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one of the forces be removed, or in any ,vay counteracted for in. · 1 

sta�ce, _a steel spring, bent by a weight, enters into motion \\-'hen the �:•ght is taken away, because the force of the spring, called elasti. , t hen comes into action CI Y
£ 

Statics�s that part of me�hanics "'hich treats of the equilibrium of _ orces. ynami�s, on the other hand, treats of forces in so far as t hey pro uce motion. d 

MECHANICS-FORCE. 

SECTION II. 

MECHANICS, OR THE PHYSICAL SCIENCE OF MOTION IN GENERAL. 

CHAPTER I. 

FUNDAMENTAL PRINCIPLES OF MECHANICS. 

§ 44. Mechanics.-Mechanics is the science which treats of the 
lav;s of the motion of material bodies. It is an application of phoro.
nomics to the bodies of the external world, in so far as the latter is 
concerned with the motion only of geometrical bodies. 

Mechanics is a part of natural philosophy, or of the doctrine of
laws according to which changes take place in the material world,
viz., that part which considers the changes in bodies resulting from 
measureable motions. 

§ 45. Force.-Force is the cause of motion or change of 1notion in 
material bodies. Every change of motion, viz., every change in the 
velocity of a body must be regarded as the effect of a force. For 
this reason we measure the force called gravity by a body falling
freely, because the same incessantly changes its velocity. On the 
other hand, rest, or the in,0ariability of the state of motion of a body, 
must not be attributed to the absence of forces, for opposite forces 
destroy each other and produce no effect. The gravity with \\1hich a 
body falls to the ground still acts, though the body rest upon a table; 
but this action is counteracted by the solidity of the table or of the 
support.

§ 46. A body is in equilibrium, or the forces acting upon a body
are in equilibrium, when there is no residuary effect, no motion pro.
duced or changed, or when each neutralizes the other. In a body
s�spende� by a thread, the strength of the thread is in equilibrium
�1th gravity. In forces, equilibrium is destroyed, and motion arises 



• • 

traction brought about by gravity, acting vertically downwards, which 

has to sustain, is cal!ed the weig: ht of the body. 
Pres�ure an� traction, and _weight also, are magnitudes of a parti­

tn:nes as great as the weight ( G
§ 50. .Matter.-Matter is that by means of which bodies _belongi

). 
1

to the external world, which in·contradistinction to geometical bodies 
ng _

DIVISION OF FORCES-PRESSURE-EQUALITY OF FORCES. 51 

. § 47. Division of Forces.-According to their effects, forces are 
either moving forces or reS'istances; that is, as motion is brought about 
or impeded. Gravity, the elasticity of a steel spring, &c., belong to 
motive forces. Friction, the solidity of bodies, &c., are resisting 
forces or resistances, because by them motion is either diminished or 
destroyed, and can by no means be brought about. Moving forces 
�re divided into accelerating and retarding; the first produces a posi­
tive, the second a negative acceleration; by the one an accelerating, 
by the other a retarding motion is produced. Resistances are re­
tarding forces, but a retarding force is not always a resistance. 
GraYity, for example, acts upon a body projected vertically upwards 
to retard it; but gravity, on this account, is no resisting force; for, . 
by the consequent falling down of the body, it then again becomes a _
motive one. 

There is a distinction between constant and variable forces. While 
constant forces always act in the same way, and, therefore, produce 
like effects in like particles of time, i. e. equal increments or decre­
ments of velocity, the effects of variable forces are different at different 
times; while the former bring about a uniformly variable motion, to 
the latter corresponds a variably accelerated or a variably retarded one. 

§ 48. Pressure.-Pressure and traction are the first effects of forces 
upon material bodies. By means of them, bodies are compressed and 
extel!ded, and especially changed in their form. The pressure in 

the support of a heavy body, or the string to which a body is attached 
. 

cular �ind, which can only virtually be compared with each other, as· 
the action of forces serves for their measurement. The simplest, and 
on that account the most general, means of measuring forces is by _weights. 
. § 49. Equality ofForces.-Two weights, or two pressures, or trac­

tions, and also the forces which correspond to these last, are equal, 
when one may be replaced by the other, without producing different 
effects. If, for example, a steel spring be bent by a weight G, as by 
ano!her G1, then are these weights, and therefore the gravities in both 
bodies, equal. If a loaded balance be made to vibrate as much by a 
weight Gas by another G1, substituted for G, these two weights G, 
G1 are equal; in this case, the arms of the balance may be equal or 
unequal, and the remaining load great or small. 

A pressure or weight (force) is 2, 3, 4, &c., times as great as ano­
ther pressure, &c., if it produces the same effect as 2, 3, 4 ••• n pres­
sures together of the second kind. If a balance, otherwise loaded at 
will! is brought into the same vibration by a weight {G) as by the 
�ddition of 2, 3, 4, equal weights (G), the weight (G) 1s 2, 3, 4, &.c.,_ 

1
• 



52 MATTER-UNIT OF WEIGHT-INERTIA. 

v.•e term material or physical, act upon our senses. Mass is the quan­
tity of matter composing a body. 

Bodies of equal Yolume, or equal geometrical contents, have gene­
rally different ,veights when they consist of different kinds of matte:. 
We cannot, therefore, infer the weight of a body from its volume un�1I 
we first know the weight of a unit of ,·olume, for instance, a cubic 
foot or cubic centi1netre of the matter of the body. 

§ 51. Unit of JVeight.-The measurement of v.-:eigh�s and f�rces 
consists in a comparison of them with some given 1nvar1able weight, 
taken as unity. The choice of this unit of weight or force is perfe�tly 
arbitrary; it is nevertheless advantageous in practice, that the \J,e1ght 
of a volume of some universalJy diffused body, equivalent to that of 
the unit, should be chosen. 

The units of weight or pressure are different in different countries. 
In England, the unit of pressure from which all the rest are derived is 
the ,veight of 22,185 cubic inches of distilled water (at a temp. 62e° 

Fahr. taken in air, and the height of barometer at 30 inches). This 
,veight is equal to 5760 grains; which again is equal to one pound 
troy, and 7000 such grains constitute the pound avoirdupois. The 
gramme is the ,veight of a cubic centimetre of pure ,vater in a state 
of maximum density (at a temperature of 4e° C.). The Prussian pound 
is also a unit referred to a weight of ,vater. A Prussian cubic foot of 
distilled ,.,.·ater in vacuo, and at a temperature 15e° R. ,veighs 66 Prus­
sian pounds. Now a Prussian foot= 139,13 Paris Jines = 0,3137946 
metres = 1,029722 English feet: hence it follows that a Prussian 
pound= 467,711 grammes= 1,031114 pounds English.* 
. § 52. Inertia.-Inertia is that property of matter, in consequence 
of which it can of itself alone neither acquire nor change motion. 
Every material body remains at rest so Jong as no force acts upon it, 
and every material body once set into motion maintains a uniform 
rectilinear motion, so Jong as it is not subjected to the action of a force. 
Hence, when a change takes place in the condition of motion of a 
body, when it changes its direction of motion, or when it acquires a 
greater or less velocity, this is not to be attributed to the body as a 
certain quantum of matter, but to the agency of some foreign cause 
or force. In as much as a development of force takes place at every
change in the motion of a material body, in so far inertia may be 
ranked amongst forces. 
· If we could entirely remove the forces acting upon a mass in mo­
tion, it ,vould move on uniformly v.·ithout ceasing, but we find no­
,vhere such a uniform motion, because it is not possible for us to with­
draw a mass from the action of every force. When a body moves 
upon an horizontal table, gravity, which is then counteracted by the 
table, exerts upon the body no immediate action, except that from the 
pressure of th� body against the table there arises a resistance, which 
we shalJ consider more closely in the sequel under the name of fric-

• 1? the United States, the standard weight is the pound troy, the original of which is 
t1ie mint pound, oonstructed by Capt. Kater at the request of Mr. Gallatin.-Alll. En. 
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g rav1 y, an inversely: 

According as we express the acceleration of g r avity in metres or . in feet, we have, ther efore, the mass 

MEASURE OF FORCES-MASS. 

tion, which incessantly abstracts velocity from the moving body, im­
parts to it a retarded motion, and bring s it finally to rest. 

The air likewise opposes resistance to a moving body, and from _
this resistance, if the friction of the body were entirely put aside, a 
g radual diminution of velocity would ensue. But we find that the loss 
of velocity becomes the less, and that the motion also approximates 
more and more to a uniform one, the more we diminish the number 
and strength of these resistances ; and hence we may conclude, tha!,
by the removal of all moving forces and resistances, an entirely uni­
form motion must take place.

§ 53. Measure of Forces .-The force (P) which accelerates an 
inert mass (.M) is proportional to the acceleration (p), and to the mass 
itself (M) : it increases in equal masses as the increment of l'elocity
in infinitely small times, and increases by equal increments of velocity
in the same ratio as the masses become g reater. Themtuple accele­
ration of one and the same mass, or of equal masses requires anmtu­
ple force, and an n tuple mass for the same acceleration, an n tuple
force.

As we ha¥e not yet chosen a measure of the mass, we may, there­
fore, at once, put P=Mp, i. e. the force equal to the product of the 
mass and the acceleration, and, at the same time, in place of the 
power, its effect, i. e. the pressure produced by it. 

T�e correctness of this g eneral law of motion may be readily proved 
by direct experiment: for example, by letting equal and differently
movable_masses be impelled upon an horizontal table by means of .bent spring s; and, 1t 1s obvious, from this, too, that all the conse­
quences d�duced, and all the la�s deYeloped fro m them for com­
pound motions, fully correspond with observation and the phenomena
of nature. 

§ 54. Mass.-All bodies fall at one and the same place of the 
earth, and in vacuo equally fast, viz., with an invariable acceleration 

g = 9,81 metres = 32,2 feet ( § 15); if, therefore, the mass of a body = M, and the weig ht measuring its g ravity = G ,  we have from the
last formula G=Mg , i. e.
the weight of a body is a product of its mass and the acce]eration of 

d.·t M= 
G-, i. e. 

the mass of a body is its weight divided by the acceleration of g ravity,
or the mass is that weight which a body would otherwise have if the 
acce!eration of g ravity '\\·ere = to unity, as a metre, a foot, &c. At 
a point upon, or in the vicinity of the earth, or of any other heaveJ?IY 
body, where bodies do not fall with 9,81 metres= 32,2 feet, but with 
a velocity (after the first second) of one metre= 3! ft., the m�s, or 
rather its measure, is from hence immediately g iven bytheweight of 
the body. 

5•. 



The density of bodies is either uniform or variable, according as 
equal vol�mes of the same body are of equal or of unequal weight. 
The density of metals, for instance, is uniform, or they are homoge• neous, because equal and very sma1l parts of them are of the same 

54 DENSITY. 

G ..Jlf=--=0,1019 G, or 
9,81 

G.M=--=0,031 G. 
32,2 

The mass of a 20 lb. heavy body, .M=0,031 x 20=0,62 lb., and 
inversely the weight of a mass of 20 lbs. G=32,2 x 20=644 J�s. 

§ 55. In so far as we assume the acceleration (g) of grav1!y as 
invariable, it fo1lows that the mass of a body is exactly proport!onal _to its ,veight, and that also for the masses .,l{ and M , with the weights1

G and G1 : 
M G .M=e

G1 1 
We hence obtain the weight as a measure of the mass of a body;
the greater the mass which a body measures, the greater is its 
weight. 

The acceleration of gravity is, in fact, somewhat variable, it be. 
comes greater the nearer we approach the poles of the earth, and 
diminishes the more we advance towards the earth's equator; it is 
greatest at the poles, and least at the equator. It also diminishes the 
more a body is above or belo,v the level of the sea; and attains its 
greatest value at the level of the sea. But, since a mass, so long as 
nothing is added to, or taken from it, is invariable, so that at all points 
of the earth, as well as those beyond it, at the moon, for instance, it 
is still the same; it hence follows that the weights also of bodies are 
variable and dependent upon the place of the bodies, and must be 
altogether proportional to the acceleration of gravity, corresponding 

with the place, or £= �. 
Gl gl 

One and the same steel spring is differently bent by one and the 
same weight at different places of the earth; it is least at the equator, 
on high mountains, and in deep 1nines; greatest in the vicinity of the 
poles, and at the level of the sea. 

§ 56. Density is the intensity with "·hich space is filled by matter. 
A body is so much the denser the more matter there is in its space.
The natural measure of density is that quantity of matter (that mass) 
which fills a unit of volume, because matter can only be measured 
by weight, so that the weight of a unit of volume, a cubic metre, or 
cubic foot of some matter, serves as a measure of its density.

For example: the density of a cubic foot of water= 62,38 lb., 
and that of cast iron = 452,13 lb., because a cubic foot of water 
weighs 62,38 lb. = 998,08 oz. avd., and a cubic foot of cast iron 
weighs 452, 13 lb. 

From the ,·olume V of a boczy �nd its density "I, its ,\·eight G = 
v,,. The volume multiplied by the. �ellsity gives the weight of a 
body. • 
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i.e. each mass of · 

0,453 • 

Le ad . . . 11,33 . . . • = 

• Stt " On the Absorption of Water by Wood."-Polytechnilchu Mittheilungen, Part iv. 

SPECIFIC GRAVITY. 

,veight:  on the other h an d, g ranite i s  a b ody of v ari able den sity, be­
cause m ade up of p art s of di ffe rent den sitie s. 

Example. !. If the density of lead be 708 lbs., 3,2 cubic feet of lead weigh = 708 X-3,2=2265 lbs.-2. If the density of bar iron = 4 85,8 lbs. ; a mass of it of 205 lbs. has a 
G 205volume V= = = 0,4023 cubic ft. = 0.4083 X 1728=705.54 cubic inches.-3. 
,- 502 

10,4 cubic feet of deal, perfectly saturated with water, weigh 577 lbs. ; the density of 
this wood is therefore: ,,. =.!!_ = 577 = 55,5 lbs.

V 10,4 

§ 57. Specific Gravity.-Specifiec· g ravit y or spe cifi c weight i s  the 
relati on of the den sit y of a b ody t o  th at of the den sit y of some othe r, 
gene rally wate r, t aken for unity. N o\\' the den sit y i s  eq ual t o  the 
we ight of a unit of Y olume : hen ce the spe cifi c g ravit y i s  a] so the 
relati on of the weight of one body t o  th at of an othe r, viz. water, 
un de r  the same ,· olume . 

In orde r  n ot t o  confoun dthe spe cifi c we ight with th atewhi ch bel ong s 
t o  a b ody of a ce rt ain m agnitu de ,  the last i s u sually ca11e d the ab so-
lute weight. 

If r be the den sit y of m atte r ( of '\\1 ate r) t o  whi ch we refe r the den­
sit y of othe r m atte r, an d 11 the den sit y of an y one kin d of m atte r, 
wh ose spe cifi c g ravit y we will de sign ate b y  E, then the form ula 

1= 'Yi an d 'Yi = , . 'Y• 
. 'Y

h ol ds g ood, an d the den s�t y of a sub st an ce is eq ual t o  it s spe cifi c 
gravit y int o the den sit y of wate r . 

The ab sol ute we ight G of a m ass of v olume V an d spe cifi c g rav it y  ., i s  : G = v,,1 = v,,,. 
Example.-l. The density of pure silver is 653,368 lbs. and that of water 62,38 lbs� 

653•368 
= 

'= 10'474consequently the specific gravity of the former = 
62,38

silver is 10½ tirnes as heavy as a mass of water filling the same space.-2. 
1 3,598 ; its density, therefore, is 13,598 X 62,38 

The specific 
= 848,24gravity of quicksilvert= 

lbs.; 
= 

a mass of 35 cubic inches, therefore, weighs : 
848 X 35

G 848,24 .  V= - - - = 17,18 lbs.1728 
Remark. In these calculations the use of the French measure and weight bas this 

advantage, that in order to effect the multiplication of I and ,,., it is merely requisite to 
advance the decimal point ; because a cubic centimetre of water weighs one gramme,
and a cubic metre a million, or one thousand kilogrammes. T)le density of quicksilver,
according to the French measure and weightt= 13,598 X 1000 = 13598 kilog. ; i. '- a 

cubic metre of quicksilver weighs 13:>98 kilogrammes. •
§ 58. The following t able cont ain s the spe cifi c g ravitie s of cert ain _

b odie s con st antly coming int o appliecat ion in me ch ani cs: 
Me an spe cifi c g ravit y of dry l aurel wood . •

" satu rate d with wate r . 1,110 
== 0,659 

•
• 

• = 0,839* 
• 13,598 

= 
Me an spe cifi c grav it y  of dry pine wood 

'' saturate d with water .
Q ui ck silveer . . • = .. 

1 844. 

http:1728=705.54
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8,75 C oppe r, . = c ast and c ompact . 

7,50 . . . . . = 

natu re ;  we will he re ment ion the princ ip al: _ 
the ce ntre of the e arth. 

• Rolle
f
d boi._ler plate iron has a sp. gr. from 7.6013 to 7,7922, or a n1ean of 7.7344, the _amount o vanatio be· I i · ar iron, its �ean sp. gr. was found to be 7,7254. See " Rep or t on Strength of Ma­,,tenah for Steam Boiler,, p. 232. · Also Jo ur-nal Franklin Imt., 1837.-AM. En. 

STATE OF AGGREGATION-DIVISION OF FORCES. 

8,97" . =forge d . . . 
. . 
. . 

=Braess 8,55• . .. . . 
I ron, c ast, wh ite 

" " g ray . . . . . . 7,1 0  

" " me diu m  . . . . • = 7,06 

" b ar iron . . . • . = 7,60* 
Z inc, fu se d  . . . • . . = 7,05 

" rolle d . . . . . . = 7,54
G ranite . . . . • 2,50 t o  3,05
G ne iss . . . . . 2,3!) t o  2,71 
L ime st one . . . . . 2,40 t o  2,86 
S andst one . . . . . 1,90 t o  2, 70
Bric k . . • • . • 1 ,40 t o2,22
M asonry, with lime m ort ar of qu arry st one : fre sh • . = 2,46 

dr y . . = 2,40 " " " of san dst one : fre sh . . = 2, I 2
dry . . = 2,05" " " of b rick : fre sh = 1,55 t o  1, 70
dry = 1,47 t o  1 ,59 

E arth, loam y, h ard st ampe d, fre sh . . • = 2,06
dry . . . = 1,93

Gar de n  e arth, fre sh . . . . . = 2,05
dry . . . • . = 1,63

D ry, p oor e arth • . . . . . = 1,34 

§ 59. State ofAggregatione.-Bod ies appear t o  u s, acc ording t o  the
diffe re nt c ohe si on of their p art s, un de r  th ree p rinc ip al c ondit ions, 
,vh ich we te rm st ates of agg regat ion. The y  are e ither solid orfluid,
an d in the l atte r c ase, e ithe r l iqu id or gase ou s. S ol id b odie s are th ose 
wh ose p art s adhe re so str ongly t ogethe r th at a cert ain force isrequ ire d  

t o  ch ange the form of the se b odie s, or t o  e ffect the ir div ision. }i'lu i<l 
b odie s, on the othe r  h and, are those wh ose p art s m ay be displ ace d 
ab out e ach othe r b y  the sm alle st force . Elast ic flu id b odie s, wh ose 
rep re sent ant is atm osphe ric air, are dist ingu ishe d fr o1n the liqu id re­
p re se nte d b y  wate r, in as much as the re is inhe re nt in them an e n­
de av or t o  dilate them selve s m ore andm ore, wh ich is not the c ase with 
wate r, &c . 

Wh ile sol id b odie s h ave a prope r form and dete rm in ate volume, 
l iqu id or aque ou s  b odie s p osse ss only a . dete rm inate v olume ,v ith out 
anyp rope r  form, and the elast ic e xtensible flu id b odie s  h ave ne ithe r 
o ne nor the other .

§ 60. Di,vision of Forces.-Foercees are diffe re nt acc or ding t o  their 

= 

1 .  Gravity, b yme ans of wh ich all b odie s tend t o  app roach t owards 

n ing :Jo--�t 1 part of the mean density. By seventeen trials ofham-..� d be 
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their fo r1n or volume. 

attract each other. 

the fo rce of adhesion. 
§ 61. In reference to fo rces we have to distinguish : 
1.  Its point of app lication, that point of a body on which the force 

immediately acts. 

the workman and stri,·es to move him in the opposite �irectlon. 
When a body impinges against another, the pressures are reciprocally 
equal on each of the bodies. 

§ 63. Division of Me chanics.-'fhe whole• subject of mechanics 

ACTION AND RE-ACTION. 

2. Theforce of inertia, which manifests itself when changes in the 
velocity of i;ert masses occur. 

3. The muscular force of animated beings ; the force exerted by 
the muscles of men and animals. 

4. Elasticity or spring-force, which bodies exhibit in a change of 

5. Theforce of heat or caloric, in consequence of which bodies 
expand or contract by a change of temperature.

6. The magneticforce, or the attraction and repulsion of magnets.
7. The cohesive force, the force by which the parts of a body are 

kept together, and resist separation.
8. Adhesion, the force with which bodies brought into close contact 

The resistances of friction, rigidity, solidity, &c., arise mainly from 

2. Its direction, the straight line in which a 
its point of application, or strives to move it for,vard, or to impede
its motion. The direction of a force, like every direction of ·motion,
has two senses, it can take place from left to right, or from right to 
left, from above to below, and from below to above. The one is 
termed positive, the other negative. As we write from left to right,
and from above to below, it would be most convenient were we to 
r:all these motions positive, and those in the opposite direction, nega­
tlve. 

3. The absolute magnitude or intensity of a force, which, as above 
stated, is me�sured by \\·eights, as pounds, kilogrammes, &c. _§ 62. .11.ction and re-action.-The first effect ,vhich a force produces
in a body, is a change of form or volume combined with extension or 
c?ntraction, which begins at the point of application, and from thence 
diffuses itself further and further. By this in,vard change of the body, 
it� inherent elasticity is called into action, puts itself into equilibrium 
with the force, and, therefore, is equal and opposed to the force. Ac­
tion and re-action are equal and opposed to each other. This law 
!lot only prevails in reference to forces produced by contact, but also 
1n the so-caned forces of attraction and repulsion amongst which the 
magnetic force and gravity itself may be ranked. The more stro_ngly 
a magnet attracts a bar of iron, the more strongly is the magnet itself 
attracted by the iron. The force with which the moon is attracted 
towards the earth (gravitation) is equal to that with "·hich the moon 
�eacts upon the earth. The force with which a weight presses uP?n 
Its support is given back in an opposite direction ; the force with 
,vhich a workman dra\\'S or pushes at a machine, &ce.! rea�ts upon 

force moves forward 

.. 
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2. Into the mechanics of air, and other aerifo rm bodies, espec1al1y, 

body, and g the acceleration of gravity, '\\'e have the force : 

THE MECHANICS OF A MATERIAL POINT. 

may be included under two principal divisions, according to the state 
of aggregation of bodies. 

1 .  The mechanics of solid bodies, which is a]so well named geo­
mechanics. 

2. The mechanics offluid bodies, hydromechanics or hydraulics ; 
the last is subdivided into : 

1 .  Into the mechanics of water and liquid bodies especially, hy-
dromechanics or hydraulics. . . 

aeromechanics, the mechanics of elastic fluids. 
If we now have regard to the di vision of mechanics into statics and 

dynamics, we have the foJlowing parts :  
1. Statics of solid bodies, or geostatics.
2. Dynamics of solid bodies, or geodynamics. 
3. Statics offluids, or hydrostatics. 
4. Dynamics offluids, or hydrodynamics. 
5. Statics of aeriform bodies, or aerostatics. 
6. Dynamics of aeriform, aerodynamics, or pneumatics. 

C H  A P 'f E R  I I .  
THE l\fECHANICS OF A MATERIAL POINT. 

§ 64. A material point is a material body, whose dimensions are 
indefinitely small in comparison ,vith the space occupied by it. In 
order to simplify the representation, we will in the follo'-'1ing consider 
only the motion and equilibrium of a material point. ...i:\ finite body 
is a continuous union of an infinite number of material points. If the 
single points or elements are all perfectly equal, i. e. move equally 
quick, in parallel straight lines, ,ve may then apply the theory of the 
motion of a material point to that of the whole body, because, in this 
case, ,,·e may assurne that equal parts of the mass of the body are 
impelled by equal parts of the force. 

§ 65. Simple constant Force.-lf (p) be the acceleration with which 
a mass (M) is irnpelled by a force, we have, from § 53, the forcea: 

p
P = Mp, and inversely, the acceleration, p = M' 

If, further, we put the mass M= £, "·here G is the weight of the g 

1 .  P = ; G, and the acceleration : 
p2. P = a g .  
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s = ct + - - ,  or s =  ct + 16,1 - t .  . 

feet ?1 3 minutes, is 90 impelled forward by a force acting oonnn�sly for 3o seconds' 

THE MECHANICS OF A MATERIAL POINT. 59 

We fin d, therefore, the force (P) wh ich impels a b ody with a ce r­_
t ain accele rateion (p) when we mult ipl y the °"·e ight of the b ody ( G) b y  

the rat io (;) of its accele rat ion, t o  th at of g rav it y. 
Inversel y, the accele rat ion (p), with wh ich a b ody is move dforward

b y  a for ce (P) is g iven, when the accelerat ion (g) of g rav it y is mult i-

pl ie d  b y  the rat io (�) of the for ce an d we ight of the b ody. 

�ample. Let us suppose a body lying on an horizontal and perfectly smooth table,
wluch presents no impediment to the body in its course, but counteracts the effect of 
g�vit� upon it. If this body be pressed upon by a force acting horizontally, the body
will give way to this influence, and move forward in the direction of this force. If the 
weight of this body be G= 50 lbs., and ifP= 10 lbs. presses uninterruptedly upon it, it 
will enter into a unifonnly accelerated motion with the aooelemtionp =p. K= lO XG 

On the other hand, if the acceleration with which a 42 lb. heavy body 32,2 = 6,44 feet. 
9becomes accelerated by a force (P) = 9 feet, then will this force P = L . G = 32,25g

X 42 =0,031 X 378 = 11,7 lbs. 

§ 66 . If the force wh ich acts up on a b ody is constant, the re arises 
a u n iforml y  v ariable mot ion, an d in dee d  a un iforml y accele rate d one, 
if the dire ct ion of the force corresp oneds with the in it ial dire ct ion of the 
� ot ion ; an d, on the other h an d, a un ifor ml y ret arde d one, if the dire c­
ti on of the force is opp os ite t o  th at of the in it ial dire ct ion of mot ion. 
If we subst itute in the for mu lre (§ 1 3  an d § 1 4 )  for p, the v alue 
;;. = � g, we obt ain th e foll owin g :  

I .  F or un iformly accelerate d mot ions : 
l .  V = C + � gt, Or•V = C + 32,2 :t. 

p gt2 p 2 

G 2  G 
2 

II. F or un iforml y  ret arde d mot ions : 
p p1. V = C - - gt = C - 32,2 - t. 
G G 

P gF p 22 . s == ct _ - - = ct.- 16,1 _ t .
G 2  G 

� ith the help of these formulre all th ose quest ions may be answe red 
whi ch can be p rop ose d  rel at ive t o  the re ct il inear mot ions of b odies b y
a consteant force. 

&a�lt.-1. A carriage weighing 2000 lbs. goes with a 4 feet velocity upon a bori• 
zontal hne, offering no impediments to it and pushed forward by an invariable force of .25 lbs. during 15 seconds, with what vel�ity will it proceed after the action of this force? 

This velocity " =  c+ 32,2 ; t, but c=4,P== 25 lbs., G == 2000,and t == 15; hence 
.it flollows, " 25 

== 10,03 feet.-2. Under similar cjroumetaDCe8 a car-= 4+ 32,2 . -- • 15 
. 2000. . · sed 9'-0 "nag�, weighing 5500 lbs., which, setting out with a uniform velocity, has traver 

that it afterwards pasaes over 1650 feet in 3 minutes; what is thlS force? Here the 



twice as great. 

to. the dist�nce ,vhich the upper mill-stone, during the grinding of this qu�nhty of corn, has gone through; consequently the work in­creases 1n proportion to the distance. 
§ 68. The dependence above shown of the work produced by a 
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. . . 950 1650
1n1tial velocity c = _(;Q = 5,277 feet per second, and the tenninal velocity, v = 3_603

P 3,889 .tG= 9,166 feet; therefore 
G 

gt =v - c = 3,889, and the force P= =0,031 X 
gt

5:
0

3,889 X 
5

��
0 

= 0,12056 X = 22,10 lbs.-3. A sledge, weighing 1500 lbs., sliding 

fonvard with a 15 ft. velocity, loses, through friction, upon its horizo�tal _sup�rt, its 
whole motion in 25 seconds; how great is this friction'? Here the n1ot1on 1s uniformly 

Pt Ge
retarded, and the terminal velocity v = 0 ;  hence c = 32,2 G' and P = 0,031 T = 

1 500 X 15 ·ti• emand d -4 e . . A h0,031 X --- = 0,031 X 900 = 27,9 lbs. the nction d not er
25

sledge, of 1200 lbs. and 12 feet initial velocity, has to overco�e L>y it� motion a friction 
of 45 lbs.; what velocity has it after 8 seconds, and how great 1s the d1stance described 1 

45 X S
The terminal velocity is v = 12 -32,2 X = 12 - 9,66 = 2.34 feet, and the 

1200 (c+v) 12 + 2.34
)distance describeda• =  t = (- X 8 =57.36 feet. 2 -2 

§ 67. Mechanical Effect.-The work done, or mechanical effect, 
is that effect of a force ,vhich it produces in overcoming a resist­
ance : as that of inertia, friction, gravity, &c. Work is performed 
when loads are lifted, a great velocity imparted to masses, bodies 
changed in their form or divided, &c. The ,vork done, or the me­
chanical effect produced depends not only on the force, but also on 
the distance through which it is made to act or to overcome the resist­
ance ; it increases, of course, simultaneously with the force and the 
distance. If we lift a body slowly enough to allow of our neglecting
its inertia, the labor expended is then proportional to its weight; for 
I, the effect is the same whether m (3) times the weight (m G) is 
lifted to a certain height, or whether m (3) bodies of the single weight 
(G) are lifted to the same height; it is, namely, m times as great as 
the effort necessary for the lifting of a single weight to that height ; 
and, again, 2, the ,vork is the same, whether one and the same weight 
be raised t on (5) times the height (n h ), or n (5) times through the height, 
and it is of course n (5) ti1nes as great as if the same weight ,vere 
raised to a single height (h). The work again done by a slowly fall­
ing weight is proportional to the magnitude of this weight and the 
height from which it has descended. This proportionality also holds 
in every other kind of work done. In order to make a saw-cut of a 
given depth of double the length, there are twice as many particles 
to separate as from a cut of a single length ; the ,vork, therefore, is 

The double length requires double the distance to be 
described by the force, consequently the work is proportional to the 
di�tance. In like manner the \\'Ork of a pair of mill stones increases 
m_th the quantity of grains of a certain kind of corn, which they 
g_rind to a certain degree. This quantity, under other,vise similar 
circums�ances, is proportional to the number of revolutions, or rather 
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15 

1500 

A'----.=-----',B 

height ab ove eac h poin t of the b as e  is e qual to t he forc e _c orres pon ding 

MECHANICAL EFFECT. 

forc e u pon the m agni tu de of the forc e an d �ist3:nc e describ� d b y  i t, 
all o\\·s us to take that am oun t of work whic h 1s expen de d 1n o,·er­
c omin g a resis tanc e of the m agni tu de of the uni t of wei g ht ( as a kilo­
gr amm e, poun d, &c. ), alon g a path of the m agni tu de of the uni t of 
lengt h (me tr e  or foo t,) as a uni t of the mec hanic al e ffec t, or the dyn a­
mic al unit, an d then we m ay pu t the m easur e of this equ al to t he 
pr oduc t of the forc e or resis tance, an d the dis tanc e  describe d i n  the 
directi on of the forc e whilst overc omin g this r esis tance. 

If we pu t the am oun t of the r esistanc e i ts elfe= P, an d the dist ance 
describ ed b y  the forc e, or r ather b y  i ts poin t of applic ati on, in overe­
c oming this = s, the lab or ex pended is : 

L = P s units of work.
In or der to defin e m or e  cl early the unit of work, for whic h th e 

sin gle n am e, dynam, m ay be us ed, b ot h  fac tors P and , a re generally
gi ven ; an d, therefore, instead of uni ts of work, we say Jiilo,traDie­
metres, poun ds-fee t; an d in versel y, m etre kil o. and feet-r. ound"S' ac ­
c or din g as the wei g ht an d dis tance ar e expr esse d in kil ograIDmes 
an d me tres, or in poun ds an d fee t. These terms ar e usu all y express ed 

for sim plicity b y  the abbrevi atieons mk, or km, lb.fl., orjl. lb. 
Example.-I. In order to raise a stamper 21Olbs. 15  inches high, the mechanical effect 

210 X 12 =L = 262,5 ft. lbs. is necessary.-2. By a mechanical effect of 1500 ft. lbs., 
a sledge, which in its motion has to overcome a friction of 75 lbs., is driven forward 

-- = 75 
L 
p =a spacet• =  20 feeL 

§ 69. N ot onl y  in an in vari able forc e or c onstan t  r esist anc e  is the 
l ab or a pr oduc t of the forc e an d dis tance, bu t als o the lab or m ay be 
express ed as a pro duc t  of the dis tanc e an d forc e, when the resistance 
whils t bein g overc ome is v ari abl e, if a mean value of the c ontinu ous 
succ essi on of forc es b e  taken as theforce. The r el ati on is here the 
s am e  as that of the tim e, the vel ocity, an d the s pace ;  for the l as t  
m ay �� re g ar de d  as a pro du? t of the tim e  b y  the m ean value of t� e 
veloc1h es. The s am e  gr aphic al re pres en tati ons ar e her e also apph­
c_abl e. The mec hanic al effec t pr oduce d or expen de d m ay b e  c on­
si dere d as the are a  of a rec tan gul ar figur e, .llBCD, Fig. 27, whos e  

Fig. 27. Fig. 28. 
}'lJi----=r---- · C N 

A,..___..,...JL-,------

'JI 

� ase -!}B is the s pac e describ ed (s ), an d whose hei g ht is eit her the 
in vari able forc e (P) i ts elf, or the mean of the different valuees of the
forces. In gener al, the work m aybe re pr es en te d  b y  the area of a 
fi�re.llBCD, Fig. 28, whic h has for i ts b as e  the s pac e  (s), an d wh?se 

6 
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J1F = BE for t he me an v alue of t he fo rce-lite 1nean effort. 
§ 70. Arit hmet ic an d ge ometry g ive diffe ren t  m_etb ods for fin din g 

success ion of magn 1tut.les. Amon gst a me an v alue from a constean t 
t hese, S imps on's rule is t hat which is t he most fre quen�ly applie d in 
practice, an d it comb ines a high de g ree of accu racy wit h  g re at si m-

In every c ase i t  is ne cessary t o  d1V1 de t he sp ace .IJ.B=s (Fig 29) 

as .IJE=EG= GI, &c., an d t o  measu re 

&c., at t he en ds of t hese parts of t he 

an d, t he refore, its work is : 

if ,ve des ign ate t he he ig hts due t o  t he velocit ies 
2g 2g 

PRINCIPLE OF LIVING FORCES. 

wit h  e ach poin t of t he pat h des cribe d. If t he .figu re .IJBCD be t rans­
forme d  int o a re ct an gular one .BBEF of like are a, \Ve have the he ight 

pli cit y. . . . 

Fig. 29. 
int o  n (t he more t he bet te r) e qu al parts, 

t he forces EF- PJ, GH= P,, IK= P3, 

dist an ce. If, t hen, we put t he in it ial 
force .IJD=P0 an d t he force at t he othe r
en d BC=P11 , we have for t he me an 
force :  
P=(i Po+Pi+Pi+ Ps+ • • 
+½ Pn )+n, 

· · +P11_1 

+ P1 + . . .  + P11Ps=(½ P0+ P1 
s+ ½ P. )-. _1 n 

If t he nu mbe r of p arts (n) be even, v iz., 2, 4 ,  6, 8, &c., S imps on's
rule gives st ill more accu rately t he me an force : 

P=(Po+ 4 P1 +2P,+4 P3 + . .  + 4  Pa-1+Pa )+3 n,
and, t he refore, t he corresp on din g  work : 

♦ •  

sPs=(P0+4 P1 +2Pi+ 4  P3+ . . . . + 4  P._1 + Pa ) . 
3ne

Example. In order to find the mechanical work ,.vhich a draught horse performs in 
drawing a cnrria�e over a certain ,vay, we- make use of a 1lynamometer1 or measurer of 
force, which is put into communication on one side '\\•ith the carriage, and on the other 
wilh the traces of the .horse, and the force is observed from time to time. If the initial 
force P0 = 1 LO lbs., the force1 nfier describing 25 feet = 122 lbs.; afier 50 feett= 127 
lbs. ; after 75 feet = 120 lbs., and at the end of the whole distance of 100 feet = 114 
lbs. ; then the mean ·\'-alue, according to the first formula : P = (½ . 110+ 122+ 127+
120+ ½ .  114) + 4 = 120,25 lbs., an<l the mechanical work : P ,  = 120125 X 100 = 
12025 ft. lbs. 
from the second fomutla: P = (110+ 4 .  122+ 2 .  127+4 . 120+ 114) + 3 X 4 

= 1446 = 120,5 lbs., and the mechanical \\'Ork
12 

P s = 120,5 X 100 = 12050 ft. lbs. 

§ 71. Principle of tlie Vis Viva, or Living Fo1·ces.-If, in t he 
v2-<f v2-<fi r. u1 f (§ 13) s = or ps = --- we su shtute 1or t he 1orm a o b . r. 

accele ra 10n p, its v alue _ g, we thus obt alll S= ---p (
v2-c2 ) 

vi 
2g 

2p 2 
.t. . p

G 'G or 

(li-h1) G.P s = . .If we int erpret t his e qu at ion, s o  useful in p ract ical me chan ics, we 

an d !__ b yh an d  h : 1 
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the heights due to the velocities ( "
1 

- !:_)· 

passes from 15 into 24 feet; we have the force P == (h,....-A1) G = 32646 

16 feeet, after deacribing a space of 100 feet, then is the resistance of friction P = A G 

1s not only good fo r constant, but also for variable fo rces, if, instead of P the mean value of th� fo rce (from § 70) be introduced , for if the ; 
s) of motion be considered as consisting of equal and whole space ( 

P 1=- (P1+P2+ Ps+• . . ) .!-. .. 11'-c' G, because for an infinite num­

PRINCIPLE OF LIVING FORCES. 

find that the work• ( P s) which a mass either acquires when. it p�ss�s
from a lesser velocity ( c) into a greater (v), or produces, when 1t 1s 
compelled to pass from a greater velocity into a less, is constantly
equal to the product of the weight of this mass, and the difference of 

2g 2g
&ampl.e 1. In order to impart to a carriage of 4000 lbs. weight, upon a perfectly 

smooth railroad, a velocity of 30 feet, a mechanfoal work P , = .,. G i:::0,0155 .,a G -=  
2g0!0155 X900X4000 = 55800 ft. lbs. is required; and just eo much work will this car• 

rmge perform if a resistance be opposed to it, and it be gradually brought to rest-2. 
Another carriage of 6000 lbs. goes forward with a velocity of 15 feet, which is tt1lll8-
formed by a force acting upon it into a velocity of 24 feet, how great is the work acquired 
by this carriage, or done by the force! To the velocities 15 and 24 feet oorreapond the 
heights due to velocity h1 == !_ ==3,49 ft., and l = .,. =s 8,928 ft.; .from this the me-

2 g 2g
chanical work P , == ( h--la1) G=5,4.C 1 X 6000 = 32646 ft. lbs. If, now, the dislance 
be known in which this change of velocity goes on, the force may be round; and when 
this is known, the distance may be determined. In this Jut caae, for example, let the 
distance of the carriage amount 100 feet, and, whilst deecribing this, the velocity to 

8 100 
Were the force 1tae· lf2000 lbs., the apacee, would be ==  (h-h,)eG 

== 326,46 lbs. 

32646 - = --c--= 16,323
P 2000

feet-3. If a 500 lbs. sledge has entirely Jost, through friction on ita path, its velocity of 

,
500 

- 0,0166 X 256 X 6 - 19,84 lbe.== 0,0156 X 161 X 100 

§ 72. The formula found for the work in the foregoing paragraph : 
Ps= (h--h

1. ) G 

uniformly accelerated parts described (� ), then we have the amount 

of work for these : 
P1(.!-.)=v12-c2 G' n 2g
Ps(.!-.)= "22-v1' G,

n 2g
(.!-.) v3'-v,2G,P3 == n 2g

&.c., in so far as v1, v2, v3, &c., stand for the velocities acquired at the 
end of these parts of space ; and by th� addition of all these wo�ks 
w� have the whole work required for the transformation of the velocity
c into v :  

n . 2g 

• i. ,.  Working power. 



V 1()464,4 • 
2500 

= ✓10o+206= 17,49 feet. 
J

= 
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he r (n) of force s (P + P + P + . .. )+n, it transformes it self inteo a1 2 3 
me an force, and bec au se the membe rs on the r ig ht hand of the e qu at ion 
v 2 v 2 v 2 v 2 
_!_ G and - _!_ G, as also....!.. G and- ....!..  G, & c. are oppose d  to
2g 2g 2g 2g

v' c2e ac h  ot her, so t hat t he members_ G and · d b y t e- G, de te rmine h
2g 2g

te rm inal velocity v and t he i nitial velocity c, only rem ain. 
(
v' c2 .

The formul a P s = 
2--;_ ) G = (l,,-h1) G 1 s  not u se d mere1y for 

t he de terminat ion of t he wor k, bu t notunfre que ntly, al so, for the me a. 
surenlent of t he termi nal veloci ty. I n  t he last c ase h is put = h +1 

:s or v = .J c2+2g :s. I f  by t he constant m otion of a b ody, the 
. terminal v el oci ty v = the i ni ti al ,·eJ ocity c, the work done = 2e ro, i. e. 
- as muc h wor k i s  pe rforme d by the accele rate d, as is e xpen de d by the 
re tar de d  par t of t he m oti on. 

&amplt,-A carriage of 2500 lbs. proceeding upon a railroad without friction, has 
acquired by an augmentation of its velocity, \\1hich at the co1nmencement amounted to 
IO ft., a mechanical work of 8000 lbs., its velocity after this work will be : 

�000 

Rnnar-k. The product of the mass M= !!.. and the square of the velocity (v•) : Mui is 
g

called, without attaching to it any definite idea, the living force (vi, viva) of the moved 
rnass: and hereafter, the mechanical work which a moved mass acquires, inay be put
equal to half of the vi, viva of the same. If a mass enters from a velocity c into another 
,, , the work performed is equal to half the difference of the ma viva at the cornmencement 

aud end of the change of velocity. This law of the mechanical performance of bodies 
uy means of their inertia, is called the principle of living forces, or the vis viva. 

§ 73. Composit-ion of Forces.-T,vo forcees P an d P ac t up on one1 2

�n d  the same b ody, in the same or in an opp osite direct ion, the effect 
1 s  the same as if only one force ac te d up on the b o<ly, ,v hic h i s  the su1n _
or diffe rence of t he se force s ; for the se fo rce s imp art to t he m ass M 
t he acceler ati on, p1 = P1

_ and p - P2_, c on se quently fr om § 28, the 2M - o1il
acceler ation re sul ting fr om b oth, is 

P=P1 ±P2 = p1�p2 , an d acc or dingly t he forr.e c orre sp on ding t ot hi s, 

is : P=.JJfp = P + P . 
. T he equiv alen� fore� P der ive d fr o1n t he se t,v o isc alle d t he resultant; 
it s c onsti tuentes P1 an d P2 t he componentse. 
··tb�amplt.-:-t. A body lying flat upon the hand presses so long only upon it with its �i° �t� w�ight as the hand is at re�t, or is moved up and down uniforn1ly \Vith the 
if iibe utj� the hand be raised quickly, it suffers a grentel' pressure ; on the other hand, 

�nly dropped, t�e pressure is then less than the weight; it becomes null ifthe han�u

be rawn back with the acceleration of gravity. If the pressure on the hand 
= P, the body falls w· h G1t .-. G- = _; if we put theaccelera-a ,orce P, whilst its mass M 

g 



P= J(f: )'+(�)' + 2 (fr) (�) cos. a and 
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tion with which the hand falls = p, G-P = 
G

p, and therefore the pressure P = G-

accelerations in these directions, 

celeration p= ✓p;.1+p2
2 +2p1p2 cos.a., 

Th us, the resultant fio rce is determined in macrnitude and 

the component accelerations. 
lf ,v e represent the fo rces by straight lines, and these !1nes 

If we sub stituete in these formulre le abovee values of p1 and p

PARALLELOGRAM OF FORCES. 

g 
: G=( 1 -;) G. If the body on the hand be raisetl with the acceleration p,-p is 

then opposed to the acceleration g, therefore the pressure upon the hand P = (1 +; ) 
G. According as n body ascends or descends with a 20 feet acceleration, the pressure 
upon the handt= ( l - !20 ) G = ( 1-0,62) G = 0,38, of the weight of the body, or=

31,2
1+0,62 = l,62.-2. If ·with the flat band I throw a body of 3 lbs. 14 feet perpendicu­
larly Up\\·ar<ls, whilst I urge it on ·with the band for the flr:.t 2 feet, the mecl.tanical ,vork 
performed is P 3 = G It =  3 X 14 = 42 ft. lbs., and the pres.sure upon rite hand, P = 
� = 21 lbs. WwJst the resting bo<ly presses with 3 lbs., it reacts 11pou the band during
2 
the projection with 21  lbs. 

§ 74. Parallelogram of Forces.-When a material point .Jl,f� Fig.
30, is acted upon by nvo forces, P1, 

Fig. 30. P2, whose directions .AfX and .A-IY 
make, with each other, the angle
XMY=a., these lines generate the 

P1 =i; and p2 = �j, and from their 

union, there arises a mean accelera­
tion ( § 34) in the direction .MZ, both of 
which are given by the diagonal of a 
parallelogram formed from p1, p2, and
the angle a. ;  this mean or resultant ac-

and for the angle q, which its direction makes with M X of the one 
acceleration p1 : 

• . P2 sin. a.sin. 41 =·'--"---• 

• (p'J.) sin. Gsin. q, = - 1---.
M p

If ,ve multiply the first equation by Jtf, 
. .ll,[p = ✓P/+ P2

2+ 2  P1 P2 cos. (1, or,
since .Afp is the force corresponding to the acceleration :  

l .  P = ✓ P/i+p2z+2 P1 P2 cos. o.. 
. P2 sin. a.2 • s-in. q, = ----· 

p 

,. : 

0 
a·treetion 

J./".rom the component j'orces exactly as the resultant lacce erat ·ion firom 
· 

drawn, bearing the same 
be 

prop ortions to each other as do weights, as 
6• 



- - --

If the components are at right angles to 

P _ Pg_ 33,·J I X 32,2 _ 7 11)"1 LS T 
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pounds, &c., the mean force may be represented by the diagonal of 
the parallelogram whose sides are formed by the lateral forces, and 
one of whose angles is equal to that made by the directions of these 
lateral 1orces. 'fhe parallelogram ,vhich is construct_ed from the 
lateral forces, an<l ,,,hose diagonal is the mean force, 1s callc<l the 
parallelogram of forces. 

E.:rample. t\·lten a body of 150 lbs. \\·ei!!bt, 1c::1ting upnn a pcrf<-crly smooth to.blo
(Fig. 3 1 )  i::. ,wtetl upt�n by lwu fr>:<1<•!1n1' 1 =3U lhs.1
nnd Prz =2•1 lb,;n1 \\-·l11d1 nmkc ,,·nh Ntch otltt>r nu Fii?. 3 1 .  augle P1 ,,1 P9 = « + B = 105° : in ,,·hat rlirt'(!•.
tion, med with wlint occel<'rHriou, ,viii tlil' mo1,ou
take pince ? Since to..•. (a+ S) = ros. lOS0 = _ 
eos. ?[>0, lhe mNin Ihri·e: 
P = ✓JrP+�4' :? xa0X24 ros. 75° 

= ,/\JIJ0+n57G-l-l �u cQ.1, 7:'i0 

= ✓l•l7u-:l7•J17=33,2 l ll>s.1 tho nccclcrnti01, 
corre:.poodi11� \\·id1 it is: 

P = 1u - Gn- 1 
-� Jl. 

he1:,0 _ _ n_ 
tliro<·tion of 111ouon 1nnl,es \\ llh tlic dirC'ction of
the iinn lon:e lllI fl n�ll· a, w IJ ich is tlc:tt•nn in etl hy:.
m1t. 4 = 14 si11. 105° = 0,7224 s-b1. 75o = 

:J:J':.!2 
0,fi!)78, orn" =41°, 1 5'. 

Rtnwrk. ThL' m1•u1L iorco P depcnclia. from the
Jhnuul·l' frmnd, only on the i·o111pu11t•11t tor,·es-, and
not on tho u1•1c,;:; CII' tl11.1 OC><ly upo11 ,vhich tho forces 
iwt. For thit1 rua:-;on, wo finu ju n1nny "'Ork� on 
1uccltnnic11, the correctnc�s of the po mllelogmm of

fi1rceq prove1l ,\·ithout regnrJ U:> lhe n1ass1 but with the nssumption of some funcla-
1nenml Jin,·. 

§ 75. Resolu,lion of Forces.-By help of the parallelogram of forces, 
not only two or more forces may be reduced to a single one, but also 
gi,·en forces under given relations may be resolved into t,vo or more 
Jorces. If the angles o. and J3 are given, ,vhich the components Jl,f P1 
= PP ancl .Jlf P2 = P2, make ,vith the given force .Jlf P = P, the com­
ponents may be found from the formulre : 

P sin. ,a _ P sin. a.P _ p •
1- sin. (a.+J3), 2-sin. (a.+.a) 

Fig. 32• each other, a.+.a=90°, anc.l sin. (a.+.a) = 1,
an<l P = P cos. a and P

2 = P sin. a., If p
and o. be equal to one other, Pz= Pi, viza: 

P sin. a.,= P p
2 = = pr 

sin. 2 a. 2 cos. a. 
.Rnim71le l. "1lial is the pr<'ssi1rc ofn body M upon a 

1.al>le .11 B, Fig. 32, whose ,vei�ht G = 70 lbs. nnd upon
"' Ii i<'li n force P = 50 ll.Js. nets, Mll ,vhose ,Urcction is 
i1wli11ed tn the Lori:i:011 ut ao angle P M  P 1 = 4 =40°1 
The Lr,rizontl'I l compoac-nt of P i:i P1 = P co.,. � = 50 
cos 40° = 3 ·,30 lb:<, a11d the , erlical co111pone11L P2 

= 
JJ sin. "' = :3U sin, - I0° = 3:2, J •1 llJs. ; the lacwr strives to 
dm"· 11.tc hoily frmu the tabll', tl1ere remains then for 
rite pre.:'�Ul'cn: G-P, = 70-32,14 = 37,80 ll>s.-2. lf 
a body of 1 11) lus. is ;o rnuYetl along n.n honzontal ,vay, 
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44.33 si11P sin. 77° . 55 ._8 
flll. (:i:J0 + I 7°) 

-------� 
Fii::. 33. &c., we may adopt exactly 

§ 77. The resultant P is <leter111 ine<l n1ore sin1pJy and clearly . 
, P2, P3, &c.,  be resol,·eJ accortl-1f each of the given components P1

ing to t"·o axial directions ..Y�Y antl 1�1·, J'ig. 34, at right angles to 

RESOLUTION OF FORCES. 

by l\\•o forces, thnt jt cleS<'ribes in the first second n space of 6,5 fel't, in a direction which 
deviates from the two directions of force by an nngl� " =  5:2° anrl B = 77° , lhe forces
tbem�elves are given as follo\\·s. Tue acceleration is rwice the space in I.he first second, 

so that p = 2 X 6,5 = 13 ft. No\v the mean force is P _tpG-0,031 X 13 X 110 = 
= . ,

SIil. ;J l0

77-
° 
= 

g 

•"'4•..,33 lb h fc 1s., t ere ore tle one con1ponent p1 = . _ 

45,59 11,.,.,lbs., and the other P2 

44t33 sin. 520 
,
1,i,t. 51° _ 

§ 76. Forces in a Plane.-In order to fincJ the mean force P for a 
systen1 of forces P1, P2, P3, 

the same method (§ 33) as 
t��t foUo"'ed in the coo1po­
s1hon of velocities, -viz : by 
the repeated application of 
the parallelogram of forces, 
we mav resolve them two •
and t"·o and so on, till but 
a single force remains. The 
forces and P

2
, for ex­P 1

ample, give from the paral­
leJograrn .,�[ P1 Q P2, the 
mean force .,lIQ= Q, if this 
be joined to P

3
, ,\·e have 

from the parallelogram
.lJQRP

3
, MR = R; and 

this last again forms a parallelogram ,vith p4 and gives the force .JlfP 
= P �he last, and the. resu_ltant of the four forces Pi, P , P

3
, P •

2 4

It 1s not necessary, 1n thts ,vay of composing forces, to complete the 
parallelogram, and cJra,v its diagonal. We may form a polygon .MP1 .
QRP, ,vhose s1cles .JlIP1, P1 Q, QR, RP, are parallel ancl equaleto __the given components P1, P2, P P

4
, the last side MP completmg 

the polygon ,vill be the mean force sought, or ratl1er its measure . 
3, 

Remark. lt is VPry nsP-fnl tn t,0)ve mt:'<·hanicnl problem,, by 0on�truc1ion nl;:;o : though.tlti:. 1ne1ltod does not acl111it of "-IICh th'c·nracy tl!- 1hal of' (·rtlculatiun, it is frpe 011 the other 
lmn<l from great error::, antl 1nay th••refor� :-erve a� proof of 1l1c> (•nli-uhnion. In Fiµ:. 33 

,tlie Jorres me(•t each oruer under tho niven nnnlt•z< pl 1l[ P., = 7-i,0 
, 3rt ; P,, }l[ 1 :i =33° 

•1u1 "' ,. "" � 
-' 

.., , � lnc P .111 Pt = IJ2° , 4(1\ and are HJ drH\\0 11 that a pound j,. repr,•i-L"ntctl by n /'111e or 
3 ..,

1i ol a (Pru��iau•) i11ch. '1'1.te forces P1 = J J .:; IL., P = J0,8 Jb,.., P
3 
= S,5 11,�., P4 = 

I �,2 lbs: are therefore expres:;l'cl hy sides of 1 1,5 Un�s 
2 = 0,t15S . . .  i11«·be:-, 10,8 hue:., = 

4�O,UOU . . .  inches, 6.5 lines = 0,71J • • . inche�, J:.?.2 line� = 1,11 l O . •• inches in Jeu�tIL 
l'1trer111 cm1:,tr11c·1ion ol the polygon of fc1r1•es �ivf's tlie 1nng11i111cle of rhe 111t>an li>r�c P= 
14.fi lhs. n111.l tLc \'tttiation of it... duection .MP from the clirecr111u J.1[P1 

of the fir:,t lorce­
�1,½o. 

each other, into component forces ns Q1 and Rp Q2 anJ R2, Q3 "n<l 

• The Pr11�,,.ian inch (::ee § 15) i,, cqunl l.031 Engli�h iuc!Jes.-A,r. En. 
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3 

o.2, a. 
3

, & c.,  ,v e b a,• e t he com­
p onents Q1 = P1 cos. a R, 1 1

a. 2, R,. = P'J, S'in. n2, w hence it 
foll o,vs fr om Q = Q1 + Q2 

RESOLUTION OF FORCES. 

R3, &.c., t he forces lyi ng i n t he s am e  di recti on of axis, a<lc.l ed t oget her, 
and t he r esult ants i n  m ag-

Fig. 34. nitu de and di rection of t hes e 
tw o r ect angul ar forces b e  
t hen s ou g ht for. If t he 
angles PJ .J'JfX, P2 J.IX, P
.lfX, &c., w hi ch t he di rec­
ti ons of the forces P1 , Pz , P3,

m ak e  ,vit h t he axis .XX =o1 , 

= pl sin. Cli, Q2 = P2 COS. 

+ QJ+ . . .  ' 
1 .  Q = P1 cos. a1 + P2 

cos. o. 2 + P3 cos. o.3 + . . .  , 
and

fr om R = R1 + � + R3 
+ . . .  ' 

2. R = P sin. o.1 + P si11. � + P sin. o.3 + . . .  1 2 3
F rom t he tw o compeonents Q an<l R so fou nd, t he m ag nitu de of t he 
resultant s ou g ht, ise: 

3. P = ✓ Qi+R2 ancl the angl e P.,llX=tp, ,v hos e  di recti on ,vit h 
.. YX is gi r en by 

R4 .  tang. 4'=Q· 

I n  t he alg eb rai cal additi on of t he forces, regard must b e  had t o  t he 
si gn, for if it b e  di fferent i n  tw o forces, i. e. if t he di recti ons of th es e  
be upon opp osit e si des of t he p oi nt of appli cati on .flt[, t his addition 

t hen b ec om es arit hm eti cal 
Fig. 35. subteracti on (§ 73). The

angleg, is acute, as ! ong.as Q antl R are p os1t1v e; 
it is bet \\' een one and tw o 
ri ght angles, \\1 hen Q is
neg ativ e ancl R positiv e; 
b et,Y ee n t,v o and t hree, 
"·ehen Q and R are b ot h  
neg ative, and lastly, b e­
tw ee n  three ancl fouer, w hen 
R only is neg ativee. 

E-r:ample. "\Vliat is the mogni­
n1cle untl direction of the resultant 
of the tliree con1ponents P1 = 30 
ll>s., P2 = 70 lbs., P

3 
= 5U ll>s.1 

whoso directions, lying in a plane,
make bct'.veen them the angles 
P,M P2 = 5U0 and P2 JU P3 _ 

10-1o1 If ,ve draw· the axis XX 
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75,1 3  

resolution of the fo rces P , , 82 are giYen in the , P2 &c., the fo rces 811
plane, and those of J\r , N2, &.c., in the normal to it ZZ. 1
again resol vecl according to t,vo axes XX into the Jateral and YY 

FORCES IN SPACE. 

in the direction of tho first force, ,ve have c&1 = 0, a,, = 56°, and 1&3 =56° + 104° = 
1G0 ° i hence, 1 .  Q = 30 x cos. o0 + 70 x cos. 56°-+ 50 X cos. 160 ° = 30 + 39,14 

= 22,16 lbs.; and 2. R = 30 X sin. o0 + 70 X si>,. 56° + 50 tin. 160 ° - 46,98 = 
o+ 58,03+ 17,10 = 75,13 lbs. 3 3903; therefore, the an-

,Hence, 3 .  tat1g, '1> =  211 11.i = 
gle ,vhioh the resultant n1nkes ,vith the positive part of the axis MX or the force P, is 

75,13Q R
1> = 73° 34' j lastly, the force itselfP = v'Q'l+_R'l = -- = - = · 

cos. t si,i.. <f> nn. 730 34-' 
75, 13  = 78,33 lbs. = (J 9,,I ;)�! 

§ 78. Forces in 8pace.-If the directions of the forces do not lie in 
one ancl the same plane, we must dra,v through the point of applica­
!ion a plane, and resol,·e each of the forces into t"'o others, one lying
in the plane, and the other at right angles to the plane ; "·e must then 
.find the resultant of the components so obtained in the plane, from 
the rule in the foregoing paragraph, and add together the components
at right angles to the plane, and from the t"·o rectangular components 
thus obtained, their resultant may be found according to tht! known 
rule_(§ 14). 

Fig. 36 puts the above mode of proreeJing more clearly before us;
let .'AIP1 = P1 , .MP2 = P2, Jl/P3 = P3 be the separate forces, .11.B the 
plane (of projection) and ZZ the axis at right angles to it. From the 

These are 

Fig. 36 . 

forces Qi
, Q2, &c., Rt> R'l, &c., and give the components Q and R, _of ,vh1ch the resultant 8 consists, ,vbich, joined to the �um of all th� 

normal forces ' .lv�1' N2' &c• ' gi,·es P the resultant required. 

• 
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cos. /31 
cos. (J, l +P, cos. /32 cos. 02+ • • •  ' Q= pl 

FORCES IN SPACE. 

I� we put 1) , /3 , for the an g les at which the dir ection s  of force ar e . 1 2
inc li ned t o  the p lane .ll.B or to the horiz on, the forcees in the p lane ar e 
gi ven, 8i>= P cos. ;31, 8 = P2 cos. J32, &c., and the normal forces, N11 'J.

= P1 sine. /31, N = P:i. sin. 132, &c . ;  lastly, if we desig nate the an g les 2

,vbic h the pr oj ect ion s of the direction s of the forc es ly ing in thep lane 
.ll.B, mak e with the axis XX, by ci1, o. , we ob tain the thr ee follo,v in g 2
forc es, for mi ng the si des of a r ec tan gu lar p ar all elop ip ed. 

Q= 8 cos. a +82 cos. c;+ 83, cos. a3, or
1 1

1.
2. R= P1 cos. f31 sin . a.1 + P2 cos . /31 sin . a2 + . . • 
3. N P sin . J31 + P2 sin.e131 + . • e.1

From t hese t hree follows t he n nal r esul tan t  : 
4 .  P= ✓ Q:+R2+», fur ther 

the angle of inclination to the p lane of pr oj ection PJJ,18=�, fro m 
N N5. tang . 4'=-= -;�=::::;;;;::;
S ✓ ct+ R"2, lastly 

the angle 8MX='P, ,v hich the pr oj ection of the r esu ltant in the p lane 
.IJ.B makes with the first axis XX, by 

6. tang. t=-· 
Q 

Example. Three workmen pull at tl1e end of three ropes, which are atmched ton load 
M lying upon a horizontal floor ..i.B, Fig. 371 each ,,·ith a force of 50 Lbs.o> the angles of 

Fig. 37. 

• 

•inclination of these forces to the horizon are 10°, 20° , and 30° , and the horizontal angle 
between the first and se<..-ood, and between the first and third, 20° and 35° i what js
the magnitude and direction of the resultant, and how much is this less than the sum 
of all the forces which would result, if all three acted in tbe !aD'le clirection ? The vertical
force pulling upward is: 
11= .N;+l\.,.a+N:i = 50 X (&in. 10° + Gin. 20° + �n. 30°) = GO  X J,01567= 50,78 1bs.; 
Ly so muc� leas than its own ,veight does the body press upon the iloor. 

The horizontal comPonents are 81 = !50Xroa. 10° = 50x0,9849 = 49,24 lbs. ; s,.- 50 
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16,07+24184=40,9 1 lbs. 

S �Q4Ri = ✓(128,80)'1 + (40,91)11 = ✓1 8278,7 = 135,2 lbs. 

P = ✓ (135,2)4(:;0,78)11 = ✓:.t0856,6 = 144,42 lbs. 

1'he angle of inclination ,I, of the mean force to the horizon is determined by the tang . 

35'. 0,3750, wherefore .I, oomes out = 20 1 

§ 79.-From the rules found in the foregoing upon the composition 

duced. In Fig. 37, ]et JJf 
be a material point, JlIP1 = 
P1 and MP2= P2 the forces , 
acting upon it ; lastly, let 
.J'vlP=P, the resultant of P1 and Ps . If ,ve draw through 
M two axes, .AIX and JJIY, 
at right angles to each other, 

P into Q and R, we then 

,,·hich are similar to the triangles formed by the three forces, .lif ON, 

A Jlf0.1\,. 
1 "" A )l[Pl Ql 

11 es MP tof Virtual Ve locities.-But from these sim1lar

an<l Q into the equation Q= Q1 + Q,, we 

FORCES IN SPACE. 

xco,. 20° = 46,98 lbs.; S3 
= 50Xco,. 30° = 43,30 lbs. If ,ve dra\\' theaxisXXin the 

direction of the first force S1, we obtain the lateral force in this ans XX, Q=Q1+Q11+Q3
=S1 cos. 11,+s.2 ros. "'t.2+ss COl,43=49,24Xcos. o0+46,98Xcos. 20°+43,30Xco,. 35° = 
49,24+44,15+35,-17=128,86 lbs.. i on the other hand, the lateral force in the second 
axis YY: R=R1+R.2+R3=49,24 Xri11. o0+-t6,98X nn. 20° + 43,30 X Bin. 35° =<>+ 

The horizontal mean force with ,vhich the body is drawn forward is from this : 

The angle � \\•hich this force makes '"ith the axis XX is determined bythe tang. t= 
40,9l-R 

- 0 3175 · 1 "' - 17°137' · I the entire resultnnt is ·0 - T= -128 861 _ _  

If the forces act in the same direction, the resultant ist= 3X50 = 150 lbs., anri the 
loss of forcet= 150- 14-4,42 = 5,58 lbs. ; further, because the horizontal force drawing
the bo<ly fonvards amounts only to J 35,20 lb�., ·w·e havt-, with reference to the horizonral 

Q 

motion, the loss of force 150-135,20 = 14,S0 lbs. 

0
..J. _ N_ 50,78 

- s 135,20 

of forces, two others of essential service for practical use may be de­

Fig. 37. 

and resolve the forces 

obtain the forces in the one axis Q1, Q2 and Q, and those in the other
and R=R1 +Ri . 

P1
and P2, as '\vell as their re­
sultant P, into components 
in the direction of these 
axes, viz : P into Q1 and 
�, P2 into Q

1 

2 and R2, and 

Ri , R2, R, and Q= Q1+ Q2, 
Y any point 0, and let fall from the 

same perpendiculars ON1, OJ\'� and O.lV" on the directions of the 
, 

If no,v ,ve take in the axis .1ll.. 

forces Pi , P2 and P we obtain rectangular triangles .MON1
.l'JJON'l, 

VIZ : 

"" 
A Jl,JON2 t'-? A .�IP2Qa 
A Mo.1v· A JtIPQ. 

. . .J1rIQ1.Principle 

i. e. _!1_ ."flt!� a so P .A,[0 ' 1 if ,-re put the valuesd Q JJJN . 
P - )l[O '

iQ,_ :PtI.'N'
- .1lfO 

an
P, -

1

hence derived of Qi, Qi,then obtain 

l 
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L1kew1se also 

FORCES IN SPACE. 

p . .�IN pt . .  �[Ni + P2 . .�f.J\ r2 · 
OJ\.. R OJv"1 2= 2 an de· . R1= ONR _

, -=--, therefore 
pl �10 p'}, JUO P J1[0

P .  O.JV"- P1 • Olv� + P2 • ON2•

These equations still bol d goo d, if P the mean force be m a de up of
three or more forces P1, P'l, P3, because generally

Q= Q1 + Qz+ QJ + • · • 
R=R1 +R2+R

3 + . . .  
an d, therefore, generaJly '"e may pute:

l. p . JlfN pl • :r.L� +p2 • Jl1N'1. + p3 • Jl[� + . . . ' 

2. P .  OJ\" P1 • OJ\r1 + P2 • ON2 + P3 • OJV;+ . . .  
In both equations the mean force P must correspon d to the forces 

P1, P2, P3, an<l from these equations, not only the magnitu de, but also
the direction of this force may be determineed. 

§ 80. If the point of appleicat ion .lt.:J move in a stra ight line to wards 
0, or if we irnag ine th is po int to have describe d 

Fig. 38. the space J1[0=s, then the project ion of this 
space MN s1 in the direction of the force �IP 
is calle d the space of the force P, an d the pro ­
duct Ps1 of the force an d its space, t!te work or 
ficiency of the force . If ,ve s ubst it ute in  thettf

equat ion ( 1 )  of the last ( §) these designations, 
we have 

Ps=P1s1 + P2s,+P3s3 + . . .  , 
or the work, or meclta1rical ej/Pct, of tl,e resultant 

is equivalent to the su1n of t!te works, or 1neclianical rffects, of the co1n­
ponents.

In the su1nmat ion of the mechan ical effects, as in that of the forces, 
we m ust have regar d to their signs. If a force (Q3) of the forces Q1,

Q2, &.c., of the last § acts io an opposite direct ion to the rest, "'e must 

Fig. 39. 

Fig. 40. 

Fig. 41.  
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neither loss nor gain of vis viva, and, therefore: 

tion the loss or gain in mechanical effect is null. .. 
h �mnple. A oarriqe, of the weight G-6000 lbe., Fifr. 49,_

oorreeponA:.._ to the ftiotion · and a wanoe P. - 930 lb&..· 8'0�� d9wnwarda, and
7 � ' &- • . . .. . . . 

. . 

TRANS.MISSION OF MECHANICAL EFFECT. 

introduce it as ne�tive, but this force Q3, Fig. 39, is the componentof a force P3, which, acting in the circumstances set forth in the former §, opposed to their proper motion .M�, we are, therefore,obliged to consider that force opposed to the mohon MN, Fig. 40, as 
negative, and that one P, Fig. 41, acting in the direction of motion MN as positive.If the forces are variable in magnitude or direction, the formula Ps==P1s1 +P1s1 +P3s3 + . . .  is only correct for infinitely small spaces
s, s1, s1, &.c. The spaces of the forces (J1, cr1, cr3, corresponding to an infinitelysmall displacement o of a material point, are caJled their virtual t,elt,:.
ci.ties; and the law corresponding to the formula Po-P1o1 +P1o1 + .Ps"s, tM pri,nci,plt of virtual t,tlocilia. .e§ 81. Transmi.ssion of .Mechanical Fi/fect.-From the principle of vis viva, the mechanical effect (P,) in rectilinear motion, which a 
force (P) generates in changing the velocity c of a mass M into ano­ther v is 

Ps-("e1 c9) M. 
-; If P be now the mean force arising from other forces, P1, P1, &c.,

acting upon the mass .M, and the spaces which these describee· be s1, s1, whilst the mass itself .M describese,, we then have from the foregoing: 
P1-P1,1 +Ps91+ . . .  and, therefore, the following genera! · formula : 

P1s1+ P1s1+ . . •=-(vi�) M, 
which expresses that the sum of the mechanical effects of .the aiagle
forces is equal to half the gain of vis viva of the masa taking up theee forces. If the velocity during the motion the motion itself be uniform, we 
. . . . .  

be invariable, that i1 o-c,.eand 
have .then .,•�-o, consequently 

P1s1 + P111 + P3s3 
+ -0,'· e. t_he sum of the mechanical effects of the single forces -If inversely the sum of the mechanical effects - O, then the forces 0. 

do not change the motion of the body in the given direction,e· nor im­part to it in the given direction any motion which it ha.d not befo�. 
If the forces are variable, the variable velocitye" after a certain .n�e ag�n passes into its initial velocity c, which takes place in all periodic - cmotions as they present themselves in many machines. Now " 

�ves the effect ("e2 ct)M- O ; therefore within a period of the mo-
-; 

onzontal IU?faoe by means of a foroe Pand has during ita motion two res'--aao!. 

il mo-.ed �:.aid·�� : 
-660 lbe., uoending Wides: an -.£e • ' 

to owroome ; oae, borillaDlal P1 - 3cso lbs., 

. . � ' 
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velocity of the cnrringc iuto n ve. 

The moss, h,nvever, requires for tllo chnnge of its velocil)', the mechanical effeot: 

CURVILINEAR MOTlON. 

°inclined to the horizon at an angle fJ = 35 . What work will the forco (P
1
) rerronn, in 

ortler to convert the two feet initial 
Fig. 42. 

locity of 5 feet? 
If we put the rlil!'tnn�o of t11e oar� 

ringe MOe= lf, "'e then ha \'8 fi.1r the
,vork of tlie force P, = P

i • Jll\d = P1 , co,. 4 = 600 X • ro,. 24 
= 6O:l,04 . , i further, tllo \\'ork of
the resii:,ting force = (-P,i) . ,= 

-350 . , ; ln��ly, the work of P3 

= (-P3 .MJl,3 = - P3 ,ro.�. S = 

- 230 X ,  cos. 35° = - 188,40. 
•· There then remains for the v,ork 
of the etl'ective .fi,l'CCl : 
I's P

1
s co,.i,.-P�•rot. 0-P

3 1 �­
S = (602,94-350-188,-t0) . 1 = 
04,a4 • , n. 11.>s. 

==( tr-I! ) G ( 5"-2" )  X 5000 = 0,0lSS X (25--J) X 5000 1627 ft. lbs.
2g 2g

If nO\V we equate both mechanical effects, we then obtain 64,64e. 1 =  16271 conso-
quently the <listnoce of the carriagee: • = 1627 = 25,26 feet; and lastly, the mechanical 

6.J,�4
effect of the force P :  P1 , coa. • = 602104 X 2 5,26 = 15230,2 ft. lbs. 

§ 82. Curvilinear .ftfotion.-Provide<l that the spaces t11 <11, &c. , be
infinitely �mall, ,ve may also apply the formula la�t fou;id to curved
paths. Let JrlORS, Fig. 43, be the path of a material point, and .MP, 

= P1 the resultant of all the forces 
Fig. 43. acting upon it ; if we resolve this force 

into t\VO others, of \vhich the one 
.l',fK = K is tangential, and the other 
JrlN = N normal to the curve, we 
then term the one a tangential, and 
the other a normal force. 

Whilst the material point describes 
the element .NIO = t1 of its curved 
path M8, and its velocity c is trans-

1
formed into v1, its mass M lays claim to the work (v1 ci) M, but 

;-

the tangential force K performs at the same time the work K <1,
and the normal force the work N .  0 = 0 ;  consequently K a = 

( v1
2 ci 

) M. 
;-

If the projection ..il1Q of the elementary space Jl!O in the direction 
of force be put = a1, then also P1a1 = Ka; and, therefore, 

2
P1<J1 ( v12 c M.= -;; )

If t�e "'�ole space described by the material point MR be decom­_P?sed into 1nfin1te]y small parts, and each part be projected upon the _
direction of force at each moment, we then obtain the elementary
space of_ t�e f�rce at each moment, and the work at each moment by
the multiphcatton of the space and force, and if we add together all these 
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due to the velocities. 

75 CURVILINEAR MOTION. 

mechanical effects, we then havee: P1d1 + P2d2 + P3tJ3 + · • · = 
2 2 2 2 

(v1 ;cf ) M + (v2z v/) JI,[+ (v3 ) M + . . . = ( v ;cf ) M= 
-;- -;v2 

(h,_lt1) JI,[, if /-,,1 be the bei�ht due to the initial ,•elocity c, and h that 
due to the terminal velocity v. Thus, in curvilinear motion, the _
whole effect of tlte moving force is equal to half the gain of vis �iva, 
or equal to the product of the a1ass into the difference of the heights 

�ark and Exa"iple. The formula ohtained ,vhich is derived from con1bioning t�e _pr1no1ple of the vis viva with that of the virtual velocities, is especialJy applicable 1n 
cases ,vhore bodiP.s are coni.i.rnined l>y a fixed track or by suspension to descril.,e o. deter­
minate path. If gravity aloue act upon such o. body, the work wbjch it generates in a 
body of the weight G falling frorn a height corresponding to the ver1icaJ projection M, 
R, = •• is = G ,, and therefore : 

G •= (h-h1) G, i.e. s=h-h,. 
�is is nlso the space which o body deseribes in fl\lling from a ho�iz�ntnl plane ..i.JJ, _F1g. 44-, to another CD; tbo difference of the be,gbts Jue w the velocity 1s always equal 

Fig. 44. 

Q.!

j /. o, ,, ,,'\ \' " . 
V 

('. 11. -- -l -·--· .. . ...-�"-- · - - \\.____
\ -n _U, IL R: R t  It, Fr, 

to the perpendicular height of fal l ;  bodies �vbich begin to describe the pa.Lbs ltf1 01 R1,
M2 o!l R'l, M� o. Ri, &c With equal veJocjty (c), acquire at the enu of these patbs, n� .,
well as at different times, e'}ual velocities (v). If the initial velocity c = 10 feet. nnd 
the vertical height of tilll •=20 feet, then h =  •+ h1 =20+ 0,0155o. I0J = 21 ,55 feet, 
anctothe t�rtninal velocity ti = ✓2 gh = 8,02o. ✓ 21,5 = 37,18 feet, in whatever ctuved _
or nght J1oe dte descent may take place. 
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	v.•e term material or physical, act upon our senses. tity of matter composing a body. 
	Mass is the quan­

	Bodies of equal Yolume, or equal geometrical contents, have gene­rally different ,veights when they consist of different kinds of matte:. We cannot, therefore, infer the weight of a body from its volume un�1I we first know the weight of a unit of ,·olume, for instance, a cubic foot or cubic centi1netre of the matter of the body. 
	§ 51. Unit of JVeight.-The measurement of v.-:eighŁs and fŁrces consists in a comparison of them with some given 1nvar1able weight, taken as unity. The choice of this unit of weight or force is perfeŁtly arbitrary; it is nevertheless advantageous in practice, that the \J,e1ght of a volume of some universalJy diffused body, equivalent to that of the unit, should be chosen. 
	The units of weight or pressure are different in different countries. 
	In England, the unit of pressure from which all the rest are derived is the ,veight of 22,185 cubic inches of distilled water (at a temp. 62eFahr. taken in air, and the height of barometer at 30 inches). This ,veight is equal to 5760 grains; which again is equal to one pound troy, and 7000 such grains constitute the pound avoirdupois. The gramme is the ,veight of a cubic centimetre of pure ,vater in a state of maximum density (at a temperature of 4eC.). The Prussian pound is also a unit referred to a weight
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	. § 52. Inertia.-Inertia is that property of matter, in consequence of which it can of itself alone neither acquire nor change motionEvery material body remains at rest so Jong as no force acts upon it, and every material body once set into motion maintains a uniform rectilinear motion, so Jong as it is not subjected to the action of a forceHence, when a change takes place in the condition of motion of a body, when it changes its direction of motion, or when it acquires a greater or less velocity, this is n
	. 
	. 
	draw 

	table, exerts upon the body no immediate action, except that from the pressure of thbody against the table there arises a resistance, which we shalJ consider more closely in the sequel under the name of fric-
	Ł 

	• ? United States, the standard weight is the pound troy, the original of which is tie mint pound, oonstructed by Capt. Kater at the request of Mr. Gallatin.-Alll. En. 
	1
	the 
	1

	MEASURE OF FORCES-MASS. 
	tion, which incessantly abstracts velocity from the moving body, im­parts to it a retarded motion, and brings it finally to rest. The air likewise opposes resistance to a moving body, andfrom 
	_
	this resistance, if the friction of the body were entirely put aside, a gradual diminution of velocity would ensue. But we find that the loss of velocity becomes the less, and that the motion also approximates more and more to a uniform one, the more we diminish the number strength of these resistances ; and hence we may conclude, tha!by the removal of all moving forces and resistances, an entirely uni­form motion must take place.
	and 
	,

	§53. Measure of Forces .-The force (P) which accelerates an inert mass (.M) is proportional to the acceleration (p), and to the itself (M): it in equal masses as the increment of l'elocityinfinitely small times, and increases byequal the same ratio as the masses become greater. ration of one mass, or of equal masses requires anmtu­ple force, and uple mass for the same acceleration, an ntupleforce.
	mass 
	increases 
	in 
	increments 
	of 
	velocity
	in 
	The
	mtuple 
	accele­
	and 
	the 
	same 
	an nt

	ha¥e not yet chosen a measure of the mass, we may, there­fore, at once, put P=M, i. e. the force equal to the product of the mass and the acceleration, and, at the same time, in place of the power, its effect, i. e. the pressure produced by it. 
	As 
	we 
	p

	TŁe correctness of this general law of motion may be readily proved by direct experiment: for example, by letting equal and differentlymovable_masses be impelledupon an horizontal table by means of 
	.
	bent springs; and, 1t 1s obvious, from this, too, that all the conse­quences d�duced, and all the la�s deYeloped fro m them for com­pound motions, fully correspond with observation and the phenomenaof nature. 
	§ 54. Mass.-All bodies fall at one and the same place of the earth, and in vacuo equally fast, viz., with an invariable acceleration g = 9,81 metres = 32,2 feet ( §15); if, therefore, the mass of a body M, and the weight measuring its gravity = G, we have from last formula G=M
	= 
	the
	g 
	, i. e.

	weight of a body is a product of its mass and the acce]eration 
	the 
	of 

	.
	d

	·t 
	M= 
	G
	-, i. e. 
	the mass of a body is its weight divided by the acceleration of gravity,or the mass is that weight which a body would otherwise have if the acce!eration of gravity '\\·ere = to unity, as a metre, afoot, &c. At upon, or in the vicinity of the earth, or of any other J?IY body, where bodies do not fall with 9,81 metres= 32,2 feet, but with (after the first second) of one metre= 3! measure, is from hence immediately given bybody. 
	a 
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	heave
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	ft., 
	the 
	mŁs
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	or 
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	5•. 
	54 DENSITY. 
	G 
	..Jlf=--=0,1019 G, or 
	9,81 
	G
	.M=--=0,031 G. 
	32,2 
	The mass of a 20 lb. heavy body, .M=0,031 x 20=0,62 lb., and inversely the weight of a mass of 20 lbs. G=32,2 x 20=644 JŁs. § 55. In so far as we assume the acceleration (g) of grav1y as invariable, it fo1lows that the mass of a body is exactly proport!onal 
	!

	_
	to its ,veight, and that also for the masses .,l{ and M, with the weights
	1
	G and G: .
	1 
	M G 

	M
	M
	=e

	G
	1 1 
	We hence obtain the weight as a measure of the mass of a body;
	the greater the mass which a body measures, the greater is its weight. 
	The acceleration of gravity is, in fact, somewhat variable, it be. comes greater the nearer we approach the poles of the earth, and diminishes the more we advance towards the earth's equator; it is greatest at the poles, and least at the equator. It also diminishes the more a body is above or belo,v the level of the sea; and attains its greatest value at the level of the sea. But, since a mass, so long as nothing is added to, or taken from it, is invariable, so that at all points of the earth, as well as th
	with the place, or £= Ł. 
	l gl 
	G

	One and the same steel spring is differently bent by one and the same weight at different places of the earth; it is least at the equator, on high mountains, and in deep 1nines; greatest in the vicinity of the poles, and at the level of the sea. 
	§ 56. Density is the intensity with "·hich space is filled by matter. A body is so much the denser the more matter there is in its space.The natural measure of density is that quantity of matter (that mass) which fills a unit of volume, because matter can only be measured by weight, so that the weight of a unit of volume, a cubic metre, or cubic foot of some matter, serves as a measure of its density.
	For example: the density of a cubic foot of water= 62,38 lb., and that of cast iron = 452,13 lb., because a cubic foot of water weighs 62,38 lb. = 998,08 oz. avd., and a cubic foot of cast iron 
	weighs 452, 13 lb. 
	From the ,·olume V of its density "I, its ,\·eight G = multiplied by the. Łellsity gives the weight of a 
	a boczy Łnd 
	v,,. 
	The 
	volume 

	body
	. 
	• 

	SPECIFIC GRAVITY. 
	,veight: on the other hand, granite is a body of variable density, be­cause made up of parts of different densities. 
	Example.!. If the density of lead be 708 lbs., 3,2 cubic feet of lead weigh = 708 X
	-
	65 lbs.-2. If the density of bar iron = 4 85,8 lbs. ; a mass of it of 205 lbs. has a 
	3
	,2=2
	2

	G 205
	= = = 0,4023 cubic ft. = 0.4083 Xinches.-3. 
	volume 
	V
	1728=705.54 cubic 

	502 
	,-

	4 cubic feet of deal, perfectly saturated with water, weigh 577 lbs.; the density of 
	10,

	wood is therefore: ,,. =.!!_ = = 55,5 lbs.
	this 
	577 

	V 10,4 
	§57. Specific Gravity.-Specifiec· gravity or specific weight is the relation of the density of a body to that of the density of some other, generally water, taken for unity. No\\' the density is equal to the weight of a unit of Yolume : hence the specific gravity is a]so the relation of the weight of one body to that of another, viz. water, 
	under the same ,·olume. 
	In er confoundthe specific weight with thatewhich belongs to a body of a certain magnitude, the last isusuallyca11elute weight. 
	ord
	no
	t 
	to 
	d
	the 
	ab
	so
	-
	-


	If r er) to which we refer the den­sityof other matter, and1the density of any one kind whose specific gravity we will designate by E, then the formula 
	be 
	the 
	de
	ns
	it
	y
	of 
	ma
	tte
	r 
	(
	of 
	'\\
	1 
	at
	1 
	of 
	ma
	tte
	r, 

	1= 'Yi and 'Yi = , . 'Y• 
	'Y
	. 

	holds good, and the densŁty of a substance is equal to its specific 
	gravity into the density of water . 
	The absolute weight G of a mass of volume V and specific gravity 
	The absolute weight G of a mass of volume V and specific gravity 
	.

	, is : G = v= v,,,. 
	,,
	1 

	Example.-l. The density of pure silver is 653,368 lbs. and water 62,38 lbsŁ 3368 
	that 
	of 
	65
	•

	= 
	'
	4
	=10'47

	consequently the specific gravity of the former 
	= 
	62,382. 
	silver is 10½ tirnes as heavy as a mass of water filling the same space.-

	8 ; its density, therefore, is 13,598 X 62,38 
	8 ; its density, therefore, is 13,598 X 62,38 
	8 ; its density, therefore, is 13,598 X 62,38 
	13,59

	The specific = 848,24

	gravity of quicksilvert= lbs.; 

	= 
	a mass of 35 cubic inches, therefore, weighs: 
	848 X 35
	848,24. V= ---= 17,18 lbs.
	G 

	28 
	17

	Remark. In these calculations the use of the French measure and weight bas this advantage, that in order to effect the multiplication of I and ,,., it is merely requisite to advance the decimal point; because a cubic centimetre of water weighs one gramme,and a cubic metre a million, or one thousand kilogrammes. T)le density of quicksilver,8 X 1000 = 1359'-a cubic metre of quicksilver weighs 13:>98 kilogrammes. 
	according to the French measure and weightt= 13,59
	8 kilog.; 
	i. 

	•
	§58. The following table contains the specific gravities of certain 
	_
	bodies constantly coming into appliecation in mechanics: Mean specific gravity of dry laurel wood . 
	•

	" 
	" 
	saturated with water 
	. 
	1,
	110 


	== 0,659 
	•• 
	• = 0,839* 13,598 
	• 

	= 
	Mean specific gravity of dry pine wood 
	'' 
	saturated with water 
	.
	Quicksilveer 
	. . • 
	= 
	.
	. 
	844. 
	1
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	8,97
	" 
	. =
	forged 
	. . 
	. 
	. . 
	. . 
	=
	Braess 
	8,55
	• 
	. 
	.
	. 
	. 
	. 
	Iron, cast, white 
	" " 
	gray . . . . " " medium . . 
	. 
	. 
	7,10 
	. 
	. 
	• 
	= 
	7
	,06 

	• . = 7,60* 
	" 
	bar iron 
	. . . 

	Zinc, fused . . . • . . = 7,05 
	" rolled . . . . . Granite . • 2,50 to 3,05Gneiss . . . . . 2,3!) to 2,71 
	. 
	= 
	7,54
	. . 
	. 

	Limestone . . . . . 2,40 to 2,86 
	Sandstone . . . . . 1,90 to 2, 70Brick . . • • . • 1,40 to2,22
	Masonry, with lime mortar of quarry stone: fresh • . = 2,46 
	dry . . = 2,40 
	" of sandstone : fresh . . = 2, I 2
	" 
	" 

	dry . . = 2,05
	of brick : fresh = 1,55 to 1, 70dry = 1,47 to 1 ,59 
	" " 
	" 

	Earth, loamy, hard stamped, fresh . . • = 2,06
	dry . . . = 1,93
	Garden earth, fresh . . . . 2
	. 
	= 
	,05

	dry . . . • . = 1,63Dry, poor earth • . . . . . = 1,34 
	§59. State ofAggregatione.-Bodies appear to us, according to thedifferent cohesion of their parts, under three principal conditions, ,vhich we term states of aggregation. They are either solid orfluid,and in the latter case, either liquid or gaseous. Solid bodies are those whose parts adhere so strongly together that a certain force isrequired to change the form of these bodies, or to effect their division. }i'lui<l bodies, on the other hand, are those whose parts may be displaced about each other by the sm
	While solid bodies have a proper form and determinate volume, liquid or aqueous bodies possess only a . determinate volume ,vithout anyproper form, and the elastic extensible fluid bodies have neither one nor the other.
	Di,vision of Forces.-Foercees are different according to their 
	§
	60
	. 

	= 
	1. bymeans of which all bodies tend to approach towards 
	Gravity, 

	n 
	part ofthe mean density. By seventeen trials ofham
	ing 
	:Jo--Łt 
	1 
	-

	.
	.
	dbe 
	Ł

	ACTION AND RE-ACTION. 
	2. 
	2. 
	2. 
	Theforce of inertia, which manifests itself velocity of i;ert masses occur. 
	when 
	changes 
	in 
	the 


	3. 
	3. 
	The muscular force of animated beings ; the the muscles of men and animals. 
	fo
	rce 
	exerted 
	by 



	4. Elasticity or spring-force, which bodies exhibit in 
	a 
	change 
	of 

	5. 
	5. 
	5. 
	5. 
	Theforce of heat or caloric, in consequence of which expand or contract by a change of temperature.
	bodies 


	6. The magneticforce, or the attraction and repulsion of 
	magnets.


	7. 
	7. 
	The cohesive force, the force by which the parts of a body kept together, and resist separation.
	are 



	8. Adhesion, the force with which bodies brought into close 
	contact 

	The resistances of friction, rigidity, solidity, 
	&c., 
	arise 
	mainly 
	from 

	2. Its direction, the straight line in which a point of application, or strives to move it for,vard, its motion. The direction of a force, like every direction of ·motion,has two senses, it can take place from left to right, or from right to left, from above to below, and from below to above. The one is termed positive, the other neleft to right,to below, it would be most convenient were we motions positive, and those in the opposite direction, nega­
	its 
	or 
	to 
	impede
	gative. 
	As 
	we 
	write 
	from 
	and 
	fr
	om 
	above 
	to 
	r:all 
	these 

	tlve. 
	3. The absolute magnitude or intensity of a fowhich, as above by \\·eights, as pounds, kilogrammes, &c. 
	rce, 
	stated, 
	is 
	me
	Ł
	sured 

	_
	§ 62. .11.ction and re-action.-The first force producesin a body, is a change of form or volume combined with extension or c?ntraction, which begins at the point of application, and from thence diffuses itself further and further. By this in,vard change of the body, itinherent elasticity is called into action, puts itself into equilibrium with the force, and, therefore, is equal and opposed to the force. Ac­tion and re-action are equal and opposed to each other. This law !lonly prevails in reference to forc
	eff
	ect 
	,v
	hich 
	a 
	Ł 
	ot 
	but 
	also 

	Łeacts upon the earth. The force with which a weight presses un support is given back in an opposite direction ; workman dra\\'S or pushes at a machine, 
	P?
	Its 
	the 
	fo
	rce 
	with 
	,vhich 
	a 
	&ce.! 
	reaŁts 
	up
	on 

	force moves forward 
	.
	. 
	THE MECHANICS OF A MATERIAL POINT. 
	may be included under two principal divisions, according to the state of aggregation of bodies. 
	1. The mechanics of solid bodies, which is a]so well named geo­mechanics. 
	2. The mechanics offluid bodies, hydromechanics or hydraulics ; the last is subdivided into: 
	1. liquid bodies especially, hydromechanics or hydraulics. 
	Into 
	the 
	mechanics 
	of 
	water 
	and 
	-

	. . 
	aeromechanics, the mechanics of elastic fluids. If we now have regard to the di vision of mechanics into statics and dynamics, we have the foJlowing parts: 
	1. 
	1. 
	1. 
	Statics of solid bodies, or geostatics.

	2. 
	2. 
	Dynamics of solid bodies, or geodamics. 
	yn


	3. 
	3. 
	Statics offluids, or hydrostatics. 

	4. 
	4. 
	Dynamics offluids, or hydrodynamics. 

	5. 
	5. 
	Statics of aeriform bodies, or aerostatics. 

	6. 
	6. 
	Dynamics of aeriform, aerodynamics, or pneumatics. 


	CH A P 'f ER I I. 
	THE l\fECHANICS OF A MATERIAL POINT. 
	§ 64. A material point is a material body, whose dimensions are indefinitely small in comparison ,vith the space occupied by it. In order to simplify the representation, we will in the follo'-'ing consider only the motion and equilibrium of a material point. ...i:\ finite body is a continuous union of an infinite number of material points. If the single points or elements are all perfectly equal, i. e. move equally quick, in parallel straight lines, ,ve may then apply the theory of the motion of a material 
	1

	§ 65. Simple constant Force.-lf (p) be the acceleration with which a mass (M) is irnpelled by a force, we have, from § 53, the forcea: 
	p
	P Mp, and inversely, the acceleration, p ' 
	= 
	= 
	M

	f, further, we put the mass M= £, "·here G is the weight of the 
	I

	g 
	1. P ; G, and the acceleration: 
	= 

	p
	2. P a g. 
	= 
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	We find, therefore, the force (P) which impels a body with acer­
	_
	accelerateion (p) when we multiply the °"·eight of the body ( G) 
	tain 
	by 

	the ratio (;) of its acceleration, to that of gravity. 
	Inversely, the acceleration (p), with which a body is movedforwardby a force (P) is given, when the acceleration (g) of gravity is multi
	-

	plied by the ratio ) of the force and weight of the body. 
	(
	Ł

	Łample. Let us suppose a body lying on an horizontal and perfectly smooth table,wluch presents no impediment to the body in its course, but counteracts the effect of gvitupon it. If this body be pressed upon by a force acting horizontally, the bodywill give way to this influence, and move forward in the direction of this force. If the weight of this body be G= 50 lbs., and ifP= 10 lbs. presses uninterruptedly upon it, it 
	Ł
	Ł 

	will enter into a unifonnly accelerated motion with the aooelemtionp =
	p. K= lO X
	G 
	On the other hand, if the acceleration with which a 42 lb. heavy body 
	32,2 = 
	6,44 feet. 
	9
	becomes accelerated by a force (P) = 9 feet, then will this force P L . G 
	= 
	= 

	32,25
	g
	X 42 =0,031 X 378 = 11,7 lbs. 
	§ 66. If the force which acts upon a body is constant, there arises auniformly variable motion, and indeed a uniformly accelerated one, if the direction of the force corresponeds with the initial direction of the otion; and, on the other hand, a uniformly retarded one, if the direc­tion of the force is opposite to that of the initial direction of motion. If we substitute in the formulre (§ 13 and § 14) for p, the value 
	Ł

	;;. = g, we obtain the following: 
	Ł 

	I. For uniformly accelerated motions : 
	l. V = C + Ł gt, Or•V = C + 32,2 :t. 
	p gt
	2 
	p 

	2 
	G2 G 
	2 
	II. For uniformly retarded motions : 
	p p
	1. V C --gt = C-32,2 -t. 
	= 

	G G 
	PgF 
	PgF 
	p 
	2

	2 . s == ct _ --= ct.-16,1 _ t .
	G2 G 
	Łith the help of these formulre all those questions may be answered which can be proposed relative to the rectilinear motions of bodies bya consteant force. 
	&alt.-1. A carriage weighing 2000 lbs. goes with a 4 feet velocity upon a bori• zontal hne, offering no impediments to it and pushed forward by an invariableforce of 
	Ł

	.
	25 lbs. during 15 seconds, with what velŁity will it proceed after the action of this force? 
	This velocity"= c+ 32,2 t, but c=4,P== 25 lbs., G == 2000,andt==15; hence 
	; 

	.
	it flcjroumetaDCe8 
	ollows, 
	" 
	25 
	== 
	10,03 
	feet.-2. 
	Under 
	si
	milar 
	a car
	-


	4+ 32,2. --• 15 
	= 

	. 2000
	. . 
	· sed 9'-0 
	· sed 9'-0 
	· sed 9'-0 
	"

	Ł5500 lbs., which, setting out with a uniform velocity
	nag
	, 
	weighing 
	, 
	has tr
	aver 


	afterwards pasaes 
	that 
	it 

	thlS force? Here the 
	over 
	1650 
	feet 
	in 
	3 
	minut
	es; 
	what 
	is 

	60 MECHANICAL EFFECT. 
	. . . 950 
	1650

	1n1tial velocity c = _(;Q = 5,277 feet per second, and the tenninal velocity, v 
	= 
	3_60

	3
	P 3,889.t
	G

	=9,166 feet; therefore gt =v -c = 3,889, and the force P= =0,031 X 
	G 

	gt
	gt
	50
	:


	=0,12056 X = 22,10 lbs.-3. A sledge, weighing 1500 lbs., sliding 
	3,88
	9 X 
	5
	ŁŁ
	0 

	fonvard with a 15 ft. velocity, loses, through friction, upon its horizoŁtal _suprt, its whole motion in 25 seconds; how great is this friction'? Here the n1ot1on 1s uniformly 
	Ł

	Pt Ge
	retarded, and the terminal velocity v = 0; hence c = 32,2 G' and P = 0,031 T= 
	1500 X15 ·
	1500 X15 ·
	tiemand d -4 e . . A h
	• 


	0,031 --= 900 = 27,9 lbs. the nction d not er
	X 
	-
	0,031 
	X

	25
	sledge, of 1200 lbs. and 12 feet initial velocity, has to overcoŁe L>y itŁ motion a friction of 45 lbs.; what velocity has it after 8 seconds, and how great 1s the d1stance described 1 45 XS
	The terminal velocity is v = 12 -32,2 X = 12 -9,66 = 2.34 feet, and the 
	1200 
	1200 

	(c+v) 12 + 2.34
	)

	distance describeda•= = X 8 =57.36 feet. 
	t 
	(
	-

	2 -2 
	§ 67. Mechanical Effect.-The work done, or mechanical effect, is that effect of a force ,vhich it produces in overcoming a resist­ance: as that of inertia, friction, gravity, &c. Work is performed when loads are lifted, a great velocity imparted to masses, bodies changed in their form or divided, &c. The ,vork done, or the me­chanical effect produced depends not only on the force, but also on the distance through which it is made to act or to overcome the resist­ance ; it increases, of course, simultaneousl
	(G) are lifted to the same height; it is, namely, m times as great as the effort necessary for the lifting of a single weight to that height; and, again, 2, the ,vork is the same, whether one and the same weight be raised ton (5) times the height (n h ), or n(5) times through the height, and it is of course n (5) ti1nes as great as if the same weight ,vere raised to a single height (h). The work again done by a slowly fall­ing weight is proportional to the magnitude of this weight and the height from which 
	to separate as from a cut of a single length; the ,vork, therefore, is 
	The double length requires double the distance to be described by the force, consequently the work is proportional to the Łtance. In like manner the \\'Ork of a pair of mill stones increases 
	di

	m_th the quantity of grains of a certain kind of corn, which they g_rind to a certain degree. This quantity, under other,vise similar is proportional to the number of revolutions, 
	circumsŁanc
	es, 

	or rather 
	Figure
	MECHANICAL EFFECT. 
	force upon the magnitude of the force and istnce describd by it, allo\\·s us to take that amount of work which 1s expended 1n o,·er­coming a resistance of the magnitude of the unit of weight ( as a kilo­, pound, &c. ), along a path of the magnitude of the length (metre or foo t,) as a unit of the mechanical effect, or the dyna­mical unit, and then we may put the measure of this equal to the product of the force or resistance, and the distance described in the direction of the force whilst overcoming this re
	Ł
	3:
	Ł
	gramme
	unit 
	of 

	If we put the amount of the resistance itselfe= P, and the distance described by the force, or rather by its point of application, in overe­coming this = s, the labor expended is : 
	L = units of work.
	P 
	s 

	In order to define more clearly the unit of work, for which the single name, dynam, may be used, both factors P and , are generallygiven; and, therefore, instead of units of work, we say Jiilo,traDie­metres, pounds-feet; and inversely, metrekilo. and feet-r.ound"S' ac­cording as the weight and distance are expressed in kilograIDmes and metres, or in pounds and feet. These terms are usually expressed simplicity by the abbreviatieons mk, or km, lb.fl., 
	for 
	or
	jl. 
	lb. 

	Example.-I. In order to raise a stamper 21Olbs. 15 inches high, the mechanical effect 
	210 
	X 
	12 
	=

	L = 
	262,5 ft. lbs. is necessary.-2. By a mechanical effect of 1500 ft. lbs., 
	its motion has to overcome a friction of 75 lbs., is driven forward 
	a 
	sledge, 
	which 
	in 

	--= 
	75 
	L 
	p 
	p 
	=

	a spacet•= 
	20 feeL 
	Figure
	§69. Not only in an invariable force or constant resistance is the labor a product of the force and distance, but also the labor may be expressed as a product of the distance and force, when the resistance whilst being overcome is variable, if a mean value of the continuous succession of forces be taken as theforce. The relation is here the same as that of the time, the velocity, and the space; for the last may Łregarded as a produt of the time by the mean value of tŁe veloc1hes. The same graphical represen
	Ł
	?
	also 
	apph­
	c
	_
	able. 

	}'
	lJi----=r----· C N 
	Figure
	Figure

	Figure
	-
	Figure
	Fig. 27. Fig. 28. 
	Fig. 27. Fig. 28. 


	Figure
	'JI 
	Łase -!}B is the space described (s ), and whose height is 
	ei
	th
	er 
	the 

	invariable force (P) itself, or the mean of the different valuees of theforces. by the area of a fiŁre.llspace (s), and
	In 
	gener
	al, 
	the 
	wo
	rk 
	ma
	y
	be 
	re
	p
	rese
	nt
	ed 
	BCD, 
	Fig. 
	28
	, 
	wh
	ic
	h 
	has 
	fo
	r
	its 
	ba
	se 
	the 
	wh?
	se 
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	PRINCIPLE OF LIVING FORCES. 
	the .figure .IJBCD be area, \Ve have the heig
	wi
	th 
	ea
	c
	h 
	poin
	t 
	of
	th
	e 
	pat
	h 
	de
	sc
	ri
	be
	d. 
	If 
	tr
	an
	s­
	form
	ed 
	int
	o 
	a 
	re
	ct
	an
	gular 
	on
	e 
	.BBEF 
	of 
	like 
	ht 

	plicity. 
	. . . 
	Fig. 29. 
	into n (the more the better)equal 
	parts, 

	the forces EFP, GH=P,, 
	-
	J
	IK=P
	3, 

	Figure
	distance. If, then, we put the force .IJD=P0 and the force at the end BC=P, we have for the mean force: P=(i P+P+Pis+½ Pn )+n, 
	in
	iti
	al 
	oth
	e
	r
	11 
	o
	i
	+P
	+ 
	• • 

	· +P11_
	· 
	1 

	+P+ ... +P
	1 
	11

	Ps=(½ P
	0

	+P
	1 

	s
	+½P.)-
	. 

	n 
	_
	1 

	If the number of parts (n) be even, viz., 2, 4, 6, 8, &c., Simpsorule gives still more accurately the mean force : 
	n's

	P=(P+4P+2P,+4P+ +4 Pa-1+Pa )+3 
	o
	1 
	3 
	.. 
	n,
	and, therefore, the corresponding work: 
	♦• 

	s
	Ps=(P+4 P+2P+4 P+ ....+4 P._+Pa )
	0
	1 
	i
	3
	1 
	. 

	3ne
	Example. In order to find the mechanical work .vhich a draught horse performs in drawing a cnrriaŁe over a certain ,vay, we-make use of a 1lynamometeror measurer of force, which is put into communication on one side '\\•ith the carriage, and on the other wilh the traces of the .horse, and the force is observed from time to time. If the initial force P0 = 1 LO lbs., the forcenfier describing 25 feet= 122 lbs.; afier 50 feett= 127 lbs.; after 75 feet= 120 lbs., and at the end of the whole distance of 100 feet
	,
	1 
	1 
	+ 

	from the second fomutla: P = (110+ 4. 122+ 2. 127+4. 120+ 114) + 3 X 4 
	= = 120,5 lbs., and the mechanical \\'Ork
	1446 

	12 
	P s = 120,5 X 100 = 12050 ft. lbs. 
	§ 71. Principle of tlie Vis Viva, or LivinFo1·ces.-If, in the 
	g 

	v-<f v-<fi 
	2
	2

	r. u1 f (§ 13)s = or ps = ---we su shtute 1or the 
	1orm a o b r. 
	. 

	10n 
	accelera
	p, 
	its 
	va
	lu
	e
	_g, 
	we 
	th
	us 
	ob
	ta
	lll 
	S= 
	--
	-


	v-c2 
	p 
	(
	2
	) 

	2g 
	v
	i 

	2p 2 
	.
	t. . p
	G 
	'
	G 
	or 
	(li-h) G.
	1

	P s = 
	. 
	.

	interpret this equation, so useful in practical 
	If we 
	mechanics, 
	we 

	and !__ byhand h 
	: 
	Figure
	Figure
	PRINCIPLE OF LIVING FORCES. 
	find that the work• ( P s) which a mass either acquires when. it pŁssŁsfrom a lesser velocity ( c) into a greater (), or produces, when 1t 1s compelled to pass from a greater velocity into a less, is constantlyequal to the product of the weight of this mass, and the difference of 
	v

	2g 
	2g

	&ampl.e 1. In order to impart to a carriage of 4000 lbs. weight, upon a perfectly 
	railroad, a velocity of 30 feet, a mechanfoal work P,= .,. G
	smooth 
	i:::0,
	0
	155 
	.,a 
	G-= 

	2g!X900X4000 = 55800 ft. lbs. is required; and just eo much work will this car• rmge perform if a resistance be opposed to it, and it be gradually brought to rest-2. Another carriage of 6000 lbs. goes forward with a velocity of 15 feet, which is tformed by a force acting upon it into a velocity of 24 feet, how great is the work acquired by this carriage, or done by the force! To the velocities 15 and 24 feet oorreapond the 
	0
	0
	1
	55 

	heights due to velocity h== !_ ==3,49 ft., and l = .,. =s 8,928 ft.; .from this the me
	1 
	-

	1
	to 
	8 100 
	ere the force 1taelf2000 lbs., the apacee, would be== (h-h,)e
	W
	· 
	G 

	== 326,46 lbs. 
	32646 
	-=--c--= 16,323
	P 2000
	lbs. sledge has entirely Jost, through friction on ita path, its velocity of 
	fee
	t-3. 
	If 
	a 500 

	,
	500 
	-0,0166 X 256 X 6 -19,84 lbe.
	100 
	== 
	0
	,015
	6 
	X 
	16
	1 
	X 

	§ 72. The formula found for the work in the foregoing 
	paragraph 
	: 

	Ps=(h--h
	1

	. 
	) 
	G 

	uniformly accelerated parts described , then we have the amount 
	(
	Ł )

	of work for these : 
	.!-=12-G
	P
	1(
	.
	)
	v
	Figure
	c
	2 

	' 
	n 2g
	Ps.!-.= -1,
	(
	)
	"
	2
	2
	v
	' 
	G

	n 2g
	(.!-.v3-v,
	)
	Figure
	'
	2
	G
	,

	== 
	P
	3

	n 2g&.c., in so far as v, v2, v3, &c., stand for the velocities acquired at the end of these parts of space ; and by thŁ addition of all these woŁks whave the whole work required for the transformation of the velocity
	1
	Ł 

	c into v: 
	2g 
	n 
	. 

	• i.,. Working power. 
	J
	= 

	Figure
	Figure
	64 COMPOSITION OF FORCES. 
	her(n) of forces (P+P+P+... )+n, it transformes itself inteo a
	123 
	mean force, and because the members on the right hand of the equation 
	2 2 2 2 _!_ and -_!_ G, as also....!.. and-....!.. , &c. are opposed 
	v
	v
	v
	v
	G 
	G 
	G
	to

	2g 2g 2g 2g
	v' c2
	each other, so that the members_ G and 
	· d b 
	y 
	t 
	e

	-Gdetermine h
	, 

	2g 2
	g

	terminal velocity v and the initial velocity c, only remain. ' c
	(
	v
	2
	.

	The formulas = G = (l,,-h
	P 
	2
	--;_ 
	)
	1
	) 
	G 
	1s 
	not 
	us
	e 
	d
	mere
	1
	y
	for 

	the determination of the work, but notunfrequently, also, for the mea. surenlent of the terminal velocity. In the last case h is put = h+
	1 
	or v = c2+2. If by the constant motion of a body, th
	:
	s 
	.J 
	g 
	:
	s
	e 

	. terminal velocity v = the initial ,·eJocity c, the work done = 2ero, i. e. -as much work is performed by the accelerated, as is expended by the retarded part of the motion. 
	&amplt,-A carriage of 2500 lbs. proceeding upon a railroad without friction, has hich at the co1nmencement amounted to its velocity after this work will be : 
	acquired by an augmentation of its velocity, \\
	1
	IO ft., a mechanical work of 8000 lbs
	., 

	Ł000 
	Rnnar-k. The product of the mass M!!.. and the square of the velocity (v•) : Mui is 
	= 

	g
	called, without attaching to it any definite idea, the living force (vi, viva) of the moved rnass: and hereafter, the mechanical work which a moved mass acquires, inay be putequal to half of the vi, viva of the same. If a mass enters from a velocity c into another 
	,
	,, the work performed is equal to half the difference of the ma viva at the cornmencement aud end of the change of velocity. This law of the mechanical performance of bodies uy means of their inertia, is called the principle of living forces, or the vis viva. 
	§ 73. Composit-ion of Forces.-T,vo forcees Pand Pact upon one
	1 2
	nd the same body, in the same or in an opposite direction, the effect 1s the same as if only one force acted upon the bo<ly, ,vhich is the su1n 
	Ł

	_
	or difference of these forces ; for these forces impart to the mass M 
	the acceleration, p= _ and p -_, consequently from § 28, the 
	1 
	P
	1
	P
	2

	2
	M -o1il
	acceleration resulting from both, is 
	PP= , and accordingly the forr.e corresponding tothis, 
	=
	1 ±P
	2 
	p
	1Łp2

	: P=.JJfp = P +P. 
	is 

	. 
	equivalenŁ foreŁ P derived fro1n these t,vo iscalled the resultant; 1 and P2 the compone
	The 
	its constituentes 
	P
	ntse. 

	A body lying flaupon the hand presses so long only upon it with its 
	··
	tb
	Ł
	amplt.-:-
	t. 
	t 



	Łt
	Łt
	Łi° 

	Łthe and is at reŁt, or is moved up and down uniforn1ly \Vith the bejŁ be raised quickly, it suffers a grentel' pressure; on the other hand, Łly ppd, tŁe pressure is then less than the weight; it becomes null if
	Ł 
	w
	i
	ght 
	as 
	h
	if 
	ii
	u
	t
	the 
	ha
	nd 
	n
	dro
	e

	e han
	t
	h
	Ł
	u
	be 

	with the acceleration of gravity. If the pressure on the hand P, the 
	rawn 
	back 
	=
	body 
	fa
	llsw
	· h 
	G

	.-. G-_; if we ut theaccelera-
	.-. G-_; if we ut theaccelera-
	1t 
	= 
	p

	,orce P, whilst its mass M 
	a 


	g 
	g 

	If we substituete in these formulre le abovee values of pand p
	1 

	PARALLELOGRAM OF FORCES. 
	g 
	g 

	G=( 1 -G. If the body on the hand be raisetl with the acceleration p,-p is 
	: 
	;
	) 

	opposed to the acceleration g, therefore the pressure upon the hand P = (1 +; ) 
	then 

	G. According as n body ascends or descends with a 20 feet acceleration, the pressure 
	the handt= ( l -) G = ( 1-0,62) G= 0,38, of the weight of the body, or=
	upon 
	!20 

	31,2
	31,2

	1+0,62 = l,62.-2. If ·with the flat band I throw a body of 3 lbs. 14 feet perpendicu­larly Up\\·ar<ls, whilst I urge it on ·with the band for the flr:.t 2 feet, the mecl.tanical ,vork ed is P3 = G It= 3 14 =42 ft. lbs., and the pres.sure upon rite hand, P = 
	perform
	X 

	Ł = 21 lbs. WwJst the resting bo<ly presses with 3 lbs., it reacts 11pou the 
	band 
	during

	2 
	2 
	the projection with 21 lbs. 

	§ 74. Parallelogram of Forces.-When a material point .Jl,fŁ Fig., 
	30, is acted upon by nvo forces, P
	1

	Fig. 30. 
	Fig. 30. 
	whose directions .AfX and .A-IY 
	P
	2, 

	make, with each other, the angleXMY=a., these lines generate the 
	Figure
	P1 i; and p= Łj, and from their 
	=
	2 


	union, there arises a mean accelera­tion ( § 34) in the direction .MZ, both of which are given by the diagonal of a , p, andthe angle a.; this mean or resultant ac-
	parallelogram formed from p
	1
	2

	and for the angle q, which its direction makes with M X of acceleration p: 
	the 
	one 
	1
	• 

	. sin. a.
	P
	2 


	sin. 41 =·'--"---• 
	sin. 41 =·'--"---• 
	• (p) sin. G
	'J.

	sin. q, = -1---.
	M p
	M p

	If ,ve multiply the first equation by Jtf, 
	. .ll,[p = Pcos. (1, or,
	✓P/+ P
	2
	2
	+2 P
	1 
	2 

	p is the force corresponding to the acceleratio
	since 
	.Af
	n: 

	l. P = ✓ P/i+pz+2 PPcos. o.. 
	2
	1 
	2 

	. Psin. a.
	2 

	2• s-in. q, = ----· 
	p 
	p 
	,. 
	: 

	0 
	treeti
	a·
	on 


	the component as the resultant 
	J
	./".
	rom 
	j'orces 
	exactly 
	l
	acce 
	era
	t·
	ion 

	firom 
	firom 
	· 

	bearing the same 
	draw
	n, 

	be 
	be 

	proportions to each 6• 
	o
	t
	her 
	as 
	do 
	weig
	hts, 
	as 

	66 
	66 

	RESOLUTION OF FORCES. 
	pounds, &c., the mean force may be represented by the diagonal of the parallelogram whose sides are formed by the lateral forces, and one of whose angles is equal to that made by the directions of these lateral 1orces. 'fhe parallelogram ,vhich is constructed from the lateral forces, an<l ,,,hose diagonal is the mean force, 1s callc<l the parallelogram of forces. 
	_

	E.:rample. t\·lten a body of 150 lbs. \\·ei!!bt, smooth to.blo(Fig. 31) i::. ,wtetl uptŁn by lwu fr>:<1<•!1n1' =3U lhs.nnd Prz =2•1 lb,;n1 \\-·l11d1 nmkc,,·nh Ntch otltt>r nu 
	1c::1ting 
	upnn 
	a 
	pcrf<-crly 
	1 
	1

	Fii?. 31. 
	Fii?. 31. 

	augle P,,1 P9 = « + B = 105: in ,,·hat rlirt'(!•
	Figure
	1 
	° 

	.
	.

	tion, med with wlint occel<'rHriou, ,viii tlil' take pince? Since to..•. (a+ S) = ros. lOS= _ eos. ?[>, lhe mNin Ihri·e: 
	mo1,ou
	0 
	0

	P = ✓JrP+�4':? xa0X24 ros. 75
	° 

	,/\JIJ0+n57G-l-l Łu cQ.1, 7:'i
	= 
	0 

	= ✓l•l7u-:l7•J7=33,l ll>s.tho nccclcrnti01, corre:.poodi11� \\·id1 it is: 
	1
	2
	1 

	1u Gn-Ł Jl. 
	P=
	-
	-
	1 

	he
	he
	1:,0 __n_ 

	tliro<·tion of 111ouon 1nnl,es \\llh tlic dirC'ction the iinn lon:e lllI fl nŁll· a, w IJ ich is tlc:tt•nn in etl hy:
	of

	.
	.

	4 = si11. 105= 0,7224 s-b1. 75= 
	m1t. 
	14 
	° 
	o 

	:J:J:.!2 
	'

	0,fi!)78, orn" =41, 15'. 
	°

	Rtnwrk. ThL' m1•u1L iorco P depcnclia. from Jhnuul·l' frmnd, only on the i·o111pu11t•11t tor,·es-, not on tho u1•1c,;:; CII' tl11.1 OC><ly upo11 ,vhich tho forces iwt. For thit1 rua:-;on, wo finu ju n1nny "'OrkŁ on 
	the
	and

	1uccltnnic11, the correctncŁs of the po mllelogmm 
	of

	but with the nssumption of some funcla1nenml Jin,·. 
	fi1rceq prove1l ,\·ithout regnrJ U:> lhe n1ass
	1 
	-

	§5. Resolu,lion of Forces.-By help of the parallelogram of forces, not only two or more forces may be reduced to a single one, but also gi,·en forces under given relations may be resolved into t,vo or more Jorces. If the angles o. and J3 are given, ,vhich the components Jl,f P= Pancl .Jlf P2 = P2, make ,vith the given force .Jlf P = P, the com­ponents may be found from the formulre: 
	7
	1 
	P 

	P sin. ,a _ P sin. a.
	P p •sin. (a.+J3), 
	_ 
	1-
	2-
	sin. (a.+.a) 

	Fig. 32• 
	Fig. 32• 

	Figure
	each other, a.+.a=90, anc.l sin. (a.+.a) = 1,an<l P = P cos. a and P= P sin. a., If pand o. be equal to one other, P=P, viza: 
	°
	2 
	z
	i

	a.,= P 2 
	P sin. 
	p
	= 
	= 
	p
	r 

	. a. 
	sin. 2 a. 2 cos

	.Rnim71le l. "lial is the pr<'ssi1rc ofn body M upon a 1.al>le .11 B, Fig. 32, whose ,veiŁht G =70 lbs. nnd upon"' Ii i<'li n force P = 50 ll.Js. nets, Mll ,vhose ,Urcction is i1wli11ed tn the Lori:i:011 ut ao angle PM P =4 =401 The Lr,rizontl'I l compoac-nt of P i:i P= P co.,. Ł = 50 cos 40= 3 ·,30 lb:<, a11d the , erlical co111pone11L P= JJ sin. "' = :3U sin, -I0= 3:2, J •1 llJs. ; the lacwr strives to dm"· 11.tc hoily frmu the tabll', tl1ere remains then for rite pre.:'ŁUl'cn: G-P, = 70-32,14 = 37,80 ll>
	1
	1 
	°
	1 
	° 
	2 
	° 

	a body of 111) lus. is ;o rnuYetl along n.n honzontal ,vay, 
	RESOLUTION OF FORCES. 
	by l\\o forces, thnt jt cleS<'ribes in the first second n space of 6,5 fel't, in a direction which deviates from the two directions of force by an nnglŁ "= 5:2anrl B = 77, lhe forceses are given as follo\\·s. Tue acceleration is rwice the space in I.he first 
	•
	° 
	° 
	tbemŁelv
	second, 

	so that p = 2 X 6,5 = 13 ft. No\v the mean force is P 
	_t
	p
	G
	-0,031 

	X 13 X 110 = 
	X 13 X 110 = 

	. ,
	. ,
	. ,
	= 

	SIil. ;J l
	0

	= 
	77
	-
	° 

	g 
	•"'
	4•..,33 lb h fc 1

	s., t ere ore tle one con1ponent 
	p= 
	p= 
	1 


	. 
	_ 

	45,59 11,.,.,
	lbs., and the other P
	lbs., and the other P
	2 


	44t33 . 52
	s
	in
	0 

	1,i,t. 51° 
	,

	_ 
	_ 

	§ 76. Forces in a Plane.-In order to fincJ the mean force P for a systen1 of forces P, P, P, 
	1
	2
	3

	the same method (§ 33) as 
	t�t foUo"'ed in the coo1po­
	Ł

	s1hon of velocities, -viz : by 
	the repeated application of 
	the parallelogram of forces, 
	we mav resolve them two 
	•
	•

	and t"·o and so on, till but 
	a single force remains. The 
	forces and P, for ex­
	2

	1
	1
	P


	ample, give from the paral­leJograrn .,�[ PQ P, the mean force .,lI= Q, if this be joined to P, ,\·e have from the parallelogram.lJQRP, MR = R; and 4 and gives the force .JlfP =P he last, and the. resu_ltant of the four forces Pi, P, P, P•
	1 
	2
	Q
	3
	3
	this last again forms a parallelogram ,vith p
	Ł
	3

	Figure
	24
	24

	It 1s not necessary, 1n thts ,vay of composing forces, to complete the parallelogram, and cJra,v its diagonal. We may form a polyM1 
	gon 
	.
	P

	.
	.

	QRP, ,vhose s1cles .JlI, PQ, QR, RP, are parallel ancl equaleto 
	P
	1
	1 

	_
	_
	_

	the given components P, P, PP, the last side MP completmg the polygon ,vill be the mean force sought, or ratl1er its measure . 
	1
	2
	4

	3, 
	3, 

	Remark. lt is VPry nsP-fnl tn t,0)ve mt:'<·hanicnl problem,, by 0onŁtruc1ion nl;:;o: though
	Remark. lt is VPry nsP-fnl tn t,0)ve mt:'<·hanicnl problem,, by 0onŁtruc1ion nl;:;o: though
	.

	tlti:. 1ne1ltod does not acl111it of "-IICh th'c·nracy tl!-1hal of' (·rtlculatiun, it is frpe 011 the other lmn<l from great error::antl 1nay th••reforŁ :-erve aŁ proof of 1l1c> (•nli-uhnion. In Fiµ:. 33 
	, 

	,
	,
	,
	Jorres me(•t each oruer under tho niven nnnlt•z< p1l[ P., =7-i,, ,, :i 
	tlie 
	l 
	0 
	3rt 
	; P
	}l[ 1
	=
	33
	° 



	•1u1 "' ,. "" Ł 
	-' 

	.., lnc P.111 Pt= IJ24(1\ and are HJ drH\\11 that a pound j,. repr,•i-L"ntctl by n 
	, 
	Ł
	° 
	, 
	0 
	/'
	111e 
	or 

	3 ..,
	3 ..,

	1i ol a PruŁŁiau•i11ch. '1'1.te forces P= JJ .:; IL., P= J0,8 Jb,.., P= .I Ł,2 lbs: are therefore expres:;l'cl hy sides of 11,5 UnŁs = 0,t15S... i11«·be:-, 10,8 hue:., = 
	(
	) 
	1 
	3 
	S,5 
	11,
	Ł
	,
	P4 
	= 
	2 

	4Ł
	4Ł

	O,UOU ... inches65 = 1J .2 = 1,11 l O .•inches in Je'cm1:,tr11c·1ion ol the polygon of fc1r1•es Łivf's tlie 1nng11i111cle of rhe lhs. n111.l tLc \'tttiation ofit... duection .MP from the clirecr111u J.1[P
	, 
	.
	lines 
	0,
	7
	•
	•
	. 
	incheŁ
	, 
	J:.?
	lineŁ 
	•
	uŁt
	IL l
	1trer111 
	111t>an 
	li>rŁc 
	P= 
	14.fi 
	1 
	of 
	the 
	fir:,t 
	lorce­

	Ł1,½o. 
	ecother, into component forces ns Qand RQanJ R2, 3 "<l 
	a
	h 
	1 
	p 
	2 
	Q
	n

	Figure
	• The Pr11Ł,,.ian inch (::ee 15)i,, cqunl EngliŁh iuc!Jes.-A,r. En. 
	§ 
	l.031 

	RESOLUTION OF FORCES. 
	R3, &.c., the forces lying inthe same direction of axis, a<lc.led together, 
	and the resultants in mag-
	and the resultants in mag-
	Fig. 34. 

	nitude and direction of these 
	nitude and direction of these 
	Figure

	two rectangular forces be then sought for. If the angles P.J'JfX, PJ.IX, P.lfX, &c., which the direc­tions ofthe forces P, P, ,make ,vith the axis.XX =o, 
	J 
	2 
	1 
	z 
	P
	3
	1 


	siCli, QPCOS. 
	siCli, QPCOS. 
	=
	p
	l 
	n. 
	2 
	= 
	2 

	+QJ+ ... ' 
	1. =Pcos. a+P
	Q
	1 
	1 
	2 


	cos. o. +Pcos. o.+ ... , 
	2 
	3 
	3 

	and
	and

	frm R =R+ Ł+ R
	o
	1 
	3 



	+... ' 
	+... ' 
	+... ' 

	2. R=Psin. o.+Psi11. Ł +Psin. o.+ ... 
	1 
	3 

	1 23
	1 23

	From the two compeonents Q an<l R so found, the magnitude of the resultant sought, ise: 
	3. P=✓Qi+Rancl the angle P.,llX=tp, ,vhose direction ,vith .. YX is gi ren by 
	2 

	R
	R
	4. tang. 4'
	=
	Q
	· 


	In the algebraical addition of the forces, regard must be had to the sign, for if it be different in two forces, i. e. if the directions of these be upon opposite sides of the point of application .flt[, this addition 
	then becomes arithmetical 
	then becomes arithmetical 

	subteraction (§ 73). The
	Fig. 35. 

	angleg, is acute, as!ong
	angleg, is acute, as!ong
	.
	as antl R are pos1t1ve; it is bet \\'een one and two right angles, \\hen Q isnegative ancl R positive; bet,Yeen t,vo and three, "·ehen Q and R are both negative, and lastly, be­tween three ancl fouer, when R only is negativee. 
	Q 
	1 


	E-r:ample. "\Vliat is the mogni­n1cle untl direction of the resultant of the tliree con1ponents P=30 ll>s., P= 70 lbs., P= 5U ll>s.1 whoso directions, lying in aplane,make bct'.veen them the angles P,M P=5Uand PJU P_ 
	1 
	2 
	3 
	2 
	0 
	2 
	3 

	10-1o1 If ,ve draw· the axis XX 
	10-1o1 If ,ve draw· the axis XX 
	Figure


	Figure
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	Figure

	FORCES IN SPACE. 
	in the direction of tho first force, ,ve have c&1 = 0, a,, = 56, and 1&3 =56+ 104= 1G0 i hence, 1. Q= 30 x cos. o+ 70 x cos. 56-+ 50 X cos. 160 = 30 + 39= 22,16 lbs.; and 2. R = 30 X sin. o+ 70 X si>,. 56
	°
	° 
	° 
	° 
	0 
	°
	° 
	,14 
	0 
	° 

	50 tin. 160 
	50 tin. 160 
	+ 
	° 

	-46,98 
	= 
	o+
	8,03+ 17,10 = 
	5

	75,13 lbs. 
	3
	3903therefore, the 
	; 
	an
	-
	-


	,
	,
	Hence, 3. tat1g, '1>= = 
	21
	1 
	1
	1.i 


	Figure

	the resultant n1nkes ,vith the positive part of the axis MX the 
	gle 
	,vhioh 
	or 
	force 
	P, is 

	75,13
	75,13
	Q 
	R


	1> 7334' j lastly, the force itselfP = v'Q'l_R'l = --= -= · 
	= 
	° 
	+

	cos. t si,i.. <f> nn. 730 
	cos. t si,i.. <f> nn. 730 
	cos. t si,i.. <f> nn. 730 
	cos. t si,i.. <f> nn. 730 
	Figure
	3
	4-' 

	75, 13 

	78,33 lbs. 
	= 


	(J 9,,
	= 

	I ;)Ł! 

	in 8pace.-If the directions of the forces do not one ancl the same plane, we must dra,v through the point of applica­!plane, and resol,·e each of the forces into t"'o others, one lyin the plane, and the other at right angles to the plane ; "·e must then .find the resultant of the components so obtained in the plane, from the rule in the foregoing paragraph, and add together the componentsat right angles to the plane, and from the t"·o rectangular components thus obtained, their resultant may be found accord
	§ 
	78. 
	Forces 
	lie 
	in 
	ion 
	a 
	ing
	)
	. 

	Sect
	Figure

	the above mode of proreeJing more clearly before P, .MP= P, Jl/P= Pbe the separate forces, .11.B of projection) and ZZ the axis at right angles to it. From the 
	Fig. 
	36 
	puts 
	us;
	let 
	.'AIP
	1 
	= 
	1
	2 
	2
	3 
	3 
	the 
	plane 
	(

	These are 
	These are 

	Figure
	Sect
	Figure
	Fig. 36 . 

	Figure
	forces Qi, Q2, &c., Rt> R'l, &c., and give the components Q and R, 
	forces Qi, Q2, &c., Rt> R'l, &c., and give the components Q and R, 
	_
	of ,vh1ch the resultant 8 consists, ,vbich, joined to the Łum of all thŁ normal forces ' .lvŁ1' N2' &c• ' gi,·es P the resultant required. 


	• 
	Sect
	Figure
	Figure

	FORCES IN SPACE. 
	, /3, for the angles at which the directions of force are 
	I
	Ł 
	we put 1)

	. 1
	. 1
	2


	inclined to the plane .ll.B or to the horizon, the forcees in the plane are 8= Pcos. ;3, 8=Pcos. J3, &c., and the normal forces, N
	given, 
	i
	>
	1
	2 
	2
	1

	1 'J.
	1 'J.

	= Psine. /3, N= Pin. 13, &c.; lastly, if we designate the angles 
	1 
	1
	:i. 
	s
	2

	2
	2

	,vbich the projections of the directions of the forces lying in theplane 
	.ll.B, make with the axis XX, by ci, o., we obtain the three follo,ving 
	1

	2
	2

	forces, forming the sides of a rectangular parallelopiped. 
	Q=8cos. a+8cos. c;+8, cos. a, or
	2 
	3
	3

	1 
	1 
	1
	1.

	2. 
	2. 
	2. 
	R=Pco. f3in. a.+Pco. /3sin. a+..• 
	1 
	s
	1 
	s
	1 
	2 
	s
	1 
	2 


	3. 
	3. 
	3. 
	N Pin.J3+Psin.e13+ .•e.
	s
	1 
	2 
	1 




	1
	1

	From ese three follows the nnal resultant : 
	th

	4. P= ✓Q:+R+», further 
	4. P= ✓Q:+R+», further 
	2


	the angle of inclination to the plane of projection PJJ,18=Ł, from 
	N N
	N N
	5. tang. 4'=--;Ł=::::;;;;::;
	= 

	S ✓ ct+ "2, lastly 
	R


	the angle 8MX='P, ,vhich the projection of the resultant in the plane .IJ.B makes with the first axis XX, by 
	6. tang. t=-· 
	6. tang. t=-· 
	Q 

	Example. Three workmen pull at tl1e end of three ropes, which are atmched ton load M lying upon a horizontal floor ..i.B, Fig. 371 each ,,·ith a force of 50 Lbs.othe angles of 
	> 

	Fig. 37. 
	Fig. 37. 

	• 
	•
	inclination of these forces to the horizon are 10, 20, and 30, and the horizontal angle between the first and se<..-ood, and between the first and third, 20° and 35i what jsthe magnitude and direction of the resultant, and how much is this less than the sum of all the forces which would result, if all three acted in tbe !aD'le clirection? The verticalforce pulling upward is: 
	°
	° 
	° 
	° 

	11= .N;+l\a+N= 50 X (&in. 10+ Gin. 20+ Łn. 30°) =GO X J,01567= 50,781bs.; Ly so mucleas than its own ,veight does the body press upon the iloor. 
	.,.
	:i 
	° 
	° 
	Ł 

	The horizontal comPonents are 8=!50Xroa. 10=50x0,9849 = 49,24 lbs.; s,.-50 
	1 
	° 
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	Figure

	FORCES IN SPACE. 
	xco,. 20,ve dra\\' theaxisXXin the of the first force S1, we obtain the lateral force in this ans XX, Q=Q+Q11+Q3=S. 11,+sros. "'t+ss COl,4=49,24Xcos. o+46,98Xcos. 20+43,30Xco,. 35,24+44,15+35,-17=128,86 lbs.. i on the other hand, the lateral force in the xYY: R=R+R+R=49,24Xri11. o+-t6,98X nn. 20+ 43,30 X Bin. 
	° 
	=
	46,
	9
	8 
	lbs.; 
	S
	3 
	= 
	50Xc
	o,. 
	30
	° 
	= 
	43,30 
	lbs. 
	If 
	direction 
	1
	1 
	cos
	.2 
	.2
	3
	0
	°
	° 
	= 
	49
	second 
	a
	is 
	1
	.2
	3
	0
	° 
	35
	° 
	=<>+ 

	The force with ,vhich the body is drawn forward is from this: 
	horizontal mean

	Tangle Ł \\•hich this force makes '"ith the ais XX is determined bythe tang. t
	he 
	x
	= 

	40,9l
	40,9l

	R 
	-

	-0 3175 · "' -1737' · the entire resultnnt is ·
	1 
	°
	1
	I 

	0 
	0 
	-T
	= 
	-
	12886
	12886
	__ 
	1



	forces act in the same direction, the resultant ist= 3X50 = 150 loss of forcet= 150-14-4,42 = 5,58 lbs.; further, because the horizontal force drawingthe bo<ly fonvards lbŁ., havt-, with reference to the horizonral 
	If 
	the 
	lbs., 
	anri 
	the 
	amounts 
	only 
	to J 
	35,20 
	·w·e 

	Q 
	motion, the loss of force 150-135,20 = 14,S0 lbs. 
	0
	0

	N_ 50,78 
	..J. _ 

	135,20 
	135,20 
	-s 


	forces, two others of essential service for practical 
	of 
	use 
	may 
	be 
	de­

	Fig. 37. 
	Fig. 37. 

	and resolve the forces obtain the forces in the one axis Q1, Q2 and Q, and those inthe otherand R=R1 +Ri . 
	1
	1
	P


	and P, as '\vell as their re­sultant P, into components in the direction of these axes, viz : Pinto Qand 
	2
	1 

	Ł, Pinto Qand R2, and 
	2 
	1 
	2 

	R, R, and 
	R
	i 
	, 
	2
	Q
	= 
	Q
	1
	+ Q
	2, 

	Yany point 0, and let perpendiculars ON, OJ\'Ł and O.lV" on the directions , 
	fall 
	from 
	the 
	same 
	1
	of 
	the 

	no,,ve take in the axis .1ll.. 
	no,,ve take in the axis .1ll.. 
	If 
	v 


	P, Pand P we obtain rectangular triangles 1
	forces 
	i 
	2 
	.MON
	.l'JJON'l, 

	VIZ : 
	"" 
	"" 

	A Jl,JONt'-? A .ŁIP2QA Mo.1v· A JtIPQ. 
	2 
	a 

	. . 
	. . 
	1
	.J1rI
	Q

	.
	rinciple 
	P


	i. e_!1_"flt!Ł 
	. 
	.

	a so 
	a so 
	pthe values
	if 
	,
	-r
	e 
	ut 


	Q JJ. 
	d 
	J
	N

	-)l['
	P 
	O 

	i
	i
	Q,_ :PtI.'N'
	-
	-
	.1l
	f
	O 
	an

	P
	P
	, 

	-
	1

	derived of , ,obtain 
	henc
	e 
	Qi
	Q
	i
	then 

	FORCES IN SPACE. 
	PA,[' 
	.
	0
	1 

	p ..ŁIN 
	p ..ŁIN 
	p ..ŁIN 

	.. Ł[N+ P..Łf.J\ · 
	p
	t 
	i
	2 
	r
	2 

	OJ\
	OJ\
	OJ\
	.. 

	R OJv"

	ande
	1 
	2= 
	2 

	· . 
	· . 
	R
	= 
	1

	ON
	R 
	_

	-=--, therefore 
	, 

	pŁ10 pJUO P J1[0
	l 
	'}, 

	P. O.JV"-P• OlvŁ + P• 
	P. O.JV"-P• OlvŁ + P• 
	1 
	2 


	ON•
	2

	equations still bold good, if P the mean force be made up ofthree or more forces P, P, P, because generally
	These 
	1
	'l
	3

	1 + Qz+ QJ + • · • 
	1 + Qz+ QJ + • · • 
	Q= Q



	R=R+R2+R+ ... 
	R=R+R2+R+ ... 
	R=R+R2+R+ ... 
	1 
	3 

	and, therefore, generaJly '"e may pute:

	lp• :r.LŁ +p• Jl1N+ p• Jl[Ł + . . . ' 
	. p . JlfN 
	l 
	2 
	'1. 
	3 

	2. 1 • J\r+P• ON+P• OJV;+ ... 
	P. OJ\" 
	P
	O
	1 
	2 
	2 
	3 

	In both equations the mean force P must correspond to the forces 1, P2, P, an<l from these equations, not only the magnitude, the direction of this force may be determineed. 
	P
	3
	but 
	also

	§ 80. If the point of appleication .lt.:J move in a straight line towards 0, or if we irnagine this point to have described 
	Fig. 38. the space J1[0=s, then the projection of this 
	Figure
	Figure

	space MN s1 in the direction of the force �IP is called the space of the force P, and the pro­duct sof the force and its space, t!te work or ciency of the force. If ,ve substitute in the
	P
	1 
	fi

	ttf
	ttf

	equation ( 1) of the last ( §) these designations, we have 
	Ps=Ps+Ps,+Ps+ ... , 
	Ps=Ps+Ps,+Ps+ ... , 
	1
	1 
	2
	3
	3 

	or the work, or meclta1rical ej/Pct, oftl,e resultant is equivalent to the su1n oft!te works, or 1neclianical rffects, of the co1n­ponents.
	In the su1nmation of the mechanical effects, as in that of the forces, we must have regard to their signs. If a force (Q) of the forces Q,Q, &.c., of the last § acts io an opposite direction to the rest, "'e must 
	3
	1
	2

	Fig. 39. Fig. 40. Fig. 41. 
	Sect
	Figure
	Figure

	oorreeponA:.._ to the ftiotion · and a wanoe P. -930 lb&..· 8'0ŁŁ d9wnwarda, and7 Ł ' &-• . . .. . . . . . 
	TRANS.MISSION OF MECHANICAL EFFECT. 
	introduce it as neŁtive, but this force Q, Fig. 39, is the componentof a force P, which, acting in the circumstances set forth in the former §, opposed to their proper motion .M, we are, therefore,to consider that force opposed to the mohon MN, Fig. negative, and that one P, Fig. 41, acting in the direction of motion MN as positive.
	3
	3
	Ł
	obliged 
	40, 
	as 

	If the forces are variable in magnitude or direction, the formula s+Ps+Ps+ ... is only correct for infinitely small spacess, s, s, &.c. 
	Ps==P
	1
	1 
	1
	1 
	3
	3 
	1
	1

	(J, cr, cr, corresponding to an infinitelydisplacement o of a material point, are caJled their virtual t,elt,:.and the law corresponding to the formula Po-Po1 +P+ 
	The 
	spaces of the forces 
	1
	1
	3
	small 
	ci.ties; 
	1
	1o1 

	.
	.
	.
	Ps"s, tM pri,nci,lt of virtual t,tlocilia. .e
	p



	§81. Transmi.ssion of .Mechanical Fi/fect.-From the princile of viva, the mechanical effect (,) in (P) generates in changing the 
	p
	vis 
	P
	rectilinear 
	motion, 
	which 
	a 
	fo
	rce 
	velocity 
	c 
	of 
	a 
	mass 
	Mi
	nto 
	ano­

	ther v Ps-"e)M. 
	ther v Ps-"e)M. 
	is 
	(
	1 
	c9

	-; 

	IP be now the mean force arising from other forces, P, P, &acting upon the mass .M, and the spaces which these describee· be s, s, whilst the mass itself .M describese,, we then have from the 
	f 
	1
	1
	c.,
	1
	1

	foregoing: 
	foregoing: 

	P1-P,+Ps9+... and, therefore, the following genera!·formula: 
	1
	1 
	1

	+P+..•=-(viŁ) M, 
	P
	1
	s
	1
	1
	s
	1

	which expresses that the sum of the mechanical effects of forces is equal to half the gain of vis viva of the masa taking uptheee forces. 
	.the 
	aiagle

	If the velocity during the motion the motion itself be uniform, we 
	.... 
	. 

	be invariable, that i1 o-c,.e
	and 

	-o, consequently 
	have 
	.then 
	.,•Ł

	P+P1+Ps-0,
	1
	s
	1 
	1
	1 
	3
	3 
	+ 

	t_he sum of the mechanical effects of the single forces 
	'· e. 
	-
	-


	the sum of the mechanical effects -O, then 
	If 
	inversely 
	the 
	forces 

	0. 
	0. 

	do not change the motion of the body in the ven direction,e· nor im­to it in the given direction any motion which it ha.d not forces are variable, the variable velocitye" after a passes into its initial velocity c, which takes place in 
	gi
	part 
	befo
	Ł. 
	If 
	the 
	certain 
	.nŁe 
	ag
	Ł
	n 
	all 
	period
	ic 

	-c
	-c

	as they present themselves in many machines. 
	motions 
	Now 
	" 

	Łves effect "e)M-O;therefore within a 
	the 
	(
	2 
	ct
	period 
	of 
	the 
	mo
	-


	-; 
	-; 
	IU?faoe by means of a foroe P
	onzontal 


	ita motion two res'--aao!. 
	and 
	has 
	during 
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	Figure

	CURVILINEAR MOTlON. 
	°
	°

	inclined to the horizon at an angle fJ = 35. What work will the forco (P) rerronn, in ortler to convert the two feet initial 
	1

	Fig. 42. 
	Fig. 42. 
	locity of 5 feet? 
	If we put the rlil!'tnnŁo of t11e oarŁ ringe MOe= lf, "'e then ha \'8 fi.1r • Jll\= P, co,. 4 = 600 X • ro,. 24 = 6O:l,04 . , i further, tllo \\'ork the resii:,ting force = (-P,i) . ,= 350 . , ; lnŁŁly, the work of P3 (-P.MJl,=-P,ro.Ł. S= -230 X, cos. 35= -188,40. 
	the
	,vork of tlie force P
	, 
	=P
	i 
	d 
	1 
	of
	-
	= 
	3 
	3 
	3 
	° 


	•· There then remains for the v,ork of the etl'ective .fi,l'CCl: I's Ps co,.i,.-P•rot. 0-P1 �­S= 602,94-350-188,-t0. 1 = 04,a4 • , n. 11.>s. 
	1
	Ł
	3
	Figure
	(
	) 

	=
	=
	=

	G( "") X 5000=0,0lSS X 25--JX 5000 1627 ft. lbs.
	( tr-I! ) 
	5
	-2
	(
	) 

	2g 2g
	2g 2g

	If nO\V we equate both mechanical effects, we then obtain 64,64e. 1= 16271 cons
	o-

	quently the <listnoce of the carriagee: =25,26 feet; and lastly, the mechanical 
	• 
	= 
	1627 

	6.J,Ł4effect of the force P: P,coa. •= 60204 X 2 5,26 = 15230,2 ft. lbs. 
	1 
	1

	§ 82. Curvilinear .ftfotion.-Provide<l that the spaces t11 <11, , infinitely Łmall, ,ve may also apply the formula laŁt fou;id to curvedpaths. Let JrlORS, Fig. 43, be the path of a material point, and .MP, = Pthe resultant of all the forces Fig. 43. acting upon it; if we resolve this force 
	&c.
	be
	1 

	into t\VO others, of \vhich the one .l',K= K is tangential, and the other JrlN= N normal to the curve, we then term the one a tangential, and the other a normal force. 
	f

	Whilst the material point describes the element .NIO = t1 of its curved path M8, and its velocity c is trans
	-

	1
	1

	formed into v, its mass Mlays claim to the work ci) M, but 
	1
	(
	v
	1

	;-
	;-
	;-


	the tangential force K performs at the same time the work K <1,and the normal force the work N. 0 = 0; consequently K a = 
	2 i 
	2 i 
	(
	v1
	c
	) 
	M. 

	;-
	;-


	If the projection ..il1of the elementary space Jl!O in the direction of force be put = a1, then also P1a= Ka; and, therefore, 
	Q
	1 

	2
	2

	P1<J1 ( v12cM.
	= 
	= 

	-;; 
	)

	space described by the material point MR be 
	If 
	tŁe 
	"'Łole 
	decom­

	_
	_

	P?into 1nfin1te]y small parts, and each part be projected upon 
	sed 
	the 

	_
	_

	direction of force at each moment, we then obtain the elementaryspace ofte fŁrce at each moment, and the work at each moment bythe multiphcatton of the space and force, and if we add together all these 
	_ 
	Ł
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	Figure

	CURVILINEAR MOTION. 
	mechanical effects, we then havee: P1d+ Pd+ P3tJ+ · • · = 
	1 
	2
	2 
	3 

	2 22 2 
	v;)M + z /JI,[+ v) M +...( v ;)M= 
	(
	1
	cf 
	(
	v
	2
	v
	) 
	(
	3
	= 
	cf 

	-;--;
	v
	2 

	(h,_lt1) JI,[, if /-,,1 be the beiht due to the initial ,•elocity c, and due to the terminal velocity v. Thus, in curvilinear motion, the 
	Ł
	h 
	that 

	_
	_

	whole effect of tlte moing force is equal to half the gain of is or equal to the product of the a1ass into the difference of the heights 
	v
	v
	Ł
	iva, 

	Łark and Exa"iple. The formula ohtained ,vhich is derived from con1bioning tŁe 
	_
	_

	e of the vis viva with that of the virtual velocities, is especialJy applicable 1n cases ,vhore bodiP.s are coni.i.rnined l>y a fixed track or by suspension to descril.,e o. deter­minate path. If gravity aloue act upon such o. body, the work wbjch it generates in a body of the weight G falling frorn a height corresponding to the ver1icaJ projection M, R, = •• is = G,, and therefore : 
	pr1no1pl

	G •= (h-h) G, i.e. s=h-h,. 
	1

	Łis is nlso the space which o body deseribes in fl\lling from a hoizntnl plane ..i.JJ, 
	Ł
	Ł

	_
	_

	F1g. 44-, to another CD; tbo difference of the be,gbts Jue w the velocity 1s always equal 
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	bs ltf1 01 R1,M2 o!l R'l, Mo. Ri, &cWith equal veJocjty (c), acquire at the enu of these patbs, nŁ 
	to the perpendicular height of fall; bodies Łvbich begin to describe the pa.L
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	well as at different times, e'}ual velocities (v). If the initial velocity c = 10 feet. nnd the vertical height of tilll •=20 feet, then h= •+ h1 =20+ 0,0155o. I0J =21,55 feet, 
	anctothe trtninal velocity ti=✓2 h=8,02o. ✓ 21,5 =37,18 feet, in whatever ctuved 
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	or nght J1oe dte descent may ce. 
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