

i n

» we successively put the values et g o Se, toh; _ g’ i
s Al i

add the results. But ;_'7 5= ;4; 1s a common factor; We

have, therefore, only to consider the sum of such valueg ag
3+ 4 cos. 2 ¢+ cos. 4 9. The number 3 added n times gives :g i
the sum of all values of the cos. 2 ¢ which present themselye’

b

. S E ”
when ¢ is made to increase from O successively to 5 and, there.

fore, 2 ¢ from O to », equal to O, because the cosines in the second
quadrant are equal and opposite to the cosines in the firsth lastly,
the sum of all the cosines of all angles from 0 to 2 » = 0, hence thh
sum of all values of 3+ 4 cos. 2¢+ cos. 4 ¢ taken between the |imitg » :

0O and ¢ = gis = 3 n, and the measure of the moment of flexure

. 74
et 1 70k i and, lastly, that of the

24n 8

of the half cylinder =

whole cylinder :
W= i M= 0,7854 T‘.

~ For a tube or hollow cylinder with the outer radius 7, apd the
inner 7,

W= j_; (r,4—r%).

To find the moment of flexure of a body having a semi-circylay
transverse section /DB, Fig. 216, w,

Fig. 216. may make use of the rule found i,
§ 192, from which the moment zhoyt
the axis VO passing through the cen-
tre of gravity S is equivalent to the
moment about the diameter /1B, con-
sidered as a second axis, less the trans-
verse section F' (= % ~7?) times the
square of the distance CS of both axes.
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From this we obtain the moment sought = % ; gr‘ — % n . CS

rrt 1 4 r\? 1 8) P
s —3 (5. (6§ 108) = = (8 )

§ 196.—Relative Strength.— When we know the moment of flexure
of a prismatic body, we may determine from it by simple multiph-
cation the working load and the absolute strength of the body. If a
single fibre, or layer of fibres, is extended or compressed to the
limits of elasticity, the body has then attained the limits of its
tenacity. If we again represent by T the modulus of tenacity and
the distance of the furthermost fibre fromn the neutral axis by e,

we shall have 7 = .’lf. E, and %l,’ or the relative elongation, = EL, hence
h
£ _ 7 If we substitute & Jor E in the formula for the moment
P e (4 P
of flexure, it will then give the statical moment of the ltenacity. We
have Pr= SW = ﬂ therefore, also, Pr = T—eW-. It is evident that
P

this moment is a maximum when z = {, or when the arm = /; from
this we may conclude, that at the extremity where the beam is fixed,
the greatest flexure ensues, and the limit of elasticity is first attained.

Accordingly, the working load of a beam is determined by the
formula
TW

P —..
e

In like manner, the strength, or the resistance to rupture of the
beam, may be determined. If a fibre is strained to the point of rup-
ture, the breaking of the whole beam takes place, because the beam
has now a section smaller by the section of these fibres, and there-
fore a greater defl exion ensues, and thus a rupture of the succeedin
fibres or layer of fibres follows. If we put the modulus of strengt%

= K,wehave — = — and, therefore, the force for the rupture of the
P
beam:
P 2V
el

In a uniform rectangular beam, the distance of the outermost

lamina of fibres from the neutral axis == g., hence the formula Pl =

—

3
p T 12 (§ 191) gives the resistance to rupture

2K W bA? K
A "121 617
. | b —bh’
If the beam is hollow, as in Fig. 212, we have P m ——7— 2" "

50 that the formula also holds good for a body, s in Fig. 213, hol-
lowed out at the sides.

P =
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In a prismatic body of a triangular cross section, as in Fig. 210
’

K bid bh? : .

- h ' 25 o Tk i ACCOl'dln tot
e=$ h, hence P 5h° 31 240 g o this, rectan.
gular beams for a similar section have twice the tenacity of triangular

beams.
For a cylinder of radius r, e = r, therefore,

K = ”
0 ZTpa=9 K.
Pl=—. 3" =T

4 __r4a
If the cylinder is hollow, we have P! = :—;(T’_ = _f_’_) K.

If we substitute the modulus of the‘ working load T for that of the
strength, or for K, an aliquot part, t. e. {%sth, the working Joad b

iven by the formula already found.
§ 197. Ezperiments.*—To find the deflexion and tenacity of

beams, we may make use of the experimental values for E and Ti

§ 186; but as concerns the strength of beams, it is safer to l‘eplacg
the modulus of strength there given and derived from experiment
on tensile strain, by those values of K which have been found fp

experiments on compression. A perfect accordance cannot exist
between the moduli found by these two methods, because in rupture,
not only an extension, but also a compression takes place, and both
of these not only in the direction of the axis, but also in the traq.
verse section, though here not to the same amount. Besides, pa

other circumstances aflect the elasticity, tenacity and strength 0};\
bodies, on which account, considerable variations in the results alwayg

present themselves. Timber, for example, is stronger at the core and
at the root than at the sap and the top.h Timber will also bear ,

greater strain when the force acts perpendicular to the annual rings
b}
Fig. 217.

* S8ee Appendix.
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than when parallel to them. Lastly, the soil and the situation where
it has grown, temperature, dryness, age, &c., afliect the resistance of
woods. Besides, the deflexion of a body after it has been loaded for
a long time, is always somewhat greater than on the immediate appli-
cation of the load. .

Experiments upon elasticity and strain were made by Eylelwein
and Gerstner, with the apparatus represented in Fig. 217. /B A B,
are two tressels, C and C| two iron supports. DD, the rectangular
beam for experiment resting upon them. The load P for the flexure
of the body lies upon a scale-pan EE, suspended to a stirrup MWV,
whose upper and rounded extremity lies in the middle M of the beam.
In order to find the deflexion corresponding to a load P, Eylelwein
applied two fine horizontal threads F'F, and G G, and likewise a scale
M resting upon the middle of the beam; vonHKrersiner, on the other
hand, availed himself of a long one-armed delicate lever OK, whose
fulcrum was at M, and whose extremity, like the hand of a watch,
indicated upon a vertical scale KX the deflexion of M to fifteen times
1ts amount.

Remark. Experiments on elasticity, &c, have been made by Banks, Barlow, Buffon,
Burg, Ebbels, Eytelwein, Finchan, von Gerstner, Gauthey, Muschenbroek, Rennie, Ron-
delet, Tredgold, &. An ample summary of these, and besides a theory sornewhat dif-
ferent from the above, is given by Burg in the 19th and 20th vols. of thel Jahrbiicher
des polytechniechen Instituts in Wien” The experiments of Eytelwein and von Gerst-
ner are described in Eytelwein’s “ Handbuch der Statik fester Korper,” vols, ii., and in
von Gerstner’slff Handbuch der Mechanik,” vol.i. The Treatise printed firom the trans-
actions of the Association of Prussian Industry, “ Elementare Berechnung des Wider-
standes prismatischer Korper gegen Biegung,” by Brix, has been used for the preparation
of the foregoing article.

§ 198. Modulus of Relative Strength.—The following table con-
tains the mean values of the modulus of rupture for several bodies met
with in the arts. To find, with the assistance of these, the pressures
which bodies can sustain with safety for a long duration, we musth
put for wood the tenth, for metals and stones, from the third to the

fourth of K.*

TABLE II.
THE MODULUS OF FRACTURE OR MODULUS OF STRENGTH FOR THE FLEXURE.
OF BODIES.
Names of Modulus of Names of Modulus of
Substances. Fracture K. Substances. Fracture K.

————

Box. . . . . . 10000m04000 [Em - . - - -| 6000112000
Dak- - - . . .| 000K 24000 (CestIron - - - - | 24000 + 56009
gc'"e « - - - -| 8000 « 13000 |Limestone - - - 700 « 1707
poehFir . - .| 7000b¢ 17000 |Sandstone - - - et
eal . . . . . 7000 “ 14000 |Brick + - - - - 180

According to this, we may assume for wood as a mean K = 12000
and for cast-iron K == 40000 pounds, and we shall then obtain for a

* Ses Appendix.
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rectangular beam imbedded in a wall at one extremity and loaded at
the other :

1. Pl = 200 . bA%, if it consist of wood, and tenfold security be

allowed.

2. Pl=1000. bk, if the beam be of cast-iron, and fourfold security
be given.

If the body be cylindrical, we then have for wood

3. Pl = 950 93, and for cast-iron

4. Pl = 4700 .
P, !, b, h, r, have the denominations hitherto used.

For wrought iron K is taken 20 per cent. less, because this bends

more than cast iron ; here therefore we must put
Pl = 800 bk* = 3600 7.
If the Joad Q be uniformly distributed over the beam, the beam

will bear as much again, wherefore the above co-efficients must
be doubled. If the beam rest at its extremities on points of sup-
port, whose distance is I/, and if the load P act in the middle be-

tween these points, then for P we must put ; and for [, o where-

fore Pl becomes .}Z){, and the the tenacity quadrupled. But if the

load between the points be uniformly distributed over the beam, we

then shall have for the pressure .22, which acts from below upwards
at a point of support, the moment ?Q s _21_~; and for the opposite

pressure — ?Q as the half of the load pulling downwards at the
[ et SR . Ql

centre of gravity, the moment — e e hence

there will remain as the pressure for rupture at the middle, the mo.-

3
ment gl Ql_ gl’ and therefore QI =8 . % K,also=8. Zbr~'* K,
therefore the stren th or tenacxty IS twice as great as if the load acted
at the middle, an(F eight times as great as if 1t pulled downwards at

one extremity whilst the other remained fixed.
If a beam, Fig. 218,* is imbed-

Fig- 218. ded in a wall at both extremities, or

i if its extremities are fixed, then the
beam sustains as much again as if
it rested freely at its extremities ;
for in this case the greatest flexure
is not only in the middle, but like-
wise at the extremities; the beam,
therefore, breaks at the same time
in the middle and at the extremi-

* See Appendix.
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ties; whilst at the intermediate points C and D, where the convexity
passes into concavity, no flexure at all ensues. Consequently, for a

portion AC, the pressure = 5, the arm = 2, and the moment = —-
[ Pl

+—= = —_., If, finally, in this last case the load Q is uniformly distri-

4 8
Q!

buted over the beam, the moment presents itself = —, because we

may suppose, that the one half of Q is immediately sustained by the

points of support, and that the other half acts in the middle of Q.
The weight G of a beam acts exactly as if the load Q were distri-

buted uniformly over the beam ; for a {eam fixed at one extremity,

therefore, the moment = Pl + } G!; but for a beam resting on both
P ! G 1 G

2'27Y3°'37 3

extremities and loaded in the middle, it is =

l
=
Example—1. A rectangular beam of fir, 7 inches thick and 9 inches in depth, is to
rest on both its extremities, so that the distance of the points of support may amount to
20 feet; what load, suspended from the middle, will 1t sustain? b=7, h=9, 1=20
feete= 240 inches; hence 240 . P =4.200. 7, 9°; consequently this load P= 70.27=
1890 |bs.—2. A round wooden water-wheel, and its axle, 10 feet long, i3 to sustain at
the wheel, together with its own weight, a uniformly distributed load Q = 10000 lbs.;

what diameter must the wheel have? QI = 10000. 120 = 1200000, = 4 . 950. r3,0rr3

1200000 o ‘
— 8 950 = 157,9; hence the radius sought r = 4/197,9 = 5,4 inches,and the dia-

meter of the axle 2 r=10,8 inches, for which we may assume one foot.—3. To what

height may the corn in-a granary be heapad up if the bottom rest upon beams of 25 feet

in length, 10 inches in breadth,and 12 in depth, the distance between the axes of any

two beams == 3 feet, and one cubic foot of corn weighs 48,5 Ibs.? If we apply the

formula QI=16 .200 .bh*, we mustputb =10, h=12, I =25.12 = 300; consequently
16.200.10. 144

(P + § 6) 2, &c.

Q== 300 = 133601bs. A parallelopiped, 25 feet long, 3 feet broad, x feet
deep, weighs = 25 .3 . x . 48,5 Its.; hence, if we put this valuea= Q, it follows that
T= _71553335 = 4,22 feet, the requisite height to which the grain may be heaped up.

» ‘20,

§ 199. Strongest Beams.—Bodies of equal section very often pos-

sess different relative strengths ; the formula Pl = {i_{. . bh* showsthat

the strength increases, as the breadth, as the square of the depth, and
tnversely as the length of the beam. The depth has consequently a
greater influence upon the tenacity than the breadth; a beam of

ouble the breadth bears twice as much, 3. e. as much as two single
beams; on the other hand, a beam of double the depth, four times
thatof a beam of the same depth. For this reason beams are Made,
namely, when they are of cast iron, much deeper than broad ; they are
hollowed out near the middle, and what is taken away Feplaced by
parts at a greater distance from the neutral axis; but thisT ule must
b_%particularly attended to, viz., always to Jay the beam on the least
side, or rather so to lay it, that the pressure may act in the direction
of the greater side.
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The strength of a round trunk, or of any other cylindrical body, is

P=g : ; K, that of a square with equal breadths and depths 2 r_

2r.(27 K 4 ﬁ K; if we compare both pressures

with each other,hg. = .§= 0,588 ; the cylindrical body has,

therefore, only about 59 per cent. the strength of a beam having ,
square transverse section. Wooden beams are hewn or cut f?om
round trunks of trees, and thereby are much weakened. But ¢he
question now is, which is the strongest form of beam that can be ¢yt

from a cylindrical trunk ?
Let ABDE, Fig. 219, be the section of the trunk, .AD = g jtg

. diameter, further 4B = DE = b the breadth,
g and AE = BD = h the depth of the beam
Then 8 4 /* = d3, or A* = d® — b3, apd thé
moment of rupture.

Pl= % . bk = 2 b (a—b)

6
The problem amounts to making b (d’—_b?) ==
bd* — b* as great as possible. If instead of
we putd 4 z, where z is very small, we thep

: obtain for the last expression

(b + z) £—(b + z)* = dP—b* 4 (d*—3 b*) 2—3 b3,
provided we neglect 2%, and the difference of the two = ( + d—3b9)
z + 3 bz°. That the first value bd®—b° may in every case be greater
than the last, the difference + (&"—3 %) z + 3 bz® must be pyt

positive, whether we take b greater or less than z. But this 1s only
possible if d*—3 4 = O, for the diflerence then = 3 bz? therefore

positive, whereas, if d>—3 4% is a real positive or negative value, 3

bz* may be neglected, and the diflerence may be put = 4 (&#—3 b2)

z, which if z has the same sign, is at one time positive, at apother
But if we put @ — 3 b®* = 0, we obtain the breadth

negative.

sought 8 = d /}, and the corresponding depth A = / ¢—b*=d /3.

therefore, the ratio of the depth to the breadth: g- = -'—-/:f = 1,414 o
v

about 7, The trunk must be so fashioned that it shall produce abeam
whose depth to its breadth is as 7 to 5. To find the section corre-
sponding to greatest strength, let us divide the diameter .4D into three
equal parts, raise at the points of division M and JV perpendiculars
MB and WVE, and finally connect the points of intersection B and £
by the cjrcle with the extremities .4 and D of the straight line .4D,
JABDE is the section of greatest resistance ; for since AM : .AB —

4B : AD and AN : A4E = AE : AD, AB = b =  AM.AD —
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VIT. d =dyTand AE = h = VAN . AD = v3de d ==,

therefore b ‘_/i.?., which is actually requisite.

m K

Remark. The trunk has the moment of rupture Pl — . 13, but the beamn of greatest

K 8 K
resist itPl=r .dyt.de=——F . B=—=x
ance formed from it Pl 6 vi.t v 243 V243

8 _ . % _ | 065=0351.c 35 per
A 243 @

cent. of its strength. To spare this loss, the trunk is oiten hewed not quite square, but the

Corners rounded off. A beam with a square section formed from the same trunk, has

the moment P! — K .dy3. g: because here the breadth = the depth = d /3 =

g
0,707 d, hence the loss heree— 1 — o apld | B g —=1—0,60=040

6.2/2 T~ 37y /2

the

>

trunk, theref ore, loses by squaring about 1 —

1.¢. 40 per cent.

§ 200. Hollow and Elliptical Beams.—Very frequently bodies are
hollowed at the inside or outside, and provided with ribs or flanges,
either with a view to save material, or what comes to the same thing,

3gain in strength. For ahollow rectangular beam of iron P = 1000.

to
dhi— 3
- l,l:’k' , the hollow may be of the depth A, and breadth b,, made

within or‘without at the sides. For a hollow cylindrical body P =
ok s

4700 . 11 2 s In such cases the thickness of the sohd part r,— 7,

1S commonl;' made = £ of the outer radius »,; whence it followse

P = 4700, =007 _ 4900, 087047 _ 4090 r‘f—s Anequal-

1
ly heavy solid cylinder has the radius r= « ¥ —7r3= / r3—0,36 7
= 0,8 7, ; henceits moment of resistancee= 4700 . (0,8 7)* = 2406 7°,
namely, about 41 per cent. less than that of the hollow cylinder.

We gain also in strength, when, instead of a cylinder, we apply a
prismatic body with an elliptical section, and place its greater axis
upright or parallel to the direction of the pressure. If we suppose
a circle .40, BNV, whose radius CA = CB = a the semi-axis major,
described about this elliptical section .40 BN, Fig. 220, the strength
of resistance of the body having an elliptical
section may be calculated simply from that
having a circular section. The length of any
element DE of the elliptic elements parallel to

iIts minor axis Y'OB= 2 b is always?. of the
a

Fig. 220.

length of the circular element D,E, ; but now
the elasticity and strength are proportional to
these dimensions singly; therefore, also the
strength of the elliptic element to that of the
circular element, is as b to e, and, finally, the

18
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strength for the whole ellipse = % times the strength of the whole
a

circle, t. e.
Pl = E %. a K = gba’K, for cast iron = 4700 a? .
If now it be an elliptical hollowing whose axes are a, and J,, there
will remain

Pl = 2 . ba® — Lt K, for cast iron,
a
iy ¥
= 4700t. = s
: If, lastly, a body having a rectangular secti
RO ABCD =ybh, Fig. 221, be hollowed at the ﬂangrsl
by the semi-ellipses EFG, HK], and if the semi-
axes of these are = a, and b,, we shall have then

Pl =bh, g LI 2”"3‘1'2‘1" Sl

for cast 1ron

PIR= 200 . bh® — 4,712 al’bl.

h

Ezxamples.—1. A transverse beam of oak, 9 inches broad and 11 inches deep. of
known sufficient tenacity, is to be replaced by a hollow cast iron beam, of § inches in
outer breadth and 10 in depth; of what thickness of metal must it be cast? Let this
thickness = z, we have then for tbe breadth of the hollowing = 5 — z, and its depth
= 10 — x; consequently, for the hollow beam 4,43 — b, A3 =5.109 — (5 — x)
(10 — z)? = 2500 z — 450 2 4 35 x® — z4. Since the moment of resistance of the

wooden beame= 200 . 9 . 11? = 217800, we shall have to put: 1(1)30 (2500 x — 450

72 4 35 23 — x4) = 217800, or 2500 z — 450 2 4 3%ex® — 24 = 2187. As a firse
2178 0,9 inches. But this value gives 450 . 2" = 450 . 0,81 =

approximation 2 — —— —
2178 4- 364,5 — 25,54 0,7

2500
364,5; 35 29 = 25,5, r* = 0,7; we may therefore put: z — Soop

25177 1,01 inch for the requisite thickness of iron.—2. If in a T-shaped girder of

—
— —

2500

cast iron, the breadth .AB= CD=10 is equal to the depth
Fig. 229 and the thickness A, B, = CC, =} b, therefore b, = $ b,
4 i and h, = $ b; we shall then have for the moment of re-
sisance (§ 193):
Pl K (0K — bA%) — 4 bhdh, (A — h,),
3y (bh — b,h,) ¢
bh? — b,A}

——y

substituting e =23 .
or by subs ‘13 3 0 ik
P K (" — bhTY — 4 bb, hh, (h — &,)?

=% BT — b,
(5 —0,512 3)*— 4 . 0,64 ble (b— 08 b)a
b — 0,512 &

— 1000  0:2381e—2,36.004 ;5 1396 ‘45 508 s,
0,488 0,488

.I‘; now, sucb a girder, 4 feet in length, rest on both its extremities, and is to bear a ]gad
10 1t8 middle of 7400 lbs., Pl would then = 7400 . 4 . 12 = 355200, and therefore, 4 .

3%% 355200; whence we should Lave the extreme depth and breadth = k —
———— = 684 in. and the thickness of iron } b = 1,35 inches.

= 1000 .
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§ 201. Obligue Pressure.—If the pressure P act obliquely to the
axis of a beam, which for example is inclined to the horizon whilst
the pressure acts vertically, we have then only to take into account
1its components directed at right angles to the axis. If, for example,
the inclined stretcher .AB, Fig. 223,
supports an accumulated load Q, this
may be decomposed into the compo- |
nents Q, and JV, and for an inclina-
tion a to the horizon of the stretcher,
the pressure Q,, counteracted by the
stretcher = Q . cos. a, and the pres-
sure JV counteracted by the lateral wall
BC = Qsin. a. Taking the friction
into account = Q = Q. (cos.a —

sin. o) and hence for a round stretcher :

Q(cos. — fsin.a)=S8. 9—5?—'—'3, T

being the radius and ! the length of the
stretcher.

If the pressure P be applied directly ]
to the beam .4B, Fig. 224, deviating from the axis by the angle
PAR = q, two components present themselves, N = P sin.a and R
= P cos. a, of which the one brings
nto play the relative, and the other the Fig. 224.
absolute elasticity of the beam. If F [y
be the cross section of the beam, every
unit of it is stretched by the force
P cos. o

Fig. 223.

, and, therefore, the modulus of

P cos. a i o

elasticity K must be taken at

less ; therefore, we must substitute for K, K P c;s. 2 whence 1t
follows that :
Psin.a.:(}( P cos. o\ W;
F ) el 3
: P cos. a\ O
therefore, for a rectangular beam P sin. = (K e -—f‘B) l

)
K ' For ao — 900,
6lsin.a | €0S.a

b2 ' F
K bhﬂ fOl‘ ao o ()’ si?l. o O,

and the pressure for rupture: P =

Sin. o = 1, cos. a = 0, hence P =

€os. a = 1, hence P = KF, as it should be, for we have here only
to consider the absolute strength,

.Exampl.e, What dissance from each other must the 10.inc.h
222, be laid, if it be 44 feet wide, and run for 60 feet up a vein

stretchers of .ﬁSB,. Fig.
having a slope or incli-
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nation of 70°; the weight of a cubic foot of the ground to be supported being 65 Ibs,, the
co-efficient of friction upon the supports is taken at $§2 Let z feet be the distance of two
rafters, the weight sustained by one rafter = 4,5 . 60 . 65 £ = 17550 . z Ibs., and {from
the theory of the inclined plane, this rafter will have only to sustein the pressure Q
= (sin, 70° — § cos. 70)e. 17550 z = (0,9397 — 0,1140)e 17550 z = 0,8257 . 17550

, 050 . 5% _ jmsan.
z = 14492 z lbs. But the rafter sustains 8 . 950 = 8. — iy 92; we must,

therefore, put: 14492 z = 17592, and z = :Zf:: = 1,214 feet = 14,6 inches. We

must, therefore, only leave an interval between any two rafters of 14,6 inches.

§ 202. Loading beyond the middle.—If a pressure P acts upon a
beam, supported at both ends, not at the mxddle! but at a point D 4¢
distances D.Ah= [, and DBh= [, from the points of support, the
beam then can .bear a greater load. According to the equality of
certain statical moments, the point of support 4 sustains the pres.

; -l; ; P, and the point B the pressure P, = 71_17 P,
hence the moment of rupture at the point of application D = DABP
—DB.P, = WP

,,+ L,
point E this moment EB . P, is less,
because the arm EB is less than the
arm DB = [l,; the greatest deflexion
also takes place at D, and fracture first

occurs at this point. Accordingly we

Pil, KW

- 1 L4 th

el = or the whole
length /, + [, being represented by 2,

P, K bA3€if the beam is rectangular. The pressure P — 5

33— .
6

sure P, =

1
For any other

Fig. 225.

must put

7T bh? is moreover = oo, when !, or [, very nearly = 0, and isinfi-
nitlefy less, the more {, and [, approach to equality. If, lastly, /| =
L, i. e. if the pressure P acts in the middle of the beam, P becomes

a minimum, because, if we put {, = %-I- rand |, = 5% z, the pro-

duct forming the denominator [, I, = f_;_ z* 1s always less than %ﬂ,

whether QI_ be made somewhat (z) greater or less. A beam, therefore,

supported at its extremities, sustaips
least when the load is applied at its
middle, and one so much the greater
the nearer the load approaches one of
the points of support.

If a load Q be uniformly distributed
over the length ¢,the centre of whichis
l, and [, distant from the points of sup-
port A and B, Fig. 226, we shall then
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Qlllﬂ, <0 g . £ for the moment of rupture,

because the pressure Q, = %l}_. at the arm /,, and half the weight —g

have to take the diflerence

acting at the arm %is opposed to it. Therefore

(L C\_.If. 2,
Q\z 8/ 6 iy

Ezxample. What load does a holiow cast iron beam sustain, if its outer depth and
breadth amount 1o 8 inches and 4 inches, and inner breadth gnd depth 6 inches and
2 inchesh and if further, the middle of the load, uniformly distributed over 3 feet in
length, ig distant from one point of support 4, and from the other 2 feet? It is

bhd—bh'  4.512—2.28 _ 090, further. 5 & = (=2 i) 12 =23
ks = 8 ) T 6 8 2
inches; hence, E Q = 1000 . 202; and consequently, Q = 17565 lbs.
2

§ 203. Plane of Rupture.—If the beams are not prismatic, if they
have diflerent transverse sections at diflerent places, t.he plane of rup-
ture, i. e. the plane in which rupture will ensue, will no longer be
the same as for prismatic bodies, because this place is not only de-
pendent on the arm z, but also on the transverse section. If we sup-
pose a rectangular section of variable breadth w, and height z, and
assume the beam to be fixed at one extremity, and at the other acted
upon by a pressure P, and the distance of the transverse section wz

from the extremity where the pressure acts — z, we must then put

K w2 i >3
P= . , and find the minimum value of % in order to de-

oo St z
termine the weakest part, or plane of rupture of the beam.

Here many cases present themselves; let us consider only the fol-
lowing. Let the body ABEG, Fig. 227, be a truncated wedge, or
have the form of a prism with
a trapezoidal base, let the
breadth DE = FG at the ex-
tremity = b, the depth EF =
DG = h, and the distance UK
of the edge cut off from the
terminating surface EG, = c.
Let us now assume that the
plane of rupture JVL is distant
UV = z from the terminat-
ing surface, we shall then ob-
tain for it the depth ML = z

=h+ gk . (1 + ;), whilst the uniform breadth is MM =w=>0.

Fig. 227.

2 3 2
The value w&* _ Ok <1 i f) — B (1 4+ 2 e f_) increases and
ze g c T Oy

diminjshes Simu]’taDEOus]y withl $ .:_3, and is, therefore, also a mini-

*18
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mum, when this latter term is of the last value, But if in place of
r, we put ¢ 4+ u, where % is a small nuinber, we shall then obtajp

for it :

1 c+ u 1 |
<+ = + -+
R TE

1 v ud u 2 _'_‘i As now 1n thi
=@+ E— ) ta=it 3 I

expression u appears only as a square, it follows that every othe,
value, which is obtained when the distance z 1s assumed gregte,
or less than ¢, gives a greater value than for z == ¢, that ¢op.

sequently for z = ¢, = + L;-, and, therefore, also w:’ = bh?

¢
the magnitude of the surface of rupture me b . 2 A == 2 bA, and s (js.

tant from the terminating surface E(G = bh as much again as the edge

HK of the portion cut off.
In a similar manner, the distance of the plane of rupture from

the terminating surface of a truncated pyramid or truncated cone is
equal to half the height of the supplementary pyramid or supple-
mentary cone.

§ 204. Beams of the Strongest Form.—A beam, which opposes an
equal resistance to rupture throughout all its sections, of which, there-
fore, each may be considered as a plane of rupture, is called a beam
of the strongest form. Of all beams of equal strength, the body of
equal resistance at each point of its length has the least quantity of
material, and is, therefore, the most suitable, and that which should e
selected for architectural construction, and for machines, not only oy
of regard to economy, but also, that the weight may not be increageg

unnecessarily.
If we put the distance of a plane of rupture from the further ey._

tremity = z, and the measure of the moment of flexure for that gectiop

WKh

== W, we then have the pressure requisite for rupture P == 71! As
ex

3
(.1_ + e + l) L minimum. From hence it follows, that
c ¢ ¢

K is a constant factor, a beam of the strongest form LV must pe
ex

constant also, ¢. e. it must be of the same value for every possible
section. If for a beam of a rectangular section the variable breadth
= %, and the depth = v; but the breadth at the origin, or end
supposed fixed = b, and the depth there = A, we have generally

v, 3
=2, and ¢ m 7, hence P = ";’ : g , and for the origin, for

which z has become ¢, P = b?’ - 9
6

If we make these two values of P equal, we obtain the equatiop

Y’ bA?
=7 for the beam of the strongest form. In a beam of equal
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K L ALEIEE st s :
therefore, —- = 7’ which 1s the equation

, to the parabola (§ 35, Remark), and

TAE. points out that the longitudinal

AN section AABE, Fig. 228, must have
A the form of a parabola whose vertex

1s the extremity or point of suspen-
sion E of the load. If the beam
AB, Fig. 229, rests upon its extre-
mities, and sustains a load in its
middle C, or if a beam .1B, Fig.
230, is supported in its middle g,
and two pressures, balancing each
other, are applied at the extremities
A and B, then the longitudinal pro-

file has the form of two parabolas meeting in the middle. The last
Fig. 229. Fig. 230.

breadth u = b is ¥ — h_,
i l

case occurs in balances, which, as they are weakened by the holes at
the points /1, C, B, are provided with ribs, or have a middle piece .4B

given to them. If the depthv = A is constanth? — ‘éor:—= ;, for
A

the breadth w is proportional to its distance from the extremity, the
horizontal projection, therefore, of the beam .ABD, Fig. 231, forms a
triangle BCD, and the whole beam a wedge with a vertical edge
coinciding with the direction of force. If the body .2BD, Fig. 232,

. 2 ) ’ v ®
1S to have similar transverse sections, we shall then have i hence

. u3h? 3. 3 '
E ';h = bli, e Z—J= IE’ therefore, the breadth and the depth in-
| Fig. 232.
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crease as the cube roots of the corresponding arms. For example, a
section eight times further from the outer end than a given section,
would only have double the height and breadth of that of the given

section.
If a beam be umﬁ)rmly loaded, we have the variable load Q = ?z

and its arm = §’ hence, instead of Pz, we must put 29 . ; = -_21,
whence =L :r’q . Eaee and also _I;i- must be taken = 5/3 16{’ and

consequently fuv/z_; — ; Were the breadth invariable, that is ¢ — b,

we should have ;:__: = ;_2 therefore, also% = ';, and, therefore, a tri.

angle ABE for the longitudinal section, and a wedge ABED, Fig.
233, for the body of the strongest form. If we take a uniform depth

Fig. 233. Fig. 234.

3
v = A, we then obtain % ‘;_., and, therefore, for the plane a surface

BDC, bounded by a paraboligc arc, as in Fig. 234. If we again make

4 ; 3
similar transverse sections, then g =5 so that we have both in the

vertical as in the horizontal profile, a cubic parabola, in which the

cubes of the ordinates increase, as the squares of the abscisses.

If a body /2B supported at both extremities, Fig. 235, is unif ormly
loaded over its whole length, we

Fig. 235. have for the moment of rupture at
a distance from a point of support

A0 = z:

Q Cos g

5 e o 2(1:8 ),
on the other hand for the middle
point :

Q TR R el g
2 " OEEERE ST g

If we suppose the body to be of
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uniform breadth, we have to put % (lz—23) = bv* . % and -982 = &

K

. = and by division ;': _ _fii_tpf';, or o* = %)’(b_e). Were
h = % I, v* would be = lz—2%, and therefore the longitudinal section
would be a circle 4D, B described with ! as a radius, but because

3
lz—z?® must still be multiplied by (%) in order to obtain the square

v? of every ordinate OM, this circle passes into an ellipse .2DB, whose
semi-axes are CA = a=4land CD == A.

The same relations exist tor bodies with circular sections as for
those with similar rectangular sections. In the case of a beam im-

bedded in a wall at one extremity, and loaded at the other :L_: - "_;,

t. e. the radii increase as the cubes of the distances from the point of
application. .

g 205. The Thickness of Azles.—In the parts of machines, as the
shafts, axles, &c., flexures may prejudicially affect the working of
machines, by giving rise to vibrations and shocks; and it is here,
therefore, often more desirable to determine the sections, not ac-
cording to their strength, but according to their degree of flexure.
Gerstner and Tredgold maintain that aieam of wood, supported at
both extremities and loaded in the middle, may suffer a deflexion

1 - .
o= oo ! without disadvantage, and that such a beam of cast or

wrought iron can only undergo a deflexion or height of arc a = 71%'0 2
PP

But now from §190: a = 191; W =%, n
ut now from § 2O WE,andfrom§ 91: W TOLEEE

Pl a pi
—_— d — R e—————
IWE T IWWE
put % = §l§§, and E = 1800000, we obtain for wooden beams the

tenacity or strength at the middle:
a 4b6RPE 1 4 bk*. 1800000

follows the height of arc: @ = If now we

bh®

Pl 30ML = s
! I 288 2 29000 - 5
For cast iron 7 = 1 and E = 17000000, hence:
1 4k bAS
P: ° o 00 = 142 o —
55 - —p— - 170000 000 . —

If further we take for cast iron 2. == —1_, and E==29000000 1bs,,

T

we obtain for a rectangular beam of this material:

3
P == 242000e .'%‘..

The co-efficients 25000, 142000, 242000 must be multiplied by



214 RUPTURE BY COMPRESSION.

3 = = 9,42, and A and b be replaced by r, for cylindrical beams as
round axles, &c. The following table gives the dimensions of the
transverse sections, ! being expressed in feet, b, A, r in inches, and
P in pounds.

Substances. Recmngular section. Circular section.

Pis pp

WOOd = e e =+ bh‘ = -ﬁb— r‘ == _l(j().
PR PPk

i e o o o oA — s

Cast iron 980 = 5250
PR PE

1 ) * bh"h — ——

Wrought iron Sees == 15800

If the load Q be uniformly distributed over the beam, P must be
replaced by § Q, § 190, and if the weight of the beam be taken into
account, by P 4 & G. 1If it be the case of a beam which is fixed
at one extremity and loaded at the other, P and ! must then be
doubled, therefore, P I* to be multiplied by eight; if, lastly, the beam
fixed at one extremity sustains a load Q uniformly distributed, for
P I, we must substitute § . 8 QF* = 3 QP for P P.

Examples.—1. What load wilt a8 wooden beam, 20 feet long, 7 inches thick and ¢
deep, reposing on both its extremities, sustain for a length of time? This Joad js P

OB 190 . 1-% 11906 229 = 2170dbs.
= 00

0!

= 170.

In § 198 P was found == 1890 1bs.—2. What thickness must an iron axle, 12 feet long,

be cast, if the same has to sustain a uniformly distributed load Q = 40000 Ibs.,, witho,;
5 40000, 12°
: ==228,

i 3 QP
2 therefore here r¢ = _
any detrimental flexure? i =w = 8 15800

| JuEm—
and r = /228 = 3,89 inches; consequently, the thickness of the axle 2 r = 7,78,&r
about 7% inches. By the formula for strength, if the modulus of tenacity of wrought jron

be taken at ’,’ times that of cast iron: rf— & _— . - 144ﬁ = 98.5.
' e 8. 4. 4700 8.14e 4700 "y

L S
hence, r W 98,0 == 4,62 inches, and 2 r == 9,24 inches.

§ 206. Rupture by Compression.—If prismatic bodies are so strongly
compressed in the direction of their axes, as to amount to rupture
their resistance to compression has to be overcome. This ruptyre
may take place in two ways. If the body be short, 1f it approxipateg
to a cube, it will fall to pieces without undergoing flexure, but if the
body is longer than it is broad and thick, flexure similar to that whicp,
takes place will precede the rupture. The one kind of rupture con.
s15ts 1n a crushing, bruising, transverse strain, or sphtting asunder of
the bodyor its parts ; the other, in a fracture or destruction of a section
of the body. Hencea distinction is made between the crushing Strength
and strength of rupture under compression.

?ﬁe resistance to crushing is, for similar sections, proportional ¢,
their t;reas 5 for regular sections, however, spmewhat greater than for
Irregular, and greatest of all for circular sections. It is besides inde-
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pendent for the most part of the length of the body. Short wooden
prisms split asunder in the direction of their length, or form a bulge ;
stones break into several pieces or separate along an inclined plane.
Ten times the absolute strength is given to wood and stones; to iron,
only one of five times; and to walls of rough stones, twenty times. If
K be the modulus of resistance to crushing, and F the transverse sec-
tion of the bodies, the working load will be

P = FK and F = __I:, where for K,, } K to 5% K must be substi-

Kl
tuted.
TABLE

OF THE MODULUS OF RESISTANCE TO CRUBHING.e

Names of substances. Modulus K. | Names of substances. Modulus K,
Basalt . - . 27000 Brick - - - 580 to 2200
Gneiss « . 5 5100 Oak - - . 2800 % 6800
Granite - . . 6000 to 11000 § Pine - - = 6800 “ 8000
Limestone . . 1500 « 6000 | Fir . . 3 2000
Marble . - . 3200e# 12000 § Cast iron . . 146000
Mortar - - . 450e« 900 § Wrought iron - 72000
Sandstone . . 1400 ¢ 13000 | Copper - - - 60000

The values of K contained in the preceding table are not unfre-
quently, especially for wooden columns, applicable even when the
bodies are very long, only it has been found necessary to diminish
these values by one, two, or three-sixths, when the columns are
twelve,etwenty-four or forty-eight times as long as they are thick.
Accordingly, for a column of oak, one foot thick and twenty-four
long, K must be taken at from 2800 (I —3)= 1900 lbs. to 6800 . %
= 4500 lbs. The formule developed in § 185 for the transverse
section of bodies of considerable weight, and of bodies of the strongest
form, here find their application.*

Examples—1. What load can a round column of pine, 12 feet long and 11 inches dis-
|
L AR LT square inches; if we now take for K a mean value

meter, sustain? F =

= 0860 ‘: bl == 7400, and diminish the value one-sixth, becanse the length is 13

times that of the thickness, and therefdre put K == 7400 . § += 6200 1bs.; and give ateo-
times security, we shall then bave P == ———————aﬁm)l(:)' ¥ = 620. 95 == 58900 Ibe—2. How

thick must be the foundation walls of a massive building of 20000000 Ibs. weight, 60 feet
outer length, and 40 feet breadih if for this purpose we use weli finished blocks 8
gneiss? Let x be the requisite thickness, 60 — x is the mean length, and 40 — d‘:
breadth ; therefore tae mean perimeter 2 (60—zx -} 40—z) = 200 — 4 z; if We mn

Uply this by z, we obtain the base of the walls {200—4 z) x square feet m= 144 (200—4 z)
T =576 (50—2) = square inches. For a twenty.fold security, a squsre inch of gneuss

sust’ins a pressure = 5;30 = 255 1ba. ; hence we have to put 255. 576 (30—<) #=
136

20000000, 0 80 7—2° mm %- 136. Nowz-"'_:’.‘%;-’:.or about & == ——

e ——
——

* See Appendix.
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136 4 7
= 2,7 feet. Now 22 being put = 2,72 = 7, more accurately = = “’5— —— _15%?_

= 2,86 feet, for which we may take 2,9 feet, = 35 inches.

§ 207. Rupture under Compression.—If a prismatic bedy ABCp
Fig. 236, be fixed at one extremity, and at the other be acted on }y
a pressure P, which acts in the direction of the axis of the body, the
relations of deflexion will come out otherwise than when the presgyr,
acts perpendicular to the axis. The neutral axis KL assumes another
form, because the arms of the pressure P are not formed by the 4.
scisses, but by the ordinates, as HK. From § 188, we have for ¢},
angles of curvature LML,, L, M,L,, &c., of the neutral axis KL, Fig

Fig. 236. Fig. 237.

237, ¢, = Mﬁ[élﬂ, oy = M’;EEIL” &ec., but here the moments gre

M =P.DL, M, = P.D,L,&c., hence we have the measures

.LL P.DL .L
of the angles: ¢, = . Dp‘{ff‘, 5 $g = ;VSE' ’L’, &e. If

we introduce the tangential angles L, LD, = KOL = ,, LLE, -
86, = a—9, LaLzEs =06 =0, — P =0 —% —¢p .&.C., and jf
we suppose only a small curvature, we may then write: LI .

D_lLi’ LlLs ac E2L2 p— L_:iLl'l, L,L8 = 1'—3—3-111, &c. y if further we di-

a o, H] ‘.}2
vide the entire height of the arc CK = a inton equal parts, we may
then put: DI, = CC, = E,L, = C,C,, &c. = g, but DL, _ 2a
n

Dol = %‘3, &c., and by the substitution of these values it followg

P2 < p 2% _a
n na Pa? B gty & ) 2P a?
?1 R — ¢2= 1 ——— —
WE WE n3a’ WE WE nta ’
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3 Pa? Pa w1 aPat
i W’h&"" or ¢ 8= et h = g
a
a, =
- WEn”& P
3
The sum ¢ a + 9,0, + ¢, 8, + ... = Wff‘zn’ (1+2+3+..-

+ 1) - 3 dL B , and may be also found, if a be divided

WE.n* 2 2 WE
Into m equal parts, and any such parth:%, be put = ¢, =¢, = ¢,, &c.

We shallthen obtaing, ¢ + ¢; 8, + ¢, 6, +... = ey a4 (—z-(a . )
m m m

¢ (a 23 2“) + ... 4+ 2. Z by taking out the common factor
m

m m wm

2
(7%)” and writing it in an inverse orderh= (f,) (1 4+24...4+m)

m

2
= LR az, and by making these two sums equal to each other

2
a® — -f%., an equation between the angle of curvature LOK P= o,

W.

and the height of the arc CKh= a.

For the equation of the elastic
line LK, Fig. 238, let us take
LN = x and NQ = y as co-or-
dinates, and put the correspond-
ing angle of curvature LMQ =a,.
In the last equation, if we put a
for y, and y for a, we then have

to replace the sum ¢, a + ¢;a,+
3€ 3
30 1 ... byul (;_“‘é-; hence,

Fig.238.

if we represent the supplementary
angle QSK = a — a, by o;, We
3

afterwards obtain o — o} =
';\y;’ Of ap = o — Py’h, and so a? = uI/)E .V al—y. But
since 0 = QQ, T, and tang. QQ,T Fig. 2%9.

TrQ element & of the ordinate ¥ i

L —— —

TQ e e]emf_:nt « of the absciss =
have 8 _ [ P =y
e 2 b JW .V d—y

Ifin a rectangular triangle .4BC, Fig. 239,

with the hypothenuse .AB = a, the angle C.AB

increase§ bly a small amount BAB, = 3°, the
Perpendicular BC = y increases by the amount

19
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DB, — 3, and the base AC decreases by the amount DB=C,C, then

25, = '_H_C, ARSI ‘/az_ya; and hence > = Va*—3. By
BB, — AB a4y a .

S ° 8 P 2 8
the t ns S = [|-—= . vVa&*— ¥y and —
comparing the two expressions — J Wi 5

— : P R
= /a*— y? we obtain the equationhy = ¢ J_WgBor _’;.’. gt J _Pg
Therefore the ratio of the element « of the absciss to the element of t}e

arc ¢ is invariable, and = J—u;£$ and hence, also, the ratio of the

WwWE .
absciss z to the whole arc A = J B . € % = J%E-'—, and

P - . .
— __—_. If, finally, we substitute this value of .2 in th .
A=z Wi Y, € equa

tion BC = .AB sin. A; t. e. y = a sin. A, we obtain the equatjon
sought :

—

= a Sin ( T 4£--—)
ity WE )
With the assistance of this last formula we may find the ordingate

NQ = y corresponding to any absciss LN = z, Fig. 240. |¢
in this we put z = [ and y = a, Wwe then obtain a = g gy

Dch — l _E_), whence it follows that
(+Jwg)iet= N >
2 h
WE

P ” ”
l ~——-—=—andP=(—2—-2> .

As this formula does not con-
tain the height of the arc q,
follows that the force P is capa-
ble of maintaining equilibrium
for every deflexion of the body.
This remarkable circumstapce i
exp]ained by the fact that ap in-
crease of the arm or of the gtati-
cal moment is combined with ap
increase of the deflexion. Hence
therefore, the force for rupture 18:

P=(3;) WE

2
§ 208. Columns.—If we put in the formula P = (231) . WE for
b 3
W= ].,; » we then obtain in P the resisting strength of a rectangular
il Paa ., O
column 48 7 K,
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The strength, therefore, of a parallelopiped increases as the breadth
or greater dvmension, and the cube of the thickness or less dimenston of

the transverse section, and tnversely as the square of the length.

If, on the other hand, we put W = g 74, then for a cylindrical co-
 HE
lumn we have P = 56" P

The strength of a cylinder increases, therefore, as the fourth power
of the diameter, and inversely as the square of the length.
For a hollow column with the radii r,, and 7,
nt (rf'—nr)E
== = 4
If the column be not fixed at the lower extremity, it will assume a
curvature B.AB,, Fig. 241, by which the lower half will be as strongly
deflected as the upper, and the greatest curvature take place in the
middle. Therefore this beam must be regarded as the double of one

imbedded in a wall, and for |, % must be sub- Fig. 241.

stituted, so that for the rectangular and for the

cylindrical columns,
3 bk.'! “3 7.4
b Tl i S Wl

in both cases, however, there i1s a fourfold tena-
city. These formul®, when the columns are not
very long, give generally a greater tenacity than
the formula for the crushing strength, wherefore
the ratios of the sections are often determined
from the last. It is at least advisable only to
make use of the formula for rupture under com-
pression when the length is at least twenty times
that of the thickness, and then, further, to allow
a twenty-fold security.*

E‘u:;wles-—l. For a column of fir, 12 feet long and 11 inches thick, the tenacity is
- ¢

R Ve B o (;_l) . 18020300 — 31 . 0,044e. 90000 = 123000 ibs.; in
Example No. 1, of § 206, 58900 Ibs. only, therefore about 4 of tlie above, was found.—
2. How thick must a column of oak, 30 feet high, be in order to be able to bear a load
of 60000 1ps. 2

L s a1 PY
Hére y — ’al’t‘ ek J4 . 60000 . (30. 12)° _ '[8.6. 360° — 10,3 inches; conse:
L 3t . 1800000 ] 31.15%

20

quently, l'he 4thickl'l!‘?!!s is about 2¢ inches. The strength of crushing requgggb if K be

Put= 1! 4 28004 6800 . _ 6 — 188
& : =— 320 1bs., the transverse section F T

square inches; whence, r — |_o0. — 13,7. 0,564 = 7,7 inches, and the thickness

w
should be 154 inches. For this case the first value must be taken.

§ 209. Torsion.—When a body .ABC, Fig. 242, fixed at one ex-

* See Appendix.
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tremity, is acted upon by a force whose direction lies in the plane
normal to the axis, and, therefore, endeavors to turn the. body aboyt
the axis, or when two forces of revolution P and Q act in different
normal planes upon a body .4B, fixed by its axis, Fig. 243, the fibres
running parallel to the axis undergo a wrenching or torsion, the
amount of which we wish to determine. Let AB, Fig. 242, pe ,

Fig. 242. ) Nige 243.

fibre before, and AD the same fibre during the torsion, and, therefope

let the extremity of the fibre B be advanced by the force of torsigy, 1.

D. Ifnow ! be the initial length /4B, and » its extension, therefore

! + athe length AD during the torsion, and if s be the correspondin

torsion BD, we have after the Pythagorean__law to put g
AD* = AB 4+ BD*

(42 = B+ 8, or B4+ Qb +a3=104 ¢, may be put approxi-

mnately = » = f If further F' be the section of such a fibre, we

then have for the force required to produce this extension in the direc.

3
tion of the fibre & = gp . F . E. But this force or tensiop (S) of 4

fibre is only a component of the force of torsion R, which prodyceg
besides a further pressure JV; normal to the fibres. From the gjm;.
larity of the triangles RDS and BD.J, it follows that §: R — s

)

hence § — .I%‘, and by equating both values of §:
R=:.F.E.
1

Therefore the force of torsion of a fibye
tncreases as the torsion (s), and the transpers,
section F, and inversely as the length (2) of

the fibre. .
To find the force of torsion of a cylindrica}

axle CBA, Fig. 244, let us divide 1ts radius
r into n equal parts, and suppose concentric
circles passing through the points of divi-
sion, so that the transverse section becomes
decomposed into annular elements of the
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thickness Z, and radiiI,Qr, or . BT The solid contents of these
n nn n n -,

elements are F = 2 . Z-.7 = 2;1(: ’, F, = 2«.-21-£=
I n n n n n
4 TN 3r r r\?
"(_) o Fy we SRR et 6 n(ﬁ) , &c. If all the fibres are
s Vi n n n .
twisted by the angle BCD = a°, they have the corresponding tor-
sions S, = 1 Gy Sl & Gy S5 = &'. s, and hence the forces of torsion
n
Ta r\2 on [T\3 _ 4ox (1’ P =
a 3
-7”_ (:-‘) E, &c. If farther we multiply these forces by the arms
r 2r 3r

o=, and add together the values so obtained, we have for the
n

moments of torsion Pa — - (i)‘ (134 2243+ ...4+a%)E,te.

! \n
Pa = 5;_ (Q'_)‘ : %: = % . E, and inversely, the measure of the
n
angle of torsion:
4! . Pa
G &= .
~ r E

If the axle be hollow and have radii 7, and r,, we have then
__on Pl 1 ‘S 4 Pal
Pa = , E (r* — r*), therefore o = e e o

The application of hollow axles gives also with respect to torsion a
saving in material, for if we put r, =r, and r, = r /2, we then ob-
tain for the hollow axle, which has the same section as a solid one,
the moment of torsion:

“;‘f(w—r‘) i
thrice as great as for the solid axle. :

§ 210. For a shaft or axle of a rectangular section ABDE, Fig.
245, the moment of torsion 18 found in the fol-
lowing manner. If we divide half the breadth
“AG = b into n equal parts, and carry through
the points of division the parallel planes HL,
MWV, &c., we obtain elements of equal sections,

.e.

ax r*EhL.
.

oy

Figo 2&'

each = % . k, where A represents half the height

AF = GC of the section. If now we divide one
of these elementary strips intom equal parts, we - |
1 bh bh Let the norma] distance CHOf the

have for its area 2, 2% — ]
:stance K H of the element

_ m n mn
strip HL from the centre C, = c, and the d

19¢
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K from the normal CH, = e, then the distance of the element from
the axisis CK = /¢34 €3, accordingly the arc of torsion = & /c*4- €%,
and the moment of torsion
avei4 e b —— odh g
- 2/ mn ,/c’+e’.E..2mnl(c+e)E.
3

. 1 2
= _—h, = h —
If now we successively put e Ry

results, we have the moment of the strip:
| abh h* 4ht P h*
HL"'_—il(c'+;’+c‘+m!+ +—+ t..)E

_%[me+(£)(l+4+9+...+m’)]5‘.

3
But14+4+49+...+m' = %, hence the moment of the strip =

h, &c., and sum the

-_"_bf_(c: + %’) E. To obtain the moments of all the strips, let g

2n!

again put ¢ = .If, 21?, %13, &c., and again sum the results, we ghal]
n

then have:

obh b\3 b\? b\? nh?

s [G) +4G) +2G) +--+ 5] 5

obh [/0\? nh? abh (B° nd  ppe

2nl (;)(”4*“'”’)*“—3‘“]"""%{(7?'?*“3‘)3
abh (B 4 A%\

Generally the sections are square, and therefore b = k. As we
have only considered a fourth part of the shaft, it follows for the
whole shaftlthat:

Pa2%E

For a cylindrical axle P, = %_:: E; if we putb = r we then

bt.P= ° ]
ootain r‘a 3 y;

therefore,h= ;_6 = 1,756 times as great as that of the round gx]e
= .

4 4 oanxr'p g P,a,, the moment of the square is,

But if we make 45* = 7%, and, therefore, both sections equal, we thep

obtain Palie ";’; E— 4_"13 . ; .Pa, = -g Pa, therefore the

square ghaft is only a little stronger than the cylindrical axle.
If the axle be hollow, and the outer and inner radii be 2b, and 2p
we then have ; 3

4o F
Pa = -—-3—-2— (bl‘—b,‘)o
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§ 211. Breaking Twist.—When the torsion exceeds a certain limit,
the fibres are torn asunder, and the cylindrical axle is twisted asunder-

For the moment of rupture of the fibre furthest from the axis % = %{:
but% 18 also — £ = ;a_;:, hence it follows that “.Tr = ___2E K

The statical moment of twisting for the round axle is:

Pa = 2K =« " E~"T |KEB
E 4 2 N2’
but for the square shaft, where the greatest distance of a fibre is half

the diagonal b s/'2_; it follows that___ .
K 2 nee 2t [Kana Pu 2 VEE.
) E 3

E~ 2B
Since the fibres are not only extended by torsion, but also com-
pressed, and as we have only had regard to extension in our develop-
ment, so it may be expected that the formula found do not in their
quantitative relations quite correspond with experiment and, therefore,

it is necessary to take the constants E and +/ KE from experiments
made especially to determine them.

If o be given in degrees, such observations admit of our putting for
the torsion :

Substances. Circular section, Square section.
Wood - - . . Pa = 3500 . .__...“ol" Pa = 5800 “:b‘ .
Cast iron - s . - Pa = 160000 “o;‘ . | Pa =— 280000 ':b‘.
Steel and wroughtiron - Pa =2soooo"_:'1, | Pa=470000 ‘:”‘.

In what relates to the strength of torsion, numerous experiments
made upon cast iron have given J_{E_'_ = 30000 to 66000 lbs., if

2
therefore, a five-fold security be taken, thenis g _{{2_1_:_ = 12600 lbs.
therefore, for the round cast iron axle Pa = 12600 »*, and for the
square = 15000 &,
he same formule hold good for axles of wrought iron, but for
wooden ones we may put Pa = 1260 ~* and = 15600 b, 3. ¢ the
modulus of strength ‘= J; that of iron axles. The modulus of

strength for steel J KE nust be taken at twice that of iron, and gun
2

metal at one half.*

¢ See Appendix.
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LEramples—1. The iron upright axle of a turbine exerts at the circumference of 4
toothed wheel of 15 inches radius reposing upon it, a force of 2500 lbs.; what thick.
Pa

ness must be given to it? Pg == 2500 .15 == 37500, and if we put 7 == 12600 =

37500 _ 375 . Kl . :
15600 — 156" we shall obtain r = ‘;’T:.s 1,44 inches; hence, the thickness ,f

the axle 2r = 2,88 inches, for which 3 inches may be assumed. If the distance of ¢he
toothed wheel from the water wheel is 60 inches, the torsion of the axle == 40

Pal 37500e 60 375.6 14,08 __30 3/ therefore very considerablg

160000 7 160000 . 1,48¢  160.4,28 4,28
—2. On a square axle of fir,a force P == 500 Ibs.,, acts at an arm of 20 feet, whilst
the load is applied at an arm of 2 feet, the distance measured 1fi the difection of ¢he

axis /== 10 feet; how thick must this axle be made, and how great is the torsion 2 Itis
Pa == Qb mm 500 . 2 . 12 == 120000 inch Ibs.; but the load Q = % P =x5000 1bs.; palf

. : : Pa 120000 ] 3
the side b of the axle is determined by 4% == 1500 ™ 1500 80; hence p =— T

== 4,31 inches, and the whole side == 8,62 inches. The torsion amounts ¢ a® —

Pal 120000 22 .10 14400_(_2= 7°; therefore, here very considerable, )

5800 . 0% 5800e 4,314 58.345
general, less torsion is allowed, and therefore the axles are made much strongey. Gene-

rally, this angle does not amount to § a degree, If, however, we put &° s= §°, for this

4
case we shall obtain 44 = 154;000 == 4965, hence b == /4865 == 8,4 inches, and 2

== 16,8 inches. According to Gerstner, the angle of torsion of an axle ought not -

amount to more than 0,1°,
Remark. If an axle has to sustain relative elasticity and that of 1orsion, we must make

the calculation for both, and apply the greater ratio of the dimensions found.
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	In consequence of friction, the surface FH, Fig. 162, reacts notonly against the normal pressure Nof another 
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	§ 160. Eeriments on Friction.-Experiments on friction havebeen made by many philosophers, the most extensive of which, and on the greatest scale, are those of Coulomb and :Aforin. To find outthe co-efficients of friction for sliding motion, these two made use of a sledge sli�ing on a horizontal surface, which was pulled forward by a cord, passing over a fixed pulley, from which weights were sus­pended, as in Fig. 163, where .11.B represents the ,vay, CD the Ethe pulley, and Gthe weight. To obtain the co-eff
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	Remark. Before Coulomb, Amootons, Camus, BillJilnger, Muschenbroek, Fergnsou Vince, their attetlon to and made experiments on friction
	and 
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	The re: :.ults of all these investigations are of little alue in practice, because tJ1ey ,vere ducted upon too s1nall a scale. The experiments of Ximenes, which ,vere made abouL I.ho same time as those of Coulomb, a1so fail in this respe<:t. The resultS are to be found in a work, « Teoria. e Pratica delle resistenze de' solidi no' loo attriLi," Pisa, 1782. The 
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	experiments of Coulomb are fully described in his ·work,ples," 1821. The latest experiments upon friction 
	are those of Rennio and Rennie used for his experiments partly, a sledge upon a horizontal surface, upon an inclined plane, from which the bodies ,vere allowed to slide down, which the amount of the friction was deduced from the angle of friction. Rennie's periments extend to substances of various kinds met with in practice, as wood, stones, and metals; they give important results upon the abrasion of bodies from the apparatus and thmode of oonduting these experimenŁ, ,ve cannot rely Łthem for that accuracy
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	EXPERIMENTS ON FRICTION. 
	§ 161. The following tables contain a condensed summary of the -e.fficients offriction the most useful in practice. 
	co

	TABLE I. 
	CO-EFFICIENTS OF THE FRICTION OF REPOSE. 
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	TABLE II. 
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	-; 
	Ł 
	C

	j "t:l 
	Sl

	-
	£,-4 A 
	Ł 
	t-
	t-


	14 A
	"0 

	.!!1 Ł 
	'"' 
	-

	j i 
	Figure
	-

	-
	0,06 0,00 
	-

	0,07 0,0?0,07 0,08 

	-
	-
	-

	Figure
	'least, 
	'least, 
	0,20 

	0,14 0,08
	0,15 0,12 
	-
	-

	0 30 0,25
	I
	I

	0,4E 
	-
	-
	-


	W()(t(l upon "·ootl 
	-
	-
	-
	. 
	tnean,
	greatest, 
	Ł vnlue, 
	0,16 
	o,15 


	-
	0,06 0,07 0,07 0,06 0,12 
	0,06 0,07 0,07 0,06 0,12 
	-

	'len!t, 0,15 
	11
	o,

	mean, 

	0,l8 0,31 0,07 0,0Ł 0,09 0,08 0,15 
	0,20 
	0,13

	-
	]\leial upon metal 
	-

	0,08 0,11 0,11 0,09 0,17 
	0,08 0,11 0,11 0,09 0,17 
	-
	0,17
	greatest, 
	value, 
	' 

	-
	0,05 0,07 0,00 0,06 0,07
	'lenst, 
	0,20

	0,42
	n1enn
	1 

	0,I
	O 


	-
	-
	-
	o,os O,lO 0,20 
	0,08 
	0,14

	-

	ocxl upon metal 
	w

	1 0,10
	1 0,10
	0,08 0,08

	0,62
	greatest,
	. 

	.. value, 
	Figure
	0,16 

	045 0,33
	Hemp, cords, twists, on \\·oo<l, ' &c. on iron, 
	I 
	-
	-
	0,15 
	-
	0,19 

	Łraw, 0,36 
	0,54 
	0,16 
	-
	0,20

	Sole leather, smooth, 
	Sole leather, smooth, 
	con1pressed, 0,30 
	-
	-



	upon wood or metal 
	-
	0,25

	greasy, 
	greasy, 

	0,34 0,31 0,14 -0,14
	Th
	e same, 
	high at 
	the 
	{
	dry, 

	edges, &c. greasy, 0,24 
	-

	emark. The co-efficients of friction for porous n1asscs "·ill be gi,cn u1 art, in the theory of the pressure of earth. 
	R
	T
	the 
	Secon
	d
	P

	InclinePlane.-Tbe theory of sliding friction has its 
	§ 
	162. 
	d 
	chief

	application in the investigation 
	of 
	the

	Figure
	equilibrium of a body .flC, on an 
	in­

	clined plane FH, Fig. 165. accordance ,\Tith § 135, FHR = a,the angle of inclination of the in: clined plane, and P08J3, the anwhich the force P makes with the clined plane, we haYe the force arising from the weight G of the body .N = G cos. a, on the hand, the force for sliding do,vn = 8= sin. a,, further the force J\fwith which P stri,·es to draw thŁbody down the plane is = P sin, f3, 
	If 
	in
	1 
	= 
	Ł
	le
	in­
	norm
	al
	othe
	r
	G 
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	and the force 8with which it pushes the body up the plane = P cos. J3. The remaining normal pressure is: N-N= G cos. a.P sin. /3, consequently the friction F=f(G cos. a.-P sin. J3). If 1t berequired to find the force P dra"•ing the body up the plane, then there will be friction to overcome, and itmust therefore be 8= 8 F, i. e.
	1 
	1 
	-
	:-
	1 
	+ 

	P cos. J3 = G sin. a. f (G cos. a. -P sin. >3).
	+ 

	But if the force, which is to prevent the body from sliding down1s
	.
	.

	to be determined, then friction comes to its assistance, and the force 1s:8+ F= 8, i. e. P cos. i' +f(G cos. a.-P sin. /3) = Gsin. . From this the force may be determined: 
	1 
	a.

	For the second: P = si-Ł a. • G. 
	n. 
	a. 
	c
	Ł
	s. 

	cos. J3-✓ sin. J3 
	cos. J3-✓ sin. J3 

	sin. P • P 
	-or firom
	. 
	. 
	• 

	G,
	G,
	=
	--, we shall obtain P
	cos. p 

	sin. 13. cos. p cos. /3. sin. 
	+ 
	P 

	sin. (a. + P) 
	sin. (a. + P) 
	-

	. G, and the
	= =

	the known rules of trigonometry: P 
	cos. (J3 + p)upper signs are to be taken, when motion is to be brought about;lower, on the other hand, when motion is to be impeded.
	the 

	formula is found by a simple application of the of forces. Since a body counteracts that force of anothe
	The 
	last 
	paral­
	lelogram 
	r 

	surface (§ 159), equilibrium in the foregoing if the
	case can 
	subsist 

	OQ = Q of the components P with thenormal ON the angle NOQ = p. If now general
	resultant 
	and 
	G 
	makes 
	we 
	put 
	in 
	the 

	Ł. GOQ
	Ł. GOQ
	ne


	formula!_h, GOK = GON P, and
	= 
	+ 
	NOQ = 
	a. 
	+ 

	G sin. POQ 
	G sin. POQ 
	p

	POQ = P08+ 8OQ = J3 + 90-p, we then have 
	1 
	1 
	° 
	G 
	= 

	.
	.

	sin. (a. + sin(+ P)
	P) 
	11 

	. ,c) cos. (>3-p)
	= 
	, 
	and 
	for 
	a negative 
	value 
	of 
	P : 

	sin. JJ-p 
	sin. JJ-p 
	+

	( 
	2 

	p sin. (e1-P) • . 
	• 

	= quite 1n accordance with the above.
	G 
	' 

	cos. (j3 + p)e1 == O, 
	If 
	the 
	body reposes on a horizontal plane 
	therefore, 
	the 

	sin. 
	sin. 
	f
	G 
	p .


	r.•O.orward • 
	rce 
	opus 
	· 
	f 
	G 
	· 
	· 
	·

	h p ts: p = ------= ·---:----;:
	t 
	r. 

	COS. (>3-p)
	COS. j3
	+
	fsin. J3 

	If 
	If 
	the 
	force acts parallel to the inclined plane, 
	then 
	JJ 
	=a 
	O, 
	aod 

	(sin, a. + P )
	(sin, a. + P )

	th 
	r. · · 
	r. · · 
	p 
	-
	-
	(compa
	. 
	G. 

	re 
	cos. p 
	• 

	154 WEDGE. 
	154 WEDGE. 
	tang. a. f
	tang. a. f
	+ 

	--------==--. G, also 

	(sin. a. + cos. = -S'in a., therefore, P = . G 
	f
	a. 
	-
	= 

	cos. a. + f S'in. a 
	cos. a. + f S'in. a 
	= 

	tang. (Q, +p) 
	G. 

	-
	-
	•
	1 +tang. a. 
	f 

	• G.
	si,n. (o + p) 

	Example. \Vhat orcl r
	pressure 
	on 
	the 
	nxis 
	hrul 
	the 
	prop 
	.A.E, 
	Fig. 
	166, 
	to 
	snstnin
	, 
	in 

	to I?reveut n ulcŁk Łf stone (n ,vaU.11.BCD, of 00\Ve1gl11fro1n Ethpp1ndo,\·n the inclined pla
	)
	00
	l
	bs
	. 
	g 
	ne

	Fig. 160. 
	Fig. 160. 
	en· 
	e Ł 00
	G
	00
	e 
	Ł

	0,'7:> 1 Ht•ro
	= 
	1


	• 
	efficieut of frictiou 
	/ 

	rin. 50--0.75 roa. 50
	rin. 50--0.75 roa. 50
	= 
	°
	0 

	1420 

	the forrnuln gi\Łes: 
	lin. •-f ros. " 
	= 

	" 
	" 
	. G
	p 

	ros. 8-f sir,. 8 
	0,766-0,4 2 
	_ 
	_ 
	_ 
	_ 
	0000 = -l224 
	lbs.



	-0,0UU,194 ' 1,1130
	O,-

	If the prop were horizontal, we should have = _
	f3 

	50, and tang. p = 0,75; hence , = 3652'; 
	° 
	° 
	Jrunly

	P = G la11g. •-,= 5000 tang. (50-3G52') 
	(
	) 
	°
	0 
	Ł 

	5000 tang. 13B' = 5000 . 0,2333 = 1106 lbs.
	° 

	push up the same ·wall upon the supporting 
	one 
	by
	To 
	a

	horizontal force, uncler otherwise similar circumstancru1, a force P ,voukl be oocessary = G tang. (•+,) = 5000 tang. 8652= 5000o. 18,2676 = 91338 lbs. 
	° 
	1 

	§ 163. Wedge.-In the wedge, friction exerts a considerable in
	-

	fluence upon the statical relations 
	Fig. 167. The section of a wedge forms aŁisosceles triangle FIIR, Fig. 167with the edge FHR = a., the foreŁ acts at right angles to the and the weight Q at right angles the side FH. If ,ve drive the upon the base HR a space s = FF' = HJI1 = RR1the weight Q iŁ raised through a space ee= DD 
	P 
	back
	to
	wec.lg
	e 
	, 
	l 

	= IIL = HH• sin. IIŁ L = s sinŁ o, and force passes oYer HK= 1111i . 
	1 

	HHK= s cos. ; according to the principle of Yirtual velo
	cos. 
	1 
	a.
	ci
	-


	2
	2
	2
	.


	without regard to friction, P . HK= Q Ps cos. 
	hes, 
	an<l 
	• DD1
	, 
	i.Be. 

	a. a.
	a. a.
	. 

	2szn. . cos. 
	Q
	2 
	2


	Q sin. a.
	Qs sin. a, therefore P = -----------
	-
	-
	=2

	a. 
	a. 

	cos. " 
	cos. 
	2

	..... 
	..... 

	Figure
	Sect
	Figure
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	Q si·n. , which also follows from the formula in § 137, if \Ve put in it 
	;

	sin. /3 = 1, and cos. ( a-45) = cos. Ł
	-

	2
	2

	There are now, however, three frictions which come into play, viz., the friction against the sides HF and HR, and the friction of the body .fl.BCD in its constrained motion. As the directions ofthe force on both sides of the wedge deviate equally, the pressureagainst both is equal, namely = Q, and the friction arising =f Q.The spaces of these frictions, however, are different. For the fric­tion upon HR : s = HHfor that upon HF== ]1iL = s cos. a; accord­ingly the mechanical effects of both frictions are : =f
	1'-

	cos. a.=f Qs (1 + cos. a.)=2fQs cos. , Lastly, the friction 
	(
	i)
	2 

	bet,veen CD and FHpresses upon the body .llBCD at right anglesto its direction, and there produces the frictionfi .fQ, if/i represent the co-efficient of friction for its constrained motion. This friction, however, has the same space as the ,veight Q, viz., DD= s sin. a.;and to it corresponds the mechanical effectf Q s sin. a. In order now to find the extreme limits of the condition of equilibrium, we must put the mechanical effect of the force P equal to that of the weight Q, plns the mechanical effects of
	1 
	f
	1 

	Ps cos. ;= Qs sin. o.+2 Qfs cos. ;) .2+ffi Qs . sin. o.
	(
	, 

	and we obtain the force : 
	P = 2 Q (sin. ; + cos. +.tJ; sin. ;)
	f
	; 
	-

	In a wedge .fl.BC, Fig. 168, as it is used for he splitting asun<ler an<l compression of bodies, the force at the back corresponding tothe normal pressure Q against the sides ./1.0 
	Fig.t168. 
	Ł

	and BC, is P= 2 Q sin. +f cos. ;, which 
	(
	; 
	)

	is given if ,ve put the sum of the vertical com­ponents of Q and F = f Q, i. e. 2 V= 2 Q 
	1 

	• 
	• 
	Figure
	Q 
	Ł 


	force P. 
	the 

	&'}lpleTl1_e _load of the wedge Q in Fig. 167 = 650 lbs., the edge 11. 
	a
	. 
	= 
	25
	° 

	o-effiCient offnction necessary tO move Tforce is P [in
	J.
	=f
	=0
	1
	36. R
	eq
	uired, the 
	mechanical 
	effect 
	he 
	= 
	2 
	• 650 
	,
	. 

	· he spac
	= 
	lJOO 
	For, 
	;
	0
	:
	: 

	½ foot, the space of the force HKrin
	= 
	corresponi.la 
	= 
	8 = 
	. 

	the
	the
	, 
	(0,36)sin. ¼]
	(0,36)sin. ¼]
	+ 
	1 
	12
	0

	12½,3co,. 12½
	0 
	+ 
	0
	6 
	0 



	1300t. (0,2 164 + 0,36t. 0,9763 + 0,1296t. 0,2164) 
	= 

	+ 0,0281) = 1300 . 0,5900 =774,8 lb:1
	+ 0,0281) = 1300 . 0,5900 =774,8 lb:1
	(0,
	2 
	164 
	+ 0,3515 
	. 

	tbe load CC
	of 
	1 


	-oc.
	----=---
	1 

	4
	4
	<> • 4 . 0,216-t
	-sin.e_ 
	2 
	' 
	156 
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	P, = 774,8 . 1,155 = 895 ft. lbs. to fiction, it would only 
	Without 
	regard 
	Ł
	be 
	6Ł 
	. ½

	In consequence of friction, the mechan1cal effect expended woud nearly tripled
	= 
	325 
	ft. 
	lbs. 
	l
	be
	. 

	164. .flxle Friction.-ln axles, the friction motion only , on which account experiments on this existhFrom the following table very importat prachce be drawn, with axles of wrought or cast iron, 1n bearin
	§ 
	of 
	is 
	of
	importance
	only 
	_.
	Ł
	results 
	.
	for 
	_
	_
	may
	moving 
	gs 
	of

	'
	'

	cast iron or brass, coated with oil, tallow or hoghco-effiof friction is
	s lard, 
	the 
	cie
	nt

	By continuous greasing -= 0,054,
	In the usual manner -0,070 to 0,080.
	The values found by Coulomb vary partially from the annex
	ed. 

	TABLE III. 
	CO-EFFICIENTS OF AXLE FRICTION, FROM MORIN. 
	Nature ofthe surfaces and unguents. 
	-
	-
	l'fŁMES OF THE 
	BODIES. 

	Bell metal on the same
	Cast iron upon bell
	metal ... . . . .Wrought iron upon
	bell metal ••.••Wrought iron upon
	cast iron .e•e....Cast iron upon castiron . . . . . . . . Cast iron upon bellmetal . . . . . . .
	Wrought iron upon
	lignum vitlB • . . . Cut iron 
	upon 
	Jig
	-

	num vitm .•...
	num vitm .•...

	Lignum vitm 
	>,
	>,
	<I)
	CII 
	Q) 
	Q)
	,::,
	-
	:.:I 
	CII 
	...
	0 
	Ł 
	A

	-
	-
	0,251 
	-
	-
	0,194 
	0,188 0,185 
	..c
	... 
	·-

	'd
	..Q)
	..Q)
	.. 


	Q) ..: 
	-gŁ
	as 

	Id 
	>.
	"' 
	g
	... 
	-
	-
	0,189 
	-
	0,137 
	0,161 
	-
	-
	·
	-

	...
	-

	Q) •
	Ł8
	'd CII 
	; ...
	; ...
	1 

	c., 
	Oil, tallow, or lard. 
	>,
	CII 
	>, 

	::; 
	! 

	8 
	Ł 

	Q) 
	s:::
	.... 
	-s 
	8
	.§ 

	'i 
	Ł a)
	[!
	"t:l Ł 
	i ... 
	ŁB 
	Q) 
	1 
	-
	f:l, ·
	-s
	-

	"t:l 
	"' 

	0,097 
	-
	-
	-
	-


	0,049 0,075 0,054 0,090 0,111 0,075 0,054 
	-
	-
	-
	-
	-
	-


	0,079 0,075 0,054 0,075 0,054 0,065 
	-
	-
	-

	-
	-
	-


	0,125 
	-

	-0,100 0,092 0,109 
	-

	... 
	... 
	-
	0,137 
	0,166 
	0,140
	upon 
	vitai 

	0,116 
	-

	0,153 
	0,153 
	-
	-
	-


	---0,070 
	-

	Lignum 
	upon 
	upon 

	' 
	j .}fknow the pressure Rbetween an axle and its bearing
	6
	5
	· 
	we 

	ri
	ri

	!1 t�e radius r ofthe axle, Fig. 169, be given, mecha: which the friction ofthe axle counteracts in revolu­ion m�y e calculated. The friction F-fR, the space correspond­
	a
	i1 
	urt 
	er 
	the 
	:
	•ca 
	effe
	t 
	every 

	_
	_

	.
	ing to it, the circumference 2 "' r of the axle; it therefore follows 
	AXLE FRICTION. 
	mechanical effect lost byfriction in each revolution is =fR 
	that 
	the 
	•

	. r = 2nrIf the axle makes one revo-
	2n
	f
	R
	. 

	Fig. 169•
	Fig. 169•

	per minute the mechanical effect ex
	lution 
	u 
	-

	pended in each secdnd 
	n t1,fr
	n t1,fr
	R 

	2 f---=---
	R 
	-

	Figure
	u 

	0,105e.u R
	f

	" 
	" 
	= 
	r
	--
	--

	= 
	.
	r.
	-

	60

	The mechanical effect consumed by friction 
	The mechanical effect consumed by friction 
	.

	increases, therefore, with the pressure on the 
	axle, in proportion to the radius of the axle and 
	R

	the number of revolutions. It is, therefore, a
	rule in practice, not to augment unnecessarily
	the pressure on the axis in rotating machines by
	heavy weights, to make the axles no stronger
	than the solidity required for durability, and like""ise not to Łake a 
	great many revolutions in a minute, at least, not unless other cucum­
	stances require it. 
	By the application of friction wheels, which are substituted for 
	the bearings, the mechanical effect of friction is much diminished. 
	In Fig. 170, .llB is a wheel ,vhich reposes by its axle CEEon 
	1 

	the circumferences EH, EHlying close 
	1 
	1 

	Fig. 170.
	Fig. 170.

	to each other of the friction wheels revolv­
	ing about D and D• From the given pres­
	1

	sure R of the wheel, there foJlow the pres
	-

	sures N= N= , if a. be the angle
	1 
	R 

	2 cos. 2
	2 cos. 2
	a. 


	DCDwhich the central lines, or lines of pressure, CD and CDmake between them.From the rolling frirtion between the axle Cand the circumferences of the \vheels, theselatter revolve with the axle, and there arise atthe bearings D and Dthe frictionsfNand 
	1 
	1 
	1 

	fN1 which together amount to . If the radius of the wheel 
	1
	f
	R 

	cos. 
	2 

	DE=DEbe represented by , and that ofthe axle DK-DKbyshall haYe the force at the circumference of the wheels, circumference ofthe axle Cresting upon these, which is 
	1 
	1 
	a
	1
	1 
	1 
	r1, 
	we 
	or 
	at
	the 
	requisit
	e 

	1
	1
	1
	r

	overcome f: F= whilst it will be = f
	to 
	R 
	1 
	f
	R 
	R
	, 
	if



	• 
	• 
	• 
	a,


	Cos. Ł cos. _,
	a
	l 

	2 2
	rest immediately in a socketIfwe disregard "heels, the mechanical effect of the friction y t
	the 
	axle_ 
	C
	. 
	the 
	weights
	of
	the 
	fr
	ictio
	n 
	T
	b
	he 
	ap
	-

	Sect
	Figure

	Figure
	• 
	Figure

	14 
	14 
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	we oppose to the pressure of the axle R a friction GH, Fig. 171, and lateral forces, by 
	If 
	single 
	whe
	el
	prevent 
	an
	y 
	accidental 
	the 
	fixed 

	cheeks Kand L, «i O, !:1, and the above relationŁ
	= 
	c
	os. 
	2 
	= 
	s 
	= 
	-

	1 
	1 
	a


	weighs Ł0000 lbs., it.ci !fUlius 
	&amplt. 
	A 
	,vheel 
	a 
	= 

	16 n. 
	16 n. 

	of tllO ,\•heel nŁC?llsnrŁ to 
	force 
	at 
	the 
	circumf
	erence 
	over
	corno

	.
	.

	and t? mn1nla1n 1_t 1n uni
	the 
	f
	r
	iction 
	of 
	the 
	nxle. 
	fo
	rm 
	mot
	ion, 

	Fig. 171. 
	Fig. 171. 

	Figure
	whnt is thc, corrcspondJng expcnthture of 
	nnd 
	rnecba
	nica
	t 

	the oo-effioient of friction f = \\'hcrefore the tion/ R tho diain
	hero 
	0,07:S,_ 
	u
	icŁ
	Since 
	eter 

	0r
	0r
	384, times ns 
	great 
	as 
	t
	h
	e 


	0,075e. 30000 = 2250 lbs. 
	= 

	l 6 . 12 102
	= =
	= =
	.
	tho ·wheel lll 
	5
	6

	the rude or tho nrm of the friction, 
	diarncter 
	of 
	tho 
	axle 
	fric­

	to tho circumference of tho vŁ / R
	,
	h
	ce
	l 

	tion re<luoed 
	-
	-


	3
	3
	3
	84e
	-
	-.

	' 
	' 


	58,50 lbs. The oircutnference of the a.xle is 
	2250 
	= 
	2 
	· 
	5 

	•
	•
	12 

	0,2182 feet, and its meclinnical ctrccL c.luring ono 
	5 
	= 
	seco
	nd 

	-
	-
	1r 
	618 
	2,

	·

	seconde= 
	0,2182 ./ 
	0,2182 ./ 
	R =
	00
	0,2
	182.2250 
	= 
	491 
	ft. 
	J
	bs. 

	_ 
	_ 

	If the nxles of this ,vheel rest 
	upon 
	fricti
	on

	wheels whose rnilii are 5 times ::ts grent as those of the axle, an<l tbereforo !:t 
	= 
	= 
	= 
	l 

	a, 
	1"'1 

	the power expende<l, referred to the circumference of the whoe), ,vill only be{. 
	38,4 
	= 

	§ 66. friction of an axle .JJCB, Fi· 172, '\\'hich its bearing in one po1nŁ is less 
	1
	The 
	&"
	press
	e
	s 
	on
	.fl. only, 
	tha
	n

	.
	.

	Fig. 17.'l. that of a ne,v axle resting on all points 
	Figure
	of 
	the

	bearing. If no rerolution takes place, then presses on the point B, through passes the direction of the mean pressure R . but if revolution begins in the direction axle by its friction will rise just so high i� its bearing until the sliding force comes into equi­librium with the friction. The mean pressuredecomposed into a normaJ pressure a tangential 8; Npasses into the bearing and gives rise to F = fN. 
	the 
	axie
	which 
	./1B 
	thŁ
	R is 
	N
	and

	actintangentially ; 8 puts itself in equilibrium ,-.ith F; 8 is ther
	g 
	e:

	N. According to the Pythagorean doctrine, R, is=Ł+Ł 
	fore 
	= 
	f

	therefore R2is here = +f-) »; inversely the normal pressure N:::: 
	(1 
	.
	f
	R 

	; or, ifthe angle offrictin
	; or, ifthe angle offrictin
	o


	R+ p' and the friction F= 
	✓l

	. 
	. 
	tang. p
	F = 
	• R = 

	tang. p os. p R R sin. p.
	2 
	c

	v
	v
	. /l + tang
	.p 

	= 

	. 
	169
	169

	.AXLE FRICTION. 
	If no forward motion took place, F would be = R = R tang. p = R sin. P 
	f

	t·
	t·
	.
	.
	fi
	1

	---; consequent y nchon 1s t e cos. p 1mes 
	as 
	t
	grea 
	aft

	.
	.
	the 
	h 

	er 
	moving forward as before the motion. Generally,/ = tang. p not 
	• .
	• .

	d h d"ffi 
	quite an erence 1s not quite 
	10
	1 
	1000 

	. 
	. 

	cos. p > 0,995, therefore t e 1 
	= Ł; therefore, in ordinary cases of application, ,ve neecl have 
	2
	0 

	regard to the effect of this motion. 
	no 

	If the wheel .11.B revolves in a nave or eye, Fig. 173, about a fixed• axis .11.C, the friction is the same as if the axis 
	moves in a roomy nave, only the arm of the fric-tion is the arm of the nave, not that of the fixed axle. 
	Fig. 173. 

	§ 167. If the axle lies in a prismatic bearing,there is greater pressure, and consequently more friction, than in a round bearing. .Ii.DB, Fig. 174, is triangular, the axle lies on two points .IJ and B, and at each there is the same friction to overcome, the mean pressure R is de­
	If the bearing andeach ofthese gives a Fig. 174. 
	If the bearing andeach ofthese gives a Fig. 174. 

	Qwith the aid of the mean pressure R,
	1 

	the angle of friction p, and the angle .Ii.CB 
	lying in the bearing. If QOR = .IJCD 
	-

	C.11.O = a.-p, Q1 OR = 
	C.11.O = a.-p, Q1 OR = 
	11.
	2 


	BCD + CBO a. + p; lastly, QOa. -P + a. + p= The application of the formula § 75, gives : 
	Q
	1 

	sin. (p) si,n. (a.+) 
	Q 
	-
	a.-
	P
	R.

	-. R and Q____,;__Ł . ,
	. 
	1 
	= 

	sin. 2a. sin. 2 a.hence the friction sought ish: .
	(Q + Q) sin. p = (sin. [a. -p] + sin. [a. p ]) Ł
	F
	+ 
	F
	t 
	= 
	1
	+ 
	sin 

	sin. 2hsin. (°' -p) sin. (a. + p) cos. 
	But 
	the 
	+ 
	p 
	and 
	sin. 
	2 
	a. 

	= = 
	· 
	· 
	"

	a. 
	2 sin.
	= 
	1 
	a. 
	· 

	P, which from the smallness of p may be 
	put 
	= 

	2 
	2 
	2 
	· 

	• Cl 
	= 

	a trianguar bearing is f
	The 
	frictio
	n 
	of 
	l

	cos 
	cos 
	cos. a.
	1 


	If, for example, .llDB 
	= 60
	°e
	, 
	.IJCB 

	rom this 
	rom this 
	times as great 
	a cylindrical one. 
	as 
	that 
	of 

	Figure
	Figure

	Figure
	Sect
	Figure
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	= 180
	= 180
	° 

	1 

	-60= 120, and ACD = G then hav
	° 
	°e
	= 
	60
	°e
	, we 
	e: 

	Figure
	cos. 60
	cos. 60
	° 


	.flDB, Fig. Ł_Let divide the arc he the the bearing, into parts, such which have equal projectioand let us suppose that 
	Figure
	175, 
	be 
	su
	h a 
	Łt!ar1n
	g. 
	us
	JlDB, 
	1n which 
	axle
	and 
	tnany 
	as 
	.Jl.N.
	NO, 
	&c., 
	ns 
	on 
	thŁ
	chord 
	.IJB, 
	each 
	of

	' 
	parts supports an equal amount 
	these 
	of 
	th
	e

	R
	R

	whole pressure R, viz.(n
	, 
	= 
	, 
	, 
	being 
	th
	e 

	of parts) of the axle on tl1e According to the former §, the friction 
	number 
	n 
	bear
	in
	of 
	t\!Ł 

	R
	and N O 
	and N O 
	· 
	rin. 2 P 

	n 
	D
	D
	ut cos. 
	XCD

	.I\·o 
	cos. 
	Ncn
	· 

	.u 
	NP

	= os. ONP , where NP represents the projectio
	c
	= 
	n 
	of 
	the

	NO cltord. AB
	NO cltord. AB

	part No , an d N'P ----
	_ 
	·

	-
	-
	n 
	R sin. p
	2 


	1 
	NO 
	and 
	N,.
	0
	n 

	==
	==

	tion corresponding 
	to the rarts 
	to the rarts 
	n. NO R sin. 2 
	= 
	p 
	• 
	NO.

	. 
	cl,ord chord 
	Figure
	Figure

	11 th fr
	. 
	.

	2" ' 
	sum of all the parts of the in a ne
	arc, 
	it 
	fo
	llows 
	that 
	the 
	fr
	iction 
	w 

	the \vboJe arc .IJDB instead of NO, must the arc ./1.D
	we 
	put 
	in 
	= 

	. R sin. 2 p •
	. R sin. 2 p •
	tunes th
	e

	l d 

	bearing ish: F=R sin. 2 paor if we put angle .llC
	, 
	the 
	B 

	. c::Łd.11-!}_Bsubtended at the centre by .llB, which corresponds tŁ the 2 a, therefore the chord .11.B = 2 JlC . sin. a..
	arc 
	of 
	the
	0 

	bearing, = 
	-
	-
	2 

	taken approximately 
	c, 
	c, 
	sin. 

	a.
	F= R sin. p. .
	a. 
	sin. 


	• bearing ho of an acute we<lge-sbape it is oonceivnble nn nxle pressed ped cavity ,vould create an n<lditiooal friction j friction depend?n u,n_ght, not oa extent of snrface, the dinnoostrations of lhis section relative to ooarinis in yhndtical cavities in wbjeh there is o ,vedging or tightening, but only n 1listtibutio11 ?f thŁ u·curltt ov_er te evcral parts of the rutface of contact, tl.ie effect th_e forco Ul nt,o oeaŁ1og ,v11l be to relieve the pressuro on one pnrt and trnn:<tcr it to anotherŁ from the
	If
	a 
	that 
	into
	such 
	wedge-sha
	but as 
	s 
	g
	c
	n
	Ł!
	Ł
	of 
	n:ioving 
	a 
	at 
	th
	sa.rnŁ 
	<.hstance 
	To 
	a certain 
	that 
	1Ł
	! 
	10a
	the_ 
	depth 
	increases, 
	but 
	if 

	.
	.

	he a d1stnbuuon ofpressure over a grearer number of elements or units of surface, so is Ihere 8 le:;s amount of pressnre on each point rubbed. This law of friction, accordiug tc pressuret anti not according to surface ru.bbod, ngrccs ,vith. nil experiments.-Aallt. Ru, 
	AXLE FRICTION. 
	Fom this the friction is the greater the deeper the axle lies in its beanng. If, for instance, the bearing is half the circumference of the 
	Ł

	axle, a. is thenh= ½ and sin. a. -1, we then haYe F = • R sin. P,
	,c 
	,c 

	2 
	2 

	and because = 1,57, therefore 1,57 times as great as that of the free a. is 
	;
	bearing. In an axle which does not rest deep in its bearing, 

	= 1 -), whence
	a. 
	(
	;h
	2

	3
	3

	therefore the sin. a. may be put= a.-;a.
	small, 

	F= 
	F= 
	(
	1 
	+ 
	;
	2 


	R sin. p, orh= R sin. p, if a. be very small.
	) 
	) 

	§ 169. The axle pressure R is given generally as the resultant of two forces P and Q, directed at right angles to each other, and is therefore = ✓P+ Q• Provided we require it only for the de­termination of the friction fR z= f ✓P+ Q, we may be satisfied an approximate value of it, partly because the co-efficient f can never be so accurately determined and depends upon so manyaccidental circumstances, and partly because the whole product ofthe friction/ R is mostly only a small part of the remaining forces o
	2
	2
	2
	2
	with 

	approximate expression of ✓J» + Q' is known under the name of Poncelets theorem, and may be developed in the following manner: 
	Figure
	'

	P.J + P ✓I + r, whereby z -= ("ij",
	✓
	J» 
	+ 
	Q2 
	= 
	1 
	(
	Ł
	)
	2 
	= 
	)

	which supposes that P is the smaller force, therefore, z is a mere fraction. We may no,v put: 
	✓l + x2 = ,,. + •X, and determine the co-efficients ,,. and .,, answer­ing certain conditions. The relative error is: 
	✓1 + r-,,.-.z ,,_ + .,zh
	= 

	✓I+ x2For the smallest value of x, viz., x -O, y=-1 -,-, and for the great
	-

	,,..,
	. 
	+ 

	es, Y1z. x 1,we have y1-If we make these errors,
	t 
	= 
	= 

	·
	·
	·
	-

	✓2 


	nding to the limits of x, equal, we then obtain an equation 
	correspo
	of 

	. . ,,. + " 
	d
	-

	1honh_ , or ., == ,., ✓2 -,,. -0,414: • ,,.. 
	con 
	,,. 
	== 
	✓2
	Figure
	If 
	we 
	tak
	e 

	'!Ih= 1-.✓1 +z2 
	,,,.
	,,,.

	e error, is greater than any other which 
	as 
	a 
	negativ
	arises 
	by
	assum
	-


	X+ A,that is
	ing 
	-= 
	Ł
	' 



	,,,,_ 
	,,,,_ 
	Figure
	Figure
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	y=
	-

	• 
	,..,----... --1 .
	== 
	-
	2 
	+ 
	1 


	,,..
	,,..
	,,..
	4
	2 

	2
	,,:i + )
	(J 
	.,

	If now we make this greatest negative error equal to the 
	great
	est

	positive error, we shall then obtain the following second equatio
	n 
	of

	condition: 
	--
	-


	✓,u+ 11-I= 1-,u; or I'+ ✓.u+ 11= 2. 
	2 
	1 
	Figure
	2 
	2 

	But the first equation gives ., = 0,414 ,u; it, therefore, follows that 
	,.,, + ✓1 + 0,414) = 2, i. e.
	(
	1 
	2

	2
	,.,, = ----==== = 0,96 andh., == 0,414 . 0,96 == 0,40.
	1 + ✓1,1714 
	1 + ✓1,1714 
	We may, therefore, put approximately ✓1 + x== 0,96 + 0,40 and in like manner the resultant R= 0,96 P + 0,40 Q, knowing we thereby commit, at most, the error y = 1 -,.,, = -0,96 = 0,04 = four per cent. of the true value.
	2
	. 
	x,
	that
	+
	1 

	This determination supposes that we know which is the greatethe forces; but if this be unknown, we may assume ✓ 1 + x2 ,.
	r 
	of
	= 

	, and so obtain y = 1 -"'(. Here not only the limit
	(I + x
	)
	l 
	+ 
	x
	)

	✓1 + :r 
	x = 0 gives the error = 1-,.,,, but also the limit x = oo, the same errorh= 1p,X = 1 -p,; but if we put x = Ł = I, ,ve then ob-
	-

	x . ,.,, 
	tain the greatest negative error -)) 
	Ł 
	(
	2
	;
	2 
	-
	1 
	= 
	-(,-
	✓2
	-1,

	by making these errors equal: 1 -,.,, ,.,, ✓2 therefo2 2 1 
	and 
	= 
	-1, 
	re,

	= _ 0,825, for which 0,83 may be pu
	,. 
	== 
	= 
	= 
	t.

	12,414 1,212 the case where we do not know which is the greater of the forceR may be put = 0and "'e know that the greatest 
	+ 
	✓2 
	In 
	s
	,83 
	(
	P + 
	Q), 
	erro;

	1 
	value. 
	Figure
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	greatest error is about t,"o per cent.• 
	the 

	.
	§ 170. Lever.-The theory of friction above developed �nds its application in the material leYer, the wheel and axle, and 1n other machines. Let us, in the first place, treat of the lever, and take the _general case, viz., that of the bPnt Je,·er .11.CB, Fig. 176. Let us re­present as before (§ 127) the arm C.11. of the po,\'er P by a, the arm Fig. 176. CB of the weight Q by b, and theradius of the axle CH by r, let us put the \veigbt of the lever = G,its arm CE = s, and the angles.11.PK and BQK, by which th
	pressure Q cos. p: remains for the horizontal pressure,
	since 
	there 

	H= P cos. a. -cos. P, we may put the ,vhole pressure on the axle : 
	Q

	R = µ. V+., H= µ. (G+P sin. a.+ Q S'in. Ł)+., (P cos. a.--Qcos 
	f3),

	.
	of which the second part ., (P cos. a.-cos. J3) must never be takennegative, and, therefore, in where Q > P cos. abe changed, or rather P cos. e1 must be subtracted from cos. /3. In order to find that value of the power which correspondsto unstable equilibrium, so that the smallest addition producesmotion, we must put the of moment ofweight, plus or minus the moment of weight of machine (§ 127)plus the moment of friction, therefore,
	Q
	the 
	case 
	cos. 
	f3 
	is 
	,
	the 
	sign 
	must 
	Q 
	of 
	fo
	rce 
	moment 
	power 
	equal 
	to 
	the 
	the 

	Pa=Qb+ Gs+fRr 
	= Qb+ Gs+f(f' V+., H) r, from ,vhich follo\VS 
	Qb+ Gs+f[µ. (G+ si,n. J3) +Q cos. ,a] r
	Q

	P= 
	-
	-
	. 

	a--fr sin. a.+.,fr cos. Ł 
	f'

	If P and Q act vertically, R is simplye= P+ +G, therefore,Pa= b+ Gs+f (P+ + G) r. If the lever is one-armed, P and Q 
	Q
	Q
	Q

	at opposite to each other, then R=P-+ G, and consequently thefriction is less. Besides R must be put constantly positive in thecalculation, because the friction fR only impedes, but does nopro­duce motion. From this we see that a one-armed, is mecharucally 
	Ł
	Q
	! 

	arms ofa bent lever, Fig. 176, are : a= 6 ft, =,:
	Example. 
	II
	the 
	.
	b
	4 
	ft
	.
	, 
	' 
	= 
	½ 
	ft.

	and the weight Q900 lbs., the power .required to rb
	= 
	500, 
	and 
	fu
	rther 
	=
	"
	6
	io 
	= 
	resto
	e 
	t
	e 
	u
	n
	sta

	s, the angle of inclination A=700, fl,_ :inŁ of the lever G 
	,,.= 
	1
	½ 
	inche
	lb
	s.
	that 

	Figure
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	a 
	O
	(G + Q ,in. S) = 0,96 (900 + 5600 Łin°) =-Jb..0,9(.} . nŁ•· ° 
	. 
	6
	0
	4982 
	70
	= 

	= 0 40
	I I 
	, , Q co, • ro,. a CJ
	,. 
	S
	0,002
	= 
	,40.

	,ve obtaine,40 . 5600. ros. 500 = 1440 lbs.; ,-,. ,in.. A 
	,-,.
	= 
	0

	= 
	ro&. ?0° = 0,137.pproximately P 
	a

	= 
	365Stake for 
	It i.8 eruly to see, thal here P cos. • 1Ł ._hMS, for siuo we hnvo P co,.e" = J251 Jostro,. = 3000 JQ '°'R, nntl , tol. • tho lower sign nnd 
	le
	s 
	t
	an Q 
	. 
	c
	., 
	nn
	l 
	Q 
	S 
	b
	5
	· 
	pu
	·

	let 
	therefore 
	t
	us 
	,
	5600e. 4-900 . ¼+fr (4082+ 1440)
	.
	.

	p= 
	1173) 
	1173) 
	0 -fr (0,90i -0

	= 0,the power 
	009375
	, and 
	sottgJ
	1
	t, 


	=
	0:070, nnd we shall bo.ve fr= 01075. :.e
	tion / 

	-(l -0,00683 5,0£13!.! 
	1 
	1 
	e sub
	-

	P= 3608 ILŁnnil neglect friction, is r= 3658e. ,in. 700 + +000 3437 + + 000 = 8027 lbs.on th' othunt.Ithehori,.011tnl :
	stitute 
	the 
	value 
	., 
	5000 
	,i
	1
	:,oo 
	= 
	,1290 
	,
	er 
	h
	, 
	pressu
	r 
	1

	e.
	H= f,600 cu,. 50 -3056 e-<11, 70= 3600-1261 =2340 lbs.
	° 

	Here His :> 0,2 JŁ thert>fore, rnorc l'Clrrectly : 
	R = O, t, •If+ 0,400 J'= 08SS. 8027 0,400e. 2340 = 
	1
	+ 
	881 
	l

	and it follow! that the mon1cnt of friction = JrR 0,009375. 88 tl = 
	8i
	I
	a 
	ft 
	lb

	• !,,
	2 U 
	= 
	,
	22400 
	-
	450 +
	450 +
	and lastly, the po,ver P= 
	6 
	little from the above. 
	§ 171. Pivot .Friction.-When in the wheel and axle a prestakes place in the direction of the axis, as in the case, for examof upright axles, in consequence of their weight, there is a friction 0�the base ofthe one axle. Because pressure is there exerted 011 pbetween the pivot and its step, this friction approximates to the simple sliding friction, and to the axle friction ,vhich ,ve have hitherto con­sidered, and we must put for it the co-efficients of friction Table II. To find the mechanical effect absorb
	•ure
	p]e
	oints
	give
	n 
	in
	of
	such 

	upright axle describes in a revolution. 
	an 
	Let 
	us

	that the pressure R is equally 
	Fig. 
	177. 
	assume 
	distribu
	ted 

	the whole surface, let us also suppose equal are equal.Let us further di,-i<le the base by ra<lii CD, CE&c., into equal sectors or triangles DCE; to thesŁ will correspond not onJy equal amounts of but also equal moments, therefore, it will be neresŁ sary only to find the moment of friction of one of s. The frictions of such a be regarded as parallel forces, for they all tangentially, i. e. at _radius CDthe centre of gravity of a body or a surfathan the point of application of resultant of the parallel force
	over 
	that 
	on
	parts 
	of the 
	bases the 
	frictions 
	frictio
	n
	these 
	tnangle
	triang
	le 
	may 
	act
	right 
	a
	ngles 
	to 
	the 
	,
	and 
	since 
	ce
	is 
	nothing 
	more 
	the
	ted

	body or surface, accordingly the centre of the
	over 
	this 
	of 
	gravity 
	S 

	Ł1: triangle DCE is here the point of application of the result..
	sector 

	ar1s1nŁ from its different frictions. If no,v the on this 
	ant 
	pressure 

	and the radius CD= CE, the base = r, it follows
	sector 
	== 
	-, 

	n 
	fR
	§ 104) the moment of friction of this = 
	that (from 
	sector 
	CSB
	. 

	n 
	Figure

	Figure
	Figure
	Figure
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	• 
	3 n
	2 R 2
	f

	-n.--=-R.
	r
	f
	r

	3 n 3
	_ 
	Fig. 178• 
	i, we have then to de-
	radii 
	are C.IJ..=r and CD=r

	. 2r -r 
	3
	3 

	Figure
	ing, and from§ 109, obtain the arm CS =\ i\
	r
	a 
	,

	r-r2
	1 

	,2 r 3_r 3)
	(

	therefore, frictione= fR \ • 
	the moment 
	of 
	3
	\e

	_
	1 2 
	r
	r

	If we introduce the mean radius 
	r
	1
	!
	r
	2 
	= 
	r, 
	and 

	breadth of the ring r1 -r!l = b, we obtain this 
	the 

	moment of friction alsoe= R (r + Łr)· 
	f

	mechanical effect of friction for a revolution of the axle is in the second case = 2 n fRr = n f Rr, and in the first 
	The 
	·3 
	2 
	4 
	3

	33nfR (r-ri)· Here we easily see that to diminish this loss of
	4 
	1

	3 r-rmechanical effect, the upright axle or shaft must be made as light as possible, an<l that a greater loss of mechanical effect would arise if, under otherwise similar circumstances, the friction ,vere to take place in a ring instead of a complete circle. 
	l 
	2
	2 
	2 

	Example. In a tmbine making 100 revolutions a minute, and 1800 lbs. weight, the size of I.he pivot at the base, is ½inch; bo,v much mechanical effect does tht1 friction of this pivot consume in one second 1 The co-efficient of friction being taken = 0,1 we Lave the friction / R = 0,1 . 1800 = 180 lbs., the space per revolution 
	4
	= Ł tr r = . 3,14 . 2-= 0,1745 ft.. lbs., hence the mechanical effoct per revo
	-

	3 24
	3 

	lution = 180 . 0,1745 = 31,41 fl. lbs. But now this machine makes in a 
	second 

	100 5 . .
	= of a revolnuon, hence Jt follo,vs that the loss of mechanical effect sought 
	6() 
	3

	14,1 
	3

	52,3 ft. lbs. 
	= 

	§ 172. Pointed Jlxles.If the axle .IJ..BD, Fig. 179, bas conical 
	-

	Łnds, the friction comes out greater than if
	plane ends, because the pressure of 
	it 
	has 
	Fig. 
	179• 

	axle is resolved into the normal forces 1, which produce the friction, and 
	the 
	R 
	N, N

	Figure
	a., we have 2 N = , and
	= 
	BDC 
	= 
	R 

	_
	St'fl. a, 
	R 
	• Let the radius of the axle C.11.
	s.ina.
	= 
	f
	. 

	= 
	the entrance info the step be 
	CB
	at 
	re
	-
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	presented by r, we before the moent = this a little only into the step, the rn,
	1
	shall 
	then 
	have 
	as 
	1n
	of 
	fr
	icti
	on 
	2
	f 
	Ł
	r
	1 
	• 
	Let 
	axle 
	dip 
	e

	3 sin. " 
	chanical thaŁ that of anbase, and on this account the apphcnt1on pointed 
	effect 
	of this 
	axle 
	,vill be 
	Jess 
	. 
	axle 
	,vith 
	a
	plane 
	of the 
	a'.l(l
	e 
	is

	_t
	SUI. Cl 2 
	r1 causes only half thloss 
	Ł 
	of 
	mec
	ha
	.. 

	of service. When for example,
	' 
	' 
	the pointed axle of the radius
	nical effect through friction ,vhich the f axis of the r does.
	runcated 
	ra<
	.liu
	s

	If the pi\·ot forms a truncated cone, Fig. 180, friction as well at the envelop as the truncated Łurface, and the 
	take
	s 
	pla
	ce
	mome
	nt 
	of

	r3-r1J ) 2fR 
	3 r


	( :i 
	( :i 
	the half of the convergent angle. 
	place of 
	entrance into the step, and r
	1

	a. 
	r e the radius 
	l 
	, 
	·c
	t 
	b
	of 
	the 

	.DE the base, a.o 
	= 
	that 
	of 
	and 

	Fig. 180. FJg. 181. Fig, 18.2. 
	Lastly, the pivot or upright axles (Figs. 181, 182) are ,·ery often rounded. Although by this rounding, the fri�tion itself is by no means diminished, there arises nevertheless a diminution of the mo­ment of friction, from the extremity not <lipping far into the step.If "·e suppose a spherical rounding, we obtain by the ni<l of tlle higher calculus for a semi-spherical step, the moment of 
	_
	frictio
	n 

	= f.!!. . R r; but for that of a step having a Jess segment
	2 
	: [1 + 0,3 ;)i]R1.ltl.ll. 
	= 
	(
	r
	, 
	r 
	being the 
	radius of 
	the 
	sphere 

	= .JifB, rthe radius of the step C.11 = CB • 
	1 

	.J!?;ampk. If the weight of the armed axle of a horso capstan R = 6000 lbso.mchus of the conical pivot = r = l inch, and the angle of conYcrgenco of the con
	., 
	th
	e

	• , then the mo1nent offriction ofthis pivote= ./. _Rr =.:. 0,1 . 
	2 
	= 
	90
	° 
	2 
	O
	OO0 

	3 3'14, • 3 ai>0
	t. I.I 5

	1
	·-&,Ł = 47,l ft. lbt:t. Tlli3 axle makes during the Uillng up of a 1011 fr
	= 
	om 
	a

	3vi
	nft o:r in== u = 24 revolutioUB, then the mechnnicnl cftect which Ł expended 
	t;
	b
	m
	e 
	n
	t 

	ttll .• 
	§ l 73: Points and Knife Edges.-To avoid ns much as possiblete fr1ct1o_n of the axle, rotatory bodies are supported on pointed pivots, knife edges, &.c. If we had only to <lo ,vith perfecily rigid 
	Ł
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	and inelastic bodies, no loss of labor ,vould arise through friction bythis method of support or suspension, because no measurable spacehere is described by the friction; but since every body posseses a certain degree of elasticity, by the resting of such a body on a point ?rknife edge, a slight penetration takes place, and a rubbing surfac1sthereby caused, upon which a space is described by the friction which gives rise to a certain loss of labor, although very small. In rotations and vibrations long susta
	Ł
	Ł 

	Experiments on the friction of a body resting upon a hard steel point, and revolving about it, have been made by Coulomb. Fromthese, it results that the friction increases somewhat more than the pressure, and varies with the thickness of the supporting pivot. It is least for a granite surface, greater for one of agate and of rock crystal, greater still for a glass surface, and greatest of all for a steel one. For a very small pressure, as in the magnetic needle, the pivotay be pointed to 10or 12of convergen
	Ł
	° 
	° 
	Ł
	° 
	Ł
	Ł 
	_ 
	° 
	° 

	Remark. If we assume that the needle Fig. 183 . 
	.11.B, Fig. 183, rests on the point DCE of the pivoL FCG, of the height CM = h, and radius BM= r, and suppose that the vol­ume !lfl' r h is proportionate to the pre�ure R, the amount of friction may be found in the following manner. If ,ve put ½ ,,,. r h = µ, R, ,vbere µ, is a number resultiog from experience, and introduce the angle of convergence DCE = 2 4, and, therefore, 
	put h = r cotg. •• we obtain the ndius of the base r J,.;<m/1· • and/,R 
	=
	R
	. 

	3 
	✓

	Figure
	= 
	3 p. Rtana c:c 
	3 
	4 

	'JI' ff' 
	friction on 
	tl 
	the pivot increases equally with the cube root of the fourth po,ver of tbe pressure, and the cube root of the tangent of half tbe angle of convergence. The amount of friction 
	,· 
	-L 
	-
	-


	of a beam .11.B, Fig. J84, ,vhich oscillates on amay be fo11nd in like manner. Ir c:c be half the angle of convergence DCM, Ithe length COof the edge, and R the pressure, 
	sharp edge CC
	11 
	I 

	'··-
	-

	-' '.''' \--
	-
	,:

	1-; ·. 
	1-; ·. 
	/

	-

	1. 
	' 
	\Vhich Ł surfa
	were 
	roll
	ed 
	along 
	cŁ

	oak, by means of a thin 
	of 
	thre
	a
	d 

	extrem1hs \Vere stretched 
	Ł
	by 
	un­

	Fig. 186. 
	1'"rom the :esultshsary to overcome tionderived from experiment.these experimentsFor rolling upon compressed woodf= 0cc " cc " f= 
	.·periŁ
	oŁ 
	these 
	e

	. 
	o
	increase directly \vith the pre 
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	ROLLING FRICTION. 
	the power Df)Cessary to dra,v the load R for\\'ard is P 
	and 
	ft, 
	= 

	(f fi) _ 
	+ 
	R

	r 
	Remark. The extended experiments of Morin on the resistance of carnages upon roads,Łccord with the law by which this resistance increases eqoally with the presure, and Jnversely with the thi<'kness of the roller. Another French engineer, l>uputt, on tlae coŁtrary, deduces from his experiments, that rolling friction increases indeed directly witŁ the pressure, but for the rest, only inversely proportional to the square root of e radius of the roller. Particular theoretical views upon rolling friction may be 
	Ł
	Ł

	• The following demonstrations are applicable to especially to railway cars and locomotives. They bring into rolling and friction, as well as the resistance of fixed obstacles to rollingbodies. 
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	the cylinder and the bed, EHO, are composed ; this aUowance woult1 cause a new pressure and friction, and thus a decreasing geometrical sries of weights must be added at the point C, having for tlie first term such a part of Was is expressed the relation of pressure to friction, in the case of the given materials, and for a com• rnon ratio of the progression, the fractioo e:xpres5ing the same relation'l'he sum of all the terms, continued to Łero, will be the actual amount ofP at the moment when motion comme
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	If instead of applying a weight at P only, we should apply, as above supposed, two equal forces, one in the direction of CP, and the other in that of EM, the amount of friction caused by the former would be relieved by the latter, and consequently, there would remain only the friction of the cylinder. The same would be true if the forces ,vere to take either the directions NI and HT, or KO and DS Tespectively. Supposingthe cylinder to be placed on an axis smaller in any given proportion than its own dia­tn�
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	.first members of the square root only. Now if F-JFsin.;isgiven 
	2f Qsin. , then the friction sought is 
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	would, to the extent of their accelerating forceovercome a portion of the resistance which
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	friction opposes to the motion of the car. 
	Thua, in every case where we would compute the effect of friction by comparing the ŁŁal Łistance passed over by a carriage, with the theoretical descent as caused by the1nchnatton of the plane, we must consider the weight of the car and load u the cause of friction on the axle, and the gravitating power ofthe wheels (and that of the axles when they revolve with the wheels), u aiding to overcome the friction by the load. 
	occasioned 

	Figure
	Tocompute the effect ofany obslacle ofgiven height which a rolling body is compelledto surmount, aa dependent on the diit,ineter ofthe wheel, we may talte two wheels E.41).and tad, Fig. 186, of different heights, intended tosurmount the equal obstacles T.IJ. and ta.Let the weights Wand t.o be the same for both wheels, and the powers P and pbe such as toproduce an equilibrium in the wheels DAE and dat respectively. Then since (§ 7:i and 139) three forces are in equilibrium, where each is repreeented bythe mw
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	and inversely, to prevent the descent of the weight Qby the cord, a 
	Figure
	line, as IT. now 
	The axle, then, ought to be found bearing not on the bottom, but on a p�ofthe cylinder. Having been led to this conclusion from the theorydeveloped, the writer was induced to inquire of several wheelwrigh�, coach­
	rnakers, carriage-smiths, and keepers of livery stables, whether they bad ever noticed the fact, or whether they supposed it to be true, that the axle did rest in. its box elsewherethan on its lowest part; all, after a moment's reflection, answered, that as a force was to draw it forward, it must press and be most aide; but upon examining the old axles in their posse88ion, they have uniformly found the above views to be confirmed by eviden<.'e which they could not doubt. Io moving carriage, then the animal 
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	would, ifthe force P were relaxed, cause the wheel to retreat and the point m towards z, describing the portion mz of a cycloidal curve. This effect isoften o�erved to take place. This position of the axle likewise accounts for the ret,ograderoa-­t� of a wheel which is sornetimes observed to take place through a portion fa revo­lutJo!>, �hen a heavily ,ce. The grav1�tJng force, whn the centre C, I, pe� 
	which 
	again 
	depress
	t
	Ł
	loeded 
	car 
	first 
	passes 
	from 
	rough 
	ground 
	to 
	smooth 
	Ł
	takes 
	the 
	position 
	C
	,., 
	may 
	be 
	resolved 
	into 

	_ the forŁe PfWID acts in the direction ŁP relieve even the 
	Cs
	g.
	fgaw, 
	Ł 
	J 
	, 
	it tends 
	to 

	. . . .
	r. p Wtang. DC.A
	be

	expression ,ore given, viz. extreme
	= --Ł--
	, 
	will 
	be 
	118 
	applicable 
	to 
	this 

	R 
	as to any other where the height, ofobstacle is Jess.
	case 
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	application of these formulm. 
	Let 
	us 

	Fig. 18S. 
	Figure
	take the simple case of a cord .IJ.Cedges, and at each edge same small tension the fust portion of tbe cord will = 
	B
	Fig. 188, 
	passing over a 
	body 
	of 
	1;
	making 
	the
	angle 
	a. The 
	of
	be 
	Q
	1 

	1 2/sin. iQ, that of the 
	(
	+ 
	) 
	ex­

	tremity be Q, of the secon
	= 
	that 
	d 

	1 =(l i1 
	Q
	+ 
	2f
	si
	n.
	) 
	Q

	=1 2f sin.e' Q; that 
	(
	+ 
	;)
	of 
	the 

	= (1 2/sin. Q
	the 
	fo
	rce 
	at 
	the 
	remaining 
	extremity 
	P 
	+ 
	;)
	0 
	, 
	in 
	so 

	= 
	Q 

	11
	P into Q, and Q into P, ,ve obtain P
	1 

	1 + 2fsin. 
	(
	i
	)

	a motion in the direction of Q is to be prevented.
	ed 
	only 

	The friction F= P-Q isinthe first case = [1+i)"-1
	(
	2f sin. 
	J 

	Q, and in the second= Q-P= 1 + 2/sin. i)-1P::;; 
	1 
	[(
	0 
	J 
	1 

	[1 -(1 + 2fsin. i)-] . 
	n
	Q

	Figure
	Figure
	ROLLING FRICTION. 
	Fig. 189.
	The same formulre are applicable to a body winding round a cylinder, and consisting of members, as, for instance, a chain .IJBE, Fig. 189, where n is the number of links in contact, the length .llB of a link = l, and the distance C.11 ofthe axis .fl of a link from the centreof the arc covered = r, ,ve then have 
	• G
	s1,n. -= _ 
	l 

	2 2r" 
	Examplt. What is the amount of friction at the circumference of a wheel 4 feet in <liameter, if twenty links of a chain, five inches long and one 
	2 48+1 49 
	F= [ (1+2.35. Ł)-1 J.50= [ (1+ ::)-J .50 
	0
	4
	20 
	0
	00 
	1 

	Fig. 190.
	176A stretched cord .llB, Fig. 190, lies about a fixed and cylindrically rounded body.llCB, the friction may be like\vise found from the rule of the former paragraph. Here the angle of <leYiation EDB = o.= the angle ACB 
	§ 
	. 
	.E. 
	0 

	,, 
	p 
	1 
	at the centre subtended by the arc of the cord 
	])J _ -.. \
	A' ___ c
	;:
	AB; if we divide this into equal parts, and consider the arc .llB as consisting of n straightlines, we have then corners, each with a <le-
	n 

	o
	viation of�, and consequentJy the equation be­
	n 
	vo 
	tween the power and weight, as in the former : 
	§

	= 
	p f
	( 
	1 
	+ 2
	sin. 
	Ł)II 
	Q.

	2n 

	(1 +1;;)" Q.
	(1 +1;;)" Q.
	P 
	= 

	obtain: 
	n 
	n-2
	= 
	n3 ·
	-

	ut 11 is very great, therefore n---1 be put: 
	Ł
	as 
	it 
	may 

	· · · = 
	n
	= 
	1 . .2 
	1.i.3
	:r:3 
	Figure
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	• 

	the base 2,71828 ..efore, it may also be put: 
	.

	of the hyperbolic system s, the
	of 
	logarithm
	re
	.. 

	p
	1 
	3026
	2,
	Figure

	(Log. P-Log.. Q).
	= 

	If the ar{of the cord is not gi\-·en in parts of tt, but in 
	degr
	ees
	, 

	we have then to substitute o. = ;• it be exp
	1
	Ł
	0 
	J(; 
	if lastly, 
	ress
	e
	d 

	by the number of coils u., ,ve have then to put o = 2 "' u.
	The formula P = el• . Q Ł>..""}lreŁses that the friction of tŁe cord cyhnder 1s not dependent on the of the same, but on the nŁmber of coils of the cord! anŁ moreo-ver sho,vs tbat it may very easily be increased, almost to 1n1in1ty. If we put = ¼, ,ve have: 
	F= 
	p_ 
	Q 
	upon 
	a 
	fixed 
	d
	t
	amet
	er
	_
	f

	For ¼ of a ,vinding P = 1,69 Q
	P == 2,85 Q
	" 
	½ 
	" 

	"
	" I P = B,12 Q
	2 P = 65,94 Q 
	" 
	" 

	P = 4348,56 Q, &.c. 
	" 4 
	" 

	Fig. 191, 
	&ample. To let tlown a al1nf\ a load P the rope to is nttucbotl is"' rnppcd 1 I timea firmly clomped holder .IJJJ, Fig. 1l, and o ne1lre1nity of the rope is held by the ,vhnt force must tllis extrentity be ltretcbed Jootl mny slowly nnd Wliformly de!Cend?' Iwput rf= 0,3 we obtain this power 
	of 
	1200
	lbs. 
	froo, a 
	cennin heigbt
	1 
	,vhich 
	t
	h
	.
	,veight 
	about 
	n 
	rou 
	:
	9
	th
	o
	th
	hand
	. 
	w:
	thnt 
	th
	f 
	e 
	Q 
	= 
	p, 
	-J,.

	11 
	33

	3 . 2 
	3 . 2 
	-

	--"' 

	= 1200 •t--0· 8 ,r = 1200 · 
	,
	t 
	4
	0 
	, 
	there
	-


	3
	3

	fore, hyp. Log. Q=hyp. Log. 1200 -., = 7090
	-
	1

	40 
	-2,591S = 4,4983 . Log. Q = 1,9536Q = 9 lbs. 
	, 
	89
	,

	§ 177. Rigidity of Cliains.-If ropesor other Łimilar bodies, &c., are placed over a pulley, or on the circumfere
	nce 
	of

	other cylinders revolving about an axis, the cord or chain considered in the foregoing paragraph ceases, because the ference of the the same ,·elocity as the rope; but no,of bending by the winding of the rope and thatof uŁben<ling un,vinding, becoŁes perceptiŁle. If it run ,vh1cb winds clru1n, there arises the resistance t'\'iand un,vinding manifested in a friction of the pins, while. last are revolving through a certain angle. If.IJ192, isBG the one lying next, if, further, C is of rel"o..
	fricti
	on
	circu
	m­
	wheel has 
	v 
	the
	force 
	about 
	the 
	Ł
	ulley, 
	also
	_ 
	by the 
	is 
	a
	ch
	round 
	a 
	of 
	he
	nding 
	chain 
	these
	B, Fig. 
	onŁ 
	hnk, 
	and 
	the 
	axis 

	Łut1on of the wheel on ,vhich the chain stretched by the ,veight Q windsitelf, if, last.ly, CŁI and CN are Jet fall perpenhdicularly to the lonŁer axes of the hnks .IJ.B and BG, Ł[CH= Łis the angle through which 
	.
	Ł
	0 
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	the wheel revolves whilst a fresh link is laid on, FBG = angleby which the link BG with its bolt BDrevolves abeut the link ./J.B. If now BD =BE=ris the radius of the bolt, the point of friction or pressure D descTibes arc DE='l\a, and the mechanical effect friction Q hereby produced at the point B is Q . rG. The force Pex­i!1 overcominthis friction,_ acting 1n the direction of the longer axis BG,describes the simultaneous space s= CNtimes the arc of the angle .lt[CN= CN. "the mechanical effect = P• CN. 
	180°-.IJ.BE is the 
	1 
	an 
	of 
	f
	1 
	f
	1 
	1
	1 
	p
	ended 
	g 
	' 
	and 
	1 
	G;

	equating both labors we baveP• CN 
	by 
	1 

	• o. =fi Qra, and the required force, if 
	. 
	1

	ent the radius of the drum CN increased by half the thickness 
	a 
	repres

	Fig. 192. 
	=========---
	\ 
	. 
	Without regard to friction, the force for a revolution of the would be P= Q, having regard to the friction in the ,Yinding up of 
	wheel 

	chain P = Q+P(1 +ft -? ) Q. If the chain un,vinds 
	the 
	1 
	= 
	itselfh

	,from the drum, an equal resistance takes place; if, therefore, a wind­ing on one side, and an unwinding on the other take place, the force 
	P = ( 1+fŁ) Q, or approximately : 
	1 
	2 

	1 + 2ft :l ) Q. 
	= ( 

	Lastly, if the pressure on the axle = R, and its radius = 
	r
	.
	, it 
	• 

	follows that the force, taking into account all resistances, is: 
	P= (1+2fi Ł) +f: R. 
	P= (1+2fi Ł) +f: R. 
	Q

	Fig. 193. 
	Exa,nplt. What is the magnitude of a force Pat the ex­e�ty of a chujn passing over a pulley .IICB, Fig. 193, if 1.he Weght Q drawing vertically downwards = 110 lbsthe
	tr
	Ł

	.,
	the pulley ,vith the chain 50 lbs., the radius of the Pley measured to the middle of the chain = 7 in., that of t ax.IC J inch, and that the cl1ain bolts = f in. 1 The 
	Weight 
	of 
	i::!
	Ł 

	ffic1ents of friction f 0,075 and /1 = 0,15, therefore 
	Ł
	= 

	8.7 
	the right hnnd nearly = 110 lbs. 
	Figure
	. 270 = 111,76 1,81 + 113,6 
	. 270 = 111,76 1,81 + 113,6 
	+ 



	8.7We assume on
	or 
	"f 
	' 
	1 
	P 

	p
	lbs:== 
	lbs:== 
	1,
	0 
	16 . 
	110 + 0,0067 

	e
	in as a resistance pp
	o
	osed 
	to 

	moti
	Ł
	n.

	wheel, 
	rigid
	ity 
	comes 
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	of this resi tance by experiment. The results obtnine<l by themeans satisfactory; partly becau e they in ·uffiaccordance with each other, and portly not 
	m 
	are
	by 
	no 
	are 
	not 
	cie
	nt
	becaus
	e they 
	have 
	tha
	t

	'
	extension so practical application. I'he experimCoulomb, hich are those only of ,vhch were 
	desirable 
	for 
	ent
	s 
	of
	w
	!
	,ve 
	Ł
	hall speak
	mos
	tly

	.,
	made with hempen cords, of ¼ to ! inch twith pulJ
	h1ck, 
	nnd 
	eys 
	of

	.
	from 1 to 4 inches diameter. Other exper11!1ŁnŁs must be fore ,ve can k"nO\V \,·hat is the resi ·tance of ng1<l1ty of a hempof from 2 to 3 inches thick, when wrapped round _ druŁ of fro6 feet in height; and also what is the aruount_resistacase of the wire-ropes, now come generaUy tnto use.•
	mad
	e 
	be.
	en 
	r
	op
	e
	a
	m 
	l 
	to
	ofthis 
	nce 
	in 
	th
	e

	Coulornb 1naŁe hishexperiments
	. t,vo
	in 

	Fig. J94. 
	Figure
	which pulls, by means 
	thin Łtrin
	of 
	a 
	g 
	t

	a
	this roller; at another time, with 
	a 
	cylin
	de

	which was allowed 
	ont:i
	to 
	roll 
	upon 
	a 
	horiz

	line, and round which a cord ,vaŁ and from the differenc_the weights 
	,v
	ou
	nd
	e
	of 
	s
	us:

	.
	pended nt both extremities, ,vhich 
	effec
	ted

	slow rolling for,vard, and after abstrat
	c
	ion 
	0Ł

	rolling fri<·tion, the resistance ofthe 
	the 
	rigi
	dity

	was deduced.
	It results from the experi�ents of Coulo!nb, that the �igidity in­
	_
	creases equally with the tens1on ofthe ,v1nd1ng cord; that 1t conRists moreover, of a constant part K, which is no more then might be ex�pected, because a certain force is necessary to bend an unstretched cord. It also appears that this resistance increnses inversely as the diameter of the pulley; that it is, therefore, with twice the diameterof the pulley, on1y half as great; with th�ee times the diameter, one­third, &.cThe relatio� betwee� the thickness and tl!e rigidity of the cord 1s only approximately 
	.-
	.
	twi 
	ting 
	of

	4
	to the po\ver d•old <Jl,, d being the diameter of the rope. therefore, only an approximation, ,vhen some a ume that this resist: ance increases proportionally with the thickness, others with the square of the thickness of the rope.
	1
	7
	, for 
	It 
	is

	§ 179. The rigidity of cords may be therefore expressed by the
	formula!: 
	formula!: 
	S= d" (K., Q), where d is the thickness of the 
	+ 
	cord


	' 
	a
	• of the pu11ey measured to the axis of the Kand,,, 
	the 
	radius 
	cor<l, n, 

	• See Appendix. 
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	1,1
	d

	8= -(2,45 + 0,053 Q), and for old
	a 
	d,4 
	l 

	l 
	l 
	l 
	a

	• 

	expressed in Prussian inches and pounds, 
	sure
	; 
	they 
	become, 

	8= -(14,23 + 0,295 Q) and 8= -(6 ,83 + 0,141 Q). 
	1 

	a 
	a 
	a

	As these complicated formulre do not always give the results in accordance with experiment, we may, until other experiments super­sede them, put with Etelwein 
	y 

	8= ., . :Q = !ŁŁ provided that a be expressed in
	3
	' 

	ahPrussian feet, and d in Prussian lines, Q and 8 in the same weight,however, may be arbitrary. For the metrical standard 
	which, 

	= 18,6 . tP _ This formula, as might be expected, will give 
	8
	Q

	a 
	satisfactory approximative results only for great tensions, as theygenerally occur in practice.
	The rigidity of tarred ropes is found to be about ¾th greater than that of untarredh; for wetted ropes, however, there is no determinaterelation of this kind • 
	ampk. With a tension of 350 lbsand a raJius f the pulley of 2½ inches, the 
	Ł
	., 
	Ł
	Ł

	. _
	ngid1ty of a new rope of Ł Imes = 0178 (English) mchaccording to yS = f. (i) •• 14,23 + 0,295 . 350) = 0,613e. (7,0 = 28.8 lbs.(according to Eytel
	es, 
	Pron
	, 
	1s: 
	1
	7 
	; 
	-

	9• 350
	9• 350
	1 

	witi) S = · = 38,9 lbs. Were the tension . only lbs., ,ve should
	e
	24 
	Q
	150 

	3500 . 5_ 
	3500 . 5_ 
	have from Pron, S = 0,613 . 23,4 = 14,34 lbs. i from Etelwein = 
	y
	y
	: 
	= 
	81 
	Figure
	• 
	24 
	• 
	3
	16,7 

	350 
	lbs., therefore, here a better accordance. :We see from these examples, bow little reli• ance is to be plaoed on the formula. Remark. A farther extension of this subject, viz. in respect to the rigidity of s, will be given under the article, windlass and capstan. 
	wire 
	rope

	§ 180. Let us now app]y the formula given for the rigidity of cords,theory of pulleys. The radius CJJ. of a fixed pulleye= a, radius of the axle = r, the thickness of rope 
	to 
	the 
	Fig. 
	195, 
	.the 

	= d, the weight Q at one extremity of the cord, Fig. 195. 
	---=•
	se weighte= G,)and the power which mnst be 
	(wh
	Ł

	to the other extre1nity to draw it slowly= P. Without friction on the axle, and with­rigidity, P would be Q, but because the axlehexerts a pressure P + Q + G against its 
	app
	hed 
	up 
	out 

	Figure
	. 
	= 
	D: 
	A 
	Łf

	I}) 
	---

	. .
	-

	I
	i' 
	'-

	•·
	. -which, since it acts at the radius , makes an 
	r

	i 
	. 
	I 
	r..-''l' 
	increase of power -l!.. (p + Q G) neŁessary ; 
	+ 

	.
	16 
	· 
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	itself in this, that the cord does not at once curvature of ce of the pulley, but lays itself with curvature and in this manner sion of Q; the arm,' therefore, of the C.IJ. and the force at the arm CB 
	take 
	the 
	th
	e
	circumferen
	upon 
	the 
	puller 
	a
	n
	increasing 
	causes 
	an 
	exten
	of 
	th
	e 
	arm 
	weight 
	Q 
	is not 
	hut 
	CD
	,

	==C.IJ.==a,P:::s ŁŁh. Q-=-(1 + ŁŁ) S+ (K+., Q)
	Q-Q+
	-Q
	Ł
	. 

	The complete equation between the power weight 
	and the 
	is 
	now 

	P-Q+Ł+• Q)+-L!' Q+ G).
	(K
	(P+ 

	a 
	a 

	and axle the power P acts different arm 
	In 
	the 
	wheel 
	at 
	a 
	a 
	to 
	th
	at 

	Pa -Qh+ cJn (K+ " +fr + G), and p _ ŁŁ(K+•Q) +(P+ Q+ G).
	Q) 
	(P+ 
	Q
	Q+ 
	f
	r

	a n a 
	Hence the force _ (h +"<Jn +fr) Q+ <Jn K +fr G
	Figure
	• 

	p -_
	a-fr 
	Example.-A weight Q = 200 lbs. is to be raised with the wheel and 
	axle 
	by

	power P ; sppose he wheel to I½ feet, an<l the pivot inch the rope applied ½ an inch thick, and the weight of tho whole n1ach1ne 70 radius must we give to the axle 1 It must be: 
	= 
	50 
	lbs.
	Ł
	Ł
	Ł 
	Ł 
	rad
	ius, 
	anŁ
	lbs
	., 
	wha
	t

	b =[Pa--d• (K+ , QJ-fr (P + Q+G)]+ Q,
	therefort', in numbers if we put/= 0,075, 
	b = [50 .e18-(½) • 'T.(14,23+ 0,295. 200)-0,075e. i. 320) + 200[900-0,3U8. 73,23-12] + 200 = 865,4 + 200 = 4,3-i7 inchc:5.. 
	= 

	Without additional resistances b woul<l be 
	Pa+ Q-= 1:; + 200 =-0,37:i feet -4½ inches. 
	= 

	CHAPTER VI. 
	ELASTICITY AND RIGIDITY. 
	§ 181. Elasticity.-The parts of a rigid body adhere to each other with a certain force, ,vhich is called cohesion, and which must be overcome when bodies are changed in their figure and extension orŁrokenhe eŁect which forces produce in a body, is a 
	. 
	!
	first 
	chaŁ
	ge

	_hin the position of their parts relatively to each other, and a resultchange of form or volume of the body. If the forces acting upoexceed certain liits, a separation of the parts, �d a break�whole body ultimately take place. The bod�er a change of form by the action of forces, resume per­former state after the withdrawal of is calletaaticity. The elasticityhof every body has a thechange o� form ?r volume exceeds a certain amount, the body retains alteration of its volume, even when the forces \\·hich have
	ing
	n 
	a
	body 
	!13
	Ł
	ing
	of 
	he 
	capab1hty 
	of 
	ies,
	which 
	su
	to 
	fectlf 
	!heir 
	the 
	forces, 
	d
	l
	· 
	certain 
	limit. 
	If 
	Ł 

	MODULUS OF ELASTICITY. 183 
	h suffer a considerable change of form before this Łare called perfectly elastic. Those, on the other h1ere is scarcely any appreciable change of form are called inelutic, although in reality there exist no kind.
	BodŁe
	s 
	w
	h
	ic
	limit _is 
	att
	1
	ned, 
	and,
	. 
	n
	whic
	h 
	t
	h
	precedi!-1g
	t
	h
	e 
	limit, 
	bodies
	of 
	this 

	hinery never to h an extent, that any alteration of their form h less exceed, the limits of elasticity. 
	It 
	is 
	an 
	important rule in building and in mac
	load
	the 
	_mater
	ials to suc
	sh
	ould
	attain, muc

	§182. Elasticity and Strength.-Different bodies present differenthenomena when their form is changed beyond the limits ofelasticity.hemetals, it will admit of alterations of form beyond the limits of elas­hout suffering a separation of its parts. Many bodies are ard, othopposes a great resistance to a separation 
	p
	Ifa body be brittle, it flies into pieces. If it be ductile, as many of t
	ticity, 
	wit
	h
	ers 
	soft 
	the 
	one 

	about.• 
	hilst
	of
	their 
	parts, "'
	;

	he the word, \\·e understand byelasticity, thehich a body opposes to a change of form; on the 
	In t
	restricted 
	sense 
	of
	resist
	ances w
	other

	and, bystrength, the resistance which a body opposes 
	Ł
	to 
	:1 
	separa­
	tion 
	of
	its 
	parts. We will accordingly, in what follows, consider 
	eac
	h 

	their form and dimensions, we distinguish
	According to the 
	way 
	in 
	whic
	h
	and 
	c
	h
	ange 

	external forces act upon a he elasticity 
	body,
	t

	2. 
	2. 
	2. 
	he relative resistance, 
	T


	3. 
	3. 
	he re1istance to compresnon, and
	T


	4. 
	4. 
	he resistance to torsion. 
	T



	resists byits absolute elasticity and strength any extensionhhe body \\ill resist by its relative elasticity andbending or fracture. If, further, two forces act 10 the 
	a 
	body, 
	it 
	or 
	rupŁure. If, on t
	e 
	ot
	h
	er 
	hand, 
	t
	h
	ese 
	fo
	rces 
	act 
	at 
	rig
	h
	t 
	angles 
	to
	the 
	axis 
	of 
	a 
	body, 
	t
	1
	sŁre
	n
	Ł
	h 
	any 

	her compressed or crushed, then t
	com
	es 
	eit

	here is the elastidty and 
	. 
	of compression to be overcome. If, lastly, forces strive !body in opposite directions about an axis, or which do plane normal to the axis, then there is the eluticity 
	streng
	th 
	to
	urn 
	a 
	not 
	act 
	1
	n 
	the 
	same 
	and 

	.Modulus of Elastici,ty.-The change of volume within tŁe 
	Ł 
	183. 

	.
	elasticity, i.e. the extension or compression al to the force exerted, but if this limit, this proportionality ceases, and hing. As a measure elasticity is that which expresses elongate a prismatic body of a transverdouble, or to compress it to different modulus corresponds to 
	lun
	its 
	of 
	of 
	a 
	body, 
	11
	pre
	tty 
	nearly 
	proportion
	ch
	ange 
	ex•
	ceeŁs 
	that 
	the 
	c
	h
	ange 
	goŁs
	.
	on
	rapi
	dly 
	to 
	that 
	ofrupture or crus
	of 
	the 
	elast
	1
	c!ty,
	!
	h
	e 
	mod
	ulus 
	of 
	E, 
	the 
	fo
	Ł
	ce 
	whi
	_
	ch 
	18 
	nŁc
	essary 
	to 
	se 
	section
	,
	unŁty
	Ł. 
	': e. 
	a 
	1quare
	foot, 
	to 
	o
	!1
	e-half 
	of 
	its
	ori
	gin
	al 
	length
	. 
	A 
	ddferent 
	mate
	-


	• See Appendix. 
	rials: for each substance it mu t be determined by experime. 
	nt

	184 
	F
	the rest, \Ye must bear in 1nin<l tbat .Łelasticity fholds good for extensions and compressiow11.h1n lirnit Y
	the 
	mod
	ul
	s 
	of 
	on
	r 
	ns 
	the 
	of 
	ela 

	s
	measure is one, not ofob:,;ervation, . 
	ticity, 
	and 
	its 
	but 
	of 
	h 

	pothesis and calculntioŁ, find a 
	bee
	a
	usŁ 
	it
	is 
	not 
	easŁ 
	Ło 
	bod
	Ł 

	so 
	_
	1''ig. 196. 
	the transveŁ·e section 1Ł requires 
	l, 
	and 
	for 
	its 
	e
	xte
	n­

	]!C = 
	Figure
	sion DG=l, the force E, 1f, ho,vever, 1tstrnnsvit consists of F' contiguous pri. E. If, on the other hand, this teudecl a length DN = C.ll = "-, then for the 
	erse 
	s
	cctio
	F, 
	that 
	is, if 
	·ins, 
	this 
	fo
	n 
	16 
	is 
	then 
	F
	bo<ly 
	is 
	to 
	be 
	r
	ce 
	forc
	e 
	p 

	ex. 
	l F. E, ancl inversely, 2. ,. 
	Ł
	= 
	P

	=
	Figure
	I. That P 
	l
	F. E. 
	· 
	The same are also applicable to abody .flC, Fi. 197 
	formul.Il 
	Ł
	of 
	th 

	length .IJ.D = l,and the transverse sectio.flB_ 
	. 
	n
	e 

	F,g. 197· 
	if it become shortened a length ,. by the 
	comp
	re;
	i{

	of a force P. 
	' 
	n 
	o 78'!; . (.2..) 1 = 0,0218square incheŁ tho required foroe o.ccordi11gly isP= ?ŁO146Ło000 =442lbsifaniron chain,60fceL long anll 0,2 inches dŁok, bostrctcbCkl hynforceof100lL.s.li>O . GO • 12 108000satne ,.villbeincreasedby alengtb ,..=01013inches0=0§184. Modulu,s of Wo rking Load.\Yhich abody of the transverseextension attains thelimit ofelashc1ty, 1Ł eas1Jy determ1nŁdfromth
	the change of volume (,.) the Łorresponding the quantity of the 
	forc
	e
	j;1
	or 
	from 
	the
	. 
	force 
	P 
	exten
	sion 
	or 

	' 
	compression. 
	Exanrplt. If the modulus of elastiŁity of bm!'l11 
	Exanrplt. If the modulus of elastiŁity of bm!'l11 
	wit<' 
	amo
	un

	· ts to

	1462:>000 lbs., ,vhnt force iŁ necossnry to strotcl1 r'T feet in length nn<l ¼inch io thick,1es:1? / = 6 . 12 = 60 ntŁ:
	inch 
	a 
	,v
	i
	c
	e 
	5 

	s, >.
	s, >.
	l >. l ,rd.t 

	inch consequently -= --j further F= 
	_ 
	--=--
	= 

	I 120 4 
	]2 

	= 
	1,the!efore, T--:beyond which materials used 1n construction and machinery must not
	bloaded maintain sufficient safety together \Vith If the transverse section of a bo<ly, lusustain 
	Ł
	_
	if 
	they 
	are 
	to 
	dura
	­
	b1hty. 
	w
	ch 
	has 
	to 
	a 

	. P = FT, and 2. F= 
	l

	p
	r· 
	':!'force T by which we judge of the working load of bodies, y 
	he 
	ma

	o
	kaeŁ 
	Figure
	See Appendix. 
	4 

	STROŁGEST FORM OF BODY. 
	The modulus of strength K, which expresses the forŁe by whichha 
	_body of the transverse section unity becomes ruptured, 1s enhrŁly d1f.
	.
	_

	_
	ferent from this modulus.body, or its least section 
	I. P= FK, and inversely, 2. F 
	1 

	If the transverse section of a prismaticF, it follows that the force, for the rup­
	as 
	= 
	i· 
	rally the strength of materials of constrnction and parts machines are calculated by the co-efficient K, "·hich is divided for sŁcurity's sake, by one of the numbers 3, 4 to 10. This Łakes littledifference in the result, as we may see froin a companson of the values found in the succeeding table, but the supposition is incorrect, be justified only in so far as the 4 to 10 the modulus of tenacity, or generally bears a 
	Gene
	of 
	or 
	to 
	modulus 
	of 
	strength 
	is 
	from 3, 
	times 
	that 
	of 

	section of the body be a circle of the diameter d, we ha,
	If 
	the 

	e
	·

	therefore, 
	P
	P
	'J.

	n <P 
	f4 
	F 
	-
	-


	F, so that d =...J = 1,128 ✓F= 1,128 
	4 
	= 
	,c 
	J 
	T,

	from the load or strain P on a body, and the of its material, the strength may be found, for body \\·ill not be strained beyond the limit of_ elasticity
	and 
	hence, 
	modulus 
	of tenac
	ity T
	which 
	the 
	. 

	Ex,1, .tWhat load will a column of fir sustain, if it be 5 inohea in breadth anŁ .(
	.

	.
	inches in thickness 1 The modulus of tenacity being taken at 3000 lbs. and the section F being -=-5 . 4 20 square inohea, we obtain P = 20 . 3000 == 6000 lbs. for the power of tenacity of this column. But if we take the modulus of strength K== 12000 
	-= 

	12000
	12000
	20 
	• 

	lbs., and assume a triple security, we obtain P == 80000 lbs.; but to
	= 

	3
	maintain security for a long period, we must only take one-tenth of K, and we shall then have P = 20 . 1200 = 24000 lbs.-2. A round and wrought-iron pump-rod is to IU!• tain a weight of 4500 lbs.; what diameter ought it to have 1 Here T = 
	20000 
	lbs., 

	4500 {9
	4500 {9
	J 

	herefore, d = J,128 = 1,128 . ,Jio ==0,535 feeL The modulus of strength
	t

	ŁOO00 
	ŁOO00 

	wrought iron of the medium kindt== 68000 lbs., and if we take one-sixth for 
	for 
	the 

	security, we then obtain Ka: 10000 lbs., and d 1,128 Ł == 0.756 inch, the
	= 

	0000
	,J
	1

	requisite thickness of the rod. 
	§185. Strongest Form ofBody.-lf a verticaUy suspended prisma­
	§185. Strongest Form ofBody.-lf a verticaUy suspended prisma­
	.

	for example, a pole or cord, is ,•ery long, its weight be added to the force of rupture, and, therefore, P + G must be put now l be the length of the body, andh., the of its mass, we have then G-FL,, and, 
	tic 
	body, 
	G
	must 
	=z 
	1:T: 
	If 
	weight 
	of 
	a 
	cubi
	c 
	inch 
	therefo
	re, P 
	-
	F 

	inversely F== p . If a body .IJ.BC •
	(
	T-l
	-,), 
	as 
	• 
	G, 
	Fig. 
	19s, 

	equal portions, each of the length l, its 
	cons
	ists 
	of 
	1ucces
	s
	1
	!e 
	t!'911
	s-
	s-
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	ns are as follows. The section of 
	ver
	se 
	sectio
	the 
	first 
	portaon 

	before 
	16• 
	Figure
	Figure
	• 
	186 STAONGEST FORM OF BODY, 
	-F. P+Pty 
	and ,veight Zr, + Fl+ F,.lr = T, 2 ,_ zŁ =F+ 
	p 
	1
	r
	F
	1
	hence 
	= 
	Figure
	1
	1 

	third portion it 
	F
	1
	l
	1 
	= 
	p
	1 
	(i 
	+ 
	l
	y 
	)· 
	For 
	the 
	follo
	ws 
	th
	at

	T-lT-tr 
	y 

	Figure
	T-lr 
	" 
	3 2 
	T-l
	y 

	1 
	F

	l, and generally for 
	= 
	F 
	(i 
	+ 
	y 
	)
	3 
	the 
	nth 
	por
	-
	-


	1 
	T-lr 
	. 
	y )
	l

	T-l
	(l + 
	•
	small, the portions therefore short, we may
	If 
	l
	is 
	very 
	very 
	then 
	put

	Ł)-ŁpF.=r(1+1
	.
	of portions is Yery _great, or if the 
	If the 
	number 
	thickne
	ss 
	of 
	the

	_
	body ./J, Fig. 199, increases uniformly from belo,v upmay then (from the reasons in § 175,) put the cross section 
	G
	wards 
	' 
	w
	e 

	1!!! 
	= e T = . e T • e T 
	Fn 
	T 
	. 
	T 
	= 
	T 

	where e represŁ..h. of logarithms, and L the entire len
	nts 
	the 
	base 2,
	71
	82Ł 
	the
	Naperien 
	gth 
	of

	Fig. 198• Fig. 199• 
	the body.
	Figure

	A
	A 
	uniform thickness to have 
	A body 
	of 
	the 
	sa
	mŁ

	tenacity throughout, must have a trans
	vers
	e 
	sec
	. 

	. If Lt is sma11 as 
	tion 
	F= 
	p 
	comp
	are
	d

	T-Lt
	.o I 
	T, is a small fraction, so that 
	T, is a small fraction, so that 
	Figure
	with 
	Ł
	we 
	ruay 
	p
	ut

	:

	'F 
	G 







	F,+Ł ½(Ł'] and F=1+Ł+(;)], 
	F,+Ł ½(Ł'] and F=1+Ł+(;)], 
	= 
	;[
	1
	+ 
	)
	;[

	= 

	F, !•.Ly= + ½Ł+Ł(Ł)'];Lr; 
	F, !•.Ly= + ½Ł+Ł(Ł)'];Lr; 
	F
	[
	1

	and that of the second = F . Lr 
	. 
	. 
	=[1+!;+JLr;
	(
	;
	)
	Ł


	the prismatic body is heavier, and on Łore costl
	the prismatic body is heavier, and on Łore costl
	hence 
	that 
	account 
	y

	than one length a cross section the load it has to bear, and which rrcalleduniform resistance, or a body oftlte strr
	having 
	at each point in 
	its 
	corre
	..
	sponding 
	to 
	may 
	the
	efo
	e 
	be 
	a body 
	of 
	ongest
	fo
	m. 

	&anap�u.--:-1. What cross section ought a ,vrought iron sbnft 100 elong to hav8t'!beSJ�es_its own ,veigbt it has to sustain a load P=75000 lbs.1 The modulus of­
	f
	et 
	hen 
	tena

	. 7,60 . 62.4
	= 0,27 444 lbs. 
	iron )' 
	= 
	1
	2 
	12
	• 
	12 

	_ 
	P
	The section sought is F = TL-J, = 
	-

	Figure
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	75000 . 
	. 

	.
	= 7.51 square inches, and the weight of the 
	103l 
	1 
	shat\ 
	G
	= 
	F L
	)'

	-1200. 0,27444
	1200e. 0,27444 = 2473 lbs.-2. If we were to give to thi, shaft the form . F P 75000
	= 
	7,
	5 
	1 
	. 
	of 
	a 
	body f 

	,._
	.

	o un11orm resistance, we should then obtain for the least section 
	o un11orm resistance, we should then obtain for the least section 
	311 
	10


	=
	= 
	T 
	T 

	e0,001113 .=
	7 28 
	-

	square inches,eand the weighte
	7
	,
	51
	3 
	= 

	28
	7,

	0,9'74",0,118 
	••. 329,3 =2435,5 lbs. (approxi­
	(
	7
	28
	Ł
	7
	513
	) 

	mately). 
	§ 186. Numerical Values.-In the following table are given the mean values of the different moduli, of elasticity, tenacity, andof the materials most commonly occurring in construction. 
	stren
	gth 

	TABLE I. 
	THE MODULI OF ELASTICITY AND STRENGTH. 
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	Lead
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	values contained in the second verticthis tablethe limits of elasticity, give 
	The 
	al 
	column 
	of 
	, 
	of 
	relative 
	extension 
	(T) 
	at 
	the 
	like
	\
	v
	is
	e 

	, 
	NO
	ened or coinpressed lamina. flexure had taken place ,vithout change of volu1ne, KL ,vould 
	any
	beh

	= 
	Fig. 201. 
	of the body, KL . its neutral 
	axis
	,

	an extended and uva 
	l 
	short. 

	the 
	If 

	of all the lamina would be one and 
	the same; the body also would havethe form JJBCD, but because the has sustained extensiocompressions, certain laminŁ, such as .llD, NO, &c., have undergonethe e!ongations DD1, 00, &c., 
	body 
	ns 
	and
	1
	an
	d

	others, as compressions CC,, &c., and rm of the body has changed to that 1,case the
	BC and UV, the 
	VV
	1 
	, 
	the 
	fo
	ofJIBC
	D
	In 
	e
	r
	ery 

	J:.
	.

	elon�ations DDdcompressions CL\, VV, &.c., are pro­po�t1onal to , LV, &c., fro1n the 
	v 
	00
	1
	, 
	an
	the 
	1
	the 
	distances LD
	LO, LC, 
	neutra
	l 

	ruos. 
	But the strais in the direction of the lamin� are in the ratioelongations and compressions effected by there­assume that these strains are proportional to the distances from 
	n
	of 
	the 
	them; 
	,ve 
	must, 
	fore, 

	Figure
	Fig• .200. 
	is Jixe<l at one extremity, 
	for 
	in

	stance, imbe<ldedin a ,valJ 
	. 
	and 
	a
	-t

	' 
	hother extremity acted 
	t
	e 
	upo
	n 
	by

	force P; strains then take 
	a 
	p
	1ac
	in 
	_
	this bo<ly, inconsequen
	ce 
	0Ł

	.
	,,·hich, one part 1s extended, other compressed, and the becomes deflected. If ,ve imaghe whole bŁy ose
	an
	d
	the 
	,vho
	le
	ine 
	!
	to be 
	decomp
	d

	_
	thin am1nre by J?lanes axis, and at nght the direction of force, ,ve may 
	into 
	!
	para
	llel 
	to 
	the 
	angle
	s 
	to
	the
	n 

	• See Appendix . 
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	.' . ',,. . .• •• • , ·.-.··.·..·•. ·..... I'I, . . . ,vhich it undergoes, the corresponding tension 
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	neutral axis. If, then, we put the strain on a of a transverse section equal to unity (a square unit of distance (one inch) from the neutral axish= 8; the stram for the distance KN=z is 8z, and for the section F, it is F8z. If now the experimental number 8 represents both the extension and com•on, we know the sum of all the strainsh= (Fz+Fz+ • .) 8,where F1, F2, &c., are the sections and =.,.:-, &c., the distances fromthe neutral axis. In ordPr that the tensions may produce no pressure,and therefore no alte
	the 
	fibre, 
	or 
	layer 
	of 
	fibŁes
	, 
	inch)
	, 
	anŁ 
	at 
	a 
	pressi
	1
	1 
	2
	2
	2
	neutr
	al 
	of 
	(
	1 
	i
	i 
	) 
	1
	1 
	2
	2

	+ 1nust be = 0; i. e. tlie neutral axis or tile 11e11,lral larnina must 
	... 
	1

	through the centre of gravity of the cross section of the body.
	pass 

	We may no,v compare the condition of the body \\'itb the equi­of a bent Ie,er. The force P acts at the arm KH l, the ent is, therefote, M= Pl, and balances the collective forces of nsion and compression, \vhose moments are z• F8z=2 , or Fz• S, }�z• S, &c.; consequently,ve must put
	libri
	um 
	= 
	mom
	exte
	1 
	1
	, 
	• 
	F
	2
	Sz
	2
	,
	&c.
	1
	1 
	2 
	2
	2 
	z/ 
	+ 
	F,,,z,/· 
	+ 

	Jtf = Pl = (F
	Jtf = Pl = (F
	1

	. 



	.8.
	.8.
	)

	... 
	__::'\ .-..z,.D,<-:'.Ł:·;:._._.P_P._._-?: ..-·K-·-.,:,-;,•·:
	O-__.
	-

	D 
	...,
	. -r.
	•
	-

	. 
	,., ' ,..,'
	. 
	.

	L ·.·.·/
	, 
	Ł-Y 
	Figure
	= Ł E is known. If now .IJ.BCD, Fig. 202, is a short portion 
	8 
	1
	1

	of curvature, we have then DD : JtfL, and also1 = LO : ML; i.he. 00: z.2.. LO : p. If we now assumŁ, we obtain Ł: l = 1 : p, and 
	r
	adius 
	: 
	KL 
	= 
	LD 
	00
	: 
	KL 
	1
	e
	LO 
	1 
	and 
	00
	1 
	= 
	hence 
	8

	= 
	p 
	inversely, 
	JVE, 
	and 

	WEh= 
	.M
	p
	. 

	p 
	190 
	ELASTIC CURVE. 
	p is euivamoment offlexure for all cross 
	proauct 
	of thi monicnt .lf an.d the radius 
	of 
	curuature 
	q
	len
	t
	to 
	tlte 
	sectio11s. 

	If ,ve divide the neutral axis KL, Fi. .2uequal parta
	g
	04, 
	ito n 
	s, 
	s 

	Fig. 203. Pig. 204. 
	and determine the radii of 
	LL
	1
	, L
	1
	L
	2
	, 
	L
	2
	L
	3
	, &c. = 
	!,
	n 
	curv
	atu
	re 

	i, JltJ.£= , &c., corresponding to the e parts, 
	= 
	P
	.
	1 
	p
	2
	the 
	ang
	le

	1 1of curvaturLt,, L.AI1L2°&c., '"·e,·ery t,vo ii 
	M
	L
	e LJU
	1 
	= 
	0
	1
	2 
	= 
	t
	, 
	hich 
	ra
	d

	of cur,·ature inlude, are kno,vn, YIJ= !. = Pi t, LL _ 
	c
	iz. 
	L
	1 
	1
	l 

	1 .i-
	-

	n 
	l 
	l

	'll 
	pt, &c., and therefore 4>= --, t --If, furt
	= 
	2
	2
	1 
	= 
	, &c. 
	her

	?tpl 2 np2 
	' 
	1 
	= WE
	,,-e substitute t
	Pi 
	, 
	2 
	= 

	.Al
	l

	ŁI1l 
	nJVEe
	Jl{l 
	.

	lt,!•by the sun1matioof all these 
	.
	2
	l 
	&c. 
	' 
	and 
	n 
	angl
	es

	' 2 
	41

	nWE' 
	we find the angle LOKh= 
	_ 
	-
	a.O, by ,vhich a greater portion, 
	or th
	e

	whole neutral axis, is deflected. 
	,ve suppose a SJ?Łl! fleŁure,_ take the CLh= KH., paralJel to the 1n1t1al direction Łdeflected beam, and equal to the Jength of the beam clthe projections LD, L,D,, L, LL 
	§ 
	189. Elastic 
	Cu
	rve.-If 
	,ve 
	may
	pro
	jection 
	of 
	the
	itself, 
	an
	like\
	vise 
	i
	&c., 
	equal 
	to 
	the 
	parts 
	L
	1

	1 2,
	. 

	l
	&c., ofthe neutral i. e. = -, and we obtain the momen
	axis, 
	ts 

	Pl 2 Pl Pl
	3 

	Ł/1 -, M-ŁL--, &.c. If ,ve substitute
	= 
	2 
	= -
	, 
	3 
	= 

	n 
	n 
	n n

	in the formlre then the measures of 
	values 
	u
	for 
	q,, 
	t, 
	&c., 
	the 
	ano-
	les

	t . 
	these 
	Of 
	1 2 b 
	2
	Pl
	2 

	2 V
	n
	J
	E

	= 
	3 Pl
	J 

	n,'l TV
	Ee

	&c.
	' 
	;

	411 
	= 
	Pl2 
	2 1VEh
	n

	' 
	41
	2 

	= 
	' f3 
	QU being put = 3-ancl tang.
	or 
	1 

	m 
	Figure
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	acl<lition, the measure of the who]e angle of curvature ci of the neutral axis : 
	= 
	and 
	by 
	KOL 

	pzi PP nPlz 
	= 
	= 
	2 

	Cl nW+ + · · + WE 2 2 WE 
	2 
	E 
	(
	1 
	2 
	3 
	+ 
	·
	n
	) 
	n
	2 
	· 
	= 
	· 

	With the assistance of the last for-
	Fig. 205•
	"'e may now find the equation 
	mula, 

	the curve formed by the neutral axis, KL, Fig. 205. Let us divide theab�ciss LN= x, commencing at the L, into m equal parts, and find the parts of the ordinate NQ= y cor­responding to them. Since the radius of curvature is perpendicular to part of the arc the angle 
	to 
	. 
	point 
	Q
	R 
	the 

	= Q1 U• a2 Pr p:::-=:=-= (1:-1 -r); 1t follows, 2WE p (l'-x2). If for x2we substitute suc-
	.i" · 2;E [t>-:'"-(Ł)' "
	.i" · 2;E [t>-:'"-(Ł)' "
	N
	Q= 
	11 
	= 
	(
	)
	+ 
	+ 
	-



	QQ, 
	1

	QU of the ordinate y
	part 
	1

	tang. 
	112
	, 

	Xa.
	2

	2QU -· 
	= 
	a.
	, 

	1n 
	Pl1
	--== 
	therefore, that QU =Ł=. 
	LMQ 
	= 
	= 
	==
	a. -a.
	1 

	2W
	E

	_ 
	2TVE
	m 
	cessively ( ,';;-) •, (!') •, (Ł) •, &c., we then obtain bythe last all the parts ofy, and by the addition of these, the whole ordinate 
	formula 
	: 

	E ml't-(:)c1•+ 2•+ a+ 
	E ml't-(:)c1•+ 2•+ a+ 
	(Ł)
	•
	+ ... ] 
	= ;;-. 
	2 
	;
	[
	•
	•

	;
	;
	2 

	... +m)],i.e.yB= ;:P). 
	2
	2
	E(
	-

	formula we may calculate for every abscss xordinate y, and likewise for the whole length CL 
	By 
	Łhis 
	i
	8P?nd
	1ng 
	= 
	l, 
	the

	corre-
	the 

	Pl 
	= 
	Pl3 
	2WE zt33JVE
	(
	-
	/l
	) 
	0

	ae
	= 
	he lengtl,
	t
	. 

	elasticity, E 3 
	modu
	lus 
	of 
	= 
	Pl
	•

	31Va • .
	• 

	If the whole is uniformly d1str1bute
	§ 
	190. 
	load 
	<l 
	over 

	th beam
	;
	portion 
	= 
	q, 
	there 
	ore, 
	fj
	or
	' 
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	ELASTIC CURVE. 
	the whole must substitute for the 
	length l, 
	Q 
	= 
	l
	q
	, 
	we 
	mom
	ent
	s 

	n n n n 
	n 
	,

	ne
	n 
	n 
	,
	-

	n 
	· 
	· 
	' 

	' Ł 
	!
	ne
	1

	n 
	· 
	n 
	-
	. 
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	qP
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	3 
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	_ 
	-
	&c. 
	And therefore, 
	i' 
	q
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	3

	1 (1+2+3+. .+n') == l3
	1
	1
	1 
	' 
	q

	a =-I · 3 3 
	,a
	WE 
	2n
	W
	E 
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	6 wg,
	·a 

	and likewise, 
	a= 6:and a, = 6 i(/-x-1). 
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	E ' 
	E 
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	Y 
	From this last measure of the angles an element of the ordin
	ate 
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	m m 6 E
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	3 
	3 
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	] 
	the equation of the curve sought. . 
	If again we take x = l, we obtain the height of the arc 
	l qlQlQl
	q
	3 
	3 
	3 

	. 
	fths as great as ifthe load Q were suspended at the extrem
	ity 
	of 
	th
	e

	beam.
	Ifthe beam is loaded by a weight Q, uniformly distributea force P at the extremity, the height of the arc is then
	d, 
	and 
	by
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	3 WE 8 WE WE.
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	If a beam .IJMB, Fig. 206, is supported at both extremities, in its middle by a weight P, both the are deflpwards by the reactions ½P and ½P, as was former 
	an
	d
	loaded 
	extremities 
	ecte
	d
	u
	in the 
	cas
	e

	(§ 189), the one extremity downwards, the formula found 
	then 
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	e 

	good, ifinstead of P, we put {-,and instead ofwhole leng
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	th 

	== l, half the length KL == ! . Hence the arc is
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	height 
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	the 
	:

	2 
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	both extremities, ,ve must put in the formula a 
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	1n place of l, , Fig. 201. 
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	= ; load is, therefore, uniformly dis
	For P 
	= 
	O, 
	a 
	i . 
	8
	Ql
	3 
	the 
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	4 WEd over the whole arc, and the height of the arc is i times t as ifthe weight acted at the mid<lle of the beam. 
	tribute
	as 
	grea

	re
	191. Rectanlar Beams.-In order to gi-re the relations of_or other prismatic body, and the elastic curve formed axis, the transverse section of the body must be nt of flexure JVE, calculated from it. 
	§ 
	gu
	flexa
	of 
	a 
	beam 
	by 
	its 
	n
	eutral 
	known, 
	and
	the 
	mome

	. If the section of the beam be a rectangle .fl.BCD,
	F

	of the width .IJ.B = CD = b, the height .IJ.D =eIi, the moment of flexure JYE = (FZi+tz2... ) E wilJ be known if ,ve decompose this section by Jines parallel to the neutral 
	ig. 
	208, 
	Figure
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	moment of flexure, therefore, of a rectangular If we put this value of WE into the formula a = 
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	PP 
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	Inversely, the modulus 
	of 
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	ab
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	follows from the height of the arc E = 
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	Pl3
	for the other case.
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	wide ande¼ inch thick, has been defiected ¼ inch by a weight P 
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	Fig. 209. axis NO, lying without 
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	1 
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	ofgravity, the moment about another o
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	N
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	passing through the centre of gravity 8: 
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	n
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	If the distance RH
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	eŁ
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	22 +·...)+(Fz/· F z... )]. Bht FF+...as the
	F
	z
	+ 
	2 
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	u_.
	1
	2 
	2 

	sum of all the elements = the transverse section Fof the ,vhole body;furtŁer, Fz+Fz+...as the sum of the moments about an axis 
	1
	1 
	2
	2 

	2
	pss1ng tŁrough the centre of gravity of the body = O, and !1z+1:2 Z...1s the moment of flexure WE about the neutral axis NO; 1tfolloŁs, therefore, that W1E= (Fdl-+ JV) E, or Ł = Fd! + W;ely, W= W. Fd!-.
	Ł
	1 
	2 
	+
	and 
	invers
	-

	measure W of the moment offlexure aout the neutral axis isthe measure JV1 ofthe moment offlexure about a secondparallelaxis, less the product oj" the transverse section F and the square (d!) ofthe distance of both axes. Hence it follows, that of all the moments flexure, that about the neutral axis is the least. 
	The 
	b
	equ_al 
	to 
	of 

	The moments of flexure of many bodies about any axis may beeasily found; we may therefore avail ourselves of these to determine,by means rmulre found, the moments about the neutral axis.
	of 
	the 
	fo

	193. To find the moment of flexure of a 
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	having a triangular transverse section
	prism 

	we must decompose this section by lines parallel to the base .llB into n thin 
	.J!BC, 
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	in the same manne
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	if Łve consider each ?f thesrectangles as rectangles having double the height \Vltb. the 
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	folJows, 
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	§ 194. Hollow Beams.-The moment of fiŁxure of a Łollo,v rectan. golar beam .fl.BCD, Fig212, 1s determined
	. 

	Fig. 212. 
	if we deduct from the moment of the complet; beam that of the hollow part. .11.B = 
	Figure

	the
	b 
	is 

	h the .flB= bthe internal breadth, and BŁ the height, ,ve then have the moments of 
	external 
	breadth, and BCh= 
	heigh
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	and
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	flex:u
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	We may find in an exactly mannmoment of .flexure of a body .IJ.BCD, Fig. hollowed out at the sides. the breadth and BCh= h the height; and if .llB _.IJ..B = b, and BC= h, the sum the breand the heights of both hollows, subtraction ,vhave again: 
	Fig. 213. 
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	The moment of flexure of a body .IJ.BCD, Fig. 214, of a cross-
	shaped section, may be obtained in the same 
	Fig. 214·
	manner. Here .B.B = b the width, and BC 
	= h the height of the middle piece, and ifJl.-.11.B = band .f1D= hare the sumthe breadths and the height of the side ribs;by addition we have the moment of flexure : w bll,+ bh/
	1
	B
	1 
	1 
	1
	1 
	1 
	of 
	-
	Figure
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	12
	It is besides easy to see, that deep, hollow, ribbed or flanged sections of the same area 
	and 

	Figure
	.
	increases \.V1th the transverse section 
	sections
	. 
	Because 
	this 
	moment 

	moment of flexure will be either W = = 
	i b
	4 
	or 
	= 

	12
	12
	· 

	A b, according as we put up the beam with the lesser breadth b, or the greater 2 b; in the first case, therefore, the moment of flexure is four times greater than in the second. If we replace the massive beam of the cross section bh by a hol1ow one, whose hollow bh is equal to the massive part of the section bh-bh, if, therefore, 1 
	= 
	◄
	1
	1 
	b
	1
	h

	bli = bh, i. e. bh= 2bh, or b= ✓2 and h,_ = h ✓2, we sha11 
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	h
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	obtain the moment of flexure of the last 
	b1
	h
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	h
	3 


	= .2" bh, i. e. three times as great as for the first. 
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	§ 19?· Cylinders._-The moment of flexure of a cylinder is det�r­mtned 1n the following mannerLet .11.OBN, Fig. 215, be the circular transverse section, and NO the neu-tral axis of the cylinder. The diameter .11.B, divides this section into two equal parts, having equal moments of flexure, and the moment of flexure of the \.vhole may be found by doubling the moment of half .fl.NBThe half may be dividedby sections D, FG, &c., parallel to .RB, an� at right angJes to NO into thin lamina,which may be considered 
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	jection CNGH= KL corresponds to this may be determined by putting, Gllh: and, 
	pro
	parallel 
	to 
	, 
	par
	t, 
	an
	d
	GDh= 
	GKh: 
	CG, 
	ther
	e-

	r " K H h r.
	G
	D 
	. 
	G
	K 
	G

	____ _. ence we ave 
	,ore, 
	GH 
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	= 
	. 
	,or 
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	CG 2n 
	12 n 
	ment of flexure of the part 
	2n 
	put the variable angle section 
	If 
	we 
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	G
	F 

	_..
	•
	f(
	3n 
	of the half cylinder wi11 be now 
	The 
	moment 
	of 
	flexure 
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	" 
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	the ordinate GK=r cos. ♦, and 
	.11.CG
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	add the results. 
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	3+ 4 cos. 2 f> + cos. 4 t• The number 3 added n times the sum of all values of the cos. 2 t ,vhich present 
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	3 
	:Ł
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	ve 
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	when 
	t 
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	;
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	re. 
	s, 

	fore, 2 41 from O to "equal to because thŁ cosiŁes in the second quadrant are equal and opposite to the cosines 1n the firsthlastlythe sum of a11 the cosines of all angles from O to 2 " = O, hŁnce thhsum of all values of 3+4 cos. 2t+ cos. t taken between the 
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	Ł
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	• 
	' 
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	o and = ;is = 3 n, and the measure of the moment of flexure 
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	of the half cylinder = . 3 n = , an , lastly, that of the
	Figure
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	24n ,vhole cylinder: 
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	4 
	and the
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	W= (ri•-ri/)
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	= 
	To find the moment of flexure of a ba semi-
	ody having 
	circ
	ula
	r

	transverse section ADB, Fig. 
	216 
	w
	e

	may make use of the rule found i 
	the axis NO passing through the cen. tre of gravity 8 is equivalent to the moment about the diameter .11.B con. 
	Fig. 216. 
	Figure
	sidered as a second axis, less the trans. square of the distance C8 of both axes. 
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	this we obtain the moment sought = . r4 -,c . 
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	Ł prismatic body, we may determine from it by cahon of the body. If a 
	of 
	simple 
	multipli­
	the 
	working 
	load 
	and 
	the 
	absolute 
	strength 

	_
	single is extended or compressed to the s of elasticity, the body. tenacity. If we again represent by T the modulus of tenacity the distance of the furthermost fibre fro1n the axis e,
	fibre, 
	or 
	layer 
	of 
	fibres, 
	limit
	has 
	then 
	attained 
	the 
	limits 
	of 
	its 
	and 
	neutral 
	by 

	ŁE, and 
	Łh
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	, or the relative elongation,=h!., hence 
	P 
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	e

	<if.flexure, it toill then give the statical moment of the tenacity. We 
	have x== SW == w, therefore, also, Px = T_ It is evident that 
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	e
	P
	this moment is a maximum when z = l, or when the arm == l; from ·this we may conclude, that at the extremity where the beam is fixed,the greatest flexure ensues, and the limit of elasticity is first attained.Accordingly, the toorking load <if a beam is determined by theformula 
	W
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	:: el. 
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	In like manner, th� strength, or thresisJance to rupture of thebeam, may be determined. If a fibre 1s strained to the point of rup­ture, the breaking of the whole beam takes place, because the beamhas now a section smaller by the section of these fibres, and there­fore a greater deflexion ensues, and thus a rupture of the succeeding fibres or layer of fibres follo,vs. If we put the modulus of strength 
	Ł 

	E K
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	in 
	Fig. 
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	th
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	the 
	load 

	e 
	,
	18
	given by the formula already found. 
	beams, ,ve may make use of the experimentaJ values for 
	E 
	and 
	Tf

	n
	§ 186; but as concerns the strength of beams, it is the modulus of strength there given and derived from on tensile strain, by those values of K "·bich have been experiments on compression. A perfect accordance cannot eJrist between the moduli found by these two methods, because in rupturenot only an extension, but also a compression takes place, and bothof these not only in the direction of the axis, but also in Yerse section, though here not to the same amount. Besideother circumstances affect the elastic
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	t:
	found 
	fro
	m
	the 
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	greater strain when the force acts perpendicular to the annua
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	Fig. 217. 
	• See Appendix. 
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	MODULUS OF RELATIVE STRENGTH. 
	ents upon elasticity and strain were made by EytelweinGerstner, with the apparatus represented in Fig. 217. .llB .ll1the rectangularThe load P for the flexure
	Experim
	and 
	B
	1

	are two tressels, C and Ct'\\·o iron supports. DDfor experiment resting upon them. 
	1 
	1
	beam 

	of the body lies upon a scale-pan 1 suspended to a stirrup MN,whose upper and rounded extremity lies in the middle Mof the beam. In order to find the detlexion corresponding to a load P, Eytelweinand GGand likewise a scale M resting upon the middle of the beam; t:onBGestner, on the other 
	EE
	applied t'\\·o fine horizontal threads FF
	1 
	1 
	r

	.
	hand, availed himself of a long one-armed delicate lever OK, whose fulcrum was at .M, and whose extremity, like the hand of a watch,
	Łndicated upon a vertical scale KKthe deflexion of Mto fifteen times amount. 
	1 
	its 

	Rm.ark. Experiments on elasticity, &c., have been made by Banks, Barlow, Buffon, Burg, Ebbels, Eytelwein, Finchan, von Gerstner, Gauthey, Muschenbroek, Rennie, Ron­delet, Tredgold, &c. An ample 11t1mmary of these, and besides a theory sornewhat dif­ferent from the above, is given by Burg in the 19th and 20th vols. of theh" Jahrbiicher des polytechniechen lnatituts in Wien." The experiments of Eytelwein and von Gent­ner are described in Eytelwein's "Handbucb der Statik fester Korper," vols. ii., and in vGers
	Ł 
	Ł
	Ł
	Ł
	Ł

	_
	as been used for the preparationof the foregoing article . 
	standes pns
	Ł
	absc
	Ł
	er Korper gegen Biegung," by Brix, h

	§ 198. Modulus of R.elative Strength.-The fo1Jowing table con• 
	.
	tans he mean values of the Łodulus of rupture for several bodies metwit1n thearts. To fin, wth the assistance of these, the pressures
	Ł
	_t
	Ł 
	Ł
	!

	_
	which bodies can sustain with safety for a long duration, we musth,put for wood the tenth, for metals and stones, from the third to thefourth of K.• 
	TABLE II. 
	THE MODULUS OF FRACTURE OR MODULUS OF STRENGTH FOR THE FLEXURE· OF BODIES. 
	Figure
	Names of Modulus of Names of Modulus of Substances. racture K. Substances. racture K. 
	F
	F

	Box -------• • -• 6000 to. 12000 --• • • -24000 M &WS()OO 
	10000h10h2,000 
	Elm 
	Oak. 
	-
	• 
	Figure
	8000h" 24000 
	Figure
	Cast Iron 
	-

	700 M J700
	700 M J700
	700 M J700
	700 M J700
	700 M J700
	700 M J700
	700 M J700
	-
	• 
	• 

	Pine -• --
	-
	-



	8000 " l 3000 

	Limestone

	otch • -
	Sc
	Fir 
	-
	-



	7000h" 17000 

	Sandstone 
	• 
	• 
	• 
	600 .. 
	.800 


	Deal • • • -
	Deal • • • -
	• 


	7000 " 14000 
	7000 " 14000 
	7000 " 14000 
	Brick • 
	• 
	• 
	• 
	-
	180 " 
	uo 


	to this, ,ve may assume for wood as . .. 40000 pounds, and we shall 
	According 
	a 
	mean 
	K-
	12Łand 
	for 
	cast-iron 
	K
	then 
	obta1n 
	for a 

	Figure
	• See Appendix. 
	MODULUS OF RELATIVE STRENGTH. 
	rectangular beam imbedded extremity and loaded atthe other:
	in 
	a wall at 
	one 

	. 
	. 
	. 
	1

	Pl= 200 . bh, if it consist of wood, and tenfold security be 
	2


	2. 
	2. 
	, ifthe beam beof cast-iron, and fourfold security 
	Pl=
	allowed. 
	1
	000. bh
	2 



	be given.
	If the body be cylindrical, we then have for wood
	3. Pl= 950 r3, and for cast-iron
	4. P= 4700 r3. 
	l 

	P, , b, h, r, have the denominations hitherto used.or wrought iron K is taken 20 per centless, because this bendsmore than cast iron ; here therefore we must put
	l
	F
	. 

	P= 800 /1,= 3600 r.
	l
	b
	!l 

	If the load Q be uniformly distributed over the beam, the beam will bear as much again, wherefore the above co-efficients mustbe doubed. If the beam rest at its extremities on points of sup­port, whose distance is l, and if the load Pact in the middle be
	l
	-

	tween these points, then for P we must put!_ and for , !_, where
	l
	-

	2 2
	fore Pl becomes , and the the tenacity quadrupled. But if the
	Pl

	4load between the points be uniformly distributed over the beam, we
	then shall have for the pressure _g_' which acts from below upwards
	2 at a point of support, the moment { • Ł; and for the opposite 
	pressure _ !{ as the half of the load pulling downwards 
	at 
	the

	2 
	. Q 1 l l
	Q

	centre of granty, the moment -; hence
	-2 . 2 • 2 = 8
	there will remain as the pressure for rupture at the middle, the 
	mo
	..

	WKals 8Łment ___ = -, and therefore Ql = 8 . o= . -br3 K,
	Ł 
	Ł Ql 
	6 
	, 

	4 8 8 
	4

	therefore the strength or tnacity is twice ag:eat as if the load at the middle, and eight times as great as if 1t pulled downwards at one extremity whilst the other remained fixed. 
	Ł
	Ł
	acted

	If a beam, Fig. 218,* is imbed-
	ded in awall at both extremities, or
	Fig. 21s. 

	ifits extremities are fixed, then the 
	beam sustains as much again as if
	IA 
	C 
	M 
	D 
	B
	,.._-
	-
	---

	it rested freely at its extremities •
	---1 
	--

	for in this case the greatest flexurŁ 
	•
	I 
	is not only in the middle, but like­
	wise at the extremitiesthe beam,
	i(
	l(tjt 

	therefore, breaks at the same time 
	in the middle and at the extremi-
	;
	,{. p 
	p
	1
	,

	"l 
	• See Appendix. 
	STRONGEST BEAMS. 
	ties ; whilst at the intermediate points C and D, where the convexity passes into concavity, no flexure at all ensues. Consequently, for a 
	.
	.!JC, the pressure = -, the arm = -, dan the moment = 
	portio
	n 
	p

	p 
	l 
	-

	4 2 
	Ł 

	Pl 
	l 

	· = If, final1y, in this last case the load Q is uniformly distri-
	4 
	s· 

	Ql
	over the beam, the moment presents itself = , because we 
	buted 

	16 suppose, that the one half of Q is immediately sustained by the 
	may 

	of support, and that the other half actin the middle of Q
	points 
	Ł

	_.
	The acts exactly as 1fthe load Qwere d1sJn­uniformly over the beam 
	weight 
	G 
	of 
	a 
	beam 
	buted 
	; 
	fo
	r 
	a 
	beam 
	fixed 
	at 
	one 
	extremity,

	therefoGl; but for a beam resting on both 
	re, 
	the 
	moment 
	= 
	Pl 
	+ 
	½ 

	. . . P G l G
	l 

	ties and loaded 1n "ddlthe m1 e, 1t 1s = + -
	extremi
	• 
	2 
	2 
	· 
	2
	2
	.

	2 
	l 
	4

	= (P + ½ G) ,&c. 
	4
	l 

	both its extremities, so that the distance of the points 
	rest 
	on 
	of 
	support 
	may 
	amount 
	to 

	9, l=20 
	20 feet; what load, suspended from the rniddle, will it sustain1 b=7, h=

	90 lbs.-2. A round wooden water-wheel, and its axle, 10 feet Jong, is to sustain at together with its own weight, a uniformly distributed load Q= 10000 
	18
	the 
	wheel, 
	lbs.;

	must the wheel have1 Ql == 10000. 120 = 1200000, == 8. 950. 
	what 
	diameter 
	r-3, 
	orr3



	3--•
	3--•
	1200000 

	= = 157,9 ; hence the radius sought r = V-157,9 = 5,4 inches;and the d1
	a
	-

	8 . 950 
	mter of the axle 2 r10,8 inches, for which we may assume one foot.-?eight may te oorn n a granary be heapaed up if the bottom rest upon beams of
	Ł
	Ł 
	3. 
	To 
	what 
	Ł
	Ł
	Figure
	25 
	feet 

	_
	>n length, 10 inches 1n breadth, and 12 1n depth, the distance between the axes of anytwo beams =3 feet, and one cubic foot of corn weighs 48,5 lbs. 1 If we apply theformula Ql = 16 . 200 . bhŁ, we must put b= l0, h= 12, 300 ; consequen
	/=25 . 
	12 = 
	tly

	10. 144 ·
	10. 144 ·
	16. 200. 

	Q=------= 1.:.360 lbs A parallelop1ped, feet broad, z ,eet
	25 
	feet Ion"' 
	3 

	d • r. 
	bl 

	hs = 25 . 3 . x • 48,5 lbs.; hence, if we put this valuea= Q, it follows that 
	deep, 
	weig
	300

	15360
	x = = 4,22 feet, the requisite height to which the grain may be heaped 
	up.


	75. 48,5 
	75. 48,5 
	§ 99. Strongest Beams.-Bodies of equal section very often pos­
	1

	sess different relative strengths ; the formula Pl = K. bhshows that 
	2 

	6 
	Łhe strength increases, as the breadth, as the square of the depth, andinversely as ly a greater influence upon the tenacity breadtha beadouble the breadth bears twice as much, i. e. as much as two singlebeams; on the other hand, a beam of double the depth, four times beam of the same depth. For this reason beams lthey are of cast iron, much deeper than ; near the middle and what is taken greater distance fŁm the neutral axis; but 
	the 
	length 
	of 
	the 
	beam. 
	The 
	depth 
	has 
	consequent
	than 
	the 
	; 
	!ll 
	of 
	that 
	of 
	a 
	are 
	iµade
	, 
	name
	y, 
	when 
	broad
	they 
	are 
	hollo
	wed 
	out 
	away 
	replac
	ed 
	by
	parts 
	at 
	a 
	this 
	rule 
	must 

	bon tŁe least side, the direction
	e 
	particula
	rly 
	attended 
	to, 
	viz., 
	always 
	to 
	lay 
	t
	he 
	be
	:'
	m 
	or 
	rather 
	so 
	to 
	lay 
	it, 
	that 
	the 
	pressure 
	may 
	act 
	1n 

	_
	_e
	Figure
	Figure
	204 
	STRONGEST BEAMS. 
	The strength of a round trunk, or of any other cylindrical body, is 
	P = i 
	1 
	that of a square with equal breadths and depths 2 l 
	. 
	Ł 
	K, 
	r, 

	l
	6 3 
	Ł 
	. 
	3 
	= 

	0,588; the cylindrical body 
	has,

	each other,h!_ = 
	with 

	1 4 4
	P

	therefore, only about 59 per cent. the strength of a beam ha,•insquare transverse section. Wooden beams are hewn or cut from round trunks of trees, and thereby are much ,Yeakened. But question now is, which is the strongest form of beam that can 
	g 
	a 
	the
	be 
	cut

	from a cylindrical trunk ?
	Let .llBDE, Fig. 219, be the section of the trunk, .11.D = 
	d 
	its

	diameter, further .llB = DE = b the and .IJ.E = BD = h the depth of the beamThen b+ IL= <P, or h= d2 -b, ;moment of rupture. 
	Figure
	brea
	dth
	' 
	2 
	2 
	2 
	2
	and 
	th

	Pl = ! . bh" = : b (d2-b
	z
	). 

	The problem amounts to making b ( d2 -) bd2 -bas great as possible. If instead we put b x, where x is very small, we 
	b
	2
	= 
	3 
	of 
	b
	+ 
	theŁ

	obtain forthe last expression 
	(b + x) <P-(b x)= bd?--b3 + (d2-3 Ir) x-3 bx2,provided we neglect F,and the difference of the two = x + 3 bx• the first valu_:_bcP-bmay in every case be than the last, the difference + (<12-3 b) x + 3 b:i'-must be positive, whether ,ve take b greater or less than x. But this is onlypossible if d2-3 b= O, for the difference then = 3 bx2, positive, whereas, if Ł--3 b, is a real positive or negative valu
	+ 
	3 
	(
	+ 
	Figure
	Ł-3b'
	)
	2
	That 
	3 
	great
	er
	2
	p
	ut
	2 
	therefo
	re
	2e
	e 
	3

	-' 
	br may be neglected, and the difference may be put x, which if x has the same 
	+ (cP-3 bisign, is at one time positive, at O, we obtain the 
	= 
	)
	anoth
	er
	bread
	th 

	= 
	But if we put d'1 -3 b= d ✓½, and the corresponding depth h
	2 

	= 
	2
	2 
	d
	✓
	soughtb 
	therefore, the ratio of the depth to the breadth: = 
	li
	b
	t 
	✓
	Ł

	✓I 
	= ,414 
	1
	or 

	t· The trunk must be so fashioned that it produce abeawhosedepth to its breadth is as 7 to 5. find the section corre­to greatest strength, let us divide the into three 
	about 
	shall 
	m
	_ 
	To 
	sponding 
	diameter .llD 

	qual raise at the points of division Mand N perpendicula£8<_NE, aŁd finally connect the points of intersection B E
	Ł
	parts, 
	rs 
	b
	;
	n
	l 
	and 

	Ł1rcle with the extremities .IJ. and D of the straight line ./JD
	JB1nŁ 
	section of greatest resistance ; for since .IJ.M : ./JB ::: 
	1
	s 
	the 

	Figure
	Figure
	HOLLOW AND ELLIPTICAL BEAMS. 
	t d. d d✓f and .11.E = h = ✓.11.N . .11.D =✓Jde. d=== �, which is actually requisite. 
	✓
	= 
	✓i, 
	therefo
	re 
	!
	2

	K
	Remark
	. 

	The trunk has the moment of rupture Pl = 'II'
	4
	K 
	_. .n 
	therefore, loses by squaring about l -. Ł = 1 -0
	trunk, 
	8 
	1 

	. r3, but the beam ofgreatest 
	8 K 
	65=0,35, i.e. 35 per 
	-
	. K 
	"3; the
	' 
	corners rounded off. 
	To spare this Joss, the trunk is ofifln hewed not quite square, but the A beam wilh a square section formed from the same trunk, has 
	!l 2 
	d, hence the loss heree= 1 
	0,707 
	= 
	I 
	-0,6
	0 
	=0,40

	8 4 8 
	----. = l -
	-
	_ 

	,,,
	,,,
	6 . 2 ✓2 3'11" 
	✓
	2 




	i.t.. 40 pet cent.
	i.t.. 40 pet cent.
	§200. Hollow and Elliptical Beams.-Very frequently bodies are hollowed at the inside or outside, and provided with ribs or flanŁes,either with a view to save material, or what comes to the same thing, to gain in strength. For ahollowrectangular beam of iron P = 1000 bh-b h 
	•
	3
	3

	1
	, the hollow may be of the depth hand breadth b, made 
	lh
	1 
	1 
	1

	or without at the sides. For a hollow cylindrical body P 
	within 
	= 

	r'r'
	-

	1
	4700 . • In such cases the thickness of the solid part r9
	2
	1 
	-r

	l
	whence it followse
	whence it followse
	whence it followse
	rl 

	is commonly made = f of the outer radius r; 
	1


	4100 . 1Ł-Anequal-
	0
	,
	8704 r
	3 
	= 
	4090 


	: 
	1)' 
	,
	Ł
	0,6r
	= 

	vr 
	1 

	r
	r
	/
	-

	lyheavy solid cylinder has the radius r=✓ r/' 
	l 

	P 4100 
	= 

	l
	. 
	::-::--;
	6

	,3r;J
	i = r--c-
	-r 
	✓
	-

	--=o
	1
	"
	--:

	= 0,8 r; hence its moment of resistancee= 4700 .(0,8r)= 2406 namely, about 41 per cent. less than that of the hollo\v cylinder.
	1 
	"
	3 
	r3,

	We gain also in strength, when, instead of a cylinder, we apply a prismatic body with an elliptical section, and place its greater upright or parallel to the direction of the pressure. If \Ve suppose a circle .IJ.OBN'\Yhose radius C.11. = CB = a the semi-axis major,bed about this elliptical section .11.OBN, Fig. 220, the rŁsistance of the body having an elliptical 
	axis
	1
	1 
	descri
	strength
	of 

	Fig. 220. 
	secon may be calculated simply from that having a circular section. The length of any ent DE of the elliptic elements parallel to 
	Ł
	elem

	minor axis NOB= 2 b is alwaysŁ of the 
	its 

	a
	E; but nowthe elasticity and strength are proportional to these dimensions singly ; therefore, also the srength of the elliptic element to that of the ular element, is as to a, and, finally, the
	length of the circular element D
	1
	1 
	Ł
	circ
	b

	Figure
	18 
	• 
	Figure
	Figure
	Figure
	206 
	HOLLOW AND ELLIPTICAL .BEAMS. 
	strength for the whole the strength of the whole circle, ie. 
	ellipse 
	= 
	b 
	times 
	. 
	a 

	Pl = If • Ł • a3 K = "b aK, for cast iron = 4700 ab.
	2 
	9 

	4 a 4
	1 and b, ther
	If no,v it be an elliptical hollowing whose axes are a
	1
	e

	will remain 
	ba
	ba
	3

	n .
	Pl = 
	4 
	a 
	= 4700t. 
	a'b 
	-a13b1e
	. 

	a
	a

	If, lastly, a body having a rectangular secti
	on

	Figure
	Fig. 2.21. 
	.fl.BCD = bh, Fig. 221, be hollowed at the flanks by the semi-ellipses F, HKL, and if the axes of these are = aand b, we shall ha,e 
	E
	G
	semi­
	1 
	1
	T
	then 

	' 
	1 
	6 

	4 12 h
	for cast iron 
	for cast iron 
	bh-4,712 ab
	Figure
	3 
	/
	1
	•


	PlP200 
	= 

	/1, 
	.&amplu.-1. A transverse beam of oak, 9 inches broad and 11 inches deep, of kno,vn sufficient tenacity, is to be replaced by a hollow cast iron beam, of 6 inches in outer breadth and 10 in depth; of what thickness of metal must it be cast 1-Let thisthickness = :r, we have then for tbe breadth of the hoUo,ving = 5 -x, and its depth10 -:r; consequently, for the hollow beam b,h/' -bh,= 6. 103 5 -:r:35 :rS -2:4. Since the moment of resistance of 
	= 
	9 
	3 
	(
	)
	(10 
	-
	x)' = 2000 
	:r 
	-
	4
	5
	0 
	%' 
	+ 
	the

	1000 
	. 
	-
	or2500:t-450 x'+ 35e:rS-:t' =2187. As a 
	xi+ 
	3
	5 
	:z:3-x'
	) 
	=2
	17800,
	1
	0 
	first 

	But this value gives 450 . %' = 460 . 
	0
	81 
	-

	I 
	-

	500 
	2

	approximation x_ 
	I I 
	5177 
	2

	-0,9 inches.
	217
	8 

	-
	-
	500
	-2


	·
	·
	I 

	ha·!I
	aT 

	0 
	250

	· · thi kne f' 2 II
	ped girder 
	of

	·
	= 
	cast iron, the breadth ..iJJ = OD= b is equal to the 
	depth 
	1, 

	6 
	and the thickness .11., B, = CC, ¼b, therefore b, = f h;we shall then have for the moment sistance (§ 193: 
	=
	,
	and 
	h. 
	= t 
	of 
	re•
	)

	Fig. 222• 
	Figure
	-12 
	Figure
	h -h,h,) e 
	(b

	h'-bh
	b
	1 

	or by substituting = 
	e 
	½

	• bh b:h: 
	_ 

	-
	6 
	bh" -b,h,.,,
	(l,3-0,512 b)'-4 . 0,64 b•e. (b-0,8 b)I
	3

	1000 . 
	= 

	i,3 -0,512 b
	0 

	0,2381e-2,56.0,04 bl1S
	= 
	1000 . 
	• 
	= 
	Figure
	3
	5,
	6 
	. b
	= 278 
	1,3

	· ·
	488
	0,

	488
	0,

	If. no,v su b .
	4 feet in length, rest on both its extremities, and is to bear a Joad
	:n:_ 
	its 
	rdiddŁe 
	Ł
	ŁŁ
	der, 

	lbs., Pl would then 7400 . 4 . 12 = 355200, and therefore, 4 278 1,:s = 355.
	0O 
	= 
	.
	200

	we should have the extreme depth and breadth b = h 
	we should have the extreme depth and breadth b = h 
	we should have the extreme depth and breadth b = h 
	, 
	whence 
	--

	5200 
	.:.
	Ł3.,


	= and the thickness of iron¼ b = 1135 inches.
	6•
	84 
	iu. 


	lll:l 
	6 
	OBLIQUE PRESSURE. 
	§ 201. Oblique Pressure.-!£ the pressure P act obliquely to the axis of a beam, which for example is inclined to the horizon whilstre acts vertically, we have then only to take into account its c?mp�nents directed at right angles to the axis. If, for example,the inclined stretcher .flB, Fig. an accumulated load Q, this may be decomposed into the compo­
	!he 
	pressu
	223,
	supports 
	Fig. 223• 

	�ents Qand N, and for an inc]ina­(I to the horizon of the stretcher, the pressure Q, counteracted by the stretcher = Q . cos. e1, and the pres­sure N counteracted by the lateral wall BC= Q sin. a. Taking the friction into account = Q= Q . ( cos. -j"a) and hence for a round stretcher : 
	1 
	t1on 
	i
	1 
	a. 
	sin. 

	Q (cos. 8 . --, 
	-
	f 
	sin. 
	a.) = 
	r

	l
	being the radius and l the length of the
	stretcher. 
	If the pressure P be applied directly the beam .11.B, Fig. 224, deviating from = a., two components present themselves, N 
	to 
	the 
	axis 
	by 
	the 
	angle
	P.llR 
	= 

	Figure
	. 950 r3 
	. 950 r3 


	P sin. a. and Rinto play the relative, and the other the __ Fig . .224• If F every 
	a,
	p cos. 

	, and, therefore, the modulus of
	F 
	°' 
	elasticity K must be taken at 
	p cos. 

	F 
	p cos.
	less; therefore, we must substitute for K, K _ ci, ,vhence it 
	F 

	follows that : 
	-p cos. a) .!"
	p sin. a, 
	= 
	(x 
	;

	• 
	el 
	F 

	;·B") Ł•
	c

	_
	therefore, for a rectangular beam P sin.B.. = ( K p
	K 
	. For a.
	0 
	= 
	90
	° 
	,

	6 lsi,n. ci 
	cos. a. 
	+
	bh.,. 
	F 
	O,
	for a.si.1.. a. 
	0 
	= 
	O, 
	7

	=
	h/1,
	l 
	2 

	Figure
	208 
	LOADING BEYOND THE MIDDLE. 
	; the weight of a cubic foot ofthe ground to be supported being 65 lbs., the 
	nation 
	of
	70
	°

	_
	friction upon the supports is taken at !1 Let x feet be the djsrance ofl\voweight suswned by one rat\er = 4,5 . 0 . 65 x = 17550 fro1ntheory of the inclined plane. this rafter will have onJy to sustain ure Q(iin. 70-t COi, 70)e. 17550 :z: = (0,9397 -011140)e. 17550 X 
	co-efficient 
	of
	rafters, 
	the 
	6
	. 
	:r 
	l
	bs., 
	and 
	the 
	the 
	press
	= 
	° 
	= 
	0,
	8257 
	, 17550 

	· 
	54 
	= 17592; we 
	must,

	,4
	But the rafter sustains 8 . 950 . _ = 8 . 
	:z: = 14492 x lbs. 
	l 
	therefore, put: 14492 x = 17592 and = = 
	:z: 
	17592 
	1,214 
	feet = 
	14,
	0 
	inches.

	I 
	We 
	distances DAh= land the 
	1 
	DBh
	= 
	lŁ 
	from 
	the 
	pomts of 
	support, 

	certain statical moments, the point of support .fl sustains 
	the 
	pre
	s
	-


	sure P= 'J P, and the point B the pressure P= 1 
	1 
	l
	2 
	1
	p

	l+ + l>
	l 
	l
	, 
	l
	l 
	'J. 

	hence the moment of rupture at the point of application D= D.ll.B. 
	p

	llP 
	1 

	Fig. .2.25. 
	= 
	DB 
	. 
	p 
	= 
	Figure
	l9.F
	or any 
	th
	o 
	er

	2 l1 + l2
	. 

	point this moment B . Pis less,because the arm B is less than the arm DB = l; the greatest deflexion also takes place at D, and fracture firstoccurs at this point. Accordingly we
	E 
	E
	1 
	E
	2 

	Pll KW
	must put = --or the whol
	l 
	1
	l 
	e 

	1 + s 
	e 

	length l+ being represented by 
	1 
	l
	2 
	l,

	beam is rectangular. The pressure P 
	Pl 
	; 
	l 
	2 
	= 
	6 
	K 
	. 
	bh
	2e
	, 
	1
	.
	f 
	the 
	= 
	6 
	K 

	. ..!_ . bhis moreover = oo, 1 2 infi
	2 
	,v
	hen 
	l
	or 
	l
	very 
	nearly 
	= 
	O, 
	and 
	is 
	-

	lapproach to equality. If, lastly, l
	l
	1
	l
	2 
	and 
	2 
	1 
	=

	nitely less, the more l
	1

	l, i. e. if the pressure P acts in P becomes 
	2
	the 
	middle 
	of 
	the 
	beam, 

	a minimum, because, if we put l1 = + 2 pr
	!
	x 
	and 
	l
	= 
	Ł -x, the 
	o-
	o-


	forming the denominator ll=-:tJ is always less than ' 
	duct 
	1 
	2 
	= 
	Ł

	rbe made somewhat (x) greater or therefore, 
	whethe
	2 
	l 
	less. A beam, 

	supported at its extremities, sustai
	ns 

	least ,vhen the load is applied at its middle, and one so much the greater 
	Fig. 
	226. 

	ŁQ-,J·1the nearer the load approaches one of
	-t-sJ_ 

	-_.__the points of support. If a load Q be uniformly distributed
	1 

	over the length c,the centre of which is land ldistant from the points of sup
	--b 
	1 
	2 
	-

	X--Łf--
	-

	ŁŁ-IA-ŁŁ 
	port .fl and B, Fig. 226, ,ve shall then 
	PLANE OF RUPTURE. 
	Q
	have to take the difference • 
	Ql
	1
	l
	2 
	_ 
	Ł 
	for 
	the 
	moment 
	of 
	rupture,

	2 4
	l 
	at the arm c is opposed to it. Therefore 
	acting 

	(ll2_ C) ! . blr
	Q
	4 
	l
	= 
	.

	l 
	8 
	6 

	no. r.
	2

	Ł , iur
	= 

	-b,}," 4 . 512-2 . 216
	3
	"' 

	= 
	8 
	; hence, Q
	inches
	23 

	2 
	b,h,
	th l,Ł c (4 . 
	I
	-
	2

	er, 312 -
	T-8 -
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	when this latter term is of the last ,alue. But ce of put c + u, where u is a small number, we shall obtainfor it: 
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	In a similar manner, the distance of the plane of rupture from the terminating surface of a truncated pyramid or truncated cone isequal to half the height of the supplementary pyramid or supple .. mentary cone. 
	§ 204. Bems ofte Strongest Form.-A beam, which opposes anequal resistance to rupture throughout all its sections, of which, there .. fore, each may be considered as a plane of rupture, is caJled a beam of the stform. Of all bams of equal strength, the equal resistance at each potnof its length has the least material, and is, therefore, the most suitable, and that which selected for architectural construction, and machines, not only 
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	points out that the long1tud1nal
	section .llBE, Fig. 228, must have the form of a parabola whose vertex is the extremity or point of suspen­sion E of the load. If the beam .llB, Fig. 229, rests upon its extre­mities, and sustains a load in its middle C, or if a beam JJ.B, Fig. 230, is supported in its middle C,and two pressures, balancing each other, are applied at the extremities .fl and B, then the longitudinal pro
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	crease as the cube roots of the corresponding arms. For example, asection eight times further from the outer end than a given section,
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	vof every ordinate OM, this circle passes into an ellipse .llDB, whosesemi-axes are C.11 = e1 = ½ l and CD = /3 = h.The same relations exist for bodies with circular sections as for those with similar rectangular sections. In the case of a beam im-
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	application. 
	shafts, axles, &c., flexures may prejudicially affect the 
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	machines, by gi,·ing rise to vibrations and shocks; therefore, often more desirable to determine the sections, not ac­cording to their strength, but according to their degree of flexure. Gerstner and Tredgold maintain that abeam of wood, supported atboth extremities and loaded in a deflexion 
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	= 9,42, and hand b be replaced by r, for cylindrical beams as round axles, &c. The following table gives the dimensions of the transverse sections, lbeing expressed in feet, b, h, r in inches, and Pin pounds. 
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	Substances. Rectangular section. Circular .ection. 
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	Wrought iron b/ala.-,.._
	1680 15800 
	If the load Q be uniformly distributed over the beam, Pmust bereplaced by i Q, §90, and if the ,veight of the beam be taken intoaccount, by P I G. If it be the case of a beam which is fixedat one extremity and loaded at the other, P and l must then bedoubled, therefore, Pl' to be multiplied byeight; if, lastly, the beamfixed at one extremity sustains a load Q uniformly distributed, forPP, we must substitute f.8 QP .. 3 Qr for Pr. 
	1
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	Ezampln.-1. What load will a wooden beam, thick and deep, reposing on both its extremities, sustain for a length This load is i=2170elbs. 
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	In § 198 p was found mi: 1890 lbs.-2. What thickness must an iron axle, 12 be cast, if the same has to sustain a uniformly distributed Q = 40000 lbs., 
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	hence, r Ł 98,5 := 462inches, and 2 r -= 9,24 inches. 
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	Compression.-!{ prismatic bodies are sostrocompressed in the direction of their ruptutheir resistance to compression has to be .. This rupt;may take place in two ways. If the body be short, if1t approxia cube, it will fall to pieces without undergo1n� ff_exure, but if is longer than it is broad and thick, flexure that whic�.place will precede the rupture. The one rupture con­a crushing, bruising, transverse strain, or asunder its parts ;the other, in a fracture or asecti
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	pendent for the most part of the length of the body. Short wooden prisms split asunder in the direction of their length, or form a bulge ;stones break into several pieces or separate along an inclined pŁaneTen times the absolute strength is given to wood and stonesto iron,only one of five times ; and to walls of rough stones, twenty times. If 
	. 
	Ł 

	� be the modulus of resistance to crushing, and F the transverse sec­tion of the bodies, the working load will be 
	P == FK1 and F =-, where for K, l K to ?Ju Kmust be substi-
	p
	1

	K,
	tuted. 
	TABLE 
	OF THE MODULUS OF RESISTANCE TO CRUSBJNG •e
	. 

	Names of substances. Modulus K. Names of substances. ModuJus K. Be.salt • • • 27000 Brick -• • 580 to 2200 Gneiss • -• 5100 Oak • • -2800 " ti800Granite -6000 to 11000 -6800 " 8000LimestoneMarble -Mortar -Sandstone • • 1400 cc 
	•
	• 
	Pine
	• 
	-
	" 
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	-
	• •
	-
	-


	• 
	3200e" Cast iron • 146000 4We" 900 Wrought iron 72000 13000 Copper • 
	12000 
	-
	• 

	• 
	• 
	60000 
	The values of K contained in the precedintable are not unfre­quently, especially for wooden columns, applicable even when thebodies are very long, only it has been found necessary to diminish these values by one, two, or three-sixths, when the columns aretwelve,etwenty-four or forty-eight .times as long as they are thick. 
	g 

	_
	Accorchngly, for a column of oak, one foot thick and twenty-four long, K must be taken at from 2800 (1 -i) =-1900 lbs. to 6800 t = 4500 lbs. The formulre developed in § 185 for the transverse section of bodies of considerable weight, and of bodies of the strongestform, here find their application.• 
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	207. Ruture under Compress-ion.-If a prismatic .IJBCbe fixed at one extremity, and at the other acted on pressure P, which acts in the direction of the axis the body, relations of deflexion will come out otherwise than when the presacts perpendicular to the axis. The neutral axis KL assumes form, because the arms of the pressure P are not formed by scisses, but by the ordinates, as HK. From § 188, we have angles of curvature LJIL1, LŁL,, &c., of the neutral axis 
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	therefore, rupture 
	the f
	Ł
	rce 
	for 
	is; 

	) WE. 
	P= 
	(;1

	208. Colum-ns.-If we put in the formula (;)'l • WE for
	§ 
	P 
	= 

	1
	bJ,3
	W= ,ve then obtain in P the resisting strength of a rectangul
	12 
	, 
	ar 

	hha
	= 
	48 
	. 

	column P l 
	"
	2 
	l
	E. 

	Figure
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	The strength, thuefore, of a parallelopiped increases as the beadth
	Ł

	_
	greater dimension, and the cube ofthe thickness or less dimension of the transverse section, and inversely as the square of the length. 
	or 

	If, on the other hand, we put W = i r'-, then for a cylindrical co• 
	we have P
	umn 

	J 
	= -. -· 
	16 li
	The strength of a cylinder increases, therefore, as the fourth powerdiameter, and inversely as the square of the length. 
	of 
	the 

	a hollo\V column with the radii r, and r
	For 
	1
	8 

	• (r/-r◄) E
	2

	P= 
	"
	3 
	_ 

	16 
	t:i

	Ifthe column be not fixed at the lov.er extremity, it will assume acurvature , Fig. 241, by which the lower half,vi]l be as stronglydeflected as the upper, and the greatest curvature take place in themiddle. Therefore this beam must be regarded as the double of one 
	1
	B.l.l.B
	1

	imbedded in a ,vall, and for l, £ must be sub• 
	Fig. 241. 

	2 
	stituted, so that for the rectangular and for the 
	cylindrical columns, 
	,ell 'f,h3 ,c
	3 
	r'-

	p 1E, p 4 . p ;
	= 
	12 
	. 
	2 
	= 
	E

	in both cases, however, there is a fourfold tena­city. These formulre, when the columns are not very long, give generally a greater tenacity than the forula for the crshing strength, ,vhereforethe ratios of the sections are often determined from the last. It is at least advisable only tomake use of the formula for rupture under com­pression when the length is at least twenty times that of the thickness, and then, further, to allow 
	i:n
	?

	a twenty-fold security.• 
	.&ample,.-1. For a column 
	of 
	.fir, 
	12 
	feet 
	long 
	and 
	11 
	inches 
	thick, 
	the 
	tenacity 
	is 

	, 
	20 
	24 
	20
	No1, of § 206, 58900 lbs. only, therefore about iof tl1e abovŁ was foundmust a column of oak, 30 feet bigŁ be in order to be able to bear 
	Example 
	. 
	.
	-
	2r· 
	How 
	thick 
	a 
	load 

	60000 lbs. 1 
	0 

	ŁrE 
	1
	a1 . J8
	1 • 1bOoooo 
	s

	20 
	20 

	10 
	quently, the -.,
	thicknes
	s is 
	about 2e
	1 
	inches. 

	2 
	when<-.e, r Ł
	square 
	inches; 
	= 
	= 
	13,7 
	. 

	The strength of crushing 188
	require!!, 
	if 
	E 
	be 
	320 

	the transverse section F = 
	6
	0000 
	= 

	6 
	5i the tllickneBs 
	0,Ł64 
	= 
	7,
	7 
	inche
	and 

	15½ inches. 
	should 
	be 

	For thls case the first value 
	must 
	be 
	ta.ken
	. 

	• See Appendix. 
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	is acted upon by a force whose direction ]ies in planeto the axis, and, therefore, endeavors to turn aboutaxis, or ,vhen two forces of revolution P and differentnormal planes upon a body .RB, fixed by its axis, Figfibrerunning parallel to the axis undergo a wrenching oŁ torsion, the amount of which we wish to determine. Let .11.B, Fig. 242, 
	tren1ity, 
	the 
	normal 
	the 
	body 
	the 
	Q act in 
	. .243, 
	the 
	s
	be 
	a 

	Fig. 242. Fig. 243. fibre before, and .11.D the same fibre during the torsion, and, thereforlet the extremity of the fibre B be ad\"anced by the force oftorsion Ł
	D. If now l be the initial length .llB, and ,. its extension, l ./JD during the torsion, and ifs be the 
	ther
	efor
	e
	+ 
	,.
	the 
	length 
	corre
	spon
	din

	' 
	-
	-
	-

	g 
	.11.U = .fl.JP + BD
	2 

	(l + ,.y1 = 12 + r, approxi
	or z
	i 
	+ 
	2 
	z,. + 
	1.
	2 
	= l
	2 
	+ 
	s
	2 
	, may 
	be 
	put 
	-

	,. :z. If further F be the section of such then have force required to produce this extension tion of the fibre 8= ;p. F. E. But this force or tensiofibre component of the force of torsion , which besides a further pressure N, normal tothe fibres. From 
	inately 
	= 
	= 
	a 
	fibre
	, 
	we 
	for the 
	in 
	the 
	dire
	c
	-

	i 
	n 
	(
	8) 
	of 
	a 
	is only a 
	R
	pro
	duc
	es
	the 
	sim
	i­

	.
	larity of the triangles RDS and BD.11., 1t follo,vs that 8: R s z, hence 8= , and by equating both values of 8: 
	= 
	: 
	Rs
	l 

	= 
	Fig. 244. 
	R !_. F. E. 
	2l 
	increases as the torsion s ), and tM trans
	(
	ver
	se

	Figure
	section F, and inversely as the le'llgtthe.fibre. 
	h 
	(
	l) 
	of

	To find the force of torsion of cylinaxle CB.fl, Fig244, Jet us divide its radius r into n equal parts, and suppose concencircles passing through the points of divi­sion, so that the transverse section becomes 
	a 
	drica
	l
	. 
	tric

	decomposed into annular elements of the 
	. 

	• 
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	-,-, -.. 
	n n n 
	dii' 
	•
	-· 
	n 
	r
	thickness 
	-,
	an
	d 
	ra

	n 
	2r r
	2 

	,,.)
	(

	-, -
	2
	,c 
	• 
	-

	n 
	&c. 
	e1ements 
	are 
	F
	I 

	= 
	2
	" 
	, = 
	F
	2 

	=
	,,.
	,,.
	2 
	" 
	. 
	-
	=

	,,.
	. 
	n n
	_
	n n 
	2
	,c ()= • 
	4 
	r
	, 
	2" 
	3r

	3
	p

	n 








	,c (
	,c (
	r 
	= 
	6 
	Ł)
	2 

	a.
	0 
	n 
	, 

	If all the fibres 
	are
	. 
	n n
	d by the angle BCD = , they have the corresponding tor
	twiste
	-

	. 
	r 2r 3r ·
	s1ons s_ _ a,, and hence the forces o torsion f 
	= 
	a., s 
	= 
	_ 
	a., s
	3 
	= 

	1 2
	n n 
	n 

	: 1 ;:" (:)ha.; (:)h2 ;:)h
	areh
	R
	= 
	l 
	. 2h
	2 
	E 
	= 
	3 
	E, 
	R
	= 
	4
	" 
	(
	3 
	E, 
	P
	3 
	= 

	;,c :)E, &c. If further we multiply these forces by the arms 
	9
	(
	3 

	ŁŁŁ, and add together the Yalues so obtained, we have for the
	, 
	' 

	n n 
	n 

	a.,c (12+ 3+ ... +n) E,i. e.
	l
	(:)
	" 
	3 
	+
	3 
	3 
	3

	ts of torsion Pa = 
	momen

	4 4 
	l

	l 
	n

	angle of torsion : 
	4l.Pa 
	G 
	. 
	1tr" E 
	• 

	If the axle be hollow and have radii rand r, we have then4 Pal
	2
	1 

	Pa = r-, r.
	1 

	o.E ( ,. r •)there1ore a = 
	,c 
	2 

	,c E (r"-r · 
	4
	l 
	"
	)

	The application of hollow axles gives also with resp�ct to saving in material, for if we put r= r, and r= r ✓ 2, we tain for the hollow axle, which has the same section as a solid 
	torsion 
	a 
	2 
	1 
	then 
	ob­
	one, 

	4 
	l 
	a.rcEh
	r
	"

	= 4r"-r") = 3. 4 
	l 

	.
	i.e
	'

	. 
	§ 210. For a shaft or axle of a rectangular section .llBDE, 245, the moment of torsion is found in the fol-
	Fig.

	Fig. 245•
	manner. If we divide half the breadth !JG = b into n equal parts, and carry through 
	lowing 
	.

	I. 1\1 
	r 
	(..

	of division the parallel MN, &c., we obtain elements of equal sections, Ł 
	the 
	points 
	planes 
	HL, 
	-
	"' 
	...

	ll ."> I 
	... 
	Ł

	each = . h, where h represents half the height 
	b 

	n 
	I
	11.F = GCof the section. If no\v we divide oneelementary trips into m equal 
	.
	of 
	these 
	s
	parts, 
	we 

	• Let the normal 
	bh 
	dista
	nce 
	CH
	of
	the 

	m 
	n 
	mn 
	-

	• 
	1
	9

	e1 
	Figure
	Figure
	Figure
	Figure
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	normal CH, = e, then the distance of the from axis is CK= ✓c2+e9, accordingly the arc of ,and the 
	K 
	from 
	the 
	element 
	the 
	torsion 
	-
	0 
	✓c'+et
	moment of torsion 

	a. • oJ,(c2 + e') E.
	== 
	✓
	c2 
	+ 
	e' 
	• 
	bh 
	✓
	c2 
	+ 
	e' 
	E 
	-
	h 

	2mnl 
	2 l 
	mn 

	..!.. h,Łh, Ł h, &.c., and sum 
	the

	m m
	If now we successively put e 
	-
	-


	results, wehave 
	the
	moment 
	of 
	the
	stri
	p:

	a,l,
	' 
	h 
	h
	1 
	4h
	1 

	HL -mnl (CS +s + CS • c9
	2
	m
	+ 
	m
	+
	+ 

	m 
	9h
	9h
	1 

	+ 
	• • .)E
	s 
	m

	Figure
	-()J 
	Figure
	2
	°!!,
	[met 
	+ 
	Ł
	(1 
	+
	4 
	+
	9 
	+
	...
	+
	m
	2
	)
	E. 

	ml
	...+ m-a' hence the moment of the strip = 
	But 
	1
	+
	4
	+
	9
	+
	1 

	:,.Ł (c+ {
	2 
	) 
	E. 
	To 
	obtain 
	the 
	moments 
	of all 
	the 
	strips, 
	let 
	us 

	. b 2b 3b .
	c -, -, -, &.c., and again sum the results, 
	again 
	put 
	= 
	we 
	shal
	l

	n n n then have: 
	oJ,h b s bb)nh]
	[ 
	(
	Figure
	)
	1 
	(
	Figure
	2 
	1 

	+ 9 E
	-

	2nl n· 
	(
	) 
	+ 
	4 
	n 
	n 
	+ 
	· 
	· 
	+ 
	3 

	t! [!)'c1 n') n;• ]E-::,c: Ł";')
	(
	+
	4
	+ 
	...
	+ 
	+ 
	E

	. 
	_ a,l,h Ir + h"· . -
	(
	E
	2l 3 
	)

	=z h. As we have only considered a fourth part of the shaft, 1t follows for the whole shafththat :
	Generally the sections are square, and thereforŁ b 

	· 
	Pa 4a.bE
	== 
	Figure
	4 

	' 
	3' For a cylindrical axle Pa= Er then
	l
	l 
	Gff
	r
	j if we 
	put.,, =-
	we 

	4 • obtain Pa . • °'" 4 E Pa, the moment of the squar
	4 • obtain Pa . • °'" 4 E Pa, the moment of the squar
	4 • obtain Pa . • °'" 4 E Pa, the moment of the squar
	= 
	4 
	4 
	r
	-
	16 
	1
	1
	e 
	is

	'

	3 4 l 3,c

	" therefore,h== == 1,756 times as great round 
	16 
	as 
	that of 
	the 
	axle
	•

	31'
	But if we make 4b' =,c,.S, and, therefore, both sections equal, we,
	.
	the
	n 

	ll
	• E == _ • _.Pa--erefor
	4. 
	3l 
	,c 
	1
	1 
	3 
	e 
	the

	obt&1n PaB=-G ",A ,e 4 a, th
	• 
	,c
	,c 
	p
	1
	1

	4. 3 
	is only a little stronger than the cylindrical axle. 
	square 
	a.haft. 

	we thŁn have : 
	1' 
	Pa -4o(b -6 )
	E 
	4
	4

	3 l 1 I • 
	BREAKING TWIST. 
	Breaki,ng Twist.-When the torsion exceeds a certain limit, are torn asunder, and the cylindrical axle is twisted 
	§ 211. 
	the 
	fibres 
	asunder.

	moment of rupture of the fibre furthest from the axis ;= !, 
	For 
	the 

	r .
	1 

	== f 2 K 
	b
	u
	t Ł 
	-
	. 
	r a,
	a, 
	r 

	1s also =--:::--= == Ł, hence it follows that 
	1 
	-

	.
	2r 2r z 
	Ł 
	Figure
	E

	round axle is : 
	The 
	statical moment of twisting for the 
	Figure
	Figure

	Ł-·a.-==-_
	P
	a=-
	,

	2 K r' "r' KEB. 
	J
	__,.
	,c 
	E 
	J

	4 2 for the square shaft, where the greatest distance of a fibre is half diagonal b ✓ 2, it follows that
	E 
	2
	but 
	the 

	K 2l,J • a. b 4b
	a.
	1 
	3

	m: and 
	-=-----,--since -
	J
	K
	P
	a 
	::s � ✓KE.
	Figure

	E 2r• l 3
	E 
	Figure

	Since the fibres are not only extended by torsion, but also com­pressed, and as we have only had regard to extension in our develop­ment, so it may be expected that the formulre found do not in their quantitative relations quite correspond with and, therefore, 
	experiment

	it is necessary to take the constants E and m experimentsmade especially to determine them.
	✓KE fro

	b_e given in degrees, such observations admit of our putting the torsion : 
	If• 
	for

	Substances. 
	Circular section. 
	Square section. 

	Pa= 3500. •"' 
	Wood 
	• 
	• 
	-
	. 
	0 
	l 
	•
	o
	l 
	b' 
	.

	Pa == 5800 
	0
	Cast iron -• • • 
	Pa 
	= 
	160000 • 
	"' 

	Pa = 280000 •1,6
	0 
	l
	•

	I • 
	• l -. 
	Steel and wrought iron Pa = 280000 •"' 
	0 
	Pa == 470000 •
	0 
	l
	11' 

	In what relates to the strength of torsion, numerous experimentsmade upon cast iron have given = 30000 to 66000 lbs., if 
	J
	Ł
	E 

	therefore, a five-fold security be taken, then is == 12600 .
	!! 
	f 
	KE 
	Figure
	lbs

	2Ł 2
	ron axle Pa == 12600 r', and e == 15000 b•
	therefo
	re, for the round cast i
	for 
	the 
	squar
	3

	formulre hold good for axles of wrought 
	The 
	same 
	iron, 
	but 
	for

	Wooden bs, i. e. strength = r1J that of iron axles. E must be taken at twice that 
	ones 
	we 
	may 
	put P
	a 
	== 
	1260 
	r3 and 
	=-1500 
	the
	modul
	us 
	of 
	The 
	modulu
	s 
	of 
	streng
	th 
	for 
	steel 
	J Ł
	of 
	iron, 
	and
	gun 

	• See Appendix. 
	Figure
	Figure
	Figure
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	BREAKING TWIST• 
	The iron upright axle of a turbine exerta at the circumference of wheel of 15 inches radius reposing upon it, a force of 2000 thick.
	.E.mmpla.-1. 
	a
	toothed 
	lbe.; what 

	a
	P

	muat be given to it 1 a == 2000 . 15 =-37000, and if we put = 
	ness 
	P
	,a 
	-

	12600 
	376
	we shall obtain ,. :a Ł1,44 mches; thickness 
	= --. 
	hence, 
	e 
	of

	126 the axle 2r = 2 88 inches, for which 3 inches may be assumed. ce of 
	If
	the 
	distan
	the 

	Pal 
	-= 
	-2. On a square axle of Ju, a force P .. lbs., IICtl at an arm 2 feet, the dutanoe measured 
	Ł 
	the 
	load 
	is 
	applied 
	at 
	an 
	of 

	arm of 20 feet, whilst the direction 1S the torsion 
	1n 
	of 
	the
	10 feet; how thick mmt thia ax.le be made, and how great 
	1 
	It
	is

	axis , _ 
	Pa -Q_ 000. 12 : a:aOOOO lbs.; 
	b 
	2. 
	-
	120000 
	inch 
	lbs.
	; 
	but 
	the 
	load 
	Q
	-
	P
	half 

	-= 4,31 inches, and the whole aide .. 8,62 inches. The torsion .o 
	amounts 
	to 
	= 

	_e
	. Pal 120000 . 12 . 10 144000 
	6800 . b• 6800e. 4,31' 68. 345 
	0 
	· 
	•
	-

	UI 
	Gene­this 
	for 

	generaJ, leas torsion is allowed, and therefore the axles are made much 
	stronge
	r.

	0
	rally, this angle does not amount to ia degree. If, however, we put 0
	a
	½

	-
	8,4 inches 
	✓P4966 -
	1 
	and 
	26 

	=-
	=-

	144000 
	-= 4966, hence 6
	cue we shall obcain 6' 
	-
	58 • i
	== 16,8 inches. amount to more than 0,1 °.
	Rtmark. If an axle has to sustain relative elaaticity and that of torsion, the calculation for both, and apply the greater ratio ofthe dimensions found. 
	we 
	muat 
	make,

	, 






