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Thermal conductivity of diamond nanowires from first principles
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Using ab initio calculations we have investigated the thermal conductivity (κ) of diamond nanowires, unveiling
unusual features unique to this system. In sharp contrast with Si, κ(T ) of diamond nanowires as thick as 400 nm
still increase monotonically with temperature up to 300 K, and room-temperature size effects are stronger than
for Si. A marked dependence of κ on the crystallographic orientation is predicted, which is apparent even at room
temperature. [001] growth direction always possesses the largest κ in diamond nanowires. The predicted features
point to a potential use of diamond nanowires for the precise control of thermal flow in nanoscale devices.
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I. INTRODUCTION

Recent advances in nanofabrication and characterization
techniques have made it possible to study the thermal con-
duction properties of very small systems, notably nanowires
(NWs). The synthesis of diamond NWs eluded researchers
for a long time, and they were only successfully produced
recently.1 Given the exceptional thermal conduction properties
of bulk diamond, and the importance of heat dissipation in
nanoscale devices, it is crucial to investigate the thermal
conductivity of this new system, and to compare it with other
NWs of the group IV family, Si. Due to their novelty, no
experimental measurements of diamond NWs have yet been
reported.

Theoretically, numerous studies of the thermal conductivity
of group IV semiconductor NWs have been published in recent
years.2–11 However, the main problem that stands in the way to
interpret them is the large number of approximations, assump-
tions, and adjustable parameters employed in all investigations
to date. For any calculation, there were always the questions of
“how much does the choice of interatomic potential, or the use
of Mathiessen’s approximation, or the choice of anharmonic
scattering parameters, affect the results?” In this paper, we
have developed an approach which takes an important step
forward in eliminating many of these issues: we obtain κ

from the numerical solution to the well-defined linearized ab
initio Peierls-Boltzmann phonon transport equation (PBTE) as
originally formulated by Peierls,12–14 without any adjustable
parameters or empirical potentials. We do not resort to the
Mathiessen rule, but develop a more accurate approximation,
which becomes exact in the cases where the bulk can be
described by the relaxation-time approximation only. All the
quantities for the system are obtained atomistically from
first-principles density functional theory. The PBTE is solved
iteratively, beyond the relaxation-time approximation. We
have investigated cylindrical NWs with diameters above
10 nm, in the temperature range of 100–1000 K, in the [001],
[011], and [111] crystallographic orientations. In what follows
we present the method of calculation and results. Despite some
similarities with Si, there are striking differences between
the two systems. The most remarkable are (1) size affects
κ more significantly in diamond than Si. For instance, at

200 nm, the room-temperature κ of diamond NWs is reduced
to 25% of the bulk value, compared with 43% for Si NWs.
(2) A large orientation dependence should be observable
in diamond NWs already at room temperature, whereas
the degree of anisotropy is generally smaller in Si NWs.
(3) [001] crystallographic direction always possesses the
largest κ in diamond NWs, while the direction that has the
largest κ in Si NWs depends on the diameter and the temper-
ature. These differences between diamond and Si NWs imply
that it should be easier to investigate the former experimentally.
They also suggest that, due to a greater tunability at larger
thicknesses and higher temperatures, diamond NWs might be
well suited for heat management applications in nanoscale
devices.

II. PEIERLS-BOLTZMANN PHONON
TRANSPORT EQUATION

Previously we have presented the ab initio formulation
of the PBTE for bulk materials.15–17 The case of NWs is
complicated by the fact that the distribution function fr,λ =
f0(ωλ) + gr,λ is space dependent, where λ stands for the
phonon branch index and wave vector, λ ≡ (α,q), and f0(ωλ)
is the Bose-Einstein distribution depending on the phonon
frequency ωλ. Expressing gr,λ in terms of phonon lifetime
τr,λ defined as gr,λ = − dT

dz
vz

λ
df0

dT
τr,λ, where the temperature

gradient and the axes of NWs are taken along the z direction,
and vz

λ is the z component of the group velocity, the PBTE can
be written as

1 = (
τ 0
λ

)−1
τr,λ − �r,λ + vλ · ∇τr,λ, (1)

where

�r,λ ≡
+∑

λ′λ′′
�+

λλ′λ′′(ξλλ′′τr,λ′′ − ξλλ′τr,λ′)

+
−∑

λ′λ′′

1

2
�−

λλ′λ′′ (ξλλ′′τr,λ′′ + ξλλ′τr,λ′ ), (2)

1/τ 0
λ ≡

+∑
λ′λ′′

�+
λλ′λ′′ +

−∑
λ′λ′′

1

2
�−

λλ′λ′′ . (3)
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�±
λλ′λ′′ are proportional to the three-phonon scattering

rates, which must satisfy the energy and momentum con-
servation conditions: ωλ ± ωλ′ = ωλ′′ and q ± q′ = q′′ +
K, where K is a reciprocal lattice vector, which is
zero for momentum-conserving normal processes and
nonzero for resistive umklapp processes.18 Their ex-
pressions can be found in Refs. 18 and 16. ξλλ′ ≡
ωλ′vz

λ′/ωλv
z
λ. The summation is understood as

∑±
λ′λ′′ Fλλ′λ′′ ≡∑

α′
∑

α′′
∫
BZ

F(α,q),(α′,q′),(α′′,q±q′+K)dq′/VBZ , where VBZ is the
“volume” of the Brillouin zone. Here we neglect the scattering
due to isotopes, since it is not the focus of the present study.

Equation (1) should be solved in combination with specific
boundary condition. All phonons approaching the boundary
rB are scattered into modes going away from the boundary,
and thus the normal component of the velocity vn changes sign
from negative to positive (the direction into the system is taken
as positive). Generally the boundary condition reads19

grB,λ(vn > 0) =
∑
α′

∫
R(λ,λ′)grB,λ′(v′

n < 0)dq′, (4)

which represents the steady-state balance condition. The
characteristics of the surface are determined by the function
R(λ,λ′), which is the probability of phonons of mode λ being
scattered into mode λ′. Phenomenologically a specularity
parameter p(λ) is usually introduced to simplify the boundary
condition. That is to say, a fraction p of the incident phonons
are scattered specularly, and the rest are scattered randomly
into different directions. The boundary condition then becomes

grB,α,q(vn > 0) = pgrB,α,q′ (v′
n = −vn), (5)

where q′ is simply the reflection of q. For simplicity, we
have constrained ourselves to the completely rough boundary
condition; that is, p = 0. In this case, the boundary condition
is very simple: grB,α,q(vn > 0) = 0.

The PBTE for the bulk materials does not have the last term
of Eq. (1), and thus it can be exactly solved iteratively. In the
case of NWs, in principle, we can discretize the r space, and do
the iteration for τr,λ at each r point. However, in this case, the
computational time and computer memory required becomes
a serious concern. To overcome this issue, we approximate
�r,λ by its average value �̄λ over the cross section, which is
evaluated using τ̄ , the average of τr, and we have the formal
solution21

τr,λ = τ 0
λ (1 + �̄λ)

{
1 − e−|(r−rb)/τ 0vλ|Gr,λ

}
, (6)

where rb is the point on the surface where the phonon of mode
λ can reach moving backward from r, and Gr,λ is determined
by the boundary conditions. For completely diffusive boundary
conditions, as considered here, Gr,λ = 1. τ̄λ can thus be
obtained as

τ̄λ = τ 0
λ (1 + �̄λ)

(
1

Sc

∫
Sc

{
1 − e−|(r−rb)/τ 0vλ|}ds

)
, (7)

with Sc being the NW cross section. Equation (7) can be solved
iteratively starting with the zeroth-order solution

τ̄
(0)
λ = τ 0

λ

(
1

Sc

∫
Sc

{
1 − e−|(r−rb)/τ 0vλ|}ds

)
. (8)

τ̄
(0)
λ is equivalent to the relaxation-time approximation (RTA).

The iteration is repeated until the convergence is achieved. In
the RTA, �r,λ is zero, and Eq. (6) becomes the exact solution.
In contrast, the often used Mathiessen rule, which combines
anharmonic scattering and Casimir boundary scattering in a
simple way, is never exact. This is especially important for a
thin film or a 2D ribbon, where a Casimir boundary scattering
rate cannot be defined,20 but the approach in Eq. (6) continues
to be valid.

After τ̄λ is solved, κ can be calculated as19

κ = 1

kBT 2

∑
α

∫
f0(f0 + 1) (h̄ωλ)2

(
vz

λ

)2
τ̄λ

dq
(2π )3

. (9)

The expression of transition probability �±
λ,λ′,λ′′ contains

a δ function which can be written as δ(ωλ − W ),16,18 with
W = ±ωλ′ + ωλ′′ . The straightforward way to handle the δ

function is to replace it with a Gaussian function22

g(ωλ − W ) = 1√
πσ

e−(ωλ−W )2/σ 2
. (10)

As was done in Ref. 23, we use an adaptive broadening
parameter σ . σ is chosen to be of the order of �W , where
�W is the spacing of W . �W can be estimated as

�W =
∣∣∣∣∂W

∂q′

∣∣∣∣|�q ′| = |vλ′ − vλ′′ ||�q ′|, (11)

which varies from process to process. |�q ′| is simply the
spacing of the sampling q points in the Brillouin zone.

The harmonic and third-order anharmonic interatomic force
constants used in this work are calculated from first principles
using density functional perturbation theory.24 The full details
of the approach used can be found in Refs. 16 and 24. However,
for the benefit of the reader, we note some key elements of
the calculations here. These first-principle calculations are
performed for the respective bulk systems using a plane-wave
pseudopotential method. The electronic exchange and corre-
lation is described using the local-density approximation. The
Bachelet-Hamann-Schlüter carbon pseudopotential25 with a
plane-wave energy cutoff of 100 Ry is used for all diamond cal-
culations. Harmonic interatomic force constants are calculated
on a 6 × 6 × 6 Monkhorst-Pack q-point mesh and provide
phonon dispersions in excellent agreement with experiment
for both silicon and diamond. The calculated anharmonic in-
teratomic force constants include interactions up to the seventh
nearest neighbors. While the presence of the surfaces will lead
to a change in force constants for atoms in this region, we
assume this is essentially included in the boundary condition
in the diffusive limit. This assumption should be reasonable
for the nanowires considered in this work. For small nanowires
(2–3 nm or less), a more detailed atomistic examination of the
force constants would be required. A 32 × 32 × 32 grid of q
sampling is used to calculate the three-phonon processes for
the PBTE calculation in order to achieve good convergence
of κ .

III. RESULTS AND DISCUSSION

First we compare the iteratively calculated results with
the RTA results. The room temperature κ as a function of
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FIG. 1. Comparison of room-temperature thermal conductivities
between iteratively calculated results (solid lines) and RTA results
(dashed lines) for NWs along [001] growth direction. Upper (lower)
curves for diamond (Si) NWs.

diameter for diamond NWs are plotted in Fig. 1, together
with Si NWs for comparison. The iteratively calculated results
give the correct bulk value in the large diameter limit. The
calculated thermal conductivity approaches the RTA results
in the small diameter limit where boundary scattering should
dominate over anharmonic phonon-phonon scattering. While
the difference between the iteratively calculated κ and the
RTA results is almost negligible for Si NWs, it is important
for diamond NWs. For example, at 200 nm diameter, the
iteratively calculated κ is 33% higher than the RTA value, and
it approaches 50% at the bulk limit. If there is some specularity
at the surface, the difference is closer to the bulk limit.
The iteration procedure removes the contribution of normal
three-phonon processes to the thermal resistance, which is
included in the RTA. In diamond, the normal processes
are important, resulting in a much higher κ than the RTA
solution.16 The difference decreases with decreasing diameter,
because anharmonic scattering becomes less important than
the boundary scattering. Given that our results match the
expected physical trends in the large and small diameter limits,
we expect that our results should be in reasonable agreement
with the exact solution for the entire diameter range considered
here.

It is instructive to take a look at the distribution of phonon
mean free paths (MFPs) in the bulk material. We define the
MFP of a phonon mode λ as vλτλ. A clear view of the
MFP distribution is provided by the “cumulative thermal
conductivity” κl/κ , which represents the fraction of heat
carried by phonons with MFPs shorter than or equal to l.
It is shown in Fig. 2 for room temperature, where a first
striking difference with Si becomes apparent: in bulk diamond,
most of the heat is carried by phonons in a narrow range of
MFPs, whereas for Si MFPs span a range larger by more than
one order of magnitude. In diamond, phonons with 500 nm
< l < 3.5 μm account for 80% of the heat, whereas in Si
this range becomes 50 nm < l < 13 μm. This difference can
be traced to the fact that at room temperature, for Si, the
full spectrum of acoustic phonon modes has high occupation,
while for diamond only the lowest part of the spectrum has high
occupation. Thus, the potential contribution of those shorter
MFP phonons in diamond is not present at room temperature.

10 100 1000 10000 1e+05 1e+06
MFP or diameter (nm)

0
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1
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FIG. 2. (Color online) Solid lines: normalized cumulative thermal
conductivity of bulk diamond and Si at room temperature, as a
function of the mean free path. Dashed lines: room-temperature
thermal conductivities of diamond and Si nanowires along [001]
growth direction, as a function of diameter, normalized by their
corresponding bulk values.

In a nanosystem one expects that phonons with long MFPs
will be blocked by boundaries, thus their contribution to the
conductivity would be eliminated. In such a simplified picture
one would expect the relative decrease of κ to take place within
a narrower range of sizes in diamond as compared to Si. This
is indeed the case, as the actual calculation for NWs along
[001] growth direction shows, also in Fig. 2. In diamond NWs,
κ decreases to about half its bulk value at diameters about
670 nm, as compared to 310 nm for Si NWs. At the same
diameter, κ is reduced more significantly in diamond NWs
than in Si NWs compared with the bulk value. For instance,
κ is reduced to 25% of the bulk value in diamond NWs at
200 nm, compared to 43% in Si NWs. At the point of largest
slope in the curve, the change in κ normalized to the bulk
value as a function of diameter in diamond NWs is ∼1.5
times greater than in Si NWs. All these comparisons indicate
that the boundary scattering affects κ more considerably in
diamond NWs than in Si NWs at room temperature. From the
figure it also becomes clear that the cumulative function is a
useful tool for understanding the size behavior, but it cannot
be used to predict the actual κ expected in a nanowire. The
cumulative and nanowire curves are clearly different. Also,
the cumulative curve would predict a markedly faster decrease
of κ with decreasing size for Si than diamond for the thicker
wires (above 2 μm diameter), but the difference is much less
pronounced in the actual nanowire calculation. This is because
the effect of the boundaries is not as clear-cut at a certain
MFP, but it affects different phonons by a different amount
depending on their MFPs as well as the phonon propagation
direction with respect to the axis of the wires. This results in
an effective spread of the onset of size effects across a large
range of lengths, which makes the Si and diamond cases rather
close at large diameters. On the contrary, on the small diameter
end, the differences are much more marked, and they become
manifest in the nanowire case, although not as sharply as the
cumulative function would suggest.

Measuring κ as a function of temperature for various
diameters is possibly the most direct way to assess the validity
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FIG. 3. (Color online) κ versus temperature for (a) diamond NWs
and (b) Si NWs along the growth direction [001] (solid lines), [011]
(dotted lines), and [111] (dashed lines) for several diameters. The
inset shows a zoom-in for 100 nm diameter.

of a calculation. Figure 3(a) shows the predicted results for T

in the 100–1000 K range (lower temperatures require a finer
grid of q points which is out of the calculational capability),
for the [001] crystallographic direction. No measurement
of κ(T ) on diamond NWs has been yet reported, so these
theoretical results still await experimental confirmation. For
comparison, the ab initio results for Si NWs are also plotted in
Fig. 3(b). These are generally larger than the measured values
in Ref. 26. Including isotope scattering, a good theoretical fit
to the Ref. 26 data has been obtained.27 However, the isotope
scattering rates used (τ−1

i = Aω4) in Ref. 27 were ten times
too large because A was taken from Ref. 28 which erroneously
published a ten times too large value for Si. Using the correct
value of A, the reduction of the room-temperature κ of Si
NWs is generally less than 7% for all diameters, and κ is
still larger than the measured value. For diamond NWs, the
reduction of κ due to natural abundance isotope scattering
is 12% for 100 nm diameter at room temperature, while the
reduction is 30% for bulk diamond.16 Figure 3 again highlights
the large difference between the Si and diamond cases. The
size effect at room temperature in diamond NWs is very
clear for diameters as large as 400 nm, where a monotonic
increase of κ(T ) is the signature of phonon transport being
dominated by boundary scattering. In contrast, a similar
size Si nanowire shows a mostly bulklike behavior at room
temperature, with the peak κ(T ) at about 90 K. This has
important experimental consequences, meaning that it could
be considerably easier to investigate size effects in diamond
NWs than in Si, due to the larger sizes involved. In particular,

an accurate experimental investigation of diamond NWs might
be able to clarify interesting and highly debated phenomena
reported on Si NWs, for which experiments are quite involved
due to their small diameters.29

Up to this point we have only discussed the [001] growth
direction. Early experiments on Si rods at low tempera-
ture had observed changes as large as 50% depending on
orientation.30,31 Our ab initio calculation in Fig. 3 shows
that κ of diamond NWs also have a strong orientation
dependence. For example, at room temperature, κ for the [001]
direction is ∼17% larger than the [011] direction at 100 nm
diameter, which should be observable in experiments. When
the boundary scattering dominates the thermal resistance, as at
low temperatures and small diameters, the phonon dispersion
itself determines the anisotropy of κ . Considering the linear
dispersion at low frequencies, the degree of the κ anisotropy
defined as the ratio of κ’s along different directions becomes
constant at very low temperatures. κ scales linearly with
diameter for thin NWs, therefore the degree of the κ anisotropy
is also independent of diameter at small diameters. When
the temperature and diameter increase, anharmonic scattering
starts to play a role in the resistance, and the degree of the κ

anisotropy no longer shows a simple relation with the phonon
dispersion.

In diamond NWs, calculated results show that the largest
conductivity is obtained for the [001] direction, whereas
the [011] and [111] directions have smaller conductivities,
irrespective of the diameter and the temperature. This indicates
that the [001] direction is of the greatest importance in the
potential application of diamond NWs in heat management.
Our results differ from the calculations in Refs. 32 and
33, which had predicted a larger κ for the [011] direction.
However, the calculations in Refs. 32 and 33 are for ultrathin
NWs with important quantum confinement effects, so they
should not be compared with the ones presented here. On
the contrary, the anisotropy of κ in Si NWs shows a more
complicated behavior. At 1000 nm diameter, [001] direction
has the largest κ , the same as in diamond NWs. However at
100 nm diameter, the highest conductivity can occur in any
of the three growth directions, depending on the temperature.
We note that the degree of the κ anisotropy in diamond NWs
is generally larger than Si NWs for the temperature range
involved.

The diamond nanowires whose synthesis is reported in
Ref. 1 are encased in carbon nanotubes, although they can
be stripped of such cover. If at the contacts the wire is
encapsulated in a carbon nanotube, this could in principle
add a contact thermal resistance, due to the extra interfaces.
However, the answer is not so simple. The conductance of a
contact, either phononic or electronic, critically depends on
the coupling strength. Weak- and strong-coupling regimes can
result in completely opposite physical behaviors. As shown
in Ref. 34, a weak coupling requires the contact to be very
long, in order to achieve the maximum contact conductance
permitted by the quantum limits. On the contrary, a strong
coupling quickly reaches a saturated value upon increase of
the contact length, but the maximum conductance achievable
is typically much less than in the weak-coupling case.

In the case of a nanotube encapsulating the contact part
of the wire, the contact between the nanotube and the wire
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is probably weak, due to the low reactivity of the graphitic
surface. This could be very advantageous, if one can afford
making a long contact, since it might allow one to reduce the
contact resistance to the lowest possible value. An estimation
of the contact strengths and required contact lengths would
need a completely different type of calculation, involving
Green’s function methods, and it is beyond the scope of this
paper.

IV. CONCLUSION

We have calculated the thermal conductivity of diamond
nanowires beyond the relaxation-time approximation, by using
an ab initio PBTE calculation. The thermal conductivity of
diamond NWs displays unusual properties that differ from
those of Si NWs. We have shown that size effects should be
more easily observable in diamond NWs than in Si NWs,
because κ is more strongly affected at considerably larger
diameters and at higher temperatures. We have found that
growth direction has an important effect on κ , the [001]
direction being the most conductive in diamond NWs, while it
is not always the case in Si NWs. Also in contrast with Si, we

have shown that normal processes play an important role in
diamond NWs, noticeably increasing κ above the RTA values.
From the fundamental point of view, these effects imply that
an experimental investigation of the thermal conductivity of
diamond NWs might be able to clarify the complex nature of
the size effects in NWs in a more straightforward way than
has been previously possible with Si. From the applications
point of view, the ability to use much larger sized diamond
NWs that operate at higher temperatures and have faster size
variation in κ means that they could play an interesting role as
components of thermal management in nanodevices.
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