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Local correlation energies of two-electron atoms and model systems
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We present nearly-local definitions of the correlation energy density, and its potential and kinetic
components, and evaluate them for several two-electron systems. This information should provide
valuable guidance in constructing better correlation functionals than those in common use. In addition,
we demonstrate that the quantum chemistry and the density functional definitions of the correlation
energy rapidly approach one anther with increasing atomic number.

I. INTRODUCTION

The total energy of an N-electron system in an external potential, veys, is
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where ¥(ry, ..., ry) is the many-body wave function, 7" is the kinetic energy, Fe, is the potential energy of the electrons

interacting with the external (usually nuclear) potential and Fe is the electron-electron potential energy. Here, and
throughout the paper, we use Hartree atomic units (A = e = m = 1). On the other hand, in Kohn-Sham density
functional theory (DFT) [1,2], the ground state energy of an interacting system of electrons in an external potential is
written as a functional of the ground state electronic density [1]:
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Here 1;(r) is Kohn-Sham orbital i, p(r) is the electronic density, T is the kinetic energy of a system of non-interacting
electrons that has the same density as the interacting system of interest, Fe, is the potential energy of the electrons
interacting with the external potential, and Ey is the classical Hartree approximation to the potential energy of the
electrons interacting with each other. Note that although T is expressed in terms of the orbitals 1;(r), it can be viewed
as a functional of the density since the orbitals are themselves functionals of the density. The exchange-correlation
energy Fy. is by definition the part of the total energy not contained in the first three terms.



Various approximate expressions for Fy. have been employed in the literature. The exchange-correlation energy Fy. is
the sum of the exchange energy Ey and the correlation energy E.. The exact Ey is defined in terms of the single-particle

orbitals
Ey [p] = —%Z msl,ms // 1/) 11 11 1/’]( W’i(r’) dl‘dl‘l, (3)
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where the d-function is over the spin quantum numbers of the i-th and j-th spin-orbitals. Hence, although in most density
functional calculations both exchange and correlation energies are approximated, it is in fact necessary to approximate
only the correlation energy FE., which, usually, is just a small fraction of Fy.. From Eqgs. 1 and 2, we obtain

Ec:‘/::+Tca (4)

where

Ve=FEee—Eu—Ey and T.=T-T,. (5)

E. contains a negative contribution coming from the fact that the interaction energy of the electrons is smaller than
that given by Fyg + Ex and a smaller positive contribution from the difference of the true many-body kinetic energy T'
and the single-particle kinetic energy 7.

Usually local or semi-local approximations are made for E.:
Belp) = [ ecdr= [ plo)ccar (6)

where e, 1s the correlation energy density and €. is the local correlation energy per electron. In the local density approx-
imation (LDA), e is a function of the local density at r, e = ec(p(r)), while in the generalized gradient approximations

(GGAs) it depends also on the Vp(r) and possibly also on higher derivatives of p(r), e = e (p(r), Vp(r), Vp(r), )

In order to invent better approximate functionals, 1t is useful to know what the true e. i1s. It is apparent that there
is not a unique definition of e, since we are always free to add any function that integrates to zero. However, since the
approximate functionals are written as integrals of functions that depend on the local density and its derivatives, it is
reasonable to seek a definition that is as nearly local as possible. In this spirit, a natural definition for the exchange
energy density, which is consistent with the expression for Fy in Eq. 3, is
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This definition results in a local exchange energy per electron, ex = e;/p, that at large distances goes as —1/2r [3], a
fact that was used by Becke in constructing his successful exchange GGA [4].

In order to provide guidance for the construction of better approximate correlation functionals, we present a natural
and nearly local definition of the correlation energy density for all systems and evaluate it for several two-electron
systems. To do this, we write each of the energies in Egs. 5 as a 3-d integral over an integrand which we define to be
the corresponding energy density.

l
U
-
=
O~
sy
=
-
S
l
U
[9)
-
=
s
2
=
-
=
\\'
—_
=
._\
=
—_
o0
S



N
1
Bee= [ d®Nr W (ry, . ,xn) Y —U(ry,.x
/ I (lla alN)' 0 (11: :lN)
1<J
al Ly
d’r; = | d®ry...d° U™ (x E —
/ " / eI 7“1z /™)

=2

= /d?’rl tee(r1) = /d31‘1 p(r1) €ee(r1)
r= [ (-3) ngm) Vi) = [ @)= [En el
= [dn / A2 plr1) == plra)

% Pry p(ri)vn(ry) = /d3r1 en(r1) = /d3r1 p(r1) en(rs)

N N
1/) r2)¢i(r
Be= [ (——) 33 b Ui )] [ (ra)vilra)
i=1 j=1 |11_12|
= /d311 ex(r1) = /d3 r1 p(r1) ex(r1)
E.= /d311 ec(r1) = /d311 p(r1) ec(re)

Then e. and €. can be evaluated as,

€c = Ve + i, €c = Ve + T,

where
Ve = €ee — €H — €x. Vc = €ee — €H — &,

te =1 —1g, Te =T — Ts.

We have consistently used capital Roman characters for energies, small Roman characters for energy densities and Greek
characters for the local energies per electron. Note that V. or v, should not be confused with the correlation potential,

which is the functional derivative of E. with respect to p.

We now discuss another interesting, but not very useful, definition of the correlation energy density. Instead of Egs. 8

and 9 another possible choice for ¢ and e, 1s
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which has the intersting feature that it yields a constant local energy per electron, ¢ = E/N, over all space. This follows

from
HYU(ry,...,rN)
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This has the advantage that one could test approximate correlation energy functionals by checking to see if they yield a
constant local total energy per electron e. However, note that ¢(ry) in Eq. 15, assigns to the position of the first electron
contributions from the Laplacian acting not only on the first electron but also on all the other electrons. Similarly,
€ee(r1) contains contributions from all pairs of electrons. Hence, in contrast to our earlier definitions, the definitions
in Egs. 15 and 16 have the disadvantage that ¢ and e.. are very non-local, and so any approximate correlation energy
functional, that mimics this definition of e., would also have to be very non-local. Hence, this is not a suitable definition
of the correlation energy density for our purpose.

In Egs. 8 and 10 we have written the kinetic energy in terms of the Laplacian. Of course one could instead write
the kinetic energy in terms of the square of the gradient. It is interesting to note that the kinetic contribution to the
correlation energy density, t., does not depend on which expression is used provided that it is used consistently for
both the many-particle kinetic energy and for the single-particle Kohn-Sham kinetic energy, as was pointed out to us
by Robert van Leeuwen. This follows simply from equating the many-particle and the Kohn-Sham expressions for the
single-particle density and taking the Laplacian.

II. TWO-ELECTRON SYSTEMS

We have studied the two-electron helium iso-electronic series and a model system (referred to in the literature as
harmonium or Hooke’s law atom) in which the nuclear —Z/r potential is replaced by an harmonic potential (wr)?/2.
This model was first introduced by Kestner and Sinanoglu [5] and has since then been studied by various authors [6-10].

In order to calculate accurate density functional quantities for these systems it is necessary to have accurate wave
functions. For the ions we use exceedingly accurate 477-term wave functions of the form used by Freund, Huxtable and
Morgan [11]. For harmonium, Kestner and Sinanoglu [5] wrote down a series solution, with a 3-term recursion, which is
rapidly convergent at small interparticle distances and slowly convergent at large interparticle distances. They also give
an asymptotic series that is accurate at large interparticle distances. Kais [8] showed that the former series terminates
for a particular value of the spring constant, w? = 1/4, thereby obtaining an exact closed-form wave function. Taut [9]
showed that it is possible to find such wave functions for an infinite discrete set of spring constants, the largest of which
is w? = 1/4. To obtain solutions for arbitrary w, we employ the two series solutions of [5], using 300 terms in the
convergent series. The relative normalization constant of the two series is obtained by matching them in the overlap
region where they are both accurate. The number of terms kept in the asymptotic series is such that the last term is
the smallest in magnitude term at the matching radius. For special values of w both series reduce to the exact solutions
of Taut.

III. RESULTS
A. Energies

In Tables I and II we give the total energy and its components for ions and harmonium respectively. Some of these data
have been presented earlier [10,12]. Of particular interest are the correlation energies E. and their potential and kinetic
components, V;, Tc. Each of these quantities tends to a constant in the high-density (large 7, w) limit. Interestingly, the
limiting values for the ions and harmonium differ by only 6%. From Figs. 1 and 2 we observe that, at small 1/Z, E., V.
and T, are very nearly linear and the same is true at small 1/,/w but to a lesser degree. The behavior is monotonic. In
earlier work by other authors [7] it was found that F. has a minimum at a finite w but we attribute this to a lack of
accuracy in their calculations at large w.

In Tables I and II, we also show the quantum chemistry definition of the correlation energy EQC which is defined to

be

EQC = (WH|W) — (W [H W), (19)

\IIHF

where W is the true many-body wave function, is the Hartree-Fock wave function and H is the Hamiltonian.



According to Levy’s constrained-search formulation of density functional theory [13], the density functional definition
of the correlation energy is

Ee = (Y[H|T) — (2H|®), (20)

where @ is the Kohn-Sham wave function, i.e. the wave function that yields the same density as the true wave function
and minimizes the expectation value of the kinetic energy operator. Hence, as first pointed out by Sahni and Levy [14],

it follows from the variational principle that F. N EQC. We observe from Table I that this is in fact the case and, further,
that the two definitions rapidly approach each other, the leading term in the difference going as 1/73. This convergence
of E. and EQC, at large 7, has strong implications for the terms in the 1/Z perturbation expansion discussed later.
The Z = oo value of E. and ES€ agrees to all digits with that in Ref. [15] for ESC.

It is known [16] that the quantum chemistry definition of the correlation energy ESQC of two-electron ions in their
1S ground states goes to a constant with increasing Z. The proof is based on perturbation theory. Similarly, the
linearly convergent behavior of E., V. and T can be explained as follows. As observed by Hylleraas [17], the scaling
transformation r — r/Z applied to the Schrodinger equation

(—% (V% + V%) - rz - Z + L) U(rq,rz) = E¥(rq,r2) (21)
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yields the scaled Schrodinger equation
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The eigenvector ¥ and eigenvalue E of the scaled Hamiltonian can be expressed as a power series in the perturbation
parameter 1/7:

U =U,+¥,/74+0(77%
E=Fo+ E/Z+E2/Z% + E3/ 73 + O(Z74). (24)

Similarly a 1/Z expansion can also be performed for the Hartree-Fock and Kohn-Sham wave functions and energies:

EWF = g ¥ 7 4+ BYF /7% + EXY /7% + O(77%)
® =0+, /7 +0(277)
EKS — E(I)(S 4 E{(S/Z+E§(S/Z2 +Eé<S/Z3 +O(Z_4) (25)

For the ground states of two-electron ions, the unperturbed ground state is non-degenerate, so ¥y = Wi = ®;. As
a consequence, from perturbation theory, we have

Eo =77 < Uo|Ho|¥y >= EIF = EXS
Ey =7 < Wo|ry, ¥ >= BT = EfS (26)
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and it follows from Egs. 19, 20, 25, 26, and 23 that

EQC = (Ey — EJ") 4+ 1/Z(Es — E¥T) + 0(277)
E.=(Fy— EXS) 4+ 1/7(Es — EXS) + 0(77%). (27)

Therefore, at large Z, both EQC and E. go to a constant, linearly in 1/Z, as shown in Fig 1. If the non-interacting
ground state is degenerate, E; differs from E{IF and EFS, and E. ~ Z as Z — oo [16]. As observed by Perdew,
McMullen and Zunger [18], it is a difficult challenge to find an a priori, universal density functional approximation that
correctly describes both of the Z — oo limiting behaviors.

The observed behavior E. — ESC ~ 1/73 in Table I implies that EXF = EKS pIF — FKS and EIF = EXS though
of course it 1s impossible to tell from the numerical data if these equalities hold strictly or only approximately.

The argument given above that F. is finite in the Z — oo limit applies to any system for which the non-interacting
ground state is non-degenerate. In particular, it applies to harmonium with the expansion parameter 1/Z replaced by
1/4/w. In the remainder of this paper, we use an expansion parameter o = 1/7 for ions and @ = 1/+/w for harmonium.
The argument that the correlation energy E. converges to a constant in the Z,\/w — oo limit can be easily extended to
its potential and kinetic components T¢., V. but we have not shown that E. = —T. = V./2 in this limit. However, Levy
and Perdew [19] have shown that

Bp 4] = 2 22) (28)

where py(r) is a uniformly scaled density that integrates to the same number of electrons as p(r), i.e. p(r) = A3p(Ar).
Combining this with the fact, shown by Levy [20], that E.[p\] goes to a constant linearly in A=1 at large A, we have

/\% — 0 as A — oo. It follows that E. = —T. = V./2 in that limit. Although they do not provide a rigorous proof,
Levy and Perdew [19] argue that E. = —T, = V./2 in the Z — oo limit. We note in passing that the difference between
the A = oo and the Z — oo limits can be important, e.g. the correlation energy of a uniformly-scaled Be atom, in its
ground state, tends to a constant in the A — oo limit but the correlation energy of 4-electron ions tends to negative
infinity in the 7 — oo limit because in the latter case the 2s and 2p orbital energies are degenerate whereas in the
former case they are not.

TABLE I. Energies of two-electron ions in Hartree atomic units.

Z E T, Fen Fn Ex E. V. T. E&¢ ELDA

1 -0.527751  0.499869  -1.366524 0.761796  -0.380898 -0.041994 -0.069876 0.027882 -0.071816
2 -2.903724  2.867082  -6.753267  2.049137  -1.024568 -0.042107 -0.078750 0.036643 -0.042044 -0.112372
3 -7.279913  7.240085 -16.127546  3.302126 -1.651063 -0.043515 -0.083343 0.039828 -0.043498 -0.134582
4 -13.655566  13.614084  -29.502003  4.553255  -2.276628 -0.044274 -0.085757 0.041483 -0.044267 -0.150419
6 -32.406247 32.363072 -68.251384  7.054244  -3.527122 -0.045056 -0.088231 0.043175 -0.045054 -0.173013

10 -93.906807  93.862252 -193.750849 12.054968  -6.027484 -0.045694 -0.090248 0.044555 -0.045693 -0.202032
20 -387.657234 387.611630 -787.500430 24.555485 -12.277743 -0.046177 -0.091780 0.045603 -0.046177 -0.242379
oC —0o0 oo —o0 oo —oc  -0.046663 -0.093327 0.046663 -0.046663 —0o0




TABLE II. Energies of harmonium in Hartree

atomic units.

w E T, FEen Fn Ex E. V. T. ELDA
0.1 0.500000 0.109603 0.208676  0.421927  -0.210964  -0.029242  -0.045668 0.016426 -0.055025
3.730121 1.327580 1.697210  1.493431  -0.746716 -0.041385 -0.075315 0.033930 -0.101335
4 13.523219 5.628842 6.397678  3.083973  -1.541986  -0.045287 -0.086259  0.040972  -0.134190
10 32.448685 14.397196 15.629951  4.936774  -2.468387  -0.046848  -0.090819  0.043971  -0.157546
100 307.902068  148.033430  151.994436  15.845959  -7.922979  -0.048777 -0.096586  0.047809  -0.220763
400  1215.880360  596.038744  603.989284  31.803138  -15.901569 -0.049237  -0.097983  0.048746  -0.261076
1000 3025.153789  1493.720344  1506.307743  50.350219  -25.175110  -0.049407 -0.098503  0.049096  -0.288334
e e e e e —oo  -0.049702  -0.099404  0.049702 —c

-~
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the bottom five are for 1. The curves for each of the three quantities €, v, 7c tend to a limiting curve in the high Z limit.
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Each of these quantities is plotted for w = 0.1,1,10,100. At r = 0 the top four curves are for 7., the middle four are for ¢, and
the bottom four are for v.. The curves for each of the three quantities ec, vc, 7c tend to a limiting curve in the high w limit.
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B. Local Energies per Electron

In Figs. 3 and 4 we show the local correlation energy per electron ¢, and its kinetic and potential components, 7, v..
As the expansion parameter a ( 1/Z for two-electron ion and 1/4/w for harmonium) approaches zero, each of ¢, 7, vc
tends to a limiting curve. Since the integrated quantities E., V. and 7. have a expansions, it is plausible that there are
similar expansions for €., 7c, v.. With a scaled variable x = r/a, we have

ce(x,a) & el (x) + ael(x), To(x,a)~E(x)+ari(x), ve(x,a)~ri(x)+avi(x), a1 (29)

Namely, these curves converge linearly in a to the limiting curves €,77, and v}.

Except for small Z or w, the three families of curves ¢., 7, and v, are characterized by functions €%, 77, v, e, 7, and
7
v

!. Despite the fact that the integrated E.,T., V. differ by only 6% in the high Z,w limit, the limiting curves 77, v},
and ¢} for two-electron ions are quite different from those for harmonium. For harmonium both v, and 7. are quadratic
at 7 = 0 whereas for the ions v, is quadratic and 7. is linear. Similarly it has been observed before [10,12,21] that the

correlation potentials (i.e. the functional derivatives, 6{%) for all the 2-electron ions are closely related and tend to

a limiting curve and the same is true for the correlation potentials for harmonium, but the two sets of systems have
qualitatively different potentials. In fact for the ions the correlation potential is negative at short and long distances,
and positive at intermediate distances, while the opposite is true for harmonium.

In Figs. 5 and 6 we compare ¢. with the LDA approximation to it, €2PA. The LDA curves have less structure than the
true curves and for increasing Z,w rapidly become much too negative everywhere except in the far tails of the density.
We have used the Perdew-Wang [22] parametrization of the LDA correlation energy since it is probably the most accurate
one, but any of the other commonly used parametrizations would give very similar curves. The LDA curves do not tend
to a limiting curve in the large Z,w limits, reflecting the fact that ELDPA diverges to —oco as Z,w — 0o. We have also
compared ¢, to ¢G94 for all the commonly used GGAs and in no case do we find a good agreement, despite the fact
that the integrated energies FSS4 are in considerably better agreement with E. than are LDA energies [12]. However,
we wish to emphasize that the failure of the ¢S4 to agree with ¢. does not necessarily imply a deficiency in the GGA
functionals since, as mentioned before, €. is not uniquely defined. For this reason we do not present the GGA curves.
On the other hand, the failure of the GGA correlation potentials to reproduce the true correlation potentials [10,12,21]
does imply a deficiency in the GGAs.

For harmonium, at very small spring constants, the electron-electron repulsion dominates the interaction of the
electrons with the external potential and the maximum of the charge density occurs not at the minimum of the external
potential but at a finite distance from it [10,21]. As shown in Fig. 7, even in this extreme situation where we expect

11



the linear scaling rule of Eq. 29 to break down, the curves for €., v, and 7. still have the same shape as for the other
harmonium systems, although the magnitudes are quite different.

It is somewhat surprising that although the ions have a maximum in the charge density at the nucleus, 7. does not
have its maximum there. Also, for harmonium, the minimum of v. does not occur at » = 0 both for spring constants for
which the density has a peak at the nucleus and those for which the density has a peak at » > 0. Yet another surprise
is that, for ions, the range of values of €. and v, is smaller at high Z than at low Z. Again, the same behavior for the
correlation potential has been observed earlier [12] and is equally surprising,.

IV. DISCUSSION

Our purpose in defining and evaluating a correlation energy density and its potential energy and kinetic energy
components, was to provide guidance for the construction of improved approximate correlation functionals. To this
purpose, we are continuing this work by using quantum Monte Carlo methods to evaluate these quantities for atoms,
ions and model systems with a larger number of electrons. The goal is to have a sufficient body of data to be able to
identify correlations of ¢/PA — ¢, with Vp and V2p. We have in fact observed that a strong correlation of this nature
exists for the exchange energy density. However, in many respects correlation appears to be subtler than exchange and
we suspect that it will be a good deal more difficult to make such a connection in the case of the correlation energy
density.
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