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1.  Executive Summary 

 

Spinal cord injury (SCI) is a devastating condition that affects approximately 11,000 

patients each year in the United States. Moderate hypothermia has been used in a variety of 

experimental and clinical situations to target several neurological disorders, including traumatic 

brain injury and SCI. Studies in a large series of SCI patients, initiated in 2005, showed that early 

cooling introduced by the use of endovascular catheters and continued for a 48-hour period 

appeared to be safe and did not result in an increased incidence of risk factors, including cardiac 

arrhythmias and severe infection. However, the procedure for inserting endovascular catheters is 

invasive, which can be detrimental the patient. Prolonged systemic hypothermia in patients can 

also lead to further complications, such as tissue damage due to frostbite. As a result, less 

invasive local methodologies are being explored and studied to determine if the results of cooling 

are comparably effective or superior to systemic hypothermic treatment. The goal of this project 

was to model induced temperatures at or below 33°C (306 K) in the spinal cord through 

localized surface cooling via a cooling pack in COMSOL Multiphysics. 

 

Through the development and execution of an accurate model, we determined the amount 

of time the cooling pack must be applied, the temperature the body must be cooled down to, and 

the long-term cooling pack application protocol needed to maintain critical temperatures in the 

spinal cord while preventing frostbite in surface tissues.  A schematic of a simplified geometry of 

the cross-section of the neck was created.  Only half of the geometry was needed for the 

schematic of the model as a result of simplification due to symmetry.  It included regions for the 

skin, neck tissue, vasculature, vertebral bone, and spinal cord (target) and was run in 2-D. 

COMSOL was utilized to solve for transient heat transfer in cylindrical coordinates with a 

conduction term and two sources of heat generation representing base metabolism and 

inflammation. We expected to find that the application of the cooling pack would decrease the 

core temperature from 37°C to 33°C (310 K to 306 K), which is the temperature systemic 

cooling range for current therapeutic use. 

 

Initially, the model was run with constant application of the cooling pack.  We 

determined that the cooling pack was capable of lowering the spinal cord temperature to 21ºC 

(294 K) over the course of three hours.  However, constant application of the cooling pack led to 
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tissue degradation due to frostbite. To avoid frostbite, we attempted to create a cyclic application 

protocol that would maintain temperatures below 33ºC (306 K) in the spinal cord while 

preventing the surrounding tissues from reaching freezing temperatures of 0ºC (273 K).  We 

found that the most effective protocol consisted of initially applying the cooling pack for 30 

minutes at 0ºC (273 K), removing the cooling pad, heating the neck for 30 minutes at 37ºC (310 

K), and then cyclically cooling for 20 minutes and heating for 30 minutes thereafter.  We found 

that the spinal cord temperature reached 33ºC (273 K) in less than 45 minutes and subsequently 

fluctuated stably between 30ºC – 31ºC (303 K – 304 K).  Also, tissue temperatures were found to 

be stay above freezing, fluctuating between 2.5ºC – 37ºC (275.5 K – 310 K).  An accuracy check 

was executed to ensure that our solutions were comparable to the results of analogous 

experiments. We performed sensitivity analysis of the temperature change in the spine to 

different heat generation terms and various parameters in the skin, tissue, bone, and spine and 

found that the model was relatively insensitive to these changes. The results of the sensitivity 

analysis implied that the model was robust to changes in parameter values.   

 

The significance of this data demonstrated that hypothermia could be successfully 

induced with the application of a cooling pack alone, preventing the need for invasive systemic 

cooling procedures.  The ability to induce spinal cord cooling without insertion of cooling 

catheters is a significant advancement due to the fact that significant systemic hypothermia (< 

33°C, < 306 K) can result in cardiac arrhythmia, coagulopathy, and pancreatitis, among other 

conditions. Therefore, by allowing the systemic temperature to remain at physiologically normal 

temperatures during cooling, physicians can further prevent many of these fatal complications 

through this cyclic application of a cooling pad. Finally, the development of a protocol to prevent 

frostbite in the local tissues while keeping the spinal cord below the therapeutic temperature of 

33°C (306 K) prevents the major complication associated with local cooling. The cooling pack 

system can potentially be implemented by doctors in the future to induce localized cooling in 

SCI patients with relatively rapid results without the risk of frostbite. 

 

  



5 
 

2.  Introduction 

i. Background 

 

The first account of systemic hypothermia was made in November of 1938 by Dr. 

Temple Fay, MD, FACS [1]. Dr. Fay’s first description of intentionally induced hypothermia 

was actually an attempt to slow the progression of metastatic disease in a woman with ulcerating 

breast carcinoma.  This carcinoma had previously shown ‘‘remarkable response’’ to local 

refrigeration of the breast and neck area. Fay et al. subsequently went on to describe the use of 

hypothermia in a large number of patients with cancer and head injury [2, 3]. The idea of using 

hypothermia in cardiac surgery was introduced by Bigelow et al. after a series of canine 

experiments [4].  In addition, Botterell et al. began pioneering work in the use of hypothermia in 

cerebral aneurysm repair in the 1950s [5]. As a result, hypothermia was defined to occur between 

the temperatures, 24°C and 33°C (297 K and 306 K). Enthusiasm towards induced hypothermia 

dwindled in the subsequent decades, and was largely abandoned by the 1980s.  This disinterest 

was largely attributed to the associated complications, which included cardiac arrhythmias, 

hypotension, coagulopathies, systemic infections, and electrolyte disturbances [6]. In 1987, 

Busto et al. documented that neuronal injury could be markedly attenuated by modest decreases 

in body temperatures in a rat model of global ischemia. This suggested that the extent of 

hypothermia required for neuroprotection was not as pronounced as initially anticipated [7]. 

Consequently, there was a renewed interest in hypothermia.  The degree of hypothermia was 

loosely defined by ranges of temperature as “mild” (33ºC – 36°C), “moderate” (28ºC – 32°C), 

“severe” (16ºC – 28°C), and “profound” (15°C and below) [8]. The specifications of the levels of 

hypothermia were important because of the potential for neurologic benefit with more modest 

reductions in body temperatures.  Due to its newly discovered applicability, mild to moderate 

hypothermia has attracted more interest over the past two decades. It has been very effective in 

acute traumatic brain injury, spinal cord injury, stroke, cardiac surgery, surgical repair of 

cerebral aneurysms, and thoracoabdominal aortic aneurysm (TAA) [6, 9]. 

 

Localized cooling of the spinal cord can be achieved either externally by surface cooling 

or internally via endovascular cooling [10]. Our study concentrated on achieving localized 

hypothermia by external surface cooling, which is noninvasive and, therefore, a more appealing 

procedure. Surface cooling systems, which use the circulation of cool air or water through 
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devices that are placed against the skin, have been made popular because of their ease of use. 

These systems include the Bair Hugger System and Arizant Healthcare Inc. Systemic 

Hypothermia. As used currently, both usually target a temperature between 32°C and 34°C (305 

K and 307 K). These temperatures are less prone to severe adverse effects, such as arrhythmias, 

than temperatures below 30°C (303 K). For our project, we aimed to lower the temperature of the 

spinal cord to 33°C (306 K).  

 

The goal of this project was to model localized cooling in the treatment of injuries to the 

cervical spinal cord using COMSOL Multiphysics.  The model was developed to demonstrate the 

efficiency and effects of the application of a cooling pack to the surface of the neck on the 

temperature of the spinal cord. This model involved the transfer of heat through four layers (skin, 

tissue, vertebral bone, and spinal cord), which each exhibit different material properties. Our 

model can ultimately create efficient and safe guidelines to inducing localized hypothermia 

through the analysis of the extent of temperature changes, the time in which those changes occur, 

and the sensitivity of the model to different parameters.    

 

  This report will provide the reader with the procedure of the analysis of this model 

utilizing COMSOL, beginning with the governing equation and boundary conditions of this 

particular model.  The core vasculature was kept at a constant body temperature of 37ºC (310 K). 

The model included the results of the application of an ice pack kept at a constant temperature to 

the surface of the neck, as well as the results of alternating cooling and heating cycles. In order to 

perform an accuracy check, we created an analogous model to a paper that studied localized 

cooling of the spinal cord of rats and compared the results. Sensitivity analysis of the model was 

performed to demonstrate the effects of changing the heat generation term and various 

parameters of the skin, tissue, bone, and spine on the results.  The analysis of the results 

determined that the tissues were kept at temperatures above freezing, the temperature of the 

spine was below 33 ºC (306 K), and the length of time needed for effective and successful 

application of the cooling pack. 
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ii. Design Objectives 

 

Given that our focus is to establish the conditions of induced hypothermia in neck injury patients, 

our main objectives are: 

 Determine how long it will take for the temperature of the core region to reach 33°C (306 

K) [11] 

 Determine what the systemic temperature needs to be to allow for a stable decrease to 

33°C (306 K) in the spinal cord 

 Determine a cooling pack application protocol that allows the injury site temperature to 

remain below 33°C (306 K) while ensuring local tissues remain above 0°C (273 K) 

 

iii. Problem Schematic 

 

The most common injury to the spinal cord occurs at the C3-C4 junction. This is also the 

highest spinal cord injury that has outcomes that allow for positive outcomes, as most injuries 

above C3 are fatal or result in required ventilator use since control of the diaphragm is lost [12]. 

Thus, we decided to first look for a cross-section of the neck at this location to serve as a basis of 

our model. 

 

 

 

Figure 1: Picture of a cross section of neck. The above is a photo of a cross section 

of the neck including local vasculature, particularly relevant in this case, the spine.  
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After finding the above schematic, we simplified the physiology to allow for modeling in 

COMSOL. Ultimately, we decided to preserve the skin/fat layer, general tissues, vertebral bone, 

major vasculature, and spinal cord sections. 

 

 

 

Geometries in the above schematic were based on measurements taken from the original 

cross section schematic and the dimensional work of Gilad and Nissan [13].  

 

Boundary Conditions: 

 (   )    (            ), where R is at the surface. 

 

Initial Conditions: 

     (   )             

  

 

Figure 2: Simplified schematic of a neck cross-section. The above schematic, 

which was redrawn in COMSOL, is a simplified version of the cross section in 

Figure 1, only including relevant vasculature. 
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Other parameters: 

In order to run the model, heat transfer properties had to be determined for all the 

involved tissues. Table 1 displays the values used for the various tissues. 

 

 

Properties Skin
1,2

 Tissue
3,4

 Bone
5,6,7 

Density 1200 kg m
3
 1020 kg m

3
 1500 kg m

3
 

Capacity 3600 J kg
-1

K
-1

 3558 J kg
-1

K
-1

 440 J kg
-1

K
-1

 

Conductivity 0.53 W m
-1

K
-1

 0.21 W m
-1

K
-
 0.25 W m

-1 
ºC 

 

iv. Mesh 

In order to utilize the simplified schematic seen in Figure 2 in COMSOL, a mesh was 

created. The symmetry of the model allowed for further simplification of the schematic to only 

include half of the cross section. This mesh included 2328 elements, which were used in a fine 

mesh.  

Table 1: The density, heat capacity, and conductivity values were found for the skin, 

tissue, and bone for the implementation of the parameters in COMSOL. 
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Once the mesh was in place, COMSOL was implemented to determine the distribution of 

temperature within the neck cross section after cooling had taken place.  

 

  

Figure 3: Mesh of the simplified schematic. Above is the mesh used in the 

modeling of the simplified schematic of Figure 2. Symmetry allowed only half of the 

simplified schematic to be modeled with the line of symmetry through the vertical 

axis. This figure shows a fine mesh using 2328 elements.   
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Results and Discussion 

 

i. Solution Analysis 

 

 

 

The temperature contour plot shows that the temperature throughout the cross section 

changed from the initial temperature of 37°C (310 K). In order to further analyze this change, the 

temperature change within the target area, the spine, was plotted versus time for the time span of 

cooling.  

 

Figure 4: Temperature Contour Plot of the Neck Cross Section. Above is the 

temperature distribution of the neck schematic after 1 hour of ice pack application. 

The data of this graph includes the generation terms of the governing equation as 

applicable for 1 hour.  
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It can be seen in Figure 5 that the spine was significantly cooled during a cooling time of 

3 hours.  While it began at the initial temperature of 37°C (310 K), the temperature at point (0, -

0.0125), representing the center of the spine, decreased to the target temperature of 33°C (306 K) 

in less than 45 minutes.  

While lowering the temperature of the spinal cord to the target 33°C (306 K) in a timely 

manner is very important, it is equally important to be able to safely maintain this temperature 

over a longer period of time. While continuous application of the cooling pack would allow the 

temperature to remain well below this critical value, over time, tissues near the interface would 

be in danger of frostbite, a condition that occurs when tissues reach their freezing point. In order 

to ensure the safety of these tissues then, the cooling pack must be periodically applied and 

removed so as to allow for surface tissues to reheat. After several trials, we discovered that after 
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Figure 5: Temperature vs. Time Graph of Neck Schematic. The above graph 

shows the change in temperature with increasing time in the spinal column at point 

(0,-0.0125). The graph shows a decrease in temperature at the particular point from 

37°C (310 K) to the target temperature of 33°C (306 K) in less than 45 minutes of 

cooling time. The data of this graph includes the generation terms of the governing 

equation. 
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application of the cooling pad for one hour initially, continuous cycles in which the pad is 

removed for an hour and applied for a half hour result in a temperature profile within the tissues 

that allows for sufficient cooling over a long period of time, including up to 72 hours (Figure 7).  

 

The fact that at 72 hours the temperatures in the skin are above those inherent in frostbite 

and the temperatures in the spinal cord are below the critical temperature of 33°C (306 K) 

suggests that this protocol is effective over a long treatment period. 

 

However, it is important to examine the temperatures in the aforementioned tissues over 

the entire time period to ensure the safety of the protocol. Using this application protocol not 

only ensures that the spinal cord stay below the target temperature of 33°C (306 K), but also 

causes the temperatures within the spinal cord to fluctuate in a predictable and controlled manner 

from approximately 26 C to 28 C (299 K to 301 K) over an extended time period (Figure 8).  

 

Figure 7: Piecewise fluctuation function graph. The above figure shows the 

variation in temperature when the schematic was modeled with a piecewise 

fluctuation function.  
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This predictable fluctuation in temperature allows for greater control over the treatment 

of the patient and increased knowledge of the state of the injury site. Such control and 

information is critical in the event that emergency intervention is required at the site. 

 

This protocol also successfully prevents the outermost tissue layer (skin) from reaching 

temperatures low enough for long enough to allow frostbite to occur throughout the entire 

duration of the protocol. As demonstrated in Figure 9, skin temperatures fluctuate regularly 
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Figure 8: Temperature versus time in the spinal column. The above graph shows 

the cyclic change in temperature with regard to time in the spinal column at point (0, 

-0.0125). The boundary condition temperature is also plotted as a function of time 

(30 minutes of heating at 37 °C (310 K) followed by 20 minutes of cooling at 0°C 

(273 K). 
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between approximately 2°C (275 K) and 25°C (298 K), both of which are above freezing (0°C, 

273 K). 

 

 

Furthermore, while the skin does eventually reach a temperature of 2°C (275 K), which is 

close to 0°C (273 K), it is only at this temperature for an extremely short period of time, which 

further discourages the formation of frostbite. The tissue actually spends far more time at the 

comfortable condition of room temperature (25°C, 298K) than it does in this danger region. 

Thus, this application protocol not only allows the spinal cord to be kept at a sufficiently low 

temperature, but also allows for the protection of tissues from frostbite. 

ii. Accuracy Check 

 

Ideally, to check the accuracy of the COMSOL model, the outputs could be compared 

with data obtained from an in vivo experiment where humans have their spinal cords cooled by 

local cooling techniques. Unfortunately, this data is unavailable as such studies have not been 

run at this time. However, while this data is not available, in vivo data for the cooling of the 
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Figure 9: Temperature vs time at skin surface. The figure above shows the 

temperature versus time graph of the skin when doing fluctuating cooling. 
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spinal cord in animals is available. Smith (2011) used a cooling blanket to reduce the spinal cord 

temperature in rats [21]. A cooling pad held at a constant 22.82°C (mild cooling condition) or 

13.66°C (moderate cooling condition) was applied to the back of the rats directly above the 

spinal column for a thirty minute period. The temperature in the spinal cord was monitored over 

this time period through the use of a temperature probe. After a thirty minute period, the 

temperature in the spinal column was reduced by 6.67 and 11.89 degrees for the mild and 

moderate cooling conditions, respectively. Before the in vivo experiment, the researchers created 

a model that used a perfusion model to account for the effects of heating due to blood in the 

vasculature. To test the accuracy of our physiological simplifications, we created a rat model 

using the same geometric simplifications used in our human model (major tissue layers are skin, 

muscle, bone, and spinal tissue with normalized shapes) to compare with the experimental 

results. In both our models we also accounted for the effect of the blood in the vasculature by 

modeling the major arteries as constant temperature geometric figures (Figure 10).  

 

 

 

 

 

Figure 10: Temperature Contour Plot of Rat Torso. Temperature profile for rat 

torso and spinal column after thirty minutes of mild cooling (22.82°C). Note that the 

temperature of the vasculature remains at physiological normal while the surrounding 

tissues drop. 
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We felt this was a reasonable assumption, as core temperature should remain relatively 

constant with localized cooling and this core temperature should sufficiently heat the blood as it 

circulates through the body after exposure to the cooled area. This model resulted in predictions 

differing from the observed drops in temperature at under 5% for both conditions, which stands 

in stark contrast to the 25% and 36% error the experimenters obtained for their model of the mild 

and moderate cooling (Table 2).  

 

 

 

Cooling Temperature 

(°C) 

Experimental Drop 

(degrees) 

Smith Model Drop 

(degrees) 

Our Model Drop 

(degrees) 

22.82 6.67 4.98 6.99 

13.66 11.89  7.52 11.95 

 

While this is not the exact model used in the human case, the same approximations were 

used in its creation: namely those simplifying the geometry of the neck and approximating the 

effects of blood flow around the area. Thus, the success of this model lends confidence to the 

human model used in this study. 

 

iii. Sensitivity Analysis 
 

In order to observe the sensitivity of our project to variation in various tissue properties, 

the different properties were varied and the resulting temperature values after an hour were 

examined. The parameters changed were density, heat capacity, conductivity, and heat 

generation terms. These values were varied for the skin, tissue, vertebral bone, and spinal cord 

(as shown in Table 3 below) and implemented in the model. The original values (“norm”) were 

reduced by 10% and increased by 10%. These were then recorded as the “min” and “max” 

values, respectively, as shown in Table 3 below.  

 

 

 

Table 2: Summary of results for experimental cooling of rat spinal column and 

models of cooling of rat spinal column. 
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Property Type Skin Tissue Bone Spinal 

Density (kg/m
3
) Min 1080 918 1350 918 

Norm 1200 1020 1500 1020 

Max 1320 1122 1650 1122 

Heat Capacity (J/kgK) Min 3240 3202.2 396 3202.2 

Norm 3600 3558 440 3558 

Max 3960 3913.8 484 3913.8 

Conductivity (W/mK) Min 0.477 0.189 0.225 0.189 

Norm 0.53 0.21 0.25 0.21 

Max 0.583 0.231 0.275 0.231 

Heat Generation (W/m
3
) Min 328.5 328.5 328.5 630 

Norm 365 365 365 700 

Max 401.5 401.5 401.5 770 

 

The above variations were used in the model. Each variation was changed while the 

others were kept constant. The temperature change in the spinal column center (0, -0.0125) was 

noted for each variation and recorded as shown in Table 4 below. 

  

Table 3: Table of minimum, normal and maximum parameters (density, heat 

capacity, conductivity and heat generation) of the skin, tissue, bone and spine. 
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Property 

changed 

Type of 

change 

Temperature change observed due to changes in the areas 

below 

Skin Tissue Bone Spinal 

Density  

(kg/m
3
) 

Min 302.18 301.32 302.10 302.07 

Norm 302.21 302.21 302.21 302.21 

Max 302.20 302.96 302.27 302.35 

Heat Capacity 

(J/kgK) 

Min 302.18 301.32 302.10 302.07 

Norm 302.21 302.21 302.21 302.21 

Max 302.20 302.96 302.27 302.35 

Conductivity 

(W/mK) 

Min 302.31 303.10 302.32 302.20 

Norm 302.21 302.21 302.21 302.21 

Max 302.10 301.33 302.08 302.21 

Heat Generation 

(W/m
3
) 

Min 302.19 302.17 302.17 302.20 

Norm 302.21 302.21 302.21 302.21 

Max 302.19 302.23 302.20 302.20 

 

The spinal temperature changes caused by the “min” and “max” variations above were 

compared to the temperature change caused by corresponding “norm” values and the percent 

differences calculated and graphed for each variation and property as shown below. 

Table 4: Table of spinal temperature changes accompanying changes in parameters 

shown in Table 3 above. 
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From the figure above, it is evident that the changes in the spinal temperature as a result 

of variation of densities, conductivity and heat capacity in the layers of the model are very small. 

Variation of tissue parameters causes the biggest changes in spinal temperature.  However, all 

the above changes are not significant as they are very small. Changes due to variation of heat 

generation terms in all the layers showed the least amount of difference.  

 

A heat generation term for inflammation was not found. The value used in the project 

was double the heat generation value of metabolism. In order to show that this value did not 

affect temperature change due to cooling, a range of heat generation values were used in the 

model and the corresponding temperature change in the spine was recorded. 
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Figure 11: Variation of Spine Temperature with Changes in Density, Heat 

Capacity, Conductivity, and Metabolic Heat Generation. The above graph shows 

the percent change from the normal value of spine temperature when the minimum 

and maximum values for each parameter in the skin, tissue, bone, and spine are used.  
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Heat generation values (W/m
3
) Observed temperature change in the Spine (°C) 

630 29.05 

730 29.06 

770 29.05 

3150 29.43 

 

The values in Table 5 above were plotted in a graph to show how temperature in the 

spine varied with changing the spinal heat generation term values. 

 

 

 

 

  The difference in temperature values between the lowest value (630 W/m
3
) and the 

highest value (3150 W/m
3
) was found to be (29.43ºC – 29.05ºC = 0.38ºC) very small. Therefore, 

increasing heat generation term (up to ~5 times the original estimated value) did not greatly 

affect the change in temperature in the spine 
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Figure 12: Spinal Temperature Changes with Changes in Spinal Heat 

Generation. The above graph change in spinal temperature when the heat 

generationof inflammation values are varied. 

 

Table 5: Table of observed temperature changes in the spine as a result of variation 

heat generation value of the bone. 
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From the sensitivity analysis carried out above, it was concluded that the model was not 

sensitive to changes in the parameter values tested (density, conductivity, heat capacity and heat 

generation) in the skin, tissue, bone and spine layers where these parameters were varied. 
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Conclusions and Design Recommendations 

 

i. Design Recommendations 

 

Upon examination of the results of the study, several conclusions were drawn. First, the 

local cooling procedure via the application of a cooling pack alone was capable of decreasing the 

temperature of the spinal cord to the target temperature of 33ºC (306 K). The cooling pad was 

applied for 30 minutes at 0ºC (273 K), then removed for 30 minutes of heating at 37ºC (310 K), 

reapplied for 20 minutes of cooling at 0ºC (273 K), and then removed for 30 minutes of heating 

at 37ºC (310 K). The target temperature was reached in less than 45 minutes, and the temperature 

of the spine stabilized between 31ºC – 32ºC (304 K – 305 K). In contrast, traditional systemic 

cooling procedures take an average of four hours to reach a temperature of 33ºC. An additional 

benefit of local cooling is the fact that while the body must still be put in a hypothermic state to 

ensure the spinal cord reach 33ºC, the core temperature can be kept a full two degrees higher 

(35ºC) than it would be using current methods.  The core can be kept at nearly normal 

physiologically temperatures utilizing the fluctuating methodology, which indicates that tissue 

damage adjacent to the local cooling site due to frostbite can be prevented.  Since a major 

drawback of therapeutic hypothermia use in spinal cord injury treatment is the prevalence of 

complications arising from the hypothermia, mitigating the severity of this state is a major step 

forward in treatment.  Finally, this protocol does not require systemic cooling, which would 

prevent the need for the insertion of a cooling catheter.  This would decrease the risk of the 

patient by avoiding invasive and potentially detrimental surgery.  By means of cyclic heating and 

cooling phases of the application area, the spinal cord can remain at temperatures well below 33 

ºC (306 K) while maintaining the skin temperature well above freezing.  

 

ii. Realistic Constraints 

 

 The ideal device to be used for injuries at the cervical spine would need to encircle the 

neck and be in direct contact with the skin. The pack should be designed so that it is comfortable.  

Also, the pack should be able to maintain cooling and heating temperatures at constant values to 

limit the agitation of the patient’s injury.  This could be accomplished by having two separate 

inputs of fluid with a certain flow rate kept at the desired temperatures for cooling and heating 

purposes.    
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5. Appendix A: Mathematical Statement of the Problem 

 

Governing Equation for Heat Transfer: 

Since we are attempting to cool the spinal cord and modeling the process over a circular cross-

section, we used the two-dimensional heat transfer equation in cylindrical coordinates with only 

the transient, conduction, and heat source terms.  

 

   
  

  
  (

 

 

 

  
( 
  

  
)  

 

  
   

   
)         

                                                    
 

  
 

                                                 
 

  
 

 

Since all heat transfer occurs through conduction, the convection term drops out. The tissues are 

also all creating energy via metabolism in the living subject; this term must be accounted for 

(  )   Finally, in the injured tissues, inflammatory processes have been activated by the injury, 

which results in additional heat generation, which is taken into account by the generation term 

  .  

 

In the given protocol, temperature is defined at the skin-cooling pack interface. When the pack is 

applied, the temperature is constant at 0°C (273 K), and if the pack is removed, the area is heated 

at a constant temperature of 25°C (298 K). The entire body begins at the normal physiological 

temperature of 37°C (310 K). 
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6. Appendix B: Solution Strategy 

 

Solver 

 

The model was solved in the Direct (UMFPACK) linear system solver in COMSOL. 

 

Time Step 

 

A time step of 0.01 seconds was utilized. 

 

Tolerance 

 

Relative tolerance was 0.1, and absolute tolerance was 0.0010.  

 

Mesh Convergence Analysis 

 

To determine the point at which we effectively eliminated discretization error without wasting 

valuable time with an overly complex mesh, we ran a mesh convergence analysis. Through this 

analysis, we determined that while lower element meshes showed significant variation in the 

spinal cord temperature, after a mesh was created with 2328 elements, results became constant 

(Figure 6). 
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The graph above indicates that mesh convergence occurred after 2328 elements, as the constant 

spinal temperature after this point demonstrates. To avoid error and keep computation time low, 

we thus used a mesh with 2328 elements. 

 

 

 

 

 

 

 

 

 

 

  

Figure 6: Mesh convergence of modeled schematic. The above graph shows that 

as the number of elements increased, the temperature did eventually converge, 

staying constant at 29.03°C (302.18 K)  
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