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ABSTRACT 

From the unrelated facts tha t Ma r s is ubjected to a 

flux of asteroida l projectiles and that it has two ve r y 

small satellites, an elementary analysis leads to the pro ­

position that the planet possesses an orbitin g dust belt 

system, previously unsu ~pec ted . Furthermore , the satellites 

t hemselves should have s urface s r esemb ling that of the Moon. 

Factors bearing on the evolution of an orbiting debris sys ­

tem are discussed , leading to some speculations concerning 

th e origin and st ructure of the rings o f Saturn. 



INTRODUCTION 

The Martian satellites Phobos and Deimos must be sub­

jected to the same flux of projectiles which produced the 

craters on Mars itself. Most of the debris from hypervelo­

city impact is ejected at velocities hi gh enough to escape 

the weak gravitational fields o f the two small moons but not 

fast enough to escape from orbiting around Mars. In fact 

very little of the debris is ejected at more than half the 

satellite orbital velocities. As a result, most of it is in­

itially distributed in orbits clustered toroidally about that 

of each satellite of origin. 

The material in these belts is subject to continuous re ­

capture by and asteroidal ejection from the satellites, to 

steady "leakage" out of the Mars system, and t o size-dependent 

orbital degradation by the Poynting-Rob e rtson effect. If the 

balance of these opposing mass transfer rates is ever such 

that a critical space density of debris builds up, then the 

toroidal distributi on will reach an instability. The critical 

level is attained when the frequency of interparticle colli ­

sions dominates the behavior of the dust, causin g it to col­

lapse into a thin rin g system. 

The apparent absence of such a ring system for Mars al­

lows upper limits t o be estimated for both the asteroidal im­

pact flux and the mass of any Martian dust belts. This in 

turn allows us to evaluate the observability o f and space 

vehicle hazards pres e nted by the orbiting debris. 
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The ejecta from Martian satellites spend some time in 

orbit rather than making simple ballistic trajectories as 

on the moon but the end product should be comparable. The 

surfaces of Phobos and Deimos should be covered with an 

equilibrium layer of debris ,similar to that on the moon. 

Application the the general model to the Saturn ring 

system suggests that this may be a case of toroidal in­

stability. The source of the ring material would be the 

meteoritic erosion of a satellite situated in the Cassini 

gap. Reasons why this instability might be attained for 

Saturn and not for Mars are discussed. 



HYPERVELOCITY PROJECTILES IN MARS SPACE 

The dominant source of debris impacting Mars is the 

group of Mars aste r oids, i.e., those asteroids having a com-

mon range of heliocentric d~stances with that p lanet (Opik, 

1966). Since the elimination of an asteroid by Mars is a 

random statistical process, we can express the present num-

ber of Mars asteroids as 

N(t) = N(O) e-tiT, 

where N(O) is the number available t years ago and T is the 

characteristic survival time. Op ik (1963) used a recent 

list of 34 Mars asteroids to calculate an average T = 6xl09 

years which, being comparable to the age of the solar system 

suggests that Martian cratering has gone on more or less 

continuously over geological time to the present .* He also 

showed that 78.9% of the Mars asteroids are eliminated by 

actual impact with the Martian surfa ce while most of the re-

mainder are injected into earth space (the Apollo group). 

Since the depletion rate is 

. dN I d t = - NIT , 

the number of asteroids eliminated in time ~t by actual im-

*Twenty years ago, E . J. Opik (1951) in a classic study first 
developed the expressions for the lifetimes of stray bodies 
in the solar system against colliSions with the planets. On 
this basis, he predicted that the surface of Mars must be 
heavily cratered. 

3 
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pact with Mars is 

N 
6N = f T 6t , ( l) 

where f = 0.789. It is assumed that Mars asteroids of all 

sizes follow the same distribution of orbits and therefore 

have the same average T (except for the smaller grains which 

are affected by radiation pressure and drag). Thus (l) re-

mains valid whether 6N and N refer to the totality of Mars 

asteroids or to any given size range subset, like the 34 

that are large enough to be observed. 

In order to determine from the sizes of the visible 

Mars asteroids the number in any size range, we employ a 

power law size distribution . Let the total number of objects 

with radius greater than or equal to R be expressed as 

N (R) ( _Rz)s , s = v (2 ) 

where v and Z are constants to be fit and S is the population 

i ndex. The observed cumulative numbers for the Mars aster-

oids are plotted logarithmically as the points in Figure l. 

Observational selection has evidently depleted the numbers 

below a radius of a few kilometers . Fitting a straight line 

(assumed to represent the true distribution) is impos·sib le, 

but at least a range of curves can be "anchored" in the lar-

gest numbers, which are assumed to be complete. There are 5 

Mars asteroids of radius ~ 17 km, and the corresponding 

point in Figure l is used for normalization of three selected 

power laws. Thus we set v = 5 and Z = 17 km in (2). 
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The population index S = 1 . 6 is thought by Opik (1966) 

to be the most probable for the Mars asteroids, with S = 2 

as an upper limit. This is based on the statistics of ob-

servab le asteroids in ge neral. Hartmann ( 1969) has shown 

that this range is charact~ristic of singly fragmented ba-

salt blocks. Exten sive grinding powever always raises the 

value. It is thus possible that the smaller asteroids have 

an e ven l arge r population inde x . Dohnanyi (1969) derives a 

value nearS = 2 . 4 for steady state grinding of asteroidal 

debrls. The number of Mars asteroids and therefore the flux 

of impact projectiles i s extremely sensitive to S . Figure 1 

indicates, for example, that the cumulative number with ra-

dii greater than 1 ern varies by five orders of magnitude 

over th e r ange of S values examined. 

Substitut ing N8 into (1), the cumulative number of Mars 

asteroids of radius ~ R that impact the planet in the time 

interval 6t is 

Turning this around and setting 6N
8 

=1, the average time in­

terval between two i mpact events of a given size on Mars is 

6t = ( 3) 

The time interva l between equivalent impacts on a smaller 

body in Mars space, like a satellite, is of course much lon-

ger . It increases near l y as the ratio of the surface areas 

( 4) 
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where R~ and r are the radii of Mars and the smaller target, 

respectively. 

Gravitational focusing of debris and partial shielding 

of the satellites by Mars might at first be thought to even 

further decrease the rate of impacts on the satellites with 

respect to Mars. These effects, however, are negligible. 

To illustrate focusing, the angular deflection y of an aster-

oid in passing a planet is given by (Opik, 1963) 

0 

tan ( 45 ( 5 ) 

where G and Mare the gravitational constant and the planet's 

mass, xis the distance of the asteroid's closest approach to 

the planet's center, and U is their unperturbed relative ve-

locity in units of the planet's orbital velocity. For aster-

oids crossing Mars, the average U is 0.429. Substituting 

this into (5), the maximum deflection for a surface grazing 
0 

Mars asteroid, with x = R!, is only y = 12 . The differ-max 

ence between the projectile flux at the Mars surface and at 

the satellite distances can thus be neglected. 

As for shielding, the fractional solid angle subtended 

by Mars as seen from Phobos is only about 3% and it is even 

less for Deimos. If this is also neglected, the simple ratio 

of surface areas (4) is sufficient to scale equivalent impact 

intervals from Mars to a satellite. 

The size of Phobos is now known from a picture of it ob-

tained by Mariner 7 (Smith, 1970). Although not spherical, 

its 11 radius 11 is about 10 km . Using this in ( 4), k = l. l5xl05 
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for Phobos. The size of Deimos remains unobserved but since 

it is about 4 times less bright than Phobos, its k should be 

about 4 times as large, or 6 . 4xlo 5 , assuming the same reflec-

tivities. 

The time interval between impacts by asteroids of radius 

equal to or greater than R against a Mars satellite of radius 

r 0 is now found. Multiplying (3) by (4) and substituting N3 

from (2), we express it as 

t = ( 6 ) 

Figure 2 displays t(R) logarithmically for Phobos (solid 

lines) and Deimos (dashed lines) for three values of S. Note 

that the time required between Mars satellite impacts by as-

teroids in the ten to few hundred meter radius range is of 

the order of the age of the solar system. Actually this is 

not quite accurate because it assumes that the flux rate of 

asteroids has remained constant throughout geological time. 

In fact the population of Mars asteroids has been steadily 

diminishing with the characteristic survival time T. This 

means that Z is not constant but was somewhat larger in the 

past. To get around this, we try a somewhat different ap-

proach. 

Using the characteristic survival times of the differ­

ent Mars asteroid orbits , Opik (1965) has estimated the " or-

iginal" number of such bodies. He finds that the ratio of 

the number that have impacted the Martian surface in 4.5xlo9 

years to the currently surviving number is e = 1.32 . Using 
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this, we can write a self-evident expression for the cumula-

tive number of asteroids of radius ~ R that have struck a 

Mars satellite of radius r 0 in the age of the solar system: 

where N
8

(R) is the currently extant number. To find the 

size of the largest asteroid ever to have struck a Mars 

satellite, set N =1 and substitute the expressions for N8 (R) 

and k(r0 ) into (7) to solve for its radius 

( 8 ) 

where we note that ev = 6.6 and recall that Z = 17 krn. Some 

values are listed below. 

Table 1: Radius of largest asteroid hitting a satellite 

S Bs (in meters) for Phobos 

1.6 38 

2.0 130 

2.4 290 

Bs (in meters) for Deirnos 

16 

65 

160 

These values are about 50% larger than those read off Figure 

2, as expected, because they account for the larger asteroid-

al flux in the past. 

Now the asteroids corresponding to the largest radii in 

-4 the above table are only of order 10 times the mass of Pho-

bos or Deirnos. But a hypervelocity projectile would have to 

-4 possess at least 10 times the mass of a target rock to corn-
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pletely shatter it (Wetherill, 1967). There is thus no dif-

ficulty for objects like Phobos and Deimos surviving catas­

trophic destruction by a single impact in 4.5xlo9 years. 

In order to assess the effect of steady erosion by the 

many smaller hypervelocity asteroidal fragments, we calcu-

late the total mass impacting a satellite in the age of the 

solar system. To obtain the number of asteroids with radii 

in the range R to R + dR that impact a satellite of radius 

r 0 in 4.5xl09 years, insert the expression for NS(R) into 

(7) and differentiate; thus, 

dN 

The collective mass of all projectiles in this size range is 

so the total incident p rojectile mass is 

The integration is from the smallest g rains stable in the so-

lar system (the size of which is immaterial to the result so 

long as S < 3) to the largest asteroid to have hit the satel-

lite. The radius of the latter, R3 , is seen to scale the to­

tal incident mass. Some values of MS are listed in Table 2, 

assuming p = 2.8 gm cm- 3 (density of crustal rock). This 

evaluation uses Z = 17 km, the Rs previously tabulated, and 

the current values of k for either satellite. Of course with 

substantial erosion, a satellite's surface area was greater 
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in the past, 2 so that k = (R5/r 0 ) , properly weighted over 

time, should be smaller, hence the corresponding M3 larger. 

The results of doing without such a correction will show 

that, to our accuracy, it is probably unnecessary. 

Table 2: Total asteroidal mass hitting a Mars satellite 

s MQ Phobos Ms (gm) Deimos MQ ( gm) 
u u 

1.6 88.5 zl. 6RL 4 7.3xlo
11 

5.5x1o10 
k 1.6 

2.0 155 z2.0R 5.1x1o 13 6.3xlo12 
k 2.0 

2.4 310 z2.4R0.6 1.2x1o 15 2.0xlo 14 
k 2.4 

Note that M3 is greater for larger S; i.e., the mass is do­

minated by the smaller particles for larger S. 

Now let r be the ratio of ejected to incident mass in a 

hypervelocity impact. According to Marcus (1969) and others, 

2 r ~ KV . , 
l 

where K is a constant depending on the nature of the target 

-1 material and V. is the impact velocity in km sec . It is 
l 

seen that ejected mass is roughly proportional to impact en-

ergy. Relevant suggested values of K range from about 5 for 

solid basalt to more than 500 for unconsolidated grains . 

Recent experimental results by Braslau (1970) for hypervelo-

city impact into dry quartz sand can be interpreted as indi-

eating a K of about 100. 
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The average relative velocity of an asteroid approaching 

Mars is roughly 10 km sec-l (Opik, 196 3). Choosing K ~ 100, 

this gives r ~ 10
4

, so the cumulative mass ejected in 4 . 5xlo 9 

years by a Martian satellite with an unconsolidated surface 

4 is of order 10 MS. The largest values considered here are 

obtained for S = 2.4. In this case, the cumulative mass 

ejected from Phobos would be about 10 19 gm, and from Deimos 

about 2xlo 18 gm. Th ese values are about 1.0 and 1.4 times 

the estimated present masses of the respective satellites. 

Thus, steady erosion by the smaller hypervelocity projectiles 

should not have removed more mass from Phobos and Deimos 

than they currently retain. We conclude that these satel~ 

lites may well have survived in substantially their present 

condition in Mars orbit since the origin of the solar system. 



INITIAL EJECTION OF SATELLITE DEBRIS 

Most of the debris ejected from Phobos and Deimos by h y -

pervelocity impacts will have relatively low velocities. 

Particles spalled from a satellite with a typical ejection 

velocity vej will have their orbits confined within a limit­

ing range of distances from Mars. For a given vej' the mini­

mum attainable pericenter ql is reached by particles ejected 

in the opposite direction from the satellite's orbital vela-

city; the maximum attainable apocenter q 2 by particles ejec­

ted in the prograde direction. These cases are illustrated 

in Figures 3a and 3b, as scaled to the Phobos orbit. Debris 

ejected in directions other than tangential to the satellite 

orbital velocity will have orbits crossing that of the satel-

lite but with pericenter greater than q 1 and apocenter less 

than q
2

. 

It will be useful to find the limiting range of dis-

tances (q 1 ,q 2 ) confining the orbits of particles with a spe­

cified satellite ejection velocity v .. We consider first 
eJ 

the inner pericenter bound q 1 . Let v be the initial orbital 

velocity of a particle ejected opposite the satellite's 

orbital velocity V0 • Then 

V = v 0 ( 9 ) 

From the orbital energy integral, 

2 1 GM(-- - -) ao a 

12 
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where a is the semimajor axis of the particle's independent 

orbit, given by 

2a = ao + ql ' 

with a 0 the satellite's semimajor axis. Combining these 

three equations and using the fact that v~ = GMia0 yields 

( 10) 

A similar expression relating the outer apocent er bound q
2 

to the ejection velocity is readily f ound to be 

2q 
= {( 2 )112 - l} Vo . 

ao+q 2 
(ll) 

To be precise, we should take account of the satellite's 

escape velocity v esc Thus, instead of (9), the proper ex-

pression should be 

V = V0 - V , 

where Vis the particle's post-escape velocity with res:pect to 

·the satellite, obtained by energy conservation from 

2 2 
v . - v eJ esc 

The final expression replacing (10) and (ll) turns out to be 

v . = 
eJ 

[{ ± ( __1_5L) l I 2 _ 1 } 2 2 2 ] 1 I 2 V0 + V a 0 +q esc (12) 

where q is a generalizetl orbital extremum (either q 1 or q 2 

according to circumstances). This expression is also more 

general in that the choice of minus sign allows one to repre-
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sent retrograde particle orbits (for initial V opposite to 

and greater than v 0 ). However the debris fraction ejected 

at such high velocities is negligible and will not be con­

sidered here. Thus, using the plus sign, we note that (12) 

reduces to (10) and (ll) if escape velocity is neglected. 

It turns out that the exact expression (12) is only 

really needed in the case of ejection velocities less than 

a few times the escape velocity. For Phobos, Smith (1970) 

assumes a density of 2.8 gm cm- 3 to get an escape velocity 

of about 12 m sec-l Thus for most of the ejecta from as-

teroidal impact, the approximate expressions are adequate. 

In Figure 4, the orbital bounds q are plotted as a 

function of vej for both Phobos (solid lines) and Deimos 

(dashed lines). The upper and lower branches of either 

curve repres ent q 2 and q
1 

respectively. Thus, for example, 

-1 . debris ejected from Phobos at vej = 100 m sec 1s confined 

to excursions within the region between about 2.3 to 3. 3 

Mars radii (measured from the center of the planet), while 

debris ejected at the same velocity from Deimos is allowed 

to get to limiting distances of about 5.2 to g.4 Mars radii¥ 

The Deimos debris has a wider range, of course, because the 

Martian gravitational field is less confining at its distance. 

The smallest pericenter is represented by collision with 

Mars, or q 1 = Rj· Figure 4 indicates that this becomes pos-

*Actually the ranges should all be slightly widened to account 
for the small orbital eccentricities of Phobos and Deimos. 
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sible with v . > 584 m sec-l for Phobos and v . > 670 m sec-l 
eJ eJ 

for Deimos. The largest apocenter is escape from Mars alto-

gether, or q 2 = oo From (ll), this becomes possible for 

v . > 
eJ 

0.414 v 0 , which is 558 m sec-l for Phobos and 888 m 

-l 
sec f.or Deimos. Note finally in Figure 4 that for 

vesc' the particle is confined to the satellite. 

v . < 
eJ 

To determine the general envelooe for debris orbits in-

itiated by a gi ven ejection velocity, we need to know the ex-

cursion range out of the satellite orbital plane in addition 

to the q range within it. In Figure 3c, the particle ejec-

+ + 
tion velocity vej and resultant orbital velocity v make an-

gles of £ and i, respectively, with the satellite orbital 

velocity ~o (neglecting a small escape velocity correction). 

The plane of Figure 3c is taken to be normal to the Mars-

satellite radius vector. For given values of v0 and v ., a 
eJ 

maximum inclination i for the resultant orbit is obtained if 
0 

£ is just slightly larger than 90 , ~' with ~ . nearly 
eJ 

normal to the satellite orbit plane. If, as will be shown, 

most of the ejected particles have vej much lower than v 0 , 

then the resulting inclinations i will be very small compared 
0 

to 90 . In this case the approximation 1~1 ~ l~ol is valid . 

This means, in effect, that to find the maximum excursion out 

of the satellite orbit plane made by a particle with v .< <v 0 , 
eJ 

one may consider circular orbits. 

Therefore consider a near circular orbit of semimajor 

axis ao inclined by i to the plane of the satellite orbit 

(essentially the· Martian equatorial plane). A particle in 
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0 

such an orbit at longitude 90 from its intersection with the 

satellite will be at maximum elevation above the equator 

plane, given by b' ~ a 0 sin i. From Figure 3c with v .<<v0 , 
eJ 

sin i ~ v ./v0 so that 
eJ 

v . 
b' = ~ 

Vo 
(13) 

Any particle ejected at a given v . must now have a pericenter 
eJ 

~ q 1 , an apocenter < q 2 , and an excursion out of the equator-

ial plane of~ b'. The envelope of all such orbits will be a 

toroid, the cross section of which is taken to be an ellipse 

with semimajor axis a' = (q 2 q 1 )/2 and semiminor axis b' as 

given in {13). Figure 5 shows the cross section of a set of 

such toroids for Phobos and Deimos corresponding to the four 

-1 values of vej labeled in m sec The volume of each toroid, 

being a figure of revolution for an ellipse centered at 

(q 1 + q 2 )/2, is readily found to be 

The choice of an elliptical cross section, of course, involves 

An approximation, but one adequate to our present needs. 

A key point in the discussion is the fact that the bulk 

of the debris created in hypervelocity impact has a relatively 

low average ejection velocity. Gault et al . (1963) fired 

projectiles at about 6.25 km sec- l into solid basalt and plot-

ted the cumulative mass ejected faster than a given velocity.* 

*Their plot is more accessibly reproduced by Arnold (1965). 
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They found that less than 1% of the debris had ejection ve-

l it . di l km sec- 1 . oc les excee ng Although the total ejecta 

mass scales as the impact energy, the relative mass ejected 

ith . · f ( 1 < l km sec- 1 ) w ln a glven range o vej as ong as vej ~ 

is fairly insensitive to the impact veloci ty . 

Some the the data from Gault et al. are indicated along 

the upper edge of Figure 4. This shows, f or example, that 

less than 1 % of the ejecta from Phobos or Deimos has suffi-

cient velocity to hit Ma rs (or to escape altogether). Most 

of it remains in orbits close to those of the satellites. 

Again, from Figure 4, about 70 % of the debris mass from a 

hypervelocity impact into solid basalt has ejection veloci­

ties of less than 100 m sec- 1 . If the Phobos and Deimos 

surfaces were solid rock, then more than 70% of the impac t 

debris would initially be confined to orbits within the 100 

m sec-l toroids shown in cross section in Figure 5. 

However, it is unlikely that these satellite surfaces 

are solid rock. For one thing, a small though significant 

portion of the debris will have ejection velocities even less 

-1 than the 12m sec escape velocity of Phobos. In addition, 

as will be shown, much of the escaped debris will eventually 

reimpact the satellit~ at low enough velocities to allow re-

capture. The satellite surfaces should thus be fragmented, 

resembling that of the moon . . 

No data are as yet published, but Gault (personal com-

munication, 1971) indicated that for hypervelocity impact into 

unconsolidated granular rock,ejection velocities are even 
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lower than for solid rock targets. Therefore the 150m sec-l 

contours in Figure 5 perhaps contain as much as 90% of all 

debris initially ejected from Phobos and Deimos. 

The Mars asteroids have an average unperturbed relative 

-1 
velocity when approaching the planet of about 10 km sec , as 

mentioned before. The Martian gravitational field increases 

this slightly Nhen an asteroid 1s within striking distance of 

a satellite. Finally the orbital velocity of the satellite 

itself ( 2. 14 km sec -1 for Phobos and 1.35 km sec -1 for Deimos) 

will somewhat augment or diminish the final impact velocity 

to the extent that the collisions are "head-on" or "over-

taking", respectively. Thus on the average, a satellite ~ s 

ieading hemisphere will be hit both harder and more often 

than its trailing hemisphere. A greater mass of ejecta will 

accordingly have a compon~nt of vej directed forward rather 

than backwards. Consequently, there will be more debris 

having orbits initially larger than that of the satellite of 

origin as opposed to smaller. Finally, from Kepler's Second 

Law, an orbiting particle ' spends more time near apocenter 
.! 

than pericenter. The net result of all this is that the outer 

part of each toroid represented in Figure 5 will contain a 

substantially greater debris density than the inner part. At 

least that will be the case for the debris as initially ejec-

ted, before radiation drag and collisional interaction take 

effect. 



STABILITY OF DUST BELT CONFIGURATION 

The average rate of mass injection from a Martian sat-

telite into the orbiting debris complex may be represented as 

r M
8 F = -­S T 

0 

(14) 

where, it is recalled, r is the ratio of ejecta to projectile 

mass and M8 (previously tabulated as a function of the aster­

oidal population index S) is the total projectile mass inci-

dent on a satellite over the age of the solar system. The 

latter is denoted by T = 4.5xl09 years. The input rate FS 
0 

must be balanced against the various processes that remove 

debris in order to determine the steady state population and 

extent of the orbiting debris complex. Removal by satellite 

recapture is a crucial mechanism and the only one considered 

here which is independent of particle size. It is essentially 

a random statistical process. A particle ejected from a sat-

ellite at vej is confined within a toroid of volume V. If 

the particle does not substantially interact with other debris 

before next encountering the satellite~ its relative velocity 

on approaching the satellite will be of order vej' We shall 

interpret the situation by analogy with a "particle in a box" 

of volume V; it is bouncing randomly about with velocity v .; 
eJ 

somewhere inside the box is a stationary target of cross sec­

tion rrr~ (the satellite). In this case, the characteristic 

time between collisions of the particle with the target is 

v 
2 7Tr 0 v . 

eJ 

19 

(15) 
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Wetherill (1967) has shown that the results of such an ap-

proximate calculation are in reasonable agreement with the 

exact analytical solution in the case of collisions among 

asteroids. 

Below are provided some values of the volume V/VJ 

(where Vif = 1.6x1o 26 cm 3 is the volume of Mars) and the 

secondary collision time T 0 as a function of ejection vela-

city vej for both satellites. 

Table 3: Confining volume and collision time in dust belts 

Phobos Deimos 

-1 V/Vcr (yr) V/Vc{ (yr) v '(m sec ) To To -ej 

25 0.05 32 2.2 5600 

50 0.22 72 8.6 11000 

100 0.90 150 35 24000 

150 2.0 230 83 40000 

The ejection velocity vej for most of the debris is not 
-1 :_ 

more than - 150 m sec , and is usually much less. When a 

particle later collides with a satellite at these speeds, it 

will probably not break unless it is larger than a few em and 

hits a solid rock surface. If it hits r~ck, according to 

Opik (1969), such a projectile or its fragments will be re-

fleete d at about half the collision velocity, and if it hits 

unconsolidated debris, the projectile may be reflected at up 

to 20 or 30% of collision velocity. Or the projectile may 

simply remain in the hole it makes in the debris, as is the 
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case for many meteoroid fragments striking the earth's sur-

face with comparable terminal velocities (Krinov, 1960). 

Whether reflected or buried, the projectile may eject ter-

tiary debris, some of which may e.ven escape the satellite. 

However the relative velocities should be so low that, as 

will be shown, this material will very shortly be swept up 

again by the satellite. 

If the particle is not captured in its first collision 

with the satellite, it will acquir.e a lower relative velo-

city which confines it to a smaller toroid. The volume of 

the toroid is proportional to its elliptical cross section 

Tia'b'. For low velocities, Figure 3 shows that 2a' = q 2-q
1 

is nearly linear in v ., and from (13), b' « v .. There-
eJ eJ 

2 fore, to good approximation, V ~ vej and, from (15), T0 ~ 

vej' This means that whenever a particle is reflected off a 

satellite, the time T 0 until its next collision is shortened 

on the average in proportion to the diminishing of its rela-

tive velocity. 

The ejection velocity is at least halved on each "bounce" 

and the time until the next collision is shortened according~ 

ly. A particle generated by hypervelocity impact, with an 

initial ejection velocity of even as muc~ as a few hundred 

meters per second, should in most cases be recaptured from 

orbit by a satellite after only a few bounces. Let us write 

the typical capture time as 

(16) 
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where B ranges from about unity to perhaps 2 or 3. 

Consider a toroidal complex of orbiting debris particles 

which is not sufficiently dense for the particles to inter-

act with each other. This complex contains a satellite with 

radius r 0 >> rmax' where rmax is the radius of the largest 

debris particle. The dynamical effect of such a satellite 

revolving in near circular orbit is to diminish the orbital 

eccentricities and inclinations of the particles with the 

larger relative velocities and to capture those particles 

with lower relative velocities . With no new external genera-

tion of debris, the toroidal complex would eventually be con-

tracted and accreted by the satellite. The extent to which 

this would occur in time t is governed by exp(-t/Tc). With 

a steady input of debris by asteroidal impacts with the sat-

ellite, there would result a nearly steady state equilibrium 

population of orbital debris and satellite surface debris 

constant ly being recycled. 

Whether or not the debris complex is rarified enough to 

t 
avoid interparticle collisions and thus be governed by satel-

lite capture with time scale T depends both on the populat ion c 

index of the asteroidal projectiles and on the mechanics of 

ejection. If the asteroidal flux is sufficiently large , then 

the input rate of ejecta F8 is large. And if the equilibrium 

debris density in the toroid is sufficient to permit inter-

particle co lli sions on a time scale less than Tc' then the 

debris orbits tend by momentum exchange to become more circu-

lar and less inclined. This decreases the toroid volume, in-
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creasing the interparticle collision frequency. The toroid 

becomes unstable and relaxes into a thin disc. 

The particles in such a disc can no longer be directly 

recaptured by the satellite since the orbits are now con-

centric. Instead, they must remain in orbit until elimina-

ted by other mechanisms, which operate over a time scale 

large compared to T . But asteroidal impacts will continue c 

to eject debris from the satellite into the initial toroid 

and this will continue to "feed" the disc population. The 
' 

mass of the debris in the disc thus becomes much larger than 

in the toroid, which constitutes a kind of "halo" about the 

disc.* 

The mass of the ring complex continues to grow until a 

new equilibrium is achieved with the slower elimination 

mechanisms. These will be considered in a later section. 

But first let tis examine the stability of an orbiting tor-

oidal debris distribution to determine the conditions beyond 

which it relaxes into a thin disc. 

The average injection rate of debris into orbit, F3 as 

given in (14), is assumed constant and independent of the na-

ture of the resulting debris system. If F3 is sufficiently 

low, interparticle collisions are avoided because the satel-

lite itself can accumulate the particles before they attain a 

critical space density. If in this case, F3 were cut off at 

*The analogy with stellar galactic populations is not intended 
to go beyond the purely descriptive. 
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time t = 0, the debris mass remaining in orbit at time t 

would be 

m(t) = m( O) exp(-t/T ) , c 

where Tc is the characteristic recapture time. The elimina­

tion rate would therefore be 

m - - m/T 
c 

If the input flux were restored, the net rate of change of 

debris mass would then be 

(17) 

The solution to this rate equation is 

m = F
8

T . {l- exp(-t/T )} , c c 

which, for t >> Tc' asymptotically approaches the steady 

state mass 

Using (14) and (16), the equilibrium toroidal mass of orbiting 

debris would then become 

(18) 

where, we recall, 13 is the number of "bounces" and T0 the 

average time interval between particle-satellite collis~ons 

(as listed in Table 3), T0 is the age of the solar system, 

r the ejecta to projectile mass ratio, and M8 the total pro-
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jectile mass incident on a satellite in time T0 , depending 

on the asteroidal population index S. 

It is important to keep in mind that (18) is valid only 

if the resulting m8 does not exceed the critical mass for 

toroidal instability. This is determined as follows. We 

adopt the simplifying assumption that an orbit is random-

ized if a particle accumulates collisions with A times its 

own mass in less time than is required to collide with the 

satellite. By "randomized 11 we mean that the particle under-

goes sufficient momentum exchange that its orbital inclina-

tion and eccentricity are substantially diminished . This is 

essentially a random walk situation, and since most of the 

impacts are with many smaller particles, the factor A is 

perhaps not more than, say, 2 or 3. 

Let a particle of radius r and mass m encounter an ac-

cumulated mass Am in traversing a volume oV through the tor-

oid in time TA. The relative velocity between particles 

will be taken as vej' the same as with the satellite. If 

m8;v is the average space density in the toroid, then the 

mass encountered in collisions during such a traverse is 

ms 
= v ov = 2 

Tir v .T, 
eJ 1\ 

Substituting for V from (15), 

2 T, 
Am = m ( .!:._) 1\ 

S r 0 T 0 

where r 0 is the radius of the originating satellite. This 

may be rewritten as 
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The condition for instability in the toroid, as pre-

viously defined , is TA < T0 • Let the radius r at which TA = 

T 0 be denoted r~. Then the critical particle size for tor-

oidal instability is 

3ms 
r = . . 2 

4Tipl.r 0 

Substituting for ms from (18), we have 

313To r Ms 
(19) r = 2 47TTc1JpAr 0 

Those orbiting particles in the toroid having r < r~ will 

tend to relax into a thin disc configuration. Larger parti-

cles will initially remain in the toroidal "halo". 

A table of select values for r~ is provided for illus-

trative purposes (the values of the parameters chosen are 

simply "best guesses"). Using 13 ,..,. 2, A ,., 2, r ..., 10 4 , p = 

2.8 gm cm- 3 , and choosing typ~cal values for T0 (from Table 

3) of 100 years for Phobos and 20,000 years for Deimos, we 

i 1 ~ 1 9 1 -17 ~ -14 have, respect ve y, rp ~ . x 0 Ms and rD- 1.5xl0 Ms. 

The Ms are derived from Table 2. 

Table 4: Particle radius for toroidal instability 

s 
.. ~ 

____!:p_ r -D-

1.6 0.1 ll 8 ll 

2.0 10 ll 1 mm 

2 . 4 200 ll 3 em 
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We now assume (and this will be justified later) that 

the particle size distribution in the satellite ejecta is 

similar to that of the lunar surface material. About half 

the volume of the Apollo ll lunar soil sample consists of 

particles smaller than radius 30~ (Puke et al., 1970). If 

this were used to interpret the preceding table, it would 

suggest that for S = 2.0, more than half of the mass in the 

Phobos toroid would be stable while more than l1alf in the 

Deimos toroid would relax into a thin disc. For S = 1.6, 

both toroids would be stable and for S = 2.4, both would 

collapse. 

A thin disc a::.'ound Mars would probably have suffi­

cient optical thickness to be photometrically detectable 

from the earth. It therefore appears likely that the tor­

oidal configuration remains stable for Mars, and this would 

imply a relatively low ejecta input rate, hence a relatively 

low asteroidal impact flux. The values in Table 4 are much 

too uncertain to draw any firm conclusions, but it may at 

least be said that the Deimos toroid is more likely to ap­

proach instability than that associated with Phobos. 

It is possible that at an earlier epoch, the asteroidal 

flux was much larger, and the space density of the Martian 

debris complex exceeded the instability level. At such a 

time Mars would have possess ed a ring system resembling that 

of Saturn, and perhaps a remnant of it (consisting of the 

larger particles less affected by the Poynting-Robertson 

drag) survives today. It is also suggested that the Saturn 
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ring system may itself be the result of meteoritic erosion of 

small satellites within it at such a rate that a toroidal con­

figuration is unstable. We will return to this suggestions 

after examining some of the mechanisms that remove particles 

from a complex of orbiting debris. 



MASS LOSS IN A DEBRIS COMPLEX 

A small fraction of the ejecta from a satellite will 

have velocities sufficient to either collide with Mars or 

escape altogether from orbiting the planet. As previously 

indicated (cf. Figure 4), this fraction is probaBly much 

less than 1% of the total. A particle either has such an 

initial ejection velocity , in which case it is lost in its 

first orbit, or it doesn't, in w~ich case it remains to be 

removed by other means that work over a longer time scale. 

Recapture by the satellite does not remove debris from 

the complex. It only detains the material until recycled 

by later impacts. Such impacts of course give the material 

another chance (still less than 1%) to escape from the Mars 

system or hit the planet. Thus, recycling results in a 

small steady loss of debris. 

Other loss mechanisms, considered in order of increasing 

time scale are : radiation pressure, Poynting-Robertson drag, 

and hypervelocity impact of orbiting debris by small aster­

oidal particles. Additional processes undoubtedly exist, 

such as exospheric drag and solar wind erosion, but do not 

appear to be as important in the present context. 

Radiation pressure is the fastest means of removing 

orbiting debris but it is only effective for the fraction of 

particles in the smallest size range. It produces periodic 

perturbations in step with the apparent motion of the sun. 

If the orbital eccentricity becomes too large, the particle 

29 
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is lost. 

Following the analysis of Peale (1966), the orbital ec-

centricity of a particle of radius r in a combined planetary 

gravitational and solar radiation field is 

where P0 and Mare the planet's orbital period and mass, G is 

the gravitational constant, e 0 is an arbitrary initial value 

of e, and a is a parameterized particle orbital eccentricity 

that oscillates with period P0 , but never exceeds a . max 

Peale has shown that l ~ ~ < 4 
~max - · Inserting the upper bound, 

with e 0 = 0, we have for a particle orbiting Mars with semi-

major axis a, the limiting value 

For a particle of radius 100~ and density 2.8 gm cm-3 injected 

into an initially circular orbit in the region of the Martian 

satellites, solar radiation pressure will induce an oscillating 
L 

eccentricity not exceeding about 0.2. 

For particles smaller than about 10~, this effect begins 

to become important. Using the lower bound a ~ l, we find max 

-4 
emax ~ 5.9xl0 [£_(l-e2 )]l/2 

pr R~ max 

Since to avoid collisions with Mars, an orbiting particle re-

quires that emax < 1 - R~/a, we find the smallest particle that 

can remain in orbit has a radius 

= 5.9xlo-
4 

(2-RQ/ a) 112 
p 1-R~/a 
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Ror particles that can cross the orbits of Phobos or Deimos, 

rmin is about 3~. Anything smaller than this will collide 

with the planet or escape from the system in less than one 

Martian year. 

The Poynting-Robertson effect, unlike radiation pressure, 

is not a conservative periodic perturbation, but involves a 

steady energy dissipation. For a particle of radius r in 

circular orbit around a planet, the rate of change of the 

semimajor axis due to the solar Poynting-Robertson effect is 

(Peale, 1966; Allan, 1967) 

a = _ 2
4 

l.22S 0 

2 2 
b c pr 

a ' (20) 

where s® = 1.36xlo 6 erg -2 -1 em sec is the solar constant, b 

is the planet's orbital radius in A;U., cis the speed of 

light, and p is the density of the particle. We have chosen 

here to augment s® by the factor 1.22 to include the pseudo­

Poynting-Robertson effect of solar wind protons (Whipple, 

1967). Note that the drag rate diminishes as the orbit con-

tracts, unlike the Poynting-Robertson effect for a particle 

orbiting the sun, in which case the flux and thus the drag 

increase with time. 

The time interval required to reduce the orbital radius 

from a 2 to a 1 , easily found by solving (20), is 

7 a2 
t = l.76xl0 pr ln(--) years . 

al 

The characteristic time for this effect to diminish the or-

bital radius by half Ca2 =2a1 ) is thus 
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= 1.22xl0 7pr years , (21) 

where r is in em. The effect is particle size dependent, re­

moving 100~ particles in as little as 3.4xlo 5 years. 

Hypervelocity impact Qy small asteroidal particles will 

erode the debris complex as well as the satellites which 

gave rise to it. A direct adaptation of (6) provides the 

time interval between collisions with an orbiting particle 

of radius r by asteroidal grains with radius ~ r/n. We ex-

press it as 

and evaluate this for three asteroidal distributions: 

tl. 6 = l.9xlo 16 
years 1.6 0.4 

n r 

t2.0 
6.lxlo13 

= years 2 
n 

2 .0 x1o 11r 0. 4 

t2.4 = 2 . 4 years 
T) 

In these expressions, r is in em. For S = 1.6, the time be-

tween such impacts decreases for increasing target size. 

Note that for S = 2.0, the probability of a particle being 

hit by an asteroidal projectile more than 1/n times its own 

size is independent of that size. And for S = 2.4, the life-

time actually increases with increasing target size because, 

although the cross section is larger, the size slope is so 

steep that there are fewer projectiles with radius ~ r/n. 

For n ~ 10, the projectile has more than 10- 3 the mass 

of the debris particle, and this may be sufficient to cata-
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-l strophically explode the latter in a 10 km sec impact 

(Wetherill, 1967). The pulverized residue will however in-

itially remain in orbit, although it will now be more vul-

nerable to the size-dependent Poynting-Robertson drag and to 

"winnowing" by radiation pressure. 

Elimination of satellite debris by this mechanizm is, 

in any case, slow. Even for the most efficient flux, a 

100~ particle must wait on an average at least t 2 . 4 ~ 10 8 

years to be exploded and long before this, it would have been 

removed by the Poynting-Robertson drag. Neither will the 

gradual erosion by accumulated impacts of projectiles less 

than l/10 the target size be competetive with the Poynting-

Robertson effect . The best it can do is break off ultrafine 

particles which may be rapidly eliminated by radiation 

pressure. 



OBSERVABILITY AND SPACE VEHICLE HAZARD 

The equilibrium mass of a toroidal dust belt for Mars 

has already been found, in (18), and used to examine the prob­

lem of instability and relaxation into a disc population. The 

steady state mass of such a disc or ring would be larger than 

that of a toroidal belt because, although the input rate is 

the same (determined by asteroidal flux), the particles in 

relatively concentric ring orbits would no longer be directly 

removed by the satellite. Instead they would be removed by 

the Poynting-Robertson effect with the time scale TPR > Tc. 

The minimum steady state mass of a ring is therefore 

considerably larger than the maximum stable mass of a toroidal 

belt, by about the ratio ~ = TPR/Tc' where Tc is the charac­

teristic lifetime for capture by a satellite. Now TPR' unlike 

Tc' is size-dependent, but inserting an average particle size 

of, say, 30~ (characteristic of lunar soil) into (21) yields 

<TPR> -3x10 5 years. Then using S ~ 2 and typical values of 

T0 (from Table 3) of 100 and 20,000 years, respectively, for 

Phobos and Deimos, we get <~>p ~ 2000 and <~>D- 10. 

If ms is the maximum steady state mass of a toroidal 

belt, corresponding to the largest asteroidal population for 

which it remains stable, then the next largest stable con­

figuration that can exist around a planet is a ring of mass 

<~>~8 . The intermediate mass range is not found in equili­

brium, although it might occur if a reduction in meteoritic 

flux allows a ring to decay. 

34 
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In assessing the observability and space vehicle hazard 

presented by a Mars orbiting debris complex, we tentatively 

assume that the planet does not possess a ring. Even a ring 

of miminum mass <~>ms would probably have been detected at 

low inclination. Therefore the upper limit to the debris 

mass orbiting Mars is assumed to be mS, characterizing the 

largest stable toroidal dust belt. Such a belt probably 

constitutes the most that an orbiting space vehicle would 

have to contend with. 

Let us assume that the disc population can be repre-

sented by an index s of its own (as opposed to S for the 

impacting asteroids) and a radius r for its largest mem-max 

ber. Then the n umber of particles of radius ~ r is 

r 
n (r) = ( max)s 

s r ' 

and the number in the size range r to r + dr is 

dn 

so that the mass in this range is 

dm 
s 

4 s 2-s -
3
rrpsr r dr 

max 

Integration from some rmin to rmax gives the total mass: 

s 
4 sr 

(r3-s 3-s) 
3' 

max 
s < m = -rrp 

3- s -s 3 max rmin 

r 
s = 3, m = 4rrpr3 ln( max) 

s max r . mln s 

3, 
4 srmax l l s > m = 3rrp s- 3 ( s - 3 s- 3) s r . rmax mln 

(22) 
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We do not know the population index of the dust belt but 

we will assume it to be comparable to that of the lunar s ur-

face. The justification for this is as follows. The debris 

is produced by hypervelocity impact into unconsolidated rock . 

The albedo of Phobos, about the lowest in the solar system at 

0.065 (Smith, 1970), should rule out anything else. The 

ejected debris, · rather than making simple ballistic trajec-

tories, spends some time in orbit before returning to the 

s urface of the satellite, but the end result should be the 

same as for the lunar surface. 

The population index of lunar surface debris is not yet 

well known, and undoubtedly varies somewhat from place to 

place. The data of Gold et al. (1970) for the fine particles 

would indi c ate s ~ 3. Hartmann (1969) notes 2.1 $ s S 3.3 

and Shoe maker et al. (1970) suggest s z 2.4, respectively, 

for the Surveyor series and Apollo 11 counts of em range par-

ticles. Accordingly, we will use sample values s = 2.1, 2.7, 

and 3.3. Some results form , assuming r >> r . and s max mln 

p = 2.8 gm cm- 3 are listea. 

Table 5: Mass of a debris population 

s 

2.7 

3.3 

m --- s----------------
27 r~ax 

106 r 3 
max 

3.3 
rmax 
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In the cases = 3.3, we have chosen r . ~ 5u, consistent with mln 

the limit set by radiation pressure. If these values of de-

bris population mass (as a function of s) are equated to the 

steady state mass (as determined by asteroidal flux) expressed 

by (18), we have 

( 2 3) 

where M3 is the total mass of asteroidal projectiles impacting 

a satellite in T0 = 4.5xlo 9 years. 

A 

We want to use the maximum mass m3 consistent with the 

probable absence of a thin ring around Mars. According to the 

discussion of Table 4, a toroidal belt would be stable for 

S ~ 1.6 for both satellites but would collapse at S ~ 2.0 for 

Deimos. Since a ring is not observed, we will provisionally 

assume that the population of Mars asteroids is characterized 

by S ~ 1 . 6. This agrees well with Opik's (1966) estimate 

based on statistics of visible asteroids. Corresponding values 

of mS from Table 2 and (23) are 160ST 0 f for Phobos and 126T 0 f 

for Deimos . Inserting these values and the m from Table 5 s 

into (23) allows a solution for r (in em, with T 0 in years) max 

as given below. 

Table 6 : Maximum particle radius in a Martian dust belt 

s Phobos belt Deimos belt 

2.1 ( 5 . 9 rs To ) 113 (0. 45 fSTo) l/ 3 

2.7 c 1. 5 rs To ) 11 3 (0 . 12 f6T 0 )
113 

3.3 (0.13 fST 0 )
113 · 3 c o . o 1 rs To ) 11 3 · 3 
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The rmax required to account for a given mass of debris must 

increase as s decreases (as the proportion of fines decreases). 

These r are left in algebraic form for later use, but 
max 

numerical values .are typically on the order of a few meters. 

In order to estimate the optical depth of the dust belt, 

we need its cumulative geomet rical cross section. The differ-

ential cross section of all particles in the size range r to 

r + dr is 

dcr 2 = 1rr dn 

which for s > 2 integrates to 

7TS () = s-2 

s .1-s 1rsr r dr max 

r~ax 
s-2 

rmin 

Again using r i N 5~ and applying the r from Table 6, the m n max 

total cross section cr (in cm2 ) of the most massive stable 

dust belt as a function of its population index can be given. 

Table 7: Maximum cumulative cross section of a dust belt 

s Phobos belt Deimos belt 

2.1 3700 (fSTo)0.7 81 (fi3To)0.7 

2. 4 16000 ( fi3To )0 .9 340 ( f8To)0.9 

3.3 21000 f 13To 1600 f 8To 

The dust belt should appear brightest when least inclined 

to the line of sight (i.e., when the Martian equator plane 
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passes across the earth). If we invoke the simplifying as-

sumption that the space density of debris is constant within 

a given toroid, then the line of sight with maximum optical 

depth traverses a distance 

2)1/2 
ql (24) 

through the toroid, as shown for the Phobos debris in Figure 

6 . 

Within the bounds of geometrical optics, the optical 

depth L~ along such a path is essentially the fraction of 

the area of observation subtended by any reflecting surface, 

which may be written as 

The quantities needed to evaluate this expression are found 

in Tables 3 and 7, using (24) and Figure 4. For the maxi-

mum brightness we insert the a values corresponding to s = 

3.3 (most heavily weighted toward smaller particles of the 

distributions considered). The resulting values ofT~ are 

-6 of order 10 for both satellites. Since the optical depth 

of the inner edge of the faint C ring of Saturn is of order 

10- 2 (Cook, et al., 1971), we conclude that a Martian dust 

belt would not be detectable from earth. It might, however, 

be observable from the planet's surface or from a Mars or-

biting vehicle as an equatorial enhancement to the back-

ground zodiacal light. 

To assess the hazard to an orbiting space vehicle from 
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the maximum stable Martian dust belt permitted, a provisional 

list is included of the maximum number of orbiting particles 

of radius ~ 1 mm and the number > 1 em, as determined from 

(22) with r values again taken from Table 6. max 

Table 8: Maximum number of particles > 1 mm in Martian belts 

s Phobos belt Deimos belt 

2.1 440 ( f(3T o) O • 7 72 (I'8To)0.7 

2.7 700 ( f8To)0.9 70 ( I'8To)0.9 

3.3 260 T 8T 0 20 r BTo 

Table 9: Maximum number of particles ~ 1 em in Martian belts 

s Phobos belt Deimos belt 

2.1 3.5 ( f(3T o) O. 7 .57 ( f(3T o ) O • 7 

2.7 1.4 ( f8To)0.9 .14 c rs To ) 
0 

· 9 

3.3 .13 f f3To .01 f f3To 

These particles are assumed to be confined within a tor-

oid having an area projected on the equatorial plane of 

so the areal density (projected on that plane) of particles 



with radius ~ r is 

w = 

41 

n (r) 
s 

A 

For the worst case (with regard to a space vehicle) considered 

4 -1 here, using s = 3.3 and assuming rs ~ 2xl0 in the 100m sec 

toroid, some values of w (in cm- 2 ) are listed. 

Table 10: Maximum equatorial areal density of Martian belts 

w(r~lmm) 

w(r~lcm) 

Phobos 

4xlo- 10 

2xlo- 13 

Deimos 

4xlo- 10 

2xlo- 12 

Thus the probability of a 10 m2 space vehicle impacting a 

particle larger than l mm in a single normal penetration of 

the Martian equator plane in either satellite dust belt is 

less than about 4xlo- 5 . With two orbits per day through these 

belts, a space vehicle should be able to survive for several 

years before hitting anything larger than sand grains. 

If, however, fS is larger by an order of magnitude, the 

spacecraft lifetime is reduced accordingly. It must also be 

emphacized that this analysis of dust belt density is based 

on poorly known parameters and may be in error by orders of 

magnitude. This section should be regarded more as expository 

rather than quantitatively reliable. 



MASS TRANSFER AND SATELLITE SURFACES 

Debris orbiting in a Martian dust belt would appear to 

be governed by three major processes: (a) continuous recycling 

of the overwhelming bulk of the material through impact ejec­

tion and satellite recapture; (b) steady "leakage" away from 

the system by the highest energy fraction and by the finer 

particles subject to radiation pressure; and (c) mass trans­

fer by the Poynting-Robertson effect. 

The last named process may have some unusual conse­

quences. We envision the following possible scenario. De­

bris ejected from Deimos by hypervelocity asteroidal impact 

initially contributes to the dust belt associated with that 

satellite. Most particles are likely to be recaptured by 

Deimos before being removed from its vicinity by the Poynting­

Robertson effect. But once recaptured, a particle is given 

another chance to be ejected by fresh asteroidal impacts, 

hence another chance to be removed by the Poynting-Robertson 

effect. The ejection-recapture cycle simply tosses the debris 

back and forth. Eventually it will leak out of the Mars 

system altogether or, staying within it, spiral in out of the 

vicinity of the satellite. 

Once the Poynting-Robertson drag has circularized a 

particle's orbit and reduced the semimajor axis sufficiently 

to prevent further recapture by Deimos, the particle must 

continue to spiral inward to the vicinity of Phobos. By the 

time it approaches Phobos, its orbital eccentricity will 

42 
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have been sufficiently reduced by drag that the low relative 

velocity with the satellite assures capture. 

Similarly, debris ejected from Phobos by asteroidal im-

pact is mostly recycled through the Phobos dust belt and re-

captured, but some is drained away by the Poynting-Robertson 

effect which in this case will cause it to spiral in to be 

lost in the Martian exosphere. However, the confining gravi-

tational field closer to Mars reduces the size of the Phobos 

dust belt (cf. Figure 5) and this makes recapture more likely .. 

than in the case of Deimos (cf . Table 3). the result may be 

that Phobos does not loose much mass to Mars but rather con-

stitutes a "bottleneck" for the debris spiralling in from 

Deimos. The fact that Phobos appears to be about eight times 

as massive as Deimos is consistent with this possibility. 

Because most of the debris constituting the surface of 

a Martian satellite should be recycled material that has 

spent some time in orbit, it is probably deficient in the 

smaller sizes that are preferentially removed from orbit. 

Thus its size frequency distribution is expected to depart 

from a power law with constant population index s for par-

ticles smaller than about 5~ due to selective elimination 

by radiation pressure. 

It should be possible to determine observationally 

whether or not the Martian satellites possess the proposed 

lunarlike surface debris layer. Such a surface would exhibit 

an opposition effect and a negative polarization branch. 

According to Veverka (personal communication, 1971), the 
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opposition effect should be photometrically detectable from 

the earth in the case of Deimos. Since Phobos is so close 

to Mars, however, any opposition effect it displays may be 

indistinguishable from that due to the bright image of the 

planet. On the other hand, this would present no difficulty 

for the case of a detector in an orbiting space vehicle. 



SPECULATIONS CONCERNING SATURN'S RINGS 

Meteoritic erosion of a small satellite or satellites 

orbiting within the Saturn ring system may in fact be the 

source of the ring material. The Saturn ring would then be 

a degenerate toroidal distribution which has exceeded the in-

stability mass limit, as previously discussed. That such 

may be the case for Saturn but not for Mars may be due to 

several factors . 

A sufficiently rapid generation of satellite-ejected 

debris together with a gradual enough removal of it would 

allow the instability to develop. The flux of cometary or 

meteoritic particles may, for all we know, be much larger 

in the region of Saturn than in the inner solar system. 

Also, Cook and Franklin (1970) estimate that cometary meteor-

oids bombard Saturn's rings with relative impact velocities 

4 -1 averaging about 3 km sec This high speed is due partly 

to the rapid orbital revolution of the ring particles. It 

is about three times as fast as the relative impact velocity 

of Mars asteroids with Phobos and Deimos. Furthermore, hy-

pervelocity impact into ice (the most likely constituent of 

a Saturn ring satellite) would probably give a larger ejecta 

to projectile mass ratio than obtains for rock. 

But the major difference is that a hypothetical Saturn 

ring satellite, unlike Phobos or Deimos, lies within the 

Roche limit of its primary. This subject has been widely mis-

understood. The Roche limit is the distance from a planet at 

45 
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which a body with no interne.l cohesion would be disrupted by 

tidal forces. A solid body, if smaller than a certain criti­

cal size, would not be broken up inside the Roche limit be­

cause its material streng th is more important than self-grav­

ity in holding it together. Jeffreys (1947a) discussed this 

problem and found that an ice satellite with radius less than 

100 km would not be broken up at the distance of Saturn's 

rings. 

However, no satellite within the Roche limit can retain 

an unconsolidated surface. Therefore a hypothetical ring 

satellite would not be able to sweep up any debris ejected 

from it. Erosion would simply continue to increase the 

space density of orbiting material. The only process removing 

it would be the Poynting-Robertson effect which, however, is 

smaller for Saturn than for Mars in p~oportion to the ratio 

of heliocentric distances squared, a factor of,.., 40. 

According t o this model, the Saturn ring system would be 

in equilibrium between input from satellite ejecta and out­

flow mainly by Poynting-Robertson drag. There would be no 

mediation by temporary satellite recapture, the process re­

gulating the dust belts of Mars. A particle ejected from a 

satellite would soon become entrained in the dense ring, its 

orbit would be circularized, and even if it again encountered 

the satellite, it could not be recaptured. 

A Saturn ring satellite could also neatly explain the 

Cassini gap. A number of attempts have been made t o account 

for the radial structure of the rings in terms of resonances 
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with longitudinal asymmetries in the rotating planet (Allan, 

1967) or with the mean motion of the known satellites (most 

recently by Franklin and Colombo, 1970). The latter espe­

cially may well explain some of the ring features but these 

models are not entirely satisfactory. A small satellite, on 

the other hand, with an orbital eccentricity of NO.Ol2, would 

be quite sufficient to maintain the Cassini gap clear of ring 

particles. 

It would work as follows. Hypervelocity bombardment of 

a satellite in the gap ejects debris which is soon entrained 

either in the outer (A) or inner (B) rings of Saturn. The 

damping effect of interparticle collisions alone tends toward 

an equilibrium state in which the ring is extremely thin and 

it does this by spreading radially inwards and outwards in 

its own plane (Jeffreys, 1947b). Thus particles would be 

continually edging in to the Cassini gap. 

If a particle in nearly circular orbit enters the gap 

from the inner edge, it will soon be overtaken by the ring 

satellite near the latter's pericenter. The particle will 

receive an impulse in the forward direction imparting to it a 

larger orbital velocity than the satellite has at that dis­

tance. This immediately makes the particle's orb it more ec­

centric than the satellite's, but the pericenters are the 

same, so the particle's apocenter will lie just past the 

outer edge of the Cassini gap. Thus half an orbit period 

after being hit by the satellite near the inner edge of the 

gap, the particle will find itself entrained at the other 

side in the A ring where its orbit is soon circularized. 
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Similarly, a particle entering the gap from outside will soon 

overtake the satellite at the latter's apocenter and bounce 

off, leaving it with a smaller orbital velocity than the 

satellite at that distance, again imparting a larger eccen-

tricity which in half an orbit takes the particle across the 

gap to the edge of the B ring. The advance of the satellite's 

line of apsides due to Saturn's oblateness assures that these 

orbital impulses will occur at all longitudes. 

The ability of the satellite to shuttle ring particles 

back and forth across the Cassini gap depends on the Roche 

instability in a curious way. For without its effect, the 

satellite would gradually sweep up the orbiting particles and 

grow by accretion. The Roche limit prevents this and pre-

serves a clean ice surface off of which the particles easily 

rebound. It also continues to prevent new satellites from 

accreting out of the ring--its traditional function. 

The relative velocity of a particle in circular orbit 

colliding with the ring satellite at either edge of the Cassini 

-1 1 gap is ~200 m sec This is equivalent to about 5 cal gm- , 

which will not melt any ring particles but may break the 

larger ones. Most of the energy goes into the rebound of the 

particle or its fragments. These collisions may even somewhat 

enhance the erosion of the satellite itself. 

Over a long period of time, momentum transfer from the 

many small collisions at apocenter and pericenter will reduce 

the satellite's eccentricity and work to 11 close the gap". In 

addition, since the gap is thought to lie outside the corotating 
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distance with the body of Saturn, tidal torque will slowly in­

crease the satellite's semimajor axis, resulting in the whole 

Cassini gap receding from Staurn. 

Underlying the exchange of particles across the Cassini 

gap is a steady one-way net transfer of mass from the outer to 

the inner ring due to the Poynting-Robertson effect. The 

smaller particles have the fastest orbital evolution but even­

tually even the moderate-sized ones spiral into Saturn. In­

side the dominant central B ring is the faint C ring, decreas ­

ing in brightness toward the planet. The diminution in 

brightness from the C ring on inward may be due to exospheric 

and increasingly effective semi - corotating atmospheric drag 

(this possibility to be further examined at a later date). 

The position of the Cassini gap in the Saturn ring system 

is consistent with the satellite erosion hypothesis. The 

ejection velocity required to get a particle from a satellite 

in the gap to the outer edge of the A ring is ~6oo m sec-1 . 

This is, within a factor of 2 or 3, the highest ejection velo ­

city to be experienced by any substantial portion of debris 

from a hypervelocity impact. 

Guerin (1970) has produced a remarkable photograph 

showing a very faint "D ring" separated by a gap from the C 

ring and extending inward to the planet itself. This inner 

ring gap may also be produced by a satellite in slightly 

eccentric orbit, although its limiting size would have to be 

less than that of a satellite in the Cassini gap to avoid 

tidal disruption. 

The many smaller gaps or bands in the radial structure 
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of Saturn's rings (cf. Dollfus~ 1961) may be explained~ on 

the basis of the present hypothesis~ by the presence of 

additional orbiting ring satel lit es with smaller size and/or 

more circular orbits. The orbits of these satellites, includ­

ind the one in the Cassini gap , may be determined or influenced 

by resonances wi th the known satellites . The present hypothe­

sis would then supplement those previously proposed to account 

for the radial structure of the rings of Saturn. 

None of these ring satellites, however, could be directly 

observed from earth because of their limiting size. To avoid 

tidal disruption, satellites in the ring may be no larger than 

about 100 km in radius. This is comparable to the estimated 

lower bound on the radius of Janus (Dollfus, 1970). And Janus 

is so faint that it could only be discovered when the rings 

were presented edgewise to reduce the g lare. 

Further study and comparison of Saturn's rings and the 

proposed dust belts of Mars may contribute to our under­

standing of processes involved in the evolution -of the solar 

system as a whole. 
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FIGURE CAPTIONS 

Fig. 1. Cumulative number of Mars asteroids with radius ~ R~ 

extrapolated from counts of the larger members for three 

suggested values of population index S. Inset shows the 

depletion by observational selection for visible members. 

Fig. 2. Average time interval between impacts by a Mars aster-

oid of radius ~ R into Phobos (solid lines) and Deimos 

(dashed lines) for the three values of S. 

Fig . 3 . a) A particle ejected with relatively low velocity 

vej opposite a satellite's orbital velocity v 0 

a prograde orbit with pericenter q1 . 

attains 

b) For ejection in the same direction, orbit is 

larger than that of the satellite and has apocenter q 2 . 

Scale in ( a) and (b) is for orbit of Phobos (radius a 0 ). 

c) In the plane normal to the Mars-satellite radius 

ve ctor~ a particle ejected at angle E with equatorial 

plane attains an orbit of inclination i. 

Fig. 4. Range of possible pericenter and apocenter distances 

(in Mars radii) for particles ejected at v . from Phobos 
eJ 

(solid curves) and Deimos (dashed curves). Ejecta frac -

tion data at top is from experimental impacts into solid 

basalt. 
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Fig. 5. Cross section of toroidal envelopes containing ini­

tial orbits of all debris ejected at velocity ~ values 

labeled in m sec-l for Deimos dust belt (at right). 

Same labels apply to smaller Phobos toroids centered 

at 2.76 R~. 

Fig. 6. Maximum optical path length 1 through a dust belt 

in the equatorial plane. 
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