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Abstract. We consider the weighted least-squares (WLS) problem with a
very ill-conditioned weight matrix. Weighted least-squares problems arise in
many applications including linear programming, electrical networks, bound-
ary value problems, and structures. Because of roundoff errors, standard
iterative methods for solving a WLS problem with ill-conditioned weights
may not give the correct answer. Indeed, the difference between the true and
computed solution (forward error) may be large. We propose an iterative
algorithm, called MINRES-L, for solving WLS problems. The MINRES-L
method is the application of MINRES, a Krylov-space method due to Paige
and Saunders, to a certain layered linear system. Using a simplified model
of the effects of roundoff error, we prove that MINRES-L gives answers with
small forward error. We present computational experiments for some appli-
cations.
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1 Introduction
Consider the weighted least-squares (WLS) problem
min | DY3(b — Ax)|, 1)

where D € R™*™, A€ R™*" b e R™
the remainder of this article, ||-|| indicates the 2-norm. We make the following
assumptions: D is a diagonal positive definite matrix and rank A = n. These
assumptions imply that (1) is a nonsingular linear system with a unique

, and m > n. In this formula and for

solution. The normal equations for (1) have the form
ATDAx = ATDb. (2)

Weighted least-squares problems arise in several application domains in-
cluding linear programming, electrical power networks, elliptic boundary
value problems and structural analysis, as observed by Strang [21]. This
article focuses on the case when matrix ) is severely ill-conditioned. This
happens in certain classes of electrical power networks. In this case, A is
a node-arc adjacency matrix, D is matrix of load conductivities, b is the
vector of voltage sources, and x is the vector of voltages of the nodes. IlI-
conditioning occurs when resistors are out of scale, for instance, when mod-
eling leakage of current through insulators.

[ll-conditioning also occurs in linear programming when an interior-point
method is used. To compute the Newton step for an interior-point method,
we need to solve a weighted least-squares equation of the form (2). Since
some of the slack variables become zero at the solution, matrix D always be-
comes ill-conditioned as the iterations approach the boundary of the feasible
region. In Section 9, we cover this application in more detail. Ill-conditioning
also occurs in finite element methods for certain classes of boundary value
problems, for example, in the heat equilibrium equation V- (¢Vu) = 0 when
thermal conductivity field ¢ varies widely in scale.

An important property of problem (1) or (2) is the norm bound on the
solution, which was obtained independently by Stewart [20], Todd [22] and
several other authors. See [6] for a more complete bibliography. Here we
state this result as in the paper by Stewart.

Theorem 1 Let D denote the set of all positive definite m x m real diagonal
matrices. Let A be an m xn real matriz of rank n. Then there exist constants



xa and x4 such that for any D € D

I(AT DAY AT D

X4, and (3)
|A(ATDA) AT D) v

X4 (4)

Note that the matrix appearing in (3) is the solution operator for the nor-
mal equations (2), in other words, (2) can be rewritten as x = (AT DA)~1 AT Db.

Since the bounds (3), (4) exist, we can hope that there exist algorithms
for (2) that possess the same property, namely, the forward error bound does
not depend on D. We will call these algorithms stable, where stability, as
defined by Vavasis [23], means that forward error in the computed solution
X satisfies

Ix = x|l <€ f(A) - [[b]], (5)

where ¢ is machine precision and f(A) is some function of A not depending
on D. Note that the underlying rationale for this kind of bound is that the
conditioning problems in (1) stem from an ill-conditioned D rather than an
ill-conditioned A.

This stability property is not possessed by standard direct methods such
as QR factorization, Cholesky factorization, symmetric indefinite factoriza-
tion, range-space and null-space methods, nor by standard iterative methods
such as conjugate gradient applied to (2). The only two algorithms in litera-
ture that are proved to have this property are the NSH algorithm by Vavasis
[23] and the complete orthogonal decomposition (COD) algorithm by Hough
and Vavasis [12], both of them direct. See Bjorck [1] for more information
about algorithms for least-squares problems.

We would like to have stable iterative methods for this problem because
iterative methods can be much more efficient than direct methods for large
sparse problems, which is the common setting in applications.

This article presents an iterative algorithm for WLS problems called
MINRES-L. MINRES-L consists of applying the MINRES algorithm of Paige
and Saunders [14] to a certain layered linear system. We prove that MINRES-
L satisfies (5). This proof of the forward error bound for MINRES-L is based
on a simplified model of how roundoff error affects Krylov space methods.
This analysis is then confirmed with computational experiments in Section 8.



(The simplified model itself is described in Section 5.) An analysis of round-
off in MINRES-L starting from first principles is not presented here because
the effect of roundoff on the MINRES iteration is still not fully understood.

MINRES-L imposes the additional assumption on the WLS problem in-
stance that D is “layered.” This assumption is made without loss of gener-
ality (i.e., every weighted least-squares problem can be rewritten in layered
form), but the MINRES-L algorithm is inefficient for problems with many
layers.

This article is organized as follows. In Section 2 we state the layering
assumption, and also the layered least-squares (LLS) problem. In Section 3
we consider previous work. In Section 4 we describe the MINRES-L method
for two-layered WLS problems. In Section 5 we analyze the convergence in
the two-layered case using the simplifying assumptions about roundoff error.
In Section 6 and Section 7 we extend the algorithm and analysis to the case
of p layers. In Section 8 we present some computational experiments in
support of our claims. In Section 9 we consider application of MINRES-L to
interior-point methods for linear programming.

2 The Layering Assumption

Recall that we have already assumed that the weight matrix D appearing
in (1) is diagonal, positive definite and ill-conditioned. For the rest of this
article we impose an additional “layering” assumption: we assume, after
a suitable permutation of the rows of (A,b) and corresponding symmetric
permutation of D, that D has the structure

(Sl D1
D= ) (6>

5PDP

where each Dy is well-conditioned and scaled so that its smallest diagonal
entry is 1, and where §; > d3 > --- > 6, > 0. Let xk denote the maximum
diagonal entry among Dy,...,D,. The layering assumption is that s is not
much larger than 1.

Note that this assumption is made without any loss of generality (and we
could assume k = 1), since we could place each diagonal entry of D in its own
layer. Unfortunately, the complexity of our algorithm grows quadratically
with p. Furthermore, our upper bound on the forward error degrades as p
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increases (see (39) below). Thus, a tacit assumption is that the number of
layers p is not too large.
From now on, we write A in partitioned form as

Ay
A= :
Ap
to correspond with the partitioning of D. We partition b = [by;--- ;b,]

similarly.

Under this assumption, we say that (1) is a “layered WLS” problem. In
the context of electrical networks, this assumption means that there are sev-
eral distinct classes of wires in the circuit, where the resistance of wires in
class [ is of order 1/4;. For instance, one class of wires might be transmis-
sion lines, whereas the other class might consist of broken wires (open lines)
where the resistance is much higher. In the context of the heat equilibrium
equation, the layering assumption means that the object under consideration
is composed of a small number of different materials. Within each material
the conductivity d; is constant, but the different materials have very different
conductivities. In linear programming, taking p = 2 means that the some
of the slack variables at the current interior-point iterate are “small” while
others are “large.”

A limiting case of layered WLS occurs when the gaps between the §;’s
tend to infinity, that is, §; is infinitely larger than d, and so on. As the
weight gaps tend to infinity, the solution to (1) tends to the solution of the
following problem, which we refer to as layered least squares (LLS). Construct
a sequence of nested affine subspaces Ly D Ly D -+ D L, of R". These spaces
are defined recursively: Lo = R”™, and

L; = {minimizers of HDZI/Q(AIX —by)|| st. x € Li1}.

Finally, x, the solution to the LLS problem, is the unique element in L,. The
layered least-squares problem was first introduced by Vavasis and Ye [25] as
a technique for accelerating the convergence of interior-point methods. They
also established the result mentioned above in this paragraph: the solution
to the WLS problem in the limit as §;41/6; — 0 for all [ converges to the
solution of the LLS problem.

Combining this result with Theorem 1 yields the following corollary, also
proved by Vavasis and Ye.



Corollary 1 Let x be the solution to the LLS problem posed with matriz A
and right-hand side vector b. Then ||x|| < xal|b|| and ||Ax]|| < xal|b|| for
any choice of diagonal positive definite weight matrices Dy, ..., D,.

3 Previous Work

The standard iterative method for least-squares problems, including WLS
problems, is conjugate gradient (see Golub and Van Loan [7] or Saad [18])
applied to the normal equations (2). This algorithm is commonly referred to
as CGNR, which is how we will denote it here. There are several variants of
CGNR in the literature; see, e.g., Bjorck, Elfving, and Strakos [2]. Note that
in most variants one does not form the triple product AT DA when applying
CG to (2); instead, one forms matrix-vector products involving matrices AT,
D and A. This trick can result in a substantial savings in the running time
since AT DA could be much denser than A alone. The same trick is applicable
to our MINRES-L method and was used in our computational experiments.

The difficulty with CGNR is that an inaccurate solution can be returned
because AT DA can be ill-conditioned when D is ill-conditioned. To under-
stand the difficulty, consider the two-layered WLS problem, which is obtained
by subtituting (6) in the case p = 2 into (2):

S ATDyAjx + 5,AT Dy Agx = 6, AT Dyby + 6,AL Db, (7)
Observe that if §; > &, then Krylov sequence
ATDb, (ATDAYAT Db, (ATDA)*AT Db, ...
constructed by CGNR is very close to
§1AT D by, 62(AT Dy ANYAT D by, 63(AT Dy A2 AT Dby, . .

In other words, information about A,, Dy and by is lost when forming the
Krylov sequence. A different framework for interpreting this difficulty is
described in Section 5.

Another iterative method for least-squares problems is LSQR due to Paige
and Saunders [15]. This method shares the same difficulty with CGNR be-
cause it works in the same Krylov space.

A standard technique for handling ill-conditioning in conjugate gradi-
ent is reorthogonalization; see, for example, Paige [16] and Parlett and
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Scott [17]. Reorthogonalization, however, cannot solve the difficulty with
ill-conditioning in (2) because even the act of forming the first Krylov vector
AT Db causes a loss of information.

Another technique for addressing ill-conditioned linear systems with it-
erative methods is called “regularization”; a typical regularization technique
modifies the ill-conditioned system with additional terms. See Hanke [10].
Regularization does not appear to be a good approach for solving (1) because
(1) already has a well-defined solution (in particular, Theorem 1 implies that
solutions are not highly sensitive to perturbation of the data vector b). A
regularization technique would compute a completely different solution.

In our own previous work [3], we proposed an iterative method for (2)
based on “correcting” the standard CGNR search directions. We have since
dropped that approach because we found a case that seemingly could not be
handled or detected by that algorithm.

4 MINRES-L for Two Layers

In this section and the next we consider the two-layered case, that is, p = 2
in (6). We consider the two-layered case separately from the p-layered case
because the two-layered case contains all the main ideas of the general case
but is easier to write down and analyze. (In the p = 1 case, our algorithm
reduces to MINRES applied to (2) and hence is not novel.) Furthermore, the
p = 2 case is expected to occur commonly in practice. We mention also that
the two-layered WLS and LLS problems were considered in §22 of Lawson
and Hanson [13].

As noted in the preceding section, the two-layered WLS problem is written
in the form (7), in which the diagonal entries of Dy, Dy on the order of 1 and
&y > d9. Let us introduce a new variable v such that

A?DlAlv = (51/52)(A?D1A1X — A?lel) (8)

Note that this equation always has a solution v because the right-hand side
is in the range of AT. Multiplying (8) by d; and adding to (7) yields

A?DlAlv = AgDQbQ - AgDQAQX. (9)
Putting (8) and (9) together, we get
AgDQAQ A?DlAl X _ AgDQbQ (1())
A?DlAl (—52/51)A?D1A1 v A?lel '
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Our algorithm, which we call MINRES-L (for MINRES “layered”), is the
application of the MINRES iteration due to Paige and Saunders [14] to (10).
Note that (10) is a symmetric linear system.

In general, this linear system is rank deficient because if (x;v) is a solution
and v’ satisfies A;v/ = Ayv, then (x;Vv’) is also a solution. Thus, (10) is
rank deficient whenever the rank of A; is less than n. This means we must
address existence and uniqueness of a solution. Existence follows because
the original WLS problem (7) is guaranteed to have a solution. Uniqueness
of x is established as follows: if we add d; times the first row of (10) to &;
times the second row, we recover the original WLS problem (7). Since (7)
has a unique solution, (10) must uniquely determine x. Since x is uniquely
determined, so is A;v.

The question arises whether MINRES (in exact arithmetic) will find a so-
lution of (10). MINRES can find a solution only if it lies in the Krylov space,
which (because of rank deficiency) is not necessarily full dimensional. This
question was answered affirmatively by Theorem 2.4 of Brown and Walker [4].
(Their analysis concerns GMRES, but the same result applies to MINRES in
exact arithmetic.) Furthermore, their result states that, assuming the initial
guess is 0, the computed solution (x;v) will have minimum norm over all
possible solutions. Since x is uniquely determined, their result implies that
v will have minimum norm.

Recall from Section 3 that the problem with applying conjugate gradient
directly to (7) is that the linear system may be ill-conditioned when §; >> 4,
and hence conjugate gradient may return an inaccurate answer. Thus, it may
seem paradoxical that we remedy a problem caused by ill-conditioning with
an iterative method based on a truly rank-deficient system. One explanation
of this paradox concerns the limiting behavior as §;/d; — oo. In this case,
(7) tends to the linear system ATD;A;x = ATD;by. This system will, in
general, not have a unique solution (because A; is not assumed to have rank
n), so CGNR will compute some solution that may have nothing to do with
Ay, Dy, or by. Thus, the CGNR solution is not expected to have the forward
accuracy that we demand.

On the other hand, as d;/d; — oo, we see that (10) tends to

AgDzAQ A?DlAl X _ AgDQbQ

A?DlAl 0 \% A?lel '
This system is easily seen to be the Lagrange multiplier conditions for the
two-layered LLS problem: recall from Section 2 that the two-layered LLS



problem is
minimize || Dy/*(Asx — by)]?

subject to AlTDlAlx = AlTlel.

This is the correct limiting behavior: the WLS solution tends to the LLS
solution as d5/d; — 0. An in-depth explanation of MINRES-L’s convergence
behavior follows.

5 Convergence Analysis for Two Layers

In this section we consider convergence of MINRES-L in the presence of
roundoff error for the case p = 2. As mentioned in the introduction, we make
a simplifying assumption concerning the effect of roundoff error in Krylov
space methods. The assumption concerns either CG or MINRES applied to
the symmetric linear system Mx = c¢. In our use of these algorithms, there
is no preconditioner, and the initial guess is x(®) = 0. Further, in our use of
MINRES, c lies in the range-space of M (i.e., the system is consistent). In
our use of CG, M is positive definite. With these restrictions in mind, our
assumption about the effect of roundoff is that after a sufficient number of
iterations, either method will compute an iterate x satisfying

lc — Mx

< Ce-[[M][ - [|x]] (11)

where C' 1s a modest constant, € is machine epsilon, and x is the true solution.
(If multiple solutions exist, we take x to be the minimum-norm solution.)

As far as we know, this bound has not been rigorously proved, but it is
related to a bound proved by Greenbaum [9] in the case of conjugate gradient.
In particular, Greenbaum’s result implies that (11) would hold for CG if we
were guaranteed that the recursively updated residual drops to well below
machine precision, which always happens in our test cases.

As for MINRES, less is known, but a bound like (11) is known to hold
for GMRES implemented with Householder transformations [5]. GMRES is
equivalent to MINRES augmented with a full reorthogonalization process.
We are content to assert (11) for MINRES, with evidence coming from our
computational experiments.

This bound sheds light on why MINRES-L can attain much better accu-
racy than CGNR. For CGNR, the error bound (11) implies that |AT Db —

ATDAX|| gets very small, where X is the computed solution. This latter



quantity is the same as ||[(ATDA)(x — %)||. But recall that we are seeking
a bound on the forward error, that is, on ||x — %||. In this case, the factor

(ATDA) can greatly skew the norm when §,/d; is close to zero, so there is
no bound on ||x — %X|| independent of §;/d, that is, (5) is not expected to be
satisfied by CGNR. This is confirmed by our computational experiments.

In contrast, an analysis of MINRES-L starting from (11) does yield the
accuracy bound (5). We need the following preliminary lemma.

Lemma 1 Let A be an m X n matriz of rank n and A an r X n submatriz
of A. Suppose the linear system ATDAx = ATc is consistent. Here, ¢ is a
given vector, and D is a given diagonal posilive definite matriz. Then for
any solution X,

[Ax]] < [D7H] - xa - e (12)
and
[Ax[| < [ D7 xa - A ell. (13)
Furthermore, there exists a solution x satisfying

Il < D7 - xaxa - llell. (14)

PRrROOF. First, note the following preliminary result. Let H, K be two sym-
metric n X n matrices such that H is positive semidefinite and K is positive
definite. Let b be an n-vector in the range space of H. Then (H + eK)_lb
converges to a solution of Hx = b as ¢ — 0. This is proved by reducing to
the diagonal case using simultaneous diagonalization of H, K.

Let D be the extension of D to an m x m diagonal matrix obtained by
filling in zeros, so that ATDA = ATDA. Since ATDAx = ATc is consistent,
the limit of (AT(D + d)A)_l/—lTC as € — 0% is some solution x of ATDAx =
ATe, as noted in the preceding paragraph. Let M be an m x m diagonal
matrix with 1’s in diagonal positions corresponding to D and zeros elsewhere.
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We have

[Ax| = [[MAx]|

= lim |MA(AT(D 4 el)A) ' AT ¢|
e—0t

= lim [|M(D +e)7'(D + D) A(AT(D + el) A) 7 ATe| (15)
(S d

< lim [M(D + D)7 - sup (D + e)A(AT(D 4 e) A)7LAT|| - ||c]]
e—0 e>0

< ID7H - xa el

The last line was obtained by the transpose of (4). This proves (12). Note
that this holds for all x satisfying ATDAx = ATc, since this latter equation
uniquely determines Ax. Similarly, to demonstrate (13), we start from (15):

|Ax|| < lim || M(D + e)TH(D 4+ e)A(AT(D 4 e1)A) "' AT ¢|
(S d

< hH}r |M(D + e)7| - sup |[(D + el )A(AT(D + e)A)7Y| - ||ATe||
e—0 e>0

IN

D7 xa - 1A el

~ For the second part of the proof, observe by the first part that ATe =
ATDAx = ATDAx = ATDM Ax. Hence,

x = lim(AT(D+e)A) A e
e—0*t
= linqr(AT(D +e)A)TA(D + el )M Ax

e—=0

and thus
x| < sup [[(A"(D + D) A)TTA(D + el )|| - || M Ax|
e>0
< xallAx].
Combining this with (12) proves (14). 1
To resume the analysis of MINRES-L, we define

r = AngAgﬁ + A?DlAl\Af - AgD2b27 and (16)
r¢ = A?DlAl)A( — (62/51)A?D1A1\Af — A?lel, (17)

where (%x;V) is the solution computed by MINRES-L. Then (11) applied to
(10) yields the bounds

el fIeal] < Ce- [LH ] - [ v)]]- (18)
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In this formula, H; is shorthand for the coefficient matrix of (10).

We can extract another equation from (16) and (17); in particular, if we
multiply (16) by d2, multiply (17) by §; and then add, we eliminate the terms
involving v:

(521'1 + 511‘2 = (SlA?DlAl)A( + 62A§D2A2§( — (SlA?lel — (SzAngbg.

Let x be the exact solution to the WLS problem. The last two terms of this
equation can be replaced with terms involving x by using (7). Interchanging
the left- and right-hand sides yields

51A?D1A1(§( — X) + 52A§D2A2(§( — X) = 521‘1 + 51[‘2. (19)

The goal is to derive an accuracy bound like (5) from (18) and (19). We
start by bounding the quantity on the right-hand side of (18). Note that
| Hz|| can be bounded by 2«| Al|? because the largest entries in Dy, Dy are
bounded by k. We can bound ||x|| by xl|/b|| using Theorem 1. Next we turn
to bounding ||v|| in (18). Recall that, as mentioned in the preceding section,
v is not uniquely determined, but MINRES will find the minimum-norm v
satisfying (10). Recall that v is determined by the constraint

A?DlAlv = A?lel — A?DlAlx.

One way to pick such a v is to make it minimize || A2v|| subject to the above
constraint. In this case, v is a layered least-squares solution with right-hand

side data (b; — A1x;0). Thus, Corollary 1 yields the bound
Xa - [[br — Aix||

xa(l[bll + xal/bl)
Xa(Xa+1)||b]

vl <
<

for this choice of v. (The factor x4 + 1 can be improved to x4 by using
the analysis of Gonzaga and Lara [§].) Combining the x and v contributions
means that we have bounded the right-hand side of (18); let us rewrite (18)
with the new bound:

[eall; lIvall < 2Ce- A" - 5 - xa(Xa + 2)|Ib]. (20)

Next, we write new equations for ry,ry. Observe that ry lies in the range
of AT and AT, so we can find h; satisfying

r = A?DlAlhl + AgDQAth. (21)
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Similarly, by (17) there exists hy satisfying
ro = A?DlAth. (22)

By applying (13) to r; and ry separately, with “AT¢” in the lemma taken to
be first ry and then ry, we conclude from (21) and (22) that

||[A1§ Az]th
|| Arh,||

Xal|diag(DTY, DF| - [[re]l, and (23)

<
< xall DY . (24)

Substituting (21) and (22) into (19) yields

51A?D1A1(§( — X) + 52A§D2A2(§( — X) = 51A?D1A1h2 + (SQA?DlAlhl
+ (SQAg'DQAth

— 51A?D1(A1h2 —|— (52/61)[41}11)
+ 6,AT Dy Ashy.

Notice (by analogy with (7)) that the preceding equation is exactly a weighted
least-squares computation where the “unknown” is X — x and the right-hand

side data is (Arths + (82/01)A1hy; Ashy). Thus, by Theorem 1,
% = x|| < xal[(Athz + (2/61) A1hy; Azhy)].

We now build a chain of inequalities: the right-hand side of the preceding
inequality is bounded by (23) and (24), and the right-hand side of (23) and
(24) is bounded by (20). Combining all of this yields

% —x|| <ACe- XAIAIP - k- (xa+2) - |[b]l. (25)

To obtain the preceding inequality, we used the facts that /01 < 1 (by
assumption) and that ||diag(D;", D;")|| < 1 (also by assumption, since the
smallest entry in each D; is taken to be 1).

Thus, we have an error bound of the form (5) as desired; in particular,
there is no dependence of the error bound on d,/4;. Note that this bound de-
pends on k. Recall that « is defined to be the maximum entry in Dy,... , D,
and is assumed to be small. Indeed, as noted in Section 2, we can always
assume that k = 1 if we are willing to divide the problem into many layers.
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6 MINRES-L for p Layers

In this section we present the MINRES-L algorithm for the p-layered WLS
problem. The algorithm is the application of MINRES to the symmetric
linear system H,w = c,, where H, is a square matrix of size (1 + p(p —
1)/2)n x (1+p(p—1)/2)n, ¢, is a vector of that order, and w is the vector of
unknowns. Matrix H, is partitioned into (1 4+ p(p —1)/2) x (1 +p(p —1)/2)
blocks each of size n x n. Vectors ¢, and w are similarly partitioned. The
WLS solution vector is the first subvector of w.

In more detail, the vector w is composed of x concatenated with p(p—1)/2
n-vectors that we denote v; ;, where s liesin 2,... ;pand j liesin1,... ;2 —1.
Recall that the p-layered WLS problem may be written

§ A DyAix + -+ 8,A] Dy Ayx = §A] Diby + -+ + 6,ATD,b,.
(26)

Let x be the solution to this equation. Then we see from this equation that
AgDpApx — Agbp lies in the span of [AT, ... ,AZ_I]. Therefore, there exists
a solution [v, ,_1;...;V,1] to the equation

AgDpApX + Ag_le—lAp—lvp,p—l + -+ A?DlAlva = AZpr
(27)

This equation is the first block-row of H,w = ¢,. In other words, the first
block row of H, contains one copy of each of the matrices AT D;A;, and the
first block of ¢, is AZ:pr.

In general, the (p — ¢ 4+ 1)th block-row of H,w = ¢,, fori =1,... ,p, is
the equation

i—1 P 5
AZTDZAZX + Z A?DJ'A]‘VZ'J — Z 5_]AZTD2A2V],Z = AZTDZbZ
=1 j=i+1 Y1 (28)

This completes the description of block-rows 1,... ,p of H,w = c,. We now
establish some properties of these block-rows, and we postpone the descrip-
tion of block-rows p+1,... , 14+ p(p —1)/2.

Lemma 2 Suppose w is a solution to the linear equation (28) for each 1 =
1,...,p, where w denotes the concatenalion of x and all of the v;;’s. Then
X is the solution to the WLS problem (26).
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PROOF. For each i, multiply (28) by §; and then sum all p equations obtained
in this manner. Observe that all the v;; terms cancel out and we end up
exactly with (26). 1

We also need the converse to be true.

Lemma 3 Suppose x is the solution to (26). Then there exist vectors v; ;
for 1 < j <@ <p such that (28) is satisfied for each i =1,... ,p.

PROOF. The proof is by induction on (decreasing) k = p,...,1. We assume
that we have already determined v;; for all ¢ = k 4+ 1,... ,p and all 5 =
I,...,2—1 so that (28) is satisfied for t = k + 1,... ,p, and now we must
determine vy ; for j = 1,...,1 — 1 to satisfy (28) for the particular value
¢ = k. The base case of the induction is that we can select v, 1,... ,v,,-1
to satisfy (28) in the case ¢ = p because, as noted above, AZDPAPX — Agbp
lies in the range of [A],..., AT_,] because of (26).

Now for the induction case of & < p. Rewrite (28) for the case & = i, and
multiply through by 45:

k-1 p
(SkAngAkX + 5k Z A?D]‘A]'de' — Z (S]‘AszAkV]’JC = 5kAngbk.
7=1 7=k+1 (29)

Recall that our goal is to choose vy, ; for y = 1,... | k—1 to make this equation
valid.

Multiply (28) for each t = £+ 1,...,p by §; and add this to (29). After
rearranging and summations and cancelling common terms on the left-hand
side, we end up with

p k-1 P
ZMTDAx+ZZMTD Ajvi; = 6ADib;. (30)
i=k i=k j=1 i=k

Dividing through by d; and separating out the vy ; terms from the second
summation yields:

ATDyAyvipy + -+ AT 1Dk—1Ak—1Vk,k—1
p k-1 5

E ATD -2 X3 ATDAVH (31)

i=k+1 5= 1

But from (26) we know that 320, §; AT D;(b; — A;x) lies in the range of
[AT ... AL |]. Clearly the rightmost summation of (31) also lies in the same
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range. Therefore, there exist vi; for j = 1,... & — 1 to make (31) valid.
But then these same choices will make (29) valid because the algebraic steps
used to derive (31) from (29) can be reversed. This proves the lemma. 1

Note that the preceding proof actually demonstrates a strengthened ver-
sion of the lemma. The strengthened version states that if we are given x
satisfying (26) and, for some k, vectors v;; for k& < j < 1 < p that satisfy
(28) for all i = k,...,p, then we can extend the given data to a solution of
(28) for all e = 1,... ,p. This strengthened version is needed below.

We now explain the remaining p(p — 1)/2 block-rows of H,. These rows
exist solely for the purpose of making H, symmetric. First, we have to
order the variables and equations correctly. The variables will be listed in
the order (X;Vy -1, Vpp—2i-- 3 Vp1i Vpe1,p—2; -+ ; Vpo1,1; ... ;Va1). The first
p equations will be listed in the order (28) for : = p,p—1,... ,1. This means
that the first p rows of H, have the format [S,, T,], where S, is a p X p matrix
and 7T}, is a p x (p — 1)(p — 2)/2 matrix. Furthermore, it is easily checked
that S, is symmetric: its first block-row and first block-column both consist
of ATD;A; listed in the order 7 = p,... ,1; the (p — i + 1)st entry of its main
diagonal is —(4,/8;)ATD;A; for i = 1,... ,p— 1; and all its other blocks are

zeros. Then we define H, to be

We define ¢, as

where there are p(p — 1)/2 blocks of zeros. For example, the following linear
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system is Hy3w = c3:

ATDsA;  ATDyA,  ATD A, 0 x

AT Dy Ay =% AT Dy A, 0 ATD, A, Vi
A?DlAl 0 _%A?DIAI —%A?DlAl V3.1
0 A?DlAl —%A?DlAl 0 Va1

AT Dyby

| ATDyb,

AT Db,

0

We now must consider whether H,w = ¢, has any solutions; in particular,
we must demonstrate that the new group of equations TpTW’ = 0 is consistent
with the first p rows. Here w' denotes the first p blocks of w, that is,
W = (X;Vppo1;... ;Vp1). Studying the structure of T,, we see that there are
(p—1)(p —2)/2 block-rows of TpT indexed by (i,7) for 1 <j<i<p—1(in
correspondence with the columns of 7),, which correspond to variables v, ; for
i,7 in that range). The row indexed by (i, j) has exactly two nonzero block
entries that yield the equation

di
A?DjAjVni — KAijAJ’VpJ = 0. (32)
J

Our task is therefore to show that we can simultaneously satisfy (28) for
i=1,...,pand (32) for (¢,7) such that 1 <j <i<p—1.

Our approach is to select the v, ;’s in the order v, ,_1, v, _2,... ,v,1. In
particular, assuming v, j11,... ,V,,_1 are already selected, we define v, ; to
be any solution to

k=1 k=j7+1

J p—1
E 5kA£DkAkVp7j = 5]' (Agprp — AgDpApX — Z AngAkVpJC) .
(33)

The following lemma shows that this linear system is consistent.

Lemma 4 [f the v, ;’s are chosen in reverse order to satisfy (33), then at
each step the linear system is consistent, and (32) is satisfied.

PROOF. The proof is by reverse induction on j. The base caseis j = p—1, in
which case (33) has a solution because, as noted above, Agprp — AZDpApX

17



lies in the span of [AT,... ,AZ_I]. In the case j = p — 1, (32) is vacuously
true: there is no ¢ in the specified range.

Now consider the case j < p—1. Pick any ¢ in the range 7+ 1,... ,p— 1.
Start with the version of (33) satisfied by v, ;, which holds by the induction
hypothesis:

i p—1
Z 5kA£DkAkvm = 52 (Agprp — AgDpApX — Z AngAkVpJg) .

k=1 k=i+1
Move the terms £ = 7 + 1,... .1 of the first summation to the right-hand
side:
d T T T Ldy T
E 5kAk DkAkVpﬂ' = 52 Ap prp — Ap DpApX — Z 5_Ak DkAkVpﬂ'
k=1 kE=j+1 7t

p—1
— Z A%DkAkVpJC
k=i+1

= & (Ag Db, — AID,Ayx — > Al Dy Apvy

k=j7+1

p—1
T
— Ak l)k/lkVpJC
k=i+1

p—1
= 52 (Agprp — AgDpApX — Z AngAkVpJC) .
k=j+1
The second line was obtained from the first by applying (32) inductively
(with “3” in (32) taken to be k). The third line was obtained by merging the
two summations on the right.

But notice that the preceding equation means that v, ; satisfies the same
linear system as v, ;, that is (33), except with the right-hand side scaled by
0;/8;. This proves that (33) is consistent for the j case since we have con-
structed a solution to it. Although this linear system does not necessarily
have a unique solution, a linear system of the form AT Ax = b uniquely de-
termines Ax. Thus, we have also proved that 5jA£DkAkvp7i = 5¢A£DkAkvm
for all k = 1,...,7. This result is actually a strengthening of (32) for j; for
that equation we need only the specific case of k = 5.

The reader may have noticed that the preceding proof is apparently too
complicated and that we could establish the result more simply by solving
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for v, ,—1 in (33) with j = p — 1, and then setting v, ; = (6;/6,-1)v, -1 for
Jj=1,...,p—2. This simpler approach does not yield the bounds on ||v, ]|
needed in the next section.

This proof shows that the above method for selecting v, 1,... ,v,,_1 is
consistent and satisfies (32). We also see that (27) is satisfied; this follows
immediately from taking 7 = 1 in (33). To complete the proof that there is
a solution to H,w = ¢,, we need only verify (28) in the case 1 = p—2,... , 1.
But recall from the proof of Lemma 3 that the remaining v;;’s for 1 =
p—2,...,1 can be determined sequentially by using the construction in the
proof. Thus, the arguments of this section have established the following
theorem.

Theorem 2 There exists al least one solution w to H,w = c,, and further-
more, any such solution has as its first n entries the vector x that solves

(26).

7 Convergence Analysis for p Layers

The convergence analysis for p layers follows the same basic outline as the
convergence analysis for two layers. In particular, we use (11) as the starting
point for the error analysis. Observe that (11) has the norm of the true
solution on the right-hand side. Thus, to apply that bound, we must get a
norm bound on v; ; for all ¢, 5 satisfying 1 <7 <12 <p.

We start with bounds on v, ; for j =p—1,p—2,...,1. Apply Lemma
1 to (33) in the case j = p — 1. In the lemma, take A = [A;;...; A, ;] and
D = diag(6: Dy, ... ,6,_1D,_1). As noted above, Agprp — AZDpApX lies in
the range of [A], ..., AT_,] so (33) is consistent. The right-hand side of (33)
in the j = p—1 case has the form ATc with ¢ = §,_4[0;---;0; D,(b, — A,x)].
Note that ||D,(b, — A,x)|| is bounded by (x4 + 1)||b||. Thus, from (12),

I[A; 5 Apa] Vel < lldiag(8iDi, .o, 8pmi Dpor) 7|
“Xa - op-16(xa + 1)|b]]
= ||diag((6,-1/6) D75+ s (6p-1/8p—1) D1 )]
-£xa(Xa + 1)|[b]]
< kXa(Xa+1)[b]. (34)

To derive the third line from the second, we used the facts that |[D;']| <1
for each ¢ and §,/0; <1 for ¢ > j.
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Now we use the same line of reasoning to get a bound on v, ,_» based on
(33) for the case j = p — 2. In this case, the right-hand side of (33) has the

form ATc, where
€= 0p—2[0;-+ ;0; =Dp1 Ay 1Vy 15 Dy(by — Apx)].

Thus, ||c|| is bounded by 6,-2(k(x4 + 1)||b|| + £%xa(xa + 1)||b]|), which is at
most 28, 262y a(xa + 1)||b]|-

We continue this argument inductively. Each time the bound grows by a
factor 2kx 4 to take into account the fact that v, ; appears on the right-hand
side for the equation determining v, ;_;. In the end we conclude that

A+ 5 Ailvpall < (26x4)" (x4 + 1)I[b]l. (35)

Next we must bound v;; for 1 < 3 < 1 < p— 1. These vectors are
determined by (28). We can find a solution to (28) by first solving

p .
ATDAZZ' = AZTDZ (bZ — AZ'X + Z ﬁAiVj,i) 5
j=it1 Oi
for z;, where A = [Ay;...;A;1], D = diag(Dy,...,D;_;). This equation

is already known to be consistent. Furthermore, §;/6; < 1 in the preceding

equation. We set v;; = --- = v;;_1 = z;. Using (12), we conclude that
- P
[AVi &l < xar [ Bl 4 xalbll + > [[Aivi] (36)
7=1+1

foreach k=1,...,7.
We now claim that

[ -5 Ajlvisll < (4kxa)™ (xa + D] b]]

for 1 < 75 < ¢ < p. This is proved by induction on decreasing i using
recurrence (36). The 7 = p term on the right-hand side of (36) is bounded
by (35), and the remaining terms are bounded by the induction hypothesis.
We omit the details.

For the right-hand side of (11) we need a bound on ||v;;||. Note that up
to now we have not uniquely determined v; ; itself. Recall that in each case
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Lemma 1 was used to bound ||Axv; ||. We can force unique determination
by choosing the v; ; as in the proof of Lemma 1, yielding

Iviill < (46x4)"7"(Xa + Dxalb] (37)

by (14). Note that MINRES does not necessarily select this v; ;, but because
of its minimization property (that is, Theorem 2.4 of Brown and Walker [4]
described in Section 4), it will select v, ; whose norm is no larger than in the
preceding bound.

We now can apply (11). The other factor on the right-hand side, namely,
|H,||, is easily seen to be bounded by p*||Al|?*s. Let W be the solution
computed by MINRES-L, and let r = H,w —c¢,, i.e.,r = H,w — H,w. Then,
substituting (37) on the right-hand side of (11) yields

el < Cep™AII* - k(Xa + D)xa - (46x4)""" - |[bI]. (38)

Let rp,... ,r; be the first p block-entries of r. Note that r; must lie in the
span of [AT ... ,A]T] in order for the equation H,(W — w) = r to have a
solution, because it can be seen from (28) that the (p — i + 1)st block-row of
H, involvesonly Ay, ..., A;. Thus, let us find h; that solvesr; = AITDlAth'—I—
-+ + AT D; A;h; for each i. By (13) we know that |[[A;... ; AJhg]| < xallrd
Let x be the first n entries of W, that is, the computed WLS solution. If
we multiply the (p—i+1)st block row of Hy(W—w) =rbyd fori=1,...,p
and add these p rows, we obtain

P P

=1
P

= 25 (ZAJTDjAjhi)
71=1

P . P 5
= 0; A; DiA —=
The third line was obtained from the second by interchanging the order of
summation. Thus, we see from the third line above that x — x solves a WLS
problem in Wthh the ith entry of the data vector is A;Y7%_; ;h Since
d;/0; <1 for 4,7 in this range, we conclude that the data vector 1s bounded
in norm by p*max;; ||A;h;||, that is, by p?xamax; |r;||. Then Theorem 1
implies that
I - x]l < pPx2 max .
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Substituting (38) yields

% —x|| < Cep|lAII” - w(Xa + 1) - (46x4)" " |[b]. (39)

This is a bound of the form (5) as desired.

8 Computational Experiments

In this section we present computational experiments on MINRES-L and
CGNR to compare their accuracy and efficiency. The first few tests involve
a small node-arc adjacency matrix. The remaining tests are on matrices
arising in linear programming and boundary value problems. All tests were
conducted in Matlab 4.2 running on an Intel Pentium under Microsoft Win-
dows NT 4.0. Matlab is a software package and programming language for
numerical computation written by The Mathworks, Inc. All computations
are in IEEE double precision with machine epsilon approximately 2.2-107'6.
Matlab sparse matrix operations were used in all tests.

Our implementation of CGNR is based on CGLS1 as in (3.2) of Bjorck,
Elfving and Strakos [2]. These authors conclude that CGLS1 is a good way
to organize CGNR. There are two matrix-vector products per CGLSIT it-
eration, one with matrix ATD'? and one with D'/?A. In our implemen-
tation, the CGNR iteration terminates when the scaled computed resid-
ual ||st||/||AT Db|| drops below 107, Our implementation of MINRES is
based on [14], except Givens rotations were used instead of 2 x 2 House-
holder matrices (so that there are some inconsequential sign differences).
The MINRES-L iteration terminates when the scaled computed residual
ekl /||[AT Diby; ... s ATD,b,]|| drops below 10712, e

The first matrix A used in the following tests is the reduced node-arc
adjacency matrix of the graph depicted in Figure 1. A “node-arc adjacency”
matrix contains one column for each node of a graph and one row for each
edge. Each row contains exactly two nonzero entries, a +1 and a —1 in the
columns corresponding to the endpoints of the edge. (The choice of which
endpoint is assigned 41 and which is assigned —1 induces an orientation
on the edge, but often this orientation is irrelevant for the application.) A
reduced node-arc incidence (RNAT) matrix is obtained from a node-arc inci-
dence matrix by deleting one column. RNAI matrices arise in the analysis of
an electrical network with batteries and resistors; see [23]. They also arise in
network flow problems. In the case of Figure 1, the column corresponding to
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Figure 1: An 18 x 9 RNAI matrix based on this graph was used for the first
group of tests. The column corresponding to the top node is deleted. Edges
marked with heavy lines are weighted 1, and edges marked with light lines
are weighted d,, where &, varies from test to test.

the top node was deleted. Thus, A is an 18 x 9 matrix. It is well known that
the RNAT matrix for a connected graph always has full rank. RNAT matrices
are known to have small values of x4 and ya [23].

In all these tests, the weight matrix has two layers. We took D; = I,
D, = I, and §; = 1, while we let §, vary from experiment to experiment.
The rows of A in correspondence with Dj are drawn as thinner lines in Figure
1. Finally, the right-hand side b was chosen to be the first 18 prime numbers.

The results are displayed in Table 1, and the cases when §; = 107% and
§; = 107'% are plotted in Figure 2. The scaled error that is tabulated and
plotted in all cases is defined to be ||x — x||/||b||. We choose this partic-
ular scaling for the error because our goal is to investigate stability bound
(5). The true solution x is computed using the COD method [12]. Note
that the accuracy of CGNR decays as d; gets smaller, whereas MINRES-L’s
accuracy stays constant. MINRES-L requires many more flops than CGNR
because the system matrix is larger. The running time of CGNR is about
the same for the first four rows of the table as the ill-conditioning increases.
In the last two rows the running time of CGNR drops because the matrix

AT D A masquerades as a low-rank matrix for small values of §,, causing early
termination of the Lanczos process.

Besides returning an inaccurate solution, CGNR has the additional dif-
ficulty that its residual (the quantity normally measured in practical use of
this algorithm) does not reflect the forward error, so there is no simple way
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Table 1: Behavior of the two-layered MINRES-L algorithm compared to
CGNR for decreasing values of ;. The error reported is the scaled error
defined in the text. Note that the CG accuracy degrades while the MINRES-

L. accuracy stays about the same.

MINRES-L.  MINRES-L. MINRES-. CGNR CGNR  CGNR

g Flops Iterations Error Flops Iterations Error
1073 15032 23 1.9e-14 3479 11 3.0e-14
10°¢ 15032 23 3.8e-14 4085 13 1.5e-12
1072 14387 22 2.7e-14 4085 13 7.9e-9
10712 15032 23 3.8e-14 5297 17 1.2e-5
1071° 15032 23 3.7e-14 1964 6 8.2e-1
10-1# 15032 23 4.2e-14 1064 6 8.2e-1

to determine whether CGNR is computing good answers. In contrast, the
error and residual in MINRES-L are closely correlated. This correlation is
predicted by our theory.

The next computational test involved a larger matrix A taken from the
Netlib linear programming test set, namely, the matrix in problem AFIRO,
which is 51 x27. We used a matrix D with 1’s in its first 27 diagonal positions
and 107'% in its remaining 24 positions (i.e., Dy =1, Dy =1,p=2, 6, =1,
§; = 107?). The right-hand side vector b was chosen to contain the first
51 primes. MINRES-L required 137 iterations and 250 kflops and yielded
a solution X with scaled error 3.0 - 107'? with respect to the true solution
computed by the COD method. For this matrix, y4 and x4 are not known.
CGNR on this problem required 69 iterations and 61 kflops and returned an
answer with scaled error 2.2 - 1072, The convergence plots are depicted in
Figure 3.

The excessive number of iterations required by MINRES is apparently
caused by a loss of orthogonality in the Lanczos process. To verify this
hypothesis, we ran GMRES on the same layered matrix. GMRES [19] on
a symmetric matrix is equivalent to MINRES with full reorthogonalization.
(In exact arithmetic the two algorithms are identical.) We call this algorithm
GMRES-L. The same termination tests were used. The result is depicted in
Figure 4. In this case, GMRES-L ran for 50 iterations (fewer than (1 + p(p—
1)/2)n = 54) and returned a more accurate answer, one with forward error
1.2 - 107!, However, the number of flops was higher, 350 k, because of the
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0 10 20 30 0 10 20 30
Legend: —x = CGNR scaled error —o = MINRES-L scaled error

... x = CGNR scaled residual -0 = MINRES-L scaled residual

Figure 2: Convergence behavior of CGNR and MINRES-L for the 18 x 9
RNALI test case. The plots are for §; = 1076 (left) and §; = 1072 (right). In
these plots and all that follow, the z-axis is the iteration number. For both
algorithms the computed (i.e., recursively updated) residual is plotted rather
than the true residual. Other experiments (not reported here) indicate that
these are usually indistinguishable. The x on the y-axis indicates the cutoff
below which the CGNR scaled residual must drop in order for (11) to be true
with € = 1072, The o on the y-axis is the analog for MINRES-L.
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Figure 3: Convergence behavior of CGNR and MINRES-L for AFIRO. The

curves are labeled as in Figure 2.

Gram-Schmidt process in the GMRES main loop.

The next computational test involves a larger matrix A arising from finite-
element analysis. The application is the solution of the boundary value
problem V- (¢Vu) = 0 on the polygonal domain depicted in Figure 5 with
Dirichlet boundary conditions. The conductivity field ¢ is 1 on the outer part
of the domain and is 10'? on the darker triangles. As discussed in [24], this
type of problem gives rise to a weighted least-squares problem in which A
encodes information about the geometry and D encodes the ill-conditioned
conductivity field. The values of x4 and Y4 for this matrix are not known,
although bounds are known for variants of these parameters. The particular
matrix A is 652 x 136. The right-hand side vector b was chosen according to
the Dirichlet boundary conditions described in [24]. The MINRES-L method
for this problem gave scaled error of 1.3 - 10™'3 after 382 iterations and 6.5
mflops. To compute the true solution, we used the NSHI method in [24].
In this case, surprisingly, CGNR gave almost as accurate an answer, but the
termination test was never activated. (We cut off CGNR after 10n iterations.)
The residual of CGNR is quite oscillatory as depicted in Figure 6. In the
finite-element literature, CGNR would be referred to as conjugate gradient
on the assembled stiffness matriz, which is AT DA.

A cause of this odd behavior of CGNR is as follows. Note that the region
of high conductivity is not incident on the boundary of the domain so b; = 0.
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Figure 4: Convergence behavior of GMRES-L (—# and - - - %) and MINRES-L
(—o and ---0) for AFIRO.
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Figure 5: Domain and finite element mesh used for the finite element exper-
iment. Conductivity in the dark triangles is 10'? and in the light triangles is
1.
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Figure 6: Convergence of CGNR and MINRES-L for the finite element test

problem. The curves are labeled as in Figure 2.

Thus, ATDb = §,ATD,b, for this problem. Since &, is O(107'%), CGNR
starts from a right-hand side that is already almost zero. Furthermore, this
right-hand side is nearly orthogonal to the span of AT D; A;, which dominates
the stiffness matrix ATDA. Thus, CGNR has trouble making progress. The
surprisingly accurate answer from CGNR in this example is not so useful
in practice because there is no apparent way to detect that convergence is
underway.

The final test is a three-layered problem based on the matrix A from
ADLITTLE of the Netlib test set, a 138 x 56 matrix. Matrix D has as its
first 28 diagonal entries 1, its next 28 diagonal entries 107® and its last 82
entries 107, The right-hand side vector is the first 138 prime numbers.
The convergence is depicted in Figure 7. As expected, the scaled error of
MINRES-L decreased to 2 -1071°, while the scaled error of CGNR was 0.3.
Note the excessive number of iterations required by MINRES-L. Again, this
is apparently due to loss of orthogonality because the number of iterations
was only 118 for GMRES-L to achieve a scaled error of 9.4 - 10713, In fact,
for this test GMRES-L was more efficient than MINRES-L in terms of flop
count.

In most cases we see that the MINRES-L algorithm performs essentially
as expected, except for the two cases in which a loss of orthogonality causes
many more iterations than expected. In every case, MINRES-L’s running
time is higher than CGNR'’s, but CGNR can produce bad solutions as mea-
sured by forward error.
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Figure 7: Convergence of CGNR and MINRES-L for ADLITTLE. The curves
are labeled as in Figure 2. Note the excessive number of iterations for

MINRES-L caused by a loss of orthogonality.

9 An Issue for Interior-Point Methods

In this section we describe an issue that arises when using the MINRES-L
algorithm in an interior-point method for linear programming. Full consid-
eration of this matter is postponed to future work.

It is well known that the system of equations for the Newton step in an
interior-point method can be expressed as a weighted least-squares problem.
To be precise, consider the linear programming problem

minimize c¢’x
subject to ATx=b

x>0,

?

whose dual is
maximize b’y

subject to Ay +s = c,
s>0

(which is standard form, except we have transposed A to be consistent with
least-squares notation). A primal-dual method starting at a feasible interior
point (x,y,s) for this problem computes an update Ay to y satisfying

ATDAAy = ATD(s —opX'e), (40)

where X = diag(x), S = diag(s), D = XS™!, o is an algorithm-dependent
parameter usually in [0, 1], g is the duality gap, and e is the vector of all 1’s.
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See Wright [26]. Since (40) has the form of a WLS problem, we can obtain
Ay using the MINRES-I algorithm.

One way to compute As is via As := —AAy. This method is not stable
because As has very small entries in positions where s has very small en-
tries; these small entries must be computed accurately with respect to the
corresponding entry of s. In contrast, the error in all components of As
arising from the product AAy is on the order of ¢- ||s|| (where € is machine-
epsilon). A direct method for accurately computing all components of As
was proposed by Hough [11], who obtains a bound of the form

|As; — Asi|/s: < f(A) - e (41)

for each 1. We will consider methods for extending MINRES-L to accurate
computation of As in future work. As noted by Hough, Ax is easily computed
from As with a similar accuracy bound assuming As satisfies (41).

10 Conclusions

We have presented an iterative algorithm MINRES-L for solving weighted
least squares. Theory and computational experiments indicate that the
method is more accurate than CGNR when the weight matrix is highly ill-
conditioned. This work raises a number of questions.

1. Is there an iterative method that does not require the layering assump-
tion?

2. If layering is indeed required, can we get a more parsimonious layered
linear system when p > 37 In particular, is there a 3n x 3n system of
equations with all the desired properties for the 3-layered case (instead
of the 4n x 4n system that we presented)?

3. What is the best way to handle loss of orthogonality in MINRES that
was observed in Section 87

4. Can this work be extended to stable computation of Ax and As in an
interior-point method? (This question was raised in Section 9.)

5. What about preconditioning? In most of our computational tests, we
ran both MINRES and CG for more than n iterations because our aim
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was to compute the solution vector as accurately as possible. In prac-
tice, one hopes for convergence in much fewer than n iterations. What
are techniques for preconditioning WLS problems? Note that the anal-
ysis of MINRES-L’s accuracy in Section 5 and Section 7 presupposes
that no preconditioner is used.
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