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Abstract. We study the extremes of multivariate regularly varying random fields. The crucial
tools in our study are the tail field and the spectral field, notions that extend the tail and spectral
processes of Basrak and Segers (2009). The spatial context requires multiple notions of extremal
index, and the tail and spectral fields are applied to clarify these notions and other aspects of
extremal clusters. An important application of the techniques we develop is to the Brown-Resnick
random fields.

1. Introduction

An Rd-valued random vector X is said to have a multivariate regularly varying distribution with
exponent α > 0 if there exists a regularly varying with exponent α function V : R+ → R+, and a
nonzero Radon measure µ on (R)d\{0} = [−∞,∞]d\{0} that does not charge infinite points, such
that

P(x−1X ∈ ·)
V (x)

v→ µ(·)(1.1)

(vaguely) as x → ∞. The limiting measure µ is called the tail measure of X and it possesses the
scaling property µ(uA) = u−αµ(A) for any α > 0 and a measurable set A ⊂ (R)d\{0}; see e.g.
Resnick (1987, 2007). It is usual to say simply that X is regularly varying.

Infinite-dimensional notions of regular variation are more complicated, but they have been de-
veloped as well. The notion of regularly varying stochastic process with sample paths in D([0, 1])
was introduced in Hult and Lindskog (2005), and it was extended to random fields with sample
paths in D([0, 1]d) in Davis and Mikosch (2008).

When stationarity is present, each observation of the stochastic process is equally likely to be
an extreme, and it is of interest to determine how these extremes cluster or, in other words, how
these extremes differ from the extremes of i.i.d. observations with the same marginal distributions.
The extremal index of a stationary process, introduced by Leadbetter (1983), measures the sizes
of extremal clusters. Under the additional assumption of multivariate regular variation, Davis
and Mikosch (2009) introduced the extremogram to capture the dependence of the extremes in a
stationary regularly varying stochastic process. In order to describe the extremal dependence of
an entire stochastic process, an unpublished work of Owada and Samorodnitsky (2014) introduced
the notion of a tail measure for a regularly varying stochastic process, and better known notions
are those of the tail and spectral processes developed by Basrak and Segers (2009).

Extending some of these notions to random fields is challenging due to the lack of natural
order in the time domain. Choi (2002) proved the existence of a spatial extremal index under the
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coordinate-wise mixing condition introduced by Leadbetter and Rootzén (1998), while Ferreira and
Pereira (2008) proposed a way to compute it. Recently, Cho et al. (2016) formulated the notion
of an extremogram for random fields. In this paper, we extend the theory of the tail and spectral
processes of Basrak and Segers (2009) to Rd-valued regularly varying random fields with parameter
space Zk. At the same time and independently, a part of this extension was also done in Basrak
and Planinić (2018), but the goals of that paper are different. We will mention the similarities in
the sequel.

The structure of this paper is as follows. In Section 2 we introduce the notion of the tail field
corresponding to a stationary regularly varying random field. Its properties are studied Section 3,
where the notion of the spectral field is also introduced. These two notions are analogous to the
notions of the tail and spectral processes of Basrak and Segers (2009). A general discussion of the
possible notions of the spatial extremal index is in Section 4. The point process description of the
extremal clusters is extended from the case of one-dimensional time to random fields in Section 5.
An application to Brown-Resnick random fields is in Section 6.

Notation. As usual, letters such as X, stand for random variables, while bold letters, such as X,
stand for random vectors. Similarly, i and i stand for the indices in Zk and Z, correspondingly.
We use the notation N0 for N ∪ {0}. For a pair of indices i and j, we say that i ≤ j if i` ≤ j` for
all ` = 1, . . . , k, in which case X([i : j]) is the random vector (X(t) : i ≤ t ≤ j). The hypercubes
[(−n + 1) : n− 1] and [0 : n− 1] are denoted by Rn and R+

n , respectively.
For a random field (X(t) : t ∈ Zk) and a finite set A ⊂ Zk we write MX(A) for maxt∈A ‖X(t)‖.

Also, we write 0 and 1 for the vectors of all 0’s and 1’s, respectively. Finally, all the vector
operations in this paper are performed element-wise.

2. The Tail Field

Let (X(t) : t ∈ Zk) be an Rd-valued random field. It is said to be jointly regularly varying if the
random vector (X(t1), . . . ,X(tn)) is regularly varying in Rnd for any t1, . . . , tn ∈ Zk. The following
result is an extension of Theorem 2.1 in Basrak and Segers (2009) to random fields. We will see
that only a partial extension is possible.

Theorem 2.1. An Rd-valued stationary random field (X(t) : t ∈ Zk) is jointly regularly varying
with index α > 0 if and only if there exists a random field (Y(t) : t ∈ Zk) such that

L
(
x−1X(t) : t ∈ Zk

∣∣∣‖X(0)‖ > x
)
→ L(Y(t) : t ∈ Zk)(2.1)

as x→∞ in the sense of convergence of the finite-dimensional distributions, and P(‖Y(0)‖ > y) =
y−α for y ≥ 1.

Extending the terminology of Basrak and Segers (2009), we call the limiting random field (Y(t) :
t ∈ Zk) the tail field of the stationary field (X(t) : t ∈ Zk).

Proof of Theorem 2.1. The argument is similar to the case of the one-dimensional time. Suppose
first that (X(t) : t ∈ Zk) is jointly regularly varying. Then for arbitrary index pairs i ≤ j,
X([i : j]) is a regularly varying vector with index α, By stationarity, the function V in (1.1) can
be chosen to be V (x) = P(‖X(0)‖ > x) regardless of i, j, so there exists a Radon measure µi,j on(
Rd
)∏k

`=1(j`−i`+1)\{0} such that

1

P(‖X(0)‖ > x)
P
(
x−1X([i : j]) ∈ ·

) v→ µi,j(·)(2.2)
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as x → ∞. The restriction νi,j to the set {y([i : j]) | ‖y(0)‖ > 1} is, by definition, a probability
measure, and the collection of the probability measures

(
νi,j
)

is, clearly, consistent, in the sense
that, if i2 ≤ i1 ≤ j1 ≤ j2 then the measure νi1,j1 is obtained from the measure νi2,j2 by integrating
out the redundant dimensions. By the Kolmogorov extension theorem there is a random field
(Y(t) : t ∈ Zk) whose finite-dimensional distributions are determined by the family

(
νi,j
)
. Then

(2.1) follows from (2.2), and the Pareto distribution of ‖Y(0)‖ follows as in the case of the one-
dimensional time.

In the opposite direction, suppose that (2.1) holds for all i ≤ j ∈ Zk, and P(‖Y(0)‖ > y) = y−α.
As in the case of the one-dimensional time, for y ≥ 1 we have

P(‖X(0)‖ > xy)

P(‖X(0)‖ > x)
= P(‖x−1X(0)‖ > y | ‖X(0)‖ > x)→ P(‖Y(0)‖ > y) = y−α

as x→∞, so that ‖X(0)‖ is a regularly varying variable with index α. We need to show that for
any i ≤ j ∈ Zk,

1

P(‖X(0)‖ > x)
P
(
x−1X([i : j]) ∈ ·

)
converges vaguely as x → ∞, and by the already established regular variation of ‖X(0)‖, it is
enough to establish weak convergence on the set of vectors for which the norm of X(t) is at least 1
for some fixed i ≤ t ≤ j. We will, in fact, show weak convergence to the law of the random vector
Y([i− t : j− t]). Indeed, on the relevant set, by stationarity,

1

P(‖X(0)‖ > x)
P
(
x−1X([i : j]) ∈ ·

)
=

1

P(‖X(0)‖ > x)
P
(
x−1X([i : j]) ∈ · , ‖x−1X(t)‖ > 1

)
=P
(
x−1X([i : j]) ∈ · | ‖x−1X(t)‖ > 1

)
=P
(
x−1X([i− t : j− t]) ∈ · | ‖X(0)‖ > x

)
→P (Y([i− t : j− t]) ∈ ·)

as x→∞, as required. �

Remark 2.2. A similar statement is in Theorem 3.1 of Basrak and Planinić (2018). When the
time is one-dimensional, Basrak and Segers (2009) proved that the weak convergence on the set of
nonnegative times,

L
(
x−1X(t) : t ∈ N0

∣∣∣‖X(0)‖ > x
)
→ L (Y(t) : t ∈ N0) ,(2.3)

sufficed to guarantee the joint regular variation of the original process. Interestingly, the obvious
analogue of this statement for random fields is false, as the following example of a scalar-valued
random field with 2-dimensional time illustrates.

Example 2.3. Let (Z1, Z2) be a random vector such that (Z1, Z2)
d
= (Z2, Z1), Z1 is regularly vary-

ing with index α, but the random vector (Z1, Z2) itself is not regularly varying. For completeness,
we will construct an example of such a vector below.

Let
(
Z

(j)
1 , Z

(j)
2

)
, j ∈ Z, be iid copies of (Z1, Z2). We define a scalar-valued random field (X(t) :

t ∈ Z2) by letting

X(t) =

{
Z

(t1+t2)
1 , if t1 is odd

Z
(t1+t2)
2 , if t1 is even

.
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It is clearly stationary. We claim that

(2.4) L
(
x−1X(t) : t ∈ N2

0

∣∣∣|X(0)| > x
)
→ L

(
Y (t) : t ∈ N2

0

)
as x → ∞, where Y (0) has the Pareto(α) distribution, and Y (t) = 0 for each t 6= 0. Indeed,
since 0 is the only point in N2

0 on the line t1 + t2 = 0, X(t) is independent of X(0) for each
t ∈ N2

0 \ {0}. Therefore, for any such t we have L(x−1X(t)|X(0) > x)→ δ0 as x→∞. Therefore,
(2.4) follows since X(0) is regularly varying with index α because of the assumed regular variation
of Z1. Therefore, (2.4) holds. Note that the latter is the obvious analogue of (2.3) for a random
field.

However, the random field (X(t) : t ∈ Z2) is not regularly varying. To see this, note that with

t1 =

(
0
0

)
, t2 =

(
−1

1

)
we have

(
X(t1), X(t2)

) d
= (Z1, Z2), which, by the assumption, is not regularly varying.

It remains to construct a random vector (Z1, Z2) such that (Z1, Z2)
d
= (Z2, Z1), Z1 is regularly

varying with index α, but the random vector (Z1, Z2) itself is not regularly varying. Let an =
n!, n = 1, 2, . . .. Let Z ≥ 1 have the standard Pareto(α) distribution. If Z ∈ [a2n−1, a2n) for
some n = 1, 2, . . ., set Z1 = Z2 = Z. If Z ∈ [a2n, a2n+1) for some n = 1, 2, . . ., take Z1 and Z2 be
standard Pareto(α) random variables conditioned on being in the interval [a2n, a2n+1) but otherwise
independent. Formally, for any two-dimensional Borel set A,

P
(
(Z1, Z2) ∈ A

)
=
∞∑
n=1

∫ a2n

a2n−1

1
(
(z, z) ∈ A

)
az−(α+1) dz

+

∞∑
n=1

1

a−α2n − a
−α
2n+1

∫ a2n+1

a2n

∫ a2n+1

a2n

1
(
(z1, z2) ∈ A

)
az
−(α+1)
1 az

−(α+1)
2 dz1 dz2 .

By construction, (Z1, Z2)
d
= (Z2, Z1), and each coordinate of the random vector has the standard

Pareto(α) distribution. It remains to show that the random vector (Z1, Z2) is not regularly varying.
Note that

P
(
a−12n−1(Z1, Z2) ∈ (1, 2]× (1, 2]

)
∼ P (Z ∈ (a2n−1, 2a2n−1]) ∼ (1− 2−α)a−α2n−1

as n→∞. On the other hand,

P
(
a−12n (Z1, Z2) ∈ (1, 2]× (1, 2]

)
≤ 1

a−α2n − a
−α
2n+1

(∫ 2a2n

a2n

az−(α+1) dz

)2

+ P (Z ≥ a2n+1) ∼ (1− 2−α)2a−α2n

as n→∞. Therefore, (1.1) cannot hold.

3. Properties of the tail field

This section describes the properties of the tail field introduced in the previous section. These
are similar, but not identical, to the properties of the tail process. In particular, we introduce
an object parallel to that of the spectral process of Basrak and Segers (2009), which we call the
spectral field. The latter is defined as Θ(t) = Y(t)/‖Y(0)‖, t ∈ Zk, where (Y(t) : t ∈ Zk) is the
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tail field of an Rd-valued stationary random field (X(t) : t ∈ Zk) that is jointly regularly varying
with index α > 0. As in the one-dimensional case, it is easy to check that

(3.1) the spectral field is independent of ‖Y(0)‖ .
The following proposition can be proved in the same way as for the one-dimensional time, so we

do not include the proof. See also Theorem 3.1 in Basrak and Planinić (2018). Note, however, that
a part of Corollary 3.2 in Basrak and Segers (2009) fails in the case of random fields; see Example
2.3.

Proposition 3.1. Let (X(t) : t ∈ Zk) be an Rd-valued stationary random field, and ‖X(0)‖ be
a regularly varying variable with index α for some α ∈ (0,∞). Then (X(t) : t ∈ Zk) is jointly
regularly varying with index α if and only if there exists a random field (Θ(t) : t ∈ Zk) such that

L
(

X(t)

‖X(0)‖
: t ∈ Zk

∣∣∣∣ ‖X(0)‖ > x

)
→ L(Θ(t) : t ∈ Zk)(3.2)

as x→∞.

Even though neither the tail field nor the spectral field is generally stationary, the stationarity of
the original random field (X(t) : t ∈ Zk) makes itself felt in the former fields. In particular, it leads
to a “change-of-time” property for these fields. A similar result in the case of one-dimensional time
is a part of Theorem 3.1 in Basrak and Segers (2009). We present this property in a somewhat
more general form.

Theorem 3.2. Let (Y(t) : t ∈ Zk) be the tail field corresponding to an Rd-valued stationary random
field (X(t) : t ∈ Zk) that is jointly regularly varying with index α > 0, and let (Θ(t) : t ∈ Zk) be

the corresponding spectral field. Let g :
(
Rd)Zk → R be a bounded measurable function. Take any

s ∈ Zk. Then the following identities hold:

E
[
g(Y(· − s))1

(
Y(−s) 6= 0

)]
=

∫ ∞
0

E[g(rΘ(·))1(r‖Θ(s)‖ > 1)] d(−r−α) ,(3.3)

E
[
g(Θ(· − s))1

(
Θ(−s) 6= 0

)]
= E

[
g

(
Θ(·)
‖Θ(s)‖

)
‖Θ(s)‖α

]
.(3.4)

Proof. Since a probability measure on
(
Rd)Zk

is uniquely determined by its finite-dimensional dis-

tributions, for (3.3) it is enough to prove that for any i ≤ j ∈ Zk and any bounded measurable

function g :
(
Rd
)∏k

`=1(j`−i`+1) → R, we have

E
[
g(Y([i− s : j− s]))1

(
Y(−s) 6= 0

)]
=

∫ ∞
0

E[g(rΘ([i : j]))1(r‖Θ(s)‖ > 1)] d(−r−α) .(3.5)

Suppose first that g is bounded and continuous. Let ε > 0. By (2.1) and stationarity, the argument
of Basrak and Segers (2009) gives us

E
[
g(Y([i− s : j− s]))1

(
‖Y(−s)‖ > ε

)]
=

∫ ∞
ε

E[g(rΘ([i : j]))1(r‖Θ(s)‖ > 1)] d(−r−α) .

If g is, in addition, nonnegative, then we can let ε ↓ 0 in this relation, so that monotone convergence
theorem gives us (3.5) for nonnegative bounded and continuous g. The assumption of nonnegativity
can now be removed by writing g as the difference of its positive and negative parts. Since integrals
of bounded continuous functions uniquely determine a finite measure, we see that (3.5) holds
without the assumption of continuity. As in Basrak and Segers (2009), (3.4) follows from (3.3)

by defining a new bounded measurable function on
(
Rd)Zk

as g̃(y) = g(y/‖y(s)‖)1(y(s) 6= 0) and
applying (3.3) to this function. �
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If h is a bounded measurable function on the unit sphere Sd−1 in Rd, then choosing g(y) = h(y(s))

if ‖y(s)‖ = 1 and g(y) = 0 otherwise produces a bounded measurable function on
(
Rd)Zk

. Applying
(3.4) to this function gives us the identity

E[h(Θ(s)/‖Θ(s)‖)‖Θ(s)‖α] = E[h(Θ(0))1(Θ(−s) 6= 0)] .(3.6)

The value of E[‖Θ(s)‖α] is a measure of the effect of changing the “origin” of the spectral field from
0 to s (recall that ‖Θ(0)‖ = 1 by the definition). With h(·) ≡ 1, (3.6) reduces to E[‖Θ(s)‖α] =
P(Θ(−s) 6= 0) (so E[‖Θ(s)‖α] ≤ 1). In particular, for δ > 0,

lim
x→∞

P
(
‖X(0)‖ > δx | ‖X(s)‖ > x

)
= lim

x→∞
P
(
‖X(−s)‖ > δx | ‖X(0)‖ > x

)
= P(‖Y(−s)‖ > δ) ,

so

E[‖Θ(s)‖α] = P(Θ(−s) 6= 0)

= P(Y(−s) 6= 0) = lim
δ↓0

P(‖Y(−s)‖ > δ)

= lim
δ↓0

lim
x→∞

P
(
‖X(0)‖ > δx | ‖X(s)‖ > x

)
,

thus providing an intuitive interpretation of the quantity E[‖Θ(s)‖α]. Furthermore, assuming that
E[‖Θ(s)‖α] > 0, (3.6) says that the two probability measures on Sd−1,

P1(·) =
1

E[‖Θ(s)‖α]
E[‖Θ(s)‖α1(Θ(s)/‖Θ(s)‖ ∈ ·)] ,

P2(·) =
P(Θ(0) ∈ ·, Θ(−s) 6= 0)

P(Θ(−s) 6= 0)
,

are equal. Therefore, a necessary and sufficient condition for E[‖Θ(s)‖α] = 1 is

P(Θ(0) ∈ ·) = E[‖Θ(s)‖α1(Θ(s)/‖Θ(s)‖ ∈ ·)] .

The above discussion is an extension of the ideas in Basrak and Segers (2009) in the case of
on-dimensional time to random fields.

The important “change-of-time” property (3.4) has recently been shown in Janßen (2018) to be
equivalent, in the case of the one-dimensional time, to a certain distributional invariance property
of the spectral process. As we explain below, this equivalence extends to random fields. We start
with a simple extension of Lemma 2.2 ibid. It describes a rather unexpected property of the spectral
field. The argument requires the notion of invariant order. A complete order ≺ on Zk is called
invariant if s ≺ t for s, t ∈ Zk implies that s + i ≺ t + i for any i ∈ Zk. An example of an invariant
order is the lexicographic (or dictionary) order: for s, t ∈ Zk, we say that s ≺ t if either (1) s1 < t1,
or (2) there exists 2 ≤ ` ≤ k such that si = ti for all i = 1, . . . , `− 1, and s` < t`.

Lemma 3.3. Let (Θ(t) : t ∈ Zk) be an Rd-valued random field such that P(‖Θ(0)‖ = 1) = 1 and
satisfies (3.4). Then ‖Θ(t)‖ → 0 a.s. as ‖t‖ → ∞ if and only if

∑
t∈Zk ‖Θ(t)‖α <∞ a.s.

Proof. Trivially, the summability condition implies that the values of the field vanish at infinity.
In the other direction, fix an invariant order on Zk, and suppose that the event {‖Θ(t)‖ → 0 as
‖t‖ → ∞} has probability 1. On this event there is, clearly, a finite number of points in Zk over
which ‖Θ(i)‖ achieves the supremum supt∈Zk ‖Θ(t)‖. Therefore, on this event we can define a Zk-
valued random variable T such that ‖Θ(T)‖ = supt∈Zk ‖Θ(t)‖ and any other point of Zk with this
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property succeeds T in the invariant order. If, to the contrary, we have P(
∑

t∈Zk ‖Θ(t)‖α =∞) > 0,

then there exists i ∈ Zk such that P (
∑

t∈Zk ‖Θ(t)‖α =∞,T = i) > 0, which gives us

∞ =E

∑
t∈Zk

‖Θ(t)‖α1(T = i)

 =
∑
t∈Zk

E [‖Θ(t)‖α1(T = i)] .

For each i ∈ Zk we define a function gi :
(
Rd)Zk → R as follows. If (θ(s), s ∈ Zk) is such that

‖θ(j)‖ < ‖θ(i)‖ for j ≺ i, ‖θ(j)‖ ≤ ‖θ(i)‖ for j � i ,

then we set gi(θ(s), s ∈ Zk) = 1. Otherwise we set gi(θ(s), s ∈ Zk) = 0. Clearly, each gi is a
bounded measurable function. Then by the “change of time property” (3.4),

∞ =
∑
t∈Zk

E
[
‖Θ(t)‖αgi(Θ(s) : s ∈ Zk)

]
=
∑
t∈Zk

E
[
‖Θ(t)‖αgi

(
Θ(s)

‖Θ(t)‖
: s ∈ Zk

)]
=
∑
t∈Zk

E
[
gi

(
Θ(s− t) : s ∈ Zk

)
1(Θ(−t) 6= 0)

]
=
∑
t∈Zk

E [1(‖Θ(j)‖ < ‖Θ(i− t)‖, j ≺ i− t)1(‖Θ(j)‖ ≤ ‖Θ(i− t)‖, j � i− t)1(Θ(−t) 6= 0)]

≤
∑
t∈Zk

E [1(‖Θ(j)‖ < ‖Θ(i− t)‖, j ≺ i− t)1(‖Θ(j)‖ ≤ ‖Θ(i− t)‖, j � i− t)]

=
∑
t∈Zk

P (T = i− t) = 1,

which leads to a contradiction. Hence,
∑

t∈Zk ‖Θ(t)‖α <∞ a.s.. �

As in the one-dimensional case, the spectral field vanishes a.s. at infinity under Condition 5.1
below; see Theorem 5.2. Lemma 3.3 shows that under Condition 5.1 the spectral process also
satisfies the stronger summability statement.

The next theorem is a version of Theorem 2.4 in Janßen (2018) for random fields. It establishes
a certain invaraince property of the law of a spectral fields satsifying the equaivalent conditions of
Lemma 3.3.

Theorem 3.4. Let (Θ(t) : t ∈ Zk) be an Rd-valued random field such that 0 <
∑

t∈Zk ‖Θ(t)‖α <∞
a.s.. Let I be an Zk-valued random element such that

P(I = i | (Θ(t) : t ∈ Zk)) =
‖Θ(i)‖α∑

t∈Zk ‖Θ(t)‖α
.(3.7)

for i ∈ Zk. Define

ΘRS(t) =
Θ(t + I)

‖Θ(I)‖
, t ∈ Zk .

Then a necessary and sufficient condition for the equality of the laws

L((ΘRS(t) : t ∈ Zk)) = L((Θ(t) : t ∈ Zk))(3.8)

is that (Θ(t) : t ∈ Zk) satisfies (3.4) and P(‖Θ(0)‖ = 1) = 1.



8 LIFAN WU AND GENNADY SAMORODNITSKY

Proof. Suppose first (3.8) holds. Since ‖ΘRS(0)‖ = 1, we must have P(‖Θ(0)‖ = 1) = 1. Now,

let g :
(
Rd)Zk → R be a bounded measurable function. Denoting ‖Θ‖α =

(∑
t∈Zk ‖Θ(t)‖α

)1/α
, we

have

E[g(Θ(· − s))1(Θ(−s) 6= 0)] = E
[
g(ΘRS(· − s))1(ΘRS(−s) 6= 0)

]
=E

[
E
[
g

(
Θ(· − s + I)

‖Θ(I)‖

)
1

(
Θ(−s + I)

‖Θ(I)‖
6= 0

) ∣∣∣∣ (Θ(t) : t ∈ Zk)
]]

=E

∑
i∈Zk

‖Θ(i)‖α

‖Θ‖αα
g

(
Θ(· − s + i)

‖Θ(i)‖

)
1 (Θ(−s + i) 6= 0)

 .
Similarly,

E
[
g

(
Θ(·)
‖Θ(s)‖

)
‖Θ(s)‖α

]
=E

[
g

(
ΘRS(·)
‖ΘRS(s)‖

)
‖ΘRS(s)‖α

]

=E

∑
j∈Zk

‖Θ(j)‖α

‖Θ‖αα
g

(
Θ(·+ j)

‖Θ(s + j)‖

)∥∥∥∥Θ(s + j)

‖Θ(j)‖

∥∥∥∥α 1(Θ(j) 6= 0)


=E

∑
i∈Zk

‖Θ(i)‖α

‖Θ‖αα
g

(
Θ(· − s + i)

‖Θ(i)‖

)
1(Θ(−s+ i) 6= 0)


by substituting j = i − s. The equal results of these two calculations show that the random field
has the property (3.4).

In the other direction, suppose that the random field (Θ(t) : t ∈ Zk) satisfies (3.4) and
P(‖Θ(0)‖ = 1) = 1. For any bounded measurable function g,

E[g(ΘRS(t) : t ∈ Zk)] =
∑
i∈Zk

E
[
g

(
Θ(t− i)

‖Θ(−i)‖

)
‖Θ(−i)‖α

‖Θ‖αα
1(Θ(−i) 6= 0)

]
.

Define a new function ḡ by

ḡ
(
θ(t) : t ∈ Zk

)
= g

(
θ(t)

‖θ(0)‖
: t ∈ Zk

)
‖θ(0)‖α

‖θ‖αα
if θ(0) 6= 0 and ‖θ‖αα =

∑
i∈Zk ‖θ(i)‖α <∞. If these conditions do not hold, set ḡ = 0. Since ḡ is

a bounded and measurable function, we have by (3.4) and the fact that P(‖Θ(0)‖ = 1) = 1,

E[g(ΘRS(t) : t ∈ Zk)] =
∑
i∈Zk

E
[
ḡ(Θ(t− i) : t ∈ Zk)1(Θ(−i) 6= 0)

]
=
∑
i∈Zk

E
[
ḡ

(
Θ(t)

‖Θ(i)‖
: t ∈ Zk

)
‖Θ(i)‖α

]

=
∑
i∈Zk

E
[
g(Θ(t) : t ∈ Zk)

‖Θ(i)‖α

‖Θ‖αα

]
=E

[
g(Θ(t) : t ∈ Zk)

]
,

proving (3.8). �
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4. Extremal index of a random field

The extremal index is one of the major ways to characterize how the extremes of a stationary
sequence cluster; it was introduced in Leadbetter (1983) and extensively studied and used ever
since. The corresponding notion for random fields appeared in Ferreira and Pereira (2008). One of
the attractive features of the notion of the extremal index is that it admits multiple interpretations.
These different points of view on extremal index, however, turn out to be equivalent only under
appropriate technical conditions (and the equivalences turn out to be even more strained for random
fields). In fact, the original definition of the extremal index itself includes an assumption of its
existence. For jointly regularly varying random fields, the tail field sheds new light on the notion of
the extremal index. Importantly, no assumptions of existence are required for the tail field-based
notions of the extremal index (apart, of course, from the regular variation). In order to clarify the
situation, we keep the definitions distinct.

Definition 4.1. An Rd-valued stationary random field (X(t) : t ∈ Zk) has a classical extremal
index θcl if for each τ > 0 and any array (un(τ)) satisfying(

k∏
`=1

n`

)
P(‖X(0)‖ > un(τ))→ τ(4.1)

as n→∞, it also holds that

P
(
MX(R+

n ) ≤ un(τ)
)
→ e−θclτ .(4.2)

Remark 4.2. It is common to formulate the definition of the classical extremal index by requiring
that (4.1) and (4.2) hold for some array (un(τ)). This appears to tie the notion to a particular
choice of the array, and does not seem to broaden the applicability of the definition.

Definition 4.3. An Rd-valued stationary random field (X(t) : t ∈ Zk) has a block extremal
index θb if for some array (rn) increasing to ∞ such that rn/n→ 0, for each τ > 0 and any array
(un(τ)) satisfying (4.1), it holds that

θb = lim
n→∞

P(MX(R+
rn) > un(τ))(∏k

`=1 rn`

)
P(‖X(0)‖ > un(τ))

(4.3)

Under certain conditions the block extremal index coincides with the classical extremal index,
assuming the latter exists. One such set of conditions is the so called coordinatewise tail mixing
condition; see Proposition 3.2 in Pereira et al. (2017).

The next definition of the extremal index is well known in the case of the one-dimensional time,
but does not seem to have been formulated for random fields. It concentrates on the conditional
probability of the random field being free of exceedances over the rest of a hypercube given an
exceedance at one of the corners of the hypercube.

Definition 4.4. An Rd-valued stationary random field (X(t) : t ∈ Zk) has a run extremal index
θrun,i with respect to i ∈ {0, 1}k if for some array (rn) increasing to ∞ such that rn/n → 0, and
any array (un(τ)) satisfying (4.1) for some τ > 0, it holds that

θrun,i = lim
n→∞

P(MX(R+
rn\{tn,i}) ≤ un(τ) | X(tn,i) > un(τ)) ,(4.4)

where (tn,i)l = rnl
− 1 if inl

= 1 and 0 if inl
= 0.
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When the time is one-dimensional, the hypercube has two corners, and the stationarity implies
that the run extremal index, if it exists, is the same for the two corners. Indeed,

P
(

max
t=1,...,rn−1

X(t) ≤ un(τ) | X(0) > un(τ)

)
=
P (maxt=1,...,rn−1X(t) ≤ un(τ), X(0) > un(τ))

P(X(0) > un(τ))

=
P (maxt=0,...,rn−2X(t) ≤ un(τ))− P (maxt=0,...,rn−1X(t) ≤ un(τ))

P(X(rn − 1) > un(τ))

=
P (maxt=0,...,rn−2X(t) ≤ un(τ), X(rn − 1) > un(τ))

P(X(rn − 1) > un(τ))

=P
(

max
t=0,...,rn−2

X(t) ≤ un(τ)

∣∣∣∣X(rn − 1) > un(τ)

)
.

This, however, is no longer necessarily the case that for random fields the run extremal index is
independent of the corner of the hypercube used to define it, as will be seen in Example 4.8 below.
When the time is one-dimensional, under certain conditions the run extremal index coincides with
the classical extremal index; one such set of conditions being the AIM conditions of O’Brien (1987).
As the previous discussion and Example 4.8 indicate, this is no longer the case for random fields.

Definition 4.5. Let (X(t) : t ∈ Zk) be a stationary jointly regularly varying Rd-valued random
field (X(t) : t ∈ Zk) with the tail field (Y(t) : t ∈ Zk). Its tail field extremal index θtf,i with

respect to i ∈ {0, 1}k is

θtf,i = P

(
sup

t: t(1−2i)≥0, t 6=0
‖Y(t)‖ ≤ 1

)
.

Under appropriate conditions, similar to those of Basrak and Segers (2009) in the one-dimensional
time case, the tail field extremal index coincides with the run extremal index and, in particular,
the latter exists.

Proposition 4.6. Let (X(t) : t ∈ Zk) be a stationary jointly regularly varying random field with
the tail field (Y(t) : t ∈ Zk). Let i ∈ {0, 1}k. Suppose that for any array (un(τ)) satisfying (4.1)
for some τ > 0 and some array (rn) increasing to ∞ such that rn/n→ 0,

lim
M→∞

lim sup
n→∞

P
(
MX(R+

AM,i
\{tn,i}) ≤ un(τ), MX(R+

rn\R
+
AM,i

) > un(τ)

∣∣∣∣‖X(0)‖ > un(τ)

)
= 0 ,

where AM,i = {x ∈ R+
rn : |xl− (tn,i)l| ≤M, l = 1, . . . , d}. Then the run extremal index θrun,i exists

and is equal to the tail field extremal index θtf,i.

Proof. It is enough to consider the case i = 0, in which case the condition in the proposition reduces
to

(4.5) lim
M→∞

lim sup
n→∞

P
(
MX(R+

M1\{0}) ≤ un(τ), MX(R+
rn\R

+
M1) > un(τ)

∣∣∣∣‖X(0)‖ > un(τ)

)
= 0 .

We have for any M = 1, 2, . . ., any (rn) increasing to ∞,

P

(
sup

0≤t≤M1, t 6=0
‖Y(t)‖ ≤ 1

)
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= lim
n→∞

P

(
sup

0≤t≤M1, t 6=0

1

un(τ)
‖X(t)‖ ≤ 1

∣∣∣∣‖X(0)‖ > un(τ)

)
≥ lim sup

n→∞
P(MX(R+

rn\{0}) ≤ un(τ) | ‖X(0)‖ > un(τ)) .

Letting M →∞, we obtain

(4.6) P

(
sup

t≥0, t 6=0
‖Y(t)‖ ≤ 1

)
≥ lim sup

n→∞
P(MX(R+

rn\{0}) ≤ un(τ) | ‖X(0)‖ > un(τ)) .

Furthermore, we can write for n large enough,

P(MX(R+
rn\{0}) ≤ un(τ) | ‖X(0)‖ > un(τ))

=P
(

1

un(τ)
MX(R+

M1\{0}) ≤ 1

∣∣∣∣‖X(0)‖ > un(τ)

)
−P
(
MX(R+

M1\{0}) ≤ un(τ), MX(R+
rn\{0}) > un(τ)

∣∣∣∣‖X(0)‖ > un(τ)

)
.

By (4.5), letting first n→∞ and then M →∞ gives us

P

(
sup

t≥0, t 6=0
‖Y(t)‖ ≤ 1

)
≤ lim inf

n→∞
P(MX(R+

rn\{0}) ≤ un(τ) | ‖X(0)‖ > un(τ)) ,

which, in conjunction with (4.6), proves both existence of θrun,0 and the fact that it is equal to
θtf,0. �

Another version of a tail field based extremal index arises naturally in limit theorems discussed
in the next section. Let ≺ be an invariant order on Zk.

Definition 4.7. Let (X(t) : t ∈ Zk) be a stationary jointly regularly varying Rd-valued random
field (X(t) : t ∈ Zk) with the tail field (Y(t) : t ∈ Zk). Its half space extremal index θhalf is

θhalf = P
(

sup
t≺0
‖Y(t)‖ ≤ 1

)
.

We will see in the next section that, under condition (4.5), the block extremal index exists and
equals the half space extremal index. A corollary of this is that the half space extremal index is
independent of the invariant order ≺ as long as (4.5) holds for some array (rn).

Example 4.8. A simple class of models is that of max-moving averages with local interaction.
We consider one such model with two-dimensional time. Let a−1,−1, a−1,1, a1,1, a1,−1 be numbers
in [0, 1]. Starting with i.i.d. standard Fréchet(1) random variables (Z(t) : t ∈ Z2), we define a
stationary random field (X(t) : t ∈ Z2) by

X(t) = max
{
Z(t), a−1,−1Z(t− 1), a−1,1Z(t1 − 1, t2 + 1), a1,1Z(t + 1), a1,−1Z(t1 + 1, t2 − 1)

}
.

If FZ denotes the c.d.f. of a standard Fréchet(1) random variable, then for any u > 0,

P(MX(R+
rn) ≤ u) = (FZ(u))E(r,a) ,

where

E(r,a) = rn1rn2 + 3(a−1,−1 + a−1,1 + a1,1 + a1,−1) + (rn1 − 2)
(
max(a−1,−1, a1,−1) + max(a1,1, a−1,1)

)
+ (rn2 − 2)

(
max(a−1,−1, a−1,1) + max(a1,1, a1,−1)

)
,



12 LIFAN WU AND GENNADY SAMORODNITSKY

while

P(X(0) ≤ u) = (FZ(u))1+(a−1,−1+a−1,1+a1,1+a1,−1).

By (4.1) and (4.2) we conclude that the classical extremal index exists, and

θcl = (1 + s)−1 ,

where

s = a−1,−1 + a−1,1 + a1,1 + a1,−1 ,

and by (4.3), the block extremal index θb also exists and is equal to the classical extremal index.
It is also easy to compute the run extremal index. We perform the computation for the corner

determined by i = 0, and it can be done analogously for the other corners. Notice that

lim
n→∞

P(MX(R+
rn\{0}) > un(τ) | X(0) > un(τ))

= lim
n→∞

P(MX({1, (2, 0), (0, 2), (2, 2)) > un(τ) | X(0) > un(τ))

= lim
n→∞

[
P(Z(0) > un(τ) | X(0) > un(τ))P(X(1) > un(τ) | Z(0) > un(τ)

)
+ P(a−1,1Z((−1, 1)) > un(τ) | X(0) > un(τ))P(X((0, 2)) > un(τ) | a−1,1Z((−1, 1)) > un(τ)

)
+ P(a1,1Z(1) > un(τ) | X(0) > un(τ))P(X(1) > un(τ) | a1,1Z(1) > un(τ)

)
+ P(a1,−1Z((1,−1)) > un(τ) | X(0) > un(τ))P(X((2, 0)) > un(τ) | a1,−1Z((1,−1)) > un(τ)

)]
=

1

1 + s
lim

n→∞
P(a−1,−1Z(0) > un(τ) | Z(0) > un(τ)

)
+
a−1,1
1 + s

lim
n→∞

P(a−1,−1Z((−1, 1)) > un(τ) | a−1,1Z((−1, 1)) > un(τ)
)

+
a1,1

1 + s

+
a1,−1
1 + s

lim
n→∞

P(a−1,−1Z((1,−1)) > un(τ) | a1,−1Z((1,−1)) > un(τ)
)

= (1 + s)−1
[
a−1,−1 + min(a−1,1, a−1,−1) + a1,1 + min(a1,−1, a−1,−1)

]
,

which equals, by definition, to 1− θrun,0.
Choosing a−1,−1 = .1, a−1,1 = .7, a1,1 = .6, a1,−1 = .1 results in θrun,0 = .64, θrun,1 = .44, θrun,(0,1) =

.4, θrun,(1,0) = .6, so the run extremal index is different at all 4 corners. In this case also θcl = .4.
However, taking the equal weight mixture of the above model with the model corresponding to
a−1,−1 = .6, a−1,1 = .2, a1,1 = .6, a1,−1 = .1 results in all 5 different indices: θ0 = .52, θ1 =
.42, θ(0,1) = .56, θ(1,0) = .7 and θcl = .4.

Finally, because of the local interaction, condition (4.5) holds in this case for any (rn) increasing
to ∞ such that rn/n→ 0, and so by Proposition 4.6, the tail field extremal indices coincide with
the run extremal indices.

5. Extremal index and limit theorems for point processes

Armed with the understanding of the spatial extremal indices developed in the previous section,
we now proceed to study the extremal clusters.

Let (X(t) : t ∈ Zk) be an Rd-valued stationary random field, jointly regularly varying with index
α > 0, and let (Y(t) : t ∈ Zk), (Θ(t) : t ∈ Zk) be its associated tail field and spectral field,
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respectively. Let, once again, (rn) and (un(τ)) be arrays such that rn/n → 0, and (4.1) holds for
τ > 0. Consider the spatial point process (on (R)d, from which we remove the origin) defined by

Cn =
∑

t∈R+
rn

δun(τ)−1X(t).(5.1)

We call it the cluster process, and we are interested in the weak limit of the conditional law of
Cn, given that it does not vanish, i.e. given the event that MX(R+

rn) > un(τ). We view the weak
limit of the cluster process as describing, asymptotically, a single extreme cluster of the random
field. Theorem 5.2 describes the latter under the following assumption, which implies, at once, the
condition of Proposition 4.6 for every corner of the hypercube.

Condition 5.1. For any array (un(τ)) satisfying (4.1) for some τ > 0 and some array (rn) increas-
ing to ∞ such that rn/n→ 0,

lim
M→∞

lim sup
n→∞

P (MX(Rrn\RM1) > un(τ) | ‖X(0)‖ > un(τ)) = 0.(5.2)

Let ≺ be an arbitrary invariant order on Zk. The argument in the following theorem follows a
logic similar to that in Theorem 4.3 of Basrak and Segers (2009).

Theorem 5.2. Let (X(t) : t ∈ Zk) be a jointly regularly varying with index α > 0, Rd-valued
stationary random field, satisfying Condition 5.1. Then P(lim‖t‖∞→∞ ‖Y(t)‖ = 0) = 1. Moreover,
the block extremal index θb exists, is positive, and

(5.3) θb = θhalf = E
[
max
t�0
‖Θ(t)‖α −max

t�0
‖Θ(t)‖α

]
.

Furthermore, the conditional law of Cn converges weakly in the space of Radon measures on (R)d \
{0} to the conditional law of the point process

C =
∑
t∈Zk

δY(t)(5.4)

given that maxt≺0 ‖Y(t)‖ ≤ 1. The Laplace functional of C under this conditional law can be
expressed as

ΨC(f) =E

exp

−∑
t∈Zk

f(Y(t))


∣∣∣∣∣∣max

t≺0
‖Y(t)‖ ≤ 1


=θ−1half

∫ ∞
0

E

exp

−∑
t�0

f(yΘ(t))

1

(
ymax

t�0
‖Θ(t)‖ > 1

)

− exp

{
−
∑
t�0

f(yΘ(t))

}
1

(
ymax

t�0
‖Θ(t)‖ > 1

)]
d(−y−α)(5.5)

for any nonnegative continuous f on (R)d \ {0} with a compact support.

Proof. For any v > 0, by Condition 5.1 and the regular variation of ‖X(0)‖, it holds that

lim
M→∞

lim sup
n→∞

P (MX(Rrn\RM1) > un(τ)v | ‖X(0)‖ > un(τ)) = 0.

Therefore, for any ε > 0 and v > 0, there exists M > 0 such that for all K > M ,

P (MY (RK1\RM1) > v) ≤ ε.
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This implies that P(lim‖t‖∞→∞ ‖Y(t)‖ = 0) = 1. Next, choose an integer M so large that

lim sup
n→∞

P (MX(Rrn\RM1) > un(τ) | ‖X(0)‖ > un(τ)) ≤ 1/2 .

Let γ` = b(rn)`/Mc, ` = 1, . . . , k, and fit into the hypercube R+
rn the

∏k
`=1 γ` smaller hypercubes

with M points on each side. We decompose the event that a value exceeding un(τ) is attained at
one of the points of the resulting grid according to the last point of the grid (in the lexicographic
order) at which a value exceeding un(τ) is attained. For a point Mp on this grid, let AMp denote
the set of the points of the grid larger than Mp. By stationarity,

P(MX(R+
rn) > un(τ))

≥
γ1−1∑
p1=0

· · ·
γk−1∑
pk=0

P (‖X(Mp)‖ > un(τ),MX(AMp) ≤ un(τ))

=

γ1−1∑
p1=0

· · ·
γk−1∑
pk=0

[P (‖X(Mp)‖ > un(τ))− P (‖X(Mp)‖ > un(τ),MX(AMp) > un(τ))]

≥

(
k∏
`=1

γ`

)
[P(‖X(0)‖ > un(τ))− P (‖X(0)‖ > un(τ),MX(Rrn\RM1) > un(τ))] ,

so

lim inf
n→∞

P(MX(R+
rn) > un(τ))(∏k

`=1 rn`

)
P(‖X(0)‖ > un(τ))

≥ 2−1M−k > 0, .(5.6)

Next, we decompose the event MX(R+
rn) > un(τ) using the order ≺, we have

E

exp

− ∑
i∈R+

rn

f(un(τ)−1X(i))

1(MX(R+
rn) > un(τ))


=
∑

t∈R+
rn

E

exp

− ∑
i∈R+

rn

f(un(τ)−1X(i))

1

(
sup

s≺t,s∈R+
rn

‖X(s)‖ ≤ un(τ) < ‖X(t)‖

) ,
with the convention that the supremum over the empty set is defined to be equal to zero. Denote

θn =
P(MX(R+

rn) > un(τ))(∏k
`=1 rn`

)
P(‖X(0)‖ > un(τ))

,

so that, if the array (θn) has a limit as n →∞, the limit is the block extremal index. It follows
from (5.6) that every subsequential limit of this array is strictly positive. Fix m ∈ Nk, and choose
n large enough so that rn ≥ 2m− 1. Then∣∣∣∣∣∣E

exp

− ∑
i∈R+

rn

f(un(τ)−1X(i))


∣∣∣∣∣∣MX(R+

rn) > un(τ)


− θ−1n E

exp

− ∑
i∈Rm

f(un(τ)−1X(i))

1

(
max

t≺0,t∈Rm

‖X(t)‖ ≤ un(τ)

) ∣∣∣∣∣∣ ‖X(0)‖ > un(τ)

∣∣∣∣∣∣
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≤ 1

P(MX(R+
rn) > un(τ))

(5.7)

∑
t∈R+

rn

∣∣∣∣∣∣E
exp

− ∑
i∈R+

rn

f(un(τ)−1X(i))

1

(
max

s�t,s∈R+
rn

‖X(s)‖ ≤ un(τ) < ‖X(t)‖

)
− E

exp

− ∑
i∈Rm

f(un(τ)−1X(i))

1

(
max

s≺0,s∈Rm

‖X(s)‖ ≤ un(τ) < ‖X(0)‖
)∣∣∣∣∣∣ .

Let I = [m− 1 : rn −m]. By stationarity and invariance of the order,

∑
t∈I

∣∣∣∣∣∣E
exp

− ∑
i∈R+

rn

f(un(τ)−1X(i))

1

(
max

s�t,s∈R+
rn

‖X(s)‖ ≤ un(τ) < ‖X(t)‖

)
− E

exp

− ∑
i∈Rm

f(un(τ)−1X(i))

1

(
max

s≺0,s∈Rm

‖X(s)‖ ≤ un(τ) < ‖X(0)‖
)∣∣∣∣∣∣

=
∑
t∈I

∣∣∣∣∣∣E
exp

− ∑
i∈R+

rn

f(un(τ)−1X(i))

1

(
max

s�t,s∈R+
rn

‖X(s)‖ ≤ un(τ) < ‖X(t)‖

)
−

exp

− ∑
i∈Rm(t)

f(un(τ)−1X(i))

1

(
max

s≺t,s∈Rm(t)
‖X(s)‖ ≤ un(τ) < ‖X(t)‖

)∣∣∣∣∣∣
 .

Since f vanishes in a neighbourhood of the origin, there is 0 < v ≤ 1 such that f(x) = 0 when
‖x‖ ≤ v. Therefore, for each fixed t ∈ I, the difference in the sum above will be nonzero only if
un(τ)−1‖X(s)‖ > v for some s ∈ (R+

rn\Rm(t)). By stationarity, this sum is upper bounded by∑
t∈I

P
(
MX(R+

rn\Rm(t)) > un(τ)v, ‖X(t)‖ > un(τ)
)

≤

(
k∏
`=1

rn`

)
P (MX(Rrn\Rm) > un(τ)v, ‖X(0)‖ > un(τ)) .

On the other hand, for each t ∈ R+
rn\I, the summand is upper bounded by

E

[
exp

{
−
∑

s∈Rm

f(un(τ)−1X(s))

}
1

(
max

s≺0,s∈Rm

‖X(s)‖ ≤ un(τ) < ‖X(0)‖
)]
≤ P(‖X(0)‖ > un(τ)).

Combining the two parts, we see that the difference in (5.7) does not exceed

1

P(MX(R+
rn) > un(τ))

[(
k∏
`=1

rn`

)
P (MX(Rrn\Rm) > un(τ)v, ‖X(0)‖ > un(τ))

+Card(R+
rn\I)P(‖X(0)‖ > un(τ))

]
=

1

θn

[
P (MX(Rrn\Rm) > un(τ)v | ‖X(0)‖ > un(τ)) +

Card(R+
rn\I)∏k

`=1 rnl

]
→ 0



16 LIFAN WU AND GENNADY SAMORODNITSKY

as n→∞,m→∞, where we have used (5.6). Therefore, for any sequence (nk) converging to ∞,
along which θn has a (positive) limit, say, L,

lim
k→∞

E

exp

−
∑

t∈R+
rnk

f(unk
(τ)−1X(t))


∣∣∣∣∣∣∣MX(R+

rnk
) > unk

(τ)


= lim

m→∞
lim
k→∞

θ−1nk
E

[
exp

{
−
∑

t∈Rm

f(unk
(τ)−1X(t))

}

1

(
max

t≺0,t∈Rm

‖X(t)‖ ≤ unk
(τ)

) ∣∣∣∣∣ ‖X(0)‖ > unk
(τ)

]

=L−1E

exp

−∑
t∈Zk

f(Y(t))

1

(
max
t≺0
‖Y(t)‖ ≤ 1

) .
Choosing f = 0 gives us

L = P
(

max
t≺0
‖Y(t)‖ ≤ 1

)
,

which implies several things. First of all, it implies that all subsequential limits L are equal, so
the array (θn) has a limit as n → ∞. Therefore the block extremal index exists and is positive,
and θb = θhalf . This also proves the convergence of the Laplace transform of the cluster process
computed under its conditional law:

lim
n→∞

E

exp

− ∑
i∈R+

rn

f(un(τ)−1X(i))


∣∣∣∣∣∣MX(R+

rn) > un(τ)


=E

exp

−∑
t∈Zk

f(Y(t))


∣∣∣∣∣∣max

t≺0
‖Y(t)‖ ≤ 1


for any nonnegative continuous f on (R)d \ {0} with a compact support. This, of course, proves
the stated weak convergence of the conditional laws of the cluster process.

One shows that the Laplace transform ΨC(f) of the limiting point process computed under its
conditional law has the expression in the right hand side of (5.5) using the same argument as in
Basrak and Segers (2009), using the invariant order ≺. Finally, (5.3) follows from (5.5) applied to
the zero function. �

Remark 5.3. It is elementary to check that, if f(x) = 0 whenever ‖x‖ ≤ 1, then the obvious
analogue of an alternative expression (4.6) in Basrak and Segers (2009) for the Laplace transform
ΨC(f) holds as well. Furthermore, under both Condition 5.1 and the asymptotic independence of
extremal clusters condition

E

exp

− ∑
t∈R+

n

f(un(1)−1X(t))


−

E

exp

− ∑
t∈R+

rn

f(un(1)−1X(t))




∏k
`=1bn`/rn`

c

→ 0



17

for every continuous function f with a compact support, one also obtains a picture of exceedance
clusters on a larger scale, as in Theorem 4.5 ibid. For the point process

Nn =
∑
t∈R+

n

δun(1)−1X(t)

one obtains weak convergence in the space of Radon measures on (R)d \ {0} to a cluster Poisson
point process whose restriction to the set {x : ‖x‖ > a}, a > 0, has the representation

Pa∑
i=1

∑
t∈Zk

δaZi(t)1
(
‖Zi(t)‖ > 1

)
,

where
(
Zi(t), t ∈ Zk

)
, i = 1, 2, . . . are i.i.d. copies of the single cluster limiting process in Theorem

5.2, independent of a mean θbu
−α Poisson random variable Pa. A different, and very detailed,

representation of the entire limiting point process is in Basrak and Planinić (2018).

6. Brown-Resnick Random Fields

The tail field is a convenient formalism to describe the extremes of a jointly regularly varying
stationary random field. It is useful, in particular, in describing the extremal clusters, and it can
be used to define versions of the extremal index. In order to make it concrete, in this section, we
focus on the class of the so-called Brown-Resnick random fields. For simplicity we will keep the
values of the field one-dimensional, with the standard Fréchet marginal distributions.

Let (W (t) : t ∈ Rk) be a stationary increment (real-valued) zero-mean Gaussian random field,
with variance σ2(t) and variogram γ(t) = E(W (t) − W (0))2, t ∈ Rk. The stationarity of the
increments means that E(W (t) −W (s))2 = γ(t − s) for all t, s ∈ Rk. Let (Wi(t) : t ∈ Rk), i ∈ N
be i.i.d. copies of this random field, independent of a Poisson point process

∑∞
i=1 δUi on R+

with intensity du/u2. The Brown-Resnick random field associated with the Gaussian random field
(W (t) : t ∈ Rk) is defined by

X(t) = max
i=1,2,...

Ui exp{Wi(t)− σ2(t)/2} .(6.1)

Since E
(
exp{W (t)− σ2(t)/2}

)
= 1 for each t, this is a well defined max-stable random field with

the standard Fréchet marginal distributions; see de Haan (1984). Furthermore, it is a stationary
random field (even when the Gaussian random field (W (t) : t ∈ Rk) itself is not stationary); see
Theorem 2 and Remark 3 in Kabluchko et al. (2009). As any max-stable random field with the
standard Fréchet marginal distributions, the Brown-Resnick random field is multivariate regular
varying (with α = 1). This fact is also seen from the following proposition, that computes the law
of the tail field of this random field.

Proposition 6.1. The Brown-Resnick random field (X(t) : t ∈ Zk) is multivariate regularly
varying, and the finite-dimensional distributions of its tail field (Y (t) : t ∈ Zk) can be computed by

P(Y (t1) ≤ y1, . . . , Y (tn) ≤ yn)

=E
[

max
i=1,...,n

(
1

yi
exp

{
W (ti)−

σ2(ti)

2

}
, exp

{
W (0)− σ2(0)

2

})]
− E

[
max
i=1,...,n

1

yi
exp

{
W (ti)−

σ2(ti)

2

}]
(6.2)
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for t1, . . . , tn ∈ Zk and positive y1, . . . , yn. In particular, the marginal distributions of the tail field
are given by

P(Y (t) ≤ y) = Φ

(
2 ln y + γ(t)

2
√
γ(t)

)
− 1

y
Φ

(
2 ln y − γ(t)

2
√
γ(t)

)
,(6.3)

for t ∈ Zk and y > 0. Here Φ(·) is the standard normal cdf.

Proof. Let Vi(t) = exp{Wi(t) − σ2(t)/2}. Then for any finite set of points in Zk and positive
numbers,

P(X(t1) ≤ x1, . . . , X(tn) ≤ xn) = exp

{
−E

[
max

(
V (t1)

x1
, . . . ,

V (tn)

xn

)]}
,(6.4)

so

P(x−1X(t1) ≤ y1, . . . , x−1X(tn) ≤ yn | X(0) > x)

=
P(X(t1) ≤ xy1, . . . , X(tn) ≤ xyn)− P(X(t1) ≤ xy1, . . . , X(tn) ≤ xyn, X(0) ≤ x)

P (X(0) > x)

=
exp

{
−E

[
max

(
V (t1)
xy1

, . . . , V (tn)
xyn

)]}
− exp

{
−E

[
max

(
V (t1)
xy1

, . . . , V (tn)
xyn

, V (0)
x

)]}
1− e−1/x

∼x
[
exp

{
−1

x
E
[

max
i=1,...,n

1

yi
exp

{
W (ti)−

σ2(ti)

2

}]}
− exp

{
−1

x
E
[

max
i=1,...,n

(
1

yi
exp

{
W (ti)−

σ2(ti)

2

}
, exp

{
W (0)− σ2(0)

2

})]}]
,

which converges, as x → ∞, to the expression in the right hand side of (6.2). In particular, the
marginal distributions satisfy

P(Y (t) ≤ y)

=E
[
max

(
1

y
exp

{
W (t)− σ2(t)

2

}
, exp

{
W (0)− σ2(0)

2

})]
− E

[
1

y
exp

{
W (t)− σ2(t)

2

}]
,

and (6.3) follows by straightforward calculations with lognormal random variables; see e.g. Lien
(1986). �

We will investigate the extremal behaviour of the restriction of the Brown-Resnick random field
to the integer grid Zk. The first question is whether this field satisfies Condition 5.1 (and, hence,
also the assumption (4.5)). The answer is given in the following proposition.

Proposition 6.2. Let (X(t) : t ∈ Zk) be the Brown-Resnick random field (6.1) corresponding to a
stationary increment zero-mean Gaussian random field with variance σ2(t). Then (X(t) : t ∈ Zk)
satisfied Condition 5.1 if and only if the Gaussian field satisfies

(6.5) lim
t→∞, t∈Zk

(
Wi(t)− σ2(t)/2

)
= −∞ a.s..

Proof. Choose and fix the arrays (un(τ)) and (rn). By the inclusion-exclusion formula,

P (MX(Rrn\RM1) > un(τ) | ‖X(0)‖ > un(τ))

= 1− P (MX(Rrn\RM1 ∪ {0}) > un(τ))− P (MX(Rrn\RM1) > un(τ))

P (‖X(0)‖ > un(τ))
,
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so Condition 5.1 is satisfied if and only if

lim
M→∞

lim inf
n→∞

un(τ) [P (MX(Rrn\RM1 ∪ {0}) > un(τ))− P (MX(Rrn\RM1) > un(τ))] = 1 .(6.6)

By (6.4), as n→∞,

P (MX(Rrn\RM1 ∪ {0}) > un(τ))− P (MX(Rrn\RM1) > un(τ))

= exp

{
−un(τ)−1E max

t∈Rrn\RM1

V (t)

}
− exp

{
−un(τ)−1E max

t∈Rrn\RM1∪{0}
V (t)

}
∼un(τ)−1

[
E max

t∈Rrn\RM1∪{0}
V (t)− E max

t∈Rrn\RM1

V (t)

]
exp

{
−un(τ)−1E max

t∈Rrn\RM1

V (t)

}
.

Since

0 ≤ un(τ)−1E max
t∈Rrn\RM1

V (t) ≤ un(τ)−1
∑

t∈Rrn\RM1

EV (t)

= un(τ)−1Card
(
Rrn\RM1

)
→ 0 ,

(6.6) is equivalent to

lim
M→∞

lim inf
n→∞

E
[

max
t∈Rrn\RM1∪{0}

V (t)− max
t∈Rrn\RM1

V (t)
]

= 1 .(6.7)

Suppose first that (6.5) holds, i.e. that V (t)→ 0 a.s. as t→∞. Then

lim
M→∞

lim inf
n→∞

E
[

max
t∈Rrn\RM1∪{0}

V (t)− max
t∈Rrn\RM1

V (t)
]

= lim
M→∞

E
[

max
t∈(RM1)c∪{0}

V (t)− max
t∈(RM1)c

V (t)
]

= EV (0) = 1 ,

so (6.7) is satisfied.
Suppose, on the other hand, that (6.5) fails. Then there is a > 0 and an event A of positive

probability such that

(6.8) lim sup
t→∞, t∈Zk

V (t) > a on A.

Therefore, on A, for all M ,

lim sup
n→∞

[
max

t∈Rrn\RM1∪{0}
V (t)− max

t∈Rrn\RM1

V (t)
]
≤ max(V (0), a)− a .(6.9)

Since for every n

max
t∈Rrn\RM1∪{0}

V (t)− max
t∈Rrn\RM1

V (t) ≤ V (0) ,

an integrable random variable, we can use Fatou’s lemma in the form

lim
M→∞

lim inf
n→∞

E
[

max
t∈Rrn\RM1∪{0}

V (t)− max
t∈Rrn\RM1

V (t)
]

≤ lim
M→∞

lim sup
n→∞

E
[

max
t∈Rrn\RM1∪{0}

V (t)− max
t∈Rrn\RM1

V (t)
]

≤ lim
M→∞

E lim sup
n→∞

[
max

t∈Rrn\RM1∪{0}
V (t)− max

t∈Rrn\RM1

V (t)
]
.

The upper limit inside the expectation cannot exceed V (0) and, by (6.9), it is strictly smaller than
V (0) on an event of a positive probability. Therefore,

lim
M→∞

lim inf
n→∞

E
[

max
t∈Rrn\RM1∪{0}

V (t)− max
t∈Rrn\RM1

V (t)
]
< EV (0) = 1 ,
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and (6.7) fails. �

Since the condition (6.5) cannot be satisfied if the Gaussian random field (W (t) : t ∈ Rk) is
stationary (and nontrivial), Condition 5.1 is not satisfied for the corresponding Brown-Resnick
random field. Furthermore, denoting the constant variance of the Gaussian field by σ2 > 0, we
have by (6.3),

P(Y (t) > 1) = 2Φ

(
−1

2

√
γ(t)

)
≥ 2Φ(−σ).

Therefore, the tail field does not necessarily vanish as t→∞, and the extremal clusters may last
indefinitely.

The following corollary is an immediate consequence of propositions 6.1 and 6.2.

Corollary 6.3. Let (X(t) : t ∈ Zk) be the Brown-Resnick random field (6.1) corresponding to a
stationary increment zero-mean Gaussian random field with variance σ2(t), satisfying (6.5). Then
the block extremal index θb exists, is positive and equal to θhalf for every invariant order on Zk,
and can be computed by

θb = E
[
max
t�0

exp
{
W (t)− σ2(t)/2

}]
− E

[
max
t≺0

exp
{
W (t)− σ2(t)/2

}]
.(6.10)

Proof. By Proposition 6.2, Condition 5.1 is satisfied. By Theorem 5.2 the block extremal index θb
exists, is positive and, using (6.2),

θb = θhalf = P
(

max
t≺0

Y (t) ≤ 1

)
= E

[
max
t�0

exp
{
W (t)− σ2(t)/2

}]
− E

[
max
t≺0

exp
{
W (t)− σ2(t)/2

}]
.

�

Since an exact simulation of Brown-Resnick random fields is not easy (see e.g. Dieker and Mikosch
(2015); Oesting et al. (2012)), results of the type (6.10) can be used for numerical evaluation of the
extremal index of the field. We demonstrate this on an example.

Example 6.4 (Brown-Resnick field corresponding to the additive Fractional Brownian motion).
Recall that the standard Fractional Brownian motion with Hurst paremeter 0 < H < 1 is a
stationary increment zero-mean Gaussian process on R, vanishing at the origin, with the variogram
γ(t) = |t|2H , t ∈ R. Let fBmHi(t) ∈ R, i = 1, . . . , k be independent standard Fractional Brownian
motions, with respective Hurst parameters H1, . . . ,Hk. Then

W (t1, . . . , tk) = fBmH1(t1) + · · ·+ fBmHk
(tk), t = (t1, . . . , tk) ∈ Rk

is a zero mean stationary increment Gaussian random field, the additive Fractional Brownian
motion. It is elementary to check that each standard Fractional Brownian motion satisfies (6.5)
(this follows, for example, by the Borel-Cantelli lemma). Therefore, so does the additive Fractional
Brownian motion.

For k = 2 we have used (6.10) to calculate the block extremal index of the Brown-Resnick random
field corresponding to the additive Fractional Brownian motion. In this calculation we truncated
the domain of the additive Fractional Brownian motion to the square [−200, 200] × [−200, 200].
The results are plotted on Figure 1 as a function of H1 and H2.
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Figure 1. Extremal index vs. Hurst parameters

Figure 1 shows a positive relationship between θb and the Hurst parameters. This can be under-
stood by noticing that, the smaller is the Hurst parameter, the slower is the variance increasing,
the closer is the Fractional Brownian motion to the case of a constant variance, i.e. of stationarity.
As we are discussing above, when the Gaussian random field is stationary, the extremal clusters of
the corresponding Brown-Resnick random field can be very large.

7. Acknowledgements
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B. Basrak and H. Planinić (2018): Compound Poisson approximation for random fields with
application to sequence alignment. Preprint.

B. Basrak and J. Segers (2009): Regularly varying time series. Stochastic Processes and Their
Applications 119:1055–10180.

Y. Cho, R. David and S. Ghosh (2016): Asymptotic properties of the empirical spatial ex-
tremogram. Scandinavian Journal of Statistics 43:757–773.

H. Choi (2002): Central Limit Theory and Extremes of Random Fields. Ph.D. thesis, University
of North Carolina at Chapel Hill.

R. Davis and T. Mikosch (2008): Extreme value theory for space-time processes with heavy
tailed distributions. Stochastic Processes and Their Applications 118:560–584.

R. Davis and T. Mikosch (2009): The extremogram: a correlogram for extreme events. Bernoulli
15:977–1009.

L. de Haan (1984): A spectral representation for max-stable processes. The Annals of Probability
12:1194–1204.

T. Dieker and T. Mikosch (2015): Exact simulation of Brown-Resnick random fields at a finite
number of locations. Extremes 18:301–314.



22 LIFAN WU AND GENNADY SAMORODNITSKY

H. Ferreira and L. Pereira (2008): How to compute the extremal index of stationary random
fields. Statistics and Probability Letters 78:1301–1304.

H. Hult and F. Lindskog (2005): Extremal behavior for regularly varying stochastic processes.
Stochastic Processes and Their Applications 115:249–274.

A. Janßen (2018): Spectral tail processes and max-stable approximations of multivariate regularly
varying time series. arXiv:1704.06179, To appear in Stochastic Processes and Applications.

Z. Kabluchko, M. Schlather and L. de Haan (2009): Stationary max-stable fields associated
to negative definite functions. Annals of Probability 37:2042–2065.

M. Leadbetter (1983): Extremes and local dependence of stationary sequences. Zeitschrift für
Wahrscheinlichkeitstheorie und verwandte Gebiete 65:291–306.

M. Leadbetter and H. Rootzén (1998): On extremes values in stationary random fields. In
Stochastic Processes and related Topics. Birkhäuser, Boston, pp. 275–285.
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