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As one of the most rapidly growing economies, China has been experiencing

pressing environmental and urban challenges due to a dramatic increase in

fossil fuel consumption, and a lack of stringent and well-enforced environ-

mental regulations. To address problems such as air pollution, traffic conges-

tion, and weak enforcement, China has issued extensive environmental and

transportation regulations. My dissertation aims to empirically estimate the

causal effects of environmental policies and public infrastructures on environ-

mental outcomes. The dissertation is comprised of three chapters. Chapter 1,

joint with Shanjun Li, Yanyan Liu, and Avralt Od-Purejav, estimates the im-

pact of subway expansions on air quality by leveraging fine-scale air quality

data and the rapid build-out of 14 new subway lines in Beijing from 2008 to

2016. Chapter 2 is a review article, joint with Shanjun Li, Jianwei Xing, and Fan

Zhang, which reviews findings in the recent literature on the impacts of a host

of urban transportation policies used in developed- and developing-country

settings. Finally, Chapter 3 studies the role of accurate measurements in effec-

tive regulations. Using high-resolution satellite-based pollution measures, this

chapter examines local governments’ strategic pollution control behavior and

its implications on dynamic representativeness based on the staggered roll-out

of the air pollution monitoring system in China.
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CHAPTER 1

DOES SUBWAY EXPANSION IMPROVE AIR QUALITY?

1.1 Introduction

Traffic congestion and air pollution pose pressing urban challenges in many

developing and emerging countries. Based on real-time driving data in 2016,

TomTom Traffic Index shows that all but one of the top 20 most congested cities

are from developing and emerging economies, and eight of them were located

in China. Meanwhile, East and South Asian countries, such as Bangladesh,

China, India, and the Persian Gulf experienced the highest level of PM2.5 con-

centration in 2015. Ambient PM2.5 is the leading environmental factor for

death, accounting for about 4.2 million deaths in 2015, nearly 40 percent of

which occurred in China (Global Burden of Disease 2015).

The Beijing municipal government has been investing heavily in trans-

portation infrastructures, such as buses, roads, and subway lines to combat

traffic congestion and air pollution in the city. From 2007 to 2015, the govern-

ment’s total investment in transportation infrastructure amounted to over 430

billion Yuan (about USD 67 billion). During this period, Beijing rolled out14

new subway lines with a total length of 440 kilometers. The city’s rapid sub-

way expansion is still ongoing: another 12 subway lines with a total length of

nearly 378 kilometers are under construction and scheduled to open before the

end of 2020. Similar large-scale expansion of subway systems is taking place

in major cities throughout China.

Despite the massive investment in subway infrastructure in Beijing and

1



other major cities in China, rigorous evaluation of the impacts of subway ex-

pansion is lacking. This paper investigates the impact of subway expansion on

air quality by exploiting the rapid expansion of Beijing’s subway system from

2008 to 2016. The expansion of the subway network can create two counter-

vailing forces that could affect air quality. First, the improved subway cover-

age could lead some commuters to switch from traveling using private cars to

using subways (Mohring 1972). This traffic diversion effect or “Mohring Ef-

fect”, should relieve traffic congestion and thus reduce air pollution. Second,

the improvement in traffic conditions could make driving more attractive and

induce additional travel demand using private cars, resulting in a traffic cre-

ation effect (Vickrey 1969; Duranton and Turner 2011). The net effect of subway

expansion on air quality is ultimately an empirical question.

Our empirical analysis leverages rich spatial and temporal variation in air

quality and subway coverage across Beijing from 2008 to 2016. The data on air

quality come from daily air quality readings from 27 monitors throughout the

city. During the data period, 252 new subway stations opened (out of totally

345 subway stations in operation by the end of 2016). The primary empiri-

cal strategy examines how air quality across different locations in the city is

affected by the changes in the subway network density over time and across

space. The main identification concern stems from the potential endogeneity

in subway station location choices, in that the locations could be chosen based

on the projections of some unobserved factors that could affect future traffic

congestion and air pollution. For example, planners might locate subway sta-

tions in areas with projected growth in population or travel demand and hence

deterioration in air quality. An endogenous location of this sort would lead to

2



an underestimation of the real impact of subway expansion on air quality.

To address this endogeneity concern, we instrument the subway density

measure by constructing an alternative density measure based on the histor-

ical subway planning map following Baum-Snow (2007). Many of Beijing’s

subway lines were planned more than 20 years ago, long before traffic conges-

tion and air pollution were of concern. The identification assumption hinges

on the fact that these lines were originally designed to facilitate national de-

fense because Beijing, as the Chinese capital, is the home to the country’s cen-

tral government agencies. The subway lines that were originally proposed

had similar coverage as the lines that were eventually built. Controlling for

a rich set of temporal and spatial fixed effects, the IV results show that a one-

standard-deviation increase in the subway density improves air quality by two

percent.1 The estimate implies that the city-wide average reduction in pollu-

tion ranges from 0.02 percent from the opening of Line 16 (with a length of

20km) to 0.24 percent from the opening of Line 6 (with a length of 78km).

This approach, based on a continuous measure of network density, allows

for the spillover effect of subway expansion across the whole network/city, but

relies on the assumption that the impact diminishes over distance. To further

examine the robustness of our results, we use a distance-based difference-in-

differences (DID) method based on the assumption that the impact of subway

expansion on air quality is local. We define the locations (of air quality moni-

tors) within 2km of a subway station as the treatment group and the locations

1Air quality is measured using Air Pollution Index (API) from 2008 to 2012 and Air Quality
Index (AQI) from 2013. These indices are translated from the dominant pollutant of the day
piece-wise linearly. From 2008 to 2012, the index accounts for sulfur dioxide (SO2), nitrogen
dioxide (NO2), suspended particulates (PM10). Starting from 2013, the index accounts for SO2,
NO2, PM10, PM2.5 and O3.
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farther than 20km away from a subway station as the control group. The loca-

tions between 2km to 20km are used as a buffer zone and are dropped in the

analysis to avoid misclassifying the treatment status. Between the treatment

and the control group, we focus on changes in air quality 60 days before and

after the opening of a subway line. This focus on on a shorter time window

can better address the concern of unobservables, but it is limited by only being

able to examine the short-term impacts.

The key identification assumption of DID is that in the absence of a subway

opening, the air quality in the treatment and the control group would follow

similar trends. Subway construction could potentially cause ground construc-

tion dust and worsen the traffic congestion, leading to an overestimation of

the pollution reduction effect. However, this concern is mitigated because Bei-

jing’s safety regulations require a three-month trial running period before the

opening of a new subway line, thus, physical construction has to end at least

three months before the opening of the line (Gu et al. 2018). We use an event

study analysis to show the parallel trends hold for pre-opening periods in gen-

eral. We also show robustness of our findings by restricting the control group

to the monitors that are located 20km farther from the new subway stations but

within 2km distance of subway stations opened in the past and to be opened

in the future.

The DID specification shows that subway expansion improves air quality

in the vicinity (within 2km) of the new subway line by 7.7 percent, relative to

the area outside of the 20km radius within the 60-day time window. Allow-

ing the effects to vary over time, we show that the effect becomes the largest

around 50-60 days after opening. The DID specification considering hetero-
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geneity in subway density shows that air quality improves further as more

new subway stations are opened near a monitoring station.

Our paper adds to the emerging literature on the impact of subway expan-

sion on air quality. Chen and Whalley (2012) estimate the causal effect on air

pollution from the opening of one subway line in Taipei based on a regression

discontinuity (RD) framework. They find that the opening of the Taipei Metro

reduced air pollution from carbon monoxide (CO), one key tailpipe pollutant,

by 5 to 15 percent. Zheng et al. (2019) use the DID method to estimate the im-

pacts of the opening of the first subway line in Changsha, China and find an 18

percent reduction in CO in the areas proximate to subway stations. Gendron-

Carrier et al. (2018) examine 43 cities across the world that had a new subway

system open from 2000 to 2014. Using the satellite data on Aerosol Optical

Depth around city centers, the paper estimates that particulate concentrations

drop by 4 percent following the opening of a new subway system and that the

effect persists for up to eight years. Nevertheless, recent papers by Beaudoin

and Lin-Lawell (2017) and Rivers et al. (2020) find no evidence of air quality

improvement from the expansion of public transit.

This study leverages fine-scale air pollution data and multiple subway lines

within the same city to examines the impact of subway expansion on air qual-

ity. Different from the RD or DID frameworks in the literature, we use a con-

tinuous density measure to characterize the expansion and employ an IV strat-

egy based on the historical planning for identification in our main analysis. By

using the continuous measure of subway network density that varies across

locations in the city, our analysis focuses on the marginal impact of subway

expansion, rather than the impact of building the first subway line.
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Rapid urbanization is a global trend, especially in developing and fast-

growing economies, and building subway lines constitutes a common supply-

side strategy to address traffic congestion and air pollution from automobile

usage. Subway construction requires substantial investment, so it is important

to understand the benefits of this investment. Based on our empirical results

using subway network density, we conduct a back-of-the-envelope calcula-

tion of the benefits of subway expansion through improved health outcomes

and reduced traffic congestion. The health benefits include both mortality

and morbidity impacts, while the benefit from traffic congestion relief stems

from the value of reduced travel time of commuters. Our conservative analy-

sis shows that the subway expansion observed during our sample period can

provide a total discounted health benefit of $0.6-2.0 billion during a 10-year

period and $1.0-3.1 billion during a 20-year period, accounting for only 1.1-3.6

percent and 1.4-4.4 percent of the total upfront construction cost and the to-

tal discounted operating cost during the same period. Our estimates suggest

that although there does exist non-trivial health benefits from improved air

quality, the benefit from the reduction of traffic congestion estimated from the

literature is more than one order of magnitude larger.

We organize the remainder of the paper as follows. Section 2 discusses the

background and related data sets. In Section 3, we describe the empirical strat-

egy. In Section 4, we discuss the estimation results and policy implications.

Section 5 concludes.
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1.2 Background and Data

In this section, we discuss the challenges of air pollution and the rapid expan-

sion of the Beijing subway system. We then present the main datasets.

1.2.1 Air Quality in Beijing

During the past several decades, China has experienced unprecedented eco-

nomic growth. From 1980 to 2016, the country’s per capita GDP increased

significantly, from less than $200 to over $8,000 in nominal terms according to

the World Bank national accounts data. Meanwhile, air quality in major cities

such as Beijing is deteriorating. Figure 1.1 shows daily and annual PM2.5 con-

centrations in Beijing from 2008 to 2017. The average level is about twice as

high as the Chinese annual standard, and six to ten times the U.S. standard.2

A rich economic literature has shown robust evidence of the adverse impact

of outdoor air pollution on premature mortality and contemporaneous adult

health (Chay and Greenstone 2003; Currie and Neidell 2005; Greenstone and

Hanna 2014; Lelieveld et al. 2015; Schlenker and Walker 2016; He et al. 2016).

The epidemiology literature has linked chronic obstructive pulmonary disease

(COPD), ischemic heart disease (IHD), and lung cancer (LC) to PM2.5 (Burnett

et al. 2014). According to the Global Burden of Diseases (Cohen et al. 2017),

outdoor air pollution contributed to 4.2 million premature deaths in the world

in 2015; 40 percent of those occurred in China.

2The U.S. Environmental Protection Agency (EPA) sets the U.S. standard as 12 µg/m3 annu-
ally and 35 µg/m3 daily while the China Ministry of Environmental Protection (MEP) sets the
Chinese standard as 35 µg/m3 annually and 75 µg/m3 daily.

7



The major sources of outdoor air pollution such as PM2.5 include power

plants, automobiles, and industrial activities. The relative contribution of each

source varies across locations. Quantifying the contribution of urban traffic

to PM2.5 is challenging because tailpipe emissions lead to secondary PM2.5,

whereby motor-vehicle emissions are transformed into ambient air pollution

through complicated chemical processes. In practice, air quality modeling

has yielded a wide range of results. In U.S. cities, the contribution of motor-

vehicles to air pollution ranges from 5 percent in Pittsburgh, PA to 55 percent

in Los Angeles, CA (Tager et al. 2010). Zhang et al. (2013) estimate the contri-

bution of traffic and waste incineration to air pollution to be 4 percent while

Lelieveld et al. (2015) find that motor-vehicle travel alone contributes 3 percen

of air pollution in Beijing. However, due to different definitions of the toxic

level of each pollutant (such as PM2.5, NO, SO2 and O3), the level of air pollu-

tion from ground traffic remains uncertain.

1.2.2 Beijing Subway Expansion

During the past two decades, the Chinese automobile industry has grown to

be by far the largest in the world, with a total output of around 29 million units

including 24.8 million passenger vehicles, in 2017. Private vehicle ownership

in China was uncommon before 2000 but the sales of new passenger vehicles

in China increased dramatically after the turn of the century, growing from

less than one million units in 2001 to nearly 25 million in 2017 and surpassing

the U.S. market in 2009. Beijing has led the way in vehicle ownership growth,

transitioning from a city on bikes to a city in cars during this period: Beijing’s
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stock of passenger vehicles increased from about 1.1 million units in 2001 to

nearly six million units in 2018. Beijing is now routinely ranked as one of the

most congested cities in the world, with the average traffic speed during peak

travel times often less than 15 miles per hour.

The Beijing municipal government has taken several measures in order to

control the air pollution and the traffic congestion caused by the city’s increas-

ing vehicle ownership. One measure is the driving restriction policy started

in 2008 whereby vehicles are banned from driving one day per week based on

the last digit of the license plate. During important events such as the 2008

Olympic Games or when the air pollution is extremely hazardous (e.g., during

the “red alert” days), half of all private vehicles are restricted from the road

(with the restriction based on odd and even numbers).3 Viard and Fu (2015)

find that traffic restriction in Beijing led to a 19 percent decline of API during

every-other-day restrictions and a seven percent decline during one-day-per-

week restrictions. This is consistent with the findings of Chen et al. (2013), who

examine the effectiveness of different environment measures that the Chinese

government adopted to prepare for the 2008 Olympic Games.

Driving restriction policy, on the other hand, may have incentivized house-

holds to buy a second vehicle in order to bypass the driving restrictions.4 In an

additional attempt to curb the growth in vehicle ownership, the Beijing munic-

3The Emergency Management Division from the Beijing Environmental Protection Bureau
issues air pollution alerts based on the four-tiered pollution warning system. Blue: AQI> 200
for one or more days; Yellow: AQI> 200 for 2 or more days; Orange: AQI> 200 for 3 or more
days and AQI> 300 for 2 consecutive days; Red: AQI> 200 for 4 or more days and AQI> 300
for 2 consecutive days or AQI> 500 for any 24-hour period.

4Davis (2008) studies the effectiveness of driving restriction in Mexico City and finds that
the driving restriction leads to worse air quality because more households buy a second vehi-
cle (which tends to be old and release higher pollution). Zhang et al. (2017) find similar results
for the driving restriction policies implemented in Bogota, Colombia.
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ipal government adopted a quota system for new vehicles in 2012 by capping

the monthly number of new vehicle sales. In addition, a limited number of ve-

hicle licenses is allocated through a lottery system (Li 2018). The winning odds

of the license plate lottery in Beijing have decreased from 1:10 in early 2012 to

nearly 1:2000 in 2018 as the pool of lottery participants increases dramatically

and the cap tightens over time.

Along with demand-side strategies to reduce traffic, the Beijing municipal

government has also been investing heavily in transportation infrastructure

such as buses, roads, and subway lines. From 2008 to 2016, 13 new subway

lines and one airport expressway were constructed with a total length of 440

kilometers, making the Beijing subway system not only the most rapidly ex-

panded but also the longest in the world.5 Figure 1.2 shows the detailed time-

line of Beijing subway expansion, which is still ongoing; another 12 subway

lines are under construction and scheduled to open before the end of 2020

with a total length of nearly 378 kilometers. Many other cities in China are

also rapidly expanding their subway systems.

1.2.3 Data Description

Table 1.1 describes the main variables of our analysis and they are constructed

based on three major datasets. The first dataset contains daily air quality read-

ings from all of the 27 monitors in Beijing. Figure 1.3 shows the spatial distri-

5Other four subway systems in the top five worldwide by length (2012): (i) the Shanghai
subway is opened in 1995, with a total network length of 423km; (ii) the London subway is
opened in 1863, with a total length of 402km; (iii) the New York City subway is first opened
on Oct 1904 with a total length of 368km; and (iv) the Seoul subway is first opened in 1974,
with a total length of 368km.
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bution of the 27 air quality monitors; 11 of these are operated by the central

government, and the rest are operated by the local government. Geographi-

cally, eight monitors lie within the 5th ring road, and the rest are outside the 5th

ring road. Air pollution (Air Pollution) in Beijing is measured by two different

indices: Air Pollution Index (API), available from January 1, 2008 to Decem-

ber 31, 2012, and Air Quality Index (AQI), available from January 1, 2013 to

May 12, 2017. Both indices are measured at the monitoring station level on a

daily basis. The API is based on three atmospheric pollutants, sulfur dioxide

(SO2), nitrogen dioxide (NO2), and suspended particulates (PM10). In 2013, the

Chinese government replaced API with AQI which considers PM2.5 separately

from PM10, and includes ozone (O3) and carbon monoxide (CO) as major pol-

lutants. The API or AQI for a given day is calculated based on the level of the

dominant pollutant during that day and the dominant pollutant is determined

by a scoring system as shown in Table 1.2.6

The second dataset records the opening dates and the locations of subway

lines. During the data period from 2008 to 2016, 13 new subway lines and one

airport expressway with 252 new subway stations were opened. Figure 1.3

overlays air quality monitors with subway stations in Beijing as of 2016. Most

of the subway stations are located in the central city.7 Subway stations on

the same line could be opened at different dates. For example, some subway

stations on Line 8 were opened on the same day on Line 9. Our analysis is

thus based on ten major opening dates during the sample period (Figure 1.2).8

6An alternative air quality measure is the Aerosol Optical Depth (AOD) data from satellites
(Gendron-Carrier et al. 2018; Zou 2020). We do not use the AOD data due to the large number
of missing observations caused by the cloud coverage at the daily level.

7On December 30, 2010, four subway lines (Line Daxing, Changping, Fangshan and
Yizhuang) opened, targeting the suburban districts.

8The ten major opening dates are Jul 19, 2008; Sep 28, 2009; Dec 30, 2010; Dec 31, 2011;
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Table 1.3 presents the opening dates of new subway lines with the lines’ total

length and number of new stations, as well as average measures of the subway

density at the locations of air pollution monitoring stations, for each of the ten

opening dates. The average standardized network density at the monitoring

stations increases from 0.27 in 2008 to 0.96 in 2016. The construction of the

subway network density is discussed in detail in the following section.

The third dataset contains daily weather variables: average temperature,

average relative humidity, precipitation, and binary variables indicating rain,

snow, storm, and fog. It also includes hourly wind direction (measured in de-

grees from 0◦ to 359◦) and speed. Wind plays an important role in air pollution

because it affects the movements of the fine particulates. Since our unit of ob-

servation is daily, we need to convert hourly wind speed and direction to the

daily level. We calculate the daily wind direction and speed based on the vec-

tor summation of hourly wind direction and speed.9 We then categorize the

daily wind directions into 16 groups. Table 1.4 presents summary statistics for

the main daily weather variables and the daily wind directions.10

Table 1.5 presents the sample averages of ln(Air Pollution) 60 days before

and after the opening of each new subway line. The top panel shows the sim-

Dec 30, 2012; May 5, 2013; Dec 28, 2013; Dec 28, 2014; Dec 26, 2015; and Dec 31, 2016. The
opening dates within 60 days apart from these major opening are combined with the closest
major opening date.

9For example, wind at 8:00 am is 30 degree (angle from North) with wind speed 4 mph;
wind at 9:00 am is 90 degree (E) with a speed 4 mph. The summation of the two wind vectors
would be a 60 degree wind vector with a speed 7 mph.

10One may consider a simple average of the hourly wind direction indicators for a day, but
this measurement could neglect the magnitude of wind speed and thus bias its impact. Wind
directions at the subway station level can help us assess the subway expansion’s impact at a
particular monitoring station precisely. This approach will be practically feasible to implement
as the satellite data (such as Aerosol Optical Depth data) and smart phones (or cards) data are
becoming more available.
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ple averages, while the bottom panel presents the average residuals after con-

trolling for weather conditions and a rich set of time and location fixed effects

(the same set of controls to be used in the regression analysis). The treatment

group is defined as the monitoring stations within 2km of a new subway line,

while the control group is defined as the monitoring stations more than 20km

away from the new subway line. The top panel shows a 4 percent increase in

air pollution level on average after the opening of a subway line. This coun-

terintuitive result could be driven by seasonality: nine out of the 14 new lines

were opened in December and air quality tends to be worse in January and

February than in November and December due to winter heating. The bot-

tom panel shows that after partialling out time and location fixed effects and

weather conditions, the opening of a new subway line is associated with an 4.6

percent reduction in air pollution level on average.

Figure 1.4 depicts average residuals of ln(Air Pollution) from 60 days before

to 60 days after the opening of each new subway line for the treatment group

and the control group, after partialling out weather conditions and a rich set of

time and location fixed effects. The treatment group appears to have a higher

air pollution level than the control group (relative to their baseline levels) one

month before the opening of the new lines but have a lower level of air pollu-

tion about 20 days after the opening. The difference between the two groups

seems to increase over time after the opening with the treatment group exhibit-

ing a lower level of air pollution.
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1.2.4 Subway Network Density

The key explanatory variable in our main empirical specification is an inverse

distance-weighted subway density:

Densityit =
∑
j∈Nt

1
Distance2

i j

,

where i, j, and t index air pollution monitoring stations, subway stations, and

days, respectively. Nt is the set of existing subway stations at time t. The sub-

way network density for monitoring station i at time t is the weighted number

of subway stations at time t, in which the weight is the inverse of squared dis-

tance from the monitor to a corresponding subway station in operation at time

t. Following the density measure commonly adopted in the urban literature

(Ewing and Cervero 2010), this measure can be considered as the number of

subway stations per unit area centered around a given monitoring station. The

density measure increases with the number of subway lines. However, a new

subway line will change the density measure differently across monitoring sta-

tions. The density will increase more for the monitoring stations closer to the

subway line.

This subway density measure, however, does not account for the hetero-

geneity across subway stations or subway lines in their contribution to the

whole subway system. For example, major transfer stations that connect mul-

tiple subway lines or subway lines in the center of the system play more im-

portant roles in the connectivity of the system. To capture this heterogeneity,

we generate an alternative density measure which takes into account the rid-

ership of each subway line for robustness checks.11 The following equation

11The ridership information at the subway station level would be ideal to be used as a
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shows the ridership-weighted subway density measure ( ˜Densityit):

˜Densityit =
∑
j∈Nt

Weight j`

Distance2
i j

,

where Weight j` denotes the weight of subway station j on subway line `, which

equals the ridership share of line ` among all subway lines in operation at time

t.

Table 1.3 reports the number of new stations at each opening and the aver-

age standardized density in the vicinity of air quality monitors at each open-

ing.

1.3 Empirical Strategy

In this section, we discuss our empirical methods and the identification chal-

lenges. The main empirical framework employs subway network density as

the key explanatory variable and uses the instrumental variable (IV) approach

to address endogenous subway locations. We then present the difference-in-

difference (DID) framework as an alternative strategy and discuss analysis of

heterogenous treatment effects.

weight. Unfortunately, we could not find such data set at this point. To proxy the ridership at
the station level, we use ridership data at the subway line level, treating that each station in a
certain subway line has the same ridership.
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1.3.1 Network Density and Air Quality

We estimate the following equation:

ln(Air Pollutionit) =β1(Densityit/σ) + Monitori + Trendit

+Weathertβ2 + Monitori × Drivingt

+ Yeart + S easont + DoWt + Holidayt + εit. (1.1)

The outcome variable, ln(Air Pollutionit), is the logarithm of daily Air

Pollution Index (API) during 2008-2012 and Air Quality Index (AQI) from

2013 onward. i = 1, . . . , 27 is the index for monitoring stations and t ∈

[Jan 1, 2008, Dec 31, 2017] is the index for day. The key explanatory vari-

able is the standardized subway network density to facilitate interpretation,

where Densityit is defined above and σ is the standard deviation of the den-

sity. Weathert is a vector of weather variables including average temperature

(oC), relative humidity (%), wind speed (m/s), precipitation (mm), dummies

for rain, snow, storm, and fog, and 16 wind direction dummies.

We include monitor fixed effects (Monitori) to control for unobserved loca-

tion attributes that affect air quality. We also control for a set of temporal fixed

effects including year fixed effects (Yeart), season fixed effects (S easont), day

of week fixed effects (DoWt) and holiday fixed effects (Holidayt). To control for

other confounding factors that may vary across time but are not adequately

controlled by the time fixed effects, we include a monitor-specific time trend,

Trendit, to allow the unobserved time trend to vary across monitors.12. We also

interact monitor fixed effects with driving restriction policy (Drivingt) to allow

12Trendit is a vector of monitor-specific linear time trends (the interaction of the dummy for
monitor i and the linear time trend t).
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the effects of driving restrictions to vary by locations. Beijing’s driving restric-

tion policy bans some vehicles from driving on a given workday depending

on the last digit of the license plate number. This policy follows a pre-set rota-

tion schedule in terms of which pair of numbers (1 and 6, 2 and 7, 3 and 8, 4

and 9, or 5 and 0) is restricted on a given day, and it is not adjusted based on

traffic conditions. Because the last digits of license plates are not evenly dis-

tributed and this policy thus changes the traffic conditions on the road ((Yang

et al. 2020)), we construct Drivingt as a vector of five dummies indicating the

five pairs of the last digits of license plates. εit is the random error term.

The key identification challenge is the potential endogeneity of the den-

sity variable resulting from non-random placement of subway stations. City

planners may place the subway lines and stations in anticipation of the future

growth (e.g., population or commercial activities) of different parts of the city,

which could have implications for the traffic congestion level. If the subway

lines are more likely to be placed in areas with higher anticipated growth of

economic activities (hence congestion), the framework using the network den-

sity as the key explanatory variable may underestimate the impact of subway

expansion on air quality improvement.

To address the concern of non-random placement of subway stations, we

use the historically planned subway network to construct an instrument for

the density measure, following Baum-Snow (2007), which uses historical high-

way plans in the U.S. to instrument for observed highway routes. We obtain

historical subway plans in 1957, 1983, 1999 and 2003, as shown in Figure 1.6.

We use the 2003 plan to construct the instrument because it has the most lines

and because many of the lines appear in earlier plans. The 1957 plan is the
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first known plan and provides the basis for the subsequent plans while the

1983 plan defines the “Horizontal+Vertical+Ring” framework of the Beijing

subway system, which continues to be used. Because we do not observe the

planned opening dates from the historical plans, we assign the actual opening

dates to the planned lines. In order to introduce another layer of randomness,

we also implement random opening dates within a window of the observed

opening date as a robustness check.13

The exogeneity assumption of the IV hinges on the fact that the original

subway plans were designed to facilitate national defense, with little or no re-

gard for future travel demand or air quality. Many of the lines were planned

several decades before the construction, long before air pollution and traffic

congestion became a concern. During the first planning period of the subway

system about 60 years ago, the population in Beijing was less than 3 million,

with only 5,000 vehicles. Building a subway system requires huge investments

and advanced technologies. The then-premier, Zhou Enlai, said, “Beijing is

building the subway purely for defense reasons. If it was for transport, pur-

chasing 200 buses would solve the problem.” 14

Beijing’s vehicle stock was only 1.5 million in 2003, compared to nearly 6

13Following Faber (2014), we construct an alternative IV in the earlier version where we
use the minimum spanning tree (MST) method to construct hypothetical subway lines with
the origin and destination given by the historical subway plans. We straighten up all the
historical subway lines and reallocate the observed subway stations to the nearest location on
the hypothetical lines. We find similar results using the two different sets of IV.

14A quote from the article “The birth of the Beijing subway: Premier Zhou said that the
preparation of the subway is to prepare for the battle” well explains the situation that China
faced back in the 1950s, “In June 1950, the new China, which was just half a year after the
founding of the People’s Republic of China, was forced to become involved in the Korean
War. At the same time, the US Seventh Fleet entered the Taiwan Strait. ... In such an interna-
tional situation, war preparedness should be the first factor to be considered in Beijing’s urban
planning.” http://discovery.cctv.com/20070926/100879.shtml.
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million by 2018. The rapid increase in vehicle ownership after 2003 was un-

likely to be predicted by policy makers and the historical plan is thus unlikely

to be correlated with the spatial pattern of traffic congestion and air pollu-

tion within the city. The IV is correlated with the density measure because the

constructed subway lines largely follow the historical plans, which contain a

similar number of transferring stations and level of connectivity as the current

subway system.

The empirical approach based on subway network density relies on the

spatial and temporal variation of the network expansion. The subway density

measure is not a city-wide measure but is local in nature. A new subway line

would increase the density more for nearby monitoring stations than for those

farther away from the line. The underlying assumption is that the impact of

subway expansion on air quality is not uniform across the city but diminishes

over distance. With this assumption, this approach allows for system-wide

impact or the spatial spillover effect of subway expansion on air quality.

1.3.2 Difference-in-Differences Specification

As an alternative specification, we use the DID method which assumes the

impact of subway expansion to be confined locally. This assumption allows us

to define treatment and control groups. While this assumption may appear to

be ad hoc, the advantage of the DID approach is that it can be easily adapted to

examine the potential heterogeneity in impacts (e.g., the dynamic impact over

time).
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Our DID strategy compares the air quality 60 days before and 60 days after

each of the 10 opening dates of subway stations between the treatment and the

control group. Since the subway lines are designed to serve different areas of

Beijing, the set of treated and control monitors vary across different opening

dates. We choose the time windows to be 60 days before and after the opening

dates to avoid the overlap between the pre-opening and post-opening periods

of two consecutive lines. In DID regressions, we restrict our sample to the

observations that fall in the 120-day windows around the opening dates.

We define the treatment group as the monitoring stations within 2km of

a subway station and the control group the monitoring stations farther than

20km of a subway station. We treat the area in between as the buffer zone and

drop the monitors in the buffer zone in the DID analysis to address the concern

of misclassifying treatment status.

The choice of the treatment group is based on the radius of the impact on

commuters’ mode of travel to subway stations. The typical length of time

that commuters take to travel to subway stations is between 5 and 15 minutes.

Walking and biking are the two most common commuting modes to subway

stations in Beijing. The typical walking distance is about 1km (or 12 minutes

based on a walking speed of 5km/hour) while the typical biking distance is

about 3km. We choose the average of the two as the radius of impact to define

the treatment group.15

As the subway system is a network, the impact of the opening of a new
15The walking and biking distances are approximated based on the Guideline of Designing

and Planning for Areas along Urban Rail from Ministry of Housing and Urban-Rural Develop-
ment of the People’s Republic of China, and Yang et al. (2018b). We also conduct a spatial lag
analysis to determine the 2km cut-off for the treated and 20km cut-off for the control groups.
The results are available upon request.
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subway station on air quality could go beyond 2km. The DID provides esti-

mates of local effects within 2km of subway stations, which is different from

the estimates of city-wide effects in the density specification discussed earlier.

The impact is likely to be larger in the areas closer to subway stations due to

the stronger impact on travel mode choices. Therefore, we expect the estimates

from the DID to be larger than the estimated impacts from the IV method us-

ing the density measure, which is confirmed by our empirical findings (to be

discussed later).16

Following a general framework by Bertrand et al. (2004) and Hansen (2007)

with multiple groups and time periods, the basic DID framework is specified

as

ln(Air Pollutionit) =θTreatedit × 1(Postt) + Monitori + Trendit

+Weathertβ + Monitori × Drivingt

+ Yeart + S easont + DoWt + Holidayt + εit, (1.2)

where Treatedit is a treatment indicator that takes the value of 1 if monitor

i is within 2km of any subway stations that were opened on date τ (τ − 60 ≤

t ≤ τ + 60). 1(Postt) is a dummy variable indicating whether an observation is

within 60 days after opening of these new subway stations, that is, τ ≤ t ≤ τ+60.

The parameter of interest is θwhich captures the impact of the subway opening

on air pollution for areas in the vicinity of the new subway stations within 60

days after the opening. Other control variables are defined as in Equation 1.1.
16To the extent that the opening of a subway station could impact the traffic flow of the

whole city including areas 20km away, the DID approach confounds control with treatment
and could underestimate the true impact. Indeed, when we define the control group as the
monitoring stations 15km away from a subway station and shrink the buffer zone accordingly,
we find a smaller impact, consistent with the intuition above. We choose 20km to reduce the
potential bias.
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The key assumption of the DID is that, in the absence of a new subway

opening, air quality in the treatment and control groups follow parallel trends.

Most monitoring stations in the control group are in the suburban districts of

the city as shown in Figure 1.3. One may be concerned that those monitors in

the control group may be too far away from the city center and thus would

have different trends from those in the treatment group.

We take two strategies to address this concern. Our first strategy takes ad-

vantage of the staggered rollout design of the subway lines. We use the mon-

itors that are located 20km farther from the new subway stations but within

2km distance of subway stations either opened in the past or to be opened in

the future as the control group. Because both the treatment and control groups

contain only monitoring stations that are close to subway stations, the two

groups likely share similar (observed and unobserved) characteristics. The

underlying assumption of this method is the randomness of the opening date.

Second, we use event study analysis to show the parallel trends hold

for pre-opening periods in general. We divide the 120-day time window

around opening dates into twelve 10-day intervals (six pre-opening periods

n = −5,−4, ..., 0, and six post-opening periods n = 1, 2, ..., 6) and run the follow-

ing regression:

ln(Air Pollutionit) =
∑
n,0

δnPt(n) × Treatedit + Monitori + Trendit

+Weathertβ + Monitori × Drivingt

+ Yeart + S easont + DoWt + Holidayt + εit (1.3)

where Pt(n) = 1 [τ + 10 · (n − 1) ≤ t ≤ τ + 10 · n], indicating interval n. The base

interval is the 10-day intervals before the opening dates (i.e., n = 0).
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Table 1.6 (and Figure 1.5) presents the coefficient estimates of δn. The re-

sults support the parallel trends assumption in general: compared with the

base interval (10-day window before opening dates), the subsequent changes

in air quality between the treatment and control groups are not significantly

different for four out of the five pre-opening intervals in the specification ex-

ploiting staggered rollout design (Column 4). In the specification that does

not exploit the staggered rollout design (Column 3), three out of the five pre-

opening intervals show parallel trends, with the base interval and the parallel

trends assumption only being marginally rejected in one of the remaining two

intervals. In contrast, we find statistically significant effects of air pollution

reduction in four out of six post-opening intervals for the same two specifica-

tions (Columns 3 and 4).

One additional identification concern may arise from air pollution induced

by subway construction, which differs between the treatment and the control

group. The construction of a subway station involves both underground and

ground work, which may generate construction dust and worsen the air qual-

ity. If the construction leads to higher pollution levels close to new subway

stations before opening dates, the DID framework could mistake the pollution

reduction from the mere completion of the construction itself as the impact

of the subway expansion and hence overestimate the true impact. However,

this concern is mitigated because under the national standard of subway con-

struction in China, every subway line is subject to an intensive trial run over a

three-month period during which the subway train is tested after the ground

work has been finished completely.17 Since our DID analysis focuses on the

17The first phase of the trail run process has no passengers on board and during the second
phase of the process, typically the last 20 days of the process, the subway with passengers (not
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120-day window around opening dates during which the subway construc-

tion is already completed, we do not expect construction dust to confound our

results.

We estimate two alternative specifications to relax the assumption of uni-

form effects of subway opening across opening dates and stations. First, we

allow the impact to vary by number of days after the subway opening, as spec-

ified in Equation 1.4.

ln(Air Pollutionit) =ψ1Treatedit × 1(Postt) + ψ2Treatedit × 1(Postt) × Dayst

+ ψ3Treatedit × 1(Postt) × Days2
t + Monitori + Trendit

+Weathertβ + Monitori × Drivingt

+ Yeart + S easont + DoWt + Holidayt + εit (1.4)

where Dayst is the number of days after the opening of the subway station.

This specification allows the effect to occur gradually since it may take time

for commuters to adjust their travel modes.

In the second specification, we examine the heterogeneity of treatment ef-

fects by allowing the impact to differ based on the number of new subway

stations within the vicinity of the treated monitors as in Equation 1.5.

ln(Air Polutionit) =ηNit × Treatedit × 1(Postt) + Monitori + Trendit

+Weathertβ + Monitori × Drivingt

+ Yeart + S easont + DoWt + Holidayt + εit (1.5)

where Nit is the number of subway stations opened at date τ (τ − 60 ≤ t ≤

τ + 60) within the 2km distance of the monitor i. This specification captures

the public) will be tested following the scheduled time and route.
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the notion that when more subway stations are located nearby, commuters are

more likely to use the subway to reach their destinations and hence to reduce

driving and air pollution more in the vicinity areas.

1.4 Empirical Results

In this section, we first present the estimated impacts of subway expansion

on air quality using the IV method and the DID method in the first two sub-

sections. We then present the results from a benefit-cost analysis based on

back-of-the-envelope calculations.

1.4.1 Estimates Based on Network Density

Table 1.7 shows the OLS results using the continuous density measure shown

in Equation 1.1. The key variable is the standardized subway network den-

sity. We sequentially add weather variables, wind conditions, a rich set of

location and time fixed effects, and the driving restriction policy as control

variables. Column (1) does not have monitoring station fixed effects, and the

result shows a positive correlation between subway density and the level of

air pollution. This result is likely driven by the fact that the city center, where

the subway network is denser, tends to have higher pollution levels. Once

monitor fixed effects are included, the results show that higher subway den-

sity is associated with a lower level of air pollution. This negative relationship

is robust across columns (2) to (4). Column (3) adds monitor fixed effects in-

teracting with the driving restriction policy, while column (4) further includes
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a monitor-specific time trend. Adding the monitor-specific time trend helps

to alleviate the concern about the endogenous location of subway lines. Sub-

way lines may tend to be placed in areas with faster projected growth in eco-

nomic activities (and hence more air pollution); without controlling for this,

the impact of subway expansion on air quality would be underestimated, as

confirmed by the results in columns (3) and (4).18

The results from the full model (column (4) of Table 1.7) suggest that a one

standard-deviation increase in subway density reduces the air pollution level

by 1.5 percent. This estimation exploits the variation in network density and

air pollution across space and locations. It can be interpreted as the longer

term impact, when we compare it with estimates from the DID framework

presented in the next section or from the literature, which typically relies on a

shorter time window around the intervention to address confounding factors.

The weather variables have intuitive signs: high temperature and humid-

ity are associated with a higher level of air pollution while rainfall/snow and

wind are associated with a lower level of air pollution. High temperature

can lead to faster formation of ground-level ozone and fine particulate matter

while high humidity (without precipitation) makes it difficult for the natural

air current to dissipate the pollutants. Precipitation in the form of rainfall or

snow, as well as high wind, can help pollutants dissipate more quickly.

We address the potential endogeneity of network density measure using IV

in Table 1.8. Column (1) is identical to column (4) in Table 1.7 to facilitate com-

parison. Column (2) instruments for the density variable with a hypothetical
18We have also tried two alternate monitor-specific time trends: time squared and time

cubed. The OLS results are robust to the order of the time trend, we find similar estimates
with monitor-specific squared time trend and monitor-specific cubed time trend.
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density measure based on the 2003 subway planning map and uses the actual

opening date of each line. The impact from 2SLS is slightly larger in magni-

tude than that from OLS. Column (3) uses a random opening date during a

six-month window around the observed opening date to construct the IV. This

helps to address the concern that policymakers may choose the opening date

partly based on the projected pollution level. In practice, the opening of a new

subway is often celebrated with a ceremony at which high-level government

officials from both the Beijing municipal government and the central govern-

ment are present. Seven out of the 10 opening dates in our sample fall in the

last few days of a calendar year. In addition to the coincidence of celebrating

a new subway line opening together with the beginning of a new year, this

choice of dates is also likely due to the fact that it is easier to gather high-level

government officials during the public holidays.

Columns (4) to (6) of Table 1.8 use the ridership-weighted density measures

in which higher weights are assigned to subway lines with larger ridership in

the network. Column (4) comes from OLS, while columns (5) and (6) come

from 2SLS. Column (5) uses the observed opening date to construct the IV,

while column (6) randomizes the opening date. Column (6) produces slightly

larger estimates than columns (4) and (5), suggesting that a one standard-

deviation increase in population-weighted density reduces the level of air pol-

lution by 3.5 percent. In both specifications with different density measures,

2SLS results are slightly larger than OLS estimates.

Table 1.9 translates the parameter estimates of the IV regression with ob-

served opening dates (column 5 of Table 1.8) into the impact for each subway

line. To estimate average subway density in Beijing, we calculate the subway
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network at the Traffic Administration Zone (TAZ) level.19 Figures 1.7 and 1.8

map the subway network density at the TAZ level at the end of 2007 (the year

before our study period), 2009, 2011, 2013, and 2016. The subway network,

which is denser at the city center, has been expanding rapidly with openings

of new subway lines. For example, the opening of Line 6 (opened on Decem-

ber 30, 2012) increases the population-weighted density by 0.12 overall, which

in turn leads to a 0.24 percent decrease in air pollution level. In the aggregate,

the total 14 lines built from 2008 to 2016 result in a 1.01 percent decrease in air

pollution in Beijing. Our estimates of the pollution reduction effect are smaller

than that of Gendron-Carrier et al. (2018), who find a four percent reduction in

air pollution after the opening of a new subway system. However, the majority

of new subway systems considered in Gendron-Carrier et al. (2018) were the

first subway lines in their corresponding cities, which could explain the larger

estimated impacts than those in our case. In addition, studies using the DID or

the regression discontinuity method tend to have larger estimates (Chen and

Whalley 2012; Zheng et al. 2019), as these estimates may capture a shorter term

and more local impact than ours. This is consistent with our analysis using the

DID method below, which shows a larger impact than the estimate based on

the continuous density measure.

19The city of Beijing is divided into 1911 Traffic Administration Zones (TAZs) for the pur-
pose of city planning. Each TAZ has similar population size so the average subway density at
the TAZ level is roughly equivalent to the population-weighted average of the density at the
district level.
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1.4.2 Difference-in-Differences Estimates

Table 1.10 presents the results from the basic DID model (Equation (1.2)). The

results across columns exhibit similar patterns to those in Table 1.7. With the

absence of monitoring station fixed effects in columns (1) to (3) of Table 1.10,

air pollution level is positively associated with subway opening. After con-

trolling for monitor fixed effects, Columns (4) to (6) provide similar estimates

of the effects of subway opening on air pollution based on the DID model.

The results from column (6) suggest that within a 60-day time window after

a subway line’s opening, the monitors in the vicinity (within 2km) of subway

stations exhibit a 7.7 percent reduction in air quality compared to the monitors

outside the 20km radius.

The DID specifications produce relatively larger impact estimates com-

pared to those from the framework based on continuous density measures,

likely for two reasons. First, the DID method focuses on a shorter-time win-

dow, while the method with density measures relies on variation during the

whole data period. Thus, the DID estimates should be viewed as shorter-term

impacts. Second, the DID method estimates the impacts of subway expansion

on the areas within a 2km radius of new subway lines which are likely larger

than the city-wide effects estimated by the method with network density mea-

sures.

Table 1.11 reports regression results using different time windows (from

10 to 180 days) before and after the opening dates. The estimates are not sta-

tistically different across 40- to 100-day windows (column 4 to 10). When we

increase the window to 110 days and longer, however, the average effect seems
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to fade away. This is consistent with the notion that it may take some time for

commuters to adjust their travel modes in the short term and hence for the

impact on air pollution to be materialized. In the longer term, reduced traffic

congestion could lead to additional driving demand, mitigating the initial re-

duction of air pollution. This dynamic is consistent with traffic diversion in the

short-term and with induced traffic demand in the longer-term, as discussed

in the introduction.

Table 1.12 shows the effect under a continuous measure of the time vari-

ables. We interact the treated group indicator with the linear and quadratic

term of days post-opening, respectively. We also compare the specifications

under two different time windows (60 days and 120 days). The results

from our model specifications with the quadratic term of days post-opening

(columns 2 and 4) suggest that the effect of subway opening on air pollution is

non-linear. The subway opening begins to have a negative effect on air pollu-

tion after approximately 15-20 days; the magnitude of the effect then increases

at a decreasing rate, with a turning point being around 50-60 days, after which

the effect diminishes.

Table 1.13 presents the DID specification which accounts for the number

of subway stations in the vicinity of treated monitors. The result shows that

one additional subway station added to the vicinity of a monitor reduces air

pollution by 2 to 4.1 percent, depending on model specifications. Compared to

the IV method based on the network density measure, the DID method yields

qualitatively the same results but considerably larger point estimates. Take

the previous example of Line 6. The opening of Line 6 improves air quality

in Beijing by 0.70 percent (assuming no effects on buffered locations) to 6.04
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percent (assuming the buffered locations have the same impact as the treated

locations). This comparison reflects the interplay of the two countervailing

forces: the traffic division effect of public transit investment (the Mohring ef-

fect), and the induced demand effect. The second channel takes longer to occur

and dampens the positive impact on air quality improvement observed in the

short term. Nevertheless, our estimates suggest that the first channel is the

dominant force in the longer run.

1.4.3 Cost-Benefit Analysis

This section presents a back-of-the-envelope analysis on the benefit of sub-

way expansion through two channels. The first benefit is on human health

including both mortality and morbidity from improved air quality. The sec-

ond benefit comes from congestion relief and the value of saved travel time

for commuters.

Our empirical analysis finds that subway expansion leads to statistically

significant improvement in air quality. Table 1.9 shows the estimated air qual-

ity improvement due to each subway line based on the benchmark specifica-

tion (based on the IV results in Table 1.8). The population weighted air quality

improvement ranges from 0.02 percent by Line 16 opened on December 31,

2016 to 0.24 percent by Line 6 opened on December 30, 2012. Recent literature

from both epidemiology and economics has shown that the long-term expo-

sure to airborne particulates can lead to elevated mortality especially among

infants and morbidity due to cardiorespiratory diseases (Chay and Greenstone

2003; Currie and Neidell 2005; Currie and Walker 2011; Knittel et al. 2016;
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Greenstone and Hanna 2014; He et al. 2016; Ebenstein et al. 2017).

To calculate the mortality impact of subway expansion, we take the esti-

mates from Ebenstein et al. (2017) that study the impact of long-term exposure

to airborne particulate matter on mortality using a regression discontinuity

design. They find that a 10-µg/m3 increase in PM10 increases cardiorespiratory

mortality by 8 percent; this impact varies across age cohorts but not across

gender. Following the analysis in Barwick et al. (2019) to monetize the mor-

tality impact, the mortality cost amounts to $13.38 billion across the Chinese

population from a 10-µg/m3 increase in PM10, or $64.9 per household in Bei-

jing when adjusted for the Beijing per capital income (in 2015 dollars). The

morbidity cost of air pollution comes from Barwick et al. (2019), who provide

the first comprehensive analysis of the morbidity cost in China based on the

universe of credit and debit card spending. They find that the morbidity cost

from a 10-µg/m3 increase in PM2.5 is $20.2 (in 2015 dollars) per household for

China.20

The congestion relief benefit comes from the value of the saved commuting

time. Using a regression discontinuity design, Yang et al. (2018a) estimate that

each new subway line reduces travel delay by an average of 15 percent based

on the subway lines that opened between 2009 to 2015. The Beijing Annual

Transportation Report shows that the average traffic delay time is around 20

minutes per hour. We assume that these delays occur during the peak hours

(7am-9am and 5pm-7pm) on the weekdays and that approximately two mil-
20We follow the emerging literature on the morbidity costs of air pollution (Deschenes et al.

2017; Barwick et al. 2019), which estimate that the morbidity costs could amount to about two
thirds of the mortality costs. Landrigan et al. (2018) summarized a series of studies that sug-
gest that the morbidity costs resulting from pollution-related disease might conservatively in-
crease mortality costs by 10-ÂĂÂŞ70%, and some individual country studies suggest that the
increment might be even greater: 25% for Colombia, 22-78% for China, and 78% for Nicaragua.
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lion commuters (who travel by cars and buses) are affected. The value of time

(VOT) for automobile travel is often assumed to be half of the market wage

(Parry and Small 2009), which is 62.98 Yuan per hour ($9.5 per hour) based on

the monthly wage of 10,077 Yuan.

Panel (a) of Table 1.14 presents the cost-benefit calculations during a 10-

year period after the opening of each subway line. The cost includes both the

upfront construction cost and the operating cost (Column 1). We discount the

operating cost and the benefit at a 5 percent annual discount rate. The total

cost from all the subway lines during the sample period is $56.3 billion (with

the construction cost being $46.7 billion). The health benefit amounts to $0.64

billion (Column 2), or 1.13 percent of the total cost (Column 4), while the ben-

efit from congestion relief is $26.9 billion (Column 6), or 48 percent of the total

cost (Column 8). Panel (b) of Table 1.14 presents the cost-benefit calculations

during a 20-year period where the benefit from health and congestion relief

accounts for 1.38 percent and 58 percent of the total cost, respectively. The

analysis suggests that the health benefit from improved air quality is a rela-

tively small portion compared to the overall benefit of subway expansion.

However, our benefit estimates in Columns (2), (4), (6), and (8), are con-

servative for three reasons. First, the mortality benefit is based on the Value

of a Statistical Life (VSL) of $2.27 million (in 2015) from (Ashenfelter and

Greenstone 2004), rather than the central estimate of $8.7 million figure rec-

ommended by the U.S. EPA. Second, the value of time is assumed to be 50

percent of the wage, rather than 100 percent of the hourly wage (Small 2012;

Wolff 2014). Third, the benefit calculation includes neither the benefit from

improved commute reliability nor the benefit from a larger choice set of travel
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modes (Small et al. 2005).

We then calculate an upper bound of the health benefit and congestion re-

lief benefits in 10-year and 20-year respectively, presented in Columns (3), (5),

(7), and (9). These estimates are based on the VSL of $8.7 million from the

U.S. EPA and the VOT of 100 percent of hourly wage in Beijing. At the up-

per bound, the health benefit amounts to $2.01 billion or 3.57 percent of the

total cost while the benefit from congestion relief is $53.71 billion or 95.34 per-

cent of the total cost during a 10-year period. During a 20-year period, the

upper bound of benefits from health and congestion relief accounts for 4.36

percent and 116.41 percent of the total cost respectively. Together, the total

benefits from health and time saving alone exceed the costs during a 20-year

timeframe, recognizing that subway systems could have a life span of at least

several decades or over 100 years.21

Our analysis suggests that although the health benefit of subway expan-

sion is nontrivial, it is much smaller than the benefits from congestion relief.

Large sources of air pollution in Beijing include motor vehicle emissions, in-

dustrial activities, coal burning, and construction dust, as well as long-range

transported pollution from nearby cities. According to Beijing Environmen-

tal Protection Bureau, automobiles are the largest source of PM2.5, accounting

for 22 percent in the whole city and about one third of the total in the urban

core in 2012. The second largest source of PM2.5 in 2012 is coal burning (17

percent), followed by construction site dusts (16 percent). Unless driving is

substantially reduced, the impact on air quality improvement from infrastruc-

ture investment alone is likely to be small, especially when the road usage is
21London has the oldest subway system which started in 1890 and the New York City sub-

way system began operation in 1904.
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not priced.

1.5 Conclusion

To address worsening air pollution and traffic congestion across urban areas

in China, central and local governments are undertaking large investment in

transportation infrastructure such as roads, rail, and subway systems. China’s

total investment in transportation infrastructure in 2014 amounted to 2.5 tril-

lion yuan ($409 billion), about four percent of its GDP. Beijing has been leading

the way among major cities in public transportation infrastructure by rapidly

expanding its subway lines. Between 2002 and 2015, the Beijing municipal

government invested nearly 300 billion Yuan (or USD 47 billion) on 16 new

subway lines and Beijing now has the second longest subway network of

599km in the world, after Shanghai.

While previous literature has examined the congestion relief function of

public transportation, there is limited evidence regarding the impact of sub-

way expansion on air quality. By leveraging fine-scale air pollution data and

the rapid rollout of 14 new lines from 2008 to 2016 in Beijing, we find that the

opening of new subway stations improves air quality from a variety of em-

pirical specifications. An IV analysis based on the network density measure

shows that a one standard-deviation increase in the density improves air qual-

ity by two percent. The 20-year total discounted health benefits of the subway

expansion amounts to $1.0-3.1 billion due to reduced mortality and morbidity

from improved air quality. Nevertheless, the benefit would only account for

1.4 to 4.4 percent of the total cost, including both the construction and operat-
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ing cost. Our findings suggest that most of the cost from subway expansion

needs to be justified from traffic congestion relief and other economy-wide im-

pacts. Future research could examine the impact of subway expansion on the

location choices of households, labor participation decisions, and firm entry

and exit, all of which could have important implications on the broader econ-

omy.
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Figure 1.1: Beijing PM2.5 Concentration (µg/m3)
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(b) Annual
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Note: Panel (a) and (b) shows daily and annual average PM2.5 concentrations in Beijing from
2008 to 2017 respectively. The average level is about twice as high as the Chinese annual
standard, and six to ten times the U.S. standard. The U.S. EPA sets the U.S. standard as 12
µg/m3 annually and 35 µg/m3 daily whereas the China MEP sets the Chinese standard as 35
µg/m3 annually and 75 µg/m3 daily.
Source: U.S. Embassy and Consulates in China.
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Figure 1.2: Beijing Subway Expansion Timeline
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Note: Figure shows the timeline of Beijing subway expansion and the major openings. The
number of new subway stations for each opening or expansion is shown in the parentheses
and the major openings are shown in bold. We consider the following ten opening dates are
major openings: Jul 19, 2008; Sep 28, 2009; Dec 30, 2010; Dec 31, 2011; Dec 30, 2012; May 5,
2013; Dec 28, 2013; Dec 28, 2014; Dec 26, 2015; and Dec 31, 2016. The opening dates within 60
days apart from these major opening are combined with the closest major opening date. From
2008 to 2016, 13 new subway lines and one airport expressway were constructed with a total
length of 440 kilometers and 252 new subway stations opened, making the Beijing subway
system not only the most rapidly expanded but also the longest in the world.
Source: www.bjstats.gov.cn/xwgb/tjgb/ndgb/201402/t20140213_267744.htm.
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Figure 1.3: Air Quality Monitors and Subway Stations

Source: www.bjstats.gov.cn/xwgb/tjgb/ndgb/201402/t20140213_267744.htm
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Figure 1.4: Residualized ln(Air Pollution) for 60 Days Before and After the
Opening
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Note: Residualized plots of ln(Air Pollution) after controlling for weather conditions, monitor
fixed effects, time fixed effects: year, season, day of week and holiday, and monitor-specific
time trends.
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Figure 1.5: Event Study Analysis of Subway Openings

Note: The estimates in this graph are based on the parallel trend testing analysis with the
specification exploiting staggered rollout design (Column 4 from Table 1.6) and are compared
with the base interval (10-day window before opening dates).
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Figure 1.6: Historical Construction Plans of The Beijing Subway System
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(c) 1999 (d) 2003

Source: www.ditiezu.com
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Figure 1.7: Subway Expansion and Network Density at the TAZ level
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Figure 1.8: Beijing Subway Network Density at the TAZ level as of 2016
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Table 1.1: Variable Descriptions

Variable Definition

(a) Air Pollution Indicators, monitoring station (i) × daily (t)

APIit Air Pollution Index ranging from 0 to 500. This index mea-
sured between 2008 and 2012 and it accounts for sulfur
dioxide (S O2), nitrogen dioxide (NO2), suspended partic-
ulates (PM10).

AQIit Air Quality Index ranging from 0 to 500. This index has been
measured since 2013 and it accounts for S O2, NO2, PM10,
PM2.5 and O3.

(b) Subway Density Measures, monitoring station (i) × daily (t)

Densityit Subway network density centered at monitoring station i,
which is defined as the total number of stations at time
t weighted by the inverse of squared distances from mon-
itoring station i to each subway stations in Beijing.

˜Densityit Subway network density centered at monitoring station i,
which is defined as the total number of stations at time t
weighted by both the daily ridership of each subway line
and the inverse of squared distances from monitoring sta-
tion i to each subway stations in Beijing.

Treatedit Treated group or treated air pollution monitoring station. 1
if it is treated, 0 otherwise. Air pollution monitoring
station i is treated when there is at least one new sub-
way station ( j) opened within 2km distance and we keep
it as treated for 60 days after the opening, defined as
1(Postt) × 1(Distancei j ≤ 2km, j ∈ Nτ).

Nit × Treatedit Heterogeneity of treated group or treated air pollution mon-
itoring station, which counts total number of new sub-
way stations opened within 2km distance and kept as
treated for 60 days after the opening, defined as Nit =

1(Postt) ×
∑

j∈Nt 1(Distancei j ≤ 2km).

(c) Weather Variables, daily (t)

Air temperature (oC) Average daily temperature.
Relative humidity
(%)

Average daily relative humidity.

Precipitation (mm) Total daily rainfall or snowmelt.
Wind speed (km/h) Average daily wind speed.
Wind direction (cat.) The vector summation of hourly wind direction with its speed

as the the length of each vector.
Rain/Snow/Storm/FogDummy: 1 if there was rain/snow/storm/fog , 0 otherwise.
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Table 1.2: Conversion from Pollutants Concentration to API and AQI

Air Pollution Index (API) Pollutants

value level PM10 PM2.5 O3 CO NO2 SO2
(µg/m3) (µg/m3) (µg/m3) (mg/m3) (µg/m3) (µg/m3)

0-50 Excellent 0-50 0-80 0-50
50-100 Good 50-150 80-120 50-150
100-200 Slightly polluted 150-350 120-280 150-800
200-300 Moderately polluted 350-420 280-565 800-1600
300-400 Severely polluted 420-500 565-750 1600-2100
400-500 Severely polluted 500-600 750-940 2100-2620

Air Quality Index (AQI) Pollutants

value level PM10 PM2.5 O3 CO NO2 SO2
(µg/m3) (µg/m3) (µg/m3) (mg/m3) (µg/m3) (µg/m3)

0-50 Good 0-50 0-35 0-100 0-2 0-40 0-50
50-100 Moderate 50-150 35-75 100-160 2-4 40-80 50-150
101-150 Unhealthy for SG 150-250 75-115 160-215 4-14 80-180 150-475
151-200 Unhealthy 250-350 115-150 215-265 14-24 180-280 475-800
201-300 Very unhealthy 350-420 150-250 265-800 24-36 280-565 800-1600

>300 Hazardous >420 >250 >800 >36 >565 2100-2620

Note: During 2008-2012, the Chinese government adopts the Air Pollution Index (API) which
takes into account three pollutants. Starting from 2013, the Chinese government replaces API
with Air Quality Index (AQI) which considers PM2.5 separately from PM10 as a major pollu-
tant, and also Ozone.
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Table 1.3: Beijing Subway Expansion and Network Density

Opening Subway N. of Stations Standardized Density

date line length new total non-weighted ridership-weighted
(τ) (`) (km) (Nτ) (Nτ) (Densityτ/σ) ( ˜Densityτ/σ̃)

Before 2008 1, 2, 5, 13, BT 140 93 93 0.27 0.27
July 19, 2008 8, 10, AE 57 30 123 0.39 0.44
Sep 28, 2009 4 28 24 147 0.45 0.52
Dec 30, 2010 15, DX, CP, FS, YZ 108 49 196 0.57 0.54
Dec 31, 2011 9 36 19 215 0.62 0.56
Dec 30, 2012 6 70 46 261 0.80 0.75
May 5, 2013 14 (West) 14 9 270 0.82 0.76
Dec 28, 2013 8 (Extension) 7 7 277 0.84 0.77
Dec 28, 2014 7 62 42 319 0.93 0.81
Dec 26, 2015 14 (East) 11 15 334 0.94 0.82
Dec 31, 2016 16 20 11 345 0.96 0.82

Note: The names of suburban subway lines are shown as abbreviation: Airport Express (AE),
Batong (BT), Daxing (DX), Changping (CP), Fangshan (FS) and Yizhuang (YZ). There were 93
subway stations operating before our data period. Network density centered at an air pollu-
tion monitoring station is defined as the weighted sum of subway weighted by the squared
inverse distance from the monitoring station to each subway station operating in the network
as of the opening date. It is standardized by dividing its standard deviation. The ridership-
weighted density is the reweight of the density by ridership of subway line. Standard devia-
tions of the both densities are σ = 3.58 and σ̃ = 29.77 respectively. All density measures are
averaged across monitoring stations for each opening date.
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Table 1.4: Summary Statistics

Main variables Mean S.D. Min Max N

(a) Air Pollution

APIit 82.84 48.56 5.00 500.00 49103
AQIit 124.64 80.02 8.00 500.00 54939

(b) Subway Density

Densityit (non-weighted) 2.48 3.58 0.01 16.26 297
˜Densityit (ridership-weighted) 0.19 0.30 0.00 1.34 297

Nit × Treatedit 0.16 0.69 0.00 6.00 297

(c) Weather variables

Air temperature (oC) 12.97 11.39 -15.04 33.05 3533
Wind speed (m/s) 1.97 1.58 0.02 10.21 3533
Precipitation (mm) 1.97 8.82 0.00 262.64 3339
Relative humidity (%) 54.64 20.20 6.97 97.83 3533
Wind direction (cat.) 7.95 4.94 1.00 16.00 3533

Note: The air quality panel summarizes the daily Air Pollution Index from 2008-2012 and
Air Quality Index since 2013 from 27 air quality monitors in Beijing. The density panel sum-
marizes the daily subway density measures at monitoring station level. The weather panel
summarizes the daily, city-level weather conditions.

48



Table 1.5: Changes in Air Pollution Before and After Openings

ln(Air Pollution)

Before After Diff. Diff-in-Diff.

Control 4.428 4.437 0.009
(0.008) (0.008) (0.011)

Treated 4.483 4.535 0.052 0.043
(0.018) (0.022) (0.028) (0.031)

Residualized ln(Air Pollution)

Before After Diff. Diff-in-Diff.

Control 0.005 −0.004 −0.009
(0.005) (0.005) (0.007)

Treated 0.022 −0.033 −0.055 −0.046
(0.014) (0.015) (0.021) (0.022)

Note: The top panel shows the sample mean of ln(Air Pollution) 60 days before and after each
subway line opens. The bottom panel shows the sample means of residualized ln(Air Pollution)
after after controlling for weather conditions, monitor fixed effects, time fixed effects: year,
season, day of week and holiday, and monitor-specific time trends. The treatment group is
defined as the monitoring stations within 2km of a new subway line while the control group
is defined as the monitoring stations more than 20km away from the new subway line. The
standard errors are in parentheses.
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Table 1.6: Parellel trend test

Dependent variable: ln(Air Pollutionit)

(1) (2) (3) (4)

1(Distancei j ≤ 2km) × 1(τ − 60 ≤ t < τ − 50) −0.080 −0.099 −0.067 −0.076
(0.061) (0.061) (0.062) (0.083)

1(Distancei j ≤ 2km) × 1(τ − 50 ≤ t < τ − 40) −0.147*** −0.158*** −0.147*** −0.157***
(0.043) (0.044) (0.045) (0.056)

1(Distancei j ≤ 2km) × 1(τ − 40 ≤ t < τ − 30) −0.010 −0.022 −0.022 −0.034
(0.049) (0.051) (0.052) (0.058)

1(Distancei j ≤ 2km) × 1(τ − 30 ≤ t < τ − 20) −0.065 −0.076 −0.088* −0.095
(0.050) (0.050) (0.052) (0.060)

1(Distancei j ≤ 2km) × 1(τ − 20 ≤ t < τ − 10) −0.029 −0.044 −0.063 −0.064
(0.045) (0.047) (0.047) (0.054)

1(Distancei j ≤ 2km) × 1(τ < t ≤ τ + 10) −0.090* −0.102** −0.062 −0.054
(0.048) (0.049) (0.045) (0.056)

1(Distancei j ≤ 2km) × 1(τ + 10 < t ≤ τ + 20) 0.016 0.000 0.041 0.034
(0.053) (0.053) (0.051) (0.061)

1(Distancei j ≤ 2km) × 1(τ + 20 < t ≤ τ + 30) −0.178*** −0.190*** −0.178*** −0.176***
(0.052) (0.052) (0.052) (0.062)

1(Distancei j ≤ 2km) × 1(τ + 30 < t ≤ τ + 40) −0.256*** −0.267*** −0.277*** −0.274***
(0.053) (0.053) (0.054) (0.063)

1(Distancei j ≤ 2km) × 1(τ + 40 < t ≤ τ + 50) −0.172*** −0.185*** −0.225*** −0.227***
(0.057) (0.057) (0.056) (0.064)

1(Distancei j ≤ 2km) × 1(τ + 50 < t ≤ τ + 60) −0.044 −0.054 −0.112** −0.116*
(0.051) (0.051) (0.053) (0.063)

Time Window (days) τ±60 τ±60 τ±60 τ±60
Weather Controls Y Y Y Y
Time FE Y Y Y Y
Monitor FE Y Y Y Y
Monitor FE × Driving N Y Y Y
Monitor FE × Trend N N Y Y
Staggered Rollout N N N Y

N 17231 17231 17231 3314
R2 0.53 0.53 0.54 0.56

Note: Each column reports results from an OLS regression where the dependent variable is
ln(Air Pollution) and the key explanatory variables are the treatment dummies (the interaction
of each 10 days within the 60-day time window around the opening dates and there is a new
subway station within 2km from the monitoring station). The control group is the monitors
outside 20km. The unit of observation is monitor-day. Column (4) relies on the staggered
rollout. The weather controls include daily variables: temperature (C0), relative humidity (%),
precipitation (mm), wind speed (km/h), sets of dummies for wind direction and the interac-
tions with the wind speed , dummies for rain, snow, storm, fog. The time fixed effects include
year, season, day-of-week, holiday-of-sample dummies. Parentheses contain standard errors
clustered at the day level. Significance: *p < 0.1, **p < 0.05, and ***p < 0.01.
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Table 1.7: OLS: The Impact of Subway Network Density on Air Pollution

Dependent variable: ln(Air Pollutionit)

(1) (2) (3) (4)

Densityit/σ 0.049*** −0.006*** −0.007*** −0.015***
(0.001) (0.002) (0.002) (0.003)

Temperature (0C) 0.006*** 0.006*** 0.006*** 0.006***
(0.001) (0.001) (0.001) (0.001)

Relative humidity (%) 0.009*** 0.009*** 0.009*** 0.009***
(0.001) (0.001) (0.001) (0.001)

Rainfall/snow (mm) −0.002* −0.002* −0.002* −0.002*
(0.001) (0.001) (0.001) (0.001)

Wind speed (m/s) −0.071** −0.071** −0.072** −0.071**
(0.031) (0.031) (0.031) (0.031)

Constant 4.027*** 4.085*** 4.086*** 4.057***
(0.073) (0.074) (0.079) (0.080)

Monitor FE N Y Y Y
Monitor FE × Driving N N Y Y
Monitor FE × Trend N N N Y

N 86758 86758 86758 86758

Note: Each column reports results from an OLS regression where the dependent variable is
ln(Air Pollution) and the key explanatory variable is the standardized subway network density
Densityit/σ. Subway network density in a given location is defined as the weighted sum of
subway stations weighted by the squared inverse distance from the location to each subway
station in the network. The unit of observation is monitor-day. The weather controls include
dummies for daily rain, snow, storm, fog. All columns have controlled for weather, wind
directions, and a set of time fixed effects (Year, Season, Day of Week and holidays). Parentheses
contain standard errors clustered at the day level. Significance: *p < 0.1, **p < 0.05, and
***p < 0.01.
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Table 1.8: IV: The Impact of Subway Network Density on Air Pollution

(a) Standardized non-weighted density

(1) (2) (3)
Dependent variable: ln(Air Pollution) OLS IV IV

Second Stage

Densityit/σ −0.015*** −0.020*** −0.028***
(0.003) (0.004) (0.009)

Random Opening Dates N Y

First Stage

Densityit/σ (2003 Planning) 0.789*** 0.651***
(0.004) (0.012)

F-stat 48808 3160

(b) Standardized ridership-weighted density

(4) (5) (6)
Dependent variable: ln(Air Pollution) OLS IV IV

Second Stage

˜Densityit/σ (ridership weighted) −0.026*** −0.024*** −0.035***
(0.007) (0.005) (0.011)

Random Opening Dates N Y

First Stage

Densityit/σ (2003 Planning) 0.655*** 0.520***
(0.004) (0.012)

F-stat 57069 2605

Note: The last two column report results from IV regression where the dependent variable is
ln(Air Pollution) and the key explanatory variable for Panel (a) is the standardized subway net-
work density, Densityit/σ. Panel (b) shows results with the key explanatory variable as density
measure using line ridership as extra weights for the subway stations, ˜Densityit/σ. Column
(2), (3), (5) & (6) report the result from IV regressions with different specifications. The instru-
ment is the subway network density based on the 2003 subway plan map. Column (2) and (5)
use the same opening dates for actual subway system and the IV. Column (3) and (6) assign
random opening dates for lines in 2003 plan as the 3 months before or after the real open-
ing dates. The unit of observation is monitor-day. All columns control for the daily weather
variables: temperature (C0), relative humidity (%), precipitation (mm), wind speed (km/h),
sets of dummies for wind direction and the interactions with the wind speed , dummies for
rain, snow, storm, fog; the time fixed effects: day-of-week, quarter-of-year, year, holiday-of-
sample dummies; spatial fixed effects: dummies for air pollution monitoring stations and the
interactions with the time trend and driving restriction policy dummies. Parentheses contain
standard errors clustered at the day level. Significance: *p < 0.1, **p < 0.05, and ***p < 0.01.
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Table 1.9: Marginal Impact of Subway Expansion on Air Pollution

Opening Cumulative Marginal Marginal Reduction
date Standardized Density Increase in Density in air pollution (%)

non- ridership- non- ridership- non- ridership-
weighted weighted weighted weighted weighted weighted

(1) (2) (3) (4) (5) (6)

Before 2008 0.230 0.201 - - - -
July 19, 2008 0.307 0.300 0.077 0.098 0.154 0.236
Sep 28, 2009 0.365 0.366 0.057 0.066 0.115 0.157
Dec 30, 2010 0.432 0.380 0.068 0.015 0.135 0.035
Dec 31, 2011 0.459 0.391 0.027 0.010 0.054 0.025
Dec 30, 2012 0.577 0.515 0.118 0.125 0.237 0.299
May 5, 2013 0.595 0.532 0.017 0.016 0.035 0.039
Dec 28, 2013 0.604 0.535 0.010 0.004 0.020 0.009
Dec 28, 2014 0.697 0.575 0.093 0.040 0.185 0.095
Dec 26, 2015 0.726 0.587 0.029 0.012 0.058 0.029
Dec 31, 2016 0.735 0.589 0.009 0.002 0.018 0.005

Total 0.505 0.387 1.009 0.930

Note: Network density centered at a TAZ is defined as the weighted sum of subway weighted
by the squared inverse distance from the centroid of the TAZ to each subway station operating
in the network as of the opening date. It is standardized by dividing its standard deviation.
The ridership-weighted density is the reweight of the density by ridership of subway line.
Standard deviations of the both densities are σ = 16.38 and σ̃ = 19.62 respectively. All density
measures are averaged over TAZs for each opening date.

53



Table 1.10: Difference-in-Difference Estimates with a Fixed Time Window

Dependent variable: ln(Air Pollution)

Without Monitor FE DID

(1) (2) (3) (4) (5) (6)

Treatedit × 1(Postt) 0.105*** 0.082*** 0.099*** −0.073*** −0.075*** −0.077***
(0.026) (0.020) (0.013) (0.019) (0.019) (0.018)

Temperature (0C) −0.011*** 0.010*** 0.010*** 0.010*** 0.012***
(0.002) (0.003) (0.003) (0.003) (0.003)

Relative humididy (%) 0.008*** 0.015*** 0.015*** 0.015*** 0.015***
(0.001) (0.001) (0.001) (0.001) (0.001)

Precipitation (mm) −0.007* −0.006* −0.006* −0.007* −0.006
(0.004) (0.004) (0.004) (0.004) (0.004)

Wind speed (m/s) −0.078* −0.105*** −0.104*** −0.106*** −0.103***
(0.042) (0.034) (0.034) (0.034) (0.034)

Constant 4.434*** 4.144*** 3.727*** 3.846*** 3.854*** 3.765***
(0.018) (0.104) (0.140) (0.141) (0.153) (0.153)

Time Window (days) τ±60 τ±60 τ±60 τ±60 τ±60 τ±60
Weather controls N Y Y Y Y Y
Wind Directions N Y Y Y Y Y
Wind Directions × Speed N Y Y Y Y Y
Year FE N N Y Y Y Y
Season FE N N Y Y Y Y
Day of Week FE N N Y Y Y Y
Monitor FE N N N Y Y Y
Monitor FE × Driving N N N N Y Y
Monitor FE × Trend N N N N N Y

N 18214 17231 17231 17231 17231 17231
R2 0.00 0.29 0.45 0.52 0.53 0.54

Note: Each column reports results from an OLS regression where the dependent variable
is ln(Air Pollution) and the key explanatory variable the interaction of treatment and post-
opening. Columns (4) to (6) show the DID estimates with different sets of controls. The treat-
ment group is defined as the monitoring stations within 2km of a new subway line while the
control group is defined as the monitoring stations more than 20km away from the new sub-
way line. The unit of observation is monitor-day. The weather controls include dummies for
rain, snow, storm, fog. Parentheses contain standard errors clustered at the day level. Signifi-
cance: *p < 0.1, **p < 0.05, and ***p < 0.01.
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Table 1.11: Difference-in-Difference Estimates with Varying Time Windows

Dependent variable: ln AQI

(1) (2) (3) (4) (5) (6)

Treatedit × 1(Postt) −0.046 −0.031 −0.029 −0.052*** −0.057*** −0.052***
(0.038) (0.025) (0.020) (0.018) (0.016) (0.015)

Time Window (days) τ±10 τ±20 τ±30 τ±40 τ±50 τ±60

(7) (8) (9) (10) (11) (12)

−0.066*** −0.062*** −0.075*** −0.047*** −0.022 −0.015
(0.014) (0.013) (0.013) (0.016) (0.016) (0.016)

Time Window (days) τ±70 τ±80 τ±90 τ±100 τ±110 τ±120

(13) (14) (15) (16) (17) (18)

−0.008 −0.007 −0.009 −0.009 −0.019 −0.023
(0.016) (0.015) (0.015) (0.015) (0.015) (0.015)

Time Window (days) τ±130 τ±140 τ±150 τ±160 τ±170 τ±180

Note: Each column reports results from an OLS regression using different time windows
((1) to (18): Opent = τ±10, τ±20, . . ., τ±60, . . ., τ±180-day) where the dependent variable is
ln(Air Pollution) and the key explanatory variable is the treatment indicator (the interaction of
the time window dummy and the treated group indicator), Treatedit = 1(Postt)× 1(Distancei j ≤

2km). The May 5th, 2013 opening is dropped from the sample to avoid overlapping events and
to extend the time window. The treatment group is defined as the monitoring stations within
2km of a new subway line while the control group is defined as the monitoring stations more
than 20km away from the new subway line. The unit of observation is monitor-day. All
columns control for the daily weather variables: temperature (C0), relative humidity (%), pre-
cipitation (mm), wind speed (km/h), sets of dummies for wind direction and the interactions
with the wind speed , dummies for rain, snow, storm, fog; the time fixed effects: day-of-week,
quarter-of-year, year, holiday-of-sample dummies; spatial fixed effects: dummies for air pollu-
tion monitoring stations and the interactions with the time trend and driving restriction policy
dummies. Parentheses contain standard errors clustered at date level. Significance: *p < 0.1,
**p < 0.05, and ***p < 0.01.
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Table 1.12: Difference-in-Difference Estimates with Continuous Time Measure-
ment

Dependent variable: ln AQI

(1) (2) (3) (4)

Treatedit × 1(Postt) 0.075** 0.151*** −0.001 0.110***
(0.036) (0.056) (0.026) (0.041)

Treatedit × 1(Postt) −0.004*** −0.012*** −0.000 −0.006***
×Daysit (0.001) (0.004) (0.000) (0.002)

Treatedit × 1(Postt) 0.013* 0.005***
×Days2

it/100 (0.007) (0.001)

Time Window (days) τ±60 τ±60 τ±120 τ±120
N 15467 15467 30933 30933
R2 0.56 0.56 0.47 0.47

Note: Each column reports results from an OLS regression where the dependent variable is
ln(Air Pollution). The treatment group is defined as the monitoring stations within 2km of a
new subway line while the control group is defined as the monitoring stations more than
20km away from the new subway line. The unit of observation is station-day. All columns
control for the daily weather variables: temperature (C0), relative humidity (%), precipitation
(mm), wind speed (km/h), sets of dummies for wind direction and the interactions with the
wind speed , dummies for rain, snow, storm, fog; the time fixed effects: day-of-week, quarter-
of-year, year, holiday-of-sample dummies; spatial fixed effects: dummies for air pollution
monitoring stations and the interactions with the time trend and driving restriction policy
dummies. Parentheses contain standard errors clustered at date level. Significance: *p < 0.1,
**p < 0.05, and ***p < 0.01.
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Table 1.13: Difference-in-Differences Estimates with Heterogenous Effect

Dependent variable: ln(Air Pollution)

(1) (2) (3) (4)

Nit × Treatedit × 1(Postt) −0.020*** −0.024*** −0.032*** −0.041**
(0.007) (0.007) (0.007) (0.018)

Temperature (0C) 0.010*** 0.010*** 0.012*** 0.009***
(0.003) (0.003) (0.003) (0.003)

Relative humididy (%) 0.015*** 0.015*** 0.015*** 0.017***
(0.001) (0.001) (0.001) (0.001)

Precipitation (mm) −0.006* −0.007* −0.006 −0.009**
(0.004) (0.004) (0.004) (0.004)

Wind speed (m/s) −0.104*** −0.106*** −0.103*** −0.130***
(0.034) (0.034) (0.034) (0.038)

Constant 3.815*** 3.826*** 3.738*** 3.258***
(0.140) (0.152) (0.152) (0.271)

Time Window (days) τ±60 τ±60 τ±60 τ±60
Weather Controls Y Y Y Y
Wind Directions Y Y Y Y
Wind Directions × Speed Y Y Y Y
Year FE Y Y Y Y
Season FE Y Y Y Y
Day of Week FE Y Y Y Y
Monitor FE Y Y Y Y
Monitor FE × Driving N Y Y Y
Monitor FE × Trend N N Y Y
Staggered Rollout N N N Y

N 17231 17231 17231 3314
R2 0.52 0.53 0.54 0.55

Note: Each column reports results from an OLS regression where the dependent variable is
ln(Air Pollution) and the key explanatory variable is the interaction of treatment, post-opening,
and number of new subway stations within 2km of each monitor. The control group is defined
as the monitoring stations more than 20km away from the new subway line. The unit of
observation is station-day. Column (4) relies on the staggered rollout. The weather controls
include dummies for rain, snow, storm, fog. Parentheses contain standard errors clustered at
date level. Significance: *p < 0.1, **p < 0.05, and ***p < 0.01.
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Table 1.14: Cost-Benefit Analysis of Subway Expansion

Opening Total Cost Health Benefit Congestion Benefit

Date Billion $ Billion $ % of Cost Billion $ % of Cost

lower upper lower upper lower upper lower upper
VSL=2.3 VSL=8.7 VSL=2.3 VSL=8.7 VOT=0.5 VOT=1.0 VOT=0.5 VOT=1.0

(1) (2) (3) (4) (5) (6) (7) (8) (9)

(a) 10 Years of Operation

Jul 19, 2008 5.69 0.08 0.26 1.45 4.58 2.69 5.37 47.28 94.46
Sep 28, 2009 3.61 0.06 0.20 1.79 5.65 2.69 5.37 74.52 148.66
Sep 30, 2010 7.05 0.08 0.25 1.14 3.61 2.69 5.37 38.16 76.23
Sep 31, 2011 5.19 0.03 0.10 0.60 1.90 2.69 5.37 51.83 103.56
Sep 30, 2012 10.37 0.13 0.42 1.28 4.04 2.69 5.37 25.94 51.80
May 5, 2013 3.15 0.03 0.08 0.84 2.66 2.69 5.37 85.40 170.51
Sep 28, 2013 1.96 0.02 0.05 0.77 2.43 2.69 5.37 137.24 274.73
Sep 28, 2014 11.58 0.15 0.47 1.28 4.04 2.69 5.37 23.23 46.39
Sep 26, 2015 2.94 0.04 0.14 1.49 4.70 2.69 5.37 91.50 182.43
Sep 31, 2016 4.81 0.01 0.04 0.26 0.81 2.69 5.37 55.93 111.73

Total 56.34 0.64 2.01 1.13 3.57 26.90 53.70 63.10 95.34

(b) 20 Years of Operation

Jul 19, 2008 6.21 0.13 0.40 2.05 6.47 4.15 8.29 66.83 133.50
Sep 28, 2009 4.14 0.10 0.32 2.41 7.62 4.15 8.29 100.24 200.39
Dec 30, 2010 7.57 0.12 0.39 1.64 5.18 4.15 8.29 54.82 109.51
Dec 31, 2011 5.71 0.05 0.15 0.84 2.67 4.15 8.29 72.68 145.18
Dec 30, 2012 10.89 0.20 0.65 1.88 5.94 4.15 8.29 38.11 76.10
May 5, 2013 3.67 0.04 0.13 1.11 3.52 4.15 8.29 113.08 225.65
Dec 28, 2013 2.48 0.02 0.07 0.94 2.96 4.15 8.29 167.34 334.42
Dec 28, 2014 12.10 0.23 0.72 1.89 5.96 4.15 8.29 34.30 68.51
Dec 26, 2015 3.47 0.07 0.21 1.95 6.16 4.15 8.29 119.60 239.04
Dec 31, 2016 5.33 0.02 0.06 0.36 1.13 4.15 8.29 77.86 155.51

Total 71.22 0.98 3.11 1.38 4.36 41.50 82.90 84.49 116.41

Note: All the monetary terms are in 2015 dollars and discounted by an annual discount rate of
5%. The total cost includes both the construction cost and the operating cost. The construction
cost accounts for 82.9% of the total cost during a 10-year period for the lines in the sample
period and 65.6% for the period of 20 years. The health benefit includes the saving from
mortality and morbidity costs. The lower bound health benefit calculations are based on the
Value of a Statistical Life (VSL) of $2.3 million (in 2015) as in Ashenfelter and Greenstone
(2004). The upper bound health benefits are based on the central estimate of $8.7 million
as recommended by U.S. EPA. The savings from congestion relief is calculated based on the
reduced time delay by subway opening using estimates from Yang et al. (2018). The lower
bound of congestion cost saving assumes the value of time (VOT) to be 50% of the wage, and
the upper bound assumes 100% of wage as the VOT.
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CHAPTER 2

TRANSPORTATION AND THE ENVIRONMENT IN DEVELOPING

COUNTRIES

2.1 Introduction

Air pollution and climate change represent serious threats to human health.

In 2016, air pollution was responsible for approximately 7 million deaths

from various life-shortening diseases, including heart disease, lung cancer,

and stroke, according to the World Health Organization (WHO). 1 The public

health and economics literatures have established that air pollution increases

mortality, especially among the most vulnerable groups, including infants and

older adults, and that it leads to large morbidity costs. 2 Climate change is

expected to cause far-reaching and sweeping economic and societal changes

that are likely to affect agriculture, biodiversity, economic growth, geopolitics,

human health, and world peace. 3

Many developing countries, especially rapidly growing countries, are ex-

periencing pressing environmental challenges as a result of the dramatic in-

crease in fossil fuel consumption to meet the need for consumption and pro-

duction, limited access to clean technologies, and the lack of stringent and

1WHO Global Ambient Air Quality Database: https://www.who.int/airpollution/data/cities/en/.
2Studies on the mortality impact of air pollution include Chay and Greenstone (2003), Cur-

rie and Neidell (2005), Currie and Walker (2011), Knittel et al. (2016), and Deryugina et al.
(2019). Studies on morbidity costs include citetMoretti2011, Deschenes et al. (2017), Barwick
et al. (2019), and Williams and Phaneuf (2019).

3Recent papers on the impacts of climate change include Nordhaus (2006) and Dell et al.
(2012) on economic growth; Mendelsohn et al. (1994), Schlenker et al. (2005), DeschÃłnes and
Greenstone (2007), and Burke and Emerick (2016) on agriculture; DeschÃłnes and Moretti
(2009), DeschÃłnes and Greenstone (2011), and Barreca et al. (2016) on mortality; and Miguel
et al. (2004),Hsiang et al. (2011), and Jia (2014) on social conflict.

59



well-enforced environmental regulations. The populations in these countries

are particularly vulnerable to adverse environmental conditions because of the

lack of effective government interventions and the costs of and limits on op-

tions available to individuals to prevent or mitigate the effects of pollution.

Figure 2.1a depicts the level of fine particulate matter (PM2.5) across

the globe, illustrating that concentrations tend to be higher in low- and

middle-income countries. The United States and Japan were historically the

worldâĂŹs major contributors of carbon dioxide (CO2) emissions. Figure 2.1b

shows that over the past two decades, emissions from developing countries

such as China and India surged to catch up. In 2006, China surpassed the

United States to become the worldâĂŹs largest emitter of CO2.

Rapid urbanization in developing countries presents both challenges and

opportunities in addressing environmental challenges (Kahn 2006). The

worldâĂŹs urban population increased from less than 1.4 billion (or 36%) in

1960 to nearly 4.2 billion (or 55%) in 2018. By 2050, over two-thirds of the

worldâĂŹs population are projected to live in urban areas, and the rural to

urban migration during this process will mostly occur in developing coun-

tries. On the one hand, the high concentration of people and activities in cities

could lead to severe traffic congestion and exacerbate air pollution, especially

with the rise in vehicle ownership in emerging economies. On the other hand,

cities have the potential to organize economic activities spatially to reduce en-

ergy consumption and environmental impacts and to better take advantage of

the economies of scale in public transit. Understand the role of transportation

in addressing urban environmental challenges has important implications for

policy design to foster the emergence of green cities.
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The transportation sector, which relies heavily on fossil fuels, is a major

source of air pollution and greenhouse gas (GHG) emissions. The WHO es-

timates that road transport contributes 30% of particulate emissions in Euro-

pean cities and up to 50% in member countries of the Organisation for Eco-

nomic Co-operation and Development (OECD). (Carter 2019) According to

the US Environmental Protection Agency (EPA), the transportation sector is

responsible for about 10% of PM2.5, more than 55% of nitrogen oxide (NOx),

and about 10% of volatile organic compound (VOC) emissions in the United

States.

Because of the rapid rise in private vehicle ownership and travel demand,

as well as the relatively low fuel efficiency in developing countries, the trans-

portation sector plays an increasingly significant role in local air quality. Figure

2.2 shows the increase in new passenger vehicle registrations in selected coun-

tries from 2005 to 2017. Among developed countries, new vehicle sales were

stable or declined slightly during this period. By contrast, China and India ex-

perienced dramatic increases in vehicle ownership, with total new passenger

vehicles in China increasing fivefold. Although per capita vehicle ownership

is still relatively low in developing countries, and total gasoline consumption

is still far behind that in the United States (Figure 2.3), the upward trend in

these countries is substantial.

As household income rises in developing countries, the need for travel and

the desire for automobile ownership grow, and willingness to pay for a cleaner

environment increases as well. In order to strike a balance between these com-

peting incentives, policy makers need to recognize that (a) automobile usage

generates several types of externalities (including pollution, congestion, noise,
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accidents, and road damage) that need to be addressed by policy interven-

tions(Parry et al. 2007), and (b) automobiles and transportation infrastructure

are durable goods. Short-term decisions on vehicle purchase and transporta-

tion network design can have far-reaching implications for emissions trajec-

tory for decades to come. Government policies need to be forward looking

and take long-run household behavioral responses into account.

A suite of policy tools has been used to reduce urban air pollution from

automobiles. These tools include demand- and supply-side policies that aim

to encourage travel mode shifts, reduce emission intensity levels via fuel-

economy and emission standards, and promote alternative fuels or zero-

emission technologies. These policies can also be distinguished as command-

and-control or market-based instruments. This article reviews recent research

on each of these policy tools, with a focus on their application in develop-

ing countries. It discusses the cost-effectiveness of each policy in addressing

the pollution challenge, giving special attention to the empirical challenges in

identifying the causal impacts of policies. 4

2.2 Policies to Promote Modal Shifts

2.2.1 Expansion of Public Transit

Faced with increasing air pollution and traffic congestion, local governments

use the expansion of road and public transit networks as the first line of de-

4Because the choice of travel modes is also tied to housing and job location choices, smart
urban planning can play an important role in curbing car-related emissions by reducing travel
distances or eliminating the need to travel altogether. This review does not examine the
cost-effectiveness of urban policies. Section 5 briefly discusses actions that can help improve
system-wide efficiency, such as ridesharing and autonomous driving.
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fense. In Beijing, the government invested more than $67 billion in transporta-

tion infrastructure between 2007 and 2015, greatly expanding the public transit

network by adding 14 new subway lines and more than 200 bus routes (3,300

new buses).5 Similar expansions are happening in India, Mexico, and many

other emerging economies. 6 Although it requires massive funding, this type

of investment can also stimulate economic activities and facilitate trade (Red-

ding and Turner 2015).

With the goal of reducing traffic-related air pollution and traffic conges-

tion, supply-side policies such as expanding the public transit network can

create two countervailing forces on air quality. Improving the public transit

network can divert commuters from driving private vehicles to public trans-

port (Mohring 1972). This traffic diversion effect (the Mohring effect) could po-

tentially reduce traffic congestion and vehicle emissions. However, improving

transportation infrastructure (by increasing road capacity or enhancing public

transit) can reduce the cost of travel and driving, resulting in an increase in

travel demand and driving (Vickrey 1969) and leading to more pollution. Du-

ranton and Turner (2011) find that traffic volume increased as a result of the

expansion of highway capacity in US cities between 1983 and 2003. Although

the expansion of road capacity can initially reduce traffic congestion and air

pollution, it increases travel demand in the long run, eroding the initial im-

provement in traffic conditions.

Given the high cost of transportation infrastructure and potential counter-

vailing forces at play, empirically estimating the impact of supply-side policies

5Beijing Transport Annual Report (Beijing Transport Institute).
6India Road Investment. (India Brand Equity Foundation); Mexico Transport Infrastructure

Development. (Oxford Business Group)
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on air quality is important. The central challenge lies in finding exogenous

variation in public transit infrastructure, which could be confounded with

other unobserved factors. For example, urban planners may situate public

transit (such as the subway) in areas where population and economic activ-

ities are projected to grow. In this case, air quality in those areas may have

deteriorated in the counterfactual scenario of no expansion of public transit.

The issue of endogenous location could bias the true impact of subway expan-

sion in the empirical analysis.

To tackle the identification challenge, researchers have used the regression

discontinuity (RD)-in-time, difference-in-differences (DID), and event study

(ES) approaches, which rely on different identification assumptions. The key

assumption behind the RD-in-time and ES approaches is that no unobserv-

ables exhibit discrete changes at the time of treatment (e.g., subway opening),

so as not to confound the impact of the treatment. 7 The key identification

assumption behind DID is the parallel trend assumption, i.e., unobservables

do not affect the treatment and control groups differently in the absence of the

treatment.

Chen and Whalley (2012) estimate the effects of opening one subway line

in Taipei on air pollution based on the RD-in-time framework. They find

that opening the subway line reduced carbon monoxide (CO) emissions by

5âĂŞ15%. Employing an approach similar to that used by Chen and Whalley

7The RD-in-time method uses time as the running variable and assumes that the impact
of unobservables on air quality can be captured by flexible functions of the time trend. The
identification relies mainly on time-series variation, different from the traditional RD in cross-
sectional settings. The RD-in-time, in essence, is the same as the event study method which
explicitly uses pre- and post- event data for identification. Hausman and Rapson (2018) dis-
cuss the pitfalls and recommendations for addressing them when applying the RD-in-time
method.
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(2012), Goel and Gupta (2017) use the RD-in-time method to examine the im-

pact of the Delhi Metro expansion on air quality. They find a 34% localized

reduction in CO in the short run. Using an ES design, Gendron-Carrier et al.

(2018) examine 43 cities across the world that opened new subway systems

between 2000 and 2014. They find that particulate concentrations dropped by

4% on average following the opening of a new subway system. Zheng et al.

(2019) use the DID method to estimate the impacts of the opening of the first

subway line in Changsha, China. They find an 18% reduction in CO in areas

close to subway stations.

A strategy to deal with the endogenous location concern of the public tran-

sit is the instrumental variable (IV) method. The instrument should provide

variation that affects location choices but is exogenous to contemporaneous

shocks to air pollution and other outcome variables. Baum-Snow (2007) uses

planned routes (many of which were not built) as the IV for US highways to

examine the trend of suburbanization, and Faber (2014) constructs a hypo-

thetical highway system in China based on historical planning maps using a

minimum spanning tree (MST) approach to examine trade integration and in-

dustrialization. Li et al. (2019) follow a similar strategy to examine the impact

of BeijingâĂŹs subway system, using the original planning routes as the IV.

An additional empirical challenge in this literature is accounting for the

spillover effect of the transportation network. Local changes in road or sub-

way networks could have a system-wide impact, making it difficult to find

a valid control group in the DID framework. Li et al. (2019) employ a con-

tinuous measure of subway network density as the key regressor to estimate

the citywide effect. The network density varies across space within a city and
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over time for a given location as a result of the expansion of the subway net-

work. A new subway line would more sharply increase network density in

adjacent areas than in areas that are farther away. Using the predetermined

planning map as an IV, the authors estimate the effect of subway expansion on

air pollution for the rapid build-out of 14 subway lines in Beijing from 2008

to 2016. They contrast the estimates based on this approach with those from

a distance-based DID approach. The DID approach focuses on the local effect

and provides a larger estimate; the network density approach allows for the

spillover effect across the whole network and relies on the assumption that the

impact diminishes over distance.

Several other studies examine the impact of expanding bus and railway

services on air quality or traffic congestion. Anas and Timilsina (2009) use a

simulation model to study the lock-in effects of transportation infrastructure in

Beijing. They find that increasing bus services in the city center would reduce

overall CO2 emissions and that expanding suburban roads would increase

them. Lalive et al. (2013) and Bel and Holst (2018) show that increasing rail

services in Germany and expanding bus rapid transit (BRT) services in Mex-

ico City reduced emissions of pollutants such as CO, NOx, and PM2.5. Three

studiesâĂŤby Silva et al. (2012) in Brazil, Anderson (2014) in Los Angeles, and

Bauernschuster et al. (2017) in GermanyâĂŤtake advantage of exogenous vari-

ations in public transit supply created by strikes of public transit workers to

show that decreased public transit use led to more air pollution and traffic

congestion.

Although improving transportation infrastructure is necessary to address

traffic congestion and promote economic activities, it is unlikely to be a cost-
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effective way to improve environmental quality. Findings from the literature

suggest that expanding subways has at best a modest effect on reducing air

pollution in the short run and that these effects may erode over time as trav-

elers adjust their travel behavior. Beaudoin and Lin-Lawell (2017) and Rivers

et al. (2020) find no evidence of air quality improvement from the expansion

of public transit. In fact, Beaudoin and Lin-Lawell find that the increase in

US public transit supply between 1991 and 2011 led to a small deterioration in

overall air quality, especially for NO2 and PM10. Li et al. (2019) estimate that

the benefit from pollution reduction generated by the rapid subway expansion

in Beijing represents only a small fraction of the overall construction and op-

erating costs; the benefit from congestion relief is much larger and of the same

order of magnitude as the costs.

2.2.2 Restrictions on Driving and Vehicle Purchase

Governments can use a variety of demand-side policies to incentivize com-

muters to change their travel behavior (switching from driving to public tran-

sit, for example, or driving less during congested hours). This subsection

discusses command-and-control approaches (Subsection 2.3 discusses market-

based policies).

The command-and-control approach has been widely adopted, espe-

cially in developing countries. This approach includes driving and vehicle-

purchasing restrictions. The driving restriction (or road space rationing) pol-

icy was first introduced in Athens, Greece in 1982; Santiago, Chile was the sec-

ond city to adopt it in 1986. In 1989, Mexico City started perhaps the longest-

running and best-known license-based driving restriction policy. Based on

67



the last digit of the vehicleâĂŹs license plate, the policy restricts about 20%

of vehicles from driving on each workday. In 2008, BeijingâĂŹs municipal

government adopted the driving restriction policy to prepare for the 2008

Olympic Games. Initially, the government adopted an even-day/odd-day pol-

icy, whereby a vehicle could be driven only on an odd or even day, based on

its license plate. After the Olympics, the restriction was relaxed so that the

license number-based ban applied on only one designated weekday, a pol-

icy also used in Mexico City. In recent years, Paris, Rome, Milan, Oslo, and

New Delhi imposed temporary driving restrictions to address congestion and

air pollution. Many German cities implemented low emission zone policies,

which ban high-polluting vehicles from driving in certain areas (Wolff 2014). 8

Several studies examine the impact of these policies on traffic congestion

and the environment. Like the literature on supply-side policies, these studies

commonly adopt quasi-experimental strategies, such as the RD-in-time, DID,

and ES methods, using identification from both spatial and temporal varia-

tions. The empirical findings are mixed, highlighting the importance of un-

derstanding competing forces and consumer responses in policy design.

Using the RD-in-time method, Davis (2008) finds that the driving restric-

tion led to worse air quality in Mexico City because the policy incentivized

drivers to circumvent the restriction by purchasing a second vehicle, which

tended to be older and dirtier. In contrast, the evidence on the environmen-

tal impact of BeijingâĂŹs driving restriction policy has been largely positive.

Using both RD-in-time and DID methods, Viard and Fu (2015) show that the

every-other-day driving restrictions in Beijing led to a 19% reduction in air pol-

8See Wolff and Perry (2010) for a review of low emission zone policies in European cities.
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lution and that the one-day-a-week restrictions led to a 7% reduction. Zhong

et al. (2017) confirm that the driving restriction policy in Beijing reduced both

traffic congestion and air pollution and, as a result, emergency room visits also

declined. 9

The difference in the environmental outcomes of the license-based driving

restriction between Mexico City and Beijing suggests that an effective policy

design needs to pay attention to the broad operating environment, which af-

fects consumer responses to the policy and, ultimately, the effectiveness of the

policy. In response to the driving restriction policy, commuters in Beijing have

mainly resorted to public transit instead of the purchase of a second vehicle to

meet their travel demand (Xu et al. 2015). There are two important institutional

differences between Mexico City and Beijing. First, as previously discussed,

Beijing has been investing heavily in improving the public transit system since

2007. The expansion of public transit, including subway and buses, provides

residents alternative travel modes. Second, the Beijing municipal government

adopted two policies that limited householdsâĂŹ ability to purchase a second

vehicle. At the time of the driving restriction policy, the Beijing government

also implemented a policy to restrict sales and registrations of used vehicles

from other cities that did not meet BeijingâĂŹs tailpipe emission standards. In

addition, Beijing implemented a quota system on vehicle purchases from 2011

that limited householdsâĂŹ ability to purchase a second (new or used) vehicle.

The theoretical model developed by Zhang et al. (2017) highlights the uncer-

tainty of the effects on air quality that result from license plated-based driving

9These results are consistent with the findings of Chen et al. (2013), who examine short-
term environmental measures, including the driving restriction policy and other policies the
Chinese government adopted in preparing for the 2008 Olympic Games. They find a positive
but temporary impact of the measures on air quality.
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restrictions. They show both theoretically and empirically that the same policy

could lead to different outcomes depending on the substitution among travel

modes, the purchase of second vehicles, and atmospheric chemistry, which

could result in differential impacts across pollutants.

Another command-and-control policy to curb the growth in travel demand

is a vehicle quota system. In 1990 Singapore adopted such a policy, allocating

licenses (known as certificates of entitlement, COEs) through a monthly auc-

tion system. The cap is defined over different categories of vehicles based on

engine power. The COE price ran as high as SGD 50,000 (about US$35,000) for

large passenger vehicles. In 1994 Shanghai started an auction system to allo-

cate limited vehicle licenses; it switched to an online system with a reservation

price in 2008. The monthly cap has been about 10,000 units. The number of

bidders per month is about 150,000 to 200,000; the average winning bid was

about CNY 90,000 (about $14,000) in recent years.

In 2011, the Beijing municipal government implemented a vehicle quota

policy to reduce air pollution and traffic congestion. It uses a lottery system

to allocate limited vehicle licenses. The lottery was initially held monthly;

since 2014, it has been held every second month. The quota was reduced over

time, and the odds of winning decreased substantially. 10 Five other cities

in China now have vehicle quota systems based on various allocation mech-

anisms: Guiyang and Guangzhou adopted license lotteries in July 2011 and

August 2012, respectively; Tianjin, Hangzhou, and Shenzhen started to imple-

ment a hybrid system in January, March, and December 2014, respectively.

10The odds of winning the license plate lottery in Beijing decreased from 1:10 in early 2011 to
nearly 1:2,000 in 2018 because the cap tightened, and the pool of lottery participants increased
dramatically.

70



Li (2018) uses a structural econometric model to compare the allocative

efficiency and environmental outcomes of auction and lottery systems. The

analysis suggests that the lottery system leads to a large welfare loss from mis-

allocation, although it has an advantage over an auction in terms of reducing

externalities such as air pollution from automobile usage. 11 The environ-

mental impacts of the purchase restriction policy warrant future research. The

short-run impact is likely small; hence, given that the first-order effect of the

policy is on the flow rather than the vehicle stock, the short-term impact is

hard to empirically detect. The long-run impact could be more significant, but

it is harder to identify because there is more room for confounding factors to

be at play in a longer time horizon.

2.2.3 Congestion Pricing

The command-and-control approaches that restrict driving or vehicle owner-

ship are not the first-best policies to address environmental and congestion

externalities; such policies can lead to unintended consequences (Davis 2008).

Market-based policies have gained more traction from policy makers in recent

years. This subsection discusses congestion pricing as a market-based pol-

icy tool to affect travel behaviors such as travel time, distance, frequency, and

modes.

Congestion pricing was first proposed by (Vickrey 1959), who recognized

congestion as a classic externality and identified the mispricing of transport

resources as its root cause. To maximize the efficiency gain, congestion pricing

11Chin and Smith (1997), Koh (2003), Chen and Zhao (2013), and Xiao et al. (2017) have
examined the impact of the quota policy on vehicle purchases and consumer welfare in Singa-
pore and China.
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can be designed to allow charges to vary by location and time based on the

spatial and temporal variation of the congestion externality. To address distri-

butional concerns and further promote the use of public transit, the revenue

raised can be used to improve access to and the quality of public transit.

Singapore adopted the first congestion pricing scheme in 1975. Some Eu-

ropean cities have adopted area-based congestion pricing (London in 2003,

Stockholm in 2006, Milan in 2008, Gothenburg in 2013). In the United States,

several area-based schemes were proposed but failed to be implemented over

the years. New York stateâĂŹs 2019 budget proposes congestion pricing on

vehicles that enter Manhattan below 60th Street. If adopted, New York City

would become the first US city to use congestion pricing.12 Real-time con-

gestion pricing is now technically feasible. Singapore is slated to become the

first city to use a GPS-based system in 2020. The more flexible congestion

charges raise privacy concerns, however, as they rely on collecting commuter-

sâĂŹ travel information (Parry et al. 2007). 13

Several studies examine the effectiveness of congestion pricing designs.

They include Olszewski and Xie (2005) (Singapore), Beevers and Carslaw

(2005) (London), Simeonova et al. (2018) (Stockholm), and Gibson and

Carnovale (2015) (Milan). These studies find that the schemes reduce conges-

tion by approximately 10âĂŞ30% and provide significant environmental ben-

12Several dozen high-occupancy toll (HOT) lanes with variable or dynamic tolls are oper-
ating or planned in the United States. For example, the express lanes on Interstate 66 near
Washington, DC charge single-occupancy vehicles a fee that fluctuates according to traffic
conditions.

13SingaporeâĂŹs electronic road pricing system features about 80 entry points that record
passing vehicles around the city. The charges are not based on distance traveled, and they
vary only infrequently. The system is being upgraded to a GPS-based system with the ability
to incorporate time-varying and location-specific charges.
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efits for the priced area. 14 (For a review of studies on the impacts of existing

congestion pricing schemes, see Anas and Lindsey (2011) 15)

Congestion pricing has not been implemented in any developing country.

Two recent studies attempt to study the potential benefits of adopting such

a policy in these countries. Using real-time, fine-scale traffic data from Bei-

jing, Yang et al. (2020) analyze the relationship between traffic density and

speed. They estimate the optimal time-varying and location-specific conges-

tion charges to be between CNY 0.05 and CNY 0.39 per kilometer; they con-

clude that the pricing scheme could help relieve peak-hour traffic congestion

and lead to annual welfare gains of CNY 1.5 billion.

With a similar focus but a different method, Kreindler (2018) uses GPS data

on more than 100,000 commuter trips in Bangalore, India to conduct a ran-

domized experiment for the morning commute. He compares two congestion

charge policies that impose fees for driving through certain areas during peak

hours. Based on the experimental price variation, he estimates commutersâĂŹ

preference for scheduling flexibility relative to their value of time. He con-

cludes that the costs of rescheduling travel to inconvenient times will almost

entirely offset the benefits of the saved travel time, resulting in only a small

consumer welfare gain.

14Drivers may respond to the charges by driving around the priced area. Such behaviors
may lead to more traffic and emission outside the area, as Gibson and Carnovale (2015) sug-
gest.

15Daniel and Bekka (2000), Bigazzi and Figliozzi (2013), and Fu and Gu (2017) study high-
way tolls and their environmental impacts. Using data from 98 Chinese cities, and both RD-
in-time and DID methods, Fu and Gu (2017) show that eliminating highway tolls increases air
pollution by 20% and decreases visibility by 1 km.
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2.3 Policies to Promote Alternative Fuel Vehicles

The past two decades have witnessed the rapid development and diffu-

sion of alternative fuel vehicle (AFV) technologies amid heightened concern

over energy security and transportation-related air pollution and GHG emis-

sions. AFV technologies include flexible-fuel vehicles (FFVs), hybrid vehi-

cles (HEVs), battery electric vehicles (BEVs), plug-in hybrid electric vehicles

(PHEVs), fuel cell vehicles (FCVs), and natural gas vehicles (NGVs). By reduc-

ing the consumption of gasoline and running on cleaner fuels, AFV technolo-

gies provide potential pathways to mitigate or even eliminate the environmen-

tal externalities associated with petroleum consumption.

AFV technologies face common adoption barriers in the early stage of dif-

fusion, such as higher upfront costs, limited model choices, consumersâĂŹ

lack of familiarity with the new technology, and the potential undervaluation

of future fuel-cost savings. To help speed the diffusion of AFVs, governments

in both developed and developing countries have provided various incentives

to consumers and automakers. They include both monetary and nonmonetary

incentives for purchasing AFVs and mandates and regulations that require au-

tomakers to produce AFV vehicles.

This section investigates the effectiveness of various policy tools as evi-

denced by the findings of recent studies of AFVs. Most of the empirical stud-

ies focus on markets in developed countries, but their conclusions and policy

implications could be generalized to developing countries.
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2.3.1 Subsidies for Adoption of Alternative Fuel Vehicles

The most widely used policies to stimulate the adoption of AFVs rely on tax

credits and rebates. Tax credits are usually claimed on a tax return; rebates

are either provided after mailing in a proof of purchase or directly deducted

upon purchasing an AFV. Governments can also implement vehicle scrappage

schemes, in which buyers of energy-efficient vehicles receive rebates if they

trade in their old emission-intensive vehicles (Li et al. 2013; Jacobsen and van

Benthem 2015).

A large body of empirical studies estimates the effects of subsidies on con-

sumer adoption of AFVs. The stated preference approach was especially pop-

ular during the early stage of the diffusion of alternative fuel technology be-

cause of the lack of data. A challenge of the stated preference analysis is that

the hypothetical purchase environment is often different from the real world,

and the choices that respondents make in a survey may not reflect their true

preferences in a real vehicle purchase situation, biasing the elasticity estimates.

With the increasing availability of sales data and the adoption of real policies,

recent studies have used the revealed preference method by exploiting the

spatial and temporal variation in market sales of AFVs and incentive policies

while controlling for vehicle model characteristics and consumer demographic

variables.

The effectiveness and efficiency of subsidy programs hinge on several fac-

tors. The first is the lack of additionality: the notion that incentives do not

always result in additional AFV sales, because many buyers who receive the

subsidy might still have purchased AFVs without it. This problem may be pro-
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nounced during the early deployment stage because early adopters of AFVs

are consumers who embrace new technologies, and who have the strongest

environmental awareness and, usually, higher incomes. Therefore, their pur-

chase decisions do not heavily rely on the provision of subsidies; these people

would probably have purchased AFVs without the subsidies.

Various empirical studies document the challenge of additionality. Chan-

dra et al. (2010) argue that the HEV tax rebates offered by Canadian provinces

subsidized many consumers who would have bought HEVs in any case.

Beresteanu and Li (2011) find that HEV sales in the United States would still be

growing rapidly, even without tax incentives. Huse and Lucinda (2014) find

that a substantial share of FFV consumers in Sweden would have purchased

FFVs in the absence of the cash rebates because of the vehiclesâĂŹ lower oper-

ational costs. Xing et al. (2019) find that federal income tax credits for purchas-

ing plug-in electric vehicles (PEVs) 16 in the United States resulted in a 29%

increase in PEV sales, but 70% of the credits went to households that would

have purchased PEVs without the credits. 17

Replacing a one-size-fits-all policy with one that targets marginal buyers

who are more responsive to the subsidy and would purchase AFVs only with

the subsidy could improve effectiveness. Marginal buyers are those who con-

sider the higher upfront cost the only obstacle to the adoption of AFVs or

those who view the subsidy amount as sufficient compensation for the util-

ity loss from the other drawbacks of AFVs. Using the EV subsidy receipts

data and vehicle transaction prices, Muehlegger and Rapson (2018) show that
16PEVs include both battery electric vehicles (BEVs) and plug-in hybrid electric vehicles

(PHEVs).
17See DeShazo (2016) for a literature review on the effectiveness of US subsidy programs for

PEVs.

76



EV demand by low- and middle-income households is price elastic and that

the pass-through of the subsidy is complete among these consumers. Xing et

al. (2019) find that cost-effectiveness is greater for policies that that eliminate

or reduce subsidies for high-income households and provide more generous

subsidies for low-income households. Improving the targeting of subsidy poli-

cies is an important issue and an active area of research in other energy- and

poverty-reduction programs (Allcott et al. 2015; Kitagawa and Tetenov 2018).

The second important factor is the need to design a subsidy that pays atten-

tion to the heterogeneity in benefits across locations and vehicles. Although

PEVs produce little or zero tailpipe emissions on the road, substantial het-

erogeneity of environmental impacts could exist when factoring in upstream

emissions. The environmental advantage of PEVs over conventional vehicles

is lower in locations where electricity is generated through fossil fuels. Hol-

land et al. (2016) find considerable heterogeneity in the environmental bene-

fits of PEV adoption in the United States, depending on the location. They

therefore argue for a regionally differentiated PEV policy. The environmental

benefit of PEVs is the largest in California, where the damage from gasoline ve-

hicles is great, and the electric grid is relatively clean. In contrast, PEVs cause

more harm than gasoline vehicles in places such as North Dakota, where elec-

tricity is generated mostly from coal. For the many developing countries that

rely on coal for electricity generation, the environmental benefit of PEVs is an

important empirical question.

A third factor to consider in policy design is that the environmental ben-

efits of AFVs hinge on the amount of gasoline replaced by alternative fuels.

This figure is challenging to estimate because consumers who choose to buy
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AFVs may be different from others in driving demand. Consumers who pur-

chase AFVs may have greater environmental awareness; they may thus have

purchased another fuel-efficient vehicle had they not purchased an AFV. As a

result, the reduction in emissions may be small (Xing et al. 2019)). In addition,

the ability of AFVs to reduce pollution depends on how many miles AFVs

are driven and how many miles would have been driven by gasoline vehicles.

Because they have a shorter range and charging is inconvenient, BEVs may

not be driven as much as conventional vehicles. Davis (2019) finds that both

BEVs and PHEVs are driven considerably fewer miles per year than gasoline

vehicles and suggests that PEVs may therefore imply smaller environmental

benefits than previously believed.

For AFVs, such as FFVs and PHEVs, that piggyback on gasoline vehi-

cles and can run on both gasoline and alternative fuels, âĂIJfuel arbitrageâĂİ

could also weaken the effectiveness of subsidies in reducing emissions. With

relatively low gasoline prices, FFV and PHEV drivers are more incentivized

to choose gasoline over ethanol or electricity, given the lack of ethanol and

electric fueling infrastructure and the inconvenience of refueling. Huse and

Lucinda (2014) estimate that CO2 savings would fall by 14% if gasoline us-

age among FFV drivers increased to 50% and by 18% if such gasoline usage

increased to 75%. Salvo and Huse (2013) find imperfect substitutability be-

tween gasoline and ethanol among flexible-fuel motorists in Brazil because

consumers discriminate among fuel options based on characteristics other

than price, including engine performance, the station-stopping cost, and the

origin of the fuel. They suggest that substantial investments in consumer ed-

ucation on less-established alternative fuel technologies are required because
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consumer demand for the âĂIJincumbentâĂİ gasoline is sticky.

To summarize, when designing AFV subsidy policies, policy makers need

to account for fuel-switching behaviors and alternative fuel usage. Both fac-

tors affect the effectiveness of such policies in reducing emissions. One pos-

sible solution is to adjust the AFV subsidy amount based on the frequency of

alternative fuel usage when such data are available. Providing valuable fuel

price information and accessible price comparison could increase the usage of

alternative fuels (Salvo 2018).

2.3.2 Subsidies for Alternative Fueling Infrastructure

FFVs and PHEVs can be fueled at any gasoline station. The diffusion of other

AFVs relies heavily on alternative fueling infrastructure, which is limited dur-

ing the early deployment stage. The interdependence between the building of

fueling stations and the adoption of AFVs gives rise to the chicken and egg

problem: Consumers are reluctant to adopt AFVs unless there are sufficient

alternative fueling stations, but governments and private companies are reluc-

tant to build such stations when few AFVs are on the road. The installation of

home charging for PEVs could reduce dependence on public fueling stations;

the fueling of FCVs depends entirely on public hydrogen stations. 18

In addition to providing subsidies to AFV buyers, many governments have

been subsiding construction of AFV fueling stations. It is important to under-

18FCVs are powered by hydrogen and fueled with pure hydrogen gas from hydrogen fu-
eling stations. They can fuel in less than 10 minutes and have a driving range of about 300
miles. As of October 2019, there were only 41 hydrogen stations in the United States. The
FCV market will not witness significant penetration unless the mass deployment of hydrogen
stations occurs.
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stand whether subsidizing one side of the market is more efficient than sub-

sidizing the other side. Dimitropoulos et al. (2016) find that early adopters

of PHEVs are sensitive to changes in the detour time to reach a fast-charging

station. They argue that policies that expand fast-charging stations could be

an effective stimulus for the early adoption of BEVs, potentially saving public

spending for the stimulation of the adoption of electric vehicles.

Li et al. (2017) and Springel (2019) quantify the indirect network effects in

the PEV market in the United States and Norway, respectively. Both studies

find that the network effects of charging stations on PEV adoption are larger

than the effects of PEV stock on investment in charging stations; they therefore

suggest that subsidizing charging stations is more effective in speeding PEV

diffusion at the initial rollout stage. This finding is likely driven by the fact

that early adopters are less price sensitive and more concerned about whether

they can conveniently refuel wherever they drive.

At the early stage of a technology deployment, the existence of multiple

standards of the complementary service may lead to efficiency loss. Li (2019)

finds that unifying the three incompatible standards for charging EVs in the

United States would have increased consumer surplus by US$500 million be-

tween 2011 and 2015 and allowed car manufacturers to sell 20.8% more EVs.

2.4 Fuel Standards and Emissions Regulation

Instead of directly providing incentives to alter consumer vehicle purchase

and driving behavior, governments can impose mandates and regulations on

vehicle producers to reduce pollution. This section discusses the main man-
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dates on manufacturers: fuel-economy standards, fuel-content regulations,

and tailpipe emission standards.

2.4.1 Fuel-Economy Standards

Many countries adopted fuel-economy standards that require vehicle manu-

facturers to improve fleet-wide fuel efficiency and provide a minimum level

of alternative fuel vehicles. Nine governments, including the United States,

Japan, the European Union, and China, have established fuel-economy and

GHG emission standards for passenger vehicles. The standard an automaker

needs to meet is usually a (sales-) weighted average of the target for each ve-

hicle model in the automakerâĂŹs fleet. Automakers who fail to meet the

requirement either pay the penalty or buy regulatory credits from the market

under the credit-trading regime. 19

One argument that supports fuel-economy regulations is that consumers

may undervalue fuel economy and fail to adopt fuel-saving technologies. The

empirical literature has mixed evidence on the extent to which consumers dis-

count future fuel-cost savings (Busse et al. 2013; Allcott and Wozny 2014; Sallee

et al. 2016; Grigolon et al. 2018). Studies that evaluate the efficiency of fuel-

economy regulations in reducing gasoline consumption consistently find that

gasoline taxes can achieve the same goal at a much lower cost (Goldberg 1998;

Austin and Dinan 2005; Jacobsen 2013; Anderson and Sallee 2016).

However, due to the political challenge of increasing taxes and the diffi-

19In addition to establishing fuel-economy mandates, some governments require that a cer-
tain share of the entire fleet each automaker sells be zero emission vehicles (ZEVs). California,
for example, requires that 4.5% of vehicles produced be ZEVs in 2018 and 22% by 2025.
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culty of quantifying the marginal social harms, the external cost of gasoline

consumption in many countries around the world is not properly reflected by

the gasoline tax (Parry and Small 2005). If the regulator decides to implement

fuel-economy mandates, there are several lessons from the literature that are

relevant for this situation in developing countries. First, with a binding fuel-

economy mandate, providing additional AFV subsidy may have little impact

on reducing energy consumption or GHG emissions. Fuel-economy mandates

essentially increase the cost of producing vehicles that are less fuel efficient

and encourage automakers to sell more AFVs. However, when the additional

AFV subsidy induces extra AFV sales, the mandate stringency is relaxed, and

automakers can thus sell more gasoline vehicles and still maintain compliance.

Therefore, the AFV subsidy implicitly subsidizes gas guzzlers, as it makes it

easier to sell them. One possible solution is to exclude AFVs from the average

fleet fuel-economy calculation so that the mandate takes only gasoline vehicles

into account. Second, the fuel-economy mandates in many countries are now

attribute based; the stringency of the regulation depends on the vehicleâĂŹs

weight or size, and larger and heavier vehicles are subject to a less-stringent re-

quirement. However, this policy design provides an incentive for automakers

to increase vehicle size, which could undermine the gains from fuel economy

(Whitefoot and Skerlos 2012; Ito and Sallee 2018). Policy makers should be

aware of the potential for vehicle substitution across sizes to occur when as-

signing fuel economy targets for different vehicle segments.
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2.4.2 Fuel-Content Regulations and Tailpipe Emission Stan-
dards

Implementing fuel-content regulations that restrict the chemical composition

of the fuel is another strategy to reduce the harmful pollutants from fuel con-

sumption. Most developed countries enforce the European UnionâĂŹs Fuel

Quality Directive, which requires sulfur levels below 10 ppm for both gaso-

line and diesel vehicles. In contrast, many developing countries still set sulfur

limits above the level recommended by the United Nations.

When designing these policies, regulators should be mindful of firmsâĂŹ

responses and unintended consequences. Auffhammer and Kellogg (2011)

find that the US federal gasoline content regulation, which allowed refiners

flexibility in choosing a compliance mechanism, did not improve air quality

because refiners lacked incentives to reduce the emission components that are

most closely related to ozone formation. By contrast, the standards used in

California that better target harmful components are more effective in improv-

ing air quality.

Emissions-control systems can be installed that reduce tailpipe emissions

per gallon of fuel combusted. Tailpipe emission standards set the maximum

amount (grams per mile) of targeted pollutants allowed in exhaust emissions

from a fuel combustion engine. A number of countries, including the United

States, Canada, Japan, members of the European Union, China, and India,

have implemented this type of regulation. Tests conducted at specified inter-

vals measure vehicle emissions, typically Particulate Matter (PM), NOx, CO,

and hydrocarbons. Under such regulations, manufacturers may only sell ve-
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hicles that comply with standards. In the United States, the EPA manages

and implements emission standards. California is allowed to implement more

stringent emission standards, which are set by the California Air Resources

Board (CARB).

In 2000, both China and India introduced their first emission standards,

based on European regulations of that time. Since then, both countries have

tightened their standards several times to address serious air pollution in ur-

ban areas. Based on the most more stringent European standards (Euro 6)

already imposed in the EU, the new standards are slated to go into effect in

2020 in both China and India. The effectiveness and efficiency of these policies

remain to be studied.

2.5 Future Research Areas

Many developing economies, especially rapidly growing ones, are facing

pressing environmental challenges due to the increased use of fossil fuels for

energy and the lack of effective and stringent regulations. As income rises in

these countries, demand for environmental quality increases, putting pressure

on governments to reevaluate their positions on economic growth and envi-

ronmental quality. This article reviews recent studies on policies related to

road transportation, their impacts on the environment, and the implications

for developing countries.

In theory, market-based policies such as congestion pricing and credit trad-

ing have efficiency advantages over command-and-control approaches in ad-

dressing the externalities associated with transportation. Their applications

84



have been very limited, however, especially in developing countries. Future

research could shed light on the pros and cons of different policy instruments

while paying attention not only to the efficiency and distributional impacts

of existing policies, but also to the emerging opportunities afforded by new

technologies and practices. The following questions warrant future research.

First, understanding how consumers in developing countries value fuel

economy could help policy makers estimate the efficiency and effectiveness of

policy tools such as gasoline taxes and fuel-economy standards to incentivize

the purchase of fuel-efficient vehicles. This question is especially important for

developing countries, where many vehicle buyers are first-time buyers, and in-

formation on fuel economy may not be well understood. If consumers are not

well informed, or if they do not pay attention to fuel cost, they may choose

vehicles that are less fuel efficient than optimal, providing a justification for

government intervention through fuel-economy regulations. 20 As discussed

in Section 4.1, there is no consensus on the extent to which consumers under-

value fuel economy in developed countries. Even less evidence is available

on this issue in developing countries (Greene 2010). Chugh et al. (2011) find

no strong evidence that consumers undervalue fuel economy in India. Com-

paring the vehicle consumption tax and fuel tax in China, Xiao and Ju (2014)

find that increases in the fuel tax decrease total car sales but do not effectively

20Even when fully informed about the fuel economy of each vehicle model, consumers may
not have the correct perception of the monetarized value of fuel economy, because of âĂIJMPG
Illusion,âĂİ in which consumers mistakenly think that fuel costs scale linearly in miles per gal-
lon rather than gallons per mile (Larrick and Soll 2008). The estimated welfare cost of the MPG
Illusion is negligible, however, and is not sufficient to justify the current fuel economy regu-
lations (Allcott 2013). Using data from experiments that provide fuel economy information
to new vehicle buyers in the United States, Allcott and Knittel (2019) find no impact of the
information intervention on consumersâĂŹ vehicle choices; the authors suggest that US fuel
economy standards are more stringent than necessary in addressing imperfect information.
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encourage consumers to choose fuel-efficient vehicles. When choosing vehi-

cles, consumers are more sensitive to changes in upfront costs than fuel costs.

Further studies are needed to understand consumer preferences, information

access, and awareness of fuel economy in developing countries.

Second, new technologies related to transportation could offer opportuni-

ties as well as challenges for developing countries in addressing environmen-

tal issues. Autonomous vehicles have the potential to profoundly transform

the transportation sector and the economy in general (Winston and Karpilow

2019). However, a decade may pass before these vehicles comprise a signif-

icant share of the overall vehicle market. Thus, related empirical data may

not be available for many years. 21 By contrast, ridesharing services are al-

ready prevalent in many parts of the world. As travel demand and vehicle

ownership increase in developing countries, encouraging ridesharing could

potentially help combat severe air pollution and congestion. By increasing the

flexibility of travel and providing a new travel mode, ridesharing could in-

crease consumer surplus (Cohen et al. 2016). Its impact on consumer travel

behavior and the environment is not well understood. The environmental im-

pact hinges critically on the emissions of the substituted travel modes and on

total travel demand.22

By exploiting the spatial and temporal variation of Uber entry and Uber

21Researchers would need to use projections and simulations to conduct forward-looking
analysis on how autonomous vehicles would affect travel behavior, vehicle choices, housing
locations, and the broad economy.

22If ridesharing mainly encourages carpooling and reduces private car driving, it may re-
duce overall on-road emissions. If the introduction of this new travel mode increases travel
demand, if ridesharing replaces walking or public transit trips, or if deadheading to search for
customers (out-of-service movement) accounts for a significant component of vehicle miles,
ridesharing may increase on-road pollution and impose new challenges to pollution reduc-
tion in the transportation sector.
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penetration in the US market, Hall et al. (2018) estimate the impact of rideshar-

ing on public transit ridership. They find that Uber complements public transit

by solving the last-mile problem of public transit. They suggest that rideshar-

ing could worsen pollution and congestion by increasing the number of car

trips without taking the substitution between ridesharing and private vehicle

driving into account. However, if ridesharing complements public transit and

encourages more consumers to switch from driving private cars to using pub-

lic transits for the entire trip, ridesharing may help reduce the overall on-road

tailpipe emissions and congestion.

In addition, ridesharing may help mitigate air pollution and congestion

through other channels. By better matching consumers and drivers, it reduces

the time taxi drivers spend finding consumers. Reduced search time on the

road could potentially reduce congestion and fuel consumption from the com-

bined taxi and ridesharing market (Hahn and Metcalfe 2017). In addition, peo-

ple who switch from driving private cars to ridesharing can save time and

fuel wasted when finding parking spaces, a problem in more populated cities

(Winston 2013). The extent to which ridesharing reduces air pollution and

congestion through these channels depends on the substitutability between

ridesharing and private driving and taxi riding. Understanding the full impact

requires estimating consumer travel mode choice incorporating ridesharing.

Third, transportation policies could have broad social and economic im-

pacts by changing a variety of household choices. Previous studies have

shown that changes in commuting cost can affect labor participation decisions,

fertility, and productivity (Duranton and Turner 2012; Black et al. 2014; Liu et

al. 2018). Few studies have examined the broad impacts of transportation-
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related policy beyond immediate goals, especially in developing countries.

Understanding household location choices and the general equilibrium im-

pacts of transportation policies could help policy makers better understand

their impacts on the environment and urban structure, as well as the distri-

butional consequences. Transportation innovations and policies such as in-

frastructure expansion and congestion pricing affect the commuting cost and

household location choices, as predicted by classical urban models (LeRoy and

Sonstelie 1983). The spatial pattern of household locations in turn affects travel

choices (travel mode and distance) and the environment. To examine these

questions, researchers can employ equilibrium sorting models that incorporate

consumer heterogeneity and allow for general equilibrium feedback between

economic agents and the environment (Epple and Sieg 1999; Sieg et al. 2004;

Kuminoff et al. 2013). These types of models can shed light on the interactions

between transportation policies and housing markets, and provide a unified

framework with which to analyze and compare the effectiveness of different

transportation policies to address the environment, traffic congestion, and so-

cial welfare.
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Figure 2.1: Fine particulate matter (PM2.5) and greenhouse gas emissions by
country

(a) PM2.5 concentration in 2017

(b) Average CO2 emissions between 2005 and 2016

Note: Reconstructed based on data from the World Bank
(https://data.worldbank.org/indicator/EN.ATM.PM25. MC.M3) and the US Energy
Information Administration (https://www.eia.gov/international/data/world).
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Figure 2.2: New passenger car registrations by country and changes from 2005
to 2017

Note: Data from the International Organization of Motor Vehicle Manufacturers
(http://www.oica.net).
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Figure 2.3: The global distribution of gasoline consumption between 2005 and
2016

Note: Data from the US Energy Information Administration
(https://www.eia.gov/international/data/world).
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CHAPTER 3

POLLUTION MONITORING, STRATEGIC BEHAVIOR, AND DYNAMIC

REPRESENTATIVENESS

3.1 Introduction

Enforcement of and compliance with regulations hinge on accurate measure-

ments of implementation and outcomes.1 Imperfect monitoring of national

regulations can lead to strategic compliance at the local level, which will fur-

ther bias measurements and cause policy failures. Implementation of national

policies at local levels under fiscal and political incentives is a principal-agent

problem inherent in the delegation of authority by governments to bureau-

cratic officials (Aghion and Tirole 1997).2 Given the ubiquitous information

asymmetry between central and local governments, local regulators are likely

to implement targeted strategies to meet national policy goals. In the field of

environmental regulation, studies have found firms and local governments re-

sponding to different regulation stringencies in ways that result in unintended

consequences such as pollution spillover (Kahn 2004; Kahn and Mansur 2013;

Kahn et al. 2015; Chen et al. 2018; Karplus et al. 2018). For example, Auffham-

mer et al. (2009) find targeted regulatory efforts in response to nonattainment

designations under the Clean Air Act in the U.S., and He et al. (2020) find that

Chinese local officials enforce tighter water quality regulations on polluters

1For instance, crime reduction relies on correct detections of crime activities; tax reform
requires precise estimation of population income distribution; transportation and environ-
mental regulations need accurate monitoring of traffic and pollutants.

2There exists a rich theoretical literature outlining contracts that align the principal’s and
agent’s incentives (Laffont and Tirole 1993; BÃl’nabou and Tirole 2006). In the political contract
between central and local governments, the incentives include monetary incentives such as
subsidies and fines, as well as political incentives such as hierarchical assignments of duties
and promotions.
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immediately upstream of monitoring stations. Thus, an accurate measure of

environmental quality that accounts for local regulators’ strategic behavior is

critical for decentralized regulation enforcement.

Air quality evaluation in major countries around the world is mainly based

on stationary, in situ monitors that aim to provide a representative measure of

local air quality. China launched a nation-wide, real-time air quality monitor-

ing and disclosure program in 2013. Over 1400 monitors in three staggered

waves of cities were quickly built, and air quality in China has greatly im-

proved in the past few years. However, the monitors do not cover the en-

tirety of China. The central government intends to use national policy goals

to achieve better air quality but only observe the air pollution at monitored

areas. Consequently, the local regulation enforcement tends to target “moni-

tor readings” instead of the actual air quality. Studies find data manipulation

issues in China’s air quality data before this real-time monitoring was intro-

duced, indicating the importance of “monitor readings” to local regulators.

(Andrews 2008; Chen et al. 2012; Ghanem and Zhang 2014) Although better

monitoring technologies help improve data quality significantly (Greenstone

et al. Forthcoming), strategic responses at local levels can still exist. Previous

studies by Zou (2020) and Grainger et al. (2019) have shown firms’ and local

regulators’ strategic behaviors in responding to either the intermittent moni-

toring schedule or choices of new monitor sites for the monitoring system in

the U.S. However, there is a lack of empirical analysis of strategic responses to

spatial gaps in monitored areas at the local level. Moreover, previous studies

have not examined the monitors’ spatial representativeness from a dynamic

perspective. Even if the monitor siting was representative ex-ante, strategic
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responses could invalidate the representativeness ex-post.

In this paper, I leverage high-resolution satellite-based air pollution mea-

sures to examine local officials’ strategic behaviors in pollution reduction and

the implications on dynamic spatial representativeness of ground monitors in

China. I use a distance-based Difference-in-Differences analysis with treat-

ment intensity to study the strategic behaviors. The staggered roll-out of the

new monitoring system allows cities that joined in different waves to serve as

treated and control cities for each other. I then examine the strategic pollution

reductions by defining a treatment intensity indicator. The areas near moni-

tors are classified as “monitored” areas, and areas far away from monitors are

“unmonitored” areas. I then compare the pollution changes before and after a

monitor is opened. In order to learn if such strategic behaviors would change

regulatory effectiveness, I examine the spatial representativeness of ground

air pollution monitors by comparing population-weighted average pollution

levels of an entire city to the city’s average pollution based on monitored lo-

cations. In doing this, I find that most of the monitors represent the city’s

average air quality well at the years of monitors roll-out. However, the spatial

representativeness is changing over years, indicating spatially differentiated

pollution changes within a city.

My paper fills the spatial gaps of ground-level monitoring data by using

fine-scale grids data to study the pollution changes over space. The satellite

images include annual PM2.5 (fine inhalable particles, with diameters that are

generally 2.5 micrometers and smaller) grids at the 1km by 1km resolution

(over nine million grids for all of China) from 2000 to 2017.3 Using the annual

3By combining satellite-based measures of AOD with chemical-transport modeling and
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level data, I avoid concerns about the missing data in most monthly and daily

satellite data. Moreover, the fine-scale grids provide rich spatial variations.

This satellite-based PM2.5 data is becoming popular in economic studies be-

cause it fills the gaps in ground monitoring networks and validates the data

quality at the ground level. (Sullivan and Krupnick 2018; Fowlie et al. 2019) To

provide evidence supporting the political incentives behind strategic pollution

reductions, I collect data on city characteristics such as population, GDP, etc.,

as well as information about local officials from the China Political Elite data,

which records the local officials’ career path, age, and education.

The main finding of this paper is that areas adjacent to monitors experience

6.5% lower PM2.5 concentrations than those farther away, and the results are

robust to alternative definitions of monitored and unmonitored groups. 4 The

baseline impact of monitoring on overall air pollution is positive (pollution

increases), showing that the strategic pollution reduction may lead to pollu-

tion leakages to unmonitored areas. I use an event study analysis to show that

the parallel trends hold for pre-opening periods in general. Moreover, by in-

cluding post-opening periods, I find that the difference in pollution becomes

larger as the final assessment deadline approaches. 5 My results are robust to

placebo tests of random monitor locations and random monitor opening dates.

To eliminate the concerns about measurement errors in the satellite-derived

PM2.5 data, which may correlate with ground monitors spatially, I also run

the same analysis using raw daily satellite Aerosol Optical Depth (AOD) read-

land characteristics, van Donkelaar et al. (2019) derive ground-level concentrations of PM2.5
at high levels of spatial disaggregation.

4In the main finding, cells within 3km of a monitor are defied as the monitored area, and
cells outside 3km are in the unmonitored group.

5According to the Air Pollution Prevention and Control Action Plan announced in 2013,
the central government conducted a final assessment of overall pollution reduction at the end
of this action plan in 2017.
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ings and find robust results.

One additional identification concern may arise from the fact that most

monitors are placed in urban centers with poor air quality, so the political

interpretation of the results may not be appropriate. Thus, the difference in

pollution reduction patterns between the monitored and unmonitored groups

may not necessarily be caused by local regulators’ strategic responses to strin-

gent environmental targets. Instead, the results could be driven by pollution

transported from polluted areas to the cleaner area. Another possibility is that

regulators choose to prioritize more polluted areas first instead of gaming the

evaluations. I eliminate this type of concern by conducting a heterogeneity

analysis in which I compare the strategic pollution reductions for monitors lo-

cated in dirtier areas to monitors located in cleaner areas of a city. I find no

significant impact of monitors being in a polluted area on strategic reductions.

I have conducted heterogeneity analyses to support the political interpre-

tation of strategic pollution reduction. First, I find strong heterogeneity across

cities according to the timing of entering the new monitoring program. The

later a city joins the monitoring program, the larger strategic responses that

are observed. Second, I have also conducted a heterogeneity analysis by

cities’ pollution compliance levels, where I find a larger strategic reduction

in cleaner cities and cities with pollution levels approaching the national stan-

dard. Third, cities with younger mayors who have greater promotion chances

have larger strategic responses. Lastly, I find that having an economic reces-

sion in the previous year shifts local officials’ regulation focus from environ-

mental performance to economic growth, and leads to smaller strategic reduc-

tions. Taken together, these findings consistently confirm the existence of local
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officials’ strategic pollution reduction, which arises from the misalignment be-

tween the national policy goal and local bureaucratic incentives.

Local officials employ a few strategies to reduce pollution near monitors

strategically. The next part of the paper discusses the channels through which

the spatial differences in pollution reductions occur. The potential channels

could include local measures such as directly cleaning the air near monitors or

shutting down restaurants and small workshops near monitors, and non-local

measures such as relocating polluting sources away from monitors or imple-

menting traffic control. Local pollution reduction measures reduce air pol-

lution in areas adjacent to monitors without increasing pollutions elsewhere,

whereas non-local measures will lead to pollution leakages to unmonitored

areas. My results suggest that non-local measures dominate, and pollution

leaks to areas more than 60km away from monitors. Although there is no data

available to test for the mechanisms directly, the political incentives behind

the strategic behaviors are strongly supported by government reports, media

news, and multiple heterogeneity analyses.

I provide policy suggestions for a better air pollution monitoring system.

My analysis of spatial representativeness suggests that most of the monitors

are good representations of a city’s average air quality at the beginning of mon-

itors roll-out. However, given local officials’ strategic responses and the fact

that monitor locations are unlikely to change once sited, my simulation of fu-

ture monitors’ representativeness shows that the ground monitoring system

will not be representative in the long run. Since ground monitors are costly

to build, and the observed strategic response may still exist even with new

monitors, it is important for the central government to combine ground moni-
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tor readings with external sources of pollution measurements such as satellite,

mobile monitors, and public supervision.

This paper makes the following contributions. First, my results highlight

the importance of accounting for local regulators’ strategic responses when

the central government designs national policies. By documenting the gap in

pollution reductions for monitored and unmonitored areas, I provide evidence

that policies that are ex-ante efficient will not necessarily be efficient with the

existence of strategic local responses. My paper is the first empirical study

which links the local official’s strategic behaviors with the dynamic change in

monitor representativeness and examines the underlying political incentives.

My paper adds to the growing literature on the political economy of en-

vironmental regulation by highlighting the implementation of national reg-

ulations at the local level. (Kahn 2004; Kahn et al. 2015; Jia and Nie 2017;

Chen et al. 2018; He et al. 2020) A few of these studies focus on the upstream-

downstream gap in China’s water pollution regulation. A recent study by He

et al. (2020) discusses how imperfect performance monitoring of water pol-

lution in China can break down the central-local alignment. In my paper, I

show that the gaps in ground monitoring networks can lead to significant de-

viation in the local air pollution regulations from what the central government

observes.

Second, I contribute to the growing literature on the environmental mon-

itoring regulation and enforcement (Gray and Shimshack 2011; Duflo et al.

2013; Shimshack 2014). While existing literature mainly focuses on the air pol-

lution monitoring system in the U.S. (Grainger et al. 2019; Zou 2020), where
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they look at either the intermittent monitoring schedule or monitor siting from

a static spatial point of view. My paper adds to the limited studies looking

at the new air quality monitoring program in China and particularly exam-

ines the dynamic changes in monitors’ spatial representativeness due to local

officials’ strategic responses to gaps in monitor coverages. My paper relates

closely to two of the concurrent studies. Greenstone et al. (2020) show the im-

provement of data quality with the help of the new monitoring system, and

Barwick et al. (2020) focus on the relationship between information disclosure

in the new program and people’s avoidance behaviors. My study comple-

ments the previous two in that I reveal the heterogeneous impact of the sys-

tem on air quality caused by local regulators’ strategic responses to gaps in

monitoring coverages. With the strategic responses, the information disclosed

to the public would be inaccurate, and people’s avoidance behavior may be

biased (especially for rural households). My study is also widely applicable

to monitoring regulation in other countries in both the developed and devel-

oping world because they either have monitoring networks that were built

decades ago or need to design a new monitoring system.

Third, this paper adds to the literature on the value of satellite data in en-

vironmental regulations. Taking advantages of the high-resolution satellite

images of air pollution, I am able to fill the gaps in ground monitoring and ex-

amine the pollution changes across different regions. In particular, I use satel-

lite measures to evaluate the population-weighted pollution levels in each city

and the representativeness of the ground monitoring system. Similar stud-

ies in the U.S. context also prove the value of satellite data and show the bias

in attainment and non-attainment designations using only ground monitor’s
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readings and the resultant welfare losses (Sullivan and Krupnick 2018; Fowlie

et al. 2019). In addition to air pollution regulations, the value of satellite data

in fields like climate change, wildfire surveillance (Ruminski et al. 2007), forest

land cover (Hansen et al. 2013), and biodiversity (Turner et al. 2015) has been

increasingly recognized by regulators and researchers.

Finally, I provide policy implications for an improved air pollution moni-

toring and enforcement. The central government should use auxiliary pollu-

tion information from remote-sensing data and public supervisions, together

with the ground-level monitoring data, to evaluate pollution conditions. Al-

though it is difficult to directly test the mechanism of local regulators’ strategic

pollution reductions due to data limitations, I provide indirect evidence for the

role of economic development pressure, local regulators’ characteristics, and

public pressure. My results support the political incentives behind local offi-

cials’ strategic behaviors and show the importance of an incentive-compatible

enforcement from the central government.

The remainder of the paper is organized as follows. Section 2 provides

a brief background on environmental regulations and the monitoring system

in China. Section 3 describes the main data sources. Section 4 presents the

main identification of local officials’ strategic pollution reductions. Section 5

explores channels and mechanisms underlying the strategic behavior. Section

6 discusses policy implications for the air pollution monitoring system. Section

7 concludes.
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3.2 Institutional Background

The benefits of China’s unprecedented economic growth in the past decades

are built upon the huge cost of a stained environment. China’s unprecedented

economic growth relies heavily on industrialization and fossil fuels, and lax

environmental regulations. Over the last 40 years, China has experienced the

fastest economic growth and became the largest consumer of energy and coal

while also having many of the most polluted cities in the world.6 Severe air

pollution (known as “smog”) in major cities attracted the attention of the in-

ternational community, putting pressure on the central government of China.

In the past decades, public awareness of air pollution rises, and more research

has revealed the negative impact of air pollution on human health, both physi-

cal and mental. The Chinese government began to shift its policy priority from

the long-lasting economic growth to environmental concerns and introduced

stringent regulations on air pollution. This section introduces the political sys-

tem and environmental regulations in China and discusses the underlying na-

ture of local officials’ strategic behaviors.

3.2.1 Political System in China

Political incentives are one of the internal mechanisms of both economic devel-

opment and environmental protection, especially in China. A salient feature

in China’s political system is that the central government sets targets and links

the local officials’ promotion to their performance in these targets. Local of-

6“Helping China Fight Air Pollution”, The World Bank.
(https://www.worldbank.org/en/news/feature/2018/06/11/helping-china-fight-air-
pollution)
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ficials, in turn, are highly incentivized and are given great flexibility in local

regulatory plans to meet the national targets. Studies in political economics

have examined the principal-agent problem lies in China’s economic devel-

opment. The incentive-based strategic responses by local governments have

led to many unintended consequences such as inequality, collusion, corrup-

tion, and cheating, which may undermine the policy goals. (Li and Zhou 2005;

Fisman and Wang 2015; Oliva 2015; Jia and Nie 2017; Jia 2017)

The Target Responsibility System launched in the 11th Five-Year-Plans

(FYPs) in 2005 marked an important transformation in China’s national policy,

where environmental targets were incorporated into the evaluation criteria of

local officials.7 In this system, local leaders who fail to attain environmental

performance targets, no matter how successfully they accomplished all other

tasks, would receive an unqualified evaluation in their year-end comprehen-

sive assessment, and would not be eligible for any annual bonuses or career

advancement. However, such a motivation system has also motivated strate-

gic responses. More recent literature has placed the spotlight on the firms and

local governments’ behaviors under various water and air pollution regula-

tions. The strategic responses to environmental regulations have led to issues

like data manipulations (Chen et al. 2012; Ghanem and Zhang 2014; Karplus

et al. 2018) and pollution spillovers (Kahn 2004; Kahn et al. 2015; Chen et al.

2018).
7China’s five-year planning process defines overarching principles to guide national policy

and broadly sets forth regulatory objectives for both economic growth and environmental
protection.
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3.2.2 Environmental Regulations in China

Air pollution regulation has been a top priority of the central government of

China in the past decade. It declared “war on air pollution,” implementing

a series of mitigation actions, such as the “Air Ten” action plan that was an-

nounced in 2013, (the Air Pollution Prevention and Control Action Plan). The

action plans add detailed pollution control requirements to the 12th FYPs in

terms of targets, standards, measures, and technologies. In addition to the

plans, a raft of new environmental protection laws and guidance are enacted,

which are claimed to be the “strictest ever” environmental policies regulations

to show the central government’s determination to win this “war”.

Under the set of stringent regulations that closely correlate with local of-

ficial’s own incentives, it is not a surprise to see that China has made signifi-

cant progress in pollution reduction and prevention over the past decade. For

example, the “Air Ten” evaluates local officials’ performance in pollution re-

ductions on an annual basis. In addition, the central government conducted a

final assessment of overall performances at the end of this action plan in 2017.

The promotion of local officials is not the only aspect linked with their perfor-

mance in pollution control. The government budgets and new projects related

to air pollution are linked to the local officials’ performance as well.

Stringent central regulations have helped improving air quality in China,

according to the ground monitor readings. For example, Greenstone et al.

(2020) estimate the air pollution trend since 2013 (“Air Ten”) and show that

all of the air pollutant concentrations dropped sharply, except for O3, which

saw a modest increase. PM2.5 levels dropped by 27.7 µg/m3, or about 41 per-
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cent from the 2013 level. However, the sharp reduction in air pollution is based

on the ground monitor readings, which may be subject to bias due to gaps in

spatial coverages. My paper aims to dig deeper into this pollution reduction

trend and study the local governments’ strategic pollution reduction behaviors

using the newly disclosed monitoring system.

3.2.3 Monitoring Systems for Ambient Pollutants

Evaluating a city’s air quality and local officials’ performance is mainly based

on the stationary, in situ monitors. Along with the evolution of China’s envi-

ronmental regulation and policies, the monitoring system for ambient pollu-

tants evolves significantly. The data quality in China has been criticized a lot,

especially for air pollution data before 2013: only 74 major cities had monitors,

the data was reported by local governments as a daily air pollution index, and

not available to the public. Obviously, local governments have great power to

manipulate the reported air pollution data. As shown in Ghanem and Zhang

(2014), when the policy goal is the number of "blue sky days" in a year, that is

when the air pollution index is less than 100, the air pollution data reported by

local governments is bunching at the cut-off. 8

To win the “war against pollution” after 2013, China launched a nation-

wide, real-time air quality monitoring and disclosure program, which quickly

built-out over 1400 monitors. Several major improvements have been made

in this new monitoring program. Firstly, PM2.5 is listed as a major pollutant.

Secondly, the monitored data are uploaded to the cloud automatically, which

8"Blue sky day” is a term introduced by the central government in 1998 when Beijing was
bidding to host the Olympics, at which the city’s Air Pollution Index is less than 100. The
number of "Blue sky days” is a critical basis to evaluate a city’s air quality condition.
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significantly eliminates the data manipulation issue in the pre-automation self-

reported pollution data. A recent study by Greenstone et al. (Forthcoming)

shows the improvement in data quality with the new monitoring system, and

the increased public awareness of pollution prevention.

There are three types of monitors in China: 1. Monitors controlled by

the central government; 2. Monitors controlled by local government; 3. Mi-

cro Monitors for specific polluting sources. The central government control

monitors are the first group of monitors set up before air pollution becomes a

society-wide concern. Also, the local government has a relatively low involve-

ment in the central monitors. Most importantly, the performance of local offi-

cials in eliminating air pollutions is based on the readings of central monitors.

To help better control for polluting sources, the local officials build many lo-

cal government control monitors, which are not included in evaluating a city’s

average pollution. 9

In order to regulate the siting and operation of the monitors, the central

government issued guidelines for air quality monitoring. The guidelines in-

clude the monitors’ location choices, monitoring techniques, management of

the monitoring data, and penalties for data manipulation and other human

intervention of the monitors. The central government state that only central

monitors will be counted into the evaluation of cities’ average air quality con-

ditions and local official’s performance in pollution reduction. Local monitors,

although built under the same guidelines, will only be helping local officials

in detecting polluting sources and designing for local regulatory plans.

9As of 2016, there were more than 2000 monitors in China, including both central and local
monitors.
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Three waves of prefectural cities entered the monitoring system succes-

sively in each year between 2012 and 2014. Major development regions such

as the Jing-Jin-Ji region, the Yangtze River Delta region, and the Pearl River

Delta region, as well as a few large cities such as provincial capitals, are the

first wave to enter the new monitoring network. In these cities, many of the

monitors were built and operated long before the new monitoring system was

introduced. Entering the program means upgrading the existing monitors to

automation, as well as adding new monitors. By the end of 2012, 496 monitors

in 74 cities started to work. The second wave and the third wave then added

around 450 and 550 monitors into the network each year. Cities in three waves

vary largely in terms of their hierarchy level and overall environmental perfor-

mances. Figure 3.1 shows the three roll-out waves of monitors in China. The

national monitoring network with 1499 central monitors is designed to serve

for urban areas of 336 cities. The number of monitors in each city is based on

the population density and a city’s pollution level in the past three years.

Since local officials do not have much control over the location choices of

central monitors, ideally, as long as the central monitors well-represent local

air quality conditions, the monitoring network should be efficient. Moreover,

the central government encourages third party companies to gradually take

over the operation and maintenance of these monitors, which greatly elimi-

nates the possibility of direct data falsification, shutting down or destroying

the monitoring devices. Data accuracy has been significantly improved af-

ter the involvement of third-party organizations (Niu et al. 2020). However,

manipulations and strategic responses by local officials never ended. Medias

covered several stories of constantly watering the monitored areas with fog
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cannon trucks, shutting down small-scale workshops, and food trucks near

monitors, which burnt coal.

There is a lack of empirical evidence for local officials’ pollution reduc-

tion strategy facing the new monitoring system. Since the scattered monitors

lead to gaps in measuring the pollution exposure for unmonitored areas, bias

may still exist due to local officials’ strategic responses in having spatially dif-

ferentiated pollution control measurements in monitored areas and unmoni-

tored areas. The issue is not unique in China. Fowlie et al. (2019) and Sulli-

van and Krupnick (2018) examine the misclassification of attainment and non-

attainment designation of counties due to the gaps in ground air pollution

monitors in the U.S, and the potential welfare loss using the satellite-based

pollutant data as references. Grainger et al. (2019) also use satellite NOx data

to check the strategic siting behaviors of attainment and non-attainment coun-

ties. They find avoidance behaviors of local officials in attainment counties

near the non-attainment threshold, where they strategically place new moni-

tors at a relatively clean area of the county. Inspired by these studies, I use the

remote-sensing data to fill the gaps in ground air pollution monitoring system

and find evidence for local officials spatially differentiated pollution control

strategies.

3.3 Data

3.3.1 Remote Sensing Data

In order to examine the spatial difference in air pollution regulations, this pa-

per fills the gap in the ground monitoring system using high-resolution images
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of the major air pollutant, PM2.5, which are derived from the original satellite

measures of Aerosol Optical Depth (AOD). The satellite AOD data comes from

NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) algorithm.

AOD measures the total vertical distribution of particles and gases within a

grid according to the light extinction coefficient. It indicates how much direct

sunlight is prevented from reaching the ground by aerosol particles and can

be used to infer ground-level pollution, particularly for fine particles such as

PM2.5 and PM10. Atmospheric science literature has shown a strong corre-

lation between satellite measure and ground-level pollution data.10 Since the

satellite measures are largely affected by cloud coverages over an area, missing

data is a big issue when using remote sensing data with fine spatial and tem-

poral resolutions. Studies of the remote sensing techniques find better corre-

lations between AOD and ground-level PM with coarser spatial and temporal

resolutions by month or year (Hoff and Christopher 2009).

The satellite images this paper uses include annual PM2.5 grids (1km by

1km resolution, nine million grids for whole China) from 2000 to 2017. By

combining satellite-based measures of AOD with chemical-transport model-

ing and land characteristics, van Donkelaar et al. (2019) derive ground-level

concentrations of PM2.5 at high levels of spatial disaggregation. One concern

with the satellite-derived ground-level pollution measure is the measurement

errors caused by the calibration of the satellite data using ground monitoring

data. Even though that van Donkelaar et al. (2019) use geographical weighting

method to give smaller weights to cells further away from ground monitors,

and larger weights to cells closed to ground monitors, one may be worried
10Liu et al. (2007); Lee et al. (2012); Zhang and Li (2015). Previous economic research using

the satellite measure as the proxy for ground-level pollution includes Foster et al. (2009); Chen
et al. (2013); Bombardini and Li (2016); Sullivan and Krupnick (2018); Fowlie et al. (2019).
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about different measurement errors may occur at cells with different distances

to monitors. To address this concern, the authors conducted cross-validation

tests, where they remove part to all of the ground monitors from the calibra-

tion. The derived PM2.5 data still performs well. 11

3.3.2 Spatial Representativeness of Ground Monitors

With the fine-scale pollution data and spatial information of the new ground

monitoring network, I examine the spatial representativeness of these mon-

itors. First, I apply the kernel density estimation to compare the pollution

distribution of monitored cells with that of unmonitored cells, following the

methodology from Grainger et al. (2019), which define a z-score for each grid

in each city to measure the within-county variation. 12 I also compare the

spatial distributions of different types of ground monitors: central vs. lo-

cal. The kernel density estimation result in Figure 3.2(a) shows that mon-

itors are mostly placed in a relatively more polluted area in a city. This is

consistent with the intuition that most monitors are placed in urban areas to

cover more population. Figure 3.2(b) shows that local monitors are placed in a

slightly cleaner area comparing to central monitors. This is intriguing because

one would expect the local officials to put local monitors nearer to polluting

sources in order to regulate air pollution directly.

One thing to notice is that almost all monitors are located in urban areas,

and the sparse central monitors are the only base in evaluating the air pollu-

11I have also used raw daily AOD data downloaded from NASA’s MODIS system to check
the robustness of my analysis to potential measurement errors that correlate with locations of
ground monitors.

12Z-score is calculated by taking the observed value in grid cell i in city c and year t, subtract
the average for that city, and scale it by the city level standard deviation.
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tion condition of a city. The gaps in the ground monitoring network might

cause the regulation focus to bias toward urban citizens. Instead, the less-

monitored places, i.e., the rural areas’ pollution, will not be considered in eval-

uating the local officials’ environmental performance. Contrarily, the satellite-

based measurements give a highly spatial resolved coverage of the air pollu-

tion in the entire city area. To examine the difference between monitor-based

and satellite-based city average PM2.5, I use the 1km by 1km gridded popu-

lation count from 2015 Census to weigh each cell and calculate the weighted

average PM2.5 for each city. Taking this as the “true” city-level PM2.5, I then

compare it with the monitor-based population-weighted average PM2.5. The

map in Figure 3.3 shows the monitors representation errors in the years that

cities joined the system. I regard the cities with errors within ±10% as hav-

ing well-representative monitors. The warm colors are cities where monitors

over-represent the “true” city-level PM2.5, and the cool colors are cities with

under-representative monitors. The representation errors exhibit large spatial

variations, where two-thirds of cities have over-representative monitors, con-

sistent with the kernel density figures. I have also included a set of interesting

correlates in Appendix A.2 and A.3 to check if the leaders’ characteristics, the

GDP per capita, or industrial type matters for the “representation errors”.

The representation errors in Figure 3.3 are static at the moment of their

openings. If the pollution reduction patterns are even across space, then the

representativeness of monitors would not change as long as the monitors’ lo-

cations do not change. However, though monitors are unlikely to move for

a long period, local regulators’ strategic responses to the static monitor loca-

tions would change the monitor’s spatial representativeness overtime. From
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the representation error maps in each year (Appendix A1), this is indeed the

case. Monitors’ spatial representativeness exhibits dynamic changes in years

after cities joining the program, which greatly motivates my study of local reg-

ulators’ strategic pollution reduction behaviors.

3.3.3 Other Data and Summary Statistics

To check if other factors would affect the spatial representativeness of ground

monitors and the strategic environmental regulating behaviors, I collect data

on city characteristics such as population, GDP, etc., and weather variables,

such as temperature, humidity, wind directions, wind speed, etc. I have also

collected information about local officials from the China Political Elite data,

which includes local officials’ career path, age, and education.

The summary statistics are presented in Table 3.1 and 3.2. Table 3.1 presents

satellite PM2.5 summary statistics by calendar year. Over the period of study,

the PM2.5 level increased significantly before 2013, and then declined. After

the declaration of the “war against pollution”, there is an overall improve-

ment in air quality. In Table 3.2 , I present a summary statistic by different

waves of cities, where I summarize the population-weighted PM2.5 density

using the 2015 population in each grid cell as the weight. I also summarize

the population-weighted PM2.5 density at cells containing monitors, which

are in general higher than the city average PM2.5 in all three waves of cities.

In addition to the PM2.5 densities, I also include a summary of city charac-

teristics such as the population and GDP by the three waves. Comparing the

three waves, I find that cities in earlier waves tend to be dirtier and have more

population. In terms of GDP, and the GDP in each industry, cities joining the
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program earlier tend to be more economically developed. The difference in

city characteristics among waves may lead to different environmental strate-

gies and regulation outcomes. Because cities in earlier waves are high in the

hierarchy rank, city officials’ characteristics could be different. From the sum-

mary statistics of city mayors’ age and education, I find that wave one cities

have slightly older mayors and more mayors with PhD degrees. Most mayors

in wave two cities own master’s degrees, and most city mayors in wave three

have bachelor’s degrees.

3.4 Strategic Pollution Reduction After Monitoring

3.4.1 Empirical Framework

I examine the strategic pollution reductions in monitored areas after monitor-

ing using a Difference in Differences method with a staggered roll-out sched-

ule. Joining the new monitoring program by either having new monitors or

automation of existing monitoring data could change local officials’ incentives

and strategies to meet environmental targets. Thus, once a city joins the pro-

gram, it will be considered as in the treated group. Within each treated city,

there will be different treatment effects by distances away from monitors. I

use the following empirical framework to examine the impact of monitoring

on overall air quality and the heterogeneous treatment effects by treatment

intensity:

ln(PM2.5iwt) = αOpenwt + βNeari × Openwt +Celli + Yeart + Trendwt + εit (3.1)

The outcome variable, ln(PM2.5iwt), is the logarithm of annual PM2.5 concen-

tration at the 1km×1km grid cell. i is the index for grid cells within cities
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opened in wave w at year t. In my study, there are over nine million cells’ an-

nual PM2.5 from 2000 to 2017 in the raw data. Openwt is the treatment indicator

that takes the value of 1 if cell i is in a wave w city after joining the new moni-

toring program. The treatment intensity is defined by Neari, which equals 1 if

the grid cell i is in an area adjacent to a ground monitor (monitored area), and

0 if the cell i is in areas far away from monitors (unmonitored area). In most

cases, I am less interested in the causal effect of the monitoring program per

se (α), but rather more in the difference in the causal effect in monitored vs.

unmonitored areas (β) after monitoring. Due to the large spatial and temporal

variations in air pollution, there may be confounders that would bias β from

identifying the difference in pollution reductions across space. Especially, cells

in monitored and unmonitored areas could have different location attributes

that affect air quality. To address these concerns, I report results of estimations

with a rich array of controls, including cell fixed effect and year fixed effect. I

also include a wave-specific time trend to allow the unobserved time trend in

pollution to vary across waves. The identification variation is then from com-

paring cells in monitored vs. unmonitored areas before vs. after new waves

of monitor roll-out. Since pollution observed at a cell is likely driven by emis-

sions elsewhere that also affect nearby cells, I cluster standard errors at the city

level.

Cities selected into the program in different waves may be due to wave-

specific unobservables that are time-variant. Cities in earlier waves tend to be

larger cities with more population, higher GDP per capita, higher levels of air

pollution and industrial emissions, etc. I include wave by year fixed effects in

Equation (3.2). Although the fixed effects absorb the baseline impact of mon-

113



itoring on overall pollution (α from Equation (3.1)), Equation (3.2) provides a

clearer identification of changes in treatment effect by treatment intensity (β).

It also has more flexible controls than the wave-specific time trend. The iden-

tification variation now is from comparing monitored vs. unmonitored cells

in the same wave cities, before and after monitoring. The key explanatory

variable is Nearit which is an interaction of Neari and Openwt.

ln(PM2.5it) =βNearit +Celli +Wavew × Yeart + εit (3.2)

3.4.2 Baseline Results

In the baseline results, I estimate equation (3.1) and (3.2) using my preferred

sample from 2007 to 2017, which includes five years prior to monitoring and

all post monitoring years to have a relatively balanced panel. 13 The mon-

itored area is defined as grid cells within 3km of a monitor. The results are

robust to alternative definitions of monitored areas such as 2km, 5km, and

10km, and unmonitored areas such as outside 3km, 30km, and 50km where I

drop the cells in between to address the concern of misclassifying monitoring

status. The DID with treatment intensity provides estimates of local effects

within the choice of the treatment intensity groups, where results using differ-

ent monitored areas could represent different pollution control strategies that

local officials adopt. I will discuss more in the next section.

Table 3.3 presents the baseline DID result by estimating Equation (3.1) and

adding controls sequentially. In the first four columns, Open captures the base-

13For cities in the first wave, the sample period is [2007, 2017] with five years pre and post
monitoring; for cities in the second wave, the sample period is [2008, 2017] with five years pre
and four years post monitoring; for cities in the third wave, the sample period is [2009, 2017]
with five years pre and three years post monitoring.
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line impact of joining the monitoring program on air pollution, comparing to

control cities. The baseline DID estimates of the causal impact of monitoring

on air pollution are positive (pollution increases) and significant across the

controls. In Figure 3.4, I conduct an event study for the causal impact of mon-

itoring, where I replace the treatment indicator Openwt with opening dummies

for each year pre and post monitoring. The event study figure shows no pre-

trend, and significant increases in pollution after cities joined the program. 14

I then include the treatment intensity indicator 1(0-3km) in column (5) & (6)

to capture the heterogeneous treatment effects of the monitoring program on

pollution in monitored (cells within 3km) vs. unmonitored (cells outside 3km)

areas.15 The results from column (6) show that pollution in monitored areas

is decreased after monitoring by 2%. Unmonitored areas exhibit 4% higher

pollution after a city joins the program, indicating the potential pollution leak-

ages.

In Table 3.4, I show the baseline DID results are robust to alternative def-

initions of treatment intensity groups. The first three columns present results

for monitored areas defined as cells within 3km of monitors, and compare to

different unmonitored areas such as cells outside 30km and 50km of monitors.
14Goodman-Bacon (2018) points out the concern of DID with heterogeneity in treatment

timing, which could be a valid concern for my baseline DID estimation of the causal effect
of monitoring (α). Thus, an event study is preferred than an average treatment effect. In my
paper, the three waves of cities entered the program consecutively within three years. The
potential impact of wave-specific factors affecting the pollution in different years has been
controlled by the Wave by Year FE. The estimated key parameter of interest (β) is the different
pollution changes among treatment intensity groups within a wave of cities after monitoring.

15Without controlling for cell fixed effect, the raw difference between two treatment inten-
sity groups is positive. This result is likely driven by the fact that the urban centers, where
most monitors are placed, tend to have higher pollution levels than other areas of a city. Once
cell fixed effect is included, the results show that areas near monitors experiences larger pol-
lution reductions after monitors opened.
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The areas in between are dropped to have a clearer defination of treatment

intensity groups. Column (4)-(6) expand the monitored areas to five distance

bins to show how the treatment effect varies over space. Consistent with intu-

ition, the difference in pollution changes between monitored and unmonitored

groups are larger when two groups are more apart from each other, and the

differences are smaller when monitored areas are further from monitors.

In Table 3.5, I use wave specific year fixed effects to absorb the baseline

causal effect of monitoring and show the relative changes between treatment

intensity groups (Equation (3.2)). Column (1) presents the main finding of my

paper. Pollution in monitored areas is 6.5% less than that in unmonitored areas

after monitors roll-out. Similar to Table 3.4, the results are robust to alternative

treatment intensity groups. The first three columns present results for moni-

tored areas as cells within 3km to monitors, and compare to different unmoni-

tored areas such as outside 30km and 50km of monitors. The areas in between

are dropped to have a clearer definition of treatment intensity groups. Col-

umn (4)-(6) expand the monitored areas to five distance bins to show how the

treatment effect varies over space. Consistent with intuition, the difference in

pollution changes between monitored and unmonitored groups is larger when

two groups are more apart from each other, and the differences are smaller

when monitored areas are further from monitors.

3.4.3 Identification

The key assumption is that in the absence of a monitor opening or switch-

ing to automation, air quality in the monitored and unmonitored areas follow

parallel trends. In other words, I assume that the only reason that ambient
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air quality might show a significant difference between areas nearby monitors

and areas far away from monitors is because that local officials strategically

put more efforts into reducing “local” air pollution. As directed by the central

government, most monitoring stations are placed in urban centers to cover

populated areas. One may be concerned that cells in the unmonitored areas

are too far away from the city center and thus would have different pollution

trends from those in the monitored areas. While the parallel trend assumption

is not directly testable, I conduct a “placebo” test and an event study analysis

to support the assumption. To address the identification concern of endoge-

nous monitor locations, I conduct another “placebo” test with random monitor

placements.

Placebo Tests

First, I conducted a “placebo” test using only pre-program periods and ran-

domly assign opening years for all monitors at the same locations. The ratio-

nale behind the placebo test is that cells in “monitored” and “unmonitored”

areas should not be significantly different over a false-opening year in the ab-

sence of the monitoring program. For each monitor, I randomly assign an

opening year between 2007 to 2011 for 500 times. I then conduct 500 estima-

tions of equation (3.2) and plot the distribution of the coefficients in Figure 3.5.

Comparing with the observed coefficient, I find that the observed coefficient

lies outside of the 99% confidence interval of the coefficients from 500 placebo

tests, which center around 0.016. This result shows that before the monitor-

ing program, a false opening would not lead to larger pollution reductions in

monitored areas than unmonitored areas.
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Second, in order to show that my findings indeed a result of local pollution

reductions in monitored areas, I conduct a placebo test with random moni-

tor locations. Keeping the number of monitors and the year of joining the

program unchanged, I randomly relocate all the monitors within each city 500

times. The underlying idea is that if local officials only conduct strategic reduc-

tions in areas very closed to monitors, then no significantly different pollution

reduction should be observed in areas with a false monitor opening compare

to other areas in the city. After matching the 500 groups of placebo monitors

with the satellite grid cells, I estimate equation (3.2) and plot the distribution

of the coefficients in Figure 3.6. The observed coefficient lies outside of the 99%

confidence interval, suggesting that local pollution reductions happened only

at the observed monitored areas.

Event Study

I use event study analysis to show the parallel trends between monitored and

unmonitored groups hold for pre-opening periods in general. I divide the

years around opening dates into five pre-opening periods n = −5,−4, ...,−1,

and six post-opening periods n = 0, 1, ..., 5 and run the following regression:

ln(PM2.5it) =
5∑

n=−5

βnφ(n) × Nearit +Celli +Wavew × Yeart + εit (3.3)

where φ(n) = 1 [n ≤ t ≤ n + 1], indicating interval n. The base interval is the

year before the opening year (i.e., n = −1). I expand the dataset used in main

DID analysis (PM2.5 in 2009-2017) to year of 2007 which allows wave 1 and

wave 2 cities to have the same number of five pre-opening periods. However,

the number of post-opening periods for cities in different waves would not be
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the same due to data availability.

Figure 3.7 (and Column 1 in Table 3.6) presents the coefficient estimates of

φ(n). The results support the parallel trends assumption in general: compared

with the base interval (1-year before opening years), the subsequent changes

in air pollution between the monitored and unmonitored areas are not signif-

icantly different for the four pre-opening intervals in the specification. In con-

trast, I find statistically significant different air pollution reduction between

the monitored and unmonitored groups in the post-opening intervals for the

same specification. The fifth year prior to monitoring exhibits a significant

difference, which could be due to more unobserved policy changes in years

further before monitoring. Column (2)-(5) in Table 3.6 show the event study

estimation results are robust to alternative definitions of Nearit.

Eliminate Alternative Explanations

In this subsection, I discuss a few alternative explanations which may generate

similar patterns, including monitored area’s attributes, and the measurement

error in the satellite-derived pollution measures. First, an identification con-

cern may arise from the fact that monitors are in urban centers, which happen

to be more polluted area. The difference in pollution reduction patterns be-

tween the monitored and unmonitored areas exists due to the nature of pol-

lution transporting from dirty areas to clean areas. If this is the case, then

one should expect to see larger differences in pollution changes after monitor-

ing for monitored cells located at dirtier areas than monitored cells located in

cleaner areas of a city.
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A similar concern lies in the political interpretation of local officials’ strate-

gic behaviors. One may argue that local officials choosing to reduce more pol-

lution in monitored areas is not a strategy that they play to gaming the per-

formance evaluation. Instead, they choose a more cost-effective way to reduce

pollution in a relatively more polluted area, which happens to be the area ad-

jacent to a monitor. To address this type of concerns of monitored areas being

coincident with polluted areas, I examine the heterogeneity of treatment ef-

fects where I allow the impact to differ based on the relative pollution levels of

cells within the vicinity of monitors as in Equation (3.4),

ln(PM2.5it) =βNearit + ηNearit × Dirtyit +Celli +Wavew × Yeart + εit (3.4)

where Dirtyi is a dummy variable which equals 1 if the PM2.5 of a cell i is

higher than the city average PM2.5 level in year t. This specification examines

the potential concern of monitors locating in the dirty area of a city. The co-

efficient η will show the different pollution gaps between monitors in a dirty

area and clean area. The results are reported in Table 3.7, where I include

alternative definitions of monitored and unmonitored areas to show robust re-

sults. Cells within 3 km of a monitor are the monitored cells in the first three

columns, and I then expand the monitored areas to include more distance bins.

From columns (1) to (6), I show that no matter which monitored groups, being

in the dirtier area of a city does not lead to large pollution reductions as con-

cerned. In fact, the magnitude of the interaction terms with Dirtier is almost

zero comparing to the strategic pollution reductions in monitored areas.

Another possibility that may generate similar results is the measurement

errors from satellite-derived pollution measures. The PM2.5 data I use is de-
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rived from the raw satellite images, which require information from monitor-

based sources. The Geographical Weighted Regression method used when

deriving PM2.5 from satellite images assigns larger weights to areas closer to

ground monitors, and smaller weights to farther areas. One may be concerned

that the resulted measurement errors from the data generating process will be

correlated with the distances to monitors and also varied over time when more

ground monitors are opened. If this is the case, then the spatially different pol-

lution patterns could simply because of the spatially differentiated measure-

ment errors. Although van Donkelaar et al. (2016) have conducted several out-

of-sample cross-validation tests to justify their satellite-derived PM2.5 data, I

conduct a robustness check using the raw satellite images to further eliminate

this possible explanation. Using the raw AOD data from the NASA MODIS

product, I manually aggregate the daily AOD images at 3km by 3km reso-

lution into annual AOD, and match with the ground monitors. The grid cells

containing monitors are monitored cell, and those do not contain any monitors

are unmonitored cells. Estimating Equation (3.2) using the AOD data shows a

similar result. After monitoring, pollution in monitored cells decreases com-

paring to unmonitored cells. (Table 3.8)

After eliminating alternative explanations, the empirical results shown in

this section suggest that after monitoring, the area adjacent to monitors expe-

rience larger pollution reductions relative to areas farther away. So far, I have

not claimed that the spatial gaps in pollution changes are due to local officials’

strategic responses to central environmental regulations.
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3.5 Heterogeneous Effects and Potential Mechanisms

In this section, I conduct multiple heterogeneity analyses to support the politi-

cal interpretation of the results. I discuss the potential channels through which

the heterogeneous effect by treatment intensity may occur and show how the

effect size varies in various circumstances, including a cities compliance level,

economic development, leader characteristics, and information transparency.

3.5.1 Channels for Strategic Reduction

I present the spatial distribution of the impact of monitoring and discuss abun-

dant qualitative evidence of the local officials’ pollution control strategies to

support the political interpretation of my findings. By replacing the binary

indicator of one monitored group and one unmonitored group used in Eq

(3.1) with fifteen treatment intensity groups, I show the spatial distribution

of the treatment effect by distances from monitors in Table 3.11. The changes

in the impact of monitoring over space also indicate the potential channels

of strategic pollution reductions. The coefficient estimates of Open represents

the impact of monitoring on air pollution in the base group, which includes

cells more than 300km away from the closest monitors. Combining with the

interaction terms, the strategic pollution reductions exist within 70km ranges

of monitors and are robust in magnitudes. Beyond 70km, the overall impact

of monitoring turns positive and continues to increase for cells further away.

With more distance bins in the unmonitored groups, Table 3.11 represents the

potential pollution migration patterns across space after monitoring. Note that

most of these central monitors are placed in population-dense (urban) areas.
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Column (2) in Table 3.11 summarizes the population in each distance bin. Al-

though the monitoring enforcement seems to divert air pollution away from

areas near monitors, this does not necessarily lead to policy failure when con-

sidering the population exposed to air pollution. However, this could exacer-

bate inequality issues if pollutions are leaking to rural areas. I provide more

discussion in Section 6 on the dynamic changes of monitors’ representative-

ness in population-weighted pollution exposure.

I reviewed numerous policy documents from both the central and local

governments in China, collecting reports by national inspections teams, and

media newsletters. They show that local governments have strong political

incentives in improving air quality readings to meet the centrally designated

air quality targets. As I introduced in Section 2, the most direct ways to fal-

sify monitor readings from the devices are difficult to implement with the new

monitoring system. Such direct manipulation methods include shutting down

monitors during polluted days, blocking up the sensors inside monitoring de-

vices, and deliberately damaging monitors. With the real-time data collecting

monitoring system, any of these data manipulations would result in abnormal

data patterns and trigger alarms. However, the advanced new system cannot

eliminate all possible channels of “manipulating” the monitor readings. As

the famous saying in China points out, “when the central government has a

policy, the local governments have countermeasures”. There are several major

strategies that local regulators commonly adopt to “manipulate” the monitor

readings.

The first type of strategy directly cleans up the air near ground moni-

tors. Since the monitor locations are known to local regulators, many of them
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choose to clean up the adjacent areas by spraying water or using fog canon to-

wards either monitors (higher risk of being caught, most effective), or towards

trees near monitors (lower risk, less effective). A recent scandal was exposed

by the media that in Jan 2018, the building of the Environmental Protection

Agency in Shizhuishan, Ningxia Province, where a central monitor is located,

was turned into an ice sculpture when the staff tried to reduce monitor read-

ings with fog cannons.

The next set of strategies is the ones causing the largest pollution leakages

into unmonitored areas. Short term strategies may include traffic controls in

monitored areas, divert food trucks and other mobile polluting sources away

from monitors, or restrict operation durations for certain polluters. An in-

spection report of Tianjin’s environmental regulation states that the inspection

team found strategic pollution reduction behaviors such as traffic controls and

increased water spraying frequency in the monitored areas. Media also re-

vealed temporarily shutting down of gas stations near monitors in Pingding-

shan, China.

A more effective strategy in the longer term would be relocating polluting

sources from small-scale workshops, restaurants to large industrial plants to

suburban or rural areas that are commonly unmonitored. This type of strategy

would be preferred considering either economic development or environmen-

tal performance (improving monitor readings). However, it would impose the

largest environmental damages and bias of central regulations. Based on the

baseline DID results in Table 3.3, relocation of polluting sources seems to be

the most common strategy given that unmonitored areas become more pol-

luted after monitoring.
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The strategies that local officials use to achieve better monitor readings are

hard to test empirically due to data limitations. For example, traffic controls

and water spraying in monitored areas are short-term actions which may only

be caught by constantly observing the abnormal phenomenon near monitors.

Instead, I use several heterogeneity analyses to indirectly support the findings

of local regulators’ strategic responses.

3.5.2 Heterogeneity in Strategic Pollution Reductions

I present evidence from heterogeneous analysis to show that the political in-

centives of local politicians are indeed the driving forces behind my main find-

ings.

a) Roll-out Waves of Entering the Program

In addition to the annual assessment, the local officials face a final assessment

of air pollution reductions at the end of 2017. They may use more aggressive

strategies to reduce monitor readings when the final assessment approaches.

On the contrary, major cities in earlier waves, especially those in the key devel-

opment regions, face more stringent PM2.5 reduction goals. It is unclear which

incentivizes local officials more in taking more aggressive strategic responses,

the stringent target or the approaching deadline. In Figure 3.8, I investigate

heterogeneity in the impact of treatment intensity on pollution reductions by

roll-out waves. I find the cities in later waves show larger strategic pollu-

tion reductions in monitored areas, indicating more aggressive strategies as

the deadline approaches. Another possible explanation is that cities in wave
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one and two cities are those with monitor readings upgraded from manual

to automation in the new system, rather than having new monitors opened.

Thus, the strategic pollution reduction might exist before the cities join the

new monitoring system.

b) Compliance Levels

Local official’s pollution control strategy could be varying with the existing

pollution conditions. In Table 3.9 and Figure 3.9, I explore the heterogeneity

by cities’ average pollution levels, using the national annual PM2.5 standard

35 ug/m3 as a reference. I use the population-weighted city average pollution

at the monitored cells at the years of monitors roll-out. Cities with average

pollution levels below the annual standard are defined as clean cities. I find

that clean cities tend to have larger strategic pollution reductions in monitored

areas after monitoring. Restricting the sample to cities with average PM2.5

from 30-40 ug/m3 shows similar results. In order to see if the heterogeneity

by compliance level varies with roll-out waves, I include additional analysis

using subsamples in each wave. Clean cities in wave one tend to have more

aggressive strategies. This could be due to the fact that wave one cities are in

general dirtier than other cities. Thus, dirtier cities in wave one are the most

polluted cities in China and under strict supervision by the central govern-

ment. To see how strategic response varies by the closeness to the national

standard, I include another layer of interaction, Compliance, which is the dif-

ference between city PM2.5 and 35 ug/m3. For a clean city, when its pollution

level approaches the national standard, I find larger strategic pollution reduc-

tions. The heterogeneous effect by cities’ compliance levels indicates that local
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officials facing different compliance status choose different strategies to meet

the environmental targets.

c) Leader Characteristics

City mayors play an essential role in policy regulation and implementations. I

investigate whether a city mayor’s characteristics have an impact on the strate-

gic pollution reductions after monitoring. Figure 3.11 shows the heterogeneity

analysis by city mayor’s age, where I separate the sample into two subsam-

ples by city mayors’ age. A mayor has better chances to be promoted to a

higher position at an age younger than 57. Thus, a younger mayor may have

larger incentives to perform well in the environmental evaluation and adopt

more strategic pollution reduction methods in monitored areas. For mayors

older than 57, which means they have little to no promotion opportunities,

they would be less incentivized to achieve policy targets. Figure 3.11 shows

such results that cities with mayors younger than 57 tend to have larger strate-

gic reductions in monitored areas. On the other hand, I do not find any signifi-

cant impact of a mayor’s educational background on their strategic behaviors.

This may suggest the strategic reduction methods are common knowledge for

leaders across education levels and do not require elite training.

d) Economic Growth

In general, there are tradeoffs between economic development and pollution

abatement for local regulators. Prioritizing environmental regulations may

hurt the local GDP growth and local officials may have different strategic be-

haviors in pollution control when facing different economic conditions. To
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examine the role of economic growth pressure, I generate a dummy variable

indicating the growth or recession of a city’s GDP in the previous year and

interact with the DID treatment intensity term. Table 3.10 shows the results

for all cities, and for each wave of cities. I find that no matter in which roll-

out wave, when a local official faces downward pressure on economic growth,

they tend to reduce strategic measures that improve monitor readings. This set

of heterogeneity results suggest that local regulators are balancing both their

efforts and performance in economic growth and pollution control. The gap

in pollution changes between monitored and unmonitored areas is indeed a

result of local regulators’ strategic pollution reductions.

e) Information Transparency (Public Pressure)

Local official’s strategic behaviors can potentially be captured by residents

if they have full information about air pollution monitors, such as locations

and readings. With the new monitoring system, information about the cen-

tral monitors are publicly available through multiple sources, including the

MEP’s website and third-party online platforms. In addition, a few provinces

have launched their own online air pollution disclosure platform. They pro-

vide detailed information about the monitor locations, including both central

and local monitors. In China, eleven provinces have an online platform, which

shows their effort in improving information transparency. Moreover, local res-

idents can perform additional supervision on air pollution monitors and check

consistency with online information. In Figure 3.12, I investigate such hetero-

geneity and find that provinces with online pollution disclosure do not show

significant strategic pollution reductions in monitored areas after monitoring,
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which suggests the importance of information transparency and public pres-

sure could potentially reduce local official’s strategic behaviors.

3.6 Policy Implications and Suggestions

3.6.1 A Well-representative Monitoring System

One would expect to see local regulators to have very different strategic be-

haviors facing the new monitoring system, because monitors’ siting could

over-represent, well-represent, or under-represent the average city pollution

levels. Even though the central government intended to place the monitors

in populated areas to improve the representativeness, the over-representing

monitors (monitor-based pollution larger than city average pollution) could

exacerbate local government’s strategic pollution reductions. I conduct a het-

erogeneity analysis to show that it is necessary to build a monitoring system

that well-represents the average city pollution level. I split the sample into

three groups: “over-represent” cities with representation errors greater than

10%, “well-represent” cities with errors between -10% to 10%, and “under-

represent” cities with smaller than -10% errors.

Figure 3.13 shows the event study on three subsamples. I find that cities

with over-representing monitors tend to have more aggressive strategic re-

ductions after monitoring, comparing to well-representing cities. It is hard to

find a clear trend for cities with under-represented monitored pollution due

to the few numbers of “under-represent” cities. The heterogeneous results are

intuitive because if the central government places monitors in the dirtiest area

of a city, local officials will be more incentivized to reduce the pollution only
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in the monitored area. However, unmonitored areas could still have more pol-

lution than the national standard due to pollution leakages. Thus, it would be

necessary for the central government to evaluate the cities’ average pollution

thoroughly and use the population-weighted average pollution as references

for monitoring sites. The well-represent cities still have a slightly downward

trend after monitoring. This indicates that a well-representative monitoring

system could, to some extent, reduce the strategic responses at the local level

but would not prevent the behaviors from happening. In fact, the strategic

responses may change the spatial representativeness in the long run.

3.6.2 Dynamic Monitors Representativeness

From the representation error map in Figure 3.3, the current monitoring system

in most cities shows good representativeness when the cities first joined the

program. However, similar to the monitoring systems in developed countries,

monitor locations are unlikely to change once the monitors were placed. For

example, the current air quality monitors in the U.S. were built two decades

ago, and covered populated areas following federal guidelines. Other than

adding new monitors to nonattainment counties, the existing monitor loca-

tions have not changed ever since. Thus, even though monitors were sited to

be well-representing counties’ overall air quality in the 90s, the representative-

ness can be dynamic due to human interventions in monitored areas. Using

my estimates for the relative pollution reductions in monitored areas (cells

within 3km have 6.5% more pollution reductions), and the last observed year

of pollution in my data in 2017, I calculate the projected pollution levels for five

years from 2018 to 2022. I do not conduct simulations for a longer period into
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the future because there could be large uncertainty and new regulations. I find

that in the near future, the over-representative monitors seem to become more

representative of a city’s overall air quality. However, there are also more cities

exhibiting negative representation errors, 42 cities at years of monitoring vs. 52

cities in 2022. Even though the monitoring system works fine in my projected

years, it is possible that with the strategic responses, monitors would become

less representative in the long term. Moreover, the pollution leakages to un-

monitored areas, mostly rural regions, could cause large health impacts and

biased evaluation of policy goals.

3.6.3 The Remote Sensing Data and Other Pollution Informa-
tion

The key to eliminating or preventing local official’s strategic responses to the

ground monitoring system is to add referencing data sources into the eval-

uation. In an ideal world with ground monitors everywhere, local officials

are impossible to predict which sets of monitors would be used to evaluate

their environmental performance. Thus, the only strategy left is to improve air

quality city-wide. This seems unrealistic because ground monitors are large in

size and costly to build and maintain. The satellite-based pollution measures

can be a good source to fill the gap in ground monitor coverages. As shown

in (Sullivan and Krupnick 2018) and Fowlie et al. (2019), remote-sensing data

has helped the authors to assess the extent to which the existing U.S. ground

monitor-based measurements over- or under-estimate true exposure to PM2.5

pollution. In my context, I have used the satellite-based data to re-evaluate the

policy goals set by the “Air Ten” action plan for the end of 2017. Unlike the
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monitor-based pollution patterns estimated in Greenstone et al. (2020), PM2.5

decreases by 40% from 2013 to 2018, my estimates find an overall increase

in the city-wide pollution level. This suggests that monitor-based evaluation

would overstate the environmental performance and distort future policy de-

sign.

However, it is important to recognize the limitations of completely relying

on satellite images. Satellite-based data is not direct measures of ground pol-

lution levels and is subject to missing data issues that are strongly correlated

with cloud coverages. Ground monitors, on the other hand can provide more

detailed hourly observations and better accommodate various weather condi-

tions. Additionally, advanced monitoring technologies have provided broader

coverages with mobile monitors and micro-monitors that local regulators have

less control. Hence, the central government should use this information as

supplementary evidence for city-wide pollution evaluation. This is true for

any country relying on stationary, in situ monitors in environmental regula-

tions. Overall, a better policy design of monitoring regulation and enforce-

ment would need a mixed contribution from the ground monitoring system,

remote-sensing technologies, mobile monitors, as well as public awareness,

and third-party auditors.

3.7 Conclusion

Environmental regulations are often associated with strategic responses, and

effective regulation relies on accurate monitoring and measurements. In major

countries around the world, local governments face stringent pollution abate-
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ment targets, which often link local governments’ federal funding or regu-

lators’ promotions with their success in achieving these targets. A growing

literature has highlighted the unintended consequences of these policies, such

as pollution spillover in China’s water quality regulation, which undermines

policy goals and bias evaluations. This paper adds to these studies by demon-

strating strategic responses to central regulations at local levels and extending

the literature to air pollution monitoring regulations. Using high-resolution

satellite measures of pollution, I have shown that local officials have incentives

to improve monitor readings by strategically reducing pollution in monitored

areas. Such strategic behaviors will change the spatial representativeness of

the current monitoring system and lead to biased policy evaluations.

I find that there exists a significant difference between pollution changes

in areas adjacent to monitors and areas far away from monitors after monitor-

ing. This result is robust to different definitions of monitored and unmonitored

areas. Although the new ground monitoring network has improved data qual-

ity significantly, the gaps in monitor coverages lead to pollution leakages from

monitored areas to unmonitored areas. The baseline DID result shows that

pollution in unmonitored areas increases after monitors roll-out, which indi-

cates that the underlying mechanism of such strategic reduction is non-local,

relocating polluting sources away from monitors. By studying the heteroge-

neous impact of cities’ pollution levels, the characteristics of local leaders, the

role of public pressure, and the role of economic growth, I provide evidence

supporting the political interpretation of the strategic pollution reductions.

Overall, my results are consistent with the expectation that strategic pollution

reductions are more likely to arise with larger incentives to improve monitor
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readings, such as in cities with younger mayors and cities with approaching

assessment deadlines.

My results emphasize the importance of accurate and representative mea-

surements in regulations and are widely applicable to any regulations with in

situ monitoring systems globally. My paper contributes to the growing litera-

ture on environmental monitoring regulation and enforcement by expanding

the study to China’s air quality monitoring system. I highlight the impor-

tance of a monitoring regulation that accounts for local regulators’ strategic re-

sponses and considers the monitoring network from a dynamic point of view.

The results are also widely applicable for building or improving monitoring

systems in other countries, both in the developed and developing world. I

provide policy suggestions for efficient regulations that require a mixed source

of pollution information from ground-level monitors, advanced monitoring

techniques, and the public to accurately evaluate local officials’ environmental

performance and improve air quality city-wide.
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Figure 3.1: Roll-out of Monitoring Stations in China

Note: This figure shows the roll-out of air pollution monitoring stations in China by three
waves from 2012 to 2014. All monitors on the map are central government-controlled moni-
tors.
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Figure 3.2: Kernel Densities for PM2.5 Z-Scores

(a) Kernel Densities for PM2.5 Z-Scores: Central monitors vs. No monitor

(b) Kernel Densities for PM2.5 Z-Scores: Central monitors vs. Local monitors

Note: Each figure shows the kernel density estimate for the distribution of city-level z-scores.
Z-score is calculated by taking the observed value in grid cell i in city c and year t, subtract the
average for that city, and scale it by the city level standard deviation. Figure (a) compares the
distribution of city-level z-scores at cells containing central monitors to cells without monitors
using data from 2009 to 2017. Figure (b) compares the distribution of city-level z-scores at cells
containing central monitors to cells containing local monitors in 2016.
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Figure 3.3: Monitor Representation Errors at Opening Years: All Cells vs. Mon-
itored Cells

Note: This figure shows the monitors representation errors in the years of joining the new
monitoring program. The representation error is defined as the percentage difference between
city average pollution level calculated based on only monitored cells and city average pol-
lution based on all cells. All the pollution levels are weighted by the 2015 grid-level pop-
ulation count. Cities in green means the monitors well-represent city average PM2.5, with
representation errors in [−10%, 10%]. Cities in warm colors (error > 10%) have monitors over-
representing the city average pollution, and those in cool colors (error < −10%) meansthat
the monitors under-present city average pollution level. The map is based on raw data and
presented at the city level. Representation error maps for each year from 2012 to 2017 are in
Appendix A.1.
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Figure 3.4: Event Study of Monitor Opening on Air Pollution

Note: This figure shows the event study results of monitor opening on air pollution control-
ling for cell fixed effects, year fixed effects, and wave-specific time trend. I regress the PM2.5
on four pre-opening indicators and four post-opening indicators. The year before monitoring
is the base interval. Standard errors are clustered at city level.
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Figure 3.5: Placebo Test with Random Opening Years in Pre-Monitoring Peri-
ods

Note: This figure shows the results of a âĂIJplaceboâĂİ test using only pre-program periods
and randomly assign each monitor an opening year. I conduct 500 estimations of the treatment
intensity analysis and plot the distribution of the 500 placebo coefficients and compare them
with the observed effect size using the real sample (red line).
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Figure 3.6: Placebo Test with Random Monitor Locations

Note: This figure shows the results of a âĂIJplaceboâĂİ test that conducts 500 randomly
relocations of all monitors within a city and keep the opening year unchanged. I conduct
500 estimations of equation (2) and plot the distribution of the 500 placebo coefficients, and
compare them with the observed effect size using the real sample (red line).
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Figure 3.7: Event study: Change in Impact of Monitoring on Air Pollution in
Monitored vs. Unmonitored Areas

Note: This figure shows the event study results of monitor opening with treatment inten-
sity on air pollution. (Column 1 from Table 3.4), where I regress the PM2.5 on interactions
of treatment intensity indicator Near, and five pre-opening indicators and six post-opening
indicators, controlling for cell fixed effects, and wave by year fixed effects. The year before
monitoring is the base interval. Each estimate represents the difference in PM2.5 between
monitored areas (cells within 3km of monitors) and unmonitored areas (cells outside 3km) at
a given period. Standard errors are clustered at city level.
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Figure 3.8: Heterogeneity Analysis by Waves: Change in Impact of Monitoring
on Air pollution in Monitored vs. Unmonitored Areas

Note: This figure shows the event study results of monitor opening with treatment intensity
on air pollution for three subsamples divided by roll-out waves. Using each city group, I
regress the PM2.5 on interactions of treatment intensity indicator Near, and pre-opening and
post-opening indicators, controlling for cell and year fixed effects. The year before monitoring
is the base interval. Each estimate represents the difference in PM2.5 between monitored areas
(cells within 3km of monitors) and unmonitored areas (cells outside 3km) at a given period.
Standard errors are clustered at city level.
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Figure 3.9: Heterogeneity Analysis by City Average Pollution Level: Change
in Impact of Monitoring on Air Pollution in Monitored vs. Unmonitored Areas

Note: This figure shows the event study results of monitor opening with treatment intensity
on air pollution, for two subsamples of cities classified by comparing the citiesâĂŹ average
PM2.5 level with national annual standard, 35 µg/m3. Using each city group, I regress the
PM2.5 on interactions of treatment intensity indicator Near, and five pre-opening indicators
and six post-opening indicators, controlling for cell fixed effects, and wave by year fixed ef-
fects. The year before monitoring is the base interval. Each estimate represents the difference
in PM2.5 between monitored areas (cells within 3km of monitors) and unmonitored areas (cells
outside 3km) at a given period. Standard errors are clustered at city level.
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Figure 3.10: Heterogeneity Analysis by City MayorsâĂŹ Age: Change in Im-
pact of Monitoring on Air Pollution in Monitored vs. Unmonitored Areas

Note: This figure shows the event study results of monitor opening with treatment intensity
on air pollution, for two subsamples of cities classified by city mayorsâĂŹ age. The cutoff
point for mayorâĂŹs age is 57 because this is the ceiling threshold for a mayor to get pro-
moted. Using each city group, I regress the PM2.5 on interactions of treatment intensity indi-
cator Near, and five pre-opening indicators and six post-opening indicators, controlling for cell
fixed effects, and wave by year fixed effects. The year before monitoring is the base interval.
Each estimate represents the difference in PM2.5 between monitored areas (cells within 3km
of monitors) and unmonitored areas (cells outside 3km) at a given period. Standard errors are
clustered at city level.

144



Figure 3.11: Heterogeneity Analysis by Province Online Disclosure: Change in
Impact of Monitoring on Air Pollution in Monitored vs. Unmonitored Areas

Note: This figure shows the event study results of monitor opening with treatment intensity
on air pollution, for two subsamples divided by whether a province has its own online pol-
lution disclosure platform or not. Using each city group, I regress the PM2.5 on interactions
of treatment intensity indicator Near, and five pre-opening indicators and six post-opening
indicators, controlling for cell fixed effects, and wave by year fixed effects. The year before
monitoring is the base interval. Each estimate represents the difference in PM2.5 between
monitored areas (cells within 3km of monitors) and unmonitored areas (cells outside 3km) at
a given period. Standard errors are clustered at city level.
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Figure 3.12: Heterogeneity Analysis by Province Online Disclosure: Change in
Impact of Monitoring on Air Pollution in Monitored vs. Unmonitored Areas

Note: This figure shows the event study results of monitor opening with treatment intensity
on air pollution, for two subsamples divided by whether a province has its own online pol-
lution disclosure platform or not. Using each city group, I regress the PM2.5 on interactions
of treatment intensity indicator Near, and five pre-opening indicators and six post-opening
indicators, controlling for cell fixed effects, and wave by year fixed effects. The year before
monitoring is the base interval. Each estimate represents the difference in PM2.5 between
monitored areas (cells within 3km of monitors) and unmonitored areas (cells outside 3km) at
a given period. Standard errors are clustered at city level.
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Figure 3.13: Heterogeneity Analysis by Monitor Representativeness: the
change in impact of monitoring on air pollution in monitored vs. unmonitored
areas

Note: This figure shows the event study results of monitor opening with treatment intensity
on air pollution, for three subsamples divided by monitors spatial representativeness at the
years of opening. Representation errors are defined as the difference between population-
weighted city average PM at monitored cells and at all cells. Over-represent cities have rep-
resentation errors greater than 10%. Well-represent cities have error between -10% to 10%.
Under-represent cities are with errors less than -10%. Using each city group, I regress the
PM2.5 on interactions of treatment intensity indicator Near, and five pre-opening indicators
and six post-opening indicators, controlling for cell fixed effects, and wave by year fixed ef-
fects. The year before monitoring is the base interval. Each estimate represents the difference
in PM2.5 between monitored areas (cells within 3km of monitors) and unmonitored areas (cells
outside 3km) at a given period. Standard errors are clustered at city level.
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Table 3.1: Summar Statistics: Satellite-based Air Pollution (PM2.5, µg/m3)

Wave 1 Wave 2 Wave 3
(1) (2) (3) (4) (5) (6)

city_avg city_monavg city_avg city_monavg city_avg city_monavg
2009 54.25 59.26 49.23 56.48 40.02 48.10

(17.24) (18.35) (17.23) (17.21) (19.98) (21.31)
2010 53.10 57.98 50.23 57.65 41.34 49.22

(17.44) (18.46) (19.93) (19.88) (22.90) (23.84)
2011 50.51 55.35 47.15 54.34 38.15 45.99

(17.54) (18.66) (18.26) (18.57) (20.40) (21.47)
2012 46.91 51.45 44.97 52.08 36.40 44.13

(16.20) (17.56) (18.35) (18.73) (19.51) (20.78)
2013 54.66 59.73 51.55 58.92 41.30 49.34

(20.81) (22.16) (21.38) (21.57) (22.56) (23.74)
2014 55.31 60.29 50.58 57.97 41.83 50.48

(18.73) (19.81) (19.14) (18.89) (22.85) (24.03)
2015 51.67 56.54 47.92 54.45 37.85 44.87

(18.51) (19.68) (18.25) (18.37) (19.63) (20.25)
2016 46.48 51.33 43.37 51.23 34.32 42.41

(17.71) (18.59) (17.33) (17.83) (18.65) (20.53)
2017 52.48 56.34 47.98 54.73 40.57 47.45

(15.51) (15.81) (15.77) (15.84) (19.01) (20.14)

Notes: The underlying observations are at the city level. Standard deviations are
in parentheses. Column (1), (3), (5) show population-weighted PM2.5, column (2),
(4), (6) show population-weighted PM2.5 level at monitored cells are average of post-
monitoring period. Population data is in 2015.
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Table 3.2: Summar Statistics: Other Variables

(1) (2) (3)

Variable Wave1 Wave2 Wave3

City Pollution, GDP, Population
Population Weighted PM2.5 51.71 48.11 39.09

(17.95) (18.55) (20.76)
Population Weighted PM2.5 at Monitored Cells 55.87 55.48 46.55

(19.27) (18.67) (21.60)
GDP Per Capita 63944 48187 30641

(30064) (31222) (16396)
GDP in 3rd Industry 236.72 67.06 31.62

(300.22) (76.67) (21.17)
GDP in 2nd Industry 204.54 94.08 44.45

(173.30) (89.73) (30.89)
GDP in 1st Industry 20.52 16.20 14.79

(15.71) (10.53) (9.88)
Population in 2015 4857550 2716721 1940899

(3499542) (1531311) (1341832)

Leader’s Characteristics
Age 51.88 50.09 50.00

(4.66) (3.65) (3.57)
Young (Age<57) .930 .995 .984

(.256) (.070) (.127)
Master .497 .572 .540

(.501) (.495) (.499)
PhD .269 .218 .158

(.444) (.414) (.364)
Bachelor .2104121 .193 .261

(.408) (.395) (.440)
Number of Cities 74 98 176

Notes: The underlying observations are at the city level. Standard deviations are in
parentheses. Population-weighted PM2.5 are measured by 2009-2017 average, PM2.5
level at monitored cells are average of post-monitoring period. GDP data is from
2001-2017 for 281 cities. Leader’s characteristics data ranges from 2009-2015.
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Table 3.3: Baseline Difference in Differences Estimation Results

Dependent variable: ln(PM2.5it)

(1) (2) (3) (4) (5) (6)

Open 0.188*** 0.106*** 0.048** 0.040** 0.049** 0.041**
(0.038) (0.026) (0.022) (0.020) (0.022) (0.020)

(0-3km)*Open -0.100*** -0.062***
(0.024) (0.014)

Controls No Cell FE Cell FE Cell FE Cell FE Cell FE
Year FE Year FE Year FE Year FE

Wave×T Wave×T

Observations 84,349,384 84,349,384 84,349,384 84,349,384 83,293,774 83,293,774
R2 0.009 0.958 0.965 0.966 0.965 0.966

Note: Column (1)-(6) show DID estimation results with different fixed effects. The
first three columns represent baseline DID results, where Open is the treatment indi-
cator that equals one if a cell is in a city that has joined the new monitoring program.
Column (4)-(6) show DID estimation results with treatment intensity defined by dis-
tances to monitors. Cells within 3km to the monitor are in the monitored group and
cells outside 3km are unmonitored cells. Standard errors are clustered at city level.
Significance: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3.4: Baseline DID Estimation Results, Alternative Unmonitored Areas

Dependent variable: ln(PM2.5it)

Unmonitored Area: >3km >30km >50km >15km >30km >50km

(1) (2) (3) (4) (5) (6)

Open 0.041** 0.043* 0.043* 0.044** 0.046** 0.049**
(0.020) (0.022) (0.025) (0.021) (0.022) (0.024)

(0-3km)*Open -0.062*** -0.068*** -0.076*** -0.066*** -0.070*** -0.079***
(0.014) (0.016) (0.017) (0.015) (0.016) (0.018)

(3-6km)*Open -0.065*** -0.069*** -0.078***
(0.014) (0.015) (0.017)

(6-9km)*Open -0.066*** -0.071*** -0.079***
(0.014) (0.015) (0.017)

(9-12km)*Open -0.066*** -0.071*** -0.080***
(0.014) (0.015) (0.017)

(12-15km)*Open -0.067*** -0.072*** -0.081***
(0.014) (0.015) (0.017)

Observations 83,293,774 74,496,330 65,280,883 83,293,774 77,485,464 68,270,017
R2 0.966 0.966 0.966 0.966 0.966 0.966

Note: Column (1)-(6) show DID estimation results. Open is the treatment indicator
that equals one if a cell is in a city that has joined the new monitoring program. The
first three columns use cells within 3km to the monitor as the monitored group and
compare different unmonitored groups: cells outside 3km, 30km or 50km of the moni-
tors. Column (4)-(6) add four more distance bins to the monitored group. All columns
include cell fixed effects, year fixed effects and a wave specific time trend. Standard
errors are clustered at city level. Significance: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3.5: Difference in Differences with Alternative Treatment Intensity Bins
Estimation Results

Dependent variable: ln(PM2.5it)
Unmonitored Area: >3km >30km >50km >15km >30km >50km

(1) (2) (3) (4) (5) (6)

(0-3km)*Open -0.065*** -0.072*** -0.079*** -0.069*** -0.074*** -0.083***
(0.013) (0.015) (0.016) (0.014) (0.015) (0.017)

(3-6km)*Open -0.068*** -0.073*** -0.082***
(0.014) (0.015) (0.016)

(6-9km)*Open -0.069*** -0.074*** -0.083***
(0.014) (0.014) (0.016)

(9-12km)*Open -0.069*** -0.074*** -0.084***
(0.014) (0.015) (0.016)

(12-15km)*Open -0.070*** -0.075*** -0.084***
(0.014) (0.015) (0.016)

Observations 83,293,774 74,496,330 65,280,883 83,293,774 77,485,464 68,270,017
R2 0.967 0.966 0.966 0.967 0.967 0.967

Note: Column (1)-(6) show DID estimation results with treatment intensity defined
by distances to monitors. Open is the treatment indicator that equals one if a cell is in
a city that has joined the new monitoring program. The first three columns use cells
within 3km to the monitor as the monitored group and compare different unmoni-
tored groups: cells outside 3km, 30km or 50km of the monitors. Column (4)-(6) add
four more distance bins to the monitored group. All columns include both the cell FE
and Wave×Year FE. Standard errors are clustered at city level. Significance: ∗p<0.1;
∗∗p<0.05; ∗∗∗p<0.01
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Table 3.6: Event Study with Alternative Treatment Intensity Groups Estima-
tion Results

Dependent variable: ln(PM2.5it)

Monitored Area: ≤3km ≤10km
Unmonitored Area: >3km >30km >50km >10km >30km >50km

(1) (2) (3) (4) (5) (6)

Near*(y-5) 0.018** 0.021** 0.025** 0.022** 0.024** 0.028***
(0.009) (0.009) (0.010) (0.009) (0.009) (0.010)

Near*(y-4) 0.012 0.013 0.016 0.014 0.015 0.017
(0.009) (0.010) (0.011) (0.009) (0.010) (0.011)

Near*(y-3) -0.002 -0.003 -0.007 -0.001 -0.003 -0.006
(0.009) (0.010) (0.012) (0.009) (0.010) (0.011)

Near*(y-2) -0.006 -0.005 -0.008 -0.010 -0.008 -0.012
(0.012) (0.013) (0.015) (0.012) (0.013) (0.015)

Near*(y0) -0.030** -0.030** -0.033* -0.033** -0.033** -0.037**
(0.014) (0.015) (0.017) (0.014) (0.015) (0.017)

Near*(y+1) -0.050*** -0.054*** -0.061*** -0.049*** -0.052*** -0.059***
(0.016) (0.017) (0.019) (0.016) (0.017) (0.019)

Near*(y+2) -0.044** -0.044* -0.051* -0.049** -0.049** -0.056**
(0.021) (0.024) (0.028) (0.021) (0.023) (0.027)

Near*(y+3) -0.101*** -0.108*** -0.121*** -0.105*** -0.111*** -0.126***
(0.022) (0.025) (0.029) (0.022) (0.025) (0.028)

Near*(y+4) -0.068*** -0.080*** -0.095*** -0.074*** -0.084*** -0.100***
(0.018) (0.022) (0.026) (0.017) (0.020) (0.024)

Near*(y+5) -0.080*** -0.098*** -0.118** -0.080*** -0.095*** -0.116***
(0.026) (0.034) (0.046) (0.026) (0.033) (0.045)

Observations 87,843,991 77,211,912 67,374,686 87,843,991 78,853,329 69,016,103
R2 0.966 0.966 0.967 0.966 0.967 0.967

Note: Column (1)-(6) show event study results with different treatment intensity
groups. Near is the monitored area indicator which equals one for cells within 3km
from monitors in column (1)-(3), and 10km from monitors in column (4)-(6). y-5, y-
4,...,y+5 represent each year within the 5-year time window around monitor openings.
For each monitored group, the three columns compare different unmonitored groups:
cells outside 3km (10km), 30km or 50km of the monitors. All columns include both
the cell FE and Wave×Year FE. Standard errors are clustered at city level. Significance:
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3.7: Heterogeneity Analysis: Difference in Differences with Treatment
Intensity Estimation Results

Dependent variable: ln(PM2.5it)

Unmonitored Area: >3km >30km >50km >15km >30km >50km

(1) (2) (3) (4) (5) (6)

(0-3km)*Open -0.073*** -0.079*** -0.087*** -0.077*** -0.082*** -0.091***
(0.015) (0.017) (0.019) (0.016) (0.017) (0.019)

(3-6km)*Open -0.071*** -0.076*** -0.085***
(0.015) (0.016) (0.017)

(6-9km)*Open -0.069*** -0.074*** -0.083***
(0.014) (0.014) (0.016)

(9-12km)*Open -0.070*** -0.075*** -0.085***
(0.013) (0.014) (0.016)

(12-15km)*Open -0.072*** -0.077*** -0.086***
(0.013) (0.014) (0.016)

(0-3km)*Open*Dirtier 0.010 0.010 0.010 0.010 0.010 0.010
(0.010) (0.010) (0.010) (0.010) (0.010) (0.010)

(3-6km)*Open*Dirtier 0.004 0.005 0.005
(0.010) (0.010) (0.010)

(6-9km)*Open*Dirtier 0.0001 0.0002 0.0003
(0.012) (0.012) (0.012)

(9-12km)*Open*Dirtier 0.002 0.002 0.002
(0.012) (0.012) (0.012)

(12-15km)*Open*Dirtier 0.004 0.004 0.004
(0.012) (0.012) (0.012)

Observations 83,293,774 74,496,330 65,280,883 83,293,774 77,485,464 68,270,017
R2 0.967 0.966 0.966 0.967 0.967 0.967

Note: Column (1)-(6) show DID estimation results with treatment intensity defined
by distances to monitors. Open is the treatment indicator that equals one if a cell is in
a city that has joined the new monitoring program. Dirtier is a dummy variable indi-
cating if the pollution in a cell is above the average city PM2.5. The first three columns
use cells within 3km to the monitor as the monitored group and compare different un-
monitored groups: cells outside 3km, 30km or 50km of the monitors. Column (4)-(6)
add four more distance bins to the monitored group. All columns include both the cell
FE and Wave×Year FE. Standard errors are clustered at city level. Significance: ∗p<0.1;
∗∗p<0.05; ∗∗∗p<0.01
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Table 3.8: Robustness Check Using Raw AOD Data

Dependent variable: AOD

Unmonitored Areas: >3km >12km >50km >50km

(1) (2) (3) (4)

(0-3km)*Open -0.021*** -0.022*** -0.033*** -0.034***
(0.005) (0.005) (0.006) (0.006)

(3-6km)*Open -0.025*** -0.037***
(0.005) (0.006)

(6-9km)*Open -0.030*** -0.042***
(0.005) (0.006)

(9-12km)*Open -0.034*** -0.046***
(0.005) (0.006)

Observations 10,136,285 10,136,285 6,992,163 7,330,347
R2 0.876 0.876 0.849 0.859

Note: Column (1)-(4) show DID estimation results with treatment intensity defined
by distances to monitors. Open is the treatment indicator that equals one if a cell is
in a city that has joined the new monitoring program. The dependent variable is the
annual AOD at 3km by 3km grid cells. Column (1) & (3) use cells within 3km to the
monitor as the monitored group and compare different unmonitored groups: cells
outside 3km, or 50km of the monitors. Column (2) & (4) add three distance bins to the
monitored group and compare two unmonitored groups. All columns include both
the cell FE and Wave×Year FE. Standard errors are clustered at city level. Significance:
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3.9: Hereogeneous Analysis: Clean vs. Dirty Cities by Roll-out Waves

Dependent variable: ln(PM2.5it)

All Wave1 Wave2 Wave3

(1) (2) (3) (4)

(0-3km)*Open -0.062*** -0.015 -0.052*** -0.133***
(0.013) (0.015) (0.018) (0.035)

(0-3km)*Open*1(Clean City) -0.030 -0.085*** 0.003 -0.031
(0.025) (0.024) (0.056) (0.034)

(0-3km)*Open*1(Clean City)*Compliance -0.004** -0.008** -0.009 -0.006***
(0.002) (0.003) (0.012) (0.002)

Observations 86,844,613 9,856,110 16,784,304 60,204,199
R2 0.967 0.954 0.954 0.963

Note: Column (1)-(4) show DID estimation results with heterogeneity in treatment
effect, separated by roll-out waves. Open is the treatment indicator that equals one if
a cell is in a city that has joined the new monitoring program. 1(CleanCity) is a dummy
variable indicating cells inside a city with average pollution level (based on monitored
cells at the opening years) below the national standard, 35 µ/g3. Compliance represents
the closeness to the national standard. All columns use cells within 3km to the monitor
as the monitored group and cells outside 3km as unmonitored groups. Column (2)-(4)
show the estimation using subsamples of cities in three waves. All columns include
both the cell FE and year FE (Wave×Year FE for column (1)). Standard errors are
clustered at city level. Significance: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3.10: Hereogeneous Analysis: GDP Growth Pressure by Roll-out Waves

Dependent variable: ln(PM2.5it)

All Wave1 Wave2 Wave3

(1) (2) (3) (4)

(0-3km)*Open -0.064** -0.017 -0.045** -0.139*
(0.025) (0.013) (0.022) (0.072)

(0-3km)*Open*1(Economic Decline) 0.079*** 0.031 0.092*** 0.116***
(0.021) (0.047) (0.027) (0.029)

Observations 41,532,584 7,983,534 10,647,527 22,901,523
R2 0.945 0.956 0.933 0.940

Note: Column (1)-(4) show DID estimation results with heterogeneity in treatment ef-
fect, separated by roll-out waves. Open is the treatment indicator that equals one if a
cell is in a city that has joined the new monitoring program. 1(EconomicDecline) is a
dummy variable indicating cells inside a city that experienced an economic recession
in the previous year (decreased GDP). All columns use cells within 3km to the mon-
itor as the monitored group and cells outside 3km as unmonitored groups. Column
(2)-(4) show the estimation using subsamples of cities in three waves. All columns
include both the cell FE and Wave×Year FE. Standard errors are clustered at city level.
Significance: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3.11: Impact of Monitoring on Air Pollution with respect to Distances
from Monitors

Dependent variable: ln(PM2.5)

(1) Population (Million) (2)

Open 0.151*** Outside 300km 1.914
(0.048)

(0-10km)*Open -0.172*** 0-10km 261.386
(0.041)

(10-20km)*Open -0.172*** 10-20km 108.383
(0.042)

(20-30km)*Open -0.173*** 20-30km 97.286
(0.042)

(30-40km)*Open -0.170*** 30-40km 88.179
(0.043)

(40-50km)*Open -0.165*** 40-50km 80.283
(0.043)

(50-60km)*Open -0.160*** 50-60km 70.712
(0.044)

(60-70km)*Open -0.153*** 60-70km 55.526
(0.045)

(70-80km)*Open -0.145*** 70-80km 43.907
(0.046)

(80-90km)*Open -0.135*** 80-90km 32.314
(0.047)

(90-100km)*Open -0.126*** 90-100km 24.369
(0.048)

(100-150km)*Open -0.092* 100-150km 51.003
(0.053)

(150-200km)*Open -0.052 150-200km 11.966
(0.058)

(200-300km)*Open -0.051 200-300km 8.113
(0.050)

Observations 83,293,774
R2 0.967

Note: This table shows DID estimation results with treatment intensity bins. Open
is the treatment indicator that equals one if a cell is in a city that has joined the new
monitoring program. The coefficient estimates of Open represents the impact of mon-
itoring on air pollution in the base group, which includes cells outside of 300km of
monitors. The interactions represent the effect in each treatment intensity group. Col-
umn (2) shows the total population in each distance bin using 2015 population data.
Controls include both the cell FE and Wave×Year FE. Standard errors are clustered at
city level. Significance: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure A.1: Monitor Representation Errors by Year: all cells vs. monitored cells
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Note: The figures show the monitors representation errors from 2012 to 2017. The repre-
sentation error is defined as the percentage difference between city average pollution level
calculated based on only monitored cells and city average pollution based on all cells. All the
pollution levels are weighted by the grid level population in 2015. Cities in green means the
monitors well-represent city average PM2.5, with representation errors in [-10% , 10%]. Cities
in warm colors (error > 10%) means the monitors over-represent city average pollution, and
those in cool colors (error < -10%) means the monitors under-present city average pollution
level. The map is based on raw data and presented at city level.
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Figure A.2: Correlates of Monitor Representation Errors

Notes: This graph reports coefficient estimates with 95% Confidence intervals from a single
panel regression of measurement errors on city characteristics. Year and Province Fixed Effects
are included.
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