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SECTION II.

MECHANICS, OR THE PHYSICAL SCIENCE OF MOTION IN GENERAL.

CHAPTER 1.

FUNDAMENTAL PRINCIPLES OF MECHANICS.

44. Mechanics.—Mechanics is the science which treats of the
laws of the motion of material bodies. It is an application of phoro-
nomics to the bodies of the external world, in so far as the latter is
concerned with the motion only of geometrical bodies.

Mechanics is a part of natural philosophy, or of the doctrine of
laws according to which changes take place in the material world,
viz., that part which considers the changes in bodies resulting from
measureable motions.

§ 45. Force.—Force is the cause of motion or change of tnotion in
material bodies. Every change of motion, viz., every change in the
velocity of a body must be regarded as the eflect of a force. For
this reason we measure the force called gravity by a body falling
freely, because the same incessantly changes its velocity. On the
other hand, rest, or the invariability of the state of motion of a body,
must not be attributed to the absence of forces, for opposite forces
destroy each other and produce no efliect. The gravity with which a
body falls to the ground still acts, though the body rest upon a table;
but this action is counteracted by the solidity of the table or of the
support.

§ 46. A body is in equilibrium, or the forces acting upon a body
are in equilibrium, when there is no residuary eflect, no motion pro-
duced or changed, or when each neutralizes the other. In a body
suspended by a thread, the strength of the thread is in equilibrium
with gravity. In forces, equilibrium is destroyed, and motion arises
;iazne of the forces be removed, or in any way counteracted ; for in-
s c}f’ a steel spring, bent by a weight, enters into motion when the

velght 1s taken away, because the force of the spring, called elasti-
city, tl}en.comes 1nto action.

Statics is that part of mechanics which treats of the equilibrium of

fOl'CCS. Dynamics on th g
e other hand, t
they produce motio’n. , treats of forces in so far as
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§ 47. Division of Forces.—According to their effects, forces are
either moving forces or resistances ; that is, as motion is brought about
or impeded. Gravity, the elasticity of a steel spring, &c., belong to
motive forces. Friction, the solidity of bodies, &c., are resisting
forces or resistances, because by them motion is either diminished or
destroyed, and can by no means be brought about. Moving forces
are divided into accelerating and retarding; the first produces a posi-
tive, the second a negative acceleration; by the one an accelerating,
by the other a retarding motion is produced. Resistances are re-
tarding forces, but a retarding force is not always a resistance.
Gravity, for example, acts upon a body projected vertically upwards
to retard it; but gravity, on this account, is no resisting force; for,
by the consequent falling down of the body, it then again becomes a
motive one.

There is a distinction between constant and variable forces. While
constant forces always act in the same way, and, therefore, produce
like effects in like particles of time, ¢. e. equal increments or decre-
ments of velocity, the effects of variable forces are different at different
times; while the former bring about a uniformly variable motion, to
the latter corresponds a variably accelerated or a variably retarded one.

48. Pressure.— Pressure and traction are the first effects of forces
upon material bodies. By means of them, bodies are compressed and
extended, and especially changed in their form. The pressure in
traction brought about by gravity, acting vertically downwards, which
the support of a heavy body, or the string to which a body is attached
has to sustain, is called the weight of the body.

Presgure and traction, and weight also, are magnitudes of a parti-
cular kind, which can only virtually be compared with each other, as
the action of forces serves for their measurement. The simplest, and
on that account the most general, means of measuring forces is by
weights,

_§ 49. Equality of Forces.—Two weights, or two pressures, or trac-

tions, and also the forces which correspond to these last, are equal,
when one may be replaced by the other, without producing different
effects. If, for example, a steel spring be bent by a weight G, as by
another G,, then are these weights, and therefore the gravities in both
bodies, equal. If a loaded balance be made to vibrate as much by a
weight G as by another G,, substituted for G, these two weights G,
G, are equal; in this case, the arms of the balance may be equal or
unequal, and the remaining load great or small.

A pressure or weight (force) is 2, 3, 4, &c., times as great as ano-
ther pressure, &c., if it produces the same effect as2, 3, 4. . . n pres-
sures together of the second kind. If a balance, otherwise loaded at
will, is brought into the same vibration by a weight (G) as by the
addition of 2, 3, 4, equal weights (G,), the weight (G) is 2, 3, 4, &c.,
limes as great as the weight (G,). . :

§ 60. Matter.—Matter is that by means of which bodies belonging
to the external world, which in-contradistinction to geometical bodies
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we term material or physical, act upon our senses. Mass is the quan-

tity of matter composing a body.

Bodies of equal volume, or equal geometrical contents, have gene-
rally different weights when they consist of diflerent kinds of matter.
We cannot, therefore, infer the weight of a body from its volume until
we first know the weight of a unit of volume, for instance, a cubic
foot or cubic centimetre of the matter of the body.

§ 51. Unit of Weight.—The measurement of weights and forces
consists in a comparison of them with some given invariable weight,
taken as unity. The choice of this unit of weight or force is perfectly
arbitrary ; it is nevertheless advantageous in practice, that the weight
of a volume of some universally diflused body, equivalent to that of

the unit, should be chosen.
The units of weight or pressure are diflerent in different countries.

In England, the unit of pressure from which all the rest are derived is
the weight of 22,185 cubic inches of distilled water (at a temp. 628
Fahr. taken in air, and the height of barometer at 30 inches). This
weight is equal to 5760 grains; which again is equal to one pound
troy, and 7000 such grains constitute the pound avoirdupois. The
gramme is the weight of a cubic centimetre of pure water in a state
of maximum density (at a temperature of 4€ C.). The Prussian pound
is also a unit referred to a weight of water. A Prussian cubic foot of
distilied water in vacuo, and at a temperature 158 R. weighs 66 Prus-
sian pounds. Now a Prussian foot = 139,13 Paris lines = 0,3137946
metres = 1,029722 English feet: hence it follows that a Prussian
pound = 467,711 grammes = 1,031114 pounds English.*

. § 52. Inertia.—Inertia is that property of matter, in consequence
of which it can of itself alone neither acquire nor change motion.
Every material body remains at rest so long as no force acts upon it,
and every material body once set into motion maintains a uniform
rectilinear motion, so long as it is not subjected to the action of a force.
Hence, when a change takes place in the condition of motion of a
body, when it changes its direction of motion, or when it acquires a
greater or less velocity, this is not to be attributed to the body as a
certain quantum of matter, but to the agency of some foreign cause
or force. In as much as a development of force takes place at every
change in the motion of a material body, in so far inertia may be
ranked amongst forces.

If we could entirely remove the forces acting upon a mass in mo-
tion, it would move on uniformly without ceasing, but we find no-
where such a uniform motion, because it is not possible for us to with-
draw a mass from the action of every force. When a body moves
upon an horizontal table, gravity, which is then counteracted by the
table, exerts upon the body no immediate action, except that from the
pressure of the body against the table there arises a resistance, which
we shall consider more closely in the sequel under the name of fric-

=5

* In the United States, the standard weight is the pound troy, the original of Which is
the mint pound, constructed by Capt. Kater at the request of Mr. Gallatin—Amu. Ep.
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tion, which incessantly abstracts velocity from the moving body, im-
parts to it a retarded motion, and brings it finally to rest.

The air likewise opposes resistance to a moving body, and from
this resistance, if the friction of the body were entirely put aside, a
gradual diminution of velocity would ensue. But we find that the loss
of velocity becomes the less, and that the motion also approximates
more and more to a uniform one, the more we diminish the number
and strength of these resistances; and hence we may conclude, that,
by the removal of all moving forces and resistances, an entirely uni-
form motion must take place.

§ 3. Measure of Forces.—The force (P) which accelerates an
inert mass (M) is proportional to the acceleration (p), and to the mass
itself (M) : it increases in equal masses as the increment of velocity
in infinitely small times, and increases by equal increments of velocity
in the same ratio as the masses become greater. The mtuple accele-
ration of one and the same mass, or of equal masses requires an mtu-
ple force, and an ntuple mass for the same acceleration, an ntuple
force.

As we have not yet chosen a measure of the mass, we may, there-
fore, at once, put P=Mp, i. e. the force equal to the product of the
mass and the acceleration, and, at the same time, in place of the
power, its effect, ¢. e. the pressure produced by it.

The correctness of this general law of motion may be readily proved
by direct experiment: for example, by letting equal and differently
movable masses be igmpelled upon an horizontal table by means of
bent springs; and, it is obvious, from this, too, that all the conse-
quences deduced, and all the laws developed from them for com-
pound motions, fully correspond with observation and the phenomena
of nature.

§ 54. Mass.—All bodies fall at one and the same place of the
earth, and in vacuo equally fast, viz., with an invariable acceleration
g = 9,81 metres = 32,2 feet (§ 15); if, therefore, the mass of a body
= M, and the weight measuring its gravity = G, we have from the
last formula G=Mg, i. e.
the weight of a body is a product of its mass and the acceleration of

gravity, and inversely: M=g_, i e

g
the mass of a body is its weight divided by the acceleration of gravity,
or the mass is that weight which a body would otherwise have if the
acceleration of gravity were = to unity, as a metre, a foot, &c. At
a polnt upon, or in the vicinity of the earth, or of any other he’avel}l}'
body, where bodies do not fall with 9,81 metres = 32,2 feet, but with
a velocity (after the first second) of one metre = 3} ft., the mas8, or
:‘ ﬁthgr 3ts measure, is from hence immediately given by the weight of
€ body.

. According as we express the acceleration of gravity in metres or
In feet, we have, therefore, the mass

5.
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G

b

M=_%__0,031 a.
32,0

)

The mass of a 20 1b. heavy body, M=0,031 x 20=0,62 lb., and
inversely the weight of a mass of 20 lbs. G=32,2 x 20=644 lbs.

§ 55. In so far as we assume the acceleration (g) of gravity as
invariable, it follows that the mass of a body is exactly proportional
to its weight, and that also for the masses Jf and JM,, with the weights

M G
G and G;: i A
We hence obtain the weight as a measure of the mass of a body;
the greater the mass which a body measures, the greater is its
weight.

The acceleration of gravity is, in fact, somewhat variable, it be-
comes greater the nearer we approach the poles of the earth, and
diminishes the more we advance towards the earth’s equator; i1t is
greatest at the poles, and least at the equator. It also diminishes the
more a body is above or below the level of the sea; and attains its
greatest value at the level of the sea. But, since a mass, so long as
nothing is added to, or taken from it, 1s invariable, so that at all points
of the earth, as well as those beyond it, at the moon, for instance, it
is still the same; it hence follows that the weights also of bodies are
variable and dependent upon the place of the bodies, and must be
altogether proportional to the acceleration of gravity, corresponding

with the place, or g=_€.
1

One and the same steel spring is 1diﬂierently bent by one and the
same weight at different places of the earth; it is least at the equator,
on high mountains, and in deep inines; greatest in the vicinity of the
poles, and at the level of the sea.

§ 56. Densily is the intensity with which space is filled by matter.
A body is so much the denser the more matter there is in its space.
The natural measure of density is that quantity of matter (that mass)
which fills a unit of volume, because matter can only be measured
by weight, so that the weight of a unit of volume, a cubic metre, or
cubic foot of some matter, serves as a measure of its density.

For example: the density of a cubic foot of water = 62,38 Ib.,
and that of cast iron = 452,13 1lb., because a cubic foot of water
weighs 62,38 1b. = 998,08 oz. avd., and a cubic foot of cast iron
weighs 452,13 1b.

v Frorrrnhthe volume ¥V of a body and its density y, its weight G =

‘ g . . N .
boydy. lume multiplied by the depsity gives the weight of a

The density of bodies is either uniform or variable, according as
equal volumes of the same body are of equal or of unequal weight.
The density of metals, for instance, is uniform, or they are homoge-
neous, because equal and very small parts of them are of the same

JM: =O,1019 G, or
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weight: on the other hand, granite is a body of variable density, be-
cause made up of parts of different densities,

Example—1. If the density of lead be 708 Ibs., 3,2 cubic feet of lead weigh =708X
3,2=2265 |bs.—2. If the density of bar iron = 485,8 lbs.; a mass of it of 205 Ibs. has a

G 205
volume V= __—___ = (0,4023 cubic ft. = 0.4083X 1728=705.54 cubic inches.—3.

10,4 cubic feet of deal, perfectly saturated with water, weigh 577 Ibs.; the density of
this wood is therefore: y» i =i71_= 99,9 1bs.

§ 57. Specific Gravity.—Specifie gravity or specific weight is the
relation of the density of a body to that of the density of some other,
generally water, taken for unity. Now the density is equal to the
weight of a unit of volume: hence the specific gravity is also the
relation of the weight of one body to that of another, viz. water,

under the same volume. _ . .
In order not to confound the specific weight with thatewhich belongs

to a body of a certain magnitude, the last is usually called the abso-

lute weight,
If y be the density of matter (of water) to which we refer the den-

sity of other matter, and v, the density of any one kind of matter,
whose specific gravity we will designate by ¢, then the formula

_ 8=lland‘yl=£.7-
Y
holds good, and the density of a substance is equal to its specific

gravity into the density of water.
The absolute weight G of a mass of volume V" and specific gravity

eis: G = Vyl = Vsy.
Example.—1. The density of pure silver is 653,368 Ibs. and that of water = 62,38 Ibs.,

653’368=10,474; i.e. each mass of
62,38

silver is 104 timnes as heavy as a mass of water filling the same space.—2. The specific

gravity of quicksilvert= 13,598 ; its density, therefore, is = 13,598 X 62,38 = 848,24

Ibs.; a mass of 35 cubic inches, therefore, weighs -

848 X 35
G:=84824 . V= — " = 8 .
48, V {798 17,18 lbs

Remark. In these calculations the use of the French measure and weight bas this
advantage, that in order to effiect the multiplication of ¢ and y, it is merely requisite to
advance the decimal point; because a cubic centimetre of water weighs one gramme,
and a cubic metre a million, or one thousand kilogrammes. The density of quicksilver,
according to the French measure and weightt= 13,598 X 1000 = 13598 k?lag- yL.e8

cubic metre of quicksilver weighs 13598 kilogrammes.

§ 58. The following table contains the specific gravities of certain
bodies constantly coming into applieation in mechanics:

consequently the specific gravity of the former —

Mean specific gravity of dry laurel wood : . = 0,659
“ saturated with water . .= 1,110
Mean specific gravity of dry pine wood . .= 0,453*
‘¢ saturated with water . . = 0,839
Quicksilvee . . . ) . = 13,698
Lead . . . . . . . = 11,33

] 8;4&8 “On the Absorption of Water by Wood,”—Polytechnisches Mittheilungen, Part iv.
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Copper, cast and compact = 8,7
““ forged = 8,97
Brass . = 8,55
Iron, cast, white = 7,50
7 T gray . = 7,10
« « medium = 7,06
“ bar iron = 7,60*
Zinc, fused = 7,05
¢ rolled : i . . : . = 7,04
Granite . . . . . 2,50 to 3,05
Gnelss . . . . ) 2,39 to 2,71
Limestone . . . : . 2,40 to 2,86
Sandstone . . . . . 1,90 to 2,70
Bnck . . . . . 1,40 to 2,22
Masonry, with lime mortar of quarry stone : fresh . = 2,46
dry = 2,40

“ ‘¢ C of sandstone : fresh . . o= 2,12

dry . . = 2,05

L L 6 of brick: fresh = 1,55 to0 1,70

dry = 1,47 to 1,59

Earth, loamy, hard stamped, fresh = 2,06
dl'y = 1,93

Garden earth, fresh = 2,05
dl'y 5 . = 1,63

Dry, poor earth . . . = 1,34

§ 59. State of .Aggregatione—Bodiesappear to us, according to the
different cohesion of ther parts, under three principal conditions,
which we term states of aggregation. They are either solid or fluid,
and in the latter case, either liquid or gaseous. Solid bodies are those
whose parts adhere so strongly together that a certain force is required
to change the form of these bodies, or to eflect their division. Fluid
bodies, on the other hand, are those whose parts may be displaced
about each other by the smallest force. Elastic fluid bodies, whose
representant is atmosphenic air, are distinguished from the liquid re-
presented by water, in as much as there is inherent in them an en-
deavor to dilate themselves more and more, which is not the case with
water, &c. '

While solid bodies have a proper form and determinate volume,
liquid or aqueous bodies possess only a determinate volume without
any proper form, and the elastic extensible fluid bodies have neither
one nor the other.

§ 60. Division of Forces—Fores are different according to their
nature; we will here mention the principal :

1. Gravity, by means of which all bodies tend to approach towards
the centre of the earth.

* Rolled bo‘.le" plate iron has a sp. gr. from 7.6013 to 7,7922, or a mean of 7.7344, the
amount of. variation being 38.3th part of the mean density. By seventeen trials of ham.
mered bar iron, its mean sp. gr. was found to be 7,7254. See ¢ Report on Strength of Ma-
tertals for Steam Boilers" p. 232.  Also Jowrnal Franklin Inst, 1837.—Am. En,
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2. The Jorce of tnertia, which manifestsitself when changes in the

velocity of inert masses occur.

3. The muscular force of animated beings; the force exerted by
the muscles of men and animals.

4. Elasticity or spring-force, which bodies exhibit in a change of
their forin or volume, .

5. The force of heat or caloric, in consequence of which bodies
expand or contract by a change of temperature.

6. The magnetic force, or the attraction and repulsion of magnets.

7. The cokesive force, the force by which the parts of a body are
kept together, and resist separation.

g. Adhesion, the force with which bodies brought into close contact
attract each other.

The resistances of friction, rigidity, solidity, &c., arise mainly from
the force of adhesion.

§ 61. In reference to_forces we have to distinguish:

1. Its point of application, that point of a body on which the force
immediately acts.

2. Its direction, the straight line in which a force moves forward
its point of application, or strives to move it forward, or to impede
its motion. TEe direction of a force, like every direction of ‘motion,
has two senses, it can take place from left to right, or from right to
left, from above to below, and from below to above. The one is
termed positive, the other negative. As we write from left to right,
and from above to below, it would be most convenient were we to
call these motions positive, and those in the opposite direction, nega-
tive. .

3. The absolute magnitude or intensity of a force, which, as above
stated, is measured by weights, as pounds, kilogrammes, &c.

§ 62. .Action and re-action.—The first eflect which a force produces
in a body, is a change of form or volume combined with extension or
contraction, which begins at the point of application, and from thence
diffuses itself further and further. By thisinward change of the body,
its inherent elasticity is called into action, puts itself into equilibrium
with the force, and, therefore, is equal and opposed to the force. Ac-
tion and re-action are equal and opposed to each other. This law
not only prevails in reference to forces produced by contact, but also
mn the so-called forces of attraction and repulsion amongst which the
magnetic force and gravity itself may be ranked. The more strongly
a magnet attracts a bar of iron, the more strongly is the magnet itself
attracted by the iron. The force with which the moon is attracted
towards the earth (gravitation) is equal to that with which the moon
reacts upon the earth. The force with which a weight presses upop
its support is given back in an opposite direction; the force wat
which a workman draws or pushes at a machine, &, reacts upon
the workman and strives to move him in the opposite direction.
When a body impinges against another, the pressures are I eciprocally
equal on each of the bodies. _ .

§ 63. Division of Mechanics.— The whole subject of mechanics
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may be included under two principal divisions, according to the state
of aggregation of bodies.

1. The mechanics of solid bodies, which is also well named geo-
mechanzics.

2. The mechanics of fluid dodies, hydromechanics or hydraulics;
the last is subdivided into:

1. Into the mechanics of water and liquid bodies especially, Ay-
dromechanics or hydraulics. , ,

2. Into the mechanics of air, and other aériform bodies, especially,
aeromechanics, the mechanics of elastic fluids.

If we now have regard to the division of mechanics into statics and
dynamics, we have the following parts:

1. Statics of solid bodies, or geostatics.

2. Dynamics of solid bodties, or geodynamics.

3. Statics of flurds, or hydrostatics.

4. Dynamics of fluids, or hydrodynamics.

5. Statics of aériform bodies, or aérostatics.

6. Dynamics of aériform, aérodynamics, or pneumatics.

CHAPTER II.

THE MECHANICS OF A MATERIAL POINT,

§ 64. A material point is a material body, whose dimensions are
indefinitely small in comparison with the space occupied by it. In
order to simplify the representation, we will in the following consider
only the motion and equilibrium of a material point. A finite body
is a continuous union of an infinite number of material points. If the
single points or elements are all perfectly equal, i. e. move equally

quick, in parallel straight lines, we may then apply the theory of the
motion of a material point to that of the whole body, because, in this

case, we may assuine that equal parts of the mass of the body are

impelled by equal parts of the force.
g 65. Sumple constant Force.—If (p) bethe acceleration with which

a mass (JM) is imnpelled by a force, we have, from § 53, the forcea

P = Mp, and inversely, the acceleration, p = M

If, further, we put the mass M = g, where G is the weight of the

body, and g the acceleration of gravity, we have the force :

1. P =—§ G, and the acceleration:

P
2. P=6g.



THE MECHANICS OF A MATERIAL POINT. 59

We find, therefore, the force (P) which impels a body with a cer-
tatn acceleration (p) when we multiply the weight of the body (G) by

the ratio (g) of its acceleration, to that of gravity.

Inversely, the acc eleration (p), with which a body is mo ved forward
by a force (P) is given, when the acceleration (g) of gravity is multi-

P
plied by the ratio (5) of the force and weight of the body.

Exaqmple. Let us suppose a body lying on an horizonsal and perfectly smooth table,
which presents no impediment to the body in its course, but counteracts the efliect of
gravity upon it. If this body be pressed upon by a force acting horizonsally, the body
will give way to this influence, and move forward in the direction of this force. If the
weight of this body be G'= 50 lbs., and if P== 10 |bs. presses uninterruptedly upon (;t, at

1

will enter into a uniforinly accelerated motion with the accelerationp =G g=ﬁ)- X

32,2 = 6,44 feet. On the other hand, if the acceleration with which a 421b. heavy body

becomes accelerated bya force (P) = 9 feet, then will this force P — % .G = 2—925

X 42 =0,031 % 378 = 11,7 lbs.

§ 66. If the force which acts upon a body is constant, there an ses
a uniformly variable motion, and indeed a uniformly accelerated one,
if the direction of the force corresponels with the initial direction of the
motion ; and, on the other hand, a uniormly retarded one, if the direc-
tion of the force is opposite to that of the 1nitial direction of motion.
If we substitute in the rmule (§ 13 and § 14) for p, the value

P ) 4 : :
=&V obtain the following:
I. For uniformly accelerated motions:

1. v =c¢ + ggt,or-v=c+32,2g

9
9, 5= cf +§é’2‘_,ors= of + 16,1%1,".

.

II. For uniformly retarded motions:

1. ‘U=C_§gt= C——-32,2£t.

G
P gt* P

2. $ = ¢t = Ct—16,1 6 ¢2.

With the help of these formul all those questions may be answered
which can be proposed relative to the rectilinear motions of bodies by
a constant forc e,

Example.—1. A carringe weighing 2000 lbs. goes with a 4 fieet velocity upon a hori-
zontal line, oflering no impediments to it, and pushed forward by an invariable force of
25 1bs. during 15 seconds, with what velocity willit proceed after the action of this force?

P
This velocity v == ¢4 32,2 T ¢, but c=4, P=x 25 lbs, G = 2000,and ¢==15; hence

1t follows, v = 4 4- 32,2. 28 15 =10,03 feet.—2. Under similar circumstances & car-

. , 3000 _ o
rage, weighing 5500 lbs., which, setting out with a unifiorm velocity, has traver 90
ly for 30 seconds,

feet in 3 minutes, is so impelled forward by a force acting continuous 2
that it afterwards passes over 1650 feet in 3 minutes; what is this force? Here the
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o , 950 1650

imtial velocity ¢ = 360 = 5,277 feet per second, and the terininal velocity, v = 360
P 3,889 G

= 9,166 feet; therefore G gl =v — ¢ = 3,889, and the force P = T =0,031 X

51

9500 550
3,889 x 30~ = 012056 X -5~ = 22,10 Ibs—3. A sledge, weighing 1500 Ibs., sliding

forward with a 15 ft. velocity, loses, through friction, upon its horizontal support, its
whole motion in 25 seconds; how great is this friction? Here the niotion is unifiormly

Ge
retarded, and the terminal velocity v = 0; hence ¢ = 32,2 G’ and P = 0,031 =
1500 .
0,031 % —2:—1—5 = 0,031 %900 = 27,9 lbs. the friction demanded.—4. Another

sledge, of 1200 ]bs. and 12 feet initial velocity, has to overcome by its motion a friction
of 45 lbs.; what velocity has it after 8 seconds, and how great is the distance described?

8
1 X3 _ 15 0,66 = 234 feet, and the

The terminal velocity is v = 12 —32,2 ¥
5 v) t= (12 -'-2 2'34) % 8 =57.36 feet.

§ 67. Mechanical Effect.—The work done, or mechanical eflect,
is that eflect of a force which it produces in overcoming a restst-
ance: as that of inertia, friction, gravity, &c. Work is performed
when loads are lifted, a great velocity imparted to masses, bodies
changed in their form or divided, &c. The work done, or the me-
chanical eflect produced depends not only on the force, but also on
the distance through which it is made to act or to overcome the resist-
ance; it increases, of course, simultaneously with the force and the
distance. If we lift a body slowly enough to allow of our neglecting
its inertia, the labor expended is then proportional to its weight; for
1, the effiect is the same whether m (3) times the weight (m G) is
lifted to a certain height, or whether m (3) bodies of the single weight
(G) are lifted to the same height; it is, namely, m times as great as
the eflort necessary for the lifting of a single weight to that height;
and, again, 2, the work is the same, whether one and the same weight
be raised ton(5)times the height (n 2),or n(5)times through the height,
and it is of course n (5) titnes as great as if the same weight were
raised to a single height (k). The work again done by a slowly fall-
ing weight is proportional to the magnitude of this weight and the
height from which it has descended. This proportionality also holds
in every other kind of work done. In order to make a saw-cut of a
given depth of double the length, there are twice as many particles
to separate as from a cut of a single length; the work, therefore, is
twice as great. The double length requires double the distance to be
described by the force, consequently the work is proportional to the
distance. In like manner the work of a pair of mill stones increases
with the quantity of grains of a certain kind of corn, which they

rind to a certain degree. This quantity, under otherwise similar
circumstances, is proportional to the number of revolutions, or rather
to the distance which the upper mill-stone, during the grinding of
this quantity of corn, has gone through; consequently the work in-
Creases 1n proportion to the distance.

§ 68. The dependence above shown of the work produced by a

c

distance describeds == (
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force upon the magnitude of the force and distance described by it,
allows us to take that amount of work which is expended in over
coming a resistance of the magnitude of the unit of weight (as a kilo-
gramme, pound, &c.), along a path of the magnitude of the unit of
length (metre or foot,) as a unit of the mechanical eflect, or the dyna-
mical unit, and then we may put the measure of this equal to the

roduct of the force or resistance, and the distance described in the
direction of the force whilst overcoming this resistance.

If we put the amount of the resistance itselfe= P, and the distance
described by the force, or rather by its point of application, in overe
coming this = s, the labor expended is:

L = P s units of work. |

In order to define more clearly the unt of work, for which the
single name, dynam, may be used, both factors P and s are generally
given; and, therefore, insead of units of work, we say kibfram'e
metres, pounds-feet; and inversely, metrekilo. and feet-pounds ac-
cording as the weight and distance are expressed in kilogrammes
and m etres, or in pounds and feet. These te rms are usually expressed
for simplicty by the abbreviatiens mk, or km, Ib. fl., or j{ {b.

Emmple.—ls. In order to raise a stamper 210 lbs. 15 inches high, the mechanical effect
L=210 x %2- = 262,59 f, lbs. is necessary—2. By a mechanical effect of 1500 ft. Ibs.,

a sledge, which in its motion has to overcome a friction of 75 lbs,, is driven forward

a spacets = -Ii = 20.9 = 20 feet.

P 75

§ 69. Not only in an invariable force or constant resistance is the
labor a product of the force and distance, but also the labor may be
expressed as a product of the distance and force, when the resistance
whilst being overcome is variable, if a mean value of the continuous
succession of forces be taken as fhe force. The relation is here the
same as that of the time, the velocity, and the space; for the last
may be regarded as a product of the time by the mean value of the
velocities.  The same graphical representations are here also appli-
cable. The mechanical effect produced or expended may be con-
sidered as the area of a rectangular figure, ABCD, Fig. 27, whose

Fig. 27. Fig. 28.
1’\ N - C .N
F m E
; <q
»~ ¢
A B
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base 4B is the space described (s), and whose height is either the
invariable Hree (P) itself, or the mean of the different values of the
forces. In general, the work may be represented by the area of a
figure ABC D, Fig. 28, which has for its base the space (s), and whose
helghst above each point of the baseis equal to the force corresponding
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with each point of the path described. If the figure 4BCD be trans.
formed into a rectangular one .ABEF of like area, we have the height
AF = BE for the mean value of the force—Zke mean effort.

§ 70. Arithmetic and geometry give different methods for finding
a mean value from a constant succession of magnitudes. Ampngst
these, Simpson’s rule is that which is the most frequen.tly applied n
practice, and it combines a high degree of accuracy with great sim-

plicity. ] :
In every case it is necessary to divide the space AB=s (Fig. 29)

into 7 (the more the better) equal parts,
Fig. 29. as AE=FE G= GI, &c., and to measure
: the forces EF:P;: GH= Pg) IK= P.”
&c., at the ends of these parts of the
distance. If, then, we put the initial
force A#D=P, and the force at the other
end BC=P,, we have for the mean
force:
P=@}P,+P+P+P+ .... +P,_,
+% P. )-:—71;

and, therefore, its work is:
Ps=(4 P+ P,+P,+ ... +P._,+%P, )%

If the number of parts (») be even, viz., 2, 4, 6, 8, &c., Simpson’s
rule gives still more accurately the mean force:
P=(P,+4P +2P,+4P,+ .... +4 P+ P,)+3 n,
and, therefore, the corresponding work :
Ps=(P,+4P,4+2P,+4 P+ .... +4 P,_+P,) >

3ne

Ezxample. In order to find the mechanical work which a draught horse performs in
diawing a carriage over a certain way, we make use of a dynamometer, or measurer of
force, which is put into communication on oue side with the carriage, and on the other
with the taces of the horse, and the force is observed from time to time. If the inisal
force Py = 110 Ilbs,, the force, after describing 25 feet = 122 Ibs.; after 50 feett=127
1bs. ; after 75 feet = 120 lbs,, and at the end of the whole distance of 100 feet = 114
Ibs.; then the mean value, according to the first formula: P=(4. 1104 12241274
12043 . 114) =+ 4 = 120,25 lbs, and the mechanical work: P s = 120,25 X 100 =
12025 fi. 1bs.
from the second formala: P = (1104-4.1224-2.12744.1204114) =3 X 4

= o G 120,5 Ibs., and the mechanical work

12
P s = 120,5 X 100 = 12050 ft. Ibs.

§ 71. Principle of the Vis Viva, or Living Forces.—lIf, in the

formula of (§ 13) s = v p—t

— Or ps = we substitute for the

. , P - vi-enef
acceleration p, its value ce Ve thus obtain Ps-—-( 3 ) G, or
g

if we designate the heights due to the velocities Pj and f by A and hy:

28 2%
P S = (k—-’ll) G.

If we interpret this equation, so useful in practical mechanics, we
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find that the work® (P s) which a mass either acquires when it passes
from a lesser velocity (c) into a greater (v), or produces, when it is
compelled to pass from a greater velocity into a less, is constantly
equal to the product of the weight of this mass, and the difference of

. . 2
the heights due to the velocities (v c )
2 2
Ezample 1. In order to impart to a carriage of 4000 lbs. weight, upon a perfiectly
smooth railroad, a velocity of 30 feet, a mechanical work P s = 5-‘. G =0,015508 G =

0,0155 % 900 X 4000 == 55800 R Ibs. is required; and just so muclgl work will this car-
nage perform if a resistance be opposed to it, and it be gradually brought to rest—2.
Another carriage of 6000 lbs. goes forward with a velocity of 15 feet, which is trans-
formed by a force acting upon it into a velocity of 24 feet, how great is the work acquired
by this carriage, or done by the force? To the velocities 15 and 24 feet correspond the

heights due to velocity by == = =349 ft, and A = .21' ==8,928 R; from this the me-
g g

chanical work P s = (h—h,) G =>5,441 X 6000 = 32646 ft. Ibe. If, now, the distanoe

be known in which this change of velocity goes on, the force may be found ; and when

this is known, the distance may be determined. In this last case, for example, let the

distance of the carriage amount to 100 feet, and, whilst describing this, the velocity

passes from 15 into 24 feet; we have the force P = (h—-hl)_c.;. = 3?3;6 = 326,46 Ilbs.
8

Were the force itself 2000 Ibs., the spacees would be = (h—hl)e.g. = 37?6403= 16,323

feet.—3. If a 500 Ibs. sledge has entirely lost, through friction on its path, its velocity on
A

16 feat, after describing a space of 100 feet, then is the resissance of friction P em——
]

m= 0,0155 X 256 X § == 19,84 Ibe.

= 0,0155 % 162 % igg

§ 72. The formula found for the work in the foregoing paragr aph :
P S == (’l-—-}ll) G

is not only good for constant, but also for variable forces, if, instead of

P, the mean value of the force (from § 70) be introduced ; for if the

whole space (s) of motion be considered as consisting of equal and

uniformly accelerated parts described (.i.), then we have the amount
n

of work for these:

P (.i.)_”x’—C’ G
1 n — 2g piaad |
2 2
P(2)_Y%—%
()= G
Ps(-i)=MG,
n 2
&c., in so far as v, v,, v, &c., stand for the velocities acquired at the
end of these parts of space ; and by the addition of all these works

we ?ave the whole work required for the transformation of the velocity
¢ 1nto v :

Ps= (P,4+P,+ P,+.. ) _f,,”,_ﬁ“zg"’ G, because for an infinite num-

n

* i e. Working power.
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ber (n) of forces (P,+ P,4+ P,4...)=n, it transforme itself inte a
mean force, and because the memberson the right hand of the equation

2 2 3 2
% Gand —Yr G, as also Y2 G and —;_2 G, &c. are opposed to

%8 2 2 e,
each other, so that the membexsg_g G and o G, determined by the

terminal velocity v and the initial velocity ¢, only remain,

The formula P s _-_(f:f> G = (h—h,) G is not used merely for

2g
the determination of the work, but not unfrequently, also, forthe mea-
surement of the terminal velocity. In the last case & is put = A +

f‘f orv = [ c*42¢ Ps If by the constant motion of a body, the

g — — e
‘terminal velocity v = the initial velocity c, the work done = zer, i.e.

-as much work is performed by the accelerated, as is expended by the
retarded part of the motion,

Example—A carriage of 2000 Iha. proceeding upon a railroad without friction, has
acquired by an augmentation of its velocity, which at the commencement amounted to
10 ft, a mechanical work of 8000 lbs, its velocity after this work will be:

8000

v =J 1034-644 . = v/1084-206==17,49 feet.
Remark. The product of the mass M — G and the square of the velocity (v?): M# js

4
called, without attaching to it any definite idea, the living force (s vive) of the moved
mass: and hereafter, the mechanical work which a moved mass acnuires, inay be put
equal to half of the 9 viva of the same. If a mass enters from a velocity ¢ into another
v, the work performed is equal 10 half the difference of the 112 viva at the cornmencement
and end of the change of velocity, This law of the mechanical performance of bodies

by means of their inertia, is called the princ ple of living forces,or the vis viva.

§ 73. Composition of Forces—T wo forces P, and P, act upon one
and the same body, in the same or in an opposite direction, the eftect
is the same asif only one force acted upon the body, which is the sutn
or difference of these forces; for these forces impart to the mass JM

the acceleration, p, =% and p, = {%, consequently from § 28, the

Y

acceleration resulting from both, is

+ : :
p=p,tp,— f_‘ﬁﬂ, and accordingly the forre corresponding to this,

M

is S P:;"Ip — PliP2'
. The equivalentforce P derived from these two is called the resultant ;
Its constituente P and P, the componentse

. fﬁﬁ'g}:‘e’-}l} A body lying fiat upon the. hand presses so long only upon it with 1ts
bedy : but ifl;t{ht as the hand‘ is Bl rest, or is moved up and down uniformily with the
if it l;e Buddenf h;"d be raised quickly, it suffiers a greater pressure; on the ether hand,
the hand be d Y dropped, the pressure is then less than the weight; it becomes null if

rawn back with the acceleration of gravity, If the pressure on the hand

= P, the body falls with a force G—P, whilst its mass M — g-; if we put theaccelera-
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tion with which the hand falls — p, G—P — Ep, and therefore the pressuote P =G —
4

§G=( 1 __p) G. If the body on the hand be raised with the acceleraton p,—p is
£

then opposed % the aceceleration g, therefore the pressure upon the hand P = (1 -+ .g-)

G. According as a body ascends or deseends with a 20 feet acceleration, the pressure
upon the handi— ( 1 —_320_0.) G = (1—0,62) G = 0,38, of the weiglt of the body, or=
2,2

b)
14-0,62 = 1,62.—2. If with the flat hand I throw a Lody of 3 1bs. 14 feet perpendicu-
larl¥ upwards, whilst I urge it on with the hand for the first 2 feet, the mechanical work
periormed is Ps= G h=3 % 14 = 42 fi. lbs, and the pressure upon tiie hand, P =

42 ;
3= 21 Ibs. Whilst the resting body presses with 3 lbs,, it reacts npon the hand during

the projection with 21 Ibs.

§ 74. Parallelogram of Forces.—When a material point M, Fig.
30, is acted upon by two forces, P,,
P,, whose directions MX and MY Fig: 30.
make, with each other, the angle | |
XMY=s,, these lines generate the
accelerations in these directions,

b,= £‘- and p, = %, and from their

M

union, there arises a mean accelera-
tion (§ 34)in the direction .MZ, both of
which are given by the diagonal of a
parallelogram formed from p,, p,, and
the angle a; this mean or resultant ac-

celerationp= /p+p 3+ 2p,p, cos.a,
and for the angle ¢ which its direction makes with M X of the one

acceleration p,:

» Sino a
sin.p =22 2

If we substitute in these formule the above values of p, and p,:

P \* (P : P\ (P
= (22 N P (J) coS. a and
% J(.M) +(3) +2(w) Gi) oo
. P3 sin. a
Sin. @ — ( )
M/ p
If we multiply the first equation by .M,
, Mp= P24+ P24+2 P, P, cos. a, Or,
since M p is the force corresponding to the acceleration:
1. P= P24 P2+2 P, P,cos. a.
Pa SN, a
Thus, the resultant force is }d)etermined in magnitude and direction
? .
Jrom the component forces exactly as the resullant acceleration jrom
the component accelerations. I -
If we represent the forces by straight lines, and these '1N€S

drawn, bearing the same proportions to each other
6“

2, sin. ¢ =

as do weights, as
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pounds, &c., the mean force may be represented by the diagonal of
the parallelogram whose sides are formed by the lateral forces, and
one of whose angles is equal to that made by the directions of these
lateral forces. ‘T'he parallelogram which is constructed from the
lateral forces, and whose diagonal is the mean force, is called the

parallelogram of forces.
Example. When a body of 150 Ibs. weight, resting upon a perfectly smooth table
(Fig. 31) is ucted upon by two forcesn’; =30 Ibs,
Fig. 31 and P,=2:4 lhap which make with each other axn
s angle P, M Py = a4 8 = 105%: in what tlirec.
tion, and with what acceleration, will the motjon
take plnce ? Since cs. (a4 8) = c0s. 105° =
cos. 76°, the mean (orce:
P = /30 24:—2X30X24 cvs. 75°
= /9004676 —1440 cos. 75°
= /1476—017¢,7=233,21 lbs,, the acceleration
correspoadmg with it is:
2 32,2
A et AN b 1 i Sy P
M Gn 150 n
direction of monon mnakes with the direction of
the first force an angle «, which is determined by:

sin. g = _24_ stn, 109° = 0,7224 sin. 759 —
33,22
0,6978, orm =—44°, 15,

Remurk. The meun force P depends. from the
formule fonund, only on the compounetit forces, and
not on the nuiss of the bedy upon which the forces
act. For this reuson, we find in many works on

mechanics, the correctness of the parallelogram of
forces proved without regard t the mass, but with the assumption of some funda.
inental kiw.

§ 75. Resolution of Forces.—By help of the parallelogram of forces,
not only two or more forces may be reduced to a single one, but also
given forces under given relations may be resolved into two or more
forces. If the angles « and 8 are given, which the components M P,
= P, and M P,= P,, make with the given force M P = P, the com-
ponents may be found from the formul:

P sin. 3 P sin. a
Pt o == :
sin. (a48), sin.(a+83) .
If the components are at right angles to
Fige 3z, each other, a+3="90° and sin. (a4-3) = 1,
and P, = P cos. a and Py= Psin.a. If 8
and o be equal to onc other, P,= P,, viza

P2= 1? stn. “=. P s Pl,
sin. 2« 2cC0s. a

Example 1. What is the pressure of a body M upon a
table /A B, IFig. 32, whose weight G =70 Ibs. and upon
wlhich a force P = 50 lbs. acts, and whose direction is
insclined to the horizon st an angle P M P, = a =40
The Lovizontal component of P is P, = P cos. « = 50
coa. 40° = 38,30 |bs, and the vernical component P, =
P stn. & = 50 sin. 402 = 32,14 lbs, ; the latter strives to
draw the baly from the table, there remains then for
tike pressuren G—P, = 710—32,14 = 37,86 Ibs.—2. If
a body of 110 Ihe. is 0 rnovecd along an horizontal way,
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by two foreces, that it describes in the first second & space of 6,9 feet,ina direction which
deviates from the two directions of force by an angle a = 92° and 8 = 77°, the forces
themselves are given as follows. Tle acceleration is twice the space in the first second,

so that p = 2 X 6,5 =13 . Now the ruean force is P -==P——0~0310 X 13X 110 =
g :
P sin. 77° =4_4.33 3:3:,__77° —55,58
s, (12° 4 77°) gm. 21°

5 (o]
Ibs;, and the other. Pyt B3 811 927 4550 Ihs,
an'n. 510

44,33 lbs,, therefore 1hie one component Py =

§ 76. Forces in a Plane.—In order to find the mean force P for a
system of forces P, P,, P,,
&c., we may adopt exactly
the same method (§ 33) as
that followed in the cotnpo-
sitton of velocities, viz : by
the repeated application of
the parallelogram of forces,
we may resolve them two
and two and so on, till but
a single force remains. The
forces P, and P,, for ex-
ample, give from the paral-
lelogram M P, Q P,, the
mean force M Q= Q, 1f this
be joined to P,, we have
from the parallelogram
MQRP,, MR = R; and
this last again forms a parallelogram with P, and gives the force MP
= P the last, and the resultant of the four forces P,, P,, P,, P,.

It is not necessary, in this way of composing forces, to complete the
parallelogram, and draw its diagonal. We may form a polygon MP,
QRP, whose sides MP,, P,Q, QR, RP, are parallel and equaleto
the given components P, P,, P,, P, the last side MP completing
the polygon will be the mean force sought, or rather its measure.

Fig. 33.

Remark. It is very nseful ta snlve mechanical problems by construction also: though
tins merhod «oes not adinit of such aceuracy as that of ¢alculation, it is free on 1he other
ltind from great crrors, and may therefore serve as proof of the caleulation.  In Fig, 33
the forees meet each other under the given anflles P, M Py = 729, 3V ; Py M P, =,33 ’
E‘U', and Py 3 P} = Y2°, 4(Y, and are so drawn that a pound is represented by 8 line or
1z of a (Prussiau®) inch. The forces P, = 11.5 by Py = 10,8 lbs., Py = 8,0 lls., iy =
14,2 lbs, are therefore expressedl by sices of 11,0 lines = 0,958, .. inches, 10,8 lizes =
0,900 . . .inches, 8,5 lines = 0,708... inches, 12.2 lines = 1,016 . ..inches 1n lengtis. .
carel'nl gonstruction of the polygon of furrces gives the ttagnilude of the mean for¢e V'
i"‘;io lbs. andl the vuriation of its lirection MP from the direction B[P, of the first force=
ch3y>,

~ § 77. The resultant P is determined more simply and Clearli)'
if each of the given components P, P,, P;, &c., be resolved accord-

ing to two axial directions XX and YV, Fig. 31, at right angles t(c;
each other, into component forces as @, and R,, @, and R;, Q; an

¢ The Prussian inch (zee § 15) is equal 1.031 Englizh mehes.— Ax. Ebp.
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R,, &c., the forces lying in the same direction of axis, added together,
and the resultants in mag-

e nitude and direction of these
two rectangular forces be
then sought for. If the
angles P, MX, P, MX, P,
MX, &c., which the direc-
tions of the forces P, P,, P,,
make with the axis XX =a, .
a,, ag, &c., we have the com-
ponents Q, = P, co0s. a, R,
== Pl sin. [ 3 Q2 — ‘P2 CcoS.
ay, R,=P, sin. a,, whence it
follows from Q =Q, 4+ Q,
+@,+...,

1. Q=P,cos.a, P,
cos. o, + Py cos. a4 ...,
and
from R= R, + R, + R,
o LA

2. R=P1 sin. o, + P,sin. o, + PSSin.as—}- LA,

From the two compenents Q and R so found, the magnitude of the
resultant sought, ise

3. P= Q'+ R? and the angle P.MX=¢, whose direction with
XX is given by

R
4. lang. o— .
b

In the algebraical addition of the forces, regard must be had to the
sign, for if it be different in two forces, ¢. e. if the directions of these
be upon opposite sides of the point of application M, this addition

then becomes arithmetical
- 35, subteaction (§ 73). The
angle ¢ 1s acute, as long
as Q and R are positive;
it is between one and two
right angles, when Q is
negative and R positive;
between two and three,
when Q and R are both
negative, and lastly, be-
tweenthreeand foue, when
R only is negative.

Example. What is the magni-
tude and direction of the restultant
of the tliree coniponents P, = 30
Ibs, Py = 70 Ibs, P, = 5U lbs,
whose directions, lying in a plane,
make between them the angles
P,M P, = 56° and P;g M P, =
104¢@ If we draw the axis XX
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in the direction of the first force, we have a; = 0, ¢, = 56°, and s, =56° 4 104° =
160°; hence, 1. Q =30 X cos. 0° 4 70 X co0s. 56° F 50 X cos. (60° = 3 + 39,14

— 46,98 = 22,16 1bs.; and 2. R=30 X sin. 0° 4 70 X sin. 56° 4- 50 zin. 160° =

75,13 :
04 58,03+ 17,10 = 75,13 Ibs. Hence, 3. tang. ¢ = —— = 3,3903; therefore, the an-

gle which the resultant makes with the positive part of the axis MX or the force P, is

R 75,13
= 73° 34/- - . 7L A, =t ? = = ———
¢ 34'; lastly, the force itself P =V @ R* = 0s.¢ sn ¢  #in 73° 34
= 7013 osa3

DB . T R

§ 78. Forces in Space.—If the directions of the forces do not lie in
one and the same plane, we must draw through the point of applica-
tion a plane, and resolve each of the forces into two others, one lying
1n the plane, and the other at right angles to the plane ; we must then
find the resultant of the components so obtained in the plane, from
the rule in the foregoing paragraph, and add together the components
at right angles to the plane, and from the two rectangular components
thus obtained, their resultant may be found according to the known
rule (§ 74).

Fig. 36 puts the above mode of proceeding more clearly before us;
let MP = P, MP, — P,, MP,— P,be the separate forces, /1B the

plane (of projection) and ZZ the axis at right angles to it. From the
resolution of the forces P,, P,, &c., the forces S,, S, are given in the
plane, and those of N, NN, &c., in the normal to it ZZ, These are

again resolved according to two axes XX and YV into the lateral

Fig. 36.

f(}rces' Q, Q, &c., R, R,, &c., and give the compenents Q and R,
of which the resultant § consists, which, joined to the sum of all the
normal forces, JV,, NV,, &c., gives P the resultant required.
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If we put g, 3,, for the angles at which the directions of force are
inclined to the plane /B or to the horizon, the forces in the plane are
given, S ,= P, cos. B,, S,= P, cos. 8,, &c., and the normal forces, /V',
= P, sineB,, N, = P, sin. 3, &e.; ; lastly, if we designate the angles
which the projections of the directions of the frces lying in the plane
/4B, make with the axis XX, by a,, a,, we obtain the three folbwing
forces, forming the sides of a rectangular parallelopiped.

Q=S cos. a,+ S, cos. a,+ S, €0S. ay, OF

1. Q=P, cos. g, cos. a,+ P, cos. 8; €OS. ag+. .

A R-—-P cos. B, sin. a,+ P, cos. B, sin. a,+...

3. JV'._P sin. 3,4+ P, sm.eﬁ +..e

From these three follows the final resultant:

4. P= Q2+R’+.N‘1, further
the angle of inclination to the plane of projection PMS=4, from
N N

Vv @+ R lastly
the angle SMX=¢, which the projection of the resultant in the plane
/1B makes with the first axis XX, by

6. tang..p:%.

5. lang.v=

Examiple. Three workmen pull at the end of three ropes, which are atiached toa load
M lying upon a horizontal flosr .48, Fig. 37, each with a force of 50 Ibs.q the angles of

Fig, 37.

inclination of these forces to the horizon are 10°, 20°, and 309, and the horizontal angle
between the first and second, and between the first and third, 20°® and 35°; what is
the magnitude and direction of the resultant, and how much is this less than the sum
of all the forces which would result, if all !hree acted in tbe same direction? The vertical
foree pullmg upward is;
N+, +Ns = 50 X (zin. 10° 4 sin. 20° 4- ;. 30°) =50 X 1,01567= 90,78 Ibs,;
by 80 much less than its own weight does the body press upon the ﬁoor
The horizontal components are 8, = 50X ros. 10° = 500,9849 = 49,24 1bs. ; S;= 50
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Xcos, 20° == 46,98 lbs,; S; = 50X cos. 30° = 43,30 Ibs. If we draw’ theaxisX Xin the

direction of the first force S,, we cbtain the lateral force in this axis XX, Q=Q1+Qr‘!‘Qa
=S8, cos. a,4-8; cos. ag4-8, 00s.ag = 49,24 c0s. 0°4-46,98X cos. 20°4-43,30Xcos. 35" =
49,244-44,15-4-35,47=128,86 Ibs,; on the other hand, the lateral force in the second
axis YY: R=R,+4 R, 4 R,—49,24 Xsin. 0°446,98X #in, 20° 4 43,30 X #in. 35° =0+
16,074-24,84=40,01 Ibs. ’

The bhorizontal mean force with which the body is drawn forward is from this:

8 =/Qi{ R? = ,/(128,86)* 4 (40,91)8 = ,/18278,7 = 135,2 Ibs.
The angle ¢ which this force makes with the axis XX is detennined by the tang. ¢ =
40,91

128,86

P = ,/(1352)(50,78)t = /20856,6 = 144,42 ibs.
If the forces act in t,be same ’direction, the resﬁltam ist= 3% 50 = 150 Ibs,, and the
loss of forcet= 150 — 144,42 = 5,58 lbs. ; further, becrnse the horizontal force drawing
the body forwards amountsonly to 135.20 lbs., we have, with reference to the horizonwal

motion, the loss of force 150—135,20 = 14,80 lbs. : .
The angle of inclination J of the mean force te the horizon 1is determined by the tang.

= g—-—lgg;g =(0,3756, wherefore ¢ comes out = 20°, 35"

§ 79.—From the rulesfound in the foregoing upon the composition

of forces, two others of essential service for practical use may be de-
duced. In Fig. 37, let Af
be a material point, MP,= Fig. 37.
P, and MP = P, the forces
acting upon it ; lastly, let
MP =P, the resultant of P,
and P,. If we draw through
M two axes, MX and MY,
at right angles to each other,
and resolve the forces P,
and P,, as well as their re-
sultant P, into components
in the direction of these
axes, viz: P, into Q, and
R, P,into Q, and R,, and
P into Q and R, we then
obtain the forces in the one axis Q,, Q, and Q, and thosein the other
R, R, R, and Q= Q,+ Q,, and R=R +R,. .

If now we take in the axis .MX any point O, and let fall from the
same perpendiculars OJ,, ON, and ON on the directions of the
forces P, P, and P we obtain rectangular triangles MON,, MON,,
MOWN, which are similar to the triangles formed by the three forces,
VIZ :

R
g = 0,3175: ¢ = 17°37’; the entire resultant is:

a MON, co a MP,Q,
a MOWN, oo a MP,Q,
a MOJY oo a MPQ,

1

Principle of Virtual Velocities.—But from these similarities WP,
. Q. MN Q. .MN QI i the values
t. e, Sl 1 gl 2 and ¥ = . 1f we put the
P,=0" °p. =m0 ™ p=M0’ " Q
hence derived of Q,, Q,, and Q into the equation Q= Uy we
then obtain
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P.MN=P .MN, + P,. MN,.
ON, R Of\ R oN
. *and e , therefore

P

Likewise also LT .
P MO’ P, MO " P~ MO

P.ON=P,. oN  + P, . ON,,.
These equatlonsWHmld ood if P the mean force be made up of
three or more forces P,, P,, P3, because generally
Q=Q, o Qg+ Q,+ ..
R=R +R+R+.

and, therefore, generally we may ute
1. P. MN=P,. MN,+ P, . MN,+ P, . NV, + .

2. P. ON= P ON+P OJV‘+P O.N'+

In both equat:ons the mean force P must correspond to the forces
P,, P,, P,, and from these equations, not only the magnitude, but also
the direction of this force may be determined.

§ 80. If the point of applécation M move in a straight line towards
O, or if we imagine this point to have descnbed

the space .MO=s, then the projection of this
space MN=s, in the direction of the force MP
is calledthe space of the jforce P, and the pro-
duct Ps, of the force and its space, the work or
efficiency of the force. If we substitute in the
equation (1) of the last (§) these designations,
we have
Ps=Ps + Ps,+ Ps,+ .

or the worfk, or mechanical ﬁct qf the resultant
is equivalent lo the sum of the works, or mechanical effects, of the com.
ponents.

In the summation of the mechanical effects, as in that of the forces,
we must have regard to their signs. If a force (Q,) of the forces Q,,
Q,, &c., of the Jast § acts in an opposite direction to the rest, we must

Fig. 38.

Fig. 39.
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introduce it as negative, but this force Q,, Fig. 39, is the component

of a force P,, which, acting in the circumstances set forth in the

former §, opposed to their proper motion MN;, we are, therefore,

obliged to consider that force opposed to the motion MW, Fig. 40, as

%tive, and that one P, Fig. 41, acting in the direction of motion
as positive.

If the forces are variable in magnitude or direction, the formula
Ps=P s ;— Ps 4 Ps,+ . .. is only correct for infinitely small spaces
8, 31, 3’, C.

The spaces of the forces o,y o, o, corresponding to an infinitely
small displacement ¢ of a material point, are called their virfual velo-
cifres; and the law corresponding to the formula Po==P o, + Pyo,+
P a,, the principle of virtual velocifies. o '

81. Transmission of Mechanical Effect.—From the principle of
vis viva, the mechanical effect (Ps) in rectilinear motion, which a
fc))]rce (P) generates in changing the velocity ¢ of a mass M into ano-
ther » is

PS- (1—,’8522) M.

If P be now the mean force arising from other forces, P,, P,, &c.,
acting upon the mass M, and the spaces which these describeebe
S;» Sy Whilst the mass itself /M describeses, we then have from the
foregoing:

Ps-Pls,+P,s,+ .o
and, therefore, the following general formula:

Ps4+Ps +.. .=.(!’_’;_°') M,

which expresses that the sum of the mechanical effects of the single
i’prces is equal to half the gain of vis viva of the masa taking up these
orces.

If the velocity during the motion be invariable, that is v==c,and
the motion itself be uniform, we have then v*—c*==0, consequently
neither loss nor gain of vis viva, and, therefore:

5 P131+P333+P33,+....-0,
t. e. the sum of the mechanical effects of the single forces == 0.

If inversely the sum of the mechanical eflects == 0, then the forces
do not change the motion of the body in the given direction,enor im-
part to it in the given direction any motion which it had not before.

If the forces are variable, the variable velocitye after a certain time
again passes into its initial velocity ¢, which takes place in all periodic
motions as they present themselves in many machines. Now v == ¢
gives the effiect (’_’5225)»1- 0; therefore within a period of the mo-

tion the loss or gain in mechanical effect is null.

Exomple, A aarriage, of the weight G == 6000 Ibe,, Fig. 43, is moved frwerd upod a
horizontal qurface by means of a fore P, == 660 Ibe., ascending P e 350 Ibe
and has during its motion two resistances 0 Overcomse; 006 : g == s and
oonesp;ndi“ © the friction; and a zesistance P, = 230 Ib, scting downwards, and
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inclined to the horizon at an angle # =35°. What work will the force (P,) perforn,in
orcler to convert the two feet initial
Fig. 42. velocity of the carringe iuto a ve.

locity of 5 feet?
If we put the distanee of the aar-

riage MOe=s, we then have for the

work of the force P, = P, .  MN
= P, s c0s. a =660 X 1 r0s. 244

= 682,04 . s; further, the work of
the resiyting force = (— Pp) . s =
— 350 .s; lastly, the work of P,
= (—Pg . MNy=— P 3008 8=
— 230 X # co8. 35° = — 188,40.
s. There then remains {or the work
of the eflective force:

Pg':':Pls cos.a—P!8 008. ()-—P3 $ €03,
g=— (602,94—30—188,40) .8 ==
64,54 .5 It, lba

The mass, however, requires far the change of its velocity, the mechanical effect:

v—c ) 6= ( 5;—2') X 5000 = 0,0155 X (25—4) X 5000 = 1627 . lhe.

28
If now we equate both mechanical effiects, we then obin 64,54e s = 1627, conse-

1627 = 25,26 feet; and lastly, the mechanical

quently the distance of the carriagee s — —
&

effioct of the force P: P, 1 con a = 602,94 X 25,26 — 15230,2 1. 1bs.
§ 82. Curvilinear Motion.—Provided that the spaces s, 5,, &c., be
infinitely small, we may also apply the formula last found to curved

paths. Let MORS, Fig. 43, be the path of a material point, and MP,
= P, the resultant of all the forces

Fig. 43. acting upon it ; if we resolve this force
into two others, of which the one
MK = K is tangential, and the other
MN = NN normal to the curve, we
then term the one a {angential, and
the other a normal force.

Whilst the material point describes
the element MO = ¢ of its curved
path JMS, and its velocity c is trans-

b
formed into v,, its mass M lays claim to the work (32—__§) M, but

J

the tangential force X perfiorms at the same time the work K g,
and the normal force the work &;¥. 0 = 0; consequently K ¢ =
()
ey
If the projection MQ of the elementary space MO in the direction
of force be put = s,, then also P;s, = K«; and, therefore,

2
RO (—1-)-‘32:0__) M.

If the whole space described by the material point MR be decom-
posed into mfinitely small parts, and each part be projected upon the
direction of force at each moment, we then obtain the elementary
space of the force at each moment, and the work at each moment by
the multiplication of the space and force, and if we add together all these
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meghanica] effects, we then havee Py, + Py, + Pa"as -{;2 Ce. =
e vy—0,’ v —v,’ i (1:__,) M=
(R M () M+ () Mt = (5

(A—7)) M, if k, be the height due to the initial velocity ¢, and A that
due to the terminal velocity v. Thus, in curvilinear motion, the

whole effect of the moving force is equal to half the gain of vis viva,
or equal to the product of the mass into the difference of the heights

due to the velocities.

Remark and Example. The formula obtained which is derived from combiaing the
principle of the vis viva with that of the virtual velocities, is especially applicable in
cases where bodie:s are constrained by a fixed track or by suspension to descrite a deter-
minate path. If gravity alone act upon such a bady, the work which it generates in a
body of the weight G falling from a height corresponding to the vertical projection M,
R, =3,is = G s, and therefore:

Gs=(h—h) G, i.e. s=h—h,.
This is also the space which a body describes in falling from a horizontal plane .45,
Fig. 44, 10 another CD; the diflierence of the heights due to the velocity is always equal

Fig. 44.

S L
2 M ‘x’\.j’i A\ \M 3 ,L‘l._l_,"s-:l’f.‘
N me LA A \ \ X

A Enfj.'

b (CA

to the perpendicular height of fall; bodies which begin t0 describe the paths M, O, R,
M, O, Ry, M, Oy R,, &c., with equal velocity (c), acquire at the end of these paths, as
well as at different times, eqnal velocities (v). If the initial velocity ¢ = 10 feet, 2and
the vertical height of fall #=20 feet, then A == s 4 A, =204 0,01550 10} = 21,53 feet,
andahe terininal velocity v = 4/ 2 gh = 8,0204/ 21,5 = 37,18 feet, in whatever curved
er right Jine the descent may take place.
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	..Jlf=--=0,1019 G, or 
	9,81 
	G
	.M=--=0,031 G. 
	32,2 
	The mass of a 20 lb. heavy body, .M=0,031 x 20=0,62 lb., and inversely the weight of a mass of 20 lbs. G=32,2 x 20=644 JŁs. § 55. In so far as we assume the acceleration (g) of grav1y as invariable, it fo1lows that the mass of a body is exactly proport!onal 
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	We hence obtain the weight as a measure of the mass of a body;
	the greater the mass which a body measures, the greater is its weight. 
	The acceleration of gravity is, in fact, somewhat variable, it be. comes greater the nearer we approach the poles of the earth, and diminishes the more we advance towards the earth's equator; it is greatest at the poles, and least at the equator. It also diminishes the more a body is above or belo,v the level of the sea; and attains its greatest value at the level of the sea. But, since a mass, so long as nothing is added to, or taken from it, is invariable, so that at all points of the earth, as well as th
	with the place, or £= Ł. 
	l gl 
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	One and the same steel spring is differently bent by one and the same weight at different places of the earth; it is least at the equator, on high mountains, and in deep 1nines; greatest in the vicinity of the poles, and at the level of the sea. 
	§ 56. Density is the intensity with "·hich space is filled by matter. A body is so much the denser the more matter there is in its space.The natural measure of density is that quantity of matter (that mass) which fills a unit of volume, because matter can only be measured by weight, so that the weight of a unit of volume, a cubic metre, or cubic foot of some matter, serves as a measure of its density.
	For example: the density of a cubic foot of water= 62,38 lb., and that of cast iron = 452,13 lb., because a cubic foot of water weighs 62,38 lb. = 998,08 oz. avd., and a cubic foot of cast iron 
	weighs 452, 13 lb. 
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	,veight: on the other hand, granite is a body of variable density, be­cause made up of parts of different densities. 
	Example.!. If the density of lead be 708 lbs., 3,2 cubic feet of lead weigh = 708 X
	-
	65 lbs.-2. If the density of bar iron = 4 85,8 lbs. ; a mass of it of 205 lbs. has a 
	3
	,2=2
	2

	G 205
	= = = 0,4023 cubic ft. = 0.4083 Xinches.-3. 
	volume 
	V
	1728=705.54 cubic 

	502 
	,-

	4 cubic feet of deal, perfectly saturated with water, weigh 577 lbs.; the density of 
	10,

	wood is therefore: ,,. =.!!_ = = 55,5 lbs.
	this 
	577 

	V 10,4 
	§57. Specific Gravity.-Specifiec· gravity or specific weight is the relation of the density of a body to that of the density of some other, generally water, taken for unity. No\\' the density is equal to the weight of a unit of Yolume : hence the specific gravity is a]so the relation of the weight of one body to that of another, viz. water, 
	under the same ,·olume. 
	In er confoundthe specific weight with thatewhich belongs to a body of a certain magnitude, the last isusuallyca11elute weight. 
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	If r er) to which we refer the den­sityof other matter, and1the density of any one kind whose specific gravity we will designate by E, then the formula 
	be 
	the 
	de
	ns
	it
	y
	of 
	ma
	tte
	r 
	(
	of 
	'\\
	1 
	at
	1 
	of 
	ma
	tte
	r, 

	1= 'Yi and 'Yi = , . 'Y• 
	'Y
	. 

	holds good, and the densŁty of a substance is equal to its specific 
	gravity into the density of water . 
	The absolute weight G of a mass of volume V and specific gravity 
	The absolute weight G of a mass of volume V and specific gravity 
	.

	, is : G = v= v,,,. 
	,,
	1 

	Example.-l. The density of pure silver is 653,368 lbs. and water 62,38 lbsŁ 3368 
	that 
	of 
	65
	•

	= 
	'
	4
	=10'47

	consequently the specific gravity of the former 
	= 
	62,382. 
	silver is 10½ tirnes as heavy as a mass of water filling the same space.-

	8 ; its density, therefore, is 13,598 X 62,38 
	8 ; its density, therefore, is 13,598 X 62,38 
	8 ; its density, therefore, is 13,598 X 62,38 
	13,59

	The specific = 848,24

	gravity of quicksilvert= lbs.; 

	= 
	a mass of 35 cubic inches, therefore, weighs: 
	848 X 35
	848,24. V= ---= 17,18 lbs.
	G 

	28 
	17

	Remark. In these calculations the use of the French measure and weight bas this advantage, that in order to effect the multiplication of I and ,,., it is merely requisite to advance the decimal point; because a cubic centimetre of water weighs one gramme,and a cubic metre a million, or one thousand kilogrammes. T)le density of quicksilver,8 X 1000 = 1359'-a cubic metre of quicksilver weighs 13:>98 kilogrammes. 
	according to the French measure and weightt= 13,59
	8 kilog.; 
	i. 

	•
	§58. The following table contains the specific gravities of certain 
	_
	bodies constantly coming into appliecation in mechanics: Mean specific gravity of dry laurel wood . 
	•

	" 
	" 
	saturated with water 
	. 
	1,
	110 


	== 0,659 
	•• 
	• = 0,839* 13,598 
	• 

	= 
	Mean specific gravity of dry pine wood 
	'' 
	saturated with water 
	.
	Quicksilveer 
	. . • 
	= 
	.
	. 
	844. 
	1
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	8,97
	" 
	. =
	forged 
	. . 
	. 
	. . 
	. . 
	=
	Braess 
	8,55
	• 
	. 
	.
	. 
	. 
	. 
	Iron, cast, white 
	" " 
	gray . . . . " " medium . . 
	. 
	. 
	7,10 
	. 
	. 
	• 
	= 
	7
	,06 

	• . = 7,60* 
	" 
	bar iron 
	. . . 

	Zinc, fused . . . • . . = 7,05 
	" rolled . . . . . Granite . • 2,50 to 3,05Gneiss . . . . . 2,3!) to 2,71 
	. 
	= 
	7,54
	. . 
	. 

	Limestone . . . . . 2,40 to 2,86 
	Sandstone . . . . . 1,90 to 2, 70Brick . . • • . • 1,40 to2,22
	Masonry, with lime mortar of quarry stone: fresh • . = 2,46 
	dry . . = 2,40 
	" of sandstone : fresh . . = 2, I 2
	" 
	" 

	dry . . = 2,05
	of brick : fresh = 1,55 to 1, 70dry = 1,47 to 1 ,59 
	" " 
	" 

	Earth, loamy, hard stamped, fresh . . • = 2,06
	dry . . . = 1,93
	Garden earth, fresh . . . . 2
	. 
	= 
	,05

	dry . . . • . = 1,63Dry, poor earth • . . . . . = 1,34 
	§59. State ofAggregatione.-Bodies appear to us, according to thedifferent cohesion of their parts, under three principal conditions, ,vhich we term states of aggregation. They are either solid orfluid,and in the latter case, either liquid or gaseous. Solid bodies are those whose parts adhere so strongly together that a certain force isrequired to change the form of these bodies, or to effect their division. }i'lui<l bodies, on the other hand, are those whose parts may be displaced about each other by the sm
	While solid bodies have a proper form and determinate volume, liquid or aqueous bodies possess only a . determinate volume ,vithout anyproper form, and the elastic extensible fluid bodies have neither one nor the other.
	Di,vision of Forces.-Foercees are different according to their 
	§
	60
	. 

	= 
	1. bymeans of which all bodies tend to approach towards 
	Gravity, 

	n 
	part ofthe mean density. By seventeen trials ofham
	ing 
	:Jo--Łt 
	1 
	-

	.
	.
	dbe 
	Ł

	ACTION AND RE-ACTION. 
	2. 
	2. 
	2. 
	Theforce of inertia, which manifests itself velocity of i;ert masses occur. 
	when 
	changes 
	in 
	the 


	3. 
	3. 
	The muscular force of animated beings ; the the muscles of men and animals. 
	fo
	rce 
	exerted 
	by 



	4. Elasticity or spring-force, which bodies exhibit in 
	a 
	change 
	of 

	5. 
	5. 
	5. 
	5. 
	Theforce of heat or caloric, in consequence of which expand or contract by a change of temperature.
	bodies 


	6. The magneticforce, or the attraction and repulsion of 
	magnets.


	7. 
	7. 
	The cohesive force, the force by which the parts of a body kept together, and resist separation.
	are 



	8. Adhesion, the force with which bodies brought into close 
	contact 

	The resistances of friction, rigidity, solidity, 
	&c., 
	arise 
	mainly 
	from 

	2. Its direction, the straight line in which a point of application, or strives to move it for,vard, its motion. The direction of a force, like every direction of ·motion,has two senses, it can take place from left to right, or from right to left, from above to below, and from below to above. The one is termed positive, the other neleft to right,to below, it would be most convenient were we motions positive, and those in the opposite direction, nega­
	its 
	or 
	to 
	impede
	gative. 
	As 
	we 
	write 
	from 
	and 
	fr
	om 
	above 
	to 
	r:all 
	these 

	tlve. 
	3. The absolute magnitude or intensity of a fowhich, as above by \\·eights, as pounds, kilogrammes, &c. 
	rce, 
	stated, 
	is 
	me
	Ł
	sured 

	_
	§ 62. .11.ction and re-action.-The first force producesin a body, is a change of form or volume combined with extension or c?ntraction, which begins at the point of application, and from thence diffuses itself further and further. By this in,vard change of the body, itinherent elasticity is called into action, puts itself into equilibrium with the force, and, therefore, is equal and opposed to the force. Ac­tion and re-action are equal and opposed to each other. This law !lonly prevails in reference to forc
	eff
	ect 
	,v
	hich 
	a 
	Ł 
	ot 
	but 
	also 

	Łeacts upon the earth. The force with which a weight presses un support is given back in an opposite direction ; workman dra\\'S or pushes at a machine, 
	P?
	Its 
	the 
	fo
	rce 
	with 
	,vhich 
	a 
	&ce.! 
	reaŁts 
	up
	on 

	force moves forward 
	.
	. 
	THE MECHANICS OF A MATERIAL POINT. 
	may be included under two principal divisions, according to the state of aggregation of bodies. 
	1. The mechanics of solid bodies, which is a]so well named geo­mechanics. 
	2. The mechanics offluid bodies, hydromechanics or hydraulics ; the last is subdivided into: 
	1. liquid bodies especially, hydromechanics or hydraulics. 
	Into 
	the 
	mechanics 
	of 
	water 
	and 
	-

	. . 
	aeromechanics, the mechanics of elastic fluids. If we now have regard to the di vision of mechanics into statics and dynamics, we have the foJlowing parts: 
	1. 
	1. 
	1. 
	Statics of solid bodies, or geostatics.

	2. 
	2. 
	Dynamics of solid bodies, or geodamics. 
	yn


	3. 
	3. 
	Statics offluids, or hydrostatics. 

	4. 
	4. 
	Dynamics offluids, or hydrodynamics. 

	5. 
	5. 
	Statics of aeriform bodies, or aerostatics. 

	6. 
	6. 
	Dynamics of aeriform, aerodynamics, or pneumatics. 


	CH A P 'f ER I I. 
	THE l\fECHANICS OF A MATERIAL POINT. 
	§ 64. A material point is a material body, whose dimensions are indefinitely small in comparison ,vith the space occupied by it. In order to simplify the representation, we will in the follo'-'ing consider only the motion and equilibrium of a material point. ...i:\ finite body is a continuous union of an infinite number of material points. If the single points or elements are all perfectly equal, i. e. move equally quick, in parallel straight lines, ,ve may then apply the theory of the motion of a material 
	1

	§ 65. Simple constant Force.-lf (p) be the acceleration with which a mass (M) is irnpelled by a force, we have, from § 53, the forcea: 
	p
	P Mp, and inversely, the acceleration, p ' 
	= 
	= 
	M

	f, further, we put the mass M= £, "·here G is the weight of the 
	I

	g 
	1. P ; G, and the acceleration: 
	= 

	p
	2. P a g. 
	= 

	THE MECHANICS OF A MATERIAL POINT. 59 
	We find, therefore, the force (P) which impels a body with acer­
	_
	accelerateion (p) when we multiply the °"·eight of the body ( G) 
	tain 
	by 

	the ratio (;) of its acceleration, to that of gravity. 
	Inversely, the acceleration (p), with which a body is movedforwardby a force (P) is given, when the acceleration (g) of gravity is multi
	-

	plied by the ratio ) of the force and weight of the body. 
	(
	Ł

	Łample. Let us suppose a body lying on an horizontal and perfectly smooth table,wluch presents no impediment to the body in its course, but counteracts the effect of gvitupon it. If this body be pressed upon by a force acting horizontally, the bodywill give way to this influence, and move forward in the direction of this force. If the weight of this body be G= 50 lbs., and ifP= 10 lbs. presses uninterruptedly upon it, it 
	Ł
	Ł 

	will enter into a unifonnly accelerated motion with the aooelemtionp =
	p. K= lO X
	G 
	On the other hand, if the acceleration with which a 42 lb. heavy body 
	32,2 = 
	6,44 feet. 
	9
	becomes accelerated by a force (P) = 9 feet, then will this force P L . G 
	= 
	= 

	32,25
	g
	X 42 =0,031 X 378 = 11,7 lbs. 
	§ 66. If the force which acts upon a body is constant, there arises auniformly variable motion, and indeed a uniformly accelerated one, if the direction of the force corresponeds with the initial direction of the otion; and, on the other hand, a uniformly retarded one, if the direc­tion of the force is opposite to that of the initial direction of motion. If we substitute in the formulre (§ 13 and § 14) for p, the value 
	Ł

	;;. = g, we obtain the following: 
	Ł 

	I. For uniformly accelerated motions : 
	l. V = C + Ł gt, Or•V = C + 32,2 :t. 
	p gt
	2 
	p 

	2 
	G2 G 
	2 
	II. For uniformly retarded motions : 
	p p
	1. V C --gt = C-32,2 -t. 
	= 

	G G 
	PgF 
	PgF 
	p 
	2

	2 . s == ct _ --= ct.-16,1 _ t .
	G2 G 
	Łith the help of these formulre all those questions may be answered which can be proposed relative to the rectilinear motions of bodies bya consteant force. 
	&alt.-1. A carriage weighing 2000 lbs. goes with a 4 feet velocity upon a bori• zontal hne, offering no impediments to it and pushed forward by an invariableforce of 
	Ł

	.
	25 lbs. during 15 seconds, with what velŁity will it proceed after the action of this force? 
	This velocity"= c+ 32,2 t, but c=4,P== 25 lbs., G == 2000,andt==15; hence 
	; 

	.
	it flcjroumetaDCe8 
	ollows, 
	" 
	25 
	== 
	10,03 
	feet.-2. 
	Under 
	si
	milar 
	a car
	-


	4+ 32,2. --• 15 
	= 

	. 2000
	. . 
	· sed 9'-0 
	· sed 9'-0 
	· sed 9'-0 
	"

	Ł5500 lbs., which, setting out with a uniform velocity
	nag
	, 
	weighing 
	, 
	has tr
	aver 


	afterwards pasaes 
	that 
	it 

	thlS force? Here the 
	over 
	1650 
	feet 
	in 
	3 
	minut
	es; 
	what 
	is 

	60 MECHANICAL EFFECT. 
	. . . 950 
	1650

	1n1tial velocity c = _(;Q = 5,277 feet per second, and the tenninal velocity, v 
	= 
	3_60

	3
	P 3,889.t
	G

	=9,166 feet; therefore gt =v -c = 3,889, and the force P= =0,031 X 
	G 

	gt
	gt
	50
	:


	=0,12056 X = 22,10 lbs.-3. A sledge, weighing 1500 lbs., sliding 
	3,88
	9 X 
	5
	ŁŁ
	0 

	fonvard with a 15 ft. velocity, loses, through friction, upon its horizoŁtal _suprt, its whole motion in 25 seconds; how great is this friction'? Here the n1ot1on 1s uniformly 
	Ł

	Pt Ge
	retarded, and the terminal velocity v = 0; hence c = 32,2 G' and P = 0,031 T= 
	1500 X15 ·
	1500 X15 ·
	tiemand d -4 e . . A h
	• 


	0,031 --= 900 = 27,9 lbs. the nction d not er
	X 
	-
	0,031 
	X

	25
	sledge, of 1200 lbs. and 12 feet initial velocity, has to overcoŁe L>y itŁ motion a friction of 45 lbs.; what velocity has it after 8 seconds, and how great 1s the d1stance described 1 45 XS
	The terminal velocity is v = 12 -32,2 X = 12 -9,66 = 2.34 feet, and the 
	1200 
	1200 

	(c+v) 12 + 2.34
	)

	distance describeda•= = X 8 =57.36 feet. 
	t 
	(
	-

	2 -2 
	§ 67. Mechanical Effect.-The work done, or mechanical effect, is that effect of a force ,vhich it produces in overcoming a resist­ance: as that of inertia, friction, gravity, &c. Work is performed when loads are lifted, a great velocity imparted to masses, bodies changed in their form or divided, &c. The ,vork done, or the me­chanical effect produced depends not only on the force, but also on the distance through which it is made to act or to overcome the resist­ance ; it increases, of course, simultaneousl
	(G) are lifted to the same height; it is, namely, m times as great as the effort necessary for the lifting of a single weight to that height; and, again, 2, the ,vork is the same, whether one and the same weight be raised ton (5) times the height (n h ), or n(5) times through the height, and it is of course n (5) ti1nes as great as if the same weight ,vere raised to a single height (h). The work again done by a slowly fall­ing weight is proportional to the magnitude of this weight and the height from which 
	to separate as from a cut of a single length; the ,vork, therefore, is 
	The double length requires double the distance to be described by the force, consequently the work is proportional to the Łtance. In like manner the \\'Ork of a pair of mill stones increases 
	di

	m_th the quantity of grains of a certain kind of corn, which they g_rind to a certain degree. This quantity, under other,vise similar is proportional to the number of revolutions, 
	circumsŁanc
	es, 

	or rather 
	Figure
	MECHANICAL EFFECT. 
	force upon the magnitude of the force and istnce describd by it, allo\\·s us to take that amount of work which 1s expended 1n o,·er­coming a resistance of the magnitude of the unit of weight ( as a kilo­, pound, &c. ), along a path of the magnitude of the length (metre or foo t,) as a unit of the mechanical effect, or the dyna­mical unit, and then we may put the measure of this equal to the product of the force or resistance, and the distance described in the direction of the force whilst overcoming this re
	Ł
	3:
	Ł
	gramme
	unit 
	of 

	If we put the amount of the resistance itselfe= P, and the distance described by the force, or rather by its point of application, in overe­coming this = s, the labor expended is : 
	L = units of work.
	P 
	s 

	In order to define more clearly the unit of work, for which the single name, dynam, may be used, both factors P and , are generallygiven; and, therefore, instead of units of work, we say Jiilo,traDie­metres, pounds-feet; and inversely, metrekilo. and feet-r.ound"S' ac­cording as the weight and distance are expressed in kilograIDmes and metres, or in pounds and feet. These terms are usually expressed simplicity by the abbreviatieons mk, or km, lb.fl., 
	for 
	or
	jl. 
	lb. 

	Example.-I. In order to raise a stamper 21Olbs. 15 inches high, the mechanical effect 
	210 
	X 
	12 
	=

	L = 
	262,5 ft. lbs. is necessary.-2. By a mechanical effect of 1500 ft. lbs., 
	its motion has to overcome a friction of 75 lbs., is driven forward 
	a 
	sledge, 
	which 
	in 

	--= 
	75 
	L 
	p 
	p 
	=

	a spacet•= 
	20 feeL 
	Figure
	§69. Not only in an invariable force or constant resistance is the labor a product of the force and distance, but also the labor may be expressed as a product of the distance and force, when the resistance whilst being overcome is variable, if a mean value of the continuous succession of forces be taken as theforce. The relation is here the same as that of the time, the velocity, and the space; for the last may Łregarded as a produt of the time by the mean value of tŁe veloc1hes. The same graphical represen
	Ł
	?
	also 
	apph­
	c
	_
	able. 

	}'
	lJi----=r----· C N 
	Figure
	Figure

	Figure
	-
	Figure
	Fig. 27. Fig. 28. 
	Fig. 27. Fig. 28. 


	Figure
	'JI 
	Łase -!}B is the space described (s ), and whose height is 
	ei
	th
	er 
	the 

	invariable force (P) itself, or the mean of the different valuees of theforces. by the area of a fiŁre.llspace (s), and
	In 
	gener
	al, 
	the 
	wo
	rk 
	ma
	y
	be 
	re
	p
	rese
	nt
	ed 
	BCD, 
	Fig. 
	28
	, 
	wh
	ic
	h 
	has 
	fo
	r
	its 
	ba
	se 
	the 
	wh?
	se 

	6 
	PRINCIPLE OF LIVING FORCES. 
	the .figure .IJBCD be area, \Ve have the heig
	wi
	th 
	ea
	c
	h 
	poin
	t 
	of
	th
	e 
	pat
	h 
	de
	sc
	ri
	be
	d. 
	If 
	tr
	an
	s­
	form
	ed 
	int
	o 
	a 
	re
	ct
	an
	gular 
	on
	e 
	.BBEF 
	of 
	like 
	ht 

	plicity. 
	. . . 
	Fig. 29. 
	into n (the more the better)equal 
	parts, 

	the forces EFP, GH=P,, 
	-
	J
	IK=P
	3, 

	Figure
	distance. If, then, we put the force .IJD=P0 and the force at the end BC=P, we have for the mean force: P=(i P+P+Pis+½ Pn )+n, 
	in
	iti
	al 
	oth
	e
	r
	11 
	o
	i
	+P
	+ 
	• • 

	· +P11_
	· 
	1 

	+P+ ... +P
	1 
	11

	Ps=(½ P
	0

	+P
	1 

	s
	+½P.)-
	. 

	n 
	_
	1 

	If the number of parts (n) be even, viz., 2, 4, 6, 8, &c., Simpsorule gives still more accurately the mean force : 
	n's

	P=(P+4P+2P,+4P+ +4 Pa-1+Pa )+3 
	o
	1 
	3 
	.. 
	n,
	and, therefore, the corresponding work: 
	♦• 

	s
	Ps=(P+4 P+2P+4 P+ ....+4 P._+Pa )
	0
	1 
	i
	3
	1 
	. 

	3ne
	Example. In order to find the mechanical work .vhich a draught horse performs in drawing a cnrriaŁe over a certain ,vay, we-make use of a 1lynamometeror measurer of force, which is put into communication on one side '\\•ith the carriage, and on the other wilh the traces of the .horse, and the force is observed from time to time. If the initial force P0 = 1 LO lbs., the forcenfier describing 25 feet= 122 lbs.; afier 50 feett= 127 lbs.; after 75 feet= 120 lbs., and at the end of the whole distance of 100 feet
	,
	1 
	1 
	+ 

	from the second fomutla: P = (110+ 4. 122+ 2. 127+4. 120+ 114) + 3 X 4 
	= = 120,5 lbs., and the mechanical \\'Ork
	1446 

	12 
	P s = 120,5 X 100 = 12050 ft. lbs. 
	§ 71. Principle of tlie Vis Viva, or LivinFo1·ces.-If, in the 
	g 

	v-<f v-<fi 
	2
	2

	r. u1 f (§ 13)s = or ps = ---we su shtute 1or the 
	1orm a o b r. 
	. 

	10n 
	accelera
	p, 
	its 
	va
	lu
	e
	_g, 
	we 
	th
	us 
	ob
	ta
	lll 
	S= 
	--
	-


	v-c2 
	p 
	(
	2
	) 

	2g 
	v
	i 

	2p 2 
	.
	t. . p
	G 
	'
	G 
	or 
	(li-h) G.
	1

	P s = 
	. 
	.

	interpret this equation, so useful in practical 
	If we 
	mechanics, 
	we 

	and !__ byhand h 
	: 
	Figure
	Figure
	PRINCIPLE OF LIVING FORCES. 
	find that the work• ( P s) which a mass either acquires when. it pŁssŁsfrom a lesser velocity ( c) into a greater (), or produces, when 1t 1s compelled to pass from a greater velocity into a less, is constantlyequal to the product of the weight of this mass, and the difference of 
	v

	2g 
	2g

	&ampl.e 1. In order to impart to a carriage of 4000 lbs. weight, upon a perfectly 
	railroad, a velocity of 30 feet, a mechanfoal work P,= .,. G
	smooth 
	i:::0,
	0
	155 
	.,a 
	G-= 

	2g!X900X4000 = 55800 ft. lbs. is required; and just eo much work will this car• rmge perform if a resistance be opposed to it, and it be gradually brought to rest-2. Another carriage of 6000 lbs. goes forward with a velocity of 15 feet, which is tformed by a force acting upon it into a velocity of 24 feet, how great is the work acquired by this carriage, or done by the force! To the velocities 15 and 24 feet oorreapond the 
	0
	0
	1
	55 

	heights due to velocity h== !_ ==3,49 ft., and l = .,. =s 8,928 ft.; .from this the me
	1 
	-

	1
	to 
	8 100 
	ere the force 1taelf2000 lbs., the apacee, would be== (h-h,)e
	W
	· 
	G 

	== 326,46 lbs. 
	32646 
	-=--c--= 16,323
	P 2000
	lbs. sledge has entirely Jost, through friction on ita path, its velocity of 
	fee
	t-3. 
	If 
	a 500 

	,
	500 
	-0,0166 X 256 X 6 -19,84 lbe.
	100 
	== 
	0
	,015
	6 
	X 
	16
	1 
	X 

	§ 72. The formula found for the work in the foregoing 
	paragraph 
	: 

	Ps=(h--h
	1

	. 
	) 
	G 

	uniformly accelerated parts described , then we have the amount 
	(
	Ł )

	of work for these : 
	.!-=12-G
	P
	1(
	.
	)
	v
	Figure
	c
	2 

	' 
	n 2g
	Ps.!-.= -1,
	(
	)
	"
	2
	2
	v
	' 
	G

	n 2g
	(.!-.v3-v,
	)
	Figure
	'
	2
	G
	,

	== 
	P
	3

	n 2g&.c., in so far as v, v2, v3, &c., stand for the velocities acquired at the end of these parts of space ; and by thŁ addition of all these woŁks whave the whole work required for the transformation of the velocity
	1
	Ł 

	c into v: 
	2g 
	n 
	. 

	• i.,. Working power. 
	J
	= 

	Figure
	Figure
	64 COMPOSITION OF FORCES. 
	her(n) of forces (P+P+P+... )+n, it transformes itself inteo a
	123 
	mean force, and because the members on the right hand of the equation 
	2 2 2 2 _!_ and -_!_ G, as also....!.. and-....!.. , &c. are opposed 
	v
	v
	v
	v
	G 
	G 
	G
	to

	2g 2g 2g 2g
	v' c2
	each other, so that the members_ G and 
	· d b 
	y 
	t 
	e

	-Gdetermine h
	, 

	2g 2
	g

	terminal velocity v and the initial velocity c, only remain. ' c
	(
	v
	2
	.

	The formulas = G = (l,,-h
	P 
	2
	--;_ 
	)
	1
	) 
	G 
	1s 
	not 
	us
	e 
	d
	mere
	1
	y
	for 

	the determination of the work, but notunfrequently, also, for the mea. surenlent of the terminal velocity. In the last case h is put = h+
	1 
	or v = c2+2. If by the constant motion of a body, th
	:
	s 
	.J 
	g 
	:
	s
	e 

	. terminal velocity v = the initial ,·eJocity c, the work done = 2ero, i. e. -as much work is performed by the accelerated, as is expended by the retarded part of the motion. 
	&amplt,-A carriage of 2500 lbs. proceeding upon a railroad without friction, has hich at the co1nmencement amounted to its velocity after this work will be : 
	acquired by an augmentation of its velocity, \\
	1
	IO ft., a mechanical work of 8000 lbs
	., 

	Ł000 
	Rnnar-k. The product of the mass M!!.. and the square of the velocity (v•) : Mui is 
	= 

	g
	called, without attaching to it any definite idea, the living force (vi, viva) of the moved rnass: and hereafter, the mechanical work which a moved mass acquires, inay be putequal to half of the vi, viva of the same. If a mass enters from a velocity c into another 
	,
	,, the work performed is equal to half the difference of the ma viva at the cornmencement aud end of the change of velocity. This law of the mechanical performance of bodies uy means of their inertia, is called the principle of living forces, or the vis viva. 
	§ 73. Composit-ion of Forces.-T,vo forcees Pand Pact upon one
	1 2
	nd the same body, in the same or in an opposite direction, the effect 1s the same as if only one force acted upon the bo<ly, ,vhich is the su1n 
	Ł

	_
	or difference of these forces ; for these forces impart to the mass M 
	the acceleration, p= _ and p -_, consequently from § 28, the 
	1 
	P
	1
	P
	2

	2
	M -o1il
	acceleration resulting from both, is 
	PP= , and accordingly the forr.e corresponding tothis, 
	=
	1 ±P
	2 
	p
	1Łp2

	: P=.JJfp = P +P. 
	is 

	. 
	equivalenŁ foreŁ P derived fro1n these t,vo iscalled the resultant; 1 and P2 the compone
	The 
	its constituentes 
	P
	ntse. 

	A body lying flaupon the hand presses so long only upon it with its 
	··
	tb
	Ł
	amplt.-:-
	t. 
	t 



	Łt
	Łt
	Łi° 

	Łthe and is at reŁt, or is moved up and down uniforn1ly \Vith the bejŁ be raised quickly, it suffers a grentel' pressure; on the other hand, Łly ppd, tŁe pressure is then less than the weight; it becomes null if
	Ł 
	w
	i
	ght 
	as 
	h
	if 
	ii
	u
	t
	the 
	ha
	nd 
	n
	dro
	e

	e han
	t
	h
	Ł
	u
	be 

	with the acceleration of gravity. If the pressure on the hand P, the 
	rawn 
	back 
	=
	body 
	fa
	llsw
	· h 
	G

	.-. G-_; if we ut theaccelera-
	.-. G-_; if we ut theaccelera-
	1t 
	= 
	p

	,orce P, whilst its mass M 
	a 


	g 
	g 

	If we substituete in these formulre le abovee values of pand p
	1 

	PARALLELOGRAM OF FORCES. 
	g 
	g 

	G=( 1 -G. If the body on the hand be raisetl with the acceleration p,-p is 
	: 
	;
	) 

	opposed to the acceleration g, therefore the pressure upon the hand P = (1 +; ) 
	then 

	G. According as n body ascends or descends with a 20 feet acceleration, the pressure 
	the handt= ( l -) G = ( 1-0,62) G= 0,38, of the weight of the body, or=
	upon 
	!20 

	31,2
	31,2

	1+0,62 = l,62.-2. If ·with the flat band I throw a body of 3 lbs. 14 feet perpendicu­larly Up\\·ar<ls, whilst I urge it on ·with the band for the flr:.t 2 feet, the mecl.tanical ,vork ed is P3 = G It= 3 14 =42 ft. lbs., and the pres.sure upon rite hand, P = 
	perform
	X 

	Ł = 21 lbs. WwJst the resting bo<ly presses with 3 lbs., it reacts 11pou the 
	band 
	during

	2 
	2 
	the projection with 21 lbs. 

	§ 74. Parallelogram of Forces.-When a material point .Jl,fŁ Fig., 
	30, is acted upon by nvo forces, P
	1

	Fig. 30. 
	Fig. 30. 
	whose directions .AfX and .A-IY 
	P
	2, 

	make, with each other, the angleXMY=a., these lines generate the 
	Figure
	P1 i; and p= Łj, and from their 
	=
	2 


	union, there arises a mean accelera­tion ( § 34) in the direction .MZ, both of which are given by the diagonal of a , p, andthe angle a.; this mean or resultant ac-
	parallelogram formed from p
	1
	2

	and for the angle q, which its direction makes with M X of acceleration p: 
	the 
	one 
	1
	• 

	. sin. a.
	P
	2 


	sin. 41 =·'--"---• 
	sin. 41 =·'--"---• 
	• (p) sin. G
	'J.

	sin. q, = -1---.
	M p
	M p

	If ,ve multiply the first equation by Jtf, 
	. .ll,[p = Pcos. (1, or,
	✓P/+ P
	2
	2
	+2 P
	1 
	2 

	p is the force corresponding to the acceleratio
	since 
	.Af
	n: 

	l. P = ✓ P/i+pz+2 PPcos. o.. 
	2
	1 
	2 

	. Psin. a.
	2 

	2• s-in. q, = ----· 
	p 
	p 
	,. 
	: 

	0 
	treeti
	a·
	on 


	the component as the resultant 
	J
	./".
	rom 
	j'orces 
	exactly 
	l
	acce 
	era
	t·
	ion 

	firom 
	firom 
	· 

	bearing the same 
	draw
	n, 

	be 
	be 

	proportions to each 6• 
	o
	t
	her 
	as 
	do 
	weig
	hts, 
	as 

	66 
	66 

	RESOLUTION OF FORCES. 
	pounds, &c., the mean force may be represented by the diagonal of the parallelogram whose sides are formed by the lateral forces, and one of whose angles is equal to that made by the directions of these lateral 1orces. 'fhe parallelogram ,vhich is constructed from the lateral forces, an<l ,,,hose diagonal is the mean force, 1s callc<l the parallelogram of forces. 
	_

	E.:rample. t\·lten a body of 150 lbs. \\·ei!!bt, smooth to.blo(Fig. 31) i::. ,wtetl uptŁn by lwu fr>:<1<•!1n1' =3U lhs.nnd Prz =2•1 lb,;n1 \\-·l11d1 nmkc,,·nh Ntch otltt>r nu 
	1c::1ting 
	upnn 
	a 
	pcrf<-crly 
	1 
	1

	Fii?. 31. 
	Fii?. 31. 

	augle P,,1 P9 = « + B = 105: in ,,·hat rlirt'(!•
	Figure
	1 
	° 

	.
	.

	tion, med with wlint occel<'rHriou, ,viii tlil' take pince? Since to..•. (a+ S) = ros. lOS= _ eos. ?[>, lhe mNin Ihri·e: 
	mo1,ou
	0 
	0

	P = ✓JrP+�4':? xa0X24 ros. 75
	° 

	,/\JIJ0+n57G-l-l Łu cQ.1, 7:'i
	= 
	0 

	= ✓l•l7u-:l7•J7=33,l ll>s.tho nccclcrnti01, corre:.poodi11� \\·id1 it is: 
	1
	2
	1 

	1u Gn-Ł Jl. 
	P=
	-
	-
	1 

	he
	he
	1:,0 __n_ 

	tliro<·tion of 111ouon 1nnl,es \\llh tlic dirC'ction the iinn lon:e lllI fl nŁll· a, w IJ ich is tlc:tt•nn in etl hy:
	of

	.
	.

	4 = si11. 105= 0,7224 s-b1. 75= 
	m1t. 
	14 
	° 
	o 

	:J:J:.!2 
	'

	0,fi!)78, orn" =41, 15'. 
	°

	Rtnwrk. ThL' m1•u1L iorco P depcnclia. from Jhnuul·l' frmnd, only on the i·o111pu11t•11t tor,·es-, not on tho u1•1c,;:; CII' tl11.1 OC><ly upo11 ,vhich tho forces iwt. For thit1 rua:-;on, wo finu ju n1nny "'OrkŁ on 
	the
	and

	1uccltnnic11, the correctncŁs of the po mllelogmm 
	of

	but with the nssumption of some funcla1nenml Jin,·. 
	fi1rceq prove1l ,\·ithout regnrJ U:> lhe n1ass
	1 
	-

	§5. Resolu,lion of Forces.-By help of the parallelogram of forces, not only two or more forces may be reduced to a single one, but also gi,·en forces under given relations may be resolved into t,vo or more Jorces. If the angles o. and J3 are given, ,vhich the components Jl,f P= Pancl .Jlf P2 = P2, make ,vith the given force .Jlf P = P, the com­ponents may be found from the formulre: 
	7
	1 
	P 

	P sin. ,a _ P sin. a.
	P p •sin. (a.+J3), 
	_ 
	1-
	2-
	sin. (a.+.a) 

	Fig. 32• 
	Fig. 32• 

	Figure
	each other, a.+.a=90, anc.l sin. (a.+.a) = 1,an<l P = P cos. a and P= P sin. a., If pand o. be equal to one other, P=P, viza: 
	°
	2 
	z
	i

	a.,= P 2 
	P sin. 
	p
	= 
	= 
	p
	r 

	. a. 
	sin. 2 a. 2 cos

	.Rnim71le l. "lial is the pr<'ssi1rc ofn body M upon a 1.al>le .11 B, Fig. 32, whose ,veiŁht G =70 lbs. nnd upon"' Ii i<'li n force P = 50 ll.Js. nets, Mll ,vhose ,Urcction is i1wli11ed tn the Lori:i:011 ut ao angle PM P =4 =401 The Lr,rizontl'I l compoac-nt of P i:i P= P co.,. Ł = 50 cos 40= 3 ·,30 lb:<, a11d the , erlical co111pone11L P= JJ sin. "' = :3U sin, -I0= 3:2, J •1 llJs. ; the lacwr strives to dm"· 11.tc hoily frmu the tabll', tl1ere remains then for rite pre.:'ŁUl'cn: G-P, = 70-32,14 = 37,80 ll>
	1
	1 
	°
	1 
	° 
	2 
	° 

	a body of 111) lus. is ;o rnuYetl along n.n honzontal ,vay, 
	RESOLUTION OF FORCES. 
	by l\\o forces, thnt jt cleS<'ribes in the first second n space of 6,5 fel't, in a direction which deviates from the two directions of force by an nnglŁ "= 5:2anrl B = 77, lhe forceses are given as follo\\·s. Tue acceleration is rwice the space in I.he first 
	•
	° 
	° 
	tbemŁelv
	second, 

	so that p = 2 X 6,5 = 13 ft. No\v the mean force is P 
	_t
	p
	G
	-0,031 

	X 13 X 110 = 
	X 13 X 110 = 

	. ,
	. ,
	. ,
	= 

	SIil. ;J l
	0

	= 
	77
	-
	° 

	g 
	•"'
	4•..,33 lb h fc 1

	s., t ere ore tle one con1ponent 
	p= 
	p= 
	1 


	. 
	_ 

	45,59 11,.,.,
	lbs., and the other P
	lbs., and the other P
	2 


	44t33 . 52
	s
	in
	0 

	1,i,t. 51° 
	,

	_ 
	_ 

	§ 76. Forces in a Plane.-In order to fincJ the mean force P for a systen1 of forces P, P, P, 
	1
	2
	3

	the same method (§ 33) as 
	t�t foUo"'ed in the coo1po­
	Ł

	s1hon of velocities, -viz : by 
	the repeated application of 
	the parallelogram of forces, 
	we mav resolve them two 
	•
	•

	and t"·o and so on, till but 
	a single force remains. The 
	forces and P, for ex­
	2

	1
	1
	P


	ample, give from the paral­leJograrn .,�[ PQ P, the mean force .,lI= Q, if this be joined to P, ,\·e have from the parallelogram.lJQRP, MR = R; and 4 and gives the force .JlfP =P he last, and the. resu_ltant of the four forces Pi, P, P, P•
	1 
	2
	Q
	3
	3
	this last again forms a parallelogram ,vith p
	Ł
	3

	Figure
	24
	24

	It 1s not necessary, 1n thts ,vay of composing forces, to complete the parallelogram, and cJra,v its diagonal. We may form a polyM1 
	gon 
	.
	P

	.
	.

	QRP, ,vhose s1cles .JlI, PQ, QR, RP, are parallel ancl equaleto 
	P
	1
	1 

	_
	_
	_

	the given components P, P, PP, the last side MP completmg the polygon ,vill be the mean force sought, or ratl1er its measure . 
	1
	2
	4

	3, 
	3, 

	Remark. lt is VPry nsP-fnl tn t,0)ve mt:'<·hanicnl problem,, by 0onŁtruc1ion nl;:;o: though
	Remark. lt is VPry nsP-fnl tn t,0)ve mt:'<·hanicnl problem,, by 0onŁtruc1ion nl;:;o: though
	.

	tlti:. 1ne1ltod does not acl111it of "-IICh th'c·nracy tl!-1hal of' (·rtlculatiun, it is frpe 011 the other lmn<l from great error::antl 1nay th••reforŁ :-erve aŁ proof of 1l1c> (•nli-uhnion. In Fiµ:. 33 
	, 

	,
	,
	,
	Jorres me(•t each oruer under tho niven nnnlt•z< p1l[ P., =7-i,, ,, :i 
	tlie 
	l 
	0 
	3rt 
	; P
	}l[ 1
	=
	33
	° 



	•1u1 "' ,. "" Ł 
	-' 

	.., lnc P.111 Pt= IJ24(1\ and are HJ drH\\11 that a pound j,. repr,•i-L"ntctl by n 
	, 
	Ł
	° 
	, 
	0 
	/'
	111e 
	or 

	3 ..,
	3 ..,

	1i ol a PruŁŁiau•i11ch. '1'1.te forces P= JJ .:; IL., P= J0,8 Jb,.., P= .I Ł,2 lbs: are therefore expres:;l'cl hy sides of 11,5 UnŁs = 0,t15S... i11«·be:-, 10,8 hue:., = 
	(
	) 
	1 
	3 
	S,5 
	11,
	Ł
	,
	P4 
	= 
	2 

	4Ł
	4Ł

	O,UOU ... inches65 = 1J .2 = 1,11 l O .•inches in Je'cm1:,tr11c·1ion ol the polygon of fc1r1•es Łivf's tlie 1nng11i111cle of rhe lhs. n111.l tLc \'tttiation ofit... duection .MP from the clirecr111u J.1[P
	, 
	.
	lines 
	0,
	7
	•
	•
	. 
	incheŁ
	, 
	J:.?
	lineŁ 
	•
	uŁt
	IL l
	1trer111 
	111t>an 
	li>rŁc 
	P= 
	14.fi 
	1 
	of 
	the 
	fir:,t 
	lorce­

	Ł1,½o. 
	ecother, into component forces ns Qand RQanJ R2, 3 "<l 
	a
	h 
	1 
	p 
	2 
	Q
	n

	Figure
	• The Pr11Ł,,.ian inch (::ee 15)i,, cqunl EngliŁh iuc!Jes.-A,r. En. 
	§ 
	l.031 

	RESOLUTION OF FORCES. 
	R3, &.c., the forces lying inthe same direction of axis, a<lc.led together, 
	and the resultants in mag-
	and the resultants in mag-
	Fig. 34. 

	nitude and direction of these 
	nitude and direction of these 
	Figure

	two rectangular forces be then sought for. If the angles P.J'JfX, PJ.IX, P.lfX, &c., which the direc­tions ofthe forces P, P, ,make ,vith the axis.XX =o, 
	J 
	2 
	1 
	z 
	P
	3
	1 


	siCli, QPCOS. 
	siCli, QPCOS. 
	=
	p
	l 
	n. 
	2 
	= 
	2 

	+QJ+ ... ' 
	1. =Pcos. a+P
	Q
	1 
	1 
	2 


	cos. o. +Pcos. o.+ ... , 
	2 
	3 
	3 

	and
	and

	frm R =R+ Ł+ R
	o
	1 
	3 



	+... ' 
	+... ' 
	+... ' 

	2. R=Psin. o.+Psi11. Ł +Psin. o.+ ... 
	1 
	3 

	1 23
	1 23

	From the two compeonents Q an<l R so found, the magnitude of the resultant sought, ise: 
	3. P=✓Qi+Rancl the angle P.,llX=tp, ,vhose direction ,vith .. YX is gi ren by 
	2 

	R
	R
	4. tang. 4'
	=
	Q
	· 


	In the algebraical addition of the forces, regard must be had to the sign, for if it be different in two forces, i. e. if the directions of these be upon opposite sides of the point of application .flt[, this addition 
	then becomes arithmetical 
	then becomes arithmetical 

	subteraction (§ 73). The
	Fig. 35. 

	angleg, is acute, as!ong
	angleg, is acute, as!ong
	.
	as antl R are pos1t1ve; it is bet \\'een one and two right angles, \\hen Q isnegative ancl R positive; bet,Yeen t,vo and three, "·ehen Q and R are both negative, and lastly, be­tween three ancl fouer, when R only is negativee. 
	Q 
	1 


	E-r:ample. "\Vliat is the mogni­n1cle untl direction of the resultant of the tliree con1ponents P=30 ll>s., P= 70 lbs., P= 5U ll>s.1 whoso directions, lying in aplane,make bct'.veen them the angles P,M P=5Uand PJU P_ 
	1 
	2 
	3 
	2 
	0 
	2 
	3 

	10-1o1 If ,ve draw· the axis XX 
	10-1o1 If ,ve draw· the axis XX 
	Figure


	Figure
	Sect
	Figure

	FORCES IN SPACE. 
	in the direction of tho first force, ,ve have c&1 = 0, a,, = 56, and 1&3 =56+ 104= 1G0 i hence, 1. Q= 30 x cos. o+ 70 x cos. 56-+ 50 X cos. 160 = 30 + 39= 22,16 lbs.; and 2. R = 30 X sin. o+ 70 X si>,. 56
	°
	° 
	° 
	° 
	0 
	°
	° 
	,14 
	0 
	° 

	50 tin. 160 
	50 tin. 160 
	+ 
	° 

	-46,98 
	= 
	o+
	8,03+ 17,10 = 
	5

	75,13 lbs. 
	3
	3903therefore, the 
	; 
	an
	-
	-


	,
	,
	Hence, 3. tat1g, '1>= = 
	21
	1 
	1
	1.i 


	Figure

	the resultant n1nkes ,vith the positive part of the axis MX the 
	gle 
	,vhioh 
	or 
	force 
	P, is 

	75,13
	75,13
	Q 
	R


	1> 7334' j lastly, the force itselfP = v'Q'l_R'l = --= -= · 
	= 
	° 
	+

	cos. t si,i.. <f> nn. 730 
	cos. t si,i.. <f> nn. 730 
	cos. t si,i.. <f> nn. 730 
	cos. t si,i.. <f> nn. 730 
	Figure
	3
	4-' 

	75, 13 

	78,33 lbs. 
	= 


	(J 9,,
	= 

	I ;)Ł! 

	in 8pace.-If the directions of the forces do not one ancl the same plane, we must dra,v through the point of applica­!plane, and resol,·e each of the forces into t"'o others, one lyin the plane, and the other at right angles to the plane ; "·e must then .find the resultant of the components so obtained in the plane, from the rule in the foregoing paragraph, and add together the componentsat right angles to the plane, and from the t"·o rectangular components thus obtained, their resultant may be found accord
	§ 
	78. 
	Forces 
	lie 
	in 
	ion 
	a 
	ing
	)
	. 

	Sect
	Figure

	the above mode of proreeJing more clearly before P, .MP= P, Jl/P= Pbe the separate forces, .11.B of projection) and ZZ the axis at right angles to it. From the 
	Fig. 
	36 
	puts 
	us;
	let 
	.'AIP
	1 
	= 
	1
	2 
	2
	3 
	3 
	the 
	plane 
	(

	These are 
	These are 

	Figure
	Sect
	Figure
	Fig. 36 . 

	Figure
	forces Qi, Q2, &c., Rt> R'l, &c., and give the components Q and R, 
	forces Qi, Q2, &c., Rt> R'l, &c., and give the components Q and R, 
	_
	of ,vh1ch the resultant 8 consists, ,vbich, joined to the Łum of all thŁ normal forces ' .lvŁ1' N2' &c• ' gi,·es P the resultant required. 


	• 
	Sect
	Figure
	Figure

	FORCES IN SPACE. 
	, /3, for the angles at which the directions of force are 
	I
	Ł 
	we put 1)

	. 1
	. 1
	2


	inclined to the plane .ll.B or to the horizon, the forcees in the plane are 8= Pcos. ;3, 8=Pcos. J3, &c., and the normal forces, N
	given, 
	i
	>
	1
	2 
	2
	1

	1 'J.
	1 'J.

	= Psine. /3, N= Pin. 13, &c.; lastly, if we designate the angles 
	1 
	1
	:i. 
	s
	2

	2
	2

	,vbich the projections of the directions of the forces lying in theplane 
	.ll.B, make with the axis XX, by ci, o., we obtain the three follo,ving 
	1

	2
	2

	forces, forming the sides of a rectangular parallelopiped. 
	Q=8cos. a+8cos. c;+8, cos. a, or
	2 
	3
	3

	1 
	1 
	1
	1.

	2. 
	2. 
	2. 
	R=Pco. f3in. a.+Pco. /3sin. a+..• 
	1 
	s
	1 
	s
	1 
	2 
	s
	1 
	2 


	3. 
	3. 
	3. 
	N Pin.J3+Psin.e13+ .•e.
	s
	1 
	2 
	1 




	1
	1

	From ese three follows the nnal resultant : 
	th

	4. P= ✓Q:+R+», further 
	4. P= ✓Q:+R+», further 
	2


	the angle of inclination to the plane of projection PJJ,18=Ł, from 
	N N
	N N
	5. tang. 4'=--;Ł=::::;;;;::;
	= 

	S ✓ ct+ "2, lastly 
	R


	the angle 8MX='P, ,vhich the projection of the resultant in the plane .IJ.B makes with the first axis XX, by 
	6. tang. t=-· 
	6. tang. t=-· 
	Q 

	Example. Three workmen pull at tl1e end of three ropes, which are atmched ton load M lying upon a horizontal floor ..i.B, Fig. 371 each ,,·ith a force of 50 Lbs.othe angles of 
	> 

	Fig. 37. 
	Fig. 37. 

	• 
	•
	inclination of these forces to the horizon are 10, 20, and 30, and the horizontal angle between the first and se<..-ood, and between the first and third, 20° and 35i what jsthe magnitude and direction of the resultant, and how much is this less than the sum of all the forces which would result, if all three acted in tbe !aD'le clirection? The verticalforce pulling upward is: 
	°
	° 
	° 
	° 

	11= .N;+l\a+N= 50 X (&in. 10+ Gin. 20+ Łn. 30°) =GO X J,01567= 50,781bs.; Ly so mucleas than its own ,veight does the body press upon the iloor. 
	.,.
	:i 
	° 
	° 
	Ł 

	The horizontal comPonents are 8=!50Xroa. 10=50x0,9849 = 49,24 lbs.; s,.-50 
	1 
	° 

	Sect
	Figure

	FORCES IN SPACE. 
	xco,. 20,ve dra\\' theaxisXXin the of the first force S1, we obtain the lateral force in this ans XX, Q=Q+Q11+Q3=S. 11,+sros. "'t+ss COl,4=49,24Xcos. o+46,98Xcos. 20+43,30Xco,. 35,24+44,15+35,-17=128,86 lbs.. i on the other hand, the lateral force in the xYY: R=R+R+R=49,24Xri11. o+-t6,98X nn. 20+ 43,30 X Bin. 
	° 
	=
	46,
	9
	8 
	lbs.; 
	S
	3 
	= 
	50Xc
	o,. 
	30
	° 
	= 
	43,30 
	lbs. 
	If 
	direction 
	1
	1 
	cos
	.2 
	.2
	3
	0
	°
	° 
	= 
	49
	second 
	a
	is 
	1
	.2
	3
	0
	° 
	35
	° 
	=<>+ 

	The force with ,vhich the body is drawn forward is from this: 
	horizontal mean

	Tangle Ł \\•hich this force makes '"ith the ais XX is determined bythe tang. t
	he 
	x
	= 

	40,9l
	40,9l

	R 
	-

	-0 3175 · "' -1737' · the entire resultnnt is ·
	1 
	°
	1
	I 

	0 
	0 
	-T
	= 
	-
	12886
	12886
	__ 
	1



	forces act in the same direction, the resultant ist= 3X50 = 150 loss of forcet= 150-14-4,42 = 5,58 lbs.; further, because the horizontal force drawingthe bo<ly fonvards lbŁ., havt-, with reference to the horizonral 
	If 
	the 
	lbs., 
	anri 
	the 
	amounts 
	only 
	to J 
	35,20 
	·w·e 

	Q 
	motion, the loss of force 150-135,20 = 14,S0 lbs. 
	0
	0

	N_ 50,78 
	..J. _ 

	135,20 
	135,20 
	-s 


	forces, two others of essential service for practical 
	of 
	use 
	may 
	be 
	de­

	Fig. 37. 
	Fig. 37. 

	and resolve the forces obtain the forces in the one axis Q1, Q2 and Q, and those inthe otherand R=R1 +Ri . 
	1
	1
	P


	and P, as '\vell as their re­sultant P, into components in the direction of these axes, viz : Pinto Qand 
	2
	1 

	Ł, Pinto Qand R2, and 
	2 
	1 
	2 

	R, R, and 
	R
	i 
	, 
	2
	Q
	= 
	Q
	1
	+ Q
	2, 

	Yany point 0, and let perpendiculars ON, OJ\'Ł and O.lV" on the directions , 
	fall 
	from 
	the 
	same 
	1
	of 
	the 

	no,,ve take in the axis .1ll.. 
	no,,ve take in the axis .1ll.. 
	If 
	v 


	P, Pand P we obtain rectangular triangles 1
	forces 
	i 
	2 
	.MON
	.l'JJON'l, 

	VIZ : 
	"" 
	"" 

	A Jl,JONt'-? A .ŁIP2QA Mo.1v· A JtIPQ. 
	2 
	a 

	. . 
	. . 
	1
	.J1rI
	Q

	.
	rinciple 
	P


	i. e_!1_"flt!Ł 
	. 
	.

	a so 
	a so 
	pthe values
	if 
	,
	-r
	e 
	ut 


	Q JJ. 
	d 
	J
	N

	-)l['
	P 
	O 

	i
	i
	Q,_ :PtI.'N'
	-
	-
	.1l
	f
	O 
	an

	P
	P
	, 

	-
	1

	derived of , ,obtain 
	henc
	e 
	Qi
	Q
	i
	then 

	FORCES IN SPACE. 
	PA,[' 
	.
	0
	1 

	p ..ŁIN 
	p ..ŁIN 
	p ..ŁIN 

	.. Ł[N+ P..Łf.J\ · 
	p
	t 
	i
	2 
	r
	2 

	OJ\
	OJ\
	OJ\
	.. 

	R OJv"

	ande
	1 
	2= 
	2 

	· . 
	· . 
	R
	= 
	1

	ON
	R 
	_

	-=--, therefore 
	, 

	pŁ10 pJUO P J1[0
	l 
	'}, 

	P. O.JV"-P• OlvŁ + P• 
	P. O.JV"-P• OlvŁ + P• 
	1 
	2 


	ON•
	2

	equations still bold good, if P the mean force be made up ofthree or more forces P, P, P, because generally
	These 
	1
	'l
	3

	1 + Qz+ QJ + • · • 
	1 + Qz+ QJ + • · • 
	Q= Q



	R=R+R2+R+ ... 
	R=R+R2+R+ ... 
	R=R+R2+R+ ... 
	1 
	3 

	and, therefore, generaJly '"e may pute:

	lp• :r.LŁ +p• Jl1N+ p• Jl[Ł + . . . ' 
	. p . JlfN 
	l 
	2 
	'1. 
	3 

	2. 1 • J\r+P• ON+P• OJV;+ ... 
	P. OJ\" 
	P
	O
	1 
	2 
	2 
	3 

	In both equations the mean force P must correspond to the forces 1, P2, P, an<l from these equations, not only the magnitude, the direction of this force may be determineed. 
	P
	3
	but 
	also

	§ 80. If the point of appleication .lt.:J move in a straight line towards 0, or if we irnagine this point to have described 
	Fig. 38. the space J1[0=s, then the projection of this 
	Figure
	Figure

	space MN s1 in the direction of the force �IP is called the space of the force P, and the pro­duct sof the force and its space, t!te work or ciency of the force. If ,ve substitute in the
	P
	1 
	fi

	ttf
	ttf

	equation ( 1) of the last ( §) these designations, we have 
	Ps=Ps+Ps,+Ps+ ... , 
	Ps=Ps+Ps,+Ps+ ... , 
	1
	1 
	2
	3
	3 

	or the work, or meclta1rical ej/Pct, oftl,e resultant is equivalent to the su1n oft!te works, or 1neclianical rffects, of the co1n­ponents.
	In the su1nmation of the mechanical effects, as in that of the forces, we must have regard to their signs. If a force (Q) of the forces Q,Q, &.c., of the last § acts io an opposite direction to the rest, "'e must 
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	introduce it as neŁtive, but this force Q, Fig. 39, is the componentof a force P, which, acting in the circumstances set forth in the former §, opposed to their proper motion .M, we are, therefore,to consider that force opposed to the mohon MN, Fig. negative, and that one P, Fig. 41, acting in the direction of motion MN as positive.
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	§81. Transmi.ssion of .Mechanical Fi/fect.-From the princile of viva, the mechanical effect (,) in (P) generates in changing the 
	p
	vis 
	P
	rectilinear 
	motion, 
	which 
	a 
	fo
	rce 
	velocity 
	c 
	of 
	a 
	mass 
	Mi
	nto 
	ano­

	ther v Ps-"e)M. 
	ther v Ps-"e)M. 
	is 
	(
	1 
	c9

	-; 
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	inclined to the horizon at an angle fJ = 35. What work will the forco (P) rerronn, in ortler to convert the two feet initial 
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	locity of 5 feet? 
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