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Important Problems in Fracture Mechanics Analysis I

* Initiation: WIill the crack grow ?

* Trajectory: Where does it grow ?

« Shape prediction: Into what
shape will it grow ?

.

(Prof. Ingraffea)

« Stability: How fast will it grow ?



Mission of 1994: Solve evolution problem of
elliptical crack to circular crack

(c) (d)

It needs a Solid Modeling and a Calculator.



To answer those questions and solve the evolution problem,

we heed

The energy release rate at crack tip (=crack driving force)
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Papers co-authored by me with Professor Ingraffea

G and dG/da for 2D single crack: (1988) by Lin and Abel

Generalized to

G and dGi/daj for 2D multiple crack system (EFM 1998)

G and dGi/daj for 3D mode-I planar cracks (EFM 2001)

Shape prediction and stability analysis of 3D planar cracks (EFM 2004)
Derivatives of stress intensity factors for 2D multiple cracks (EFM 2005)

2nd order derivatives of energy release rates for 2D multiple cracks (EFM 2007)
Decomposition of 3D mixed-mode energy release rates (EFM 2014, accepted)
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ON THE VIRTUAL CRACK EXTENSION METHOD FOR
CALCULATION OF THE RATES OF ENERGY RELEASE
RATE

C. G. HWANG*t P. A. WAWRZYNEK A. K. TAYEBI and A. R. INGRAFFEA
Cornell Fracture Group, Cornell University, 437 Frank Rhodes Hall, Ithaca, NY 14853, U.S.A.

Abstract—This paper generalizes the analytical virtual crack extension method presented by Lin and
Abel by providing the higher order derivatives of energy release rate due to crack extension for multiply
cracked bodies. It provides derivations and verifications of the following: extension to the general case
of multiple crack systems, extension to the axisymmetric case, inclusion of crack-face and thermal load-
ing, and evaluation of the second derivative of energy release rate. The salient feature of this method 1s
that the energy release rate and its higher order derivatives for multiple crack systems are computed in
a single analysis. It is shown that the number of rings of elements surrounding the crack tip that are
invoived in the mesh perturbation due to the virtual crack extension has an effect on the solution accu-
racy. Maximum errors for the mesh density used in the examples are about 0.2% for energy release
rate, 2-3% for its first derivative, and 5-10% for its second derivative. © 1997 Elsevier Science Litd.
All rights reserved

Keywords—virtual crack extension method, rates of energy release rate, multiple crack systems, crack
stability.
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On the virtual crack extension method for calculating the
derivatives of energy release rates for a 3D planar crack of
arbitrary shape under mode-I loading

C.G. Hwang **, P.A. Wawrzynek °, A.R. Ingraffea ®
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Abstract

This paper generalizes the analytical virtual crack extension method presented by Lin and Abel [Int. J. Fract. 38
(1988) 217] by providing the energy release rates and their derivatives at all points along a three-dimensional (3D),
planar crack front of arbitrary shape. It is shown that the local variation of curvature along the crack front and in-
teraction between crack front perturbations at adjacent crack points must be considered to properly calculate the
derivatives of the energy release rates. The main advantage of the method is that the energy release rates and their
derivatives at all points along the crack front in a multiply cracked, 3D body can be accurately calculated by the present
virtual crack extension method in a single analysis. Comparisons of the energy release rates and their derivatives with
exact solutions show that the present method can achieve sufficient accuracy for calculation of the energy release rates
and their derivatives. All the advantages and accuracy of the two-dimensional virtual crack extension method presented
by Hwang, [Engng. Fract. Mech. 59 (4) (1998) 521] are maintained for the 3D case. The present method has immediate
application to the following and related problems: the shape prediction and stability analysis of an evolving 3D crack
front in brittle fracture, configurational stability in fatigue crack propagation prediction, investigation of bifurcation in
brittle fracture. @ 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Virtual crack extension method; Derivatives of energy release rate; 3D planar crack of arbitrary shape; Crack stability
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Shape prediction and stability analysis of Mode-I planar cracks
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Abstract

This paper presents a numencal technique for simulating stable growth of Mode-I cracks in two and three di-
mensions, using energy release rate and its derivatives. The crack growth model used in the numerical simulation 1s
based on the concept of maximizing potential energy of the system released as cracks evolve. Therefore, a series of
quadratic programming (QP) problems with linear constraints and bounds are solved to simulate stable growth of
Mode-I planar cracks. The denvative of energy release rate provides a stability condition for crack growth in structures
and can be regarded as a discretized influence function that represents the strength of the interaction among crack
extensions at different crack tips in 2-D and different locations along a crack front in 3-D. The energy release rate and its
dernivative are accurately calculated by the analytical virtual crack extension method [Engng. Fract. Mech. 59 (199%)
521; 68 (2001) 925] in a single analysis. Numencal examples are presented to demonstrate the capabilities of the
proposed approach. Examples include a central crack subjected to wedge forces in a 2-D finite plate, a system of in-
teracting thermally induced parallel cracks in a two-dimensional semi-infinite plane and a 3-D penny-shaped crack
embedded in a large cylinder, pressurized in a central circular region.
© 2003 Elsevier Ltd. All rights reserved.

Keywords: Virtual crack extension method; Crack stability; Derivatives of energy release rates; Shape prediction; Growth pattern
anal ysis
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On the calculation of derivatives of stress intensity factors
for multiple cracks

C.G. Hwang **, P.A. Wawrzynek °, A.R. Ingraflea °

* Seoul Information Technology University, 37-18 Samsung Dong, Gangnam Gu, Seoul, South Korea
B Cornell Fracture Group, Frank Rhodes Hall, Cornell University, Ithaca, NY 14833, United States

Received 5 December 2003; received in revised form 1 August 2004; accepted 10 August 2004
Available online 13 December 2004

Abstract

In this paper, the work of Lin and Abel [Lin SC, Abel JF. Variational approach for a new direct-integration form of
the virtual crack extension method. Int J Fract 1988;38:217-35] 1s further extended to the general case of multiple crack
systems under mixed-mode loading. Analytical expressions are presented for stress intensity factors and their deriva-
tives for a multiply cracked body using the mode decomposition technique. The salient feature of this method 1s that
the stress intensity factors and their derivatives for the multiple crack system are computed in a single analysis. It 1s
shown through two-dimensional numerical examples that the proposed method gives very accurate results for the stress
intensity factors and their derivatives. It is also shown that the variation of mode I and IT displacements at one crack-tip
influence the mode I and 11 stress intensity factors at any other crack. The computed errors were about 0.4-3% for stress
intensity factors, and 2-4% for their first order derivatives for the mesh density used in the examples.
© 2004 Elsevier Ltd. All rights reserved.

Kevwords: Virtual crack extension method; Derivative of stress intensity factor; Mode decomposition
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Virtual crack extension method for calculating the second
order derivatives of energy release rates for multiply
cracked systems
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Abstract

In this paper, we further generalize the work of Lin and Abel [Lin SC, Abel JF. Variational approach for a new direct-
integration form of the virtual crack extension method. Int J Fract 1988;38:217-35.] to the case of higher order derivatives
of energy release rates for two-dimensional, multiply cracked systems. The direct integral expressions are presented for the
energy release rates and their first and second order denvatives. The salient feature of this numerical method is that the
energy release rates and their first and second order derivatives can be computed in a single analysis. It 1s demonstrated
through a set of examples that the proposed method gives expectedly decreasing, but acceptably accurate results for the
energy release rates and their first and second order derivatives. The computed errors were approximately 0.5% for the
energy release rates, 3-5% for their first order derivatives and 10-20% for their second order derivatives for the mesh den-
sities used in the examples. Potential applications of the present method include a universal size effect model and a prob-
abilistic fracture analysis of cracked structures.
© 2006 Elsevier Ltd. All rights reserved.
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Abstract

A technique was implemented for decomposing 3-D mixed-mode energy release rates using the
Virtual Crack Extension (VCE) method. The technique uses a symmetric/anti-symmetric
approach to decompose local crack-front displacements that are substituted into the global VCE
energy release rate form. The subsequent expansion leads to the mixed-mode energy release rate
expressions. As a result of the expansion, previously unaddressed modal-interaction coupling
terms are found to impact the mixed-mode energy release rates. This development expands the
VCE method’s advantages over similar procedures when simulating arbitrary crack growth by
providing the means to calculate both mixed-mode energy release rates and their variations.



Some fracture mechanics problems requiring G & 6G/da

G(a) G(a)
(1) Stability and Arrest of A Single Crack %Gc / Ge
» d » d
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(2) Growth Pattern Analysis, Stability, Bifurcation of Multiple Crack

Systems
_ _ This critical state of crack
Hydraulic f_racturlng propagation bifurcation
“Fracking” corresponds to vanishing

‘—D—’{ diagonal terms in the matrix

Thermally induced parallel edge cracks
having a periodic pattern in a semi-infinite plane

0
|
— o, oK), (2K, )
a, — aa, aa
i2h21m é)(KI)Z (K, 2
? d; ] éﬁi @2
a
? d;




(3) Probabilistic fracture mechanics P e Plg(X)< o]dif j fy (X)dx

If the propagation of a mixed crack constitutes a failure condition and the
maximum circumferential stress theory is used, the performance function is

6 3 . 6
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To compute the failure probability, use the first order reliability method (FORM).
It leads to nonlinear constrained optimization, requiring the derivative of the performance

function with respect to crack size (a) as
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(4) Slightly out-of-plane growth of the straight cracks

Karihaloo and his co-workers
derived the condition for the
deviation of the crack from

h straightness and showed that the

| L 1 curvature of the crack path

B ] depends not only on the in-

"X plane stress, but also upon the
derivatives of individual stress
& > Intensity factors with respect to

Lo the length of the main crack

M

Geometry of the straight crack and its kinked-curved extension
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(5) Size Effect Model
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Size Effect 8:2 Leung, Willam, K.J., and Billington, S.L., eds., IA-
Law (USEL) 0.7 FraMCoS, 153--162.
T T T T T 0.8
-2 0 -2
log D

D : Structure size



Planar cracks

(6) Augmented Energy Based Growth Formulation
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Iterative Crack Growth Simulation Algorithm (Brett Davis Thesis, Cornell 2014)
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“Cornell Engine for Crack Growth Simulation”
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Virtual Crack Extension Method
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Problems in computation of 2D multiple cracks or 3D crack

-Solution inaccuracy due to finite difference approximation
-Multiple FE analyses required for computing G (even more for dG/da)

Ex) N cracks : N+1 FE analyses for G, Many (>2N+1) FE analyses for dGi/daj

Crack front

Crack surface

A T
: [T Section A
/S
/ dag Crack-front
template
v l
\ 4




Lin and Abel [1988] Direct Integral I_:orms for [0K]
No need to specify the
Finite oa

G and its higher derivatives %
for a 2D Single Crack

- ao_.

Y

Generalize l

Hwang & Ingraffea G and 8G/éa for multiple crack systems
@ R ' in 2D/3D in a single analysis

[1998,2001,2004,2005, 2007,2014] R




Present Virtual Crack Extension Method

Provides G; and 6G;/6a; for Multiple Crack Systems

Subjected to Arbitrary Thermal loading, Crack-face loading,
Body forces in 2D and 3D Problemes.

Non-Zero for these
loadings

Null for 2D L
Non-Zero for 3D Wheni % j



Mesh perturbation due to virtual crack extension

y
A

Fraction of da @ Ist ring of crack tip elements

0 0.75 1

crack tip node
1st ring of quarter point nodes

2nd ring of nodes

Figure 2.1a. Standard arrangement of rosette of single ring of
quarter point crack tip elements
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Virtual crack extensions

o)
A SANSA, #0
A Ko
Crack front A,
Crack front

. Interaction between crack front perturbations.

Mesh perturbation 4 in 15-noded wedge elements
O : nodes before mesh perturbation



The second variation, too.
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Stiffness Variations
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Introducing virtual strain like matrix

23 [ J 1 Jp Ji %
g=J" ﬁ2 %_Aln A2n Asnj =1Ju Jpn Jp| 9 ﬁ2 >\_Aln Azn Agnj
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2
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Mesh perturbation A in 15-noded wedge elements
O : nodes before mesh perturbation
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Verification



A Center Cracked Infinite Plate Subjected to a Uniform Remote Tensile Stress

Symmertry
1

K, = 0,4 na
oK, _ o |7
oa 2 Va
5°K, oy |7
oa’ 4a \ a
oK, o, |z
K, = oy ma oa 2 Va
a/W  |Exact (KI) computed KI (Error %) |Exact oKI computed oK1 (Error %)
0.010 | 0.5605 0.5610 (0.09) 2.802 2.739 (2.25)
0.011 | 0.5879 0.5884 (0.08) 2.672 2.617 (2.06)
0.012 | 0.6140 0.6145 (0.08) 2.558 2.561 (1.17)
0.013 | 0.6391 0.6395 (0.06) 2.458 2.404 (2.20)

0.014 | 0.6632 0.6627 (0.08) 2.369 2.313 (2.36)




Solutions for different
rings of elements surrounding crack-tip

Crack front —¢

X2

| . Template radius |

point wedge

’ \\
Ring 1: Quarter- .

Ring 3: Quadratic

5K, __o [z Ll e i

oa’ 4a l a
a/'W Exact 1st ring 1st + 2nd rings 1st+2nd+3rd

(Error %) (Error %) (Error %)

0.010 -14.012 -52.373 (273.8) -17.465 (24.6) -15.044 (7.37)
0.011 -12.145 -58.599 (382.5) -15.386 (26.7) -11.637 (4.18)
0.012 -10.659 -40.801 (282.8) -13.447 (26.2) -11.915 (11.8)
0.013 -9.454 -46.023 (386.8) -12.394 (31.1) -9.881 (4.52)
0.014 -8.459 -22.607 (167.3) -10.941 (29.3) -8.911 (5.34)




A Circular Crack under Two Symmetric Point Loads in

Z Elastic modulus : E =26 ksi

‘ Poisson’s ratio : v=10.3
Crack radius :a=1.0inch

: Point load :P=1.010b

|

h
h radius=a
I
(1- VP a(k+a’) a 2—v
G = ; " where,  =— and x =
E(xhy (1+ a”) h I- v
ﬁ<0 (a>a,). £>0 O<a<a,). £=0 (a=a,)
do do do
. , NI6V - 7204105 -2v+9
with  a, =

m

22 - v)

Present solution = 2.297

0.16

4
0.15 4
0.14
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0.12 1
0.11 4
0.10 4
0.09 1

4
0.08
0.07

0.06 <

Stress Intensity Factor K, (ksivin)

0.05
4

4

04

—}— Exact solution
~——pa—  Present solution

T

T T T T T T T T T T T T T T

10 1.1 12 13 14 15 16 1.7 18 19 20 21 22 23 24 25

02

0.0

0.1 9

of Stress Intensity Factor (8K, /8a)x2m ( ksi/+fin )

0.1 4
02 '.
03 ':
04
0.5 -

E
0.6
0.7 ':
o8-

09 4

For a Poisson’s ratio, v= 0.3, the critical value ¢, 1s about 2.276.

4

—1+— Exact solution
——a— BEM solution (7]
——0— Present solution

Y

T T T T T T T T T T T T T T T T
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AT,

Thermally induced parallel edge cracks

having a periodic pattern in a semi-infinite plane

AT(X)

.. 0O 0O O O O
i PT’l
2h=1m
(5)
— k g 0O O O O O
a;=dp
I“E—’{ o+ g
IL=10m
ot >

(1) AT(x)= AT, erfe(xv/3/ D)
(2) AT(x)=AT, cosn(x/D)
(3) AT(x)=AT,(1-x/D)
(4) AT(x)=AT, for 0sx<D/2
AT(x)=AT,/2-[1+cosx(2x/D-1)] for D/25x<D
(5) AT(x)=AT, for 0Sx<3D/4
AT(x)= AT, /2-[1+cosm(4x/D-3)] for 3D/4sx<D

Tip2



M
4)

l—. x D ‘ AT.

DR

| -
D AT,
(3)
——
- H\m\l\‘\’\h\f\ -
. 4

(1) AT(x)=AT,-erfe(xv3/ D)
(2) AT(x)=AT, cosn(x/D)

(3) AT(x)=AT,(1-x/D)

(4) AT(x)=AT, for 0Sx<D/2

AT(x)=AT,/2-[l+cosn(2x/D~1)] for D/2sx<D

(5) AT(x)=AT, for 0sx<3D/4

AT(x)=AT,/2-(1+cosn(4x/D-3)] for 3D/4<x<!

a/2h

no bifurcation

(3.656,3.240)
(3.973,3.100)

(7.897,7.030)

Results from [Bazant 793]

Results of present method

Profile

A W DN

a/2h
1.53
3.07
3.20
6.97

D/2h

2.342
3.907
3.994
7.806

a/D
0.651
0.787
0.891
0.893

a/2h
1.53
3.10
3.24
7.03

D/2h

2.386
3.973
3.656
7.897

a/D

0.642
0.780
0.886
0.890




Inclined cracks under remote uniform stress

a=1.0

Tip 2

)

Table Fig. 3. An inclined crack in a simulated infinite plate under remote unit tensile stress (W=H =20, 2a =05 or 1.0, ¢ = 1.0, # = 45%) (not

The ¢ 1© scale, Example 1).

2al W =10.2

2af =101
Ky

Crack

K, Ky K,
| 0.6285 (0.3%) 0.6294 (0.4%) (0.8981 (1.3%) 0.8962 (1.1%)
2 0.6285 (0.3%) 0.6293 (0.4%:) 08978 (1.3%) 0.8964 (1.1%)

Analytical solutions for infinite plate: Ky = Ky =0.6267 for 2a/W=10.1; Ky = Ky = 0.8862 for 2a/W=10.2.



Comparison of dK/da with FDM solutions

Table 2
Comparison between the present numerical solution and a finite diflerence method (FDM) solution for derivatives ol stress intensity
lactors: Example 1, crack-tip element size = 2a/12, 2a/ W= 0.1

FDM solution Present solution Difference (%)
Muode-T
ol Kp)y/oay oK) /oa 0.3194 (.31 88 0.3133 (1.3]186 1.91 (.06
ol Ky )/ oy O K ) 2/da4 0.3184 (0.3183 0.3186 0.3137 0.06 1.44
Mode-1T
ol Kyp)y/foa, Of K/ oas 0.3173 0.3173 0.3207 (0.3081 1.07 2.90
ol Kjp)a/oa, ol K)o/ 6o 0.3176 0.3178 0.3082 (0.3203 2.96 (.79

Table 3
Comparison between the present numerical solution and fimte dilference method (FDM) solution for the dervatives ol stress intensity
lactors: Example 1, crack-tip element size = 2a/12, 2a/ W= 10.2

FDM solution Present method DifTerence (%)
Mode-T
of Ky)y/day oK) /oas 0.2360 0.2360 1.2337 1.2360 0.97 (.00
ol K/ dery ol K1) 2/6e 0.2360 0.2360 0.2361 (1.2339 0.04 (.89
Moge-TT
of Kyp)y/oa, K/ das 0.2330 0.2330 .232% (1.2994 0.97 1.54
ol Kyp)a/oa, ol K)o/ Octs 0.2330 0.2330 1.2293 (0.2320 1.59 0.43




System of Radial Cracks
(4 crack-tips)
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Crack 2
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Fig. 8. Finite element discretization for radial multiple cracks embedded in the infinite plate (H = W = 40) (Example 3).

e 3).



0,=30 degree, Gl, Gl

Table 12
Comparison between numerical and analytical solutions 'or the normalized mode-1 energy release rate. (Gy)d Gy. ¢, = 307
Crack up Present method Analyucal solution [23]

f, = 45° = 60° fla = 90° fla = 45° f, = 60F {1, = 90°
1 (.1555 (1.3473 ().6096 (0. 1595 (.3494 (0.6004
2 (1.6541 (.6244 ().5932 (.6425 0.6198 (.5827
3 (0.2421 (.0335 (.0068 (0.2325 (.0323 0.0024
4 (.0202 0.0004 (0.0106 (0.0208 0.0004 0.0067
Table 13
Comparison between numerical and analytical solutions or the normalized mode-11 energy release rate, (Gyy)d Gy, ¢, = 307
Crack up Present method Analyucal solution [23]

fly = 45° 1, = 60° fl, = 90° fl, = 45° i, = 6lF f, = 90°
1 (0.0904 (0.1807 (.1894 (.0953 (0.1863 (0.1869
2 0.1512 0.1707 (0. 1760 (. 1538 0.1751 0.1763
3 ().2988 (.2508 (.0003 (0.3075 (0.2567 0.0002
4 (.0629 (.0733 (.0054 (). 0646 0.0752 0.0054




0,=30 degree, 6,=90 degree, Derivatives of Gl, Gl

Table 14
The calculated derivatives ol normalized mode-I energy release rates, of Gy)doa; /Gy, by the present virtual crack extension method and
the fimte difference approximation, ¢, = 307 and ¢/, = 90°

Present numerical solution Finite dillerence solution

| 2 3 4 | 2 3 4
| 0.368 0.324 0.027 0.021 | 0.367 0318 0.032 0.023
2 0.324 0.286 0.004 0.017 2 0.336 0.29] 0.009 0.023
3 0.027 0.004 0.020 0.003 3 0.025 0.001 0.021 0.002
4 0.021 0.017 0.003 0.003 4 0.013 0.012 0.002 0.004
Table 15

The calculated derivatives of normalized mode-I1 energy release rates, o Gyy)/oa; /Gy, by the present virtual crack extension method and
the fimte difference approximation, ¢, = 30° and ¢, = 90°

Present numerical solution Finite dilference solution

| 2 3 4 1 2 3 4
| 0118 0078 0.005 0.011 | 0.110 0.096 0.005 0.001
2 0.078 0.096 0.003 0.002 2 0.071 0.089 0,008 0.007
3 0.005 0.003 0.003 0.000 3 0.003 0.001 0.003 0.001
4 0.011 0.002 0.000 0.004 4 0.019 0.004 0.000 0.004




A Penny-Shaped Crack Embedded in A Large Cylinder Under
Remote Uniform Tensile Loading

bto1

Axisymm. solution
symm Crack front [Sneddon 46]
K, = 20'\/E
T
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L R=20 K _ o
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RESULTS

Analytical solution: K, =1.1284, 6K, =0.5642

Present solution: K=1.1302 for all 6 (Error 0.2 %)

oK, =0.5406 (Error 4 %) :‘}
Crack front /L
0Ki/6a;

At node 4

Node j:l 2 3 4 5 6 7

i1 | -1.9232 | 1.4975 | 0.4725 | 0.2064 | 0.1347 | 0.1040 | 0.0487 0.5406
2 0.7487 | -1.6870 | 0.8519 | 0.3036 | 0.1552 | 0.1161 | 0.0520 0.5406
3 0.2362 | 0.8519 | -1.8558 | 0.8007 | 0.2850 | 0.1552 | 0.0674 ’ 0.5406
4 0.1032 | 0.3036 | 0.8007 | -1.8745 | 0.8007 | 0.3036 | 0.1032 0.5406
5 0.0674 | 0.1552 | 0.2850 | 0.8007 | -1.8558 | 0.8519 | 0.2362 \ 0.5406
6 0.0520 | 0.1161 | 0.1552 | 0.3036 | 0.8519 | -1.6870 | 0.7487 0.5406
7 0.0487 | 0.1040 | 0.1347 | 0.2064 | 0.4725 | 1.4975 | -1.9232 \0.5406

NS

At node 2

Row sum J— Uniform extension



H=5cm

H=5cm

Decomposition of 3D mixed-mode energy

release rates (EFM 2014, accepted)

6 = 1.0 N/em?

o, 2a=0.125em

Centerline

H =80 mm

Figure 2.7. Geometry and loading conditions for the angled-crack three-point bend specimen.
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Numerical Results

Gy (N/nm) Gy (N/mmm)
Numerical Example
VCE Ref Sol % Diff VCE Ref Sol % Dift
Inclned Penny Crack 3.974E-07 3.979E-07 0.06 1.976E-07 1.989E-07 0.16
Arcan Specimen 1.845 1.835 0.25 2.039 2.018 0.53
Angled-Crack 3-Pomt Bend 3.012E-06 2.993E-06 0.35 2.316E-07 2.293E-07 0.04
Swface-Cracked Cylinder 2.146E-05 2.272E-05 0.00 1.358 1.361 0.14
Gypp (N/nmm) G (N/num)
Numerical Exanple
VCE Ref Sol % Diff VCE Ref Sol % Diff
Inclmed Pemny Crack 1.996E-07 1.989E-07 0.09 7.947E-07 7.958E-07 0.14
Arcan Specmen 0.0733 0.0821 0.22 3.957 3.935 0.56
Angled-Crack 3-Pomt Bend 2.170E-06 2.160E-06 0.19 5.414E-06 5.383E-06 0.58
Surface-Cracked Cylnder 0.7347 0.7419 0.34 2.093 2.102 0.43




Iterative Crack Growth Simulation Algorithm (Brett Davis Thesis, Cornell 2014)

Current Configuration

v

FE Model Geometry
Crack Insertion
Mesh Generation

v

—P»| Analyze FE Model |«

Re-Mesh
Updated Front

T

Employ Eq. (12) to o Increase Load
Predict Local Aq; | VCE Post Process

I——_t__ ——— —— 1

| Growth Detected L Stable Configuration ]

—_—— —_— —_—— — — —
? Check Crack-Growth ?

Condition, Eq. (11):
NO 1 YES
G; < G,




Planar cracks

Augmented Energy Based Growth Formulation

Brett Davis Dissertation, 2014 Cornell)
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Augmented Energy Based Growth Formulation : Non-planar cracks

(Brett Davis Dissertation, 2014 Cornell)
5G; 5G; S
— 0 4+ — .4 —L .

Crack front

Crack front
Crack surface

2 \\l \x

Section A

Crack-front Q=-
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Conclusions

A decent method developed for calculating the energy release rate
s and their higher order derivatives for a 2D/3D multiply cracked b
ody.

The analytical virtual crack extension method by Lin and Abel is ext
ended to the general case of a system of 2D interacting cracks, ext
ension to the axisymmetric case, extension to 3D crack with an arb
itrarily curved front under general mixed-mode loading conditions,
inclusion of non-uniform crack-face pressure and thermal loading.

The salient feature of this method is that the energy release rates
and their higher derivatives for multiple cracks in two and three di
mensions can be accurately computed in a single analysis.

This method is essential to an iterative crack growth simulation alg
orithm developed by A.R. Ingraffea and co-workers.



“THERE IS A CRACK IN EVERYTHING.
THAT’S HOW THE LIGHT GETS IN.”

— LEONARD COHEN







