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Abstract

In this paper, we study the general problem of optimal portfolio selection with fixed
transactions costs in the presence of jumps. We extend the analysis of Morton and
Pliska to this setting by modeling the return processes of the risky assets in the
investor’s portfolio as jump-diffusion processes and derive the expression for the re-
lated optimal stopping time problem of a Markov process with jumps and explicitly
solve it in the situation when the portfolio consists only of one risky asset. We also
provide an asymptotic analysis of our model with one risky asset following the ideas
of Wilmott and Atkinson.In the process, we also obtain a solution for the “Merton
problem” generalized to the situation when there is credit risk. Finally, we consider
the case where the drift of the stock price process is random and unobservable and
obtain expressions for the optimal trading policies.

1 Introduction

In their paper, Morton and Pliska (1995) investigated the problem of optimal portfolio
selection in the presence of fixed transactions costs. In this paper, we extend the Morton-
Pliska model to study the problem of optimal portfolio selection with fixed transactions
costs in the presence of jumps. From an economic standpoint, this is important in un-
derstanding the behavior of an investor in a general, imperfect market. Several authors
have studied both pricing and portfolio selection problems when asset price returns are
discontinuous. Some papers concerned with this issue are Aase(1993), Colwell and El-
liott(1993), Jarrow and Madan(1995), Mercurio and Runggaldier(1993), and the references
cited therein among others.

Within the framework of the model we propose, we shall see that the solution of the
problem involves the mathematical investigation of a certain optimal stopping time problem



of a Markov process with jumps which has been extensively studied in the mathematical
literature.(see Bensoussan(1982)).

Morton and Pliska analyze the situation where the drift of the stock price process is
constant which is a crude approximation from an economic standpoint especially since
we are studying an infinite horizon optimality criterion. In this paper, we demonstrate
how to tackle the situation when the drift is a random, unobservable process driven by a
continuous time Markov chain.

In section 2, we present our extension of the Morton-Pliska model to the situation when
there are jumps in the stock price process. In section 3, we study the generalized “Merton
problem” of optimal portfolio selection without transactions costs but in the presence of
jumps. In section 4, following Morton and Pliska, we describe the admissible trading
strategies and derive the equations satisfied by the optimal trading policies. In section 5,
we recast our problem as a stopping-time problem of the so-called “risky fraction” process.
We derive the form of the variational inequalities satisfied by the value function of the
optimal stopping time problem and show that the value function is, in fact, a viscosity
solution of these variational inequalities, where we give a precise definition of viscosity
solutions in our setting. In section 6, we study the situation where the investor’s portfolio
consists of one risky asset and obtain analytical expressions for the optimal trading strategy
which we compare with the results obtained by Morton and Pliska when there is no credit
risk. In section 7, we use the ideas of Atkinson and Wilmott([2]) to provide an asymptotic
analysis of our model in the general setting. In section 8, we study the situation when the
drift is a random, unobservable process driven by a continuous time Markov chain. We
make a crucial, but economically reasonable assumption about the behavior of the investor
in this situation and obtain a solution to the problem in this case.

In order to facilitate comparison with the results of Morton and Pliska we have tried
to retain their notation throughout.

2 The Model

We assume that the investor’s portfolio consists of one risk-free asset or bond with a
deterministic, constant rate of return r and m risky stocks whose return processes are
Jump diffusion processes with constant drift and volatilities.

2.1 Price processes for the bond and stocks

The price process for the bond Z? is given by

dZ? = rZ2dt (2.1)



and the price processes for the m stocks are given by
dzf = ZF(pFdt + AW + dMy) (2.2)

where M; is a continuous time branching process with n branches at every node and the
Jump probability distribution at every node is identical and is such that M; is a martingal+e
and has the strong Markov property. The jump times T, of M; are Poisson distributed.
Thus, we have basically modeled the return processes for the stocks as continous diffusions
between jump times of M;. At a jump time T, of M, if the state of M; jumps from
a to 3, the price of every stock in the portfolio suddenly changes by a factor of § —
«a. This expresses the sudden fluctuations in stock prices due to external factors like
governmental intervention, interest rate fluctuations, etc. The price processes Z° and ZF
are left continuous processes with right limits. The choice we have made for the jump
process allows us to extend the result of proposition 3.1 in Morton and Pliska(1995) to our
setting. More precisely, with the above form of the price processes, there exists a stationary
optimal policy.

2.2 The Portfolio Value Process

We shall now derive the expression for the portfolio value V; in terms of the fractions of
the portfolio value invested in the various stocks. Following the notation of Morton and
Pliska, bF is the fraction of portfolio value invested in stock 'k’ at time '#’, and 1 — 37, b
is the fraction of portfolio value invested in the bond. Thus,

dVi = (1 =" b5)rVidt + > bV, (uadt + Y- A dW/ + dM;,) (2.3)
k=1

We see that V; is an exponential semimartingale given by
Vi =exp( Xy — (1/2) < X, X >)1Li<i(1 + AX,)exp(—AX,) (2.4)
provided AX; > —1 and
dX; = (1 —1Tb,)rdt + b T (pdl + AdW, + 1dM;) (2.5)

where by is the risky fraction vector and X. is the continuous part of the semimartingale
X;.

Here, we make our first simplifying assumption : we assume that |[AX,| is “small” so
that terms of order higher than AX? can be neglected. Effectively, we are assuming that
AX,; << 1. Hence,



i
V, = Voech[/o [(1 = 1Tb,)r + b,z — (1/2)bT,AATb,]

1 i
+/ bTSAdWS—l-/ bT,1dM, — (1/2) 3 (bT,1AM,)Y] (2.6)
0 0

s<t

Thus, in our model we assume that the jumps in prices AZF are such that AZF << ZF.
The processes b, are also left continuous with right limits.

3 Optimal Policies without Transaction Costs- the
generalized Merton problem

From the expression for the portfolio value process V;, we have

i
InV, = InVi + [/ [(1—1Tb,)r + b, — (1/2)bT,AAT,]
0

+Ath5AdWs+/oth51dMs—(I/Q)Z(stlAMS)Q] (3.1)

s<t

The objective of the investor is to maximize E[lnVr] for some finite horizon T'. The
integrals with respect to W, and M, are martingales with zero expectation. Since the jump
times of M; are Poisson distributed with intensity §, we can rewrite the expected value of
the last term in the above expression as

t
—(1/2) / §(bT,11Tb,) E[(AM,)2|AM, # 0]ds (3.2)
0
If the possible values of AM; are ay, aq, ..., o, with probabilities py, pa, ..., p,, then

BIAM,IAM, 0= A = 3 pi(a)’ (3.3)

Hence, just as in the original Merton problem, we see that the investor should contin-
uously rebalance his portfolio to maintain it in the proportions b , where b is the solution

of
max (1 — 1Tb)r + b7 — (1/2)bT(AAT + 11T5(A)?)b (3.4)

such that
1Th <1



and

b >0

If we make the assumption that all components of b are strictly positive and 1Th < 1,
then we have

b= (AAT + §A211T) Yy — r1) (3.5)
The optimal asymptotic growth rate which b induces is given by
R=(1-1"b)r +bTp — (1/2)bT(AAT + 11T5AY)b (3.6)

We notice that the above expressions can be obtained from the corresponding expres-
sions in the original Merton problem by replacing AAT by AAT 4+ §A%11T,

4 Optimal Portfolios with Transactions Costs in the
presence of credit risk

We shall now generalize the Morton-Pliska model to our setting by incorporating the
presence of credit risk, or, more generally, discontinuities in asset price returns.

4.1 The admissible trading strategies

The admissible trading strategies for the investor are exactly as described by Morton and
Pliska . At time ¢, = 0, the investor allocates his portfolio V4 in proportions bg. He
holds this portfolio until some stopping time ¢; where he re-allocates the portfolio in the
proportions by after paying the transaction fee, so that Vi, 4 = aV;,. However, in our
situation, unlike the case in Morton-Pliska the risky fraction process b; has jumps not only
at portfolio re-allocation times, but also at jump times of the process M.

If V,, represents the portfolio value after the nth fee has been paid, we have

Vi, = aVi_ {(1 = 1Tbu_y)exp(r(ty — tny) + bh_1 Z} [ 2} 4 .+ b7 2 [ Zem )
(4.1)

Thus

Vi, = "Il {(1 = by )eap(r(ti — iny)) + by ZLJZE | + oo 4+ B, 2020 )

(4.2)

n

Thus, for ¢ between rebalance times, we have,



InV; = nina + InV, + Z?len{(l — 1Tbi_1)e:rp(r(ti —ti—1))
+ bl 22 22 b+ Inf{(1— 1T bgeap(r(l — ty))
+ 0,2} Z) . U220 (4.3)

The investor’s admissible trading strategies are sequences {(o, bo), ({1, b1), (t2,b2), ...}
where each ¢, is a stopping lime and each b, € F, has strictly positive components with
1Tb, < 1. The investment criterion is to choose an admissible strategy to maximize the
asymptotic growth rate

lim inf E[lnVy]/T as T — oo

We let R denote the maximum value.

In the next lemma we shall explicitly demonstrate that the optimal trading strategies
do have the above form, i.e. the optimal trading strategies form a subset of the class of
admissible trading strategies.

Lemma 1 If the price processes for the bond and stocks are almost surely finite on any
compact time interval, then the transaction times {t,} for the optimal trading policy are
almost surely increasing and any finite time interval almost surely contains only a finite
number of transactions.

Proof.

Let 7 be the collection of transaction times. The first assertion in the proposition is
trivial. Let us now prove the second part of the proposition.

Let (Q,F, P) be the underlying probability space. Thus, for w € Q. the set 7(w) is
a sequence of transaction times. Suppose there exists a time interval [0, 7] containing an
infinite subcollection of the above set. Then, clearly the set 7(w) has an accumulation
point in [0, T]. Therefore, there exists an increasing sequence t¢,, € 7 such that ¢,, — ¢
where ¢ € [0, T]. Since the price processes are bounded almost surely, there exists M < oo
such that V, < M for any s € [0,T]. Since V;,, = aV;, for a transaction time ¢, the
above clearly implies that V; = 0. Equation (2.3) then implies that V; = 0 for s > ¢ which
implies that the optimal asymptotic growth rate is zero ! This contradiction proves the
proposition.

Hence, the optimal trading policy is certainly an admissible trading policy and cannot
involve continuous trading.
We now prove the following proposition which is analogous to the one proved by Morton

and Pliska.



Proposition 1 Suppose (7*,b*) maximizes Elg(7,b)|/E[r] over all stopping times T and
all strictly positive m-vectors b satisfying 1Tb < 1. Then

R= sup ,yFlg(r,b))/Elr

and, equivalently,

0= sup ,y{Elg(r.b)] — RE[])

where g(7,b) is the gain in log wealth over a period (t,t + 7). The optimal policy is to
choose by, =b* and t,1 =t, + 7 for all n.

Proof.
We apply the theory of semi-Markov decision processes as in Ross(1970). We can apply
theorem 7.5 in Ross(1970) to conclude that for any stationary policy,

lim inf 7o E[inVr]/T = lim inf o E[InV},]|/t, = E[g(T,b)]/E[T]

The fact that the optimal policy is a stationary policy can be deduced from theorem 7.6
in Ross(1970) because the portfolio value process V; has stationary independent increments.
The conclusions of the proposition thus follow as in the Morton-Pliska case.

We notice that the result of the above proposition depends crucially on the fact that the
process [n(V;) has stationary, independent increments which is the case when the drift and
volatility parameters are constants and the jump process is a continuous time branching
process with the strong Markov property. In general, in the presence of time-dependent
drifts and volatilities and time-inhomogenous jump processes, there exist no stationary
optimal policies and, in fact, the optimal policy need not even be unique, so that we do
not have a well-defined characterization of the optimal trading strategy of the investor.
In the last section, we shall see that in the special situation where the drift is a random,
unobservable process driven by a continuous time Markov chain, we can extend the result
of the above proposition, i.e. a unique stationary optimal policy exists. We also see that
the choice of the logarithmic utility function is rather special, since the process In(V;) has
stationary, independent increments in this case, so that the result of proposition 1 can be
used to find stationary optimal policies. With a different utility function ¢, the process
U(V;) need not have stationary independent increments, so that a stationary optimal policy
need not exist !

5 The Risky Fraction Process and Stopping Time Prob-
lem

Following Morton and Pliska, we now recast our problem as an optimal stopping time
problem of the risky fraction process B;. Since the number of shares of each stock held



changes only when the portfolio is rebalanced,
(1-— ITBT)‘/T/el’p(TT) =(1- lTb)/VO (5.1)

Using the expression derived earlier for the portfolio value process V; and using Ito’s
lemma for a twice continuously differentiable function of a general semimartingale, we can
derive the expression for the risky fraction process By.

Proposition 2 The risky fraction process is given by

dB; = Diag (B;)(1 — 1B])((pp — r1 — AATB,)dl + AdW,) + AB;

Proof.

From the preceding equation for the risky fraction process, we have
1 —1TB, = (1 - lTb)e;r;p[/Ot(lTbsr — BT+ (1/2)bTAATH,)ds
_ /Ot bT AdW, — /Ot bTLM, + (1/2) T (bT1AM,?] (5.2)
s<t
[to’s lemma for a twice continuously differentiable function of a general, left continuous
semimartingale X; is given by
F(X)) = F(Xo) + /Ot F'(X,)dX, + (1/2) /Ot F'(X)d < X0, X. >, +
S (F(Xah) — F(X) = P(X,)AX,) (5.3)

0<s<t

Therefore, we have
—dB; = (1 —1Tb)(1 —1Tb)'(1 —1TB)[(1TByr — B p + (1/2)BIAATB, ) dt

— BIAAW, — BF1dM, + (1/2)(B:AATB)dt + (1/2)(BF1AM,)?] +

(1-1Tb)[(1 —1TB.y)/(1 —1Tb) — (1 —1TB,)/(1 — 1Tb) —
(1 —1"By)/(1 — 1Tb)(=BT 1AM, — (1/2)(B:1AM))] (5.4)

Therefore

dB; = Diag(B,)(1 — 1TB)((pt — r1 — AATB,)dt + AdW,) + AB, (5.5)

where

ABt — Bt+ - Bt

This completes the derivation.



5.1 Infinitesimal Generator for Risky Fraction Process

The infinitesimal generator A for the risky fraction process is given by :-
Af(b) = Tim pooEm f(b(t 4+ h) — f(b(1))/(h)

Using the expression for the risky fraction process, it is easy to show that

Af(b) = (1/2)323" fib'¥ ((eff — bT)AAT(ej — b))
+ > fibi((ef —bT)(p—r1 — AATD))
+83_ pilf(bY) = f(b)] (5.6)
where b! is the value of the risky fraction process when M, jumps to state ’i’ and p; is the
transition probability of the continuous time branching process and § is the intensity of

the Poisson process of jump times of M,.
Note: The possible non-zero values of AM,; are aq, ..., a,.

5.2 Optimal Stopping Time Problem

By the result of Proposition 1, we need to solve
0= sup p[lna+In(1 —1Tb) 4 fr(b)] (5.7)
where
Jnlb) = sup [~ En(in(1 = 17b,)) — (R — 1) ()] (5.5)

We therefore see that fr(b) is the value function of the optimal stopping time problem
of the Markov process by with initial value b, continuation fee R — r and final reward for
stopping equal to —In(1 —1Tb,).

Let us now rewrite the stopping time problem in “standard form”.

Let fr(by) = — fr(bt). Therefore,

Tr(b) = inf . [Ey(In(1 —1Tb,)) + (R — r) Ep[7]] (5.9)

Let O be the Polish space (0,1 — €)" where € can be any arbitrarily small but nonzero
positive number. We begin by assuming that by € O for any ¢ > 0. This assumption
is motivated by mathematical reasons but we shall later show that the solution of our
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problem is unaffected by this assumption provided we choose ¢ sufficiently small. We shall
prove this by showing that the continuation region for the optimal stopping problem is an
open subset of (0, 1) and that the optimal rebalance point b* lies in the continuation region
so that the values of the optimal stopping time and rebalance point are independent of ¢
provided it is chosen sufficiently small.

Let C be the space of uniformly continuous functions on O. Let ®(¢) be the contraction
semigroup associated with the Markov process bg. Then

Proposition 3 ff is the maximum element of the set of functions u satisfying :
ueC,u<lin(l— lTbt)
t
u < / O(s)(R—r)ds + ®(t)u, for anyt >0
0
The optimal stopping time T is given explicitly by

7= inf(t|fr(b(t)) = In(1 - 17by))

Proof . The set of functions u satisfying the conditions of the proposition is not empty and
has a maximum element by the result of theorem 5.3 on page 316 in Bensoussan(1982).
This maximum element is the unique solution of the optimal stopping time problem by the
result of theorem 6.1 on page 341 in Bensoussan(1982). This completes the proof.

Corollary 1 [f there exists a twice-continuously differentiable function h(b) satisfying :

h(b) <In(1 — 1Tb) and (Ah)(b) >r — R (5.10)
and
(h(b) — In(1 —1Tb))((AR)(b) —r+ R) =0 (5.11)

where A is the infinitesimal generator of semigroup ®(t) and hence the Markov process
B(t), then h is the unique solution of the optimal stopping time problem.

Proof.
Since h € D(A), we can apply Dynkin’s formula to conclude that

¢
Ah >r— R — / O(s)(R—r)ds+ (®(t) —1)h > 0 for any t >0
0
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Then, equation (5.10) and (5.11) therefore imply that h satisfies the hypotheses of
proposition 2 and is therefore the unique solution of the optimal stopping time problem.

A

In fact, in the next proposition, we shall show that if fi, € C(O), it is the viscosity
solution of equations (5.10) and (5.11), where the notion of a viscosity solution is defined
as follows :

Definition 1 fj is a viscosity supersolution of (5.10) and (5.11) in O if for any w € D(A)
and b € argmin{fr, — w}NO with fi(b) = w(b) then

fob) <in(1—1Tb),be O

and

Ji(B) <In(1—17B) = Aw(b) >r— R

~ [fr is a viscosity subsolution of (5.10) and (5.11) in O if for any w € D(A) and
b € argmaz{fr, — w}NO with fr(b) = w(b) then

frb) <in(1—1Tb),be O

and

Ji(B) <In(1=17B) = Aw(b) <r— R

fr ts a viscosily solution if it satisfies both of the above conditions.

Proposition 4 [f [} € C(@), it is a viscosity solution of (22) and (23) in O

Proof.
(Viscosity supersolution) If f&(b) < In(1 — 1Tb) then there exists A > 0 such that

w(B) = fi(b) = /Oh' O(5)(R = r)ds + ®(h') fa(b) for any ' < h
Since fp > w it follows that
w(b) > /Ohl ®(s)(R — r)ds + ®(h")w(b) for any k' < h
Letting &' — 0 and realizing that w € D(A) we see that
Aw(b) <r — R

Hence, ff is a viscosity supersolution
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(Viscosity subsolution) If f4(b) < In(1 — 1Tb) then there exists ~ > 0 such that

_ _ R _

w(b) = fh(b) = / O(s)(R — r)ds + ®(h') f4(b) for any I’ < h
0
Since fp <w
_ B! _
W(b) < / ®(s)(R — r)ds + ®(h')w(b) for any h' < h
0
Letting A" — 0 and realizing that w € D(A) we see that
Aw(b) >r — R
Hence, ff is a viscosity subsolution. This completes the proof.

fr is a classical solution of (5.10) and (5.11) if it is an element of D(A), i.e. it is
twice-continuously differentiable in O.

Proposition 5 If fi, € D(A), then it is a viscosity solution if and only if it is a classical
solution.

Proof.

Suppose fg is a viscosity solution. Since fr € D(A), w = fi is a test function.
Therefore every b is a maximizer and minimizer of fi —w. From the properties of viscosity
solutions, it easily follows that (22) and (23) are satisfied at every b € O.

We shall now prove the converse. Suppose w € D(A) and b € O be a maximizer of
[ —w with fh(b) = w(b). If f4(b) < In(1 —1Tb), then Afh(b) = r — R. Since w > fh,
Aw(b) > r — R. Hence, fk is a viscosity subsolution. The viscosity supersolution property
is proved similarly.

The viscosity solution is unique if it is continuous by the result of proposition 3 and
corollary 1 therefore follows from the above proposition.

Since fr = —fg, we can now conclude that
Corollary 2 If there exists a twice continuously differentiable function g satisfying
g(b) > —In(1 —1Tb) and (Ag)(b) < R—r (5.12)
and

(g+ In(1 —1Tb))((Ag)(b) — R+ 1) =0 (5.13)
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then

fr(b) = g(b) (5.14)

Moreover, the optimal stopping time T is given by

r=inf{t >0: fa(by) = —In(1 — 1Tb;)} (5.15)

Proof.
This follows directly from Proposition 2 and Corollary 1.

Just as in Morton and Pliska(1995), the values b* and R are obtained as solutions of
the following equations:

(Aln(1 — 1%b) /b’ + 8 fr(b)/db )y = 0,1 < i < m (5.16)

Ina + In(1 — 1Tb%) + fr(b*) = 0 (5.17)

The continuation region (C'is the set of values of the risky fraction process for which it
is optimal not to trade.

C={bcO: fr(b)>—In(1—-17b)} (5.18)
(Af(b)=R—rforall be C (5.19)

and
r=inf{t>0:b; ¢ C} (5.20)

From equation (30) it is clear that the continuation region is an open proper subset
of (0,1)". Hence, there exists some ¢ > 0 such that ¢' C (0,1 — ¢)*. This justifies the
assumption that & € O by the argument in the paragraph preceding proposition 2. We
shall now prove that the continuation region C'is not empty and contains the generalized
Merton point b, the optimal rebalance point when trading is costless.

Proposition 6 For any lransaclion cosl fraction 1 — a > 0, the continuation region C' is
not emply and contains b, the generalized Merton point.
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Proof. Suppose 5&’ C'. Then fR(l;) =—In(1—-1 Tb~) Therefore

Afr(b) = (1/(2(1 = 170N (I — 15T)AAT(T — b1 )b
F O/ = T0)ET — 15— 7~ ANTE) 4 8 3 pliaB) ~ F(0)] (521)

Since we have assumed that “jumps” are small

Jr(8) = fr(b) = Dfa(B).(6" = B) + (5" = 6" )D* f(B)(b* — b)

It is easy to see that

b —b=(1+a)b/(1+a'17h)—b=a'(b)(1—1Tb)/(1 + a'(17D))

The above is approximately equal to(neglecting terms higher than second order in a')
a'(b)(1 — 17b) — (a®)(b)(17h)(1 — 17b).

It is now easy to see that
Afr®) =1 = 1T0)r + 0T — (1/2)bT(AAT + 11 T6AY)D — r

which is equal to R —r where R is the asymptotic growth rate attained by b when there are
no costs. Since R is the growth rate attainable with costs R < R. Hence, Afg(b) > R —r

which contradicts the fact that Afr(b) < R — r. This completes the proof.

6 Portfolio with one risky stock

We shall now carry out an explicit analytical calculation for the case where the portfolio
has one risky stock. The infinitesimal generator is given by :

Ah(b) = (1/2)R" (B)AZ2(1 — b)2 + K/ (b)b(1 — b) (s — r — bA?)
+ 8 pilh(b") = h(B)]] (6.1)

where A is the volatility and g is the drift of the stock price process. and ddt is the
probability that a jump occurs at time ’t’. Therefore

For simplicity, we assume that M; has two branches at every node. (The arguments
can by trivially generalized to the situation where M; has any finite number of branches
at every node.)
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Therefore,

Ah(b) = (1/2)R" (b)A*6*(1 — b)* + h'(b)b(1 — b)(p — r — bA?)
+(6/2)pi[R(bY) = A(D)] + (8/2)p2[R(b?) — h(b)] (6.2)

When M; jumps to state 1’

Z} = (14 a0)Z) (6.3)
When M, jumps to state '2’
7l = 1+ an)Z) (6.4)
Therefore,
b' = (14 a1)b/(1 + a1b);b* = (1 + ay)b/(1 + azb) (6.5)

where pyay 4+ paas = 0 so that M; is a martingale.
Since ajandag are “small”

h(b') = h(b) ~ K (b)(b" — b) + (R"(b)/2)(b" — b)* (6.6)

and

h(b*) = h(b) ~ K (b)(b* — b) + (R"(b)/2)(b* — b)* (6.7)

We shall now look for a twice continuously differentiable function h(b) as the solution
to the optimal stopping time problem by the result of corollary 2. We plug the above
expressions into the expression for Ah(b) neglecting terms of order higher than af and a3.
In the continuation region for the optimal stopping time problem

Ah(b) =R —r (6.8)
Therefore, we obtain

(1/2)b2(1 — B)2(A? + SALR"(b) + b(1 — b) (s — 1 + —bA2 — A?b)R(b) = R — r
(6.9)

The above equation can be solved analytically and we obtain

h(b) = a+k(b/(1 =)' """ + (2(R —r)/(\* + A%)(20 —1))In(b/(1 — b))
(6.10)
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where
V= (u—r)/(\+ A% (6.11)

where A? = pja? + poai. It is interesting to note that the above is the expression for the
value function obtained by Morton and Pliska with A? replaced by A? 4+ A? which is what
we expect from our earlier analysis of the generalized Merton problem. We therefore see
the explicit dependence of the expression for the value function on the parameters of the
credit risk process.

By the result of corollary 2, the value function fg is the smallest function A in the do-
main of the generator A satisfying Ah(b) < R—r and h(b) > —In(1—10). The continuation
region C' is some interval (b;,b,). Therefore, for some constants a, k,

fr(b) = h(b) forbe C
fr(b)=—In(1 —b)forbg C
fr(b) = =In(1 = b); fr(b,) = —In(1 — by)
Filbr) = —dfdb(In(1 — b)) = 1/(1 — by

Jr(bu) = =d/db(In(1 = by)) = 1/(1 = by)
If * is the optimal rebalance point,

Fab?) = 1/(1 = )

and
In(1 —0") 4 fr(b*) 4+ In(a) =0

We therefore have, as in Morton’s and Pliska’s case, six nonlinear equations to be solved
for six unknowns. In the next section , we shall use the ideas introduced by Atkinson and
Wilmott to carry out an asymptotic analysis of our model with one risky asset to obtain
explicit expressions for the continuation region C and the optimal rebalance point b*.

7 Asymptotic Analysis of Model with one risky asset

In this section, we shall use the ideas of Atkinson and Wilmott to carry out an asymptotic
analysis of the model with one risky asset in the limit when the transaction cost fraction
1—ais “small”. In the process, we obtain explicit expressions for the value function fg, the
continuation region (b, b,), and the optimal rebalance point b*, and the generalized Merton
point representing the optimal portfolio without transactions costs, but in the presence of
credit risk.
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Let us write

fr(b) = =log(1 —b) + G(b) (7.1)
Therefore, we have
A(fr) = A(G) + (X?/2)(2(u — r)b/A? = b?) (7.2)
where
A2 =224 A? (7.3)

We easily see that our results correspond exactly with those obtained by Atkinson and
Wilmott with the parameter A% replaced by A2 + A? | )

When (a = 1) (no transactions costs), we therefore see that b and b, coincide with b,
where

4N 2)(20 — )b\ — )]s = 0
Thus,
b= (5 — )\ (7.4)

We therefore see that b is the solution to the “Merton problem in the presence of credit
risk” which we obtained in section 2. In this case, the optimal growth rate is given by

=t (/20 (7.5)
Putting e = 1 —«, we perform an analysis identical to the one by Atkinson and Wilmott
to write } B
b=b+e/
and -
G(b) = eG(b) + o(e)
and )
R=R+ 2R+ o(/?)
to obtain B B ) )
G(b) = (b* — B%)/(126°(1 — b))
with B B )
bo=~bi=p8,R=-\"5"/6
and

B =3Y4/2b(1 — b)
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Since

Tr(b) = —log(1 — b) + G(b)

and

b:i)—l—el/‘li)

we now have an asymptotic solution of our model with one risky asset,i.e. in one dimension.
Just as in the Morton-Pliska case, the “no-trade” region (b;,b,) is symmetric about the
generalized Merton value b, with a width O(e'/*).

8 Optimal policies under random time-dependent drifts

in this section, we shall investigate the situation when the drift of the stock price process
is a random process driven by a finite-state continuous time Markov chain N;. Thus, the
price processes for the bond and stocks is given by

dz) = rz)dt (8.1)

dzf = p* () ZFdt + NFdw! (8.2)

The process px(t) is a p-state continuous time Markov chain with Poisson-distributed jump
times S,,. For simplicity, we have assumed here that the drifts for all the stocks jump at the
same time so that the process (1) is a vector continuous time Markov chain. We have also
assumed the absence of credit risk, or more generally, the absence of jumps in the price
processes. We can easily incorporate these situations using the results of the previous
sections. Therefore, in this section, we analyze the extension of the Morton-Pliska model
to the situation where the drifts of the stock prices are random and time-dependent but
piecewise constant. Here , we make an important assumption about the behavior of the
investor in this situation :
Assumption

As time unfolds, the investor is unable to derive information about the drift processes
p(t) from the knowledge of the price process Z(t). Thus, when he enters the market,
he makes the natural assumption that the drift process is distributed according to the
asymptotic or stationary distribution of the Markov chain p(t). (of course, we need to
assume here that p(t) does have a stationary distribution, which is very reasonable from
the economic interpretation of p(?)!. Therefore, at any time ¢

P(p(t)=8;)=1;5=1.p
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Under the above assumptions, we see that the portfolio value process has stationary,
time-independent increments so that the result of proposition 1 directly extends to this
situation. It is easy to see that the expressions for the value function of the optimal
stopping time problem, the optimal rebalance point the time between transactions,the
Merton point,etc can be obtained from the expressions we have already obtained earlier

simply by replacing p by o = >%_, 11,8,

9 Conclusions

In this paper, we have investigated the general problem of optimal portfolio selection with
fixed transactions costs in the presence of credit risk. Within the framework of the model
we have proposed, the explicit results we obtain in the case when the portfolio has only
one risky stock, indicate that the expressions for the value function of the optimal stopping
time problem and therefore the optimal rebalance point b* differ from the corresponding
expressions in the Morton-Pliska case(i.e. when there is no credit risk), by replacing the
parameter A% by A2 + A? . In the process, we see that the solution to the Merton problem
generalized to the situation when there is credit risk is obtained by making the same
substitutions in the expression for the “Merton point”. The asymptotic analysis in the
limit when transactions costs are “small” indicates that the continuation region (b;,b,)
is symmetric about the generalized Merton point when higher order terms are neglected.
Just as in the Morton-Pliska case , the investor allocates his portfolio in the proportions
b#(the optimal rebalance point) and holds the portfolio till it reaches the boundary of
the continuation region (b, b,), when he makes trades to bring the portfolio back to the
optimal rebalance point. The calculation of the mean time interval between transactions
is, unfortunately, considerably more cumbersome than in the Morton-Pliska case, due to
the discontinuities in the “risky fraction” process.

All our calculations have been carried out under the assumption that the jumps are
small and the jump process is a martingale. It is straightforward to extend our analysis to
the situation when the jump process is not a martingale, i.e. it has a drift. Retracing our
arguments it is easy to see that this would effectively amount to replacing the parameter
w in all the expressions we have obtained by a parameter u’ in order to incorporate the
effect of the drift introduced by the process M;.

Finally, we have also investigated the situation when the drift of the stock price process
is random and time-dependent. Under the assumption that the process is a continuous
time Markov chain with a stationary distribution, we can easily extend our results to this
setting by replacing the drift g by i = >°11;3; where 3,7 = 1,..., p are the possible values
of the drift process p(?).
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