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Important Problems in Fracture Mechanics Analysis  

• Initiation:  Will the crack grow ? 

 

• Trajectory:  Where does it grow ?    

 

• Shape prediction:  Into what 
shape will it grow ? 

 

• Stability: How fast will it grow ? 

 

(Prof. Ingraffea) 

 



Mission of 1994: Solve evolution problem of 
elliptical crack to circular crack 

It needs a Solid Modeling and a Calculator. 



To answer those questions and solve the evolution problem,  
we need 

The energy release rate at crack tip (=crack driving force)  
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or its higher order derivatives 



Papers co-authored by me with Professor Ingraffea 

G and dG/da for 2D single crack: (1988) by Lin and Abel 

                                       Generalized to  

 

• G and dGi/daj for 2D multiple crack system (EFM 1998) 

• G and dGi/daj for 3D mode-I planar cracks (EFM 2001) 

• Shape prediction and stability analysis of 3D planar cracks (EFM 2004) 

• Derivatives of stress intensity factors for 2D multiple cracks  (EFM 2005) 

• 2nd order derivatives of energy release rates for 2D multiple cracks (EFM 2007) 

• Decomposition of 3D mixed-mode energy release rates (EFM 2014, accepted) 
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(1) Stability and Arrest of A Single Crack 
a a 

G(a) G(a) 

Gc Gc 

G(a)=Gc Griffith’s fracture criterion 

Some fracture mechanics problems requiring G & G/a  



(2) Growth Pattern Analysis, Stability, Bifurcation of Multiple Crack 

Systems  

a 

H 

D 

a1 

a2 

a1 

a2 

a2 

a1 

2h=1 m 

DT0 
DT(x) 

Thermally induced parallel edge cracks  

having a periodic pattern in a semi-infinite plane 

This critical state of crack 

propagation bifurcation 

corresponds to vanishing 

diagonal terms in the matrix 

( ) ( )

( ) ( )


















2

2

1

2

2

1

1

1

a

K

a

K

a

K

a

K

II

II
















0 

Hydraulic fracturing 

“Fracking” 



2 3 I
I

II
II

Kg 3
K cos sin cos

a 2 2 2 a 2 a

K3 1
K sin sin cos cos sin cos ,

2 2 2 2 a 2 a

   

   
  

   
     

    

  
     

   

2
I II

II I2
II

K K1 sin
K K

a a a 3 cosK

 



   
      

(3) Probabilistic fracture mechanics ( ) ( )
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If the propagation of a mixed crack constitutes a failure condition and the 

maximum circumferential stress theory is used, the performance function is 

To compute the failure probability, use the first order reliability method (FORM). 

It leads to nonlinear constrained optimization, requiring the derivative of the performance 

function with respect to crack size (a) as 



 Geometry of the straight crack and its kinked-curved extension 
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(4) Slightly out-of-plane growth of the straight cracks 
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Karihaloo and his co-workers 

derived the condition for the 

deviation of the crack from 

straightness and showed that the 

curvature of the crack path 

depends not only on the in-

plane stress, but also upon the 

derivatives of individual stress 

intensity factors with respect to 

the length of the main crack 



(5) Size Effect Model 

D : Structure size 

Bažant, Z.P., and Yu, Q. (2004). ``Size effect in concrete 

specimens and structures: New problems and progress." 

Fracture  Mechanics of Concrete Structures (Proc., 

FraMCoS-5, 5th Int. Conf. on Fracture Mech. of Concrete 

and Concr. Structures, Vail, Colo.),  Vol. 1, V.C. Li, K.Y. 

Leung, Willam, K.J., and Billington, S.L., eds., IA-

FraMCoS, 153--162.  



(6) Augmented Energy Based Growth Formulation : Planar cracks 

(Brett Davis Dissertation, 2014 Cornell) 



Iterative Crack Growth Simulation Algorithm (Brett Davis Thesis, Cornell 2014) 

“Cornell Engine for Crack Growth Simulation” 



Virtual Crack Extension Method 

Watwood [1968] 

: 2 Complete F.E. Analyses, Finite a 

Parks [1975] 

: [K] = [K(a+a)] - [K(a)],  Finite a 

: 1 Complete F.E. Analysis + [K] 
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Problems in computation of 2D multiple cracks or 3D crack 

-Solution inaccuracy due to finite difference approximation 

-Multiple FE analyses required for computing G (even more for dG/da) 

 

Ex) N cracks :  N+1 FE analyses for G,   Many (>2N+1) FE analyses for dGi/daj 



Hwang & Ingraffea,  

Co-workers  
[1998,2001,2004,2005, 2007,2014] 

G and G/a for multiple crack systems  

in 2D/3D  in a single analysis 

Lin and Abel [1988] 
No need to specify the 

Finite a  

Direct Integral Forms for [K] 

G and its higher derivatives 

 for a 2D Single Crack 

Generalize 
a 

a0 
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Present Virtual Crack Extension Method 

Provides Gi and Gi/ai for Multiple Crack Systems 

Subjected to Arbitrary Thermal loading, Crack-face loading, 

Body forces in 2D and 3D Problems. 

Non-Zero for these 

loadings 

Null for 2D 

Non-Zero for 3D when i = j 



Mesh perturbation due to virtual crack extension 
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Crack front 
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Crack front 

D 

0.75D 

Mesh perturbation D in 15-noded wedge elements  

                O : nodes before mesh perturbation 

0.5D 

Virtual crack extensions 
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The second variation, too. 
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Stiffness Variations 
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Papers co-authored by me with Professor Ingraffea 

G and dG/da for 2D single crack: (1988) by Lin and Abel 

                                       Generalized to  

 

• G and dGi/daj for 2D multiple crack system (EFM 1998) 

• G and dGi/daj for 3D mode-I planar cracks (EFM 2001) 

• Shape prediction and stability analysis of 3D planar cracks (EFM 2004) 

• Derivatives of stress intensity factors for 2D multiple cracks  (EFM 2005) 

• 2nd order derivatives of energy release rates for 2D multiple cracks (EFM 2007) 

• Decomposition of 3D mixed-mode energy release rates (EFM 2014, accepted) 



Verification 
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,   

 ,  

 a/W Exact (KI)   computed KI (Error %) Exact KI   computed KI (Error %) 

0.010   0.5605      0.5610    (0.09)   2.802      2.739    (2.25) 

0.011   0.5879      0.5884    (0.08)   2.672      2.617    (2.06) 

0.012   0.6140      0.6145    (0.08)   2.558      2.561    (1.17) 

0.013   0.6391      0.6395    (0.06)   2.458      2.404    (2.20) 

0.014   0.6632      0.6627    (0.08)   2.369      2.313    (2.36) 

A Center Cracked Infinite Plate Subjected to a Uniform Remote Tensile Stress 
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a/W Exact 1st ring 

(Error %) 

1st + 2nd rings 

(Error %) 

1st+2nd+3rd 

(Error %) 

0.010 -14.012 -52.373  (273.8) -17.465 (24.6) -15.044 (7.37) 

0.011 -12.145 -58.599  (382.5) -15.386 (26.7) -11.637 (4.18) 

0.012 -10.659 -40.801  (282.8) -13.447 (26.2) -11.915 (11.8) 

0.013 -9.454 -46.023  (386.8) -12.394 (31.1) -9.881 (4.52) 

0.014 -8.459 -22.607  (167.3) -10.941 (29.3) -8.911 (5.34) 

 2K I

a2
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Solutions for different  

rings of elements surrounding crack-tip  



A Circular Crack under Two Symmetric Point Loads in 

an Infinite Space 

Present solution = 2.297 



Thermally induced parallel edge cracks  

having a periodic pattern in a semi-infinite plane 
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Results  from  [Bazant 79a] Results  of  present method 

Profile   a/2h   D/2h    a/D   a/2h   D/2h   a/D 

       1   1.53   2.342   0.651   1.53   2.386   0.642 

       2   3.07   3.907   0.787   3.10   3.973   0.780 

       3   3.20   3.594   0.891   3.24   3.656   0.886 

       4   6.97   7.806   0.893   7.03   7.897   0.890 



Inclined cracks under remote uniform stress 



Comparison of dK/da with FDM solutions 



System of Radial Cracks 

 (4 crack-tips) 



1=30 degree, GI, GII 



1=30 degree, 2=90 degree, Derivatives of  GI, GII 



 

A Penny-Shaped Crack Embedded in A Large Cylinder Under 
Remote Uniform Tensile Loading 

1.0 

2H=40 

2a=2.0 
R=20 

Crack front 

 symm 
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
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K I 

Axisymm. solution 

[Sneddon 46] 





Node j:1 2 3 4 5 6 7 Row sum

i:1 -1.9232 1.4975 0.4725 0.2064 0.1347 0.1040 0.0487 0.5406

2 0.7487 -1.6870 0.8519 0.3036 0.1552 0.1161 0.0520 0.5406

3 0.2362 0.8519 -1.8558 0.8007 0.2850 0.1552 0.0674 0.5406

4 0.1032 0.3036 0.8007 -1.8745 0.8007 0.3036 0.1032 0.5406

5 0.0674 0.1552 0.2850 0.8007 -1.8558 0.8519 0.2362 0.5406

6 0.0520 0.1161 0.1552 0.3036 0.8519 -1.6870 0.7487 0.5406

7 0.0487 0.1040 0.1347 0.2064 0.4725 1.4975 -1.9232 0.5406

At node 4 At node 2 

Crack front 

Uniform extension 

Present solution: KI=1.1302 for all  (Error 0.2 %) 

                       KI =0.5406  (Error 4 %) 

Analytical solution:  KI =1.1284, KI =0.5642 

RESULTS 

Ki/aj 



Decomposition of 3D mixed-mode energy 

release rates (EFM 2014, accepted) 



Numerical Results 



Iterative Crack Growth Simulation Algorithm (Brett Davis Thesis, Cornell 2014) 



Augmented Energy Based Growth Formulation : Planar cracks 

(Brett Davis Dissertation, 2014 Cornell) 



(Brett Davis Dissertation, 2014 Cornell) 

Augmented Energy Based Growth Formulation : Non-planar cracks 



Conclusions 

• A decent method developed for calculating the energy release rate
s and their higher order derivatives for a 2D/3D multiply cracked b
ody.  

 

• The analytical virtual crack extension method by Lin and Abel is ext
ended to the general case of a system of 2D interacting cracks, ext
ension to the axisymmetric case, extension to 3D crack with an arb
itrarily curved front under general mixed-mode loading conditions, 
inclusion of non-uniform crack-face pressure and thermal loading.  

 

• The salient feature of this method is that the energy release rates 
and their higher derivatives for multiple cracks in two and three di
mensions can be accurately computed in a single analysis. 

 

• This method is essential to an iterative crack growth simulation alg
orithm developed by A.R. Ingraffea and co-workers.  

 



“THERE IS A CRACK IN EVERYTHING.  

  THAT’S HOW THE LIGHT GETS IN.”  

 

― LEONARD COHEN 



THANK YOU, TONY ! 


