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Fatigue and fracture in metal: from cracks in the rivet holes 
to voids in grains to dislocation and atomistic fracture 
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DISLOCATIONS AND MECHANICAL 
PROPERTY
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•  Large-scale atomistic simulation opens a new way 
to study mechanics of materials.

200,000 x 40,000 x 600nm 
~ 1014 atoms 

Nano-twinned Metal 
Nature (2010)

~ 109 atoms 

Nanomedicine targets cancer, 
Scientific American, Feb 2009  

•  (Key features) mechanisms and properties are emerged 
directly from fundamental evolution of atoms.
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Elastic means reversible! 

ELASTIC DEFORMATION 

Callister, 1997
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1. Initial 2. Small load 3. Unload 

Plastic means permanent! 
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PLASTIC DEFORMATION  
(SHEAR and SLIP) 

Callister, 1997
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Dislocation and Plasticity
•  Glide of dislocations results in slip, the 

most common manifestation of plastic 
deformation in crystalline solids. 
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Atomistic Simulation Environment 

•  Specimen samples 
–  Contains ~108 atoms. 

•  Empirical interatomic potential: 
embedded atom method (EAM) 
–  FCC metals (Baskes 1992). 

 
•  Quasi-static, conjugate gradient 

(CG) minimization. 

•  LAMMPS: an open source 
molecular dynamics program. 
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Dislocation Extraction From Burgers Circuit

A. Stukowski and K. Albe, MSMSE, (2010) 085001.



Civil Engineering, NTU David (C-S) Chen 

Nanoindentation: Dislocation Evolution
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Dislocations Glide When 

5.75Å 

Nanoindentation into Al(001) 

Glide 

cτ τ>
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Cross Slip of Screw Dislocations 

8.15Å 
Cross Slip 

Nanoindentation into Al(001) 

Screw dislocation moves from 
one {111} slip plane to another. 

Multiple cross glide 
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5.85Å 

Lomer Lock 

Nanoindentation into Al(111) 

Lomer Lock Blocks Dislocations 

Lomer lock: a strong barrier to 
dislocation glides.  
 
Materials Strength ≡ 
restricted dislocation 
motion 
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Indenta'on	  Size	  Effect	  (Smaller	  is	  Stronger)	  

Gerberich	  et	  al.,	  2002	  

Gerberich	  et	  al.	  (2002),	  J	  of	  Applied	  Mechanics	  

increase

Spherical  
indenter 

Hardness	  increases	  when	  
indenter	  radius	  decreases.

tungsten
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Indentation Size Effect: The Quest 

•  (Imagine) We push atoms into the 
underneath material. 

•  Atoms become extra planes of atoms 
(dislocations) in the original lattice.  

•  These dislocations are called 
geometrically necessary dislocations 
(GNDs). 

•  GNDs are believed to block other mobile 
dislocations thus contribute to hardening. 

•  The smaller indents, the higher density of 
GNDs, and thus stronger. 
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Repulsive Force Field for Indenters

•  Spherical Indenter 
–  Smooth transition from elastic 

to elastic-plastic contact

•  Berkovich Indenter 
–  Routinely used in 

nanoindentation tests

irr

2( )i iF r rε= − (Plimpton 1995).

Indent 
Indent 

r
irr
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Hardness vs. Dislocation Evolution 
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Hardness - Spherical 
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Quantify Density of Geometrically Necessary 
Dislocations (ρg) 

g
l
V

ρ =

Total length of 
dislocation lines

plastic  
zone

plastic zone
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Plastic Zone Calculations 
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VOID NUCLEATION AND GROWTH 
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Ultra High Temperature Ceramics

NASA  http://apod.nasa.gov/apod/
ap040329.html

24

DARPA Falcon Project http://www.space.com/12607-
darpa-launches-hypersonic-glider-mach-20-test-
flight.html Sintering process of ZrB2

Microstructure of ZrB2
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ZrB2-SiC Ceramic Composites
ZrB2 is one of the material candidates 
for UHTC: high strength, low density 
and excellent thermal properties

SiC content improves the 
flexure strength and toughness.
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Modeling Intergranular Fracture
creep  zone

damage  zone

2a

2b

Ψ

SEM image of  ZrB2-SiC 
composite at 1500oC CT test
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Micromechanics Model: Simple Grain

•  Constitutive model of 
ceramic grain 
–  Superposition of strain 

rate 
 
–  Stress 

  !ε ij = !ε ij
e + !ε ij

cr

( 1) ( 1) ( 1)( )m m cr m
ij ij ijσ ε ε+ + += −D

•  Power law creep rate for 
a ceramic grain 
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Micromechanics Model: Grain Boundary
•  Smeared out cohesive model for grain boundary 

a: cavity radius 
b: half cavity spacing 
V: cavity volume 
 
 
and 

Grain separation in normal direction 
can be expressed by 
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Micromechanics Model: Grain Boundary

•  Normal separation rate 

•  Three ingredients in normal separation 
rate at grain boundary 
– Cavity nucleation 
– Cavity growth enabled by atom diffusion 
– Cavity growth enabled by creep  

 
!un =

!V
πb2

− 2V
!b

πb3
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Cavity Nucleation

•  The change rate of 
void spacing 

   

b
b
= 1

2
( ε I + ε II )− 1

2
N

N
•  Cavity density of 

undefomed grain 
boundary

2
1N
bπ

=

where       and       are the 
principal logarithmic strain 
rates at grain boundary

  ε I   ε II
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Cavity Nucleation Rule

Fn is material parameter,     
is normal traction, Σ0 is a 
normalized factor, and      is 
the effective strain which is 
the average value of 
adjacent grains.

•  Cavity density rate 

   
N = Fn(

σ n

Σ0

)2 εe
C

  εe
C

 σ n
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•  Cavity growth from creep 



Cavity Growth
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Intergranular Fracture: Experimental 
Observation

Micrograph at the tension side after creep 
test at 1700oC

•  SiC acts as microstructure anchors 
and some lead to cavitation but not 
all. 

•  SiC remains near constant shape 
(relatively high rigidity) 

•  Cavitation is only observed at high 
tempera tu re reg ion (above 
1500oC) 

•  About 5% cavitation is found at 
ZrB2-SiC grain boundary and the 
rotation angle is less than 3o 



SiC grain
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Polycrystalline Model

MATLAB image 
processing

*.py (Python script)

MATLAB 
parser

ZrB2-SiC composite w/ Grain boundary elements

ABAQUS
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Comparison of Strain Rate

Significant increase of strain rate 
when   nucleation was considered

•  Simulation results show a 
significant  variation 
when cavitation 
nucleation was assigned. 

•  Simulation with 
nucleation allowed at 
ZrB2-SiC interface show 
a great agreement with 
experiment data 
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Grain Rotation

ID	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 

Angle	 0.004 	 0.008 	 0.011 	 0.004 	 0.015 	 0.007 	 0.035 	 0.008 	 0.030 	 0.004 	 0.003 	 0.014 	 

ID	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 

Angle	 0.02	 0.17	 0.37	 0.09	 2.14	 1.37	 2.67	 0.13	 0.22	 0.01	 0.04	 0.12	 

(a) Without nucleation  

(b) With nucleation @ ZS grain 
boundary

scale 100 times. Nucleation occurs at 
ZS grain boundary as softening 
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Tensile Stress Contour

Severe stress concentration at ZrB2-SiC grain boundary 
when nucleation is not allowed. 

without nucleation  nucleation at ZrB2-SiC
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“Crystals are like people, it is the 
defects in them which tend to 

make them interesting!”  
- Colin Humphreys
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From Tony, 1991.12



Glorious Ascend (精彩綻放)
Driven and Determine 
Achieving one’s dream in the most Gracious Manner 
Braving all Obstacles with Confidence and  
Emerged as a Glorious Winner


