
Shoal: A Lossless Network
for High-density and Disaggregated Racks

Vishal Shrivastav*, Asaf Valadarsky†, Hitesh Ballani‡, Paolo Costa‡, Ki Suh Lee*,
Han Wang*, Rachit Agarwal*, Hakim Weatherspoon*

* Cornell University † The Hebrew University of Jerusalem ‡ Microsoft Research Cambridge

ABSTRACT
Rack-scale computers comprise hundreds of micro-servers
connected to internal storage and memory through an inter-
nal network. However, their density and disaggregated na-
ture pose a problem for existing packet-switched networks:
they are too costly, draw too much power, and the network
latency is too high for converged traffic (comprising IP, stor-
age, and memory traffic). We propose Shoal, a rack-scale
network that tightly integrates a circuit-switched physical
fabric with the nodes’ network stack to efficiently support
converged traffic. Shoal’s fabric comprises circuit switches
with no buffers, no arbitration, and no packet inspection
mechanism. Micro-servers transmit according to a static
schedule such that there is no in-network contention. Shoal’s
congestion control leverages the physical fabric to achieve
fairness, losslessness, and both bounded worst-case through-
put and queuing. We use an FPGA-based prototype and sim-
ulations to illustrate Shoal’s mechanisms are practical and
achieve low latency within the rack at low cost and power.

1. INTRODUCTION
Rack-scale computers have the potential to replace servers

as the basic unit of deployment in large-scale. They com-
prise hundreds of micro-servers, connected to storage and
memory through an internal network, within a single enclo-
sure. The micro-servers (or rack nodes) are built as single-
die SoCs (systems-on-chip), which yields power and perfor-
mance gains and allows many nodes to be packed into the
same rack [11, 24, 30]. Several rack-scale computer designs
have been proposed, including commercial products [22,52,
53, 61, 69] and research platforms [6, 7, 12, 34, 38, 65]. Their
density and disaggregated nature, however, pose the follow-
ing challenges for the network.

First, a typical rack is expected to house 10× the nodes
in today’s racks. These nodes can be connected through off-
the-shelf chassis switches with hundreds of ports [54, 63].
However, such a switch would occupy more than half a rack
and consume more than a quarter of the rack’s total power
budget, not to mention its very high cost (§2). This has
prompted custom designs for rack-scale networks, typically
involving direct-connect topologies whereby each node is
connected to a few other rack nodes. However, this requires

many NICs per node, and routing traffic across multiple rack
nodes hurts network throughput and latency (§7) and com-
plicates routing and congestion control [11].

Second, unlike traditional servers where CPUs, memory,
and storage are all packed onto a motherboard, resources in-
side a rack may be disaggregated and, hence, accessed across
the network [16, 17]. This necessitates a “converged net-
work” that, apart from IP traffic, also carries traffic to remote
storage and non-volatile memory. The network thus needs to
offer very low latency; around 100 µs for storage traffic and
10 µs for non-volatile memory [43]. Furthermore, storage
and memory protocols rely on lossless delivery, and their
performance falls sharply in the face of packet losses [48].

Today’s network designs are unable to cope with these
challenges due to their packet switched nature. Packet
switching necessitates buffers and arbitration at each switch,
which are major contributors to the switch’s chip area [29].
In datacenters and WANs, this is a small price to pay for
having an asynchronous, loosely coupled network whereby
the network core can evolve independent of the servers’ net-
work stack. These properties are, however, not as critical for
rack-scale networks as they can be synchronized and are co-
designed with the rack nodes, while the drawbacks of packet
switching are very relevant. Increased chip area and hence,
high switch power and cost makes it hard to accommodate
high density. Loose coupling makes it hard to achieve low
latency. Indeed, recent proposals for low latency in datacen-
ter networks [32, 48] rely on a tighter coupling between the
network and servers through mechanisms like priority-based
flow control (PFC).

In this paper, we argue that circuit switches are bet-
ter suited to high-density, disaggregated racks because they
have no buffers, no arbitration and no packet inspection
mechanisms. As a result, they are an order of magnitude
cheaper and power efficient than an equivalent packet switch
(§6) and once configured, impose very little latency. We
thus propose Shoal, a rack-scale network that tightly couples
a circuit-switched physical fabric with the network stack at
rack nodes to provide low latency connectivity at low cost.
Using circuit switches, however, poses two challenges.

First, it requires that we schedule the fabric, i.e., config-
ure the appropriate circuits. Unlike past solutions that use

a central entity to reconfigure circuits based on traffic pat-
terns [10,21,37], Shoal reconfigures the fabric using a static
schedule that connects each pair of nodes at an equal rate.
To accommodate dynamic traffic patterns atop such a static
schedule, traffic from each node is uniformly distributed
across all rack nodes which then forward it to the destination;
a form of detour routing. Such coordination-free scheduling,
first proposed by Chang et al. [9] as an extension of Valiant’s
method [44], obviates the complexity and latency associated
with centralized schedulers while guaranteeing the worst-
case throughput across any traffic pattern [9].

Such scheduling, however, requires that all nodes are con-
nected through a single circuit switch. To achieve this,
Shoal’s fabric comprises many low port-count electrical cir-
cuit switches connected in a Clos topology. When reconfig-
ured synchronously, the switches operate like a single rack-
wide circuit switch. Furthermore, we decompose the static,
equal-rate schedule for the fabric into static schedules for the
constituent switches. The use of detouring, however, means
that such scheduling imposes a throughput overhead. We
compensate for this simply by using more (cheap) switches
in our fabric and equipping nodes with higher bandwidth
NICs while maintaining lower cost.

Second, achieving low latency across a circuit-switched
fabric requires both fast switching and efficient congestion
control. The fabric switching latency is dictated by the re-
configuration time of the circuit switches and by the gran-
ularity of time synchronization. We leverage recent ad-
vancements in electrical circuit switches that, unlike com-
mercial optical circuit switches, offer very fast reconfigura-
bility. For example, commercial circuit switch ASICs can
be reconfigured in 2 ns [64] while our prototype FPGA-
based circuit switch can be reconfigured in <6.4 ns. We also
show that nanosecond-granularity time synchronization can
be achieved at rack-scale using existing techniques (§3.4).

Congestion control atop Shoal’s fabric is hard due to high
multi-pathing—traffic between a pair of nodes is routed
through all rack nodes. Shoal leverages the fact that the
fabric directly connects each pairs of nodes at regular in-
tervals to achieve an efficient realization of backpressure-
based congestion control. Specifically, each source node re-
ceives explicit feedback about the queue size at intermediate
nodes and computes the fair sending rates for its flows. The
tight coupling of congestion control to the fabric allows us to
achieve a bound on the queue size at each node. Rack nodes
can thus be provisioned to ensure that, in the absence of fail-
ures, the network is lossless. Furthermore, our backpressure-
based mechanism is amenable to hardware implementation.

Overall, this paper makes the following contributions:
• We present a rack-scale network architecture that couples

circuit switches with the servers’ network stack to provide
low-latency connectivity at low cost and power.

• We design a fabric that uses low port-count circuit
switches to offer the abstraction of a rack-wide circuit
switch. We also scale the coordination-free scheduling

technique to operate across the fabric.

• We devise a simple congestion control mechanism that
leverages the equal rate connectivity provided by Shoal’s
fabric to achieve fair allocation, bounded queuing, and a
lossless network.

• We demonstrate that our FPGA-based prototype can
achieve low-latency switching. We also use it to show that
our scheduling and congestion control mechanisms can be
efficiently implemented in hardware.
Through a four-node FPGA-based testbed, we show

that our implementation achieves both high throughput
and bounded queuing. Using a cross-validated simulator,
we show that these properties hold at scale too. Across
datacenter-like workloads, Shoal improves the throughput
and latency up to a factor of 2 and 7.5 respectively, as com-
pared to a packet-switched network using TCP. To compen-
sate for the throughput impact of detouring packets, Shoal
equips nodes with 2× bandwidth, yet its resulting cost can
be more than 50% lower than a packet-switched network.

2. MOTIVATION
The density of rack-scale computers, coupled with the dis-

aggregation of processing, memory, and storage inside the
rack, poses new challenges for their internal network. We
begin by considering how conventional datacenter networks
could be adapted for rack-scale computers and the shortcom-
ings of such an approach.

Strawman designs. Chassis switches with hundreds of
ports, often used at higher levels of a datacenter’s network
hierarchy, could connect all rack nodes but at significant
cost, power, and space. For example, the Cisco Nexus
7700 switch can support 768 ports at 10 Gbps (only 192
at 100 Gbps). Yet, it consumes 4 KW power and occupies
26 RU [54], which is 26% and 54% of the rack’s power and
space budget respectively. A rack’s total power has a hard
limit of around 15 KW due to constraints on power supply
density, rack cooling and heat dissipation [49].

We also considered a custom solution involving commod-
ity switches. The current generation of top of rack switches
support 64 ports at 50 Gbps [71]. Connecting 512 nodes in
a rack-scale computer through a non-blocking network with
50 Gbps per node would require 24 such switches connected
in a two-stage Clos topology. The power consumption of the
network would be around 3 KW and the total network would
cost $1.17 M (see §6).

Packet vs. circuit switching. The high power and cost of
these strawman designs is rooted in the packet switched na-
ture of the network. Packet switches need to inspect incom-
ing packets, buffer them, and arbitrate traffic across ports.
While numbers for commercial switches are hard to obtain,
in network-on-chip (NoC) designs, the logic for these mech-
anisms can consume over 90% of the chip area and 33% of
the total energy [29, 35].

On the positive front, packet switching allows the network
core to be loosely coupled with the servers’ network stack.
Traditionally, this has been a good trade-off—the increased
cost and power of switches is justified given that loose cou-
pling has allowed the core network technologies to evolve
independent of the servers’ network stack. This also makes
it easier for servers to work around in-network failures and
allows the network to be asynchronous. These positives,
however, do not hold up inside a rack. The physical size
of a rack means that achieving rack-wide synchronization is
feasible. Furthermore, a lot of the density and cost benefits
of rack-scale computers come from the co-design of servers
and the network, so independent evolution is not critical. Fi-
nally, since the rack is deployed and upgraded as a unit, the
failure modes are different from traditional networks.

Instead, we argue that a circuit-switched network offers a
different set of trade-offs that are more suited to rack-scale
computers. Compared to an equivalent packet switch, to-
day’s circuit switches are 25× cheaper and draw 4× less
power due to the lack of buffers and arbitration (§6). Thus,
they can better accommodate higher density. Circuit switch-
ing does necessitate a tightly coupled network whereby all
rack nodes need to be synchronized and all traffic needs to
be explicitly scheduled. While these are hard challenges, we
show that they are manageable in a rack-scale setting and
the resulting benefits are significant. For example, instead
of sharing the network through TCP-like mechanisms that
rely on implicit signals like packet loss, it allows for explicit
congestion control mechanisms that are more amenable to
meeting stringent performance requirements.

Motivated by these observations, in this paper, we inves-
tigate the feasibility of a circuit-switched network for high-
density and disaggregated racks that can be built using com-
mercially available components.

3. DESIGN
Shoal is a rack-scale network architecture. It comprises

a network stack at the rack nodes which is tightly coupled
with a circuit-switched physical fabric.

3.1 Design overview
Shoal’s architecture is shown in Fig. 1. Each rack node is

equipped with a network interface connecting it to the Shoal
fabric. The fabric comprises a hierarchical collection of
smaller circuit switches that are reconfigured synchronously.
Hence, the fabric operates like a single, giant circuit switch
(§3.2). The use of a circuit switched fabric means that we
need to schedule it. One possible approach is to schedule it
on-demand, i.e., connect nodes depending on the rack’s traf-
fic matrix. However, such on-demand scheduling requires
complicated scheduling algorithms and demand estimation,
and may make it hard to meet low-latency constraints.

Instead, Shoal uses coordination-free scheduling [9].
Specifically, each circuit switch forwards fixed-sized packets
or “cells” between its ports based on a pre-defined “sched-

Sh
o

al Fab
ric

Rack node

N/W
Interface

SoC

Shoal Network Stack

1 2 N-1

Network Flow

Rack

R
at

e

lim
it

e
rs

P
er

-n
od

e
FI

FO
s

Figure 1: Shoal architecture: it comprises a network stack at
rack nodes that are connected by the Shoal fabric. The fabric
is constructed using low port-count circuit switches arranged
in a Clos topology.

Time slot
1 2 3 4 5 6 7

Node

1 2 3 4 5 6 7 8
2 3 4 5 6 7 8 1
· · · · · · · ·
· · · · · · · ·
8 1 2 3 4 5 6 7

Figure 2: Fabric schedule for a rack with 8 nodes.

ule”. These per-switch schedules, when taken together, yield
a schedule for the fabric which dictates when different node
pairs are connected to each other. The schedule for individ-
ual switches is chosen such that the fabric’s schedule pro-
vides equal rate connectivity between each pair of nodes.
To accommodate any traffic pattern atop the uniform con-
nectivity offered by the fabric, each node spreads its traffic
uniformly across all other rack nodes which then forward it
to the destination (§3.3.1).

The second mechanism implemented in Shoal’s network
stack is a congestion control technique that enables a loss-
less fabric through bounded-size queues (§3.3.2). Our main
insight here is that the periodic connection of nodes in a rack
by the fabric enables an efficient realization of backpressure-
based congestion control. Specifically, one of the main chal-
lenges in implementing backpressure style mechanisms over
multi-hop networks is instability for dynamic traffic pat-
terns [23]. In Shoal, we restrict the backpressure mechanism
to be a single hop only, avoiding the instability issue alto-
gether while benefiting from the fact that such mechanisms
allow for efficient hardware implementation.

In this paper, we focus on intra-rack connectivity. A key
open question is the external connectivity of a Shoal rack.
Existing rack designs typically use a few rack nodes as gate-
ways which could also be adapted for Shoal. A more promis-
ing yet challenging option is to amend our design to explic-
itly accommodate multiple inter-connected Shoal racks. We
leave an exploration of this avenue for future work.

3.2 Shoal fabric
Shoal uses a pre-defined, static schedule to reconfigure

1 2 3 4 5 6 7 8
S

w
it

ch
 1

a b

c d

Figure 3: Circuit switches in a two-stage Clos topology.

Time slot
1 2 3 4 5 6 7

Port

a d c d c d c d
b c d c d c d c
c b a b a b a b
d a b a b a b a

Figure 4: Switch 1’s schedule (see Fig. 3 for topology).

the fabric such that the rack nodes are connected at an equal
rate. Fig. 2 shows an example schedule for a rack with N = 8
nodes. Thus, in a rack with N nodes, each pair of nodes is
directly connected by the fabric once every N−1 time slots,
where a slot refers to the cell transmission time.

However, constructing a monolithic switch with hundreds
of high-bandwidth ports is intractable due to chip manu-
facturing constraints. Instead, Shoal’s fabric comprises low
port-count circuit switches connected in a non-blocking Clos
topology. Arranging k-port circuit switches in a two-stage
Clos topology allows the fabric to connect k2

2 nodes. For e.g.,
using today’s electrical circuit switches [64], with 64 ports
at 50 Gbps, in such a topology allows us to connect a rack
with 2048 nodes. Fig. 3 shows six 4-port circuit switches
arranged in such a topology to implement an 8-port fabric.
Packets between any two nodes are always routed through
both stages of the topology, even if the nodes are connected
to the same switch (like nodes 1 and 2 in the figure). Since
the topology is non-blocking, this does not impact network
throughput. It ensures, however, that the distance between
any two rack nodes is the same which, in turn, aids rack-
wide time synchronization (§3.4).

We decompose the schedule of the overall fabric into the
schedule for each constituent circuit switch. Consider the
example fabric shown in Fig. 3. Fig. 2 shows the schedule
for this fabric while Fig. 4 shows the schedule for one of the
simple switches (switch 1). Notice that unlike the fabric’s
schedule, each simple switch’s schedule does not provide
equal rate connectivity between its ports. For e.g., on switch
1, ports a and b are never connected to each other, only to
ports c and d; i.e., packets are never routed directly between
ports a and b. Each switch’s schedule is still contention-free,
i.e., at a given instant, any port is connected to only one port.
This allows the switch to do away with any buffers and any
mechanisms for packet inspection or packet arbitration.

3.3 Shoal network stack
Shoal’s network stack spreads a node’s traffic uniformly

across the rack to ensure guaranteed network throughput,
and implements a congestion control technique that ensures

bounded network queuing. We explain these below.

3.3.1 Data plane
Rack nodes send and receive fixed-sized cells. Packets

received from applications are thus fragmented into cells at
the source node and reassembled at the destination. Each
cell has a header that contains the corresponding packet’s
destination and other control information.

Cells sourced by a node, irrespective of their destination,
are sent to the next node the source is connected to. This uni-
formly spreads traffic across all other rack nodes. Each node
has a set of FIFO queues, one for every node in the rack.
Cells arriving at an intermediate node are put into the queue
corresponding to their final destination. This act of putting
cells into the appropriate queue is what actually achieves the
“switching” function. It also ensures traffic is forwarded
through at most one intermediate node. These queues are
served according to the node’s transmission schedule.

We highlight two key aspects of this simple design. First,
uniformly distributing traffic is perfectly suited to the equal
rate connectivity provided by the Shoal fabric. This guar-
antees the worst-case throughput across any traffic pat-
tern [9]—Shoal’s network throughput can be at most 2×
worse than that achieved by a hypothetical, rack-wide ideal
packet switch. To compensate for this throughput reduction
due to detouring, we double the aggregate bisection band-
width of the fabric. The low cost of our circuit switches
makes this a good trade-off: as we show in §6, the cost of
the resulting network is still estimated to be much lower than
the cost of a traditional packet-switched network (with half
the bandwidth for each node’s uplink).

Second, when the fabric’s schedule connects node i to
node j, the former always transmits a cell; if the queue des-
tined to node j is non-empty, the cell at the head of the queue
is transmitted, else an empty cell is transmitted. This ensures
that each node periodically receives a cell from every other
rack node, which, in turn, enables implementing both an ef-
ficient backpressure-based congestion control (§3.3.2) and
also a simple mechanism for detecting failures (§3.5).

3.3.2 Congestion control
Each node sending traffic computes the appropriate rate

for its traffic to avoid congesting the network. In this section,
we begin with a discussion of the network topology resulting
from the periodic reconfiguration of the Shoal fabric and its
implications for congestion control, followed by a detailed
discussion of our design.
High Multi-pathing. The periodic reconfiguration of
Shoal’s fabric means that the entire network can be seen as a
complete mesh with virtual links between each pair of nodes.
For example, consider a rack with 8 nodes whose schedule
is shown in Fig. 2. Since each node is connected to every
node 1/7th of the time, the network provides the illusion of
a complete mesh with virtual links whose capacity is 1/7th

of each node’s total network bandwidth.

Shoal’s load balancing means that each nodes’s traffic is
routed through all the rack nodes on their way to their des-
tination, resulting in very high multi-pathing. In contrast,
the TCP suite of protocols, including protocols tailored for
datacenters [3, 46], as well as recently proposed protocols
for RDMA networks [32, 48] only use a single path. Even
multi-path extensions like MPTCP [40] target scenarios with
few tens of paths, which is an order of magnitude less than
the number of paths used by traffic in our fabric.
Design insights. Shoal’s congestion control design is based
on three key insights. First, we leverage the fact that the fab-
ric in an N-node rack directly connects each pair of nodes
once every N− 1 time slots. We refer to this interval as an
epoch. This means that, when the queues at an intermediate
node grow, it can send a timely backpressure signal to the
sender. As we detail below, the periodic nature of this sig-
nal coupled with careful design of how a sender reacts to it
allows us to bound the queue size across rack nodes.

Second, achieving per-flow fairness with backpressure
mechanisms is challenging [48], especially in multi-path
scenarios. In Shoal, a flow refers to all packets being ex-
changed between a pair of nodes. For network traffic, this
includes all transport connections between the nodes. For
storage traffic, this includes all IO between them. Each flow
comprises N− 1 flowlets, one corresponding to each inter-
mediate node. Shoal achieves max-min fairness across flows
by leveraging the fact that each flow comprises an equal
number of flowlets that are routed uniformly across a sym-
metric network topology, so we can achieve per-flow fairness
by ensuring per-flowlet fairness. We thus treat each flowlet
independently and aim to determine their fair sending rates.

Finally, each flowlet traverses two virtual links, either of
which can be the bottleneck. For e.g., a flowlet i→ j→ k can
either be bottlenecked at the virtual link between nodes i and
j, or between nodes j and k. We use the length of the queue
i → j, i.e., the queue at node i for cells destined to node
j, as an indication of the load on the virtual link between
nodes i and j. Note that the node sourcing the traffic, node
i, can observe the size of the local queue i→ j. It, however,
also needs to obtain information about the size of the remote
queue j→ k that resides at node j.
Congestion control mechanism. We use a flowlet from
source i to destination k through intermediate node j, i→
j→ k, as a running example to explain Shoal’s congestion
control. When node i sends a cell to node j, it records the
flowlet that the cell belongs to. Similarly, when node j re-
ceives the cell, it records the index k of the queue that the
cell is added to. The next time node j is connected to node i,
it embeds the current length of queue k into the cell header.

Each pair of nodes in the rack exchange a cell every epoch,
even if there is no actual traffic to be sent. Thus, when node i
sends a cell to node j, it gets feedback regarding the relevant
queue at j within the next epoch. Let us assume that node
i receives this feedback at time T . At time t, it knows the
instantaneous length of its local queue to node j, L(t), and

a sample of the length of the remote queue between nodes j
and k, R(T). The max-min fair sending rate for a flowlet is
governed by the most bottlenecked link on its path, i.e., the
link with the maximum queuing. As a result, the next packet
for this flowlet should only be sent after both the queues have
had time to drain, i.e., at least, max(L(T),R(T)) epochs have
passed since the feedback was received.

To achieve this, node i releases a cell for this flowlet into
its local queue j only when the current length of the local
queue, after accounting for the time since the last feedback,
exceeds the size of the remote queue. Specifically, a cell is
released at time t when the following condition holds:

L(t)+(t−T)≥ R(T) (1)
Shoal’s congestion control technique maintains the invari-

ant that any flowlet has at most one cell each in both the
local queue at its source and the remote queue at its inter-
mediate hop. To explain how this is achieved, we consider
the local queue first. A flowlet is allowed to release a new
cell into the local queue only after the previous cell has been
sent to the intermediate node and feedback about the remote
queue has been received. This ensures that the local queue
can have at most one cell for the flowlet. As for the remote
queue, let us assume that the remote queue already had a cell
belonging to the flowlet when the source received feedback
about the queue size. Thus, the source will only transmit the
next packet for this flowlet after the remote queue has been
drained. While the remote queue may receive other cells in
the meanwhile, the fact that it is serviced in a FIFO order
ensures that the flowlet’s previous cell is guaranteed to be
sent to the destination before the source transmits the next
cell towards the intermediate node.

When a new flow starts, there is no information about the
remote queues for any of its flowlets. The flow is allowed to
send one cell for each flowlet, thus a total of N−1 cells, be-
fore any rate limiting. However, as soon as all flowlets have
sent one cell each, the sender gets the feedback about the
queues at all intermediate nodes and hence, all flowlets are
rate limited according to the mechanism described above.
Queue length guarantee. The invariant that each flowlet
can have at most one cell queued at both the source and at
the intermediate node ensures that Shoal’s congestion con-
trol mechanism provides a guarantee for the maximum queu-
ing at rack nodes. Consider the queue at node i towards node
j. This queue can contain at most a cell for all flowlets and
hence, all flows that originate at node i, and at most a cell for
all flowlets and hence, all flows that have node j as their fi-
nal destination. Node i can source at most N−1 flows while
node j can be the destination for at most N− 2 other flows
(the flow from i to j is counted in the first set), so the maxi-
mum size of each queue is (N−1)+(N−2) = 2N−3.

This queue bound is very useful for several reasons: (i) It
bounds the maximum buffer needed at each node’s network
interface in order to ensure that cells are never dropped and
hence, the network is lossless. In a rack with 512 nodes and
256 B cells, each queue can grow to at most 260 KB. Since

each node has 511 queues, the maximum buffering needed
at each node is 133.6 MB. Moreover, buffers can be very
efficiently distributed between fast and slower memory, with
only a small fraction of buffering needed in the fast mem-
ory. This is a consequence of our design where we access a
buffer only once every epoch. In particular if the access la-
tency of slower memory is less than an epoch, we only need
to buffer N−1 cells in the fast memory, one cell per destina-
tion. Using the example above, this leads to a fast memory
buffer size of just 128 KB. (ii) Next, it bounds the amount
of bits required to encode the size of the queue in each cell’s
header; we only need log(2N−3) bits. For a 512-node rack,
this leads to 10 bits for the queue size feedback. (iii) Finally,
it bounds the maximum size of the reassembly buffer needed
when reassembling cells into packets.

3.4 Shoal slots and guard band
Shoal operates in a time slotted fashion. Slots are sepa-

rated by a “guard band” during which the switches are re-
configured. The guard band also accounts for any errors in
rack synchronization. We start by explaining these factors.
Circuit switch reconfiguration. Shoal uses electrical cir-
cuit switches that allow for rapid reconfiguration. Commer-
cial circuit switches [64] can be reconfigured in 2 ns while
our prototype implements an FPGA-based circuit switch that
can be reconfigured in much less then 6.4 ns (§4.1).
Time synchronization. Shoal’s slotted operation requires
that all rack nodes and switches are time synchronized, i.e.,
they agree on when a slot begins and ends. Synchronizing
large networks is hard, primarily because of high propaga-
tion delay and the variability in it. In contrast, fine-grained
rack-wide synchronization is tractable due to their size—a
typical rack is only a few meters high which means that, with
a signal propagation delay of 5 ns/m, the maximum propa-
gation latency across a rack is about 10-15 ns. Furthermore,
the rack can be constructed with tight tolerances to aid syn-
chronization. For example, if all links are the same length
with a tolerance of ± 5 cm, it ensures that propagation delay
varies by a maximum of 0.5 ns. Small physical distance also
mitigates the impact of temperature variations that could re-
sult in variable signal propagation delay.

Shoal leverages the WhiteRabbit synchronization tech-
nique [27, 31, 33] to achieve synchronization with bit-level
precision. The main idea is to couple frequency synchro-
nization with a time synchronization protocol like PTP [59]
or DTP [28]. Frequency synchronization is achieved by dis-
tributing the clock from a rack node, designated as the clock
master, to all other nodes and switches. The clock can be dis-
tributed explicitly, or implicitly through Synchronized Eth-
ernet (SyncE) [62] whereby nodes derive a clock from the
data they receive and use this clock for their transmissions.

Overall, the size of the guard band is the sum of the recon-
figuration delay and the precision of the synchronization.
Given the guard-band size, the operator can configure the

length of each slot to balance the trade-off between network
latency and throughput overhead: a smaller slot is better for
network latency yet it imposes higher throughput overhead.

3.5 Practical concerns
We now discuss a few practical concerns resulting from

Shoal’s design.
Clock and data recovery (CDR). A key challenge for any
network relying on fast circuit switches is that each node
needs to be able to receive traffic from different senders at
each timeslot. This requires that, at each timeslot, the incom-
ing bits are sampled appropriately so as to achieve error-free
reception. The sampling is done by the Clock and Data Re-
covery (CDR) circuitry at the receiver and typically takes a
few hundred microseconds [41]. However, we note that this
is only a problem when using layer 0 circuit switches that
operate at the raw physical layer, i.e., when a circuit is estab-
lished between two ports, the ports are physically connected.
Such a switch imposes no latency overhead but requires very
fast CDR circuitry at the receiver [41] in order to achieve a
reasonable guard band.

Today’s circuit switch ASICs can also operate at layer
1 [64]. Shoal uses such layer 1 circuit switches—when a
circuit is established between ports i→ j, the switch retimes
data received on port i before sending it to port j. With such
switches, each link in the network is a point-to-point link and
thus, fast CDR is not needed. Each switch, however, does
need to be equipped with a small buffer to account for any
differences in the clocks associated with ports i and j. For
Shoal, only a few bits worth of buffering is required since
the entire rack is frequency synchronized and the buffer is
only needed to absorb any clock jitter.
Propagation delay. Even at the scale of a rack, the propaga-
tion delay is not negligible as compared to the transmission
time of a cell. This means that a cell sent at time slot t will
not be received within the same slot at the receiver. More
generally, say that the cell is received at slot t + k. For the
feedback mechanism described in § 3.3.2 to work in the face
of such propagation delay, there should be at least k slots
from the time node i transmits to node j and the time node j
transmits to i, as j needs to know the destination of the last
cell that i sent to j. While we omit the details for brevity,
we can modify the fabric’s schedule to satisfy this condition
for all pair of rack nodes, as long as k is less than half the
number of slots in an epoch.
Failures. Shoal needs to cope with failures of nodes,
switches and the links connecting them. Tight integration
of the nodes’ network stack with the underlying fabric aids
fault detection and diagnosis. Specifically, we use the fact
that a node sends a cell to every other node in the rack, even
if there is no traffic to send, once every epoch. When a node
does not receive a cell from another node, it sends an alarm
message to the other rack nodes. Given a set of alarms, a
node can determine which node, switch or link has failed,
although it may not always be possible to determine the ex-

Logic utilization Memory utilization
ALMs Pins Block RAM (50MBits)

Shoal NIC 10% 10% 2%
Shoal Switch 7% 10% 1%

Table 1: Resource consumption for Stratix V FPGAs [70].

act root cause, especially if there are concurrent failures.
Once the failed component has been identified, the trans-

mission schedule of the remaining nodes is updated. For
example, when node i fails, all other nodes are told not to
transmit at their slot to i and not to expect a cell at their slot
from i. This allows the schedule of the circuit switches to
be completely static but means that a failed node impacts the
throughput of the remaining nodes. We study the impact of
node failures on rack throughput in §7.3. This also makes it
easier to handle the case in which the failed node is eventu-
ally replaced as it can just start re-using its original schedule.

If the failed node was the primary clock reference for syn-
chronization, another node needs to take over as the refer-
ence and the remaining nodes need to switch to the new ref-
erence. This is already supported by the ITU standard for
SyncE [62], which includes the ability of holding the cur-
rent frequency and seamlessly locking to another available
reference when failure is detected. If a link or a switch fails,
some node(s) may be disconnected from the rest of the rack.
However, this is also the case for today’s racks.

4. IMPLEMENTATION
In this section, we discuss our FPGA-based implemen-

tation of the Shoal’s switch and NIC. We used Bluespec
System Verilog [51] (∼1,000 LOCs) and the total resource
consumption, across Altera Stratix V FPGAs [70], is shown
in Table 1. Note that most of the resource consumption
comes from the PHY and the MAC IP blocks.

4.1 Switch design
Our circuit switch operates at layer 1, i.e., data traversing

the switch is routed through the PHY block at the ingress
and egress ports. It forwards cells based on a static schedule,
without performing any packet inspection or packet buffer-
ing. As shown in the bottom part of Fig. 5, the serial data is
received through one of the ingress ports and it goes through
the PHY block, which outputs a 72-bit vector. This vector
is then forwarded to one of the egress ports. The mapping
between the ingress and egress varies at every timeslot ac-
cording to the static schedule. This is implemented using
multiplexers whose control signal is driven by registers stor-
ing the clock counter and timeslot. Therefore, the switch
reconfiguration latency corresponds to the time required to
reconfigure the multiplexers, which is just a few logic gate
delays and well below one FPGA clock cycle.

The transmit and receive paths of the switch are located in
two separate clock domains: the transmit path is driven by
the clock distributed throughout the rack, while the receive
path is driven by the clock recovered from the incoming bits.

Figure 5: Shoal switch and NIC design with the latency of
each block. A clock cycle is 6.4 ns.

This requires using a synchronization element, Sync FIFO,
to move data safely across the two clock domains. In our
implementation, Sync FIFO has a latency of four cycles.

Finally, in our implementation, we use the Altera IP 10G
PHY blocks, which introduces an additional latency of 45
cycles (20 cycles on the transmit path and 25 cycles on the
receive path respectively). In total, the end-to-end latency of
our switch is 50 clock cycles. Since our FPGAs are clocked
at 156.25 MHz, each clock cycle has a length of 6.4 ns, thus
leading to an end-to-end latency of 320 ns. This, however,
has no impact on throughput as the design is fully pipelined
and, hence, it can operate at line rate as we will show in §5.

4.2 NIC design
Our implementation of the Shoal’s NIC is shown in the

top part of Fig. 5. We implemented the forwarding and the
congestion-control logic according to the design described
in § 3.3. Conceptually, Shoal maintains a single FIFO queue
for each destination while a local queue, one per destination,
(shown as host send buffers in Fig. 5) contains all locally
generated cells. In practice, however, this conceptual design
is expensive to implement as it requires copying a local cell
from the local to FIFO queue. Instead, our implementation
leaves all local cells in the local queue and stores a pointer
to a scheduled local cell in a separate FIFO queue called
pointer queue (not shown in Fig. 5). We have N − 1 such
queues, one per destination. By maintaining only pointers
rather than copying the actual cells, we eliminate the over-
head of a redundant memory-to-memory copy that can cause
write contention. To maintain the design abstraction of all

cells being forwarded via a single FIFO queue per destina-
tion, along with the cell pointer, each entry of the pointer
queue also includes the time at which the corresponding cell
should be sent. At each time slot, if the entry at the top of the
pointer queue for the destination indicated by the schedule
has a time equal or lower than the current time, the corre-
sponding cell is selected to be forwarded. Otherwise, the
top cell from the forwarding queue is selected. If the latter
contains no cells, then an empty cell is transmitted.

To implement the backpressure-based mechanism under-
pinning Shoal’s congestion control (§3.3.2), each NIC also
maintains two additional data structures. First, it uses an
(N−1)× (N−1) matrix of registers (shown as rate limiting
info store in Fig. 5) to keep track of the feedback received
by each intermediate node j for destination k. The register
(j,k) contains the number of epochs that NIC has to wait
before it can send a cell for destination k to node j. Further,
the NIC stores two vectors of size N− 1 to record the last
cell sent (received) to (from) each node.

When a cell is received, the NIC first checks its destina-
tion address. If this matches the local address, the cell is
added to the host receive buffer. Otherwise, it is added to the
forwarding FIFO queue corresponding to the final destina-
tion. If, instead, it is an empty cell, the payload is discarded.
Next, the NIC extracts the rate limiting feedback from the
header and updates the rate limiting value corresponding to
the last cell sent to the remote node.

The NIC latency is dominated by the PHY and MAC IP
blocks (in total 65 cycles on the transmit path and 73 cycles
on receive) with the forwarding and congestion control logic
only adding nine cycles on the transmit path and five cycles
on the receive path. This illustrates that the additional NIC
mechanisms introduced by Shoal impose low overhead.

4.3 Slot size and guard band
Our implementation achieves frequency synchronization

by distributing a global clock signal to all NICs and
switches. It uses DTP [28] to synchronize clock coun-
ters. Together, this provides sub-nanosecond synchroniza-
tion precision. As the switch reconfiguration latency is much
smaller than the length of a clock cycle, and all wires are of
same length, a guard band of one cycle (6.4 ns) is sufficient.

We select a slot size of 256 B, including 8 B for the cell
header— source id (10 bits), destination id (10 bits), flow id
(8 bits), sequence number (24 bits), rate limiting feedback
(11 bits), and end-of-frame (1bit). Our FPGA transceivers
operate at 10 Gbps, so the total slot length is 35 cycles
(224 ns); 32 cycles (204.8 ns) for the 256 B cell plus three
cycles (19.2 ns) for Ethernet overhead. The one-cycle guard
band thus imposes a 3% overhead.

In our implementation, the total end-to-end latency, in-
cluding both the NIC and the switch, is 206 cycles, which
corresponds to approximately 6 time slots.

5. TESTBED EXPERIMENTS

(a) Average node throughput. (b) Average destination goodput.

Figure 6: Testbed throughput and goodput across a permu-
tation workload (N = 4) with varying cell sizes.

In this section, we evaluate our FPGA-based implemen-
tation through a small-scale prototype under a range of syn-
thetic workloads. Each experiment ran for ten minutes and
we measured the throughput observed at the destination and
the maximum queue size per node. We repeated each exper-
iment ten times and report the average value (error bars are
omitted as the difference across runs is negligible).
Setup. Our testbed comprises three Terasaic DE5-Net
boards [55], each equipped with an Altera Stratix V
FPGA [70] and four 10 Gbps SFP+ transceiver modules. We
use one FPGA board to implement a four-port circuit switch
while the two remaining FPGAs are used to implement four
NICs (two per FPGA) connected to the four-port switch with
two-meter cables. This setup emulates a four-node rack. We
connect all three FPGAs to a Dell T720 server and use the
PCIe clock signal as the reference clock to the Phase-locked
loop (PLL) circuit running on each FPGA. Thus all the lo-
cal clocks derived from the respective PLL circuits on each
FPGA were frequency synchronized.
Results. First, we assess the throughput that can be sus-
tained by our implementation for varying cell sizes. We
consider a permutation workload with N = 4 flows, i.e.,
each node is the source and destination for exactly one flow,
and measure the average throughput per node. The results
in Fig. 6a show that our system always matches the maxi-
mum theoretical throughput. The throughput increases from
7.6 Gbps to 9.7 Gbps as the relative overhead due to Ethernet
preamble and guard band decreases with larger cells.

Next, in Fig. 6b, we show performance in terms of des-
tination goodput, measured as the amount of “useful” data
(i.e., excluding the cells to forward and the empty ones) re-
ceived by each node. Along with the testbed results, we also
show the results obtained with a packet-level simulator that
we developed. We use the simulator in §7 to evaluate the
performance of Shoal at scale. Across all sizes, our testbed
perfectly matches the performance predicted by the simula-
tor. For the full permutation workload with four flows, the
goodput is expected to converge to the theoretical value of
∼50% of the interface bandwidth. Interestingly, however,
the goodput is significantly lower for small cell sizes, and
it converges towards 50% goodput, 5 Gbps, only for large
cell sizes (1,204 bytes). This is primarily an artifact of

Figure 7: Maximum queue
size for a permutation work-
load for different number of
flows (testbed).

Figure 8: Shoal network
would be 50% cheaper than
PSN if the Shoal NIC costs
six times today’s NICs.

the small scale of our testbed, which causes the end-to-end
transmission latency of a cell (six time slots in our proto-
type) to be higher than the epoch length (three time slots
in our prototype). The problem is that Shoal’s congestion
control mechanism prevents a node from sending its next
cell to an intermediate node until it has received feedback
from it. Therefore, if, like in our testbed, the end-to-end la-
tency spans multiple epochs, the overall goodput suffers as
senders cannot fully utilize their outgoing bandwidth. As the
cell size increases, the ratio between the end-to-end latency
and the epoch length decreases, and this explains why in our
testbed the goodput improves with larger cells. In practice,
however, even for modest-sized racks, this issue will not oc-
cur as the end-to-end latency will be much smaller than the
epoch length (N−1 slots), and can be easily accommodated
by modifying the schedule as discussed in §3.5.

Finally, in Fig. 7, we plot the queue size for a permutation
workload with different number of flows. With only one
flow in the system, the maximum queue occupancy is one
cell. When more flows are added to the system, the queues
grow up to a maximum of two cells. This is consistent with
the queue length analysis in § 3.3.2 because each node is
sourcing at most one flow and it is receiving at most one.

We also considered an incast workload (omitted for
space), in which we randomly selected a different destina-
tion per run and varied the number of sources generating a
flow to it. In all runs, the destination throughput was always
at the peak. The maximum queue size, instead, grew lin-
early with the number of sources. Again, this matches our
expectations as the maximum queue size is equal to the in-
cast degree of the destination.

Overall, across all experiments, the testbed and simula-
tions results are in agreement. This gives us confidence in
our large-scale simulations (§7).

6. COST COMPARISON
We now compare the cost of a Shoal network to that of a

packet-switched network (PSN) for a 512-node rack.
For a PSN, we consider the Mellanox Spectrum SN2700

switch, which supports 64 ports at 50 Gbps at a cost of $765
per switch port [71], 2 W per port, and $200 for the NIC [66].

Nodes have 50 Gbps links and connecting them using a
non-oversubscribed Folded Clos topology requires 24 such
switches. For Shoal, we consider a 64x50 Gbps cross-
point switch costing $30 per port and 0.5 W per port [30].
Since the switch will need additional circuitry to implement
Shoal’s schedule and synchronization primitives, we add a
50% overhead to the cost (i.e., $45 per switch port). Fur-
thermore, to compensate for the throughput overhead of de-
touring packets, each node is equipped with 100 Gbps links.
So the Shoal network has 48 switches. The total power of
the Shoal network is 1.5 KW as compared to 3 KW for PSN.

Estimating the cost of the Shoal NIC is more challeng-
ing as it requires additional logic to implement forwarding
and congestion control. Therefore, rather than setting on an
arbitrary price, in Fig. 8 we show the relative cost of Shoal
compared to a PSN when varying the ratio between the Shoal
NIC and today’s commodity NICs. It indicates that the Shoal
network would be more than 50% cheaper as long as the
Shoal NIC costs less than six times today’s NICs and would
provide cost savings as long as the Shoal NIC costs less than
12 times. As NICs with integrated programmable logic such
as FPGAs (e.g., Mellanox Innova Flex 4 Lx EN [68]) and
many-core architectures (e.g., Mellanox ConnectX-5 [67])
have recently appeared on the market at competitive prices,
we believe that this is a realistic target.

7. SIMULATION EXPERIMENTS
We complement the testbed experiments presented in the

previous section with simulations to investigate the scalabil-
ity of Shoal. We first focus on static workloads (§7.2) and
then use more realistic datacenter-like workloads (§7.3).

7.1 Simulation setup
We use the packet-level simulator that was cross-validated

against our testbed prototype (§5). We simulate a 512-node
rack, using the setup described in the previous section. Un-
less otherwise stated, we assume a cell size of 256 B, which
includes the eight-byte cell header. For Shoal, we assume a
guard band of 2.5 ns, based on a 2 ns reconfiguration latency
for ASIC circuit switches in layer 1 mode [64] and 0.5 ns
synchronization precision (§ 3.4). As explained in §3.5, with
layer 1 switching, CDR is not required and, hence, it is not
accounted for in the guard band. At 100 Gbps, the slot size
for 256 B cells is 20.5 ns, so the guard band overhead is 11%.

7.2 Static workloads
We performed two sets of experiments with static work-

loads. First, we replicated the experiments with the permu-
tation and incast workloads presented in §5 to verify that
the behavior observed at small scale holds at large scale too.
Second, we evaluated whether Shoal ensures max-min fair-
ness among flows. We repeated each experiment ten times.
Permutation and incast workload. Fig. 9 shows the aver-
age destination goodput for the permutation workload. We
do not plot error bars because the variance was negligible.

Figure 9: Average destina-
tion goodput (permutation
workload).

Figure 10: Relative differ-
ence between Shoal’s flow
goodput and ideal one.

The goodput values follow the expected trend. The good-
put starts from the peak value and then it monotonically de-
creases until it halves. The maximum queue size across the
entire range is two cells, which also matches expectations.
The incast results are also as expected. The destination band-
width is always fully saturated and the queue grows linearly
with the incast degree up to a maximum of 511 cells.

These experiments confirm that the key properties exhib-
ited at small scale (high goodput and bounded queues) are
also maintained at large scale.
Fairness. To verify Shoal’s fairness, we simulated several
workloads comprising a variable number of flows from 50
to 1,024 with randomly selected sources and destinations.
We compared the goodput achieved by each flow against its
ideal goodput computed using the max-min water-filling al-
gorithm [8]. We plot the CDF of the relative difference in
Fig. 10. Across all workloads, 99% of the flows achieve
a goodput within 10% of the ideal one. This shows that,
despite the relatively simplicity of its mechanisms, Shoal
closely approximates max-min fairness.

7.3 Datacenter workloads
We now investigate the performance of Shoal in dynamic

settings, using more realistic datacenter-like workloads.
Setup. We generate a synthetic workload, modeled after
published datacenter traces [3, 19]. Flow sizes are heavy
tailed, drawn from a Pareto distribution with shape param-
eter 1.05 and mean 100 KB [4, 5]. Flows arrive according to
a Poisson process and each simulation ends when one mil-
lion flows have completed.
Baselines. We compare Shoal against the packet-switched
network described in §6 that uses a Clos topology with full-
bisection bandwidth. We use standard ECMP routing to for-
ward packets at each hop and we use TCP for congestion
control. We refer to this baseline as TCP. We also con-
sider an idealized packet-switched network (PSN) that as-
sumes perfect congestion control, i.e., it does not use TCP
and ECMP but, instead, assumes per-flow hop-by-hop flow
control and per-flow queuing at all switches and it uses
packet spraying [14] to forward packets on all available
paths. While this solution would be extremely costly to im-
plement in practice, it is useful as it provides an upper bound
on the performance achievable by any congestion control

(a) Flow completion time. (b) Average flow goodput.

Figure 11: Flow completion time (short flows) and average
flow goodput (long flows) against traffic load.

(a) Flow completion time. (b) Average flow goodput.

Figure 12: Flow completion time (short flows) and average
flow goodput (long flows) against fraction of destinations.

protocol in a packet-switched network.
Network load. In Fig. 11 we study the performance of
Shoal and of the two baselines for different values of net-
work load L. We define L = F

R·N·τ where F is the mean flow
size, R is the per-node bandwidth, N is the number of nodes,
and τ is the mean inter-arrival flow time, e.g., L = 1 means
that, on average, there are N active flows.

Fig. 11a shows the flow completion time (FCT) for short
flows (size < 100 KB) while Fig. 11b the average flow good-
put for long flows (size > 5 MB). Shoal significantly out-
performs TCP for both the FCT (up to a factor of 7.5 at
low load and 5.2 at high load) and goodput (up to a fac-
tor of 2 at low load and 1.7 at high load). The reason is
twofold. First, TCP tends to fill the queues in the network,
thus increasing the FCT for short flows. Second, ECMP can
incur path collisions that degrade overall network through-
put [1, 2]. To eliminate these two factors, we also plot the
results of PSN. Shoal’s FCT is within 2× that of PSN yet
it achieves a much higher throughput. The higher comple-
tion time is the price we pay for using statically-scheduled
circuit switches instead of dynamically reconfigured, ideal
packet switches. As we show later, Shoal’s FCT improves
significantly (and outperforms PSN) for smaller cell sizes.
We also note that PSN represents an upper bound on the per-
formance that can be achieved atop a packet-switched net-
work. Shoal’s increased goodput is because, to compensate
for the detouring overhead, it uses 100 Gbps links (PSN uses
50 Gbps links). As explained in §6, however, despite the fact
that Shoal has doubled the link bandwidth, it is still signifi-
cantly cheaper than a packet-switched network.

To validate our claim that Shoal operates with very small

(a) Load. (b) Fraction of destinations.

Figure 13: Maximum queue size against load and fraction of
destinations.

queues, we plot the maximum queue size in Fig. 13a. Even
at high load, Shoal yields a maximum queue size of 13 cells
(3.25 KB) and a maximum aggregate queue per node of 571
cells (142.75 KB).
Skewness. Next, we want to study the impact of skewed
workloads, which occur when some nodes are more popu-
lar than others. We model skewness by re-using the same
workload of the previous experiments (we chose L = 1) but
restricting the set of possible destinations from 100% to 40%
of all nodes. For a constant load, a lower number of desti-
nations implies a higher incast degree. This is particularly
detrimental for TCP as it creates significant congestion at
the switches. This explains why in Fig. 12a TCP’s FCT
increases significantly when reducing the number of desti-
nations. In contrast, Shoal maintains low FCT even in pres-
ence of very skewed workloads, while still maintaining high
goodput (Fig. 12b). Again, this is due to its ability of keep-
ing queues small as we show in Fig. 13b.
Node failures. We now focus our attention to the impact
of failures in the Shoal network. We ran the same work-
load as in the previous experiments (L = 1) but at the be-
ginning of each experiment we fail an increasing fraction of
nodes (up to 50%). As expected, the goodput decreases lin-
early (Fig. 14b) because the slots corresponding to the failed
nodes are wasted. We can alleviate this with a more sophis-
ticated mechanism that, on detecting long-term failures, up-
dates the schedule of both rack nodes and switches, to dis-
count the failed nodes. More interesting is the FCT behavior.
Fig. 14a shows that for a moderate failure rate the increase
in completion time is rather marginal, e.g., 1.38x for a 20%
failure rate (resp. 1.81x for 30% rate). This is key because it
indicates that, even with a simple approach, Shoal can main-
tain reasonably good performance in presence of failures,
thus making it amenable even for sealed rack-scale deploy-
ments in which replacing failed nodes is not possible.
Slot size. In all experiments thus far, we have always used
a slot size of 256 B. This size was selected in order to
keep the guard band overhead low (11% in our setup). In
the future, however, more mature synchronization technolo-
gies and circuit switches with lower reconfiguration laten-
cies could make it possible to use a shorter guard band,
which, in turn, would allow for smaller slot sizes. To un-
derstand its impact, we repeated our experiments, varying

(a) Flow completion time. (b) Average flow goodput.

Figure 14: Flow completion time (short flows) and average
flow goodput (long flows) against node failures.

Figure 15: Flow completion
time for different slot sizes.

Figure 16: FCT for short
flows (mean size is 32 KB).

the slot sizes from 64 B to 512 B while always keeping the
guard band relative overhead constant. The results in Fig. 15
show that the FCT is directly correlated with the slot size
and smaller slots can even further reduce Shoal’s FCT, e.g.,
up to 13.92 µs for L = 0.1 (resp. 34.38 µs for L = 1).
Direct-connect topologies. Now we compare Shoal against
a rack-scale network architecture using a direct-connect
topology. We arranged the 512 nodes into a 3D torus, which
is the topology used in the AMD SeaMicro 15000-OP [69].
As with the Shoal network, we assume an aggregate node
bandwidth of 100 Gbps. We use R2C2 [11] for congestion
control. We use the same workload as in the load experi-
ments. For all values of load, Shoal consistently outperforms
the rack-scale setup up to a factor of 14.9 for FCT (resp. a
factor of 4.8 for goodput). This is due to the multi-hop na-
ture of direct-connect topologies; it significantly increases
the end-to-end latency as queuing can occur at any hop. Fur-
ther, node bandwidth is also used to forward traffic originat-
ing several hops away, which reduces the overall goodput.
This does not occur in Shoal as packets only traverse one
hop and the congestion control guarantees bounded queues.
Disaggregated workload. We conclude our experimental
analysis by assessing Shoal’s ability to support disaggre-
gated workloads where flows of 10-25 KB are not uncom-
mon [26] and some can be as small as 4 KB [17]. We con-
ducted an experiment in which we reduced the mean flow
size of our workload from 100 KB to 32 KB (cell size is
256 B). Since the flow size’s distribution is heavy-tailed,
this creates a workload in which 62% of flows have a size of
4 KB or lower. Fig. 16 shows the CDF for the FCT for short
flows (size < 32 KB) for L = 0.1 and L = 1. At low load,
the median value is 9.77 µs and the 99th-perc. is 25.9 µs

(resp. 24.26 µs and 66.45 µs at high load), which indicates
that Shoal is able to achieve a low FCT even for very short
flows. Further, the moderate FCT increase between L = 0.1
and L = 1 demonstrates that the performance of short flows
is not significantly affected by the increasing network load.
This demonstrates Shoal’s ability to carry different types of
traffic with high performance.

8. RELATED WORK
Rack-scale computing promises significant cost, power

and performance gains [50, 56, 60]. However, unlocking
these gains requires numerous challenges to be solved.
Topology and technology. Several topologies and technolo-
gies are being investigated for rack-scale computers. Direct-
connect topologies whereby each node is connected to a
small subset of other rack nodes through point-to-point links
are common in super computers and have been adopted in
some commercial rack-scale computers. For example, both
AMD SeaMicro [69] and HP Moonshot [57] use the 3D
Torus topology and custom routing. Theia [45] proposes
a new rack-scale topology. Motivated by the fact that the
best direct-connect topology is workload-dependent, XFab-
ric [30] combines circuit switches with SoC-based packet
switches to allow the rack’s topology to be reconfigured
on the fly. New interconnect technologies like PCIe (eg.,
Huawei’s DC3.0) [58] and Silicon Photonics (eg., Intel
RSA [61], Firebox [6]) are also being explored.

While direct-connect topologies can provide high bisec-
tion bandwidth, they require that each SoC be equipped with
many network interfaces and be able to sustain their cumula-
tive bandwidth, not to mention the complexity of routing and
congestion control [11] and topology reconfiguration [30].
As shown in §7.3, routing across multiple nodes also hurts
throughout and latency. Overall, this paper shows that a
purely circuit-switched rack is not only feasible, it can be
simpler and more performant than a direct-connect fabric.
Circuit-switched networks. Circuit switching was used in
ATM [13], telephony [15] and WAN networks [42] for long
lasting circuits which amortizes the circuit set-up overhead.
Recently, there has been extensive work on reconfigurable
datacenter networks, using optical [10, 18, 21, 37, 47] and
wireless technologies [20] that operate like a circuit switch.
These solutions build on slower switching technologies (tens
of µs or higher) and use a centralized controller for schedul-
ing. To compensate for the additional latency due to these
factors, they typically rely on a parallel packet switched net-
work, which increases cost and complexity. Instead, Shoal
caters to the rack-scale environment and uses low latency
switching and coordination-free scheduling, thus removing
the need of a centralized controller and a separate network
to handle latency-sensitive traffic.
Low-latency congestion control. We considered recent
proposals like Fastpass [36] and R2C2 [11] for congestion
control atop our fabric. Fastpass, however, imposes signif-
icant communication and computation overhead as it uses

a centralized entity to compute rate allocations. Comput-
ing max-min rates in high multi-path settings is challenging
in itself, especially at low latency [39]. R2C2 also suffers
from similar drawbacks, mostly because it targets general
direct-connect topologies. It relies on broadcasting of flow
events across the rack. Furthermore, it achieves computa-
tion tractability at the expense of network utilization. Fi-
nally, both Fastpass and R2C2 require accurate demand es-
timation. Instead, Shoal’s congestion control leverages its
fabric to achieve fair network sharing with bounded queues
and low overhead and without requiring demand estimation.

There is already a trend towards tighter coupling between
the network and servers for low latency congestion control in
datacenters; for example, by using ECN as a feedback signal
[3,5]. Section 7.3 quantified the benefits of Shoal against an
ideal transport protocol whose performance subsumes these
techniques. Furthermore, they cannot achieve losslessness
which is critical for storage workloads. The need for high
throughput, low latency and losslessness has also prompted
the use of RDMA atop converged Ethernet. Congestion con-
trol mechanisms [32, 48] specialized for these settings also
rely on a closer coupling with the network. Shoal represents
an extreme design point in this direction as the coupling of
its congestion mechanism to its fabric achieves losslessness
and fairness despite very high multi-pathing.
Load balanced switch. Load balanced switches [9, 25].
were proposed in the early 2000s as a way to obviate ar-
bitration in monolithic, single-stage switches by uniformly
detouring packets through an intermediate set of ports be-
tween the switch’s inputs and outputs. Shoal’s fabric oper-
ates like a load-balanced switch. However, instead of using
an explicit intermediate stage, Shoal detours cells through
other rack nodes. Furthermore, while the original technique
focussed on monolithic switches, we scale it to a hierarchy
of switches. Finally, we integrate the fabric with a novel
congestion control mechanism.

9. SUMMARY
We presented Shoal, a network architecture for high den-

sity, disaggregated racks that couples a circuit-switched fab-
ric with the nodes’ network stack. The fabric operates like a
rack-wide switch with a static schedule. Rack nodes achieve
coordination-free scheduling by detouring their traffic uni-
formly, and implement backpressure-based congestion con-
trol to achieve fairness and losslessness. Our FPGA-based
prototype achieves good performance and illustrates that
Shoal’s mechanisms are amenable to hardware implementa-
tion. Our results show that Shoal can achieve high through-
put, low latency and low queuing across diverse workloads.

10. ACKNOWLEDGEMENTS
This research is partially supported by DARPA CSSG

(D11AP00266), NSF (1053757, 1440744, and 1422544),
European Union’s Horizon 2020 research and innovation
programme under the SSICLOPS project (agreement No.

644866), and with gifts from Cisco, Altera and Bluespec.

11. REFERENCES
[1] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and

A. Vahdat. Hedera: Dynamic Flow Scheduling for Data
Center Networks. In NSDI, 2010.

[2] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan,
K. Chu, A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav,
and G. Varghese. CONGA: Distributed Congestion-aware
Load Balancing for Datacenters. In SIGCOMM, 2014.

[3] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan. Data Center
TCP (DCTCP). In SIGCOMM, 2010.

[4] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar,
A. Vahdat, and M. Yasuda. Less Is More: Trading a Little
Bandwidth for Ultra-Low Latency in the Data Center. In
NSDI, 2012.

[5] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown,
B. Prabhakar, and S. Shenker. pFabric: Minimal
Near-optimal Datacenter Transport. In SIGCOMM, 2013.

[6] K. Asanovic. FireBox: A Hardware Building Block for 2020
Warehouse-Scale Computers. In FAST, 2014. Keynote.

[7] S. Balakrishnan, R. Black, A. Donnelly, P. England,
A. Glass, D. Harper, S. Legtchenko, A. Ogus, E. Peterson,
and A. Rowstron. Pelican: A Building Block for Exascale
Cold Data Storage. In OSDI, 2014.

[8] D. Bertsekas and R. Gallager. Data Networks. Prentice Hall,
1987.

[9] C.-S. Chang, D.-S. Lee, and Y.-S. Jou. Load Balanced
Birkhoff-von Neumann Switches, Part I: One-stage
Buffering. Comput. Commun., 25(6), Apr. 2002.

[10] K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu,
Y. Zhang, X. Wen, and Y. Chen. OSA: An Optical Switching
Architecture for Data Center Networks with Unprecedented
Flexibility. In NSDI, 2012.

[11] P. Costa, H. Ballani, K. Razavi, and I. Kash. R2C2: A
Network Stack for Rack-scale Computers. In SIGCOMM,
2015.

[12] A. Daglis, S. Novaković, E. Bugnion, B. Falsafi, and
B. Grot. Manycore Network Interfaces for In-memory
Rack-scale Computing. In ISCA, 2015.

[13] M. de Prycker. Asynchronous transfer mode: solution for
broadband ISDN. Ellis Horwood, 1991.

[14] A. A. Dixit, P. Prakash, Y. C. Hu, and R. R. Kompella. On
the Impact of Packet Spraying in Data Center Networks. In
INFOCOM, 2013.

[15] L. Dryburgh and J. Hewett. Signaling System No. 7
(SS7/C7): protocol, architecture, and services. Cisco Press,
2005.

[16] P. Faraboschi, K. Keeton, T. Marsland, and D. Milojicic.
Beyond Processor-centric Operating Systems. In HotOS,
2015.

[17] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han,
R. Agarwal, S. Ratnasamy, and S. Shenker. Network
requirements for resource disaggregation. In 12th USENIX
Symposium on Operating Systems Design and
Implementation (OSDI 16), Nov. 2016.

[18] M. Ghobadi, R. Mahajan, A. Phanishayee, N. Devanur,
J. Kulkarni, G. Ranade, P.-A. Blanche, H. Rastegarfar,
M. Glick, and D. Kilper. ProjecToR: Agile Reconfigurable
Data Center Interconnect. In SIGCOMM, 2016.

[19] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,
P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta. VL2: A
Scalable and Flexible Data Center Network. In SIGCOMM,
2009.

[20] D. Halperin, S. Kandula, J. Padhye, P. Bahl, and
D. Wetherall. Augmenting Data Center Networks with
Multi-gigabit Wireless Links. In SIGCOMM, 2011.

[21] N. Hamedazimi, Z. Qazi, H. Gupta, V. Sekar, S. R. Das, J. P.
Longtin, H. Shah, and A. Tanwer. Firefly: A reconfigurable
wireless data center fabric using free-space optics. In
SIGCOMM, 2014.

[22] HP Labs. The Machine.
https://www.labs.hpe.com/the-machine.

[23] B. Ji, C. Joo, and N. B. Shroff. Exploring the inefficiency
and instability of Back-Pressure algorithms. In INFOCOM,
2013.

[24] K. Keeton. The Machine: An Architecture for
Memory-centric Computing.
http://www.mcs.anl.gov/events/workshops/ross/
2015/slides/ross2015-keeton.pdf.

[25] I. Keslassy, S.-T. Chuang, K. Yu, D. Miller, M. Horowitz,
O. Solgaard, and N. McKeown. Scaling Internet Routers
Using Optics. In SIGCOMM, 2003.

[26] A. Klimovic, C. Kozyrakis, E. Thereksa, B. John, and
S. Kumar. Flash storage disaggregation. In Proceedings of
the Eleventh European Conference on Computer Systems
(EuroSys), page 29. ACM, Apr. 2016.

[27] M. Lapinski, T. Wlostowki, J. Serrano, and P. Alvarez.
White Rabbit: a PTP Application for Robust
Sub-nanosecond Synchronization. In Proceedings of the
International IEEE Symposium on Precision Clock
Synchronization for Measurement Control and
Communication, 2011.

[28] K. S. Lee, H. Wang, V. Shrivastav, and H. Weatherspoon.
Globally Synchronized Time via Datacenter Networks. In
SIGCOMM, 2016.

[29] S.-J. Lee, K. Lee, and H.-J. Yoo. Analysis and
Implementation of Practical, Cost-Effective Networks on
Chips. IEEE Des. Test, 22(5), Sept. 2005.

[30] S. Legtchenko, N. Chen, D. Cletheroe, A. Rowstron,
H. Williams, and X. Zhao. XFabric: A Reconfigurable
In-Rack Network for Rack-Scale Computers. In NSDI, 2016.

[31] M. Lipinski, T. Wlostowski, J. Serrano, P. Alvarez, J. D. G.
Cobas, A. Rubini, and P. Moreira. Performance results of the
first White Rabbit installation for CNGS time transfer. In
Proceedings of the International IEEE Symposium on
Precision Clock Synchronization for Measurement Control
and Communication, 2012.

[32] R. Mittal, T. Lam, N. Dukkipati, E. Blem, H. Wassel,
M. Ghobadi, A. Vahdat, Y. Wang, D. Wetherall, and D. Zats.
TIMELY: RTT-based Congestion Control for the Datacenter.
In Sigcomm, 2015.

[33] P. Moreira, J. Serrano, T. Wlostowski, P. Loschmidt, and
G. Gaderer. White Rabbit: Sub-Nanosecond Timing
Distribution over Ethernet. In Proceedings of the
International IEEE Symposium on Precision Clock
Synchronization for Measurement Control and
Communication, 2009.

[34] S. Novakovic, A. Daglis, E. Bugnion, B. Falsafi, and
B. Grot. Scale-out NUMA. In ASPLOS, 2014.

[35] G. P. Nychis, C. Fallin, T. Moscibroda, O. Mutlu, and
S. Seshan. On-chip Networks from a Networking
Perspective: Congestion and Scalability in Many-core
Interconnects. In SIGCOMM, 2012.

[36] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and
H. Fugal. Fastpass: A Centralized "Zero-queue" Datacenter
Network. In SIGCOMM, 2014.

[37] G. Porter, R. Strong, N. Farrington, A. Forencich,
P. Chen-Sun, T. Rosing, Y. Fainman, G. Papen, and
A. Vahdat. Integrating Microsecond Circuit Switching into
the Data Center. In SIGCOMM, 2013.

[38] A. Putnam, A. Caulfield, E. Chung, D. Chiou,
K. Constantinides, J. Demme, H. Esmaeilzadeh, J. Fowers,
G. P. Gopal, J. Gray, M. Haselman, S. Hauck, S. Heil,
A. Hormati, J.-Y. Kim, S. Lanka, J. Larus, E. Peterson,
S. Pope, A. Smith, J. Thong, P. Y. Xiao, and D. Burger. A
Reconfigurable Fabric for Accelerating Large-Scale

https://www.labs.hpe.com/the-machine
http://www.mcs.anl.gov/events/workshops/ross/2015/slides/ross2015-keeton.pdf
http://www.mcs.anl.gov/events/workshops/ross/2015/slides/ross2015-keeton.pdf

Datacenter Services. In ISCA, 2014.
[39] B. Radunović and J.-Y. L. Boudec. A Unified Framework for

Max-min and Min-max Fairness with Applications.
IEEE/ACM Trans. Netw., 15(5), 2007.

[40] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik,
and M. Handley. Improving Datacenter Performance and
Robustness with Multipath TCP. In SIGCOMM, 2011.

[41] A. Rylyakov, J. E. Proesel, S. Rylov, B. G. Lee, J. F.
Bulzacchelli, A. Ardey, B. Parker, M. Beakes, C. L. S.
Christian W. Baks, and M. Meghelli. A 25 Gb/s Burst-Mode
Receiver for Low Latency Photonic Switch Networks. IEEE
JOURNAL OF SOLID-STATE CIRCUITS, 50(12), Dec.
2015.

[42] Telecordia. Synchronous Optical Network (SONET)
Transport Systems: Common Generic Criteria, 2009.

[43] A. Vahdat. Computing at a Crossroads. Keynote at Interop
2016.

[44] L. G. Valiant and G. J. Brebner. Universal Schemes for
Parallel Communication. In ACM Symposium on Theory of
Computing, 1981.

[45] M. Walraed-Sullivan, J. Padhye, and D. A. Maltz. Theia:
Simple and Cheap Networking for Ultra-Dense Data
Centers. In HotNets, 2014.

[46] H. Wu, Z. Feng, C. Guo, and Y. Zhang. Ictcp: Incast
congestion control for tcp in data center networks. In
CoNEXT, 2010.

[47] X. Zhou, Z. Zhang, Y. Zhu, Y. Li, S. Kumar, A. Vahdat, B. Y.
Zhao, and H. Zheng. Mirror Mirror on the Ceiling: Flexible
Wireless Links for Data Centers. In SIGCOMM, 2012.

[48] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn,
Y. Liron, J. Padhye, S. Raindel, M. H. Yahia, and M. Zhang.
Congestion Control for Large-Scale RDMA Deployments .
In SIGCOMM, 2015.

[49] AFCOM. Data center Standards.
http://bit.ly/1KPoZOZ.

[50] Amazon joins other web giants trying to design its own
chips. http://bit.ly/1J5t0fE.

[51] Bluespec. www.bluespec.com.
[52] Boston Viridis Data Sheet. http://bit.ly/1fBnsQ9.
[53] Calxeda EnergyCore ECX-1000.

http://bit.ly/1nCgdHO.
[54] Cisco Nexus 7700 Switches Data Sheet. http:

//www.cisco.com/c/en/us/products/collateral/
switches/nexus-7000-series-switches/data_
sheet_c78-728187.html.

[55] DE5-Net FPGA development kit.
http://de5-net.terasic.com.tw.

[56] How Microsoft Designs its Cloud-Scale Servers.
http://bit.ly/1HKCy27.

[57] HP Moonshot System. http://bit.ly/1mZD4yJ.
[58] Huawei proposed DC 3.0 architecture of future data center.

pr.huawei.com/en/news/hw-423134-3.0.htm.
[59] IEEE Standard 1588-2008. http://ieeexplore.ieee.

org/xpl/mostRecentIssue.jsp?punumber=4579757.
[60] Intel, Facebook Collaborate on Future Data Center Rack

Technologies. http://intel.ly/MRpOM0.
[61] Intel Rack Scale Architecture. http://ubm.io/1iejjx5.
[62] ITU-T Rec. G.8262.

http://www.itu.int/rec/T-REC-G.8262.
[63] Juniper EX Series. http://www.juniper.net/us/en/

products-services/switching/ex-series/.
[64] Macom M21605 Crosspoint Switch. http://www.macom.

com/products/product-detail/M21605/.
[65] Maze: A Rack-scale Computer Emulation Platform.

http://aka.ms/maze.
[66] Mellanox Blog. http://bit.ly/2d000ia.
[67] Mellanox ConnectX-5 Adapter. http://bit.ly/2cuggGQ.

[68] Mellanox Innova Flex 4 Lx EN Adapter.
http://bit.ly/2cDkkCk.

[69] SeaMicro SM15000 Fabric Compute Systems.
http://bit.ly/1hQepIh.

[70] Stratix V FPGA. http://www.altera.com/devices/
fpga/stratix-fpgas/stratix-v/stxv-index.jsp.

[71] The Next Platform Blog. http://bit.ly/2cZXrwo.

http://bit.ly/1KPoZOZ
http://bit.ly/1J5t0fE
www.bluespec.com
http://bit.ly/1fBnsQ9
http://bit.ly/1nCgdHO
http://www.cisco.com/c/en/us/products/collateral/switches/nexus-7000-series-switches/data_sheet_c78-728187.html
http://www.cisco.com/c/en/us/products/collateral/switches/nexus-7000-series-switches/data_sheet_c78-728187.html
http://www.cisco.com/c/en/us/products/collateral/switches/nexus-7000-series-switches/data_sheet_c78-728187.html
http://www.cisco.com/c/en/us/products/collateral/switches/nexus-7000-series-switches/data_sheet_c78-728187.html
http://de5-net.terasic.com.tw
http://bit.ly/1HKCy27
http://bit.ly/1mZD4yJ
pr.huawei.com/en/news/hw-423134-3.0.htm
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4579757
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4579757
http://intel.ly/MRpOM0
http://ubm.io/1iejjx5
http://www.itu.int/rec/T-REC-G.8262
http://www.juniper.net/us/en/products-services/switching/ex-series/
http://www.juniper.net/us/en/products-services/switching/ex-series/
http://www.macom.com/products/product-detail/M21605/
http://www.macom.com/products/product-detail/M21605/
http://aka.ms/maze
http://bit.ly/2d000ia
http://bit.ly/2cuggGQ
http://bit.ly/2cDkkCk
http://bit.ly/1hQepIh
http://www.altera.com/devices/fpga/stratix-fpgas/stratix-v/stxv-index.jsp
http://www.altera.com/devices/fpga/stratix-fpgas/stratix-v/stxv-index.jsp
http://bit.ly/2cZXrwo

	Introduction
	Motivation
	Design
	Design overview
	Shoal fabric
	Shoal network stack
	Data plane
	Congestion control

	Shoal slots and guard band
	Practical concerns

	Implementation
	Switch design
	NIC design
	Slot size and guard band

	Testbed Experiments
	Cost comparison
	Simulation Experiments
	Simulation setup
	Static workloads
	Datacenter workloads

	Related work
	Summary
	Acknowledgements
	References

