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Shale gas is new, the science behind it is new .....
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Abstract We evaluate the greenhouse gas footprint of natural gas obtained by high-
volume hydraulic fracturing from shale formations, focusing on methane emissions. 1 0
Natural gas is composed largely of methane, and 3.6% to 7.9% of the methane from
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Is natural gas a “bridge fuel?”

For just the release of carbon dioxide during combustion.....
g C of CO, MJ! of energy
Natural gas 15
Diesel oil 20
Coal 25

(Hayhoe et al. 2002)



Methane emissions — the Achilles’ heel of natural gas

e Natural gas is mostly methane.

e Methane is 2"4 most important gas behind human-
caused global warming.

e Methane is much more potent greenhouse gas
than carbon dioxide, so even small emissions matter.
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In fall 2009, Tony Ingraffea, Renee Santoro, and |
took on as research questions:

1) The role of methane emissions in the greenhouse
gas footprint of natural gas.

2) Evaluation of methane emissions from shale gas
in comparison to conventional natural gas.




Methane emissions
(full life-cycle, well site to consumer), shown chronologically
by date of publication (% of life-time production of well)

Conventional gas Shale gas

EPA (1996, through 2010) 1.1% -
Hayhoe et al. (2002) 3.8% @ -----

Jamarillo et al. (2007) 1.0% = -----




Methane emissions
(full life-cycle, well site to consumer), shown chronologically
by date of publication (% of life-time production of well)

EPA (1996, through 2010)
Hayhoe et al. (2002)

Jamarillo et al. (2007)

Howarth et al. (2011)

Conventional gas Shale gas
1.1% -
38% -
1.0% -
3.8% 5.8 %
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Methane emissions
(full life-cycle, well site to consumer), shown chronologically
by date of publication (% of life-time production of well)

Conventional gas Shale gas

EPA (1996, through 2010) 1.1% -
Hayhoeetal.(2002) @ \38%)  —---

Good agreement, with
largely independent data
sources

Jamarillo et al. (2007) 1.0 %

Howarth et al. (2011) 3.8% 5.8 %
(1.6 —6.0) (3.6-7.9)




Methane emissions
(full life-cycle, well site to consumer), shown chronologically
by date of publication (% of life-time production of well)

Conventional gas Shale gas

EPA (1996, through 2010) @ .....

Clearly too low, based on

Hayhoe et al. (2002) 3.8% Lelieveld et al. (2005) and
GAO (2010)
Jamarilloetal.(2007) = \1.0%/ = -
Howarth et al. (2011) 3.8% 5.8 %
(1.6 - 6.0) (3.6-7.9)




Methane emissions
(full life-cycle, well site to consumer), shown chronologically
by date of publication (% of life-time production of well)

Conventional gas Shale gas

EPA (1996, through 2010) 1.1% -

Hayhoe et al. (2002) a oo

50% greater emissions from shale gas,
based on estimates of venting during

Jamarillo et al. (2007) frack-return flow back

Howarth et al. (2011)
(3.6-7.9)

(1.6=16.0)




Methane emissions

One of our major conclusions in Howarth et al.
(2011): pertinent data were extremely limited, and
poorly documented.

Great need for better data, conducted by
researchers free of industry control and influence.

Jamarillo et al. (2007) 1.0% = ----
Howarth et al. (2011) 3.8% 5.8 %
(1.6 - 6.0) (3.6-7.9)
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Abstract We evaluate the greenhouse gas footprint of natural gas obtained by high-
volume hydraulic fracturing from shale formations, focusing on methane emissions.
Natural gas is composed largely of methane, and 3.6% to 7.9% of the methane from
shale-gas production escapes to the atmosphere in venting and leaks over the life-
time of a well. These methane emissions are at least 30% more than and perhaps
more than twice as great as those from conventional gas. The higher emissions from
shale gas occur at the time wells are hydraulically fractured—as methane escapes
from flow-back return fluids—and during drill out following the fracturing. Methane
is a powerful greenhouse gas, with a global warming potential that is far greater
than that of carbon dioxide, particularly over the time horizon of the first few
decades following emission. Methane contributes substantially to the greenhouse
gas footprint of shale gas on shorter time scales, dominating it on a 20-year time
horizon. The footprint for shale gas is greater than that for conventional gas or oil
when viewed on any time horizon, but particularly so over 20 years. Compared to
coal, the footprint of shale gas is at least 20% greater and perhaps more than twice
as great on the 20-year horizon and is comparable when compared over 100 years.

Keywords Methane - Greenhouse gases - Global warming - Natural gas - Shale gas -
Unconventional gas - Fugitive emissions - Lifecycle analysis - LCA - Bridge fuel -
Transitional fuel - Global warming potential - GWP
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| Person o i-Year

People who Mattered

Mark Ruffalo, Anthony Ingraffea,
Robert Howarth
By Bryan Walsh Wednesday, Dec. 14, 2011

The biggest environmental issue of 2011 — at least in the U.S. — wasn't global
warming. It was hydraulic fracturing, and these three men helped represent the
determined opposition to what's more commonly known as fracking. Anthony
Ingraffea is an engineer at Cornell University who is willing to go anywhere to talk
to audiences about the geologic risks of fracking, raising questions about the
threats that shale gas drilling could pose to water supplies. Robert Howarth is his
colleague at Cornell, an ecologist who produced one of the most controversial
scientific studies of the year: a paper arguing that natural gas produced by
fracking may actually have a bigger greenhouse gas footprint than coal. That
study — strenuously opposed by the gas industry and many of Howarth's fellow
scientists — undercut shale gas's major claim as a clean fuel. And while he's best
known for his laidback hipster performances in films like The Kids Are All Right,
Mark Ruffalo emerged as a tireless, serious activist against fracking — especially
in his home state of New York.




| Person o i-Year

People who Mattered

Mark Ruffalo, Anthony Ingraffea,
Robert Howarth
By Bryan Walsh Wednesday, Dec. 14, 2011

Other “People who Mattered” in 2011:

Newt Gingrich, Osama bin Laden, Joe Paterno,
Adele, Mitt Romney, Muammar Gaddafi,
Barack Obama, Bill McKibben, Herman Cain,
Rupert Murdoch, Vladimir Putin, Benjamin
Netanyahu...




Methane emissions

(% of life-time production of well)

Conventional gas Shale gas
EPA (1996, through 2010) 11% -
Hayhoe et al. (2002) 38% -
Jamarillo et al. (2007) 1.0% = -
Howarth et al. (2011) 3.8% 5.8 %
EPA (2011) 2.5% 3.9%
Venkatesh et al. (2011) 2.2 % -—--
Jiang et al. (2011) -—-- 2.0%
Stephenson et al. (2011) 0.5% 0.7 %
Hultman et al. (2011) 2.3 % 3.8%
Burnham et al. (2011) 2.6 % 1.9 %

Cathles et al. (2012) 1.8 % 1.8%




Methane emissions

(% of life-time production of well)

Conventional gas Shale gas

CDA 1000 slevasiale 2010) 1.1 .0/

Many things to critique here....

But fundamentally, these are all just reinterpretations of
the same pretty limited data set.

Stephenson et al. (2011) 0.5% 0.7 %
Hultman et al. (2011) 2.3 % 3.8%
Burnham et al. (2011) 2.6 % 1.9 %

Cathles et al. (2012) 1.8 % 1.8%




Methane emission estimates:

Upstream Downstream Total
(well site) (storage, distribution, etc.)
Hayhoe et al. (2002), conventional 1.3% 2.5% 3.8%
EPA (2010), US average for 2009 0.16 % 0.9% 1.1%
Howarth et al. (2011), US average 1.7 % 2.5% 4.2 %
conventional gas 1.3 % 2.5% 3.8%
shale gas 3.3% 2.5% 5.8%
EPA (2011), US average for 2009 1.8 % 0.9% 2.7 %
conventional gas 1.6 % 0.9% 2.5%
shale gas 3.0% 0.9% 3.9%
Petron et al. (2012), Colorado field 4.0% 000 - e
EPA (2013), US average for 2009 0.88 % 0.9% 1.8 %
Karion et al. (2013), Utah field 9.0% 0 - e
Allen et al. (2013), US average 042% = e e
Miller et al. (2013), US average @ - - >3.6%
Brandt et al. (2014), US average @  -—--- = e 5.4%

Schneising et al. (2014), 9.6 %
average shale gas




Methane emission estimates:

Upstream Downstream Total
(well site) (storage, distribution, etc.)
Hayhoe et al. (2002), conventional 2.5% 3.8%
EPA !2010!, UsS average for 2009 0.9% 1.1 %
Howarth et al. (2011), US average . 4.2 %

conventional gas

First re-analysis %
shale gas

by EPA since 1996 B %

EPA (2011), US average for 2009 0.9% 2.7 %
conventional gas 0.9% 2.5%

shale gas Re-analyzed again,
under pressure from
industry, and ignoring

Petron et al. (2012)

Petron et al. (2012), Colorado field
EPA (2013), US average for 2009

Karion et al. (2013), Utah field
Allen et al. (2013), US average

Miller et al. (2013), US average @ - - >3.6%
Brandt et al. (2014), US average @  -—--- = e 5.4%
Schneising et al. (2014), 9.6 %

average shale gas




Methane emission estimates:

Upstream Downstream Total
(well site) (storage, distribution, etc.)

Hayhoe et al. (2002), conventional 1.3% 2.5% 3.8%

EPA (2010), US average for 2009 0.9% 1.1%

Howarth et al. (2011), US average 2.5% 4.2 %
conventional gas 2.5% 3.8%
shale gas 2.5% 5.8%

*

EPA (2011), US average for 2009 1.8% ‘o 0.9% 2.7%
conventional gas 1.6% 0.9% 2.5%
shale gas Low-end, best-case estimate from Howarth

et al. (2011) for US average for 2009 = 0.5%

Petron et al. (2012), Colorado field 40% 00 - “‘u‘ -----

e®
EPA (2013), US average for 2009 0.88 % 0.9‘%"' 1.8 %

Karion et al. (2013), Utah field
Allen et al. (2013), US average
Miller et al. (2013), US average
Brandt et al. (2014), US average @  -—--- = e 5.4%

Schneising et al. (2014), 9.6 %
average shale gas




Methane emission estimates:

Upstream Downstream Total
(well site) (storage, distribution, etc.)
Hayhoe et al. (2002), conventional 1.3% 2.5% 3.8%
EPA (2010), US average for 2009 0.16 % a-0-04 E—
. Range for shale gas in
Howarth et al. (2911), IUS average 1.7 “‘7 Howarth et al. (2011) =
conventional gas o 2.2 % to 4.3%

shale gas % LA —
EPA (2011), US average for 2009 -85 o.g.%" ,»‘:” 2.7%

conventional gas 1.6 % 09 %, & 2.5%

shale gas 3.0% . o’ 0.?.'/;.: 3.9%

L 4 L 4

Petron et al. (2012), Colorado field & .’0”..;.’.’. _____
EPA (2013), US average for 2009 088% . 0.9% 1.8 %
Karion et al. (2013), Utah field 9.0 % I’—’ ’." -----------
Allen et al. (2013), US average ). 2 ;’ -----------
Miller et al. (2013), US average - ;’. ------ >3.6%
Brandt et al. (2014), US average =--- l:‘ ------ 5.4%
Schneising et al. (2014), 9.6 % L L

average shale gas




Methane emission estimates:

Upstream Downstream Total
(well site) (storage, distribution, etc.)
Hayhoe et al. (2002), conventional 1.3% 2.5% 3.8%
EPA (2010), US average for 2009 0.16 % 0.9%
Howarth et al. (2011), US average 1.7 % 2.5%
conventional gas 1.3 % 2.5% .
shale gas 3.3% 2.5% 5.8%
EPA (2011), US average for 2009 1.8 % 0.9% 2.7 %
conventional gas 1.6 % 0.9% 2.5%
shale gas 3.0% 09% _______  3.9%

Miller et al. (2013) PNAS national analysis for methane from all
sources, 2007 — 2008, based on all monitoring data on methane
in atmosphere (12,694 observations). EPA (2013) estimate at
least 2-X too low...

B e e e o e o ~Tea
Allen et al. (2013), US average 0.42 % ...-'--'-h....
Miller et al. (2013), US average @ - - > >3.6%
Brandt et al. (2014), US average @  -—--- = e 5.4%
Schneising et al. (2014), 9.6 % L e
average shale gas




Methane emission estimates:

Upstream Downstream Total
(WM) (storage, distribution, etc.)

Hayhoe et al. (2002), conventional 1.3% 3.8%
EPA (2010), US average for 2009 0.16 % 1.1%
Howarth et al. (2011), US average 1.7 % 4.2 %
conventional gas 1.3 % 3.8%
shale gas 3.3% 5.8%
EPA (2011), US average for 2009 1.8 % 2.7 %
conventional gas 1.6 % 2.5%
shale gas 3.0% 3.9%

Petron et al. (2012), Colorado fielfd 40% | |\ - | -
EPA (2013), US average for 2009 0.88 % 0.9% 1.8 %

Karion et al. (2013), Utah field 90% | \ - | -

Allen et al. (2013),USaverage | 042% |  \ -—- | -
Miller et al. (2013), US average >3.6%
Brandt et al. (2014), US average 5.4%

Schneising et al. (2014),
average shale gas




Bruce Gellerman, “Living on Earth,” Jan. 13,
2012, based on work of Nathan Phillips

http://www.loe.org/shows/segments.html?programID=12-P13-00002&segmentID=3



Pipeline accidents and explosions happen, due to large leaks....

..... Small leaks are ubiquitous.

500,000

Pipelines in US are old! |
- anll I I |
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PHMSA 2009 Transmission Annual Data

Flames consume homes during a massive fire in a residential neighborhood September 9,
2010 in San Bruno, California. (Photo by Ezra Shaw/Getty Images)




March 12, 2014 — 7 killed in explosion in NYC
(127-year old gas mains)
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Methane emission estimates:

Upstream Downstream Total
(well site) (storage, distribution, etc.)

Hayhoe et al. (2002), conventional 1.3% 2.5% 3.8%
EPA (2010), US average for 2009 0.16 % 0.9% 1.1%
Howarth et al. (2011), US average 1.7 % 2.5% 4.2 %
conventional gas 1.3 % 2.5 % 3.8%

- n 0,
shald 5 4 9%, (+/-1.8%) is best estimate for >-8%

u n 0,
FPA (2011, U% average US methane emissions 21
(2

shald from natural gas BEFORE the shale 3.99%
gas revolution

Petron et al. (2

EPA (2013), US average for 2009 0.88 %
Karion et al. (2013), Utah field 9.0 %
Allen et al. (2013), US average 0.42%

Miller et al. (2013), US average ~  -----
Brandt et al. (2014), US average @  -----

Schneising et al. (2014), 9.6 %
average shale gas




Methane emission estimates:

Upstream Downstream Total
(well site) (storage, distribution, etc.)

Hayhoe et al. (2002), conventional 1.3% 2.5% 3.8%
EPA (2010), US average for 2009 0.16 % 0.9% 1.1%
Howarth et al. (2011), US average 1.7 % 2.5% 4.2 %
conventional gas 1.3 % 2.5 % 3.8%
shald Perhaps 12% (+- 8%) for shale gas, >-8%
EPA (2011), US including downstream emissions? .
shale gas 3.0% I:‘ 0.9% 3.9%

Petron et al. (2012), Colorado field 4.0 % .: -----------
EPA (2013), US average for 2009 0.88 % ] 0.9% 1.8 %

Karion et al. (2013), Utah field 9.0 %: -----------

Allen et al. (2013), US average 0.42.9'6 -----------
Miller et al. (2013), US average @  ----- :. ------ >3.6%
Brandt et al. (2014), USaverage /~~—--\ = = 5.4%

Schneising et al. (2014),
average shale gas




Schneising et al. (2014) — “Remote sensing of fugitive methane emissions
from oil and gas production in North American tight geologic formations”
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4 “l...\j ,-"I :
O 3 | .f i 5 :
f A A .I's llll 3 :
| ¢ 'n,.. . :
" 4 : }l"l f' —L-\
'mhn: & -~y ; .'. E_ & -y

XCH, [ppb]

T ! I I
N

1669 1688 1707 1726 1745 1764 1783 1802 1821 1840




Schneising et al. (2014) — “Remote sensing of fugitive methane emissions
from oil and gas production in North American tight geologic formations”
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Time frame for comparing methane and carbon dioxide:

e Hayhoe et al. (2002) 0 to 100 years
e Lelieveld et al. (2005) 20 & 100 years
e Jamarillo et al. (2007) 100 years

e Howarth et al. (2011) 20 & 100 years
e Hughes (2011) 20 & 100 years
e Venkatesh et al. (2011) 100 years

e Jiang et al. (2011) 100 years

e Wigley (2011) 0 to 100 years
e Fulton et al. (2011) 100 years

e Stephenson et al. (2011) 100 years

e Hultman et al. (2011) 100 years

e Skone et al. (2011) 100 years

e Burnham et al. (2011) 100 years

e Cathles et al. (2012) 100 years

e Alvarez et al. (2012) 0 to 100 years



Global Warming Potential (GWP):

-- the integrated effect of radiative forcing of a
greenhouse gas relative to carbon dioxide over
a defined period of time

-- usually expressed in terms of total masses (ie,
mass of methane relative to mass of carbon
dioxide)



GWP values for methane:

20 year 100 year

IPCC 1996 56 21
IPCC 2007 72 25
Shindell et al. 2009 105 33

IPCC 2013 86 34
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IPCC (2013): “Thereis no
scientific argument for
selecting 100 years compared
with other choices.”

“The choice of time horizon ....
depends on the relative
weight assigned to the effects
at different times.”




Global greenhouse gas emissions, weighted by global warming potentials

_f..

CO, equivalent emissions [Pg (CO,),.]

GWP 10 yr GWP 20 yr  GWP 100 yr

IPCC 2013



Dangerous tipping points may be only 15 to 35 years into the future.

Controlling methane is CRITICAL to the solution!
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The global area of tundra decreased 18% in
past 20 years (Wang et al. 2004)
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http://www.arctic.noaa.gov/detect/land-tundra.shtml

(downloaded June 9, 2014)



Same location in Alaska, showing transition from tundra
to wetlands over the last 20 years
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http://www.arctic.noaa.gov/detect/land-tundra.shtml
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(downloaded June 9, 2014)



High potential for massive emissions of
ancient CH, due to thawing permafrost and
release of “frozen” methane (clathrates).




PHILOSOPHICAL

TRANSACTIONS

—OF ¢ Phil, Trans, R, Sec. A (2007) 365, 1925 1954
THE ROYAA doi: 10,1098/ rsta.2007.2052
SOCIETY Published online 18 May 2007

Climate change and trace gases
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Hansen et al. (2007) suggested critical threshold
in climate system, to avoid melting of natural

methane hydrates, at ~ 1.8°C.



g C carbon dioxide equivalents per MJ

Greenhouse gas footprints per unit of heat generated, with methane
converted to CO2 equivalents using 20-year GWP from IPCC (2013)
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Greenhouse gas consequences for natural gas compared to coal
(compared over integrated 20-year time frame)
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Powering New York and Galifornia with no fossil
fuels, largely by 2030, using only current technologies
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Examining the feasibility of converting New York State’s all-purpose energy
infrastructure to one using wind, water, and sunlight
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* New York State’s all purpose energy can be derived from wind, water, and surlight
= The cooversion reduces NYS end use power demand by ~3/X

* The plan creates more jobs than lost since most energy will be from in swmte.

* The plan creates long temm energy price seability since fuel costs will be zero.

» The plan decreases air pollution deaths 4000y ($23 billion/yr or ¥X of NYS CU¥F).
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This study presents a roadmap for converting California's all- purpase {electricity, transportation, heating/
cooling. and industry) energy infrastructure to one derived entirely from wind, water, and sunlight
(WWS) cenerating electricity and electrolytic hvdrogen. California's available WWS resources are first




Cornell University
College of Agriculture and Life Sciences

Funding:

Park Foundation
Wallace Global Fund
Cornell University







Gas pipelines in Manhattan: NY Times, March 24, 2014

http://www.nytimes.com/2014/03/24/nyregion/beneath-cities-a-decaying-tangle-of-gas-pipes.html?_r=1



Are methane emissions from shale gas greater than from
conventional gas?

1)Large potential for venting from shale gas wells at time of flow-back
following hydraulic fracturing. New EPA regulations address this, but allow
some exceptions. And enforcement? And what about other countries?

2)Caulton et al. (PNAS, April 2014): very high methane
emissions from some shale gas wells in southwestern
Pennsylvania during drilling phase.... A result of going
back into an area with a long history of gas and coal
development?

BUT most importantly, shale gas is
the future of natural gas, and natural
gas in general is problematic.




