SECTION II.

MECHANICS, OR THE PHYSICAL SCIENCE OF MOTION IN GENERAL.

CHAPTER I.

fUNDAMENTAL PRINCIPLES OF MECHANICS.

§44. Mechanics.-Mechanics is the science which treats of the laws of the motion of material bodies. It is an application of phoronomics to the bodies of the external world, in so far as the latter is concerned with the motion only of geometrical bodies.

Mechanics is a part of natural philosophy, or of the doctrine of laws according to which changes take place in the material world, viz., that part which considers the changes in bodies resulting from measureable motions.
§ 45. Force.-Force is the cause of motion or change of motion in material bodies. Every change of motion, viz., every change in the velocity of a body must be regarded as the effiect of a force. For this reason we measure the force called gravity by a body falling freely, because the same incessantly changes its velocity. On the other hand, rest, or the invariability of the state of motion of a body, must not be attributed to the absence of forces, for opposite forces destroy each other and produce no effiect. The gravity with which a body falls to the ground still acts, though the body rest upon a table; but this action is counteracted by the solidity of the table or of the support.
§ 46. A body is in equilibrium, or the forces acting upon a body are in equilibrium, when there is no residuary effiect, no motion produced or changed, or when each neutralizes the other. In a body suspended by a thread, the strength of the thread is in equilibrium with gravity. In forces, equilibrium is destroyed, and motion arises if one of the forces be removed, or in any way counteracted; for instance, a steel spring, bent by a weight, enters into motion when the weight is taken away, because the force of the spring, called elasticity, then comes into action.
Statics is that part of mechanics which treats of the equilibrium of forces. Dynamics, on the other hand, treats of forces in so far as they produce motion.
§ 47. Division of Forces.-According to their effects, forces are either moving forces or resistances; that is, as motion is brought about or impeded. Gravity, the elasticity of a steel spring, \&c., belong to motive forces. Friction, the solidity of bodies, \&c., are resisting forces or resistances, because by them motion is either diminished or destroyed, and can by no means be brought about. Moving forces are divided into accelerating and retarding; the first produces a positive, the second a negative acceleration; by the one an accelerating, by the other a retarding motion is produced. Resistances are retarding forces, but a retarding force is not always a resistance. Gravity, for example, acts upon a body projected vertically upwards to retard it; but gravity, on this account, is no resisting force; for, by the consequent falling down of the body, it then again becomes a motive one.

There is a distinction between constant and variable forces. While constant forces always act in the same way, and, therefore, produce like effects in like particles of time, i. e. equal increments or decrements of velocity, the effects of variable forces are different at different times; while the former bring about a uniformly variable motion, to the latter corresponds a variably accelerated or a variably retarded one.
§ 48. Pressure.-Pressure and traction are the first effects of forces upon material bodies. By means of them, bodies are compressed and extended, and especially changed in their form. The pressure in traction brought about by gravity, acting vertically downwards, which the support of a heavy body, or the string to which a body is attached has to sustain, is called the weight of the body.

Pressure and traction, and weight also, are magnitudes of a particular kind, which can only virtually be compared with each other, as the action of forces serves for their measurement. The simplest, and on that account the most general, means of measuring forces is by weights.
§ 49. Equality of Forces.-Two weights, or two pressures, or tractions, and also the forces which correspond to these last, are equal, when one may be replaced by the other, without producing different effects. If, for example, a steel spring be bent by a weight G, as by another G_{1}, then are these weights, and therefore the gravities in both bodies, equal. If a loaded balance be made to vibrate as much by a weight G as by another G_{1}, substituted for G, these two weights G, G_{1} are equal; in this case, the arms of the balance may be equal or unequal, and the remaining load great or small.

A pressure or weight (force) is $2,3,4,8 \mathrm{c}$., times as great as another pressure, \&c., if it produces the same effect as $2,3,4 \ldots n$ pressures together of the second kind. If a balance, otherwise loaded at will, is brought into the same vibration by a weight (G) as by the addition of $2,3,4$, equal weights (G_{1}), the weight (G) is $2,3,4,2 c \mathrm{cc}$., times as great as the weight (G_{1}).
$\S 50$. Matter.-Matter is that by means of which bodies belonging to the external world, which in contradistinction to geometical bodies
we term material or physical, act upon our senses. Mass is the quantity of matter composing a body.
Bodies of equal volume, or equal geometrical contents, have generally different weights when they consist of diffierent kinds of matter. We cannot, therefore, infer the weight of a body from its volume until we first know the weight of a unit of volume, for instance, a cubic foot or cubic centinetre of the matter of the body.
§ 51. Unit of Weight.-The measurement of weights and forces consists in a comparison of them with some given invariable weight, taken as unity. The choice of this unit of weight or force is perfectly arbitrary; it is nevertheless advantageous in practice, that the weight of a volume of some universally diflused body, equivalent to that of the unit, should be chosen.

The units of weight or pressure are different in different countries. In England, the unit of pressure from which all the rest are derived is the weight of 22,185 cubic inches of distilled water (at a temp. 628 Fahr. taken in air, and the height of barometer at 30 inches). This weight is equal to 5760 grains; which again is equal to one pound troy, and 7000 such grains constitute the pound avoirdupois. The gramme is the weight of a cubic centimetre of pure water in a state of maximum density (at a temperature of 48 C .). The Prussian pound is also a unit referred to a weight of water. A Prussian cubic foot of distilled water in vacuo, and at a temperature 158 R . weighs 66 Prussian pounds. Now a Prussian foot $=139,13$ Paris lines $=0,3137946$ metres $=1,029722$ English feet: hence it follows that a Prussian pound $=467,711$ grammes $=1,031114$ pounds English.*
§52. Inertia.-Inertia is that property of matter, in consequence of which it can of itself alone neither acquire nor change motion. Every material body remains at rest so long as no force acts upon it, and every material body once set into motion maintains a uniform rectilinear motion, so long as it is not subjected to the action of a force. Hence, when a change takes place in the condition of motion of a body, when it changes its direction of motion, or when it acquires a greater or less velocity, this is not to be attributed to the body as a certain quantum of matter, but to the agency of some foreign cause or force. In as much as a development of force takes place at every change in the motion of a material body, in so far inertia may be ranked amongst forces.

If we could entirely remove the forces acting upon a mass in motion, it would move on uniformly without ceasing, but we find nowhere such a uniform motion, because it is not possible for us to withdraw a mass from the action of every force. When a body moves upon an horizontal table, gravity, which is then counteracted by the table, exerts upon the body no immediate action, except that from the pressure of the body against the table there arises a resistance, which we shall consider more closely in the sequel under the name of fric-

[^0]tion, which incessantly abstracts velocity from the moving body, imparts to it a retarded motion, and brings it finally to rest.

The air likewise opposes resistance to a moving body, and from this resistance, if the friction of the body were entirely put aside, a gradual diminution of velocity would ensue. But we find that the loss of velocity becomes the less, and that the motion also approximates more and more to a uniform one, the more we diminish the number and strength of these resistances ; and hence we may conclude, that, by the removal of all moving forces and resistances, an entirely uniform motion must take place.
§ 53. Measure of Forces.-The force (P) which accelerates an inert mass (M) is proportional to the acceleration (p), and to the mass itself (M) : it increases in equal masses as the increment of velocity in infinitely small times, and increases by equal increments of velocity in the same ratio as the masses become greater. The mtuple acceleration of one and the same mass, or of equal masses requires an mtuple force, and an ntuple mass for the same acceleration, an ntuple force.

As we hare not yet chosen a measure of the mass, we may, therefore, at once, put $P=M p, i$. e. the force equal to the product of the mass and the acceleration, and, at the same time, in place of the power, its effect, i. e. the pressure produced by it.

The correctness of this general law of motion may be readily proved by direct experiment : for example, by letting equal and differently movable masses be impelled upon an horizontal table by means of bent springs; and, it is obvious, from this, too, that all the consequences deduced, and all the laws developed from them for compound motions, fully correspond with observation and the phenomena of nature.
§ 54. Mass.-All bodies fall at one and the same place of the earth, and in vacuo equally fast, viz., with an invariable acceleration $g=9,81$ metres $=32,2$ feet ($\oint 15$); if, therefore, the mass of a body $=M$, and the weight measuring its gravity $=G$, we have from the last formula

$$
G=M g, i . e .
$$

the weight of a body is a product of its mass and the acceleration of gravity, and inversely : $\quad M=\frac{G}{g}, i . e$.
the mass of a body is its weight divided by the acceleration of gravity, or the mass is that weight which a body would otherwise have if the acceleration of gravity were $=$ to unity, as a metre, a foot, \&c. At a point upon, or in the vicinity of the earth, or of any other heavenly body, where bodies do not fall with 9,81 metres $=32,2$ feet, but with a velocity (after the first second) of one metre $=3 \frac{1}{3} \mathrm{ft}$., the mass, or rather its measure, is from hence immediately given by the weight of the body.

According as we express the acceleration of gravity in metres or in feet, we have, therefore, the mass

$$
\begin{aligned}
& M=\frac{G}{9,81}=0,1019 \mathrm{G}, \text { or } \\
& M=\frac{G}{32,2}=0,031 \mathrm{G} .
\end{aligned}
$$

The mass of a 20 lb . heavy body, $M=0,031 \times 20=0,62 \mathrm{lb}$., and inversely the weight of a mass of $20 \mathrm{lbs} . G=32,2 \times 20=644 \mathrm{lbs}$.
§ 55. In so far as we assume the acceleration (g) of gravity as invariable, it follows that the mass of a body is exactly proportional to its weight, and that also for the masses M and M_{1}, with the weights
G and G_{1} :

$$
\frac{M}{M_{1}}=\frac{G}{G_{1}} .
$$

We hence obtain the weight as a measure of the mass of a body; the greater the mass which a body measures, the greater is its weight.
The acceleration of gravity is, in fact, somewhat variable, it becomes greater the nearer we approach the poles of the earth, and diminishes the more we advance towards the earth's equator; it is greatest at the poles, and least at the equator. It also diminishes the more a body is above or below the level of the sea; and attains its greatest value at the level of the sea. But, since a mass, so long as nothing is added to, or taken from it, is invariable, so that at all points of the earth, as well as those beyond it, at the moon, for instance, it is still the same; it hence follows that the weights also of bodies are variable and dependent upon the place of the bodies, and must be altogether proportional to the acceleration of gravity, corresponding with the place, or

$$
\frac{G}{G}=\frac{g}{g_{1}} .
$$

One and the same steel spring is diffierently bent by one and the same weight at different places of the earth; it is least at the equator, on high mountains, and in deep mines; greatest in the vicinity of the poles, and at the level of the sea.
§ 56. Density is the intensity with which space is filled by matter. A body is so much the denser the more matter there is in its space. The natural measure of density is that quantity of matter (that mass) which fills a unit of volume, because matter can only be measured by weight, so that the weight of a unit of volume, a cubic metre, or cubic foot of some matter, serves as a measure of its density.

For example: the density of a cubic foot of water $=62,38 \mathrm{lb}$., and that of cast iron $=452,13 \mathrm{lb}$., because a cubic foot of water weighs $62,38 \mathrm{lb} .=998,08 \mathrm{oz}$. avd., and a cubic foot of cast iron weighs $452,13 \mathrm{lb}$.
From the volume V of a body and its density γ, its weight $G=$ $\mathbf{V}_{\boldsymbol{\gamma}}$. The volume multiplied by the demsity gives the weight of a body.

The density of bodies is either uniform or variable, according as equal volumes of the same body are of equal or of unequal weight. The density of metals, for instance, is uniform, or they are homogeneous, because equal and very small parts of them are of the same
weight: on the other hand, granite is a body of variable density, because made up of parts of different densities.
Example.-1. If the density of lead be $708 \mathrm{Ibs.} 3,$,2 cubic feet of lead weigh $=708 \times$ $3,2=2265 \mathrm{lbs}$. -2 . If the density of bar iron $=485,8 \mathrm{lbs}$; a mass of it of 205 lbs . has a volume $V=\frac{G}{\gamma}=\frac{205}{502}=0,4023$ cubic $\mathrm{ft}=0.4083 \times 1728=705.54$ cubic inches. -3 . 10,4 cubic feet of deal, perfiectly saturated with water, weigh 577 lbs ; the density of this wood is therefore: $\gamma=\frac{G}{V}=\frac{577}{10,4}=55,5 \mathrm{lbs}$.
§ 57. Specific Gravity.-Specifie gravity or specific weight is the relation of the density of a body to that of the density of some other, generally water, taken for unity. Now the density is equal to the weight of a unit of volume: hence the specific gravity is also the relation of the weight of one body to that of another, viz. water, under the same volume.

In order not to confound the specific weight with thatewhich belongs to a body of a certain magnitude, the last is usually called the absolute weight.

If γ be the density of matter (of water) to which we refer the density of other matter, and γ_{1} the density of any one kind of matter, whose specific gravity we will designate by ε, then the formula

$$
=\frac{\gamma_{1}}{\gamma} \text { and } \gamma_{1}=\varepsilon \cdot \gamma \text {. }
$$

holds good, and the density of a substance is equal to its specific gravity into the density of water.

The absolute weight G of a mass of volu me V and specific gravity s is : $G=V_{\gamma_{1}}=V_{\varepsilon \gamma}$.
Example.-1. The density of pure silver is $653,368 \mathrm{lbs}$. and that of water $=62,38 \mathrm{lbs}$, consequently the specific gravity of the former $=\frac{653,368}{62,38}=10,474$; i.e. each mass of silver is $10 \frac{1}{2}$ times as heavy as a mass of water filling the same space. -2 . The specific gravity of quicksilvert $=13,598$; its density, therefore, is $=13,598 \times 62,38=848,24$ lbs.; a mass of 35 cubic inches, therefore, weighs:

$$
G=848,24 . V=\frac{848 \times 35}{1728}=17,18 \mathrm{lbs}
$$

Remark. In these calculations the use of the French measure and weight las this advantage, that in order to effect the multiplication of and γ, it is merely requisite to advance the decimal point ; because a cubic centimetre of water weighs one gramme, and a cubic metre a million, or one thousand kilogrammes. The density of quicksilver, according to the French measure and weightt $=13,598 \times 1000=13598$ kilog.; i. ea a culuic metre of quicksilver weighs 13598 kilogrammes.
§ 58. The following table contains the specific gravities of certain bodies constantly coming into applieation in mechanics:

Mean specific gravity of dry laurel wood saturated with water	$=0,659$
	1,110
Mean specific gravity of dry pine wood	$\begin{aligned} & 0,453 \\ & 0,839^{*} \end{aligned}$
Quicksilvee	$=13,598$
Lead	$=11,33$

[^1]
§ 59. State of Aggregatione-Bodiesappear to us, according to the different cohesion of their parts, under three principal conditions, which we term states of aggregation. They are either solid or fluid, and in the latter case, either liquid or gaseous. Solid bodies are those whose parts adhere so strongly together that a certain force is required to change the form of these bodies, or to effect their division. Fluid bodies, on the other hand, are those whose parts may be displaced about each other by the smallest force. Elastic fluid bodies, whose representant is atmospheric air, are distinguished from the liquid represented by water, in as much as there is inherent in them an endeavor to dilate themselves more and more, which is not the case with water, \&c.

While solid bodies have a proper form and determinate volume, liquid or aqueous bodies possess only a determinate volume without any proper form, and the elastic extensible fluid bodies have neither one nor the other.
§ 60. Division of Forces.-Forces are different according to their nature; we will here mention the principal:

1. Gravity, by means of which all bodies tend to approa ch towards the centre of the earth.

[^2]2. The force of inertia, which manifests itself when changes in the velocity of inert masses occur.
3. The muscular force of animated beings; the force exerted by the muscles of men and animals.
4. Elasticity or spring-force, which bodies exhibit in a change of their form or volume.
5. The force of heat or caloric, in consequence of which bodies expand or contract by a change of temperature.
6. The magnetic force, or the attraction and repulsion of magnets.
7. The cohesive force, the force by which the parts of a body are kept together, and resist separation.
8. Adhesion, the force with which bodies brought into close contact attract each other.

The resistances of friction, rigidity, solidity, \&c., arise mainly from the force of adhesion.
§ 61. In reference to forces we have to distinguish:

1. Its point of application, that point of a body on which the force immediately acts.
2. Its direction, the straight line in which a force moves forward its point of application, or strives to move it forward, or to impede its motion. The direction of a force, like every direction of motion, has two senses, it can take place from left to right, or from right to left, from above to below, and from below to abore. The one is termed positive, the other negative. As we write from left to right, and from above to below, it would be most convenient were we to call these motions positive, and those in the opposite direction, negative.
3. The absolute magnitude or intensity of a force, which, as above stated, is measured by weights, as pounds, kilogrammes, \&c.
§ 62. Action and re-action.-The first effect which a force produces in a body, is a change of form or volume combined with extension or contraction, which begins at the point of application, and from thence diffiuses itself further and further. By this inward change of the body, its inherent elasticity is called into action, puts itself into equilibrium with the force, and, therefore, is equal and opposed to the force. Action and re-action are equal and opposed to each other. This law not only prevails in reference to forces produced by contact, but also in the so-called forces of attraction and repulsion amongst which the magnetic force and gravity itself may be ranked. The more strongly a magnet attracts a bar of iron, the more strongly is the magnet itself attracted by the iron. The force with which the moon is attracted towards the earth (gravitation) is equal to that with which the moon reacts upon the earth. The force with which a weight presses upon its support is given back in an opposite direction; the force with which a workman draw's or pushes at a machine, \&œ, reacts upon the workman and strives to move him in the opposite direction. When a body impinges against another, the pressures are reciprocally equal on each of the bodies.
§63. Division of Mechanics.-The whole subject of mechanics
may be included under two principal divisions, according to the state of aggregation of bodies.
4. The mechanics of solid bodies, which is also well named geomechanics.
5. The mechanics of fluid bodies, hydromechanics or hydraulics; the last is subdivided into:
6. Into the mechanics of water and liquid bodies especially, hydromechanics or hydraulics.
7. Into the mechanics of air, and other aëriform bodies, especially, aëromechanics, the mechanics of elastic fluids.

If we now have regard to the division of mechanics into statics and dynamics, we have the following parts:

1. Statics of solid bodies, or geostatics.
2. Dynamics of solid bodies, or geodynamics.
3. Statics of fluids, or hydrostatics.
4. Dynamics of fluids, or hydrodynamics.
5. Statics of aëriform bodies, or aërostatics.
6. Dynamics of aëriform, aërodynamics, or pneumatics.

CHAPTER II.

THE MECHANICS OF A MATERIAL POINT.

§ 64. A material point is a material body, whose dimensions are indefnitely small in comparison with the space occupied by it. In order to simplify the representation, we will in the following consider only the motion and equilibrium of a material point. A finite body is a continuous union of an infinite number of material points. If the single points or elements are all perfectly equal, i.e. move equally quick, in parallel straight lines, we may then apply the theory of the motion of a material point to that of the whole body, because, in this case, we may assume that equal parts of the mass of the body are impelled by equal parts of the force.
§ 65. Simple constant Force.-If (p) be the acceleration with which a mass (.M) is impelled by a force, we have, from § 53 , the forcea
$\boldsymbol{P}=\boldsymbol{M} p$, and inversely, the acceleration, $p=\frac{P}{M}$.
If, further, we put the mass $M=\frac{G}{g}$, where G is the weight of the body, and g the acceleration of gravity, we have the force:

1. $P=\frac{p}{g} G$, and the acceleration:
2. $p=\frac{P}{G} g$.

We find, therefore, the force (P) which impels a body with a certain acceleration (p) when we multiply the weight of the body (G) by the ratio $\left(\frac{p}{g}\right)$ of its acc eleration, to that of gravity.

Inversely, the acc eleration (p), with which a body is mo ved forward by a force (P) is given, when the acceleration (g) of gravity is multiplied by the ratio $\left(\frac{P}{G}\right)$ of the force and weight of the body.

Example. Let us suppose a body lying on an horizontal and perfectly smooth table, which presents no impediment to the body in its course, but counteracts the effiect of gravity upon it. If this body be pressed upon by a force acting horizontally, the body will give way to this influence, and move forward in the direction of this force. If the weight of this body be $G=50$ lbs., and if $P=10$ lbs. presses uninterruptedly upon it, it will enter into a uniformly accelerated motion with the acceleration $p=\frac{P}{G} \cdot g=\frac{10}{50} \times$ $32,2=6,44$ feet. On the other hand, if the acceleration with which a 42 lb . heavy body becomes accelerated bya force $(P)=9$ feet, then will this force $P=\frac{P}{g} \cdot G=\frac{9}{32,25}$ $\times 42=0,031 \times 378=11,7 \mathrm{lbs}$.
§ 66. If the force which acts upon a body is constant, there ari ses a uniformly variable motion, and indeed a uniformly accelerated one, if the direction of the force corresponels with the initial direction of the motion; and, on the other hand, a unibrmly retarded one, if the direction of the force is opposite to that of the initial direction of motion. If we substitute in the formulæ ($\$ 13$ and $\S 14$) for p, the value $\frac{P}{M}=\frac{P}{G} g$, we obtain the following:
I. For uniformly accelerated motions:

$$
\begin{aligned}
& \text { 1. } v=c+\frac{P}{G} g t, \text { or } v=c+32,2 \frac{P}{G} t . \\
& \text { 2. } s=c t+\frac{P}{G} \frac{g t^{2}}{2}, \text { or } s=c t+16,1 \frac{P}{G} t^{2} .
\end{aligned}
$$

II. For uniformly retarded motions:

$$
\begin{aligned}
& \text { 1. } v=c-\frac{P}{G} g t=c-32,2 \frac{P}{G} t . \\
& \text { 2. } s=c t-\frac{P}{G} \frac{g t^{2}}{2}=c t-16,1 \frac{P}{G} t^{2} .
\end{aligned}
$$

With the help of these formule all those questions may be answered which can be proposed relative to the rectilinear motions of bodies by a constant forc e.
Example.-1. A carriage weighing 2000 lbs . goes with a 4 feet velocity upon a horizontal line, oflering no impediments to it, and pushed forward by an invariable force of 25 lbs . during 15 seconds, with what velocity will it proceed after the action of this force? This velocity $v=c+32,2 \frac{P}{G} t$, but $c=4, P=25 \mathrm{lbs}$., $G=2000$, and $t=15$; hence it fellows, $v=4+32,2 \cdot \frac{25}{2000} \cdot 15=10,03$ feet -2 . Under similar circumotances a carriage, weighing 5500 lbs ., which, setting out with a unifiorm velocitr, has traversed 950 feet in 3 minutes, is so impelled forward by a force acting continuously for 30 seconds, that it afterwards passes over 1650 feet in 3 minutes; what is this force? Here the
initial velocity $c=\frac{950}{3.60}=5,277$ feet per second, and the terminal velocity, $v=\frac{1650}{3.60}$ $=9,166$ feet ; therefore $\frac{P}{G} g t=v-c=3,889$, and the force $P=\frac{3,889.1 G}{g t}=0,031 \times$ $3,889 \times \frac{5500}{30}=0,12056 \times \frac{550}{3}=22,10 \mathrm{lbs}$.-3. A sledge, weighing 1500 lbs., sliding foruard with a 15 ft . velocity, loses, through friction, upon its horizontal support, its whole motion in 25 seconds; how great is this friction? Here the notion is unifiormly retarded, and the terminal velocity $v=0$; hence $c=32,2 \frac{P t}{G}$, and $P=0,031 \frac{G c}{t}=$ $0,031 \times \frac{1500 \times 15}{25}=0,031 \times 900=27,9 \mathrm{lbs}$. the friction demanded.-4. Another sledge, of 1200 lbs . and 12 feet initial velocity, has to overcome by its motion a friction of 45 lbs .; what velocity has it after 8 seconds, and how great is the distance described? The terminal velocity is $v=12-32,2 \times \frac{45 \times 8}{1200}=12-9,66=2.34$ feet, and the distance describedæ $=\left(\frac{c+v}{2}\right) t=\left(\frac{12+2.34}{2}\right) \times 8=57.36$ feet.
§ 67. Mechanical Effect.-The work done, or mechanical effect, is that effect of a force which it produces in overcoming a resistance: as that of inertia, friction, gravity, \&c. Work is performed when loads are lifted, a great velocity imparted to masses, bodies changed in their form or divided, \&c. The work done, or the mechanical effect produced depends not only on the force, but also on the distance through which it is made to act or to overcome the resistance; it increases, of course, simultaneously with the force and the distance. If we lift a body slowly enough to allow of our neglecting its inertia, the labor expended is then proportional to its weight; for 1, the effiect is the same whether $m(3)$ times the weight $(m G)$ is lifted to a certain height, or whether m (3) bodies of the single weight (\boldsymbol{G}) are lifted to the same height; it is, namely, m times as great as the effort necessary for the lifting of a single weight to that height; and, again, 2 , the work is the same, whether one and the same weight be raised to $n(5)$ times the height ($n h$), or $n(5)$ times through the height, and it is of course $n(5)$ times as great as if the same weight were raised to a single height (h). The work again done by a slowly falling weight is proportional to the magnitude of this weight and the height from which it has descended. This proportionality also holds in every other kind of work done. In order to make a saw-cut of a given depth of double the length, there are twice as many particles to separate as from a cut of a single length; the work, therefore, is twice as great. The double length requires double the distance to be described by the force, consequently the work is proportional to the distance. In like manner the work of a pair of mill stones increases with the quantity of grains of a certain kind of corn, which they grind to a certain degree. This quantity, under otherwise similar circumstances, is proportional to the number of revolutions, or rather to the distance which the upper mill-stone, during the grinding of this quantity of corn, has gone through; consequently the work increases in proportion to the distance.
§68. The dependence above shown of the work produced by a
force upon the magnitude of the force and distance described by it, allows us to take that amount of work which is expended in overcoming a resistance of the magnitude of the unit of weight (as a kilogramme, pound, \&c.), along a path of the magnitude of the unit of length (metre or foot,) as a unit of the mechanical effect, or the dynamical unit, and then we may put the measure of this equal to the product of the force or resistance, and the distance described in the direction of the force whilst overcoming th is resistance.

If we put the amount of the resistance itselfe $=P$, and the distance described by the force, or rather by its point of application, in overe coming th is $=s$, the labor expended is :

$$
L=P s \text { units of work. }
$$

In order to define more clearly the unit of work, for which the single name, dynam, may be used, both factors P and s are generally given; and, the refore, instead of units of work, we say lilograme metres, pounds-feet; and inve rsely, metrekilo. and feet-pounds according as the weight and distance are expressed in kilogrammes and m etres, or in po unds and feet. These te rms are usually expressed for simplicity by the abbreviations $m k$, or $k m, l b$. $f t$., or $f t$. $l b$.

Example.-1. In order to raise a stamper 210 lbs 15 inches high, the mechanical effect $L=210 \times \frac{15}{12}=262,5 \mathrm{ft}$. lbs. is necessary.-2. By a mechanical effiect of 1500 ft . lbs., a sledge, which in its motion has to overcome a friction of 75 lbs ., is driven forward a spacets $=\frac{L}{P}=\frac{1500}{75}=20 \mathrm{feet}$.
\oint 69. Not only in an invariable force or constant resistance is the labor a product of the force and distance, but also the labor may be expressed as a product of the distance and force, when the resistance whilst being overcome is variable, if a mean value of the continuous succession of forces be taken as the force. The relation is he re the same as that of the time, the velocity, and the space; for the last may be regarded as a product of the time by the mean value of the ve locities. The same graph ical representations are here also applicable. The mechanical effect produced or expended may be considered as the area of a rectangular figure, $A B C D$, Fig. 27, whose

Fig. 27.

Fig. 28.

base $A B$ is the space described (s), and whose height is either the invariable force (P) itself, or the mean of the different values of the forces. In general, the work may be represented by the area of a figure $\mathcal{A}_{B C}$, Fig. 28, which has for its base the space (s), and wh ose height above each point of the base is equal to the force corresponding
with each point of the path described. If the figure $A B C D$ be transformed into a rectangular one $A B E F$ of like area, we have the height $A F=B E$ for the mean value of the force-the mean effort.
§70. Arithmetic and geometry give different methods for finding a mean value from a constant succession of magnitudes. Amongst these, Simpson's rule is that which is the most frequently applied in practice, and it combines a high degree of accuracy with great simplicity.

In every case it is necessary to divide the space $A B=s$ (Fig. 29)

Fig. 29.
 into n (the more the better) equal parts, as $. A E=E G=G I, \& c$., and to m easure the forces $E F=P_{3}, G H=P_{9}, I K=P_{3}$ \&c., at the ends of these parts of the distance. If, then, we put the initial force $\mathcal{A D D}=P_{0}$ and the force at the other end $B C=P_{\mathrm{n}}$, we have for the mean force:
$P=\left(\frac{1}{2} P_{0}+P_{1}+P_{3}+P_{3}+\ldots+P_{\text {n-1 }}\right.$ $\left.+\frac{1}{2} P_{n}\right) \div n$,
and, therefore, its work is:

$$
P_{s}=\left(\frac{1}{2} P_{0}+P_{1}+P_{2}+\ldots+P_{n-1}+\frac{1}{2} P_{0}\right) \frac{s}{n} .
$$

If the number of parts (n) be even, viz., $2,4,6,8, \& c .$, Simpson's rule gives still more accurately the mean force:

$$
P=\left(P_{0}+4 P_{1}+2 P_{3}+4 P_{3}+\ldots+4 P_{n-1}+P_{0}\right) \div 3 n
$$

and, therefore, the corresponding work:

$$
P s=\left(P_{0}+4 P_{1}+2 P_{2}+4 P_{3}+\ldots .+4 P_{s-1}+P_{0}\right) \frac{s}{3 n e}
$$

Example. In order to find the mechanical worls which a draught horse performs in drawing a carriage over a certain way, we make use of a dynamometer, or measurer of force, which is put into communication on oxe side with the carriage, and on the other with the traces of the horse, and the force is observed from time to time. If the initial force $P_{0}=110 \mathrm{lbs}$., the force, after describing 25 feet $=122 \mathrm{lbs} . ;$ after 50 feett $=127$ lbs.; after 75 feet $=120 \mathrm{lbs}$., and at the end of the whole distance of 100 feet $=114$ lles; then the mean value, according to the first formula : $P=\left(\frac{1}{\frac{1}{2}} \cdot 110+122+127+\right.$ $\left.120+\frac{1}{4} .114\right) \div 4=120,25 \mathrm{lbs}$, and the mechanica! work: P ? $=120,25 \times 100=$ 12025 ft . lbs.
from the second formala: $P=(110+4.122+2.127+4.120+114) \div 3 \times 4$

$$
\begin{aligned}
& =\frac{1446}{12}=120,5 \mathrm{lbs} ., \text { and the mechanical worls } \\
& P s=120,5 \times 100=12050 \mathrm{ft} . \mathrm{lbs}
\end{aligned}
$$

\oint 71. Principle of the Vis Wiva, or Living Forces.-If, in the formula of $(\oint 13) s=\frac{v^{2}-c^{2}}{2 p}$ or $p s=\frac{v^{2}-c^{2}}{2}$ we substitute for the acceleration p, its value $\frac{P}{G} g$, we thus obtain $P_{s}=\left(\frac{v^{2}-c^{2}}{2 g}\right) G$, or if we designate the heights due to the velocities $\frac{v^{2}}{2 g}$ and $\frac{c^{2}}{2 g}$. by h and h_{1} :

$$
P s=\left(h-h_{1}\right) G
$$

If we interpret this equatio n, so useful in practical mechanics, we
find that the work* $(\boldsymbol{P s})$ which a mass either acquires when it passes from a lesser velocity (c) into a greater (v), or produces, when it is compelled to pass from a greater velocity into a less, is constantly equal to the product of the weight of this mass, and the difference of the heights due to the velocities $\left(\frac{v^{2}}{2 g}-\frac{c^{2}}{2 g}\right)$.

Fxample 1. In order to impart to a carriage of 4000 lbs. weight, upon a perfiectly smooth railmad, a velocity of 30 feet, a mechanical work $P s=\frac{\sigma^{2}}{2 g} G=0,0155{ }^{g} G=$ $0,0155 \times 900 \times 4000=55800 \Omega \mathrm{lbs}$. is required; and just so much work will this carriage perform if a resistance be opposed to it, and it be gradually brought to rest-2. Another carriage of 6000 lbs . goes sorward with a velocity of 15 feet, which is trans formed by a force acting upon it into a velocity of 24 feet, how great is the work acquired by this carriage, or done by the force! To the velocities 15 and 24 feet correspond the heights due to velocity $h_{1}=\frac{c}{2 g}=3,49 \mathrm{n}$, and $h=\frac{\phi b}{2 g}=8,928 \Omega$; from this the mechanical work $P:=\left(h-h_{1}\right) G=5,441 \times 6000=32646 \mathrm{n}$. lbs If, now, the distanoe be known in which this change of velocity goes on, the force may be found; and when this is known, the distance may be determined. In this last case, for example, let the distance of the carriage amount to 100 feet, and, whilst describing this, the velocity passes from 15 into 24 feet; we have the force $P=\left(h-h_{1}\right) \frac{G}{8}=\frac{32646}{100}=326,46 \mathrm{lbs}$. Were the force itself 2000 lbs ., the spacees would be $=\left(h-h_{1}\right) e_{\bar{P}}^{G}=\frac{32646}{2000}=16,323$ feet.-3. If a 500 lbs sledge has entirely lost, through friction on its path, its velocity of 16 feet, after describing a space of 100 feet, then is the resistance of friction $P=\frac{h G}{s}$ $=0,0155 \times 16^{2} \times \frac{500}{100}=0,0155 \times 256 \times 5=19,84 \mathrm{lbs}$.
\oint 72. The formula found for the work in the foregoing paragraph :

$$
P_{s=\left(h-h_{1}\right)} G
$$

is not only good for constant, but also for variable forces, if, instead of P, the mean value of the force (firom $§ 70$) be introduced; for if the whole space (s) of motion be considered as consisting of equal and uniformly accelerated parts described $\left(\frac{s}{n}\right)$, then we have the amount of work for these :

$$
\begin{aligned}
& P_{1}\left(\frac{s}{n}\right)=\frac{v_{1}^{2}-c^{2}}{2 g} G, \\
& P_{2}\left(-\frac{s}{n}\right)=\frac{v_{2}^{2}-v_{1}^{2}}{2 g} G, \\
& P_{3}\left(-\frac{s}{n}\right)=\frac{v_{3}^{2}-v_{2}^{2}}{2 g} G,
\end{aligned}
$$

\&c., in so far as $v_{1}, v_{2}, v_{3}, \& c$., stand for the velocities acquired at the end of these parts of space ; and by the addition of all these works we have the whole work required for the transformation of the velocity c into v :
$P_{s=}\left(P_{1}+P_{2}+P_{3}+\ldots\right)-\frac{s}{n}=\frac{v^{2}-c^{s}}{2 g} G$, because for an infinite num-

[^3]ber (n) of forces $\left(P_{1}+P_{2}+P_{3}+\ldots\right) \div n$, it transforms itself inte a mean force, and because the members on the right hand of the equation $\frac{v_{1}{ }^{2}}{2 g} G$ and $-\frac{v_{1}{ }^{2}}{2 g} G$, as also $\frac{v_{2}{ }^{2}}{2 g} G$ and $-\frac{v_{2}{ }^{2}}{2 g} G$, \&c. are opposed to each other, so that the members $\frac{v^{2}}{2 g} G$ and $\frac{c^{8}}{2 g} G$, determined by the terminal velocity v and the initial velocity c, only remain.

The formula $P s=\left(\frac{v^{2}-c^{2}}{2 g}\right) G=\left(h-h_{1}\right) G$ is not used merely for the determination of the work, but not unfrequently, also, for the measurement of the terminal velocity. In the last case h is put $=h_{1}+$ $\frac{P s}{G^{-}}$or $v=\sqrt{c^{2}+2 g \frac{P_{s}}{G^{-}}}$If by the constant motion of a body, the terminal velocity $v=$ the initial velocity c, the work done $=$ zero, i.e. as much work is performed by the accelerated, as is expended by the retarded part of the motion.

Example-A carriage of 2500 lbs. proceeding upon a railroad without friction, has acquired by an augmentation of its velocity, which at the commencement amounted to 10 ft ., a mechanical work of 8000 lbs , its velocity after this work will be:
$v=\sqrt{102+64,4 \cdot \frac{8000}{2500}}=\sqrt{100+206}=17,49$ feet.
Remark. The product of the mass $M=\frac{G}{g}$ and the square of the velocity (v^{2}): $M v^{s}$ is called, without attaching to it any definite idea, the Jiving force (vis viva) of the moved inass: and hereafter, the mechanical work which a moved mass açuires, inay be pus equal to half of the vis vive of the same. If a mass enters from a velocity c into another ", the work performed is equal to half the difference of the vis viva at the cornmencement and end of the change of velocity. This law of the mechanical pertormance of brodies by means of their inertia, is called the principle of living forces, or the vis viva.
§ 73. Composition of Forces.-Two forces P_{1} and P_{2} act upon one and the same body, in the same or in an opposite direction, the effect is the same as if only one force acted upon the body, which is the sumn or difference of these forces; for these forces impart to the mass M the acceleration, $p_{1}=\frac{P_{1}}{M}$ and $p_{2}=\frac{P_{2}}{M}$, consequently from $\oint 28$, the acceleration resulting from both, is $\rho=p_{1} \pm p_{2}=\frac{P_{1}+P_{2}}{\sqrt{M}}$, and accordingly the forre corresponding to this, is : $\boldsymbol{P}=W p=P_{1}+P_{2}$.

The equivalent force P derived from these two is call ed the resultant; its constituente P_{1} and P_{2} the componentse

[^4]tion with which the hand falls $=p, G-P=\frac{G}{g} p$, and therefore the pressure $P=G-$ $\frac{p}{g} G=\left(1-\frac{p}{g}\right) G$. If the boly on the hand be saised with the acceleration $p,-p$ is then opposed to the acceleration g, therefore the pressure upon the hand $P=\left(1+\frac{p}{g}\right)$ G. According as a body ascends or descends with a 20 feet aoceleration, the pressure upon the handt $=\left(1-\frac{20}{32,2}\right) G=(1-0,62) G=0,38$, of the weiglt of the body, or $=$ $1+0,62=1,62$. 2. If with the flat hand I throw a body of 3 lbs .14 feet perpendicularly upwards, whilst I urge it on with the hand for the first 2 feet, the mechanical work performed is $P s=G h=3 \times 14=42 \mathrm{ft}$. lbs., and the pressure upon the hand, $P=$ $\frac{42}{2}=21 \mathrm{lbs}$. Whilst the resting bolly presses with 3 lbs , it reacts upon the hand during the projection with 21 lbs .
§ 74. Parallelogram of Forces.-When a material point M, Fig. 30 , is acted upon by two forces, P_{1}, P_{2}, whose directions $M X$ and $M Y$ make, with each other, the angle X.MY $=a$, these lines generate the accelerations in these directions, $p_{1}=\frac{P_{1}}{M}$ and $p_{2}=\frac{P_{2}}{M}$, and from their union, there arises a mean acceleration ($£ 34$) in the direction. MZ, both of which are given by the diagonal of a parallelogram formed from p_{1}, p_{2}, and the angle a; this mean or resultant ac-

Fig. 30.
 celeration $p=\sqrt{p_{1}{ }^{2}+p_{2}{ }^{8}+2 p_{1} p_{2} \text { cos.a, }}$ and for the angle ϕ which its direction makes with $M X$ of the one acceleration p_{1} :

$$
\sin . \phi=\frac{p_{2}}{\sin \cdot a} p
$$

If we substitute in these formulæ the above values of p_{1} and p_{2} :

$$
\begin{gathered}
p=\int\left(\frac{P_{1}}{M}\right)^{2}+\left(\frac{P_{8}}{M}\right)^{2}+2\left(\frac{P_{1}}{M}\right)\left(\frac{P_{2}}{M}\right) \cos a \text { and } \\
\sin . \phi=\left(\frac{P_{8}}{M}\right) \frac{\sin . a}{p} .
\end{gathered}
$$

If we multiply the first equation by M,

$$
M p=\overline{\sqrt{ } P_{1}{ }^{2}+P_{2}{ }^{2}+2 P_{1} P_{2} \cos , \alpha, \text { or }, ~}
$$

since $M p$ is the force corresponding to the acceleration:

$$
\text { 1. } P=\sqrt{ } P_{1}^{2}+P_{8}^{2}+2 P_{1} P_{2} \cos .
$$

$$
\text { 2. } \sin \phi=\frac{P_{2} \sin a}{P}
$$

Thus, the resultant force is determined in magnitude and direction from the component forces exactly as the resullant acceleration from the component acceleralions.

If we represent the forces by straight lines, and these lines be drawn, bearing the same proportions to each other as do weights, as
pounds, \&c., the mean force may be represented by the diagonal of the parallelogram whose sides are formed by the lateral forces, and one of whose angles is equal to that made by the directions of these lateral forces. The parallelogram which is constructed from the lateral forces, and whose diagonal is the mean force, is called the parallelogram of forces.

Example. When a body of 150 lbs . weiyht, resting upon a perfectly amooth mble (Fig. 31) is acted upon by two forcesn!" $=30 \mathrm{lbs}$.,

Fig. 31.
 and $P_{8}=2.4$ than which nake with each other an angle $P_{1} A P_{8}=\approx+8=145^{\circ}$: in what atirec. tion, and with what acceleration, will the motion take place? Since cos. $(\alpha+\beta)=\cos 105^{\circ}=-$ cas. 75°, the mean force:
$P=\sqrt{3()^{2}+244^{2}-2 \times 30 \times 24008.75^{0}}$
$=\sqrt{3710+670-1.140 ~ c u s .750}$
$=\sqrt{1470-37 \%, 7}=33,21 \mathrm{Hs}$ o, the acceleration correspoading with it is:
$p=\frac{P}{M!}=\frac{P g}{G n}=\frac{33,21 \times 32,2}{150}=7,1291$ n. The dirention of motion malies with the direction of the first force an angle a which is hatermined by: $\sin , a=\frac{24}{33,24} \sin .105^{\circ}=0,7224 \sin .75^{\circ}=$ 0,6978 , orns $=44^{\circ}, 15^{\prime}$.

Remurk. The mean forco P depends, from the formulat fonnt, only on the componetu forces, and not on the muxs of the bedy upon which the forces all. For this reuson, we find in niany works on mechanics, the correctness of the parallelogram of forces proved without regard to the mass, but with the assumption of some funda. inental litil:
§ 75. Resolu.tion of Forces.-By help of the parallelogram of forces, not only two or more forces may be reduced to a single one, but also given forces under given relations may be resolved into two or more forces. If the angles α and β are given, which the components $M P_{1}$ $=P_{1}$, and $\boldsymbol{M} P_{2}=P_{2}$, make with the given force $\boldsymbol{M} P=P$, the com. ponents may be found from the formulæ:

$$
P_{1}=\frac{P \sin \cdot \beta}{\sin \cdot(\alpha+\beta),} \quad P_{2}=\frac{P \sin \cdot \alpha}{\sin \cdot(\alpha+\beta)} .
$$

Fig. 32.

If the components are at right angles to each other, $\alpha+\beta=90^{\circ}$, and $\sin .(\alpha+\beta)=1$, and $P_{1}=P$ cos. a and $P_{2}=P \sin$. a. If β and a be equal to one other, $P_{2}=P_{1}$, viza

$$
P_{2}=\frac{P \sin . a}{\sin .2_{a}}=\frac{P}{2 \cos \cdot a}=P_{1} .
$$

Exinntple 1. Wiat is the pressure of a body M upona table $\mathscr{A} B$, Fig. 32, whose weight $G=70 \mathrm{lbs}$. and upon Which a force $P=50 \mathrm{Hs}$. acts, nnt whose direction is insclinet to the horizon ut an angle $P M P_{1}=a=40^{\circ}$? The lirerizontal compouent of P is $P_{1}=P$ cosa a $=50$ cos. $40^{\circ}=38,30 \mathrm{lbs}$, and the verical component $P_{2}=$ $P \sin \propto=50 \sin .40^{\circ}=32$, , 4 Its ; the latter strives to firam-the boty from the table, there remains then for the pressuren $G-P_{2}=70-32,14=37,80 \mathrm{llss}$. 2 . If a body of 110 lbs . is so moved along an horizontal way,
by two forces, that it describes in the first second a space of 6,5 feet, in a direction which deviates from the two directions of force by an angle $a=52^{\circ}$ and $B=77^{\circ}$, the forces themselves are given as follows. The acceleration is twice the space in the first second, so that $p=2 \times 6,5=13$ 1t. Now the mean force is $P=\frac{p G}{G}-0.031 \times 13 \times 110=$ 44,33 lbs., therefore the one component $P_{1}=\frac{P \sin .77^{\circ} g}{\sin \left({ }^{\circ}\left(i 2^{\circ}+77^{\circ}\right)\right.}=\frac{44,33 \sin .77^{\circ}}{\sin . j 1^{\circ}}=55,58$ lbs., and the other $P_{2}=\frac{4433 \mathrm{sin} .52^{\circ}}{\operatorname{sinim} .51^{\circ}}=45,59 \mathrm{lh} s$.
§ 76. Forces in a Plane.-In order to find the mean force P for a systen of forces P_{1}, P_{2}, P_{3}, Sc., we may adopt exactly the same method (§33) as that followed in the composition of velocities, viz: by the repeated application of the parallelogram of forces, we may resolve them two and two and so on, till but a single force remains. The forces P_{1} and P_{2}, for example, give from the parallelogran $M P_{1} Q P_{2}$, the mean force $M Q=Q$, if this be joined to P_{3}, we have from the parallelorram

Fig. 33.
 $M Q R P_{3}, M R=R$; and this last again forms a parallelogram with P_{4} and gives the force $M P$ $=P$ the last, and the resultant of the four forces $P_{1}, P_{2}, P_{3}, P_{4}$.

It is not necessary, in this way of composing forces, to complete the parallelogram, and draw its diagonal. We may form a polygon $M P_{1}$ $Q R P$, whose sides $M P_{1}, P_{1} Q, Q R, R P$, are parallel and equaleto the given components $P_{1}, P_{2}, P_{3}, P_{4}$, the last side. $M P$ completing the polygon will be the mean force sought, or rather its measure.

Remark. It is very nseful to snlve merhanical problems by construction also: though this method does not athat of such necuracy as that of calculation, it is free on the other limel from great croors, and may therefore serve as proof of the calculation. Irr Fig. 33 the forces metat each other under the given andes $P_{1} M P_{2}=72^{\circ}, 3 j^{\circ} ; P_{3} M P_{3}=33^{\circ}$, $21 J^{\prime}$, and $P_{\mathrm{s}} M P \mathrm{P}=92^{\circ}, 4()^{\prime}$, and are so drawn that a pound is represented by a line or
 $1: 2$ lbs, are theretore expressed by sides of 11,5 lines $=0,958 \ldots$ inches, 10,8 lines \bar{A} $0,900 \ldots$ inches, 8,5 lines $=0.71) 8 \ldots$ inches, 12.2 lines $=1.010 \ldots$ inches in lenyth. carelul construction of the polygon of furces gives the unaghitucte of the mean firceo $P=$ $14 .\{$ lus. and the vuriation of its direction MP from the directrou tofP, of the first force= Stit ${ }^{\circ}$.
§ 77. The resultant P is determined more simply and clearly if each of the given components P_{1}, P_{2}, P_{3}, \&e., be resolred accordiing to two axial directions $X \overline{\mathrm{X}}$ and $\overline{Y \mathrm{Y}}$, Fig. 34, at right angles to each other, into component forces as Q_{1} and R_{1}, Q_{2} and R_{2}, Q_{3} and

[^5]$R_{3}, \& c$., the forces lying in the same direction of axis, alded together, and the resultants in mag-

Fig. 34.
 nitude and direction of these two rectangular forces be then sought for. If the angles $P_{1} M X, P_{8} M X, P_{3}$ $M X, \& c .$, which the directions of the forces P_{1}, P_{2}, P_{3} make with the axis $X X=a_{1}$, a_{2}, a_{3}, \&c., we have the components $Q_{1}=P_{1}$ cos. a_{1}, R_{1} $=P_{1} \sin . a_{1}, Q_{2}=P_{2} \cos$. $a_{2}, R_{8}=P_{2} \sin . a_{2}$, whence it follows from $Q=Q_{1}+Q_{2}$ $+Q_{3}+\ldots$,

1. $Q=P_{1} \cos . a_{1}+P_{2}$
$\cos a_{2}+P_{3} \cos a_{3}+\ldots$, and
from $R=R_{1}+R_{2}+R_{3}$ +...,
2. $R=P_{1} \sin . a_{1}+P_{2} \sin . a_{2}+P_{3} \sin a_{3}+\ldots$

From the two compenents Q and R so found, the magnitude of the resultant sought, ise
3. $P=\sqrt{Q^{2}+R^{2}}$ and the angle $P . M X=\varnothing$, whose direction with $X \bar{X}$ is given by
4. $\operatorname{tang} . \phi=\frac{R}{Q}$.

In the algebraical addition of the forces, regard must be had to the sign, for if it be different in two forces, i. e. if the directions of these be upon opposite sides of the point of application M, this addition

Fig. 35.
 then becomes arithmetical subteaction (§73). The angle Φ is acute, as long as Q and R are positive; it is between one and two right angles, when Q is negative and R positive; between two and three, when Q and R are both negati ve, and lastly, bet ween three and foue, when R only is negative.

Example. What is the magnitude and direction of the resultant of the three components $P_{1}=30$ lus., $P_{2}=70$ Ibs., $P_{3}=50$ lls... whose directions, lying in a plane, make between them the angles $P_{1} N P_{9}=56^{\circ}$ and $P_{2} M P_{3}=$ $104 d^{8}$ If we draw the axis $\overline{X X}$
in the direction of the first force, we bave $a_{1}=0, \alpha_{2}=56^{\circ}$, and $a_{3}=56^{\circ}+104^{\circ}=$ 160°; hence, $1 . Q=30 \times \cos .0^{\circ}+70 \times \cos 36^{\circ}+50 \times \cos .160^{\circ}=30+39,14$ $-46,98=22,16 \mathrm{lbs} . ;$ and 2. $R=30 \times \sin 0^{\circ}+70 \times \sin 56^{\circ}+50 \sin 160^{\circ}=$ $0+58,03+17,10=75,13 \mathrm{lbs}$. Hence, $3 . \operatorname{tang} . \phi=\frac{75,13}{22,16}=3,3903$; therefore, the an. gle which the resultant makes with the positive part of the axis $M X$ or the force $P_{\text {, }}$ is $\phi=73^{\circ} 34^{\prime}$; lastly, the force itself $P=\sqrt{\left(Q^{2}+B^{2}\right.}=\frac{Q}{\cos . \phi}=\frac{R}{\sin \phi}=\frac{75,13}{\sin .73^{\circ} 34^{\prime}}$ $=\frac{75,13}{0,9541}=78,33 \mathrm{lbs}$.
§ 78. Forces in Space.-If the directions of the forces do not lie in one and the same plane, we must draw through the point of application a plane, and resolve each of the forces into two others, one lying in the plane, and the other at right angles to the plane; we must then find the resultant of the components so obtained in the plane, from the rule in the foregoing paragraph, and add together the components at right angles to the plane, and from the two rectangular components thus obtained, their resultant may be found according to the known rule (§ 74).

Fig. 36 puts the above mode of proceeding more clearly before us; let $M P_{1}=P_{1}, M P_{2}=P_{2}, M P_{3}=P_{3}$ be the separate forces, $A B$ the plane (of projection) and $\bar{Z} \bar{Z}$ the axis at right angles to it. From the resolution of the forces $P_{1}, P_{2}, \&$ c., the forces S_{1}, S_{2} are given in the plane, and those of $\mathcal{N}_{1}, \mathcal{N}_{2}, \& \mathbb{C}$., in the normal to it $\overline{\mathcal{Z}}$. These are again resolved according to tiro axes $X \bar{X}$ and $\overline{Y Y}$ into the lateral

Fig. 36.

forces $Q_{1}, Q_{2}, \& c ., R_{1}, R_{2}, \& c$., and give the components Q and R, of which the resultant S consists, which, joined to the sum of all the normal forces, $\mathbb{N}_{3}, \mathcal{N}_{2}, \&$ c $_{\text {, }}$ gives P the resultant required.

If we put β_{1}, β_{2}, for the angles at which the directions of force are inclined to the plane $\mathcal{A B}$ or to the horizon, the forces in the plane are given, $S_{1}=P_{1} \cos$. $\beta_{1}, S_{2}=P_{2} \cos . \beta_{2}$, \&c., and the normal forces, \mathcal{N}_{1} $=P_{1} \operatorname{sine} \beta_{1}, \mathcal{N}_{2}=P_{2} \sin . \beta_{3}$, \&c.; lastly, if we designate the angles which the projections of the directions of the forces lying in the plane $\mathcal{A} B$, make with the axis $X \bar{X}$, by a_{1}, a_{2}, we obtain the three following forces, forming the sides of a rectangular parallelopiped.
$Q=S_{1}$ cos. $a_{1}+S_{2} \cos . a_{2}+S_{3}$, cos. a_{3}, or

1. $Q=P_{1} \cos . \beta_{2} \cos \alpha_{1}+P_{3} \cos . \beta_{2} \cos \alpha_{2}+\ldots$,
2. $R=P_{1} \cos . \beta_{1} \sin . a_{1}+P_{2}^{3} \cos . \beta_{2} \sin . a_{2}+\ldots$
3. $\mathcal{N}:=P_{1} \sin . \beta_{1}+P_{8} \sin . \beta_{9}+\ldots \mathrm{e}$

From these three follows the final resultant:
4. $P=\sqrt{Q^{2}+R^{2}+\mathcal{N}^{2}}$, further
the angle of inclination to the plane of projection $P M S=\downarrow$, from
5. tang. $\psi=\frac{\mathcal{N}}{\mathcal{S}}=\frac{\mathcal{N}}{\sqrt{Q^{2}+R^{2}}}$, lastly
the angle $\operatorname{SuM}=\phi$, which the projection of the resultant in the plane $A B$ makes with the first axis $\bar{X} \bar{X}$, by
6. tang. $\phi=\frac{R}{Q}$.

Example. Three workmen pull at the end of three ropes, which are attached toa load M lying upon a horizontal floor $A B$, Fig. 37 , each with a force of 50 Ibs. 9 the angles of

Fig. ${ }^{37}$.

inclination of these forces to the horizon are $10^{\circ}, 20^{\circ}$, and 30°, and the horizontal angle between the first and second, and between the first and third, 20° and 35°; what is the magnitude and direction of the resultant, and how much is this less thass the sum of all the forces which would result, if all three acted in tbe same direction? The vertical force pulling upward is:
$\mathbf{N}=\mathbf{N}_{1}+\mathbf{N}_{8}+\mathbf{N}_{3}=50 \times\left(\sin .10^{\circ}+\sin .20^{\circ}+\sin .30^{\circ}\right)=50 \times 1,01567=50,781 \mathrm{bs} . ;$ by 80 much leas than its own weight doss the body press upon the floor.

The horizontal components are $\mathcal{S}_{1}=50 \times \cos .10^{\circ}=50 \times 0,9849=49,24 \mathrm{lbs} ; S_{3}=50$
$\times \cos .20^{\circ}=46,98 \mathrm{lbs}$.; $S_{3}=50 \times \cos .30^{\circ}=43,30 \mathrm{lbs}$. If we draw theaxis $X \bar{X}$ in the direction of the first force S_{1}, we cbtain the lateral force in this axis $X \bar{X}_{1} Q=Q_{1}+Q_{2}+Q_{3}$ $=S_{1} \cos . \alpha_{1}+S_{8}$ cos. $a_{2}+S_{3}$ cos. $\alpha_{3}=49,24 \times \cos .0^{\circ}+46,98 \times \cos .20^{\circ}+43,30 \times \cos .35^{\circ}=$ $49,24+44,15+35,47=128,86 \mathrm{lbs}$; on the other hand, the lateral force in the second axis $\overline{Y Y}: R=R_{1}+R_{2}+R_{3}=49,24 \times \sin .0^{\circ}+46,98 \times \sin .20^{\circ}+43,30 \times \sin .35^{\circ}=0+$ $16,07+24,84=40,91 \mathrm{lbs}$.
The horizontal mean force with which the body is drawn forward is from this:

$$
S=\sqrt{Q^{2}+R^{2}}=\sqrt{(128,86)^{2}+(40,91)^{2}}=\sqrt{18278,7}=135,2 \mathrm{lbs}
$$

The angle ϕ which this force makes with the axis $X \overline{\mathrm{X}}$ is deternined by the tang. $\phi=$ $\frac{R}{Q}=\frac{40,91}{128,86}=0,3175 ; ~=17^{\circ}, 37^{\prime}$; the entire resultant is :

$$
P=\sqrt{(135,2)^{4}(50,78)^{8}}=\sqrt{20856,6}=144,42 \mathrm{ibs} .
$$

If the forces act in the same direction, the resultant ist $=3 \times 50=150 \mathrm{lbs}$, and the loss of forcet $=150-144,42=5,58$ lbs. ; further, because the horizontal force drawing the body forwards amounts only to 135.20 lbs., we have, with reference to the horizontal motion, the loss of force $150-135,20=14, \mathrm{SO}$ lbs.
The angle of inclination ψ of the mean force to the horizon is deterruined by the tang. $\psi=\frac{N-50,78}{S}=135,20 \quad=0,3756$, wherefore ψ comes out $=20^{\circ}, 35^{\prime}$.
\oint 79. - From the rules found in the foregoing upon the composition of forces, two others of essential service for practical use may be deduced. In Fig. 37, let M be a material point, $M P_{1}=$ P_{1} and $M P_{8}=P_{3}$, the forces acting upon it ; lastly, let $M P=P$, the resultant of P_{1} and P_{2}. If we draw through M two axes, $M X$ and.$M Y$, at right angles to each other, and resolve the forces P_{1} and P_{2}, as well as their resultant P, into components in the direction of these axes, viz: P_{1} into Q_{1} and R_{1}, P_{2} into Q_{2} and R_{2}, and P into Q and R, we then

Fig. 37.
 obtain the forces in the one axis Q_{1}, Q_{2} and Q, and those in the other R_{1}, R_{2}, R, and $Q=Q_{1}+Q_{2}$, and $R=R_{1}+R_{2}$.

If now we take in the axis $M X$ any point O, and let fall from the same perpendiculars $O \mathcal{N}_{1}, O \mathcal{N}_{2}$ and $O \mathcal{N}$ on the directions of the forces P_{1}, P_{2} and P we obtain rectangular triangles $M O \mathcal{N}_{1}, M O \mathcal{N}_{12}$ MON, which are similar to the triangles formed by the three forces, viz:

$$
\begin{aligned}
& \triangle M O \mathcal{N}_{1} \backsim \triangle M P_{1} Q_{1} \\
& \triangle M O \mathcal{N}_{2} \backsim \triangle M P Q_{8} Q_{2} \\
& \triangle M O N^{2} \triangle M P Q .
\end{aligned}
$$

$$
\begin{gathered}
\triangle M O N \sim \Delta M P Q . \\
\text { Principle of Virlual Velocities.-But from these similarities } \frac{M Q_{3}}{M R_{1}}
\end{gathered}
$$

i. e. $\frac{Q_{1}}{P_{1}}=\frac{M I N_{1}}{M O}$, also $\frac{Q_{g}}{P_{8}}=\frac{. M N_{8}}{M O}$ and $\frac{Q}{P}=\frac{M \mathcal{N}}{M O}$; if we put the values hence derived of Q_{1}, Q_{8}, and Q into the equation $Q=Q_{1}+Q_{2}$, we then obtain

$$
P . M \mathcal{N}=P_{1} \cdot M \mathcal{N}_{1}+P_{2} \cdot M N_{2}
$$

Likewise also $\frac{R_{1}}{P_{1}}=\frac{O \mathcal{N}_{1}}{M O}, \frac{R_{2}}{P_{2}}=\frac{O N N_{2}}{\mathcal{M O}}$ and $\frac{R}{P}=\frac{O \mathcal{N}}{M O}$, therefore

$$
P: O N^{1}=P_{1} \cdot O \mathcal{N}_{1}^{2}+P_{2} \cdot O \mathcal{N}_{2} .
$$

These equations still hold good, if P the mean force be made up of three or more forces P_{1}, P_{2}, P_{3}, because generally

$$
\begin{aligned}
& Q=Q_{1}+Q_{2}+Q_{3}+\ldots \\
& R=R_{1}+R_{2}+R_{3}+\ldots
\end{aligned}
$$

and, therefore, generally we may pute

1. $P \cdot M \mathcal{N}=P_{1} \cdot M \mathcal{N}_{1}+P_{2} \cdot \mathcal{M N}_{2}+P_{3} \cdot \Omega \mathcal{N}_{3}+\ldots$,
2. $P, O N_{1}=P_{1}, O N_{1}+P_{2}^{2} \cdot O \mathcal{N}_{2}+P_{3} \cdot O \mathcal{N}_{3}+\ldots$

In both equations the mean force P must correspond to the forces P_{1}, P_{2}, P_{3}, and from these equations, not only the magnitude, but also the direction of this force may be determined.
§ 80. If the point of application M move in a straight line towards O, or if we imagine this point to have described

Fig. 38.
 the space $M O=s$, then the projection of this space $M \mathcal{N}=s_{1}$ in the direction of the force $M P$ is called the space of the force P, and the product $P_{s_{1}}$ of the force and its space, the work or efficiency of the force. If we substitute in the equation (1) of the last (§) these designations, we have

$$
P_{s}=P_{1} s_{1}+P_{8} s_{3}+P_{3} s_{3}+\ldots,
$$

or the work, or mechanical effect, of the resultant is equivalent to the sum of the works, or mechanical ef ects, of the com. ponents.

In the summation of the mechanical effects, as in that of the forces, we must have regard to their signs. If a force $\left(Q_{3}\right)$ of the forces Q_{1}, Q_{2}, \&c., of the last § acts in an opposite direction to the rest, we must

Fig. 39.

Fig. 40.

Fig. 41.

introduce it as negative, but this force \mathbf{Q}_{3}, Fig. 39, is the component of a force P_{3}, which, acting in the circumstances set forth in the former §, opposed to their proper motion. MN_{3}, we are, therefore, obliged to consider that force opposed to the motion $\mathbf{M N}, \mathrm{Fig}$. 40, as negative, and that one P, Fig. 41, acting in the direction of motion MS
If the forces are variable in magnitude or direction, the formula $P_{s}=P_{2} s_{1}+P_{2} s_{2}+P_{s} s_{s}+\ldots$ is only correct for infinitely small spaces $s, s_{1}, s_{\mathbf{y}}$, \&c.
The spaces of the forces σ_{1}, a_{3}, a_{3}, corresponding to an infinitely small displacement of a material point, are called their virtual velocities; and the law corresponding to the formula $P_{\sigma}=P_{1} \sigma_{1}+P_{2} \sigma_{2}+$ $P_{3^{a}}{ }^{3}$, the principle of virtual velocities.
§81. Transmission of Mechanical Effect.-From the principle of vis viva, the mechanical effect (P_{s}) in rectilinear motion, which a force (P) generates in changing the velocity c of a mass M into another v is

$$
P s=\left(\frac{v_{e}^{2}-c^{2}}{2}\right) M .
$$

If P be now the mean force arising from other forces, $P_{1}, P_{y}, \& c$., acting upon the mass M, and the spaces which these describeebe s_{1}, s_{4}, whilst the mass itself M describeses, we then have from the foregoing:

$$
P s=P_{1} s_{1}+P_{2} s_{2}+\ldots
$$

and, therefore, the following general formula:

$$
P_{1} s_{1}+P_{2} s_{2}+\ldots=\left(\frac{v^{2}-c^{2}}{2}\right) N,
$$

which expresses that the sum of the mechanical effects of the siagle forces is equal to half the gain of vis viva of the masa taling up theee forces.

If the velocity during the motion be invariable, that is $v=c$, end the motion itself be uniform, we have then $v^{2}-c^{2}=0$, consequently neither loss nor gain of vis viva, and, therefore:

$$
P_{1} s_{1}+P_{8} s_{2}+P_{3} s_{3}+\ldots=0,
$$

i. e. the sum of the mechanical effects of the single forces $=0$.

If inversely the sum of the mechanical effects $=0$, then the forces do not change the motion of the body in the given direction, enor impart to it in the given direction any motion which it had not before.

If the forces are variable, the variable velocitye after a certain time again passes into its initial velocity c, which talkes place in all periodic motions as they present themselves in many machines. Now $v=c$ gives the effiect $\left(\frac{v^{2}-c^{2}}{2}\right) M=0$; therefore within a period of the motion the loss or gain in mechanical effect is null.

[^6]inclined to the horizon at an angle $B=35^{\circ}$. What work will the force $\left(P_{1}\right)$ frerforn, in orler to convert the two feet initial

Fig. 42.
 velocity of the carringe into a vo. locity of 5 feet?
If we put the distance of the carriage $M O=s$, we then have for the work of the force $P_{1}=P_{1}$. MN $=P_{1}{ }^{8}$ cos. $a=680 \times$ ras. 24^{d} $=602,94.3$; further, the work of the resisting force $=\left(-P_{\Omega}\right) \cdot s=$ - 350.8 ; lastly, the work of P_{3} $=\left(-P_{3} \cdot M N_{3}=-P_{8}=\cos \beta=\right.$ $-230 \times 8 \cos 35^{\circ}=-188,40$. 8. There then remains for the worls of the effective force:
$P_{8}=P_{1} 8$ cos.a- $P_{2} 8$ cos. $0-P_{3}$ cos. $B=(602,94-35 v-188,40) \cdot 8=$ 64,54. sf. lise
The mass, buwever, requires for the change of its velocity, the mechanical effect: $\left(\frac{0^{2}-c^{2}}{2 g}\right) G=\left(\frac{5^{2}-2^{0}}{2 g}\right) \times 5000=0,0155 \times(25-4) \times 5000=1027 \mathrm{ft}$. The.

If now we equate both mechanical efliects, we then obrain $64,54 \mathrm{e}:=1627$, conse quently the distance of the carriagee $=\frac{1627}{64,54}=25,26$ feet; and lastly, the mechanical effiect of the force $P: P_{1}: \cos \propto=602,94 \times 25,26=15230,2 \mathrm{fl} .1 \mathrm{lbs}$.
§ 82. Curvilinear Motion.-Provided that the spaces $\sigma_{,} \sigma_{1}$, \&c., be infinitely small, we may also apply the formula last found to curved paths. Let MORS, Fig. 43, be the path of a material point, and $M P_{1}$ $=P_{1}$ the resultant of all the forces

Fig. 43.
 acting upon it; if we resolve this force into two others, of which the one $M K=K$ is tangential, and the other $M \mathcal{N}=\mathcal{N}$ normal to the curve, we then term the one a tangential, and the other a normal force.

Whilst the material point describes the element $M O=\sigma$ of its curved path $M S$, and its velocity c is transformed into v_{1}, its mass M lays claim to the work $\left(\frac{v_{1}{ }^{2}-c^{2}}{2}\right) M$, but the tangential force K perfiorms at the same time the work K_{σ}, and the normal force the work $\mathcal{N} .0=0$; consequently $K_{0}=$ $\left(\frac{v_{1}{ }^{2}-c^{2}}{2}\right) M$.

If the projection $M Q$ of the elementary space $M O$ in the direction of force be put $=\sigma_{1}$, then also $P_{1} \sigma_{1}=K \pi$; and, therefore,

$$
P_{1} \sigma_{1}=\left(\frac{v_{1}^{8}-c^{2}}{2}\right) M .
$$

If the whole space described by the material point $M R$ be decomposed into infinitely small parts, and each part be projected upon the direction of force at each moment, we then obtain the elementary space of the force at each moment, and the work at each moment by the multiplication of the space and force, and if we add together all these
mechanical effects, we then havee $P_{1} \sigma_{1}+P_{9} \sigma_{2}+P_{3} \sigma_{3}+\ldots=$ $\left(\frac{v_{1}{ }^{2}-c^{2}}{2}\right) M+\left(\frac{v_{2}{ }^{2}-v_{1}{ }^{2}}{2}\right) M+\left(\frac{v_{3}{ }^{2}-v_{2}^{2}}{2}\right) M+\cdots=\left(\frac{v^{2}-c^{2}}{2}\right) M=$ ($h-h_{1}$) M, if h_{1} be the height due to the initial velocity c, and h that due to the terminal velocity v. Thus, in curvilinear motion, the whole effect of the moving force is equal to half the gain of vis viva, or equal to the product of the mass into the difference of the heights due to the velocities.

Remark and Example. The formula ohtained which is derived from combiaing the princuple of the vis viva with that of the virtual velocities, is especially applicable in cases where bodies are constrained by a tixed track or by suspension to deacrite a determinate path. If gravity alone act upon such a body, the worls which it generates in a bady of the weight G falling from a height corresponding to the vertical projection M_{3} $R_{1}=s_{s}$ is $=G s$ and therefore:

$$
G:=\left(h-h_{1}\right) G \text {, i.e. } s=h-h_{1}
$$

This is also the space which a body describes in falling from a horizontal plane $A B$, Fig. 44, to another CD; the diffierence of the heights due to the velocity is always equal

Fig. 44.

to the perpendicular height of fall; bodies which begin to describe the patha $\mathbb{N}_{1} O_{1} R_{11}$ $M_{2} O_{9} R_{8}, W_{2} O_{9} R_{3}, \& c_{9}$, with equal velocity (c), acquire at the end of these paths, as well as at different times, equal velocities ($\%$). If the initial velocity $c=10$ feet, and the vertical height of fall $s=20$ feet, then $h=s+h_{1}=20+0,0155010^{3}=21,55$ feet, andahe terminal velocity $v=\sqrt{2 \overline{g h}}=8,020 \sqrt{21,5}=37,18$ feet, in whatever curved or right line tise descent may pake placa.

[^0]: - In the United States, the standard weight is the pound troy, the original of which is $t^{\text {h}}$ e mint pound, constructed by Capt. Kater at the request of Mr. Gallatin.-Am. Ed.

[^1]: *Se" On the Absorption of Water by Wood."-Polytechnieches Mittheilungen, Part iv. 1844.

[^2]: - Rolled boiler plate iron has a sp. gr. from 7.6013 to 7,7922 , or a miean of 7.7344 , the amount of variation being ${ }_{4} \delta .5^{\text {th }}$ part of the mean density. By seventeen trials of ham. mered bar iron, its mean sp. gr. was found to be 7,7254. See "Report on Strength of Materials for Steam Boilers," p. 232. Also Journal Franklin Inst., 1837.-Am. Ed.

[^3]: - i. e. Working power.

[^4]: Example-1. A body lying flat upon the hand presses so long only upon it with its abeolute weight as the land is at rest, or is moved up and down unifornily with the bedy; but if the hand be raised quickly, it sufficrs a greater pressure; on the ther hand, if it be suddenly dropped, the pressure is then less than the weight; it becomes null if the hand be drawn back with the acceleration of gravity. If the pressure on the hand $=P$, the budy falls with a force $G-P$, whilst its mass $M=\frac{G}{g}$; if we put the accelera-

[^5]: - The Prussian inch (see $\$ 15$) is equal 1.031 Englith inclues.-Ars. Ed.

[^6]: Example. A carriagt, of the weight $G=6000 \mathrm{lbe}$, Fig. 42, is rovod forwaid upon a

 correoponding to the friction; and a meciviance $P_{3}=230 \mathrm{lbm}$ eotiog downwarda, and

