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Executive Summary 
Breast cancer is the most prevalent type of cancer, excluding lung cancer, for women in 

the United States. Left untreated, a malignant primary tumor in the breast can metastasize 

via the underarm lymph nodes, increasing risk of death. Invasive surgery techniques such 

as mastectomy and lumpectomy are used to treat breast cancer. Although breast-

conserving therapies are successful in tumor removal, these surgeries still involve radical 

resection of the tumor, postoperative radiotherapy, and undesirable cosmetic effects.  

 

More recently, less invasive techniques such as cryotherapy and hyperthermia have 

gained wide appeal. One hyperthermia technique, radiofrequency ablation (RFA), 

delivers high-frequency alternating currents to heat tissue. This technique minimizes 

pain, avoids infections and scar formations, and reduces recovery time. However, RFA 

still requires a needle-like probe to be inserted directly into the breast to deliver heat.  

 

In contrast to open surgery and RFA techniques, ultrasound hyperthermia is the only non-

invasive technique that does not require any incisions or percutaneous insertions. 

Ultrasound hyperthermia uses focused ultrasound waves to destroy targeted tissue. 

During this procedure, an ultrasound transducer delivers mechanical energy to tissues, 

resulting in temperature increase and thus cell death. Magnetic resonance imaging can be 

used to guide this non-invasive treatment, eliminating the need to insert a probe. Possible 

side effects of the procedure include local pain, skin burns, and sometimes injury to 

surrounding tissue. 

 

Our goal is to use COMSOL to model an ultrasound hyperthermia treatment of a breast 

tumor using a 2D axisymmetric geometry. By modeling the acoustic pressure field in the 

breast and surrounding water, we will determine the optimum combination of applied 

frequency and time to reach 42-45 °C for tumor destruction while minimizing damage to 

surrounding tissues. A frequency of 1 MHz will be used as a starting point, for which 

tissue properties are best defined.  
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Introduction 
A woman in the U.S. today has about a one in eight chance of developing invasive breast 

cancer during her lifetime. It was estimated that 192,370 women and 1,910 men in the 

United States were diagnosed with breast cancer in 2009, and an approximate 40,610 of 

those affected died as a result of breast cancer [1]. Breast cancer death rates exceed that 

of all cancer, with the exception of lung cancer, for women in the U.S [1].  

 

The uncontrolled growth of cancerous breast cells causes formations of malignant tumors 

that can spread to other parts of the body via the underarm lymph nodes. Traditional 

treatment of breast cancer involves invasive surgery, such as mastectomy and 

lumpectomy [2]. Mastectomy, the removal of entire breast tissues, was the single most 

popular therapy since its introduction in 1894 until breast-conserving lumpectomy 

became common in the 1970s [3]. Though less invasive, these breast-conserving 

therapies still require radical resection of the tumor, postoperative radiotherapy, and 

produced undesirable cosmetic results [4].  

 

Hyperthermia for Breast Tumor Treatment 
Advancements in technology over recent years have allowed significant development in 

treatments of breast cancer. While early attempts of hyperthermia treatment resulted in 

unintended normal tissue injuries, newer tools today have allowed more precise and 

better controlled heat delivery for tumor ablation. As a result, alternative minimally 

invasive techniques such as cryotherapy and hyperthermia have recently garnered wide 

appeal [2]. 

 

Radiofrequency ablation (RFA) is one example of a widely applied hyperthermia 

treatment in clinical practice. In 1999, the application of thermal energy caused by high-

frequency alternating currents was reported to successfully ablate local breast tissue with 

improved cosmetic results. The controlled delivery of electrical energy allowed tumor 

temperature to rise above 100 °C within 10 to 20 minutes [4]. Similar to other minimally 

invasive therapies, RFA minimizes pain, avoids infections and scar formations, and 

reduces recovery time [3]. However, RFA and many minimally invasive therapies require 

an image-guided insertion of a needle-like probe directly into the breast to deliver heat 

[3]. 

 

Ultrasound Hyperthermia Therapy for Tumor Ablation 
Ultrasound hyperthermia therapy, an emerging method for destroying tumor tissue, 

eliminates the need to make incisions or percutaneous insertions into the breast. 

Ultrasound hyperthermia therapy uses focused ultrasound waves to destroy tissue. A 

transducer placed near the skin surface delivers mechanical energy that tissues absorb, 

resulting in temperature increase and thus cell death [5]. A coupling agent such as water 

is used to propagate the acoustic waves and cool normal tissue. This application can be 

used to destroy tumors in prostate [6] and breast cancers [7], among others.  

 

In mild ultrasound hyperthermia therapy, tumors are exposed to low-intensity ultrasound 

for long periods of time (10-60 minutes) in order to maintain a temperature needed for 
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ablation. In another approach termed “high intensity focused ultrasound” or HIFU, high 

intensity ultrasound waves propagate into the tissue rapidly for several seconds (0.1-30s) 

to rapidly increase the temperature of the tumor [8]. During the procedure, magnetic 

resonance imaging (MRI) can be used as a way to guide HIFU treatment because of its 

high resolution when imaging soft tissue. Currently, MR guided-HIFU can play a role in 

pre-treatment planning, treatment monitoring, and post treatment evaluation [9].  

 

Ultrasound hyperthermia treatment is preferred by some patients because it is minimally 

invasive and can be performed as an outpatient procedure with few side effects and fast 

recovery time. Possible side effects include local pain in the exposed site, skin burns, and 

in more severe cases injury to the surrounding tissue. Currently, ultrasound hyperthermia 

is in the clinical trials stages of development. However, advancements in research may 

allow this to become a more commonly used treatment in the future [10]. 

 

Problem Statement and Design Objectives 

We used COMSOL to model breast tumor ablation by ultrasound to find the optimal 

applied duration at various frequencies. The goal is to reach a tumor temperature of 42-45 

 , which is high enough to destroy cancerous cells, while minimizing damage to 

surrounding tissues [11, 12]. 

 

We used the Helmholtz equation for linear acoustic wave propagation to model the 

acoustic pressure field in the water and tissue domains. The pressure field solution was 

used to determine the volumetric rate of acoustic heat generation, which was used to 

model heat transfer in the water and tissue domains. 

 

Schematic of COMSOL Model with Boundary Conditions. 

The figure below indicates the relative size and geometry of the tumor, breast, water 

domain, and transducer in our initial model. Boundary and initial conditions have also 

been labeled.  
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Figure 1. Schematic of initial 2D axisymmetric model of hemispherical breast with 

spherical tumor. Boundary conditions for the pressure field and temperature for heat 

transfer are included. Flux at the axisymmetric boundary is 0 for both temperature and 

pressure. 

 

The initial and boundary water temperatures were later varied in optimization. 

Additionally, the height of the water domain was changed in order to better focus the 

heating effect on the region of the tumor. Figure 2 illustrates the geometry used in our 

optimized model. 

 

 
Figure 2.  Schematic of the 2D axisymmetric model used in optimization. This includes a 

smaller water domain. 
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Heat Transfer Model 

The tumor tissue was modeled as a sphere of diameter 2 cm at a depth of 1.5 cm below 

the surface of the skin [13, 14]. We will incorporate the effect of ultrasound as a 

volumetric acoustic heat source which will be used in the governing equation: 

  

    
  

  
    (   )       (1) 

 

where T is the temperature, ρ is the density, Cp is the specific heat, k is the thermal 

conductivity and Q is the acoustic heat source. Blood perfusion and metabolic heat 

generation in the tissue will be neglected.  

 

Water will be used to propagate ultrasound waves. The water boundaries will be assumed 

to be far away at water temperature of 37   [15]. Boundary conditions at the bottom 

edge of the tissue model will be assumed to be far away at body temperature of 37  . At 

the axis of symmetry, temperature flux is equal to zero. The initial condition is a 

temperature of 37   for tumor, tissue, and water. 

 

Numerical Model for Ultrasound Pressure and Heat Generation 

We will use the homogeneous Helmholtz equation in 2D axisymmetric cylindrical 

coordinates to model the sound pressure from the acoustic source: 
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where r and z are the radial and axial coordinates, p is the acoustic pressure, and ω is the 

angular frequency. The density, ρc, and the speed of sound, cc, are complex-valued to 

account for the material’s damping properties [8]. 

 

The Helmholtz equation is used under the assumption that the acoustic wave propagation 

is linear and that the amplitudes of shear waves are much smaller than that of the pressure 

waves. Nonlinear effects and shear waves are therefore neglected. 

 

The boundary conditions are no flux (no acceleration) at all boundaries except for the 

outer boundary of the bowl of the transducer (Figure 1). The flux at the edge of the 

transducer is an acceleration condition of     
 , where d0 is the displacement amplitude 

of the transducer and       where f is the ultrasound frequency [8]. This acceleration 

term represents the surface intensity.  

 

Perfectly matched layers were used at the edge of the transducer and the tissue and water 

domains to model the absorption of pressure waves and eliminate their reflection from 

the boundaries. 

 

Q, the volumetric acoustic heat source, will be calculated as: 
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where   is the acoustic absorption coefficient, I is the magnitude of the acoustic intensity, 

p is the acoustic pressure, and v is the acoustic particle velocity vector [8, 16]. 

 

The acoustic absorption coefficient α was assumed to be equal to the attenuation 

coefficient of the tissue and water. This was implemented as a function of frequency: 

 

     
  

 

where α0 and n were found in literature (see Appendix A for specific definitions). 

 

The same properties were implemented for tumor, normal tissue, and fat in the tissue 

domain. 
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Results 

Preliminary Solutions for Pressure and Heat Generation 
The model was first run at 1 MHz and an initial water bath temperature of 37 ºC for 15 

minutes as a reference point. This was done to see where the greatest pressure field and 

temperature change would be located; therefore, this plot would indicate whether or not 

heating was focused and sufficient. Shown below are the surface plot results of the 

pressure field and temperature (Figures 3 and 4). The pressure field was focused at the 

tumor (Figure 3). 

 

 
Figure 3. Surface plot of pressure solution, with an ultrasound frequency of 1 MHz. The 

focal point of the pressure field appears to be at the top of the domain, near the edge of 

the perfectly matched layer. 
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There was focused heating at the tumor but the maximum 2.8 ºC rise in temperature was 

insufficient for tumor ablation (Figure 4).  

 

                                        

Figure 4. Surface plot of temperature (ºC) at time 900s (15 minutes) with an ultrasound 

frequency of 1 MHz.  

 

Figure 4 indicates that the majority of heating occurs near the center of the tumor (after 

an adjustment to our geometry). Maximum temperature was raised about 2.8  C, which is 

not yet sufficient for tumor destruction, but the temperature effect is focused on the 

tumor. 
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In addition, temperature vs. time of three different points was plotted to see how different 

regions of the tissue vary in temperature change (Figure 5). The temperature at point 1, 

the tumor center, was raised 1.8 °C from the initial 37 °C by the end of heating at 900 s. 

The temperature at point 2 in the normal tissue was raised about 0.4 °C. It is notable that 

the temperature at point 3 was raised almost 1.7 °C as well; this is due to the effect of the 

ultrasound focusing approximately along the line formed by points 1 and 3 (Figure 3). 

 

 

 
Figure 5. Temperature over time at 3 locations in the tumor: the center of the tumor 

(point 1), and two points in the normal tissue (points 2 and 3).  

 

These preliminary results for temperature at various points in the tissue indicate that 

normal tissue damage is a result we must take into account during the ultrasound 

hyperthermia treatment, because some points in the normal tissue will heat at 

approximately the same rate as the tumor. Optimization of the initial water temperature 

and frequency later performed takes normal tissue damage into account. 
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A surface average temperature of the tumor was also evaluated to quantify roughly how 

much the tumor heated up using the given parameters (Figure 6).  

 

 

 
Figure 6. Average temperature in the tumor vs. time with an ultrasound frequency of 1 

MHz. The tumor is shown in the inset. 

 

It can be seen that average tumor temperature reaches about 38.5 ºC, which is not yet 

high enough for thermal destruction of the tumor tissue. Furthermore, the average tumor 

temperature is not necessarily indicative of the complete success of the hyperthermia 

therapy. The surface plot of temperature (Figure 4) indicates that heating within the 

tumor is not uniform, as some areas of the tumor will reach higher temperatures than 

others; this means that while the average temperature of the tumor may be high, areas of 

the tumor tissue may still remain intact and undamaged. Thus, in our optimization, we 

evaluated the fraction by volume of tumor that reached a certain temperature for tissue 

destruction, rather than an average temperature. 
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In order to increase heating effects, a preliminary model at 3 MHz was also run (Figure 

7). Maximum temperature was raised about 14.3 ºC; however, the maximum temperature 

occurs in the normal breast tissue instead of in the tumor. Therefore, the heating is not 

focused on the tumor with an increase in frequency. This justified the need to change the 

geometry in order to focus the heating effect on the tumor. The new geometry, which 

decreased the water domain’s height by 1 cm, was implemented in the model used in 

optimization. 

 

 
 

Figure 7. Surface plot of temperature at time 900 seconds (15 minutes) with an 

ultrasound frequency of 3 MHz.  
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Optimization of Frequency and Initial Water Temperature 

Principles for Optimization 

In order to determine the best combination of frequency and initial (and boundary) water 

temperature, an optimization process was developed.  

 

We sought to find the conditions where, in order of priority: 

1. All of the tumor was destroyed, by raising the entire tumor volume above 42 °C. 

2. As little of the normal tissue and fat were destroyed as possible, by keeping as 

much of the volume of normal tissue and fat below 42 °C. 

3. The heating time was minimized. 

 

Because the goal of the treatment is to destroy tumor tissue, the first requirement that 

100% of the tumor tissue is destroyed by heating above 42 °C must be met. The 

requirement that all tumor tissue be destroyed corresponds to the standard goal of 

negative margins (complete removal of tumor plus some removal of normal breast tissue) 

in current surgery practices for breast cancer [17]. 

 

The next important requirement is the second one, because we seek to minimize damage 

to normal tissues. Because the longer the heating time, the more damage (heating) to the 

normal tissue, the third requirement that time be minimized was taken into account by 

choosing the first time point that all tumor tissue reached 42 °C. 
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Optimization Process 

By evaluating integrals for the volume of tumor tissue and normal tissue that had reached 

temperatures of 42 °C, it was possible to determine the conditions under which the entire 

tumor was destroyed while damaging the minimum amount of normal tissue. Frequencies 

between 1.5 MHz and 3.5 MHz were tested, along with combinations of initial water 

temperatures ranging from 10 °C to 35 °C. 

 

The fraction of normal tissue damaged at the earliest time that 100% of the tumor reached 

42 °C at each frequency and initial water temperature combination is plotted in Figure 8. 

From this plot, we can visualize which combination of parameters would result in the 

lowest amount of normal tissue damage.  

 

 
Figure 8. Fraction of normal tissue damaged at the earliest time that 100% of the tumor 

reached 42 °C, plotted against frequency, at various initial water temperatures. Any 

frequency/initial water temperature combination that did not achieve 100% tumor 

damage after 15 minutes were not plotted. The three best conditions are labeled with their 

fraction of normal tissue damaged for comparison. 

 

It should be noted that frequencies of 1.5 MHz and 3.5 MHz resulted in incomplete 

heating of the tumor to the destruction temperature of 42 °C, and several other 

combinations of frequency and initial water temperature also did not achieve complete 

heating of the tumor. 
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This incomplete heating of tumor at low frequencies such as 1.5 MHz resulted from the 

fact that the ultrasound intensity (or pressure) at the tumor was not high enough to result 

in sufficient heating of the tumor, at any initial water temperature, similar to our earlier 

observations from lower frequencies such as 1 MHz. Figure 9 provides an illustration of 

the insufficient heating at the frequency of 1.5 MHz. 

 

 

 
Figure 9. Surface plot of temperature at 1.5 MHz, with initial water temperature 30 °C. 

The maximum temperature achieved was 41.5 °C, which was insufficient for tissue 

destruction. 
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In contrast, at high frequencies such as 3.5 MHz, the effect of heating from acoustic 

waves decreased as waves traveled further into the water and tissue domains. This is 

because the property of attenuation was implemented to increase as frequency increased. 

Thus, the pressure waves were greatly attenuated when they reached the depth of the 

tumor within the tissue (Figure 10), and the region of highest pressure oscillations did not 

match the area of the tumor. 

 

 
Figure 10. Pressure surface plot for 3.5 MHz frequency, illustrating effects of acoustic 

wave attenuation at high frequencies. 
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For the 3.5 MHz model, the heating was still focused primarily at the tumor (Figure 11). 

Despite the lack of focusing of the pressure waves, this focusing of heating can be 

attributed to the fact that the water cools the fat and normal tissue at the edge of the 

domain, leading to cooling at the region where pressure oscillations were the greatest.  

 

The combined effect of the pressure attenuation and the cooling effect of water is an 

overall lower temperature increase. As can be seen in Figure 11, the highest temperature 

reached was 41.5 °C (with an initial water temperature of 30 °C), which is again 

insufficient for tumor ablation.  

 

 
Figure 11. Temperature surface plot for 3.5 MHz. An initial water temperature of 30 °C 

and a time of 900 seconds (15 minutes) is shown for this temperature surface plot. 

 

The optimization results for low and high ultrasound frequencies demonstrate that only a 

certain range of frequencies can be used to ensure sufficient heating to the tumor. 
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Results for Optimized Conditions 

We found that the lowest amount of normal tissue damage occurred with an ultrasound 

frequency of 2.75 MHz and an initial water temperature of 10 °C, at a time of 900 

seconds, or 15 minutes. (Results for the volume of normal tissue damage at each 

frequency and initial water temperature are included in Appendix C.) The surface 

intensity was 9188 W/m
2
. 

 

The surface plot at 15 minutes (Figure 12) indicates that most of the heating occurred in 

the tumor, although some breast tissue was also damaged. By this time, 100% of the 

tumor had reached a temperature of 42 °C, while 4.18% (7.81 cm
3
) of the breast tissue 

was damaged.  

 

 
Figure 12. Surface plot of temperature (°C) in breast and water domains at a frequency of 

2.75 MHz with initial water temperature 10 °C at time 900 seconds (15 minutes). This 

combination of frequency and initial water temperature was optimal for tumor destruction 

while maintaining normal breast tissue and fat. 
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The tumor tissue reaches an average of 44.2 °C by 900 seconds of heating (Figure 13), 

which is an indication that the tumor temperature is generally within the 42 to 45 °C 

range needed for hyperthermia ablation. 

 

 

 
Figure 13. Average temperature in tumor (blue in inset) over time for a frequency of 2.75 

MHz and an initial water temperature of 10 °C. At the time of 900 seconds (15 minutes), 

the average tumor temperature was 44.2 °C. 
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Sensitivity Analysis 
 

Thermal conductivity, specific heat capacity, density, and attenuation coefficient of water 

and tissue were each varied by ±10% and ±20% while keeping all other parameters 

constant. This ±10% and ±20% difference from the middle value allows each of these 

parameters to fall between literature values in the temperature ranges we were interested 

in, from 30 ºC to 50 ºC [16, 18-22]. The middle value used included all properties of 

water evaluated at 37 ºC [16, 18, 19] and tissue properties obtained from literature [8]. 

For these parameters, frequency was set at 2.25 MHz and initial water temperature at 25 

ºC. In addition, the constant flux surface intensity term from the transducer was changed 

by ±10% and ±20% and used as another parameter for sensitivity analysis. 

 

 
Figure 14. The thermal conductivity, specific heat, density of both water and tissue as 

well as surface intensity of the transducer were changed by increasing and decreasing by 

10% and 20% from the middle values.  

 

Average tumor temperature was least sensitive to the water’s thermal conductivity, 

specific heat, density, and attenuation as shown in Figure 6. For these parameters, the 

average tumor temperature varied less than 0.5 ºC from the highest to the lowest values. 

This is due to the fact that little heating occurred in the water domain, which was used as 

a coolant. In addition, average tumor temperature was fairly constant with changes in 

specific heat and density of tissue as well.  

 

Our model was most sensitive to thermal conductivity and attenuation in the tissue, as 

well as surface intensity. For these parameters, the average tumor temperature varied 

from 2-3 ºC. The tissue is a more conductive material than water, and there is more 

thermal heating in the tissue in general, especially in the tumor domain. Therefore, more 
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accurate and precise properties for thermal conductivity in tissue would achieve more 

accurate results.  

 

Attenuation and surface intensity of the transducer both depend on frequency. It was 

expected that frequency has a greater effect on heating because of its significance in the 

pressure field equation. It is important to note that frequency was a parameter used to 

optimize our model. From the results shown in Figure 14, we can conclude that 

frequency, surface intensity and attenuation play a large role in the heating of breast 

tumors.  
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Accuracy Check: Comparison with Numerical Model of Ultrasound 

Hyperthermia of Breast Tumor 
 

To verify our model, we compared it to an in vivo experiment of tissue phantom heating 

[23]. 

 

The experiment used an embedded thermocouple to measure the temperature at the focus 

for a 2.6 cm diameter vessel. A blood simulant and an axially symmetric tissue phantom 

(10.72-cm diameter, 8-cm length) were used. The temperature was measured after an 

insonation time of 5s using a frequency of 1.0 MHz and flow velocity of 0 cm/sec.  

 

  

 

Figure 15. The temperature increase in the tissue after an insonation time of 5s at an 

ultrasound frequency of 1 MHz. The experimental results (left; from [23]) and the model 

results (right) both showed an increase of approximately 7 ºC after 5s of heating. The 

experiment and our model used the same water and tissue properties, surface intensity of 

10
5
 W/m

2
, focal length of 62.64 mm, frequency of 1 MHz, and water temperature of 23 

ºC.  

 

Our study was computed for validation by using the same frequency, focal length,  and 

initial water bath temperature, and the same order of magnitude of surface intensity 

values as those used in the experiment. The frequency was set at 1 MHz, the focal length 

was set at 62.64 mm, and the initial water bath temperature was set to room temperature 

of 23ºC. Our model used a surface intensity of 1.01×10
5
 W/m

2
, with a displacement 

amplitude of 41.5 nm. The experiment used a surface intensity of similar magnitude, 

6.5×10
5
 W/m

2
.  

 

Neither the experiment nor our model accounted for blood flow in the tissue. The initial 

temperature of the tumor and normal tissue was set at 37ºC  The pressure model was run 

for 5s, after which only the heat model was run to simulate removal of the transducer.  

 

After ultrasound heating for 5s, the experiment showed a temperature increase of 7 ºC 

while our model showed a similar temperature increase of 7.5 ºC. 
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Any difference between our model and the experiment results is most likely due to a 

difference in the geometries. A more simplified geometry was used in the experiment. 

However, geometry may not have a significant effect on the results since both the 

experiment and our model measured temperature rise at a similar location and had the 

same focal length. The experiment and our model measured the temperature at the point 

of ultrasound focus, which led to similar temperature rise.  
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Conclusions 
The results of our 2D model propose the optimal conditions for tumor destruction while 

preventing destruction to the surrounding normal breast tissue.  

 

The initial model suggested that heating is highly dependent on ultrasound frequency; 

however, increasing frequency to 3 MHz did not result in focused heating of the tumor. 

Therefore, this justified the need to change the geometry in order to reach higher 

temperatures to focus heating in the tumor. Optimization was done for parameters of 

frequency and initial water bath temperature in order to achieve 100% tumor destruction 

and minimal normal breast tissue damage. The results indicated that the optimal 

conditions for tumor destruction include an ultrasound frequency of 2.75 MHz, an initial 

water temperature of 10   , and a heating time of 15 min. At these conditions, 100% of 

the tumor tissue reached 42    for destruction, and only 4.18% (7.81 cm
3
) reached 42    

and was damaged.  

 

Currently, achieving complete removal of the tumor is one of the challenges of 

hyperthermia treatment [17]. Therefore, our model sought to and succeeded in achieving 

100% of tumor destruction.  

 

From sensitivity analysis, we can conclude that the average tumor temperature is not 

strongly sensitive to tissue and water thermal properties of density and specific heat. 

Therefore, variability in these thermal properties of tissue and water would not 

significantly affect the application time of the ultrasound treatment. However, greater 

sensitivity to attenuation in tissue as well as frequency-dependent surface intensity at the 

transducer justified the need to optimize frequency in our solution.  

 

The model was compared to an in vivo experiment of hyperthermia ultrasound heating in 

tissue phantom. The comparison was done using a model with the same water and tissue 

properties, frequency, focal length, and water temperature, and similar surface intensity 

values as those in the experiment. A similar increase in temperature in the tumor after 5s 

of heating indicates that our model results are valid and can be applied to experimental 

conditions.  

Design Constraints 
Constraints to the model include tumor and tissue geometry, transducer geometry, cost, 

health and safety concerns, and patient comfort. The model assumes a perfectly spherical 

breast and tumor, which do not accurately reflect a real situation. In addition, variations 

in patient breast geometry and tumor size and location may alter treatment results. This 

model is also specific to a transducer of a certain geometry, focal length, and curvature. 

Therefore, the cost and construction of the particular transducer would become economic 

and manufacturing constraints.  

 

In addition, health and safety is a major concern as healthy tissues must be protected. 

Cells can maintain homeostasis until approximately 40 °C [24]. At temperatures above 40 

°C, cells become susceptible to damage. In order to minimize damage to healthy tissue, 

there may be limitations on the intensity and duration of ultrasound heating. Similarly, 
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greater patient comfort may be achieved via minimizing healthy tissue damage and 

shorter treatment.  

Design Recommendations and Future Work 
The results for our 2D model demonstrated that frequency, attenuation, thermal 

conductivity of tissue, and intensity of ultrasound had a significant effect on temperature 

increase. Properties such as specific heat and density did not affect average tumor 

temperature as much. For 100% ablation of breast tumors, we recommend optimizing the 

parameters of frequency and initial water temperature.  

 

In terms of design, future work should include a 3D geometry of the breast tumor in order 

to model a more realistic geometry as well as using corresponding properties for the 

different layers of the breast, such as subcutaneous fat, gland tissue, and tumor tissue. An 

MRI or ultrasound image would generate an even more accurate and realistic model. 

Based on our results for acoustic pressure in the tissue and water domains, it was 

demonstrated that ultrasound could be focused with a circular transducer. However, the 

focal point of the pressure waves was not entirely within the area of maximum heating 

for our non-optimized models. In addition, some areas within the healthy tissue reached 

the ablation temperature of 42    These results suggest that transducer geometry and 

placement can be further optimized in future work to allow for a better understanding of 

how various geometries relate to specific scenarios. 

 

Furthermore, a future model could take into account additional techniques to protect the 

surrounding tissue while heating the tumor to a desired temperature. These include a 

moving transducer that can prevent constant heat generation in a single location, and also 

a cyclic ultrasound application in conjunction with intermittent periods of cooling by the 

surrounding water bath. In addition, another way to measure tissue heating is to evaluate  

   , the thermal dose in equivalent minutes at 43 ºC to determine the amount of thermal 

damage and necrosis to the tumor.  

 

Implications and Relevance 
The implications of our study may be applied in future research in and design of 

ultrasound hyperthermia cancer treatments.  As therapeutic ultrasound currently gains 

popularity as an alternative non-invasive treatment option for breast cancer, our model 

provides a valuable understanding of the treatment parameters and their effects that can 

contribute to improving future therapies. Our study results also indicate the sensitivity of 

the tumor temperature to the applied frequency and the transducer geometry that 

determines the location of the ultrasound focal point in the tissue.  Therefore, for optimal 

treatment with minimal damage to surrounding healthy tissues, the model suggests that 

custom treatment designs may be required for individual patients.  

 

Furthermore, a greater understanding of the parameters of ultrasound hyperthermia 

allows the possibility of providing individualized treatment. Real geometries of the 

tumors and tissues of patients may be reconstructed using MRI, modeled using a software 

such as COMSOL, and analyzed in order to design custom treatments.  
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Finally, the model results are not limited to the context of breast tumor treatment. Since 

our sensitivity analysis shows that material properties, such as specific heat, thermal 

conductivity, and density of tissue, have little impact on the tumor temperature, the model 

also has relevance to patients diagnosed of cancer in different tissues and areas of the 

body. Therefore, the model is applicable to the ultrasound treatment of various cancers, 

and provides a convenient means of analyzing the potential side effects of different 

combinations of parameters used in treatment. Our study provides important insight that 

may contribute to research done in minimizing the side effects of and improving future 

ultrasound hyperthermia treatments.  
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APPENDIX A. Mathematical Statement of the Problem  

Governing Equations 
 

i. Heat Transfer 

   
  

  
  [

 

 

 

  
[ (

  

  
)]  

   

   
]    

   
 

ii. Helmholtz Equation for Pressure  

 

 

 

  
[
 

 

 

  
[ (

  

  
)]  

   

   
]  (

 

  
)
  

  
 

Boundary Conditions 
 

i. Heat Transfer  

 

                        (  )                         
                                 

 

ii. Ultrasound Helmholtz Equation  

 

            at boundary of transducer and tissue 

       at all other boundaries 

 

Initial Conditions 

 
i. Heat Transfer  

 

                            

                        (  )           

Definition of Variables and Parameters  
Table A1. COMSOL variables and parameters. 

 

Name Variable Value/Expression  Source  

Transducer Heat Source 

(
 

  )               |  (
 

 
  )|  [8] 

Acoustic Intensity 

Amplitude (
 

  )        √  
    

    
 
 

  

 [8] 
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Intensity in r direction (
 

  )    
  

      |  (   )| 
  

  

Intensity in ϕ direction (
 

  )    

  

      |  (   )| 

Intensity in z direction (
 

  )    
  

      |  (   )| 

Acoustic particle velocity in 

r direction (
 

 
)    

  

    

  
  
    

 

[8] 

  

  

Acoustic particle velocity in 

ϕ direction (
 

 
)    

  

    

  
  

    
 

Acoustic particle velocity in 

z direction (
 

 
)    

  

    

  
  
    

 

Frequency of Transducer 

(   )   Optimized   [8] 

Angular velocity of 

transducer (       )         

 [8]  

  

Complex Density (
  

  )    

  

    (
 

  
)
 

 

Complex Speed of sound 

(
 

 
)    

 

 
 
    

 

Density of Water (
  

  )        

Set as a function of 

temperature [25] 

Density of Tissue (
  

  )         1044 [8] 

Speed of Sound in water 

(
 

 
)        1522 [18] 

Speed of Sound in tissue 

(
 

 
)         1568  [8] 

Specific Heat of water 

(
 

   
)           

Set as a function of 

temperature  [19] 

Specific Heat of 

tissue (
 

   
)           3710  [8] 

Thermal conductivity of 

water (
 

  
)          

Set as a function of 

temperature  [16] 

Thermal conductivity of         0.59  [8] 
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Tissue (
 

  
)   

Attenuation dependence on 

Frequency for water (
  

 
)                     

  [26] 

Attenuation dependence on 

Frequency for tissue (
  

 
)                       

    [27] 

Attenuation coefficient of 

Water (
  

     
)             0.025 

 [8] 

Attenuation coefficient of 

Tissue (
  

     
)          8.55 

Intensity for validation (
 

  )            [23] 

Impedance for validation 

(
  

      )  Z          [28] 

Displacement amplitude of 

transducer (  )     

3.8 (non-optimized model 

& validation), 4.56 

(optimized model)  [8] 
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APPENDIX B. Mesh Convergence Analysis 
 

Mesh convergence was only done for the heat transfer portion of our model. For the 

pressure field portion, we chose a free triangular mesh of maximum size 
 

  
 in order to 

have mesh sizes on a smaller order of magnitude than the pressure waves’ wavelength 

(  
 

 
). 

 

We chose free triangular elements for our mesh for heat transfer because our model 

involves curved surfaces such as the breast surface and tumor-breast interface. Interfaces 

between the domains required a finer mesh to account for fine temperature differences 

caused by variations in the pressure field; the focal center of the ultrasound (at the center 

of the tumor) also required a finer mesh. 

 

We varied maximum element size, minimum element size, maximum element growth 

rate, and resolution of curvature, starting from the predefined settings for “Normal,” 

“Fine,” and so on, and decreasing the parameters for each successive mesh setting. 

 

Figure A1 shows an example of a triangular mesh diagram with a predefined normal 

element size. The temperature at the center of the tumor was then plotted against time 

using various element size to find the point of convergence, which was at an element 

number of 81325.  

 

 
Figure A1. Free triangular mesh using predefined normal element size.  

 

The mesh converged at 81325 elements (Figures A2, A3). 
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Figure A2. Temperature at the center of the tumor vs. time for different element sizes. 

Solutions of 81325 elements and above are extremely close (top four overlapping lines), 

indicating mesh convergence at 81325 elements. 

 

 
Figure A3. Temperature at the center of the tumor vs. number of mesh elements at 900s. 

The mesh converged at 81325 elements, as temperature appears to have stabilized. 
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APPENDIX C. Summary of Optimization Results 
Frequencies between 1.5 MHz and 3.5 MHz were tested, along with combinations of 

initial water temperatures ranging from 10 °C to 35 °C. 

 

We sought to find the conditions where, in order of priority: 

1. All of the tumor was destroyed, by raising the entire tumor volume above 42 °C 

(necessary requirement). 

2. As little of the normal tissue and fat were destroyed as possible, by keeping as 

much of the volume of normal tissue and fat below 42 °C. 

3. The heating time was minimized. 

 

The first item above is a necessary requirement. Thus, we found the time it takes for the 

entire tumor (100% of the volume) to reach 42 °C, for each combination of frequency and 

initial water temperature. Some conditions resulted in incomplete heating of the tumor 

within 15 minutes or less of treatment, indicated as “n/a” in Table A2 below. 

 

We then found the percent of normal tissue that reached a temperature of 42 °C at the 

time found. The frequency and initial water temperature that resulted in the lowest 

amount of normal tissue damage, 4.18% (at a time of 900 seconds), was 2.75 MHz and 

10 °C. 

 

Table A2. Optimization results for tested conditions between 2 and 3 MHz and initial 

water temperatures between 10 and 35 °C. 
Initial Water 

Temperature 
10 °C 15 °C 20 °C 25 °C 30 °C 35 °C 

Fre- 

quency 

(MHz) 

Surface 

Intensity 

(W/m2) 

% 
Normal 

Tissue 

Damage 

Time 

(s) 

% 
Normal 

Tissue 

Damage 

Time 

(s) 

% 
Normal 

Tissue 

Damage 

Time 

(s) 

% 
Normal 

Tissue 

Damage 

Time 

(s) 

% 
Normal 

Tissue 

Damage 

Time 

(s) 

% 
Normal 

Tissue 

Damage 

Time 

(s) 

1.5 2733.6 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

2 4859.7 n/a n/a n/a n/a n/a n/a 0.0421 750 0.0750 630 0.1347 600 

2.25 6150.6 n/a n/a n/a n/a n/a n/a 0.0553 840 0.1012 750 0.1647 690 

2.5 7593.3 n/a n/a 0.0495 630 0.0751 600 0.1065 570 0.1463 540 0.2044 540 

2.75 9187.9 0.0418 900 0.0668 720 0.0950 660 0.1307 630 0.1726 600 0.2212 570 

3 10934.4 n/a n/a n/a n/a 0.1057 840 0.1437 750 0.1920 720 0.2437 690 

3.5 14882.9 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
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