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Tissues are often complex heterogeneous systems, where individual cells co-

ordinate responses to internal and external stimuli. To fully understand cell

function in such environments, it is critical to connect the behavior of individual

cells with the full tissue-scale response. Articular cartilage is one such system

where the complex extracellular matrix and heterogeneous cell responses make

it difficult to understand how chondrocytes respond to injury-inducing strain.

In this thesis I will explore the methods I developed to map the spatiotempo-

ral behaviors of chondrocytes in articular cartilage after impact. These methods

combine microscopy techniques with large scale data analysis, making use of

a custom-programmed decision tree algorithm, supervised time series classi-

fiers, and unsupervised clustering via a variational autoencoder to identify and

categorize cell phenotypes. Time series data collected from thousands of chon-

drocytes in situ during and after impact allow me to probe responses through

the lenses of calcium signaling, mitochondrial polarity, and nuclear membrane

permeability.

This thesis serves to outline the experimental and analytical methods devel-

oped to probe cellular response to external stimuli. While the focus is on method

development, I will touch on some of the biological implications of impact on

articular cartilage, and identify questions and hypotheses generated through

the experiments conducted for this work.
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CHAPTER 1

INTRODUCTION

When we study things in nature, we often need to delve into studying the co-

ordination within a system. How do the fibers of a cartilage network coordinate

to produce its mechanical properties? How do colloidal particles form networks

of particle configurations? How do fruit flies coordinate their flight reactions be-

tween muscles and neurons? How do cartilage cells coordinate their responses

to normal and injurious strain?

To investigate any of these questions, and more specifically the last, we must

incorporate knowledge and techniques from many different fields. This thesis

lies at the intersection of physics, biology, biomedical engineering, and machine

learning, requiring the coordination of all of these disciplines to exist, just like

how chondrocytes coordinate in their daily function. And even more, this thesis

would not exist without input from all of the different projects in the Cohen lab:

the particle tracking from the colloids projects, the coding and computational

knowledge from the fruit fly projects, and support of the depth of knowledge

developed in the preceding cartilage projects. Combining everything I have

learned from other fields and within this lab, I coalesce that knowledge into de-

veloping methods for studying coordinated cellular behaviors in articular carti-

lage.

This thesis presents two methods of investigating mechanotransduction and

cell signaling in articular cartilage. Chapter 2 outlines and demonstrates the

experimental and analytical techniques for studying cell signaling in articular

cartilage. The calcium signaling, mitochondrial polarity, and nuclear mem-

brane permeability of chondrocytes are imaged following an injury-inducing
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impact. Cells within these images are tracked over the entire course of the ex-

periment and their individual behaviors extracted as time series. The GUI, fea-

ture extraction, decision tree, and time series classification methods are used

alongside initial manual classification to establish and categorize chondrocyte

behavior phenotypes. Chapter 3 expands upon the analyses conducted in the

previous chapter by implementing unsupervised machine learning with a Vari-

ational Autoencoder (VAE). The VAE learns the most important features of the

chondrocyte timeseries data, which is used to cluster the cells based on their be-

havior. Details of experimental techniques and analysis codes are documented

in the appendices, Chapter A and Chapter B.

By using these methods, we are able to shine a light (laser) on the processes

occurring in cartilage tissue both in normal function and after injury.

1.1 Introduction to Articular Cartilage

Osteoarthritis (OA) is a joint disease characterized by pain and disability which

affects up to 10% of adults in the United States. OA that develops secondary to

injury is referred to as Post-Traumatic OA (PTOA). In both cases, the disease is

marked by damaged articular cartilage. Despite its prevalence in the popula-

tion, there is no effective treatment for OA and the pathogenesis of disease after

cartilage injury is not fully elucidated.

Articular cartilage is present in diarthrodial joints and functions as a smooth,

low-friction tissue that facilitates load-bearing and lubrication for joint articula-

tion. Subject to constant strain, the mechanical properties of cartilage are impor-

tant for its normal function. Articular cartilage consists of chondrocytes embed-
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ded in a complex pericellular (PCM) and extracellular matrix system (ECM),

which gives cartilage its mechanical properties. Mature cartilage lacks blood

vessels, so all necessary compounds for sustaining chondrocyte function must

diffuse into the tissue. This limits the ability of cartilage to repair after injury,

and contributes to tissue degradation after injury [1].

In both normal tissue function and injurious loading, chondrocytes are af-

fected by a myriad of biochemical and mechanical stimuli. Mechanotransduc-

tion is the process by which mechanical stimuli are convered into biochemical

responses to elicit cellular responses through signaling pathways. These path-

ways are important mediators for promoting anabolic responses to strain. Phys-

iologic loading causes chondrocytes to synthesize matrix proteins and maintain

the tissue, but superphysiologic strains can lead to cell death and matrix degra-

dation [2].

The complex system of cartilage impact produces a wide array of responses,

since cells are subject to a range of both compression and shear strains. When

cartilage is strained, many coupled external stimuli affect chondrocytes. The

extracellular matrix deforms differently based on depth, where the superficial

zone absorbs more of the strain [3, 4]. Stress and strain on the network physi-

cally deform extracellular matrix and chondrocytes. Fluid flow through the tis-

sue can cause streaming currents and osmotic and hydrostatic pressure changes.

Cell potential also changes under mechanical stress. Heterogeneous strain fields

within the cell can also cause different mechanotransduction responses, so it is

important to both capture and explain the different types of signaling within the

impacted tissue.

One of the most important mediators of chondrocyte mechanotransduction

3



is calcium. Ca2+ ions are employed as a ’second messenger’ in many different

tissue systems. In cartilage, Ca2+ is largely present in the ECM, with almost no

Ca2+ in the cytoplasm and some Ca2+ in the endoplasmic reticulum. Calcium

signaling in chondrocytes plays an important role in dictating cellular response

to strain. There are a wide variety of calcium channels present on the cell mem-

brane of chondrocytes which respond to stimuli ranging from strain to voltage

to ligand binding, etc. Specifically, channels such as TRPV4 and Piezo 1/2 have

been established as mechanotransducers of physiologic and hyperphysiologic

strains. However, the specific details of how these channels act in situ, the con-

nections between peracute signaling and longer-term outcomes, and how these

signals coordinate responses between cells is not fully known.

Previous studies have demonstrated the local strain thresholds for cell death

and that mitochondrial depolarization leads to cell death [5, 6]. Importantly, mi-

tochondria (MT) have been shown to be mediators of early cellular responses to

damage. Not only do mitochondria buffer Ca2+ ions, but they also play an im-

portant role in attenuating oxidative stress and the process of apoptosis. Ca2+ is

necessary for normal ion transport function, but too much can cause mitochon-

drial depolarization.

This thesis expands upon these studies by incorporating the ability to mea-

sure cell signals and specific behaviors over time in order to expand our ability

to probe mechanotransduction in cartilage. The three signals demonstrated in

the methods illustrated in the following chapters—calcium concentration, mi-

tochondrial polarity, and nuclear membrane permeability, were selected to cap-

ture calcium-based mechanotransduction responses alongside cell health mea-

sures. Mitochondrial polarity serves to indicate homeostatic function, while
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nuclear membrane permeability is used as a measure of cell death. Notably un-

like standard cell death measures, permeability of the nuclear membrane is not

binary. Nuances in nuclear membrane permeability illustrate potentially differ-

ent mechanisms of cell death, and serve to highlight the utility of collecting time

series data

The goal of the methods outlined in this thesis is to establish a system where

the spatiotemporal behaviors of thousands of chondrocytes within a sample of

cartilage are mapped. The data extracted by these methods can be used to ex-

plore the relationship between strain and specific signaling pathways, connect

between the millisecond calcium response to the hours-long overall cellular be-

haviors, and obtain a detailed spatial map to probe how signals travel through

the tissue. Further, upon establishing these behaviors, our methods allow us to

quickly classify and cluster cells in order to effectively parse thousands of cells

simultaneously and iterate upon the specific stimuli used to probe cell responses

and test hypotheses about mechanotransduction.
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CHAPTER 2

STRAINS: A BIG DATA METHOD FOR CLASSIFYING CELLULAR

RESPONSE TO STIMULI AT THE TISSUE SCALE

Zheng, J., Wyse Jackson, T., Fortier, L. A., Bonassar, L. J., Delco, M. L., &

Cohen, I., PLOS ONE 17 no. 12 (2022).

2.1 Abstract

Cellular response to stimulation governs tissue scale processes ranging from

growth and development to maintaining tissue health and initiating disease. To

determine how cells coordinate their response to such stimuli, it is necessary

to simultaneously track and measure the spatiotemporal distribution of their

behaviors throughout the tissue. Here, we report on a novel SpatioTemporal

Response Analysis IN Situ (STRAINS) tool that uses fluorescent micrographs,

cell tracking, and machine learning to measure such behavioral distributions.

STRAINS is broadly applicable to any tissue where fluorescence can be used to

indicate changes in cell behavior. For illustration, we use STRAINS to simul-

taneously analyze the mechanotransduction response of 5000 chondrocytes—

over 20 million data points—in cartilage during the 50 ms to 4 hours after the

tissue was subjected to local mechanical injury, known to initiate osteoarthritis.

We find that chondrocytes exhibit a range of mechanobiological responses in-

dicating activation of distinct biochemical pathways with clear spatial patterns

related to the induced local strains during impact. These results illustrate the

power of this approach.
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2.2 Introduction

To sustain tissue function, cells must coordinate their response to external stim-

uli. In mechanically sensitive tissues, for example, cells sense their environ-

ment using cytoskeletal elements, ion channels, and other mechanisms to initi-

ate such coordinated behaviors [7, 8]. Changes in fluid pressure in vascular sys-

tems affect mechanosensitive ion channels, driving cell migration and muscle

development [9]. Altered mechanosensing in cancer cells makes them unable

to sense stiffness, potentially playing a role in metastasis, migration, and dis-

ease progression [10]. And, in cartilage, tendon, and bone, cell mechanosensing

pathways regulate growth and development during normal function or pro-

mote disease during aberrant loading [11, 12, 13]. Pioneering studies furthered

our understanding of which mechanotransduction pathways are activated in

single cells in response to various perturbations [14]. Studies using pillar arrays

[15, 16, 17], traction force microscopy [18], magnetic tweezers [19], or optical

traps [20] for example, have demonstrated the role of substrate rigidity in stem

cell differentiation [21], the alignment of cellular microfilaments in the direction

of force [22], and the highly varying force profiles of migrating cells [23, 14].

Such cellular responses must be coordinated at the tissue scale to sustain me-

chanical function, direct resources to regions in need of repair, or initiate heal-

ing [24, 25, 26]. This coordination, however, remains poorly understood because

few techniques are available for imaging, analyzing, and sorting the in situ col-

lective response of thousands of cells over thousands of time points throughout

the tissue.

Here, we introduce a SpatioTemporal Response Analysis IN Situ (STRAINS)

tool that uses new experimental methods and a big data analysis technique to
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investigate tissue scale coordination of the cellular responses. STRAINS tracks

thousands of cells within tissue during and after an applied stimulation, extracts

their individual fluorescence traces, and analyzes their spatiotemporal behavior

patterns. This technique makes use of newly developed protocols to stain and

image processes such as Ca2+ signaling, mitochondrial depolarization, and nu-

clear membrane permeability in situ over sub-second to hour time scales. The

advances we report here entail tracking responses in thousands of cells that are

moving, visualizing millions of data points with an intuitive graphical user in-

terface (GUI), and using new custom sorting and machine learning algorithms

to classify and map a wide range of cellular behaviors throughout the tissue.

We demonstrate the utility of this approach by using STRAINS to investi-

gate the complex relationships between mechanical strain and chondrocyte re-

sponses in articular cartilage, identifying distinct patterns of cell behaviors and

mapping their spatiotemporal distribution. Macroscale joint injury, specifically

rapid cartilage overloading, is known to precipitate osteoarthritis.

For example, previous work has demonstrated that articular impact injury

triggers tissue scale catabolic responses in situ and in vivo [5, 27, 6, 28, 29].

During impact, chondrocytes use mechanosensors like integrins [30, 31], the

primary cilium [32, 33, 34, 35], and various mechanosensitive ion channels

[36, 37, 38, 15, 39] to convert mechanical signals into biochemical responses

ranging from the synthesis of extracellular matrix proteins for maintaining tis-

sue integrity to apoptosis and matrix degradation.

Signaling within and between cells in cartilage post impact occurs on mul-

tiple timescales. Within seconds, activation of mechanosensors on the cellular

membrane enables calcium and other force-sensitive signaling [40, 36]. In the
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ensuing hours, the initial cellular response affects mitochondrial polarization

[6], cell viability [27], and subsequent signaling cascade, leading to distinct out-

comes based on the initial local strain experienced by the cell. By measuring

both short (sub-second to second) and long (minutes to hours) term signaling,

STRAINS enabled us to make connections between signaling events and paint

a fuller picture of the signaling landscape after injury.

Additionally, the complex structure of articular cartilage matrix causes local

strain within the tissue to vary with location and depth, which in turn can lead

to different cellular behaviors. For example, cells directly below the impact site

primarily experience compression. In contrast, cells to the sides of the impact

site experience greater shear stresses. In single cells, these distinct mechanical

deformation modes are known to trigger different responses in the chondro-

cytes [41]. Whether cells maintain these individual behaviors based solely on

the local deformations they experience or coordinate their response more glob-

ally is poorly understood.

Collectively, cartilage’s depth-dependent spatial heterogeneity, the complex

load distribution within the tissue during impact, and the broad range of

timescales for chondrocyte responses makes it an ideal tissue for showcasing

the power of this method. Importantly, however, STRAINS can be applied to

any system where it is relevant to study the collective spatiotemporal response

of large numbers of cells to external stimuli.
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2.3 Results

Experimental system and in situ imaging procedure

We have developed a microscale impacting system to assess the real-time mul-

tichannel cellular response to mechanical stimulus. A custom-built confocal-

mounted impactor was used to injure and image fluorescently stained bovine

cartilage samples [5]. Specifically, 6 mm plugs were sterilely extracted from the

condyles of neonatal bovids (Fig. 3.1a). Each plug was bisected into two hemi-

cylinders, cultured for stabilization [28] and stained for simultaneous measure-

ment of Ca2+ concentration (Calbryte 520 AM), mitochondrial depolarization

(tetramethylrhodamine, TMRM), and nuclear membrane permeability (Sytox

Blue) (Fig. 3.1b, and Methods). To image the tissue response, two hemicylin-

ders from the same plug were glued onto the fixed backplate of the confocal-

mounted impactor (Fig. 3.1c). One sample was used as a control while the

second sample was impacted to induce injury. The impactor was calibrated

to deliver to the articular surface a 5-10 ms impact with a peak stress of ∼1

MPa, which produced superphysiologic strains and strain rates encompassing

the wide range of strains observed in joints with traumatic injury within a small

field of view [27, 6]. Strain calibration was conducted with a high speed camera

(v7.1, Vision Research), as described in Bartell et. al., 2015 [5] and Henak et. al.,

2017 [42]. To create visual texture for measuring strain fields, the cut surface of

the impacted sample was coated with fluorescent polystyrene microspheres (2

µm carboxylate particles). During impact, cartilage deformation was recorded

using the high speed camera at 1000 frames per second. Digital image correla-

tion was used to track the deformation and calculate strain fields.
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Figure 2.1: Sample processing, imaging, tracking, and intensity analysis pro-
cedure a) Biopsy punches of condylar articular cartilage are collected and bi-
sected. b) Hemicylinders are cultured and stained for calcium concentration,
mitochondrial polarization, and nuclear membrane permeability (stand in for
cell death). c) Samples are mounted side-by-side to the back plate of impactor.
One half of the sample impacted once, with the other serving as an unimpacted
control. d) Imaging occurs during impact at site 1 and after impact at sites 1-5.
e) Individual cells are tracked through all time points and their stain intensities
extracted. f) Temporal patterns of strain intensities are classified by STRAINS
into distinct categories of cell behaviors, which are identified and mapped onto
tissue location.

This entire apparatus was loaded onto a fast confocal microscope that en-

abled imaging of the cells throughout the impact and relaxation process. Each

region corresponding to the field of view for our 10X objective was 660 µm x

660 µm in size. We assessed multiple regions to understand the influence of a

wide range of local tissue strains on the behaviors of cells (Fig. 3.1d). On the

impacted sample, we imaged the entirety of the impact site (region 1) at the sur-

face of the tissue from 60 µm above the articular surface to 600 µm below the

surface (superficial zone of articular cartilage), lateral to and at the same depth

as the impact site (region 2), also at the surface of the tissue, and directly below

the impact site (region 3), in the region extending 600 µm to 1260 µm below
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the surface (middle zone of articular cartilage). On the unimpacted control, we

imaged two sites (regions 4 and 5) at the same tissue depths (superficial and

middle zones) as the impacted sample in order to compare cells of similar phe-

notype. From this imaging process, we obtained the fluorescent intensities of

each cell (expanded image in Fig. 3.1d). For region 1 we imaged the Ca2+ re-

sponse at 40 frames per second over 1.5 min during and immediately after the

impact. Subsequently, we imaged all 5 regions and all three color channels every

10 seconds over a 4 hour period. Collectively, we obtained the time-dependent

fluorescent response of each channel for ∼5000 cells corresponding to ∼20 mil-

lion data points (Fig. 3.1e). Each cell exhibited a pattern of intensity responses

with time for the three fluorescent channels. Once classified, the location and

frequency of these distinct temporal response patterns within the tissue were

mapped (Fig. 3.1f).

Strain-dependent cellular response

The strain field resulting from impact and the associated cell response had com-

plex behaviors that varied spatiotemporally. Specifically, we observed complex

patterns in the immediate post-impact Ca2+ response and hours-long cellular re-

sponses for all three measured signals. In the milliseconds after impact trauma,

increased calcium concentration can be observed in cells proximal to the impact

site, in the superficial region. However, on the seconds timescale, we observed

differences in total intensity between chondrocytes experiencing shear and com-

pression within this region (Green in Fig. 2.2a). On longer time scales, we found

that mitochondrial polarity rapidly diminished at the impact site in the minutes

after injury, with calcium concentration following the same pattern but with
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some cells exhibiting transients on the scale of minutes (SI Video). Conversely,

nuclear membrane permeability initially showed a very low intensity through-

out the region and reached higher intensities in a fraction of the cells in regions

extending up to 400 µm below the impact site on a time scale of hours. Con-

sistent with the short time calcium response, this pattern of cell death did not

extend to areas of the tissue which experienced primarily shear strains.

Collectively, these distinct spatiotemporal patterns of cell response indicated

that multiple mechanobiological pathways may have been activated in response

to local strain. Developing an understanding of how such processes are related

requires identifying distinct cellular signatures and mapping out where in the

tissue they are localized. To obtain these maps, however, we must first identify

each cell, track its movement and multi-channel fluorescence response over time

(Fig. 3.1e), and classify its cellular signature (Fig. 3.1f).

Enhanced particle tracking captures behaviors of moving cells

In order to measure tissue-level cellular behaviors, we must first track each cell

individually, over time and through movement, to obtain the fluorescence in-

tensities of each channel. To track the cells, we summed the intensities from

all three fluorescent channels at each time step such that the composite image

showed bright isolated regions corresponding to the cells. We then applied a

modified version of Crocker and Grier’s particle tracking algorithm to filter the

image and obtain trajectories for each cell centroid (Fig. 3.1e) [43]. Using this

method, we obtained the fluorescent time traces of over 5000 cells for the five

imaged regions yielding over 20 million measurements.
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Figure 2.2: Timelapse of cartilage response Images are shown at the impact site
(region 1), with the impact location labeled with an orange arrow. a) High speed
imaging of calcium concentration in the minute after impact showed a wave of
calcium uptake in cells moving outward from the immediate impact site. In-
set shows the area experiencing mostly shear strain, with a more muted and
delayed response in comparison with areas experiencing compressive strain.
(Caption continued on next page)
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Figure 2.2: (cont.) b) Long term imaging of all three stains (mitochondrial po-
larization, calcium concentration, nuclear membrane permeability). As time
progressed, mitochondrial polarization and calcium concentration slowly de-
creased while nuclear membrane permeability progressively increased with
greatest intensity within 400 µm of the impact site.

Importantly, the sheer scale of data made it prohibitively difficult to use typ-

ical statistical analyses or cell tracking tools, which are limited in tracking capa-

bilities and unable to pick out specific time series characteristics and interactions

between multiple different fluorescent channels tracking different components

of cellular function. In order to interpret our data, we needed to categorize cel-

lular signatures, relate each cells’ response to its location within the tissue, and

determine whether the cellular signals from multiple cells were spatiotempo-

rally clustered.

A MATLAB graphical user interface enables identification of cell

behaviors

To address this challenge, we built a graphical user interface (GUI) in MATLAB

to allow researchers to directly make comparisons between images and time se-

ries signatures (Fig. 2.3). A built-in video player allows the user to scan through

and select image frames for analysis. Individual cells within any frame can be

selected by clicking on the image, entering the cell ID (the number assigned

by the particle tracking algorithm), or providing its x-y pixel coordinate (the

program will find the nearest cell). The program then plots the three color in-

tensity versus time curves for that cell on the right side of the GUI. To enable the

analysis of multiple cells, our GUI allows a user to select a rectangular region
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Figure 2.3: A MATLAB GUI for image processing Shown on the left is a panel
of controls for video selection and scanning, single cell analysis, and multi cell
analysis. Shown in the center is the video player which allows for choosing
specific frames or time points using a slider. The GUI allows selecting and dis-
playing data for either individual cells or regions within the frame. On the right
are the resulting plots showing channel intensities. The plots can also be clicked
on to highlight cells of interest within a group (which will draw a circle around
the cell in the image). In addition, time points can be selected to generate cross-
sectional histograms for each stain. A full video detailing GUI functionality can
be found in the SI.

within any frame, and the program will plot the fluorescence curves for all the

cells within the region. Directly clicking on a time series in one of the plots will

bold the selected line in each color and circle the selected cell within the im-

age (Fig. 2.3). Finally, the cell ID of all observed cells can be saved to a text file

before exiting the program for record keeping. This GUI allowed for targeted

investigations of cellular behaviors in different regions of the tissue.

Using this GUI, we found specific repeating patterns in the intensity curves

related to observed peaks (transients), intensity jumps, decay time scales,
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plateaus, and the temporal locations of such features. For example, cell death

was identified as a sudden increase in nuclear membrane permeability (see for

example bold blue channel in Fig. 2.3). This behavior often followed a peak in

the calcium concentration (green channel in Fig. 2.3). We also used the GUI to

distinguish between seemingly similar curves. While numerous cells showed a

rapid increase in nuclear membrane permeability within half an hour of impact,

in some cells this signal plateaued and remained high, while in others it slowly

decayed to a lower plateau. These differences in time series shape are subtle but

distinct. Collectively, this GUI and the analysis features it enabled provided a

pathway for sorting the millions of data points in an intuitive fashion, enabling

the user to quickly identify categories of cell behaviors and develop an intuition

for where each behavior tends to localize.

Making use of the GUI analysis features, we identified twelve distinct be-

haviors across all cells within an impacted tissue and mapped their location rel-

ative to the impact site (Fig. 2.4). We observed eight different behaviors where

chondrocytes showed a high level or a rapid increase in their nuclear membrane

permeability, likely related to cell death (Fig. 2.4a-g, l). Additionally, two behav-

iors were related to distinct calcium transients (Fig. 2.4h, i). Finally, we identi-

fied two behaviors where cells maintained low nuclear membrane permeability

throughout the experiment (Fig. 2.4j, k).

Importantly, the precision with which we measure the cell intensities and

correlations in cell signatures allowed for distinguishing between these behav-

iors, even when the accompanying curves were quite similar. For example, in

some cells the calcium transients were not associated with an increase in nu-

clear membrane permeability (Fig. 2.4i) while in others, the calcium transient oc-
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Figure 2.4: Cell behavior categories and their distributions (Caption continued
on next page)
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Figure 2.4: (cont.) For each category, a representative time series for a single cell
(top, with blue representing nuclear membrane permeability, green represent-
ing calcium concentration, and red representing mitochondrial polarity) along
with a heat map of cell counts indicating relative frequency at different locations
are shown. Colorbar maxima vary between categories to resolve spatial distri-
butions for categories with fewer cells. Regions 1-3 are on the impacted sample,
with 1 as the site of impact. Regions 4-5 are on the control sample. a) The nuclear
membrane permeability starts out elevated and decays. b) The nuclear mem-
brane permeability increases within 30 min of impact and plateaus or continues
increasing. c) The nuclear membrane permeability increases within 30 min of
impact and then decays. d) The nuclear membrane permeability increases after
30 min after impact but no prior signaling event is observed. e) The nuclear
membrane permeability increases despite the mitochondria being polarized. f)
The nuclear membrane permeability increases after the calcium concentration
drops after a period of sustained elevation. g) Transient calcium signaling is ob-
served after the nuclear membrane permeability has already increased. h) The
nuclear membrane permeability increases after calcium transient(s). i) Calcium
transient(s) are observed with no increase in nuclear membrane permeability.
j) No calcium transients or increases in nuclear membrane permeability. k) All
three signals are very low. i) The nuclear membrane permeability increases mul-
tiple times.

curred immediately before a rise in nuclear membrane permeability (Fig. 2.4h)

or at some time after the nuclear membrane permeability rose (Fig. 2.4g). The

differences in how these two channels interacted, along with the distinct spatial

distributions associated with each behavior, indicated that separate biochemical

processes associated with activation of calcium channels may have taken place,

illustrating the power of our approach for generating a comprehensive map of

the tissue scale multi-channel cellular response to an applied perturbation. By

quickly identifying and spatiotemporally mapping behaviors ranging from nor-

mal to abnormal, our approach allows us to focus on interesting and puzzling

behaviors for future experimentation.
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Implementing automated sorting algorithms to identify cell be-

havior and category

While this analysis framework is clearly very useful for identifying distinct cate-

gories of behaviors, it required extensive manual sorting, which is cumbersome

for the scale of data acquired from our technique. This burden, however, was

lightened by implementing an augmented strategy which combined the man-

ually sorted categories with custom feature extraction algorithms and super-

vised machine learning to quickly classify thousands of cellular responses in

subsequent experiments. While such algorithms are invariably somewhat sys-

tem specific, it is nevertheless instructive to illustrate their implementation in

our system.

Programmed feature extraction of time series characteristics

Our first approach to implement cellular behavior classification employed a cus-

tom feature extraction and decision tree algorithm. In our system, sudden sig-

naling events like calcium transients (peaks) or sharp changes to cell nuclear

membrane permeability (changepoints) played an important role in dictating

which category a cell belongs to. These events, however, can occur at random

times during the imaging process, making it difficult to search for specific fea-

tures using automated machine learning methods like clustering or classifica-

tion. Here, we made use of peak and changepoint detection algorithms in MAT-

LAB alongside extraction of basic time series statistics (minima, maxima, mean,

variance, range, etc.) to find the identifying features of each behavior category.

The relationship between these specific features and other time series character-

20



istics could then be used to create a ”fingerprint” for each behavior, which could

be searched for en masse.

Once these features were identified, the fluorescence response for each cell

was categorized using a decision tree. The tree started by establishing if a cell

has a certain feature, such as a step in the nuclear membrane permeability chan-

nel or a calcium transient and then branches to more specific criteria based on

the relationships between them. For example, if a cell had a changepoint in nu-

clear membrane permeability, then the tree moved to more specific criteria such

as whether the fluorescence in this channel rose and fell or remained high.

In order to distinguish between these possibilities, we searched for peaks

in the blue nuclear membrane permeability signal. If the nuclear membrane

permeability showed a peak, then the cell was classified as shown in Fig. 2.4c. A

similar process was applied to classify all twelve manually identified behaviors

(See Methods).

Using this decision tree, we found that the best classified categories reached

∼85% accuracy, defined as the true positives divided by the total number of

cells manually identified for that category (Table 2.1). Using this decision tree

were were able to correctly classify the vast majority of cells (4331 out of 5347)

with a total accuracy of 81%. Most importantly, while such decision trees must

be determined individually for each system, once established, they can be used

repeatedly and with high fidelity.

21



Table 2.1: Category based accuracy of decision tree classification

Category Accuracy Total
Cells

Nuclear membrane permeability starts ele-
vated (Fig. 2.4a)

0.85 313

Nuclear membrane permeability increases
(Fig. 2.4b)

0.56 151

Nuclear membrane permeability increases
and decreases (Fig. 2.4c)

0.84 748

Nuclear membrane permeability increases
late (Fig. 2.4d)

0.18 11

Mitochondria polarized but nuclear mem-
brane permeability increases (Fig. 2.4e)

0.06 63

Calcium concentration drops, then nu-
clear membrane permeability increases
(Fig. 2.4f)

0.62 60

Nuclear membrane permeability elevated,
but calcium transient occurs afterwards
(Fig. 2.4g)

0.44 41

Calcium transient, then nuclear membrane
permeability increases (Fig. 2.4h)

0.73 73

Calcium transient, then no changes to nu-
clear membrane permeability (Fig. 2.4i)

0.85 524

Normal cells, polarized mitochondria
(Fig. 2.4j)

0.84 3244

All signals low, depolarized mitochondria
(Fig. 2.4k)

0.34 101

Nuclear membrane permeability has mul-
tiple levels (Fig. 2.4l)

0 18

Time series classification of chondrocyte signaling using sktime library

A second strategy we used to identify cell signatures was time series classifi-

cation, a type of supervised machine learning where a model system learns to

assign labels to objects based on training examples. In our system, relevant

information for our data was embedded as a multi-channel time series, so we

made use of multivariate time series classifiers from the Python sktime library

[44, 45]. Here, we randomly split the data into training and testing sets and opti-
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mized the classifiers over a range of parameters. For example, for the Canonical

Interval Forest (CIF) classifier [46], we found that the accuracy plateaued once

we used more than 1000 estimators. Similarly, for the RandOm Convolutional

KErnel Transform (ROCKET) classifier we found that the accuracy plateaued

when we used more than 100000 kernels [47]. For detailed list of parameters,

see Methods. Finally, we determined what percentage of cells were labeled cor-

rectly by the classifier (Table 2.2).

We found that classifiers worked better at detecting certain categories. Our

system was an imbalanced multi-label classification problem where there were

multiple categories of behaviors with unevenly distributed numbers of objects

between categories. Since classifiers are much better trained on categories with

more cells, the heavily populated behavior categories were identified with much

higher accuracy. Also, when cells had specific features that were not temporally

consistent, (e.g. calcium transients or changes in nuclear membrane permeabil-

ity that occurred in varying numbers, with different amplitudes, and at varying

time points) classifiers struggled because no two signals were exactly the same.

Consequently, we found that higher scores could be achieved when we split the

cells with calcium transients from the data set and classified them separately.

When combined with the decision tree algorithm described above, these super-

vised time series classifiers achieved accuracy values of up to 89%.

Table 2.2: Time series classification methods with details on classifier types
and their corresponding scores

Classifier Accuracy
Canonical Interval Forest (CIF) [46] 0.889
Diverse Representation Canonical Interval Forest (DrCIF) [46] 0.887
RandOm Convolutional KErnel Transform (ROCKET) [47] 0.852
Arsenal Ensemble [46] 0.854
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These results speak to the vast potential for automated sorting in future

studies [48]. In particular, since the algorithms used here were only recently

developed, it is likely that as new more powerful classifiers become available

such supervised machine learning approaches will produce greater sorting ac-

curacy. One could even imagine future implementations where unsupervised

machine learning is used to extract the most impactful features of the data and

cluster cell behaviors with minimal human effort. More broadly, these results

demonstrated that a strategy combining automated feature extraction with var-

ious machine learning techniques could effectively sort complex cellular data in

a streamlined and automated process.

2.4 Discussion

Using STRAINS to monitor cellular behaviors in situ, categorize them, and

determine where in the tissue they occur enabled novel observations about

mechanotransduction in articular cartilage that could not have been obtained

from single cell experiments. For example, high levels of compressive strain and

transiently high hydrostatic pressure are known to dominate close to the impact

site [49] and previous work in our group has demonstrated that microscale lo-

cal strain exceeding 8% causes cell death [27]. However, by using STRAINS to

continuously collect cell behavior data after impact, we were able to observe

nine categories of behavior associated with increased nuclear membrane per-

meability, which suggested different pathways to cell death (Fig. 2.4a-h,l). Here,

the nuclear membrane permeability increased and decreased (Fig. 2.4c), or in-

creased and plateaued (Fig. 2.4c), indicative of cell death due to superphysio-

logic strain. Further from the impact site we observed multiple behaviors re-
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lated to elevated nuclear membrane permeability, but with additional signals

suggesting other biological mechanisms at work. For example, a subset of cells

displayed multiple levels of nuclear membrane permeability (Fig. 2.4l), which

may reflect multiple inputs or different stages of cell death processes. Collec-

tively, such results open the door to analyzing how cellular responses are co-

ordinated at the tissue scale. These empirical observations do not drive a con-

crete understanding without further experimentation, but provide the founda-

tion for establishing how cellular behaviors change in future experiments aimed

at probing specific ion channels, mitochondrial function, senescence, and other

processes.

More broadly, STRAINS is customizable for analyzing many other tissue sys-

tems, and scales well for large numbers of cells. In particular, while the data

shown here relate to investigating mechanotransduction in articular cartilage,

the described techniques can be applied to any tissue scale system where cell

response can be quantified using fluorescence. For example, traumatic brain

injury is caused by large mechanical forces on brain tissue [50], with cellu-

lar mechanotransduction playing an important role in pathology [51]. Similar

staining protocols could enable application of STRAINS to this system. In car-

diac tissue, the role of mechanotransduction in determining cardiac myocyte be-

havior has been studied in single cells, but STRAINS can be applied to address

these questions on a tissue scale [52]. In tumors, drug diffusion is hampered by

various tissue-scale complications [53]. STRAINS can be used alongside fluores-

cence labeling and deep tissue imaging techniques [54] to spatiotemporally as-

sess diffusion and drug delivery in tumors. Collectively, these examples speak

to the potential for implementing STRAINS to comprehensively study signal

transduction in situ on the tissue scale for a wide range of systems.
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Furthermore, STRAINS aligns with new techniques in multiplexed imaging

and large-scale omics data collection in the push for spatially-resolved cell data.

Recently developed methods such as PASTE can produce full tissue-scale ren-

derings of transcriptomic data, enabling identification of gene expression and

cell type within tissues [55]. Similarly, techniques like IBEX [56] or Cell DIVE

[57] make use of immunofluorescent imaging to detect protein-level spatial or-

ganization of cells and tissues [58]. Further, spatially-resolved isotope tracking

has recently been used to quantify metabolic activity in various tissues [59].

While most of these techniques capture data at a single time point, STRAINS

enables real-time in situ, nondestructive spatiotemporal mapping and analysis

of cell behavior in response to dynamic stimuli. Integrating STRAINS with such

techniques would allow us to probe how any stimulus affects coordinated cellu-

lar responses on the milliseconds-to-hours timescale, resulting in patterns of, for

example, gene expression, protein synthesis, energy utilization, or ultimately

cell and tissue fate. As a new tool capable of simultaneously tracking multi-

ple responses of thousands of individual cells and analyzing patterns of cellular

behaviors, STRAINS provides insights into how events are coordinated in com-

plex biological systems. By combining time histories of cellular responses with

spatial maps of behavioral distributions, we have demonstrated that STRAINS

can effectively make use of large datasets to study signal transduction and cell

fate in the context of tissue injury and disease.

2.5 Materials and Methods

The method consists of three main components to comprehensively study chon-

drocyte responses to strain: in situ fast confocal imaging, cell tracking and in-
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tensity extraction, and cell signal analysis.

Impact-induced trauma to articular cartilage explants in situ

Dissection

Samples were sterilely dissected from the femoral condyles of neonatal bovids

obtained from a local abbatoir (Gold Medal Packing, Rome, NY) within 24 hours

of sacrifice. Cylindrical explants (6mm diameter x 3mm depth) were extracted

with a biopsy punch (Fig. 3.1a) and cultured for 24 hours at 37◦C, 21% O2,

and 5% CO2 in low glucose media containing phenol-free Dulbecco’s mod-

ified Eagle’s medium containing 1% fetal bovine serum, 4-(2-hydroxyethyl)-

1-piperazineethanesulfonic acid (HEPES) 0.025 mL/mL, penicillin 100U/mL,

streptomycin 100U/mL, and 2.5mM glucose (Fig. 3.1b). Special care was taken

to ensure that the surface of the tissue was cut perpendicular to the depth of the

cylinder to maintain uniformity of the strain field during mechanical testing.

Bovine synovial fluid (abbatoir derived, Lampire Biologics, Pipersville, PA)

was applied to the joint surface to ensure smooth cutting and to lower the shear

forces applied onto the tissue by the biopsy punch, to preserve as many chon-

drocytes as possible. Similarly, synovial fluid was applied to the blade of extra

sharp razors used to bisect the sample. Samples were trimmed to 3mm thick-

ness and bisected in a custom built stainless steel cutting jig, where the cartilage

was submerged in a warmed PBS bath during the entire cutting process.
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Staining

In order to measure cellular signaling and mitochondrial activity during impact-

induced trauma, the tissue is fluorescently labeled with 3-color assay: (a) Cal-

bryte 520 AM, a intracellular calcium flux assay to observe cellular calcium sig-

naling (4µM, 1 hr incubation at 37◦C), (b) tetramethylrhodamine, a mitochon-

drial membrane potential indicator to observe mitochondrial polarity (TMRM,

10nM, 1hr incubation at 37◦ C), and (c) Sytox Blue, a nucleic acid stain used to

identify dead cell nuclei (1µM, 1hr incubation at 37◦ C) (Fig. 3.1b). The stains

selected for the assay can be modified to reflect parameters of interest in the

study.

Cylinders were bisected and mounted side by side on the back plate of a pre-

viously described confocal-mounted impactor, with the deep zone of the tissue

adhered to the backplate of the impactor with superglue. Samples were sub-

merged in a bath of Dulbecco’s Phosphate Buffered Saline (DPBS) with Sytox

Blue to ensure that cells dying over the course of the experiment were labeled

(Fig. 3.1c). Previous experiments have demonstrated the efficacy of the im-

pactor system in inducing mitochondrial dysfunction and cell death.

Injury

The impacting device, which has been described and validated in previous ex-

periments [5, 6], delivers an energy-controlled impact using a spring-loaded

piston with an impacting tip consisting of an 0.8mm diameter stainless steel

rod. The half cylinders are positioned so that one is centered on the impactor

tip and the other is left as an unimpacted control. The impact lasts 5-10 ms, and
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produces a peak stress of approximately 1 MPa (Fig. 3.1c). This replicates a su-

perphysiologic loading rate which is characteristic of cartilage injury. However,

it is not designed directly to replicate a specific loading pattern, but instead to

expose the tissue within field of view of the microscope objective to a wide range

of strains, allowing us to directly make connections between the mechanics of

impact and injury to cellular responses.

Confocal imaging

The impactor was mounted to the stage of an inverted, spinning disk confocal

microscope (3i Marianas) with a 10x objective, which allowed the capture of a

660µm x 660µm (512 x 512 pixel) area. The site of impact, along with three sur-

rounding locations (two adjacent sites on the articular surface and one adjacent

site into the depth of the tissue), and two locations on the control sample were

captured. Together, these imaging sites combine to capture up to 1.2mm into

the depth of the tissue, and 1.8mm laterally surrounding the impact site and up

to a similar depth in the unimpacted control. Z-focus was centered on a depth

30µm away from the cut surface of the tissue to avoid imaging chondrocytes

damaged during the sample preparation process. Additional sites can also be

used, with limitations set by the scanning speed of the confocal microscope (Fig.

3.1d).

In order to observe the peracute timecourse of events surrounding impact,

we image continuously during and immediately following impact at a rate high

enough to capture the cellular dynamics of injury. Cell calcium concentration is

imaged in the green channel with 25ms exposure, a fast enough imaging rate to

observe sub-second changes in chondrocyte calcium (Fig. 2.2a).
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A three-color staining assay is used to monitor the subsequent effects of

impact in the longer minutes to hours timescale. Images were collected ev-

ery 20 seconds sequentially at each site, with Calbryte 520 AM (green; 488nm

excitation/499-553nm detection), TMRM (red; 561nm/563-735nm), and Sytox

Blue (blue; 405nm/414-479nm). A slower rate of imaging is used to allow for

longer exposure with the weaker red and blue signals, while simultaneously

minimizing the effect of photobleaching (Fig. 2.2b).

Modified particle tracking

While the original Crocker and Grier algorithm [43] assumed a relatively con-

stant intensity for the tracked particles, our cell fluorescence signal could vary

significantly. Thus, to maintain a coherent track when fluorescence levels fluc-

tuated, we interpolated between successfully tracked frames. We found that

linear interpolation was reasonable when the distance between tracked frames

was small, typically less than a cell diameter. Finally, once the tissue was re-

laxed and cells were nearly static in their position, we continued to measure

fluorescence over long periods of time even when cells were not visible. This

procedure captured tracks for ∼96% of the cells uniformly distributed over the

entire tissue for time scales ranging from milliseconds to hours post impact.

The coordinates of each cell centroid in each frame were used to extract in-

tensity data for each channel. In order to account for fluctuations in imaging

and inhomogeneities within a cell, we averaged over a 3x3 pixel region sur-

rounding the centroid pixel. The size of this region was chosen to ensure that

data collection in one cell did not overlap with data collection in neighboring
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cells, or extend into the extracellular matrix. We then extracted the fluorescence

intensity of each channel for each tracked cell over the entire experiment.

Fluorescent intensity validation

Multiple controls were included for each of the fluorescent stains, in order to

provide relevant comparisons with experimental data. Calcium staining con-

trols were conducted with EGTA, a calcium chelator, and Thapsigargin, an en-

doplasmic reticulum calcium chelator, in 0mM Ca +
2 media as a minimum, and

with 10mM Ca +
2 media as a maximum. Mitochondrial polarity controls were

conducted with FCCP in the media, which fully depolarizes mitochondria, as

a minimum, and incubation with oligomycin, which hyperpolarizes mitochon-

dria, as a maximum. Nuclear membrane permeability/cell viability controls

were conducted with ethanol in the media as a minimum, and incubation with

P188, a membrane stabilizer, as a maximum.

Background subtraction for confocal images

After tracking cells within the tissue, background subtraction is implemented.

Impact-induced cartilage trauma can cause formerly cell-localized stains to leak

into the extracellular matrix, locally increasing the background intensity of cer-

tain areas of tissue for some time. This causes the background to be both non-

uniform throughout the imaging frame and also changing with time. We ad-

dress this problem by dividing each image into an 8-by-8 grid and subtracting

the mean value of the twenty lowest pixel values within each region. For a 512-

31



by-512 pixel image, this corresponds to the twenty lowest pixel values out of

4096, ensuring that no pixels within cells would be accounted for in this back-

ground subtraction.

When necessary, we used a moving average to smooth the data to remove

high-frequency noise arising from fluctuations in the confocal images. The size

of the moving average window is chosen to adequately remove high frequency

noise without disturbing the shape or size of features of interest in the time

series. For the time series data in our system, a window size of 20 frames is

optimal.

Details of feature extraction

To find peaks in the timeseries, we used the MATLAB FINDPEAKS function

with slight modification. The ‘minpeakprominence’ parameter was set to 3, and

a width-to-prominence ratio of 10 was used to filter out extremely wide peaks

not considered calcium transients. An additional shape parameter was estab-

lished by selecting for peaks with a set width to prominence ratio in order to

filter out extremely broad peaks that should not be considered transients. Once

the peak detection parameters were established for one data set, they could be

used to identify peaks in subsequent data sets.

We identified sudden changes in the fluorescence timeseries data using the

MATLAB FINDCHANGEPTS function. Here, we adjusted the residuals such

that the fitting parameters identified either one or two changepoints per “step”

in intensity, and additionally filtered for changepoints where the slopes before

and after the identified point were significantly different, to distinguish from
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baseline drift. Similarly to setting the peak detection parameters, once change-

point detection parameters were established, they too could be used to identify

steps in the fluorescence data of subsequent data sets. Notably, these features

are highly customizable with user-adjusted inputs, and can easily be adapted to

other systems.

Full decision tree methodology

A visualization of the decision tree algorithm for our system is available in the

Supplementary Information. In this algorithm, individual cells are run through

the tree one-by-one. We start with one of the most conditional arguments.

In the following description, all numbers have arbitrary intensity units. Cells

where the nuclear membrane permeability starts high (Fig. 2.4a) are categorized

based on their maximum blue value (greater than 7) and frame at which blue

reaches maximum (less than 7). Then, the tree splits between cells that have

blue changepoints and cells that do not have blue changepoints.

For cells that have blue changepoints, we ask if there are more than three

changepoints to determine cells where the nuclear membrane permeability has

multiple levels (Fig. 2.4l). For cells with fewer blue changepoints, we determine

if the mean difference between red and blue timeseries is greater than 20 (red

being higher). If true, then the cell has polarized mitochondria but the nuclear

membrane permeability still increases (Fig. 2.4e). If false, then we determine

if the cell has green peaks. If the green peaks are before the blue changepoint,

then the calcium transient occurs and the nuclear membrane permeability in-

creases (Fig. 2.4h) and if they are after the blue changepoint, then the cell has cal-
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cium transients after the nuclear membrane permeablity is elevated (Fig. 2.4g).

For cells that have no green peaks, then we determine whether or not the blue

changepoint occurs immediately after impact. Cells where the maximum value

occurs after frame 120 and the blue changepoint after frame 100 are consid-

ered to have a late increase in nuclear membrane permeability, not immediately

from impact. If true and there is a green changepoint, then the calcium con-

centration drops and the nuclear membrane permeability increases (Fig. 2.4f).

If true and there is not green changepoint, then the nuclear membrane perme-

ability increases late with no obvious trigger (Fig. 2.4d). If the cell increases in

nuclear membrane permeability immediately after impact, then we determine

if it has blue peaks, which indicate an increase and decrease in nuclear mem-

brane permeability (Fig. 2.4c). If there are no peaks, and the range after the

blue maximum is lower than 8, then the cell’s nuclear membrane permeabil-

ity increases and plateaus (Fig. 2.4b). All remaining cells in this branch of the

tree (has blue changepoints) are categorized as nuclear membrane permeability

starts elevated (Fig. 2.4a).

For cells that do not have blue changepoints, we first determine if the cell has

green peaks. If yes, then the cell has physiologic calcium transients (Fig. 2.4i).

If no, we find cells where the range of blue values is greater than 10, indicat-

ing that the nuclear membrane permeability rises (Fig. 2.4b). Then, if the range

of blue values is lower than 10, we determine whether the mean of red values

after frame 50 is lower than 6. This frame value is chosen to represent a sig-

nificant enough time after impact where cells have stabilized to their state. For

cells with a high red mean, they are normal cells with polarized mitochondria

(Fig. 2.4j), and cells with a low red mean have all low signals and depolarized

mitochondria (Fig. 2.4k).
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Finally, in developing this decision tree we were able to make more informed

decisions about how we manually classified cells. For example, the normal cells

(Fig. 2.4j), and the all low signal cells (Fig. 2.4k) exist on a continuum. Both

categories feature no calcium signaling and no elevated nuclear membrane per-

meability, with the sole distinction between the two being the intensity of mi-

tochondrial polarity. While hand-sorted cells were judged to the best of our

human efforts, there was no easily defined cutoff between the two categories.

In programming the decision tree, we specifically defined a numerical cutoff

for mean values of fluorescence which provided a more quantitative method

of separating the two categories. By iteratively designing the decision tree and

updating the manual classifications, we were able to produce more accurate

classifications.

Time Series Classifier Parameters

Each classifer in the sktime library has its own model and training parameters.

We optimized the parameters for our dataset by testing a range of values for

each parameter. We found that while increasing the number of estimators or

kernels may very slightly increase accuracy, the run time of training and testing

these models increased significantly. We also tested other available parameters

for these models, but have only listed relevant ones which noticeably affected

accuracy.

For the Canonical Interval Forest (CIF) classifier, we used nestimators = 200

and nintervals = 100. For the Diverse Representation Canonical Interval Forest

(DrCIF) classifier, we used nestimators = 200 and nintervals = 40. For the RandOm
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Convolutional KErnal Transform (ROCKET) Classifier, we used nkernels = 50000.

Finally, for the Arsenal Ensemble Classifier, we used nkernels = 10000 and nestimators

= 50.
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2.6 Supplementary materials

2.6.1 Strain-dependent cellular response

The strain field resulting from impact and the associated cell response had com-

plex behaviors that varied spatiotemporally. For calcium, in the milliseconds af-

ter impact trauma (Green in Fig. 2a), increased concentrations can be seen in the

cells proximal to the impact site. By one second, we observed spatially sporadic

increases in calcium deeper in the imaged region. After a few seconds, the cells

damaged at the impact site begin to fade, suggestive of death, while cells in the

deeper regions exhibited a more uniform increase in calcium. Subsequently, the

calcium concentration in cells below the impact slowly decayed. These differ-

ing calcium responses in cells that experienced various amounts of compression

suggest that distinct mechanotransduction pathways may have been activated

depending on mechanics governing the local strain field and the phenotype of

each cell, which is known to vary with depth in cartilage [60, 61, 62].

Interestingly, in addition to this depth dependent response, we observed a

different temporal pattern of calcium concentration in the region laterally adja-

cent to the impact (region indicated by orange boundary). Cells in this region

near the articular surface primarily experienced shear strain during impact and

showed increases in calcium on the tens of seconds time scale, with maximum

intensities that were almost an order of magnitude lower. These data suggest

that shear and compressive strains may trigger different mechanotransduction

pathways, consistent with findings in cell-agarose constructs [41].

Such complex spatiotemporal patterns are also exhibited on longer time
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scales in all three measured channels (Fig. 2b): mitochondrial polarity (Red),

calcium concentration (Green), and nuclear membrane permeability (Blue). We

found that mitochondrial polarity rapidly diminished at the impact site in the

minutes after injury. In the surrounding regions, we observed a slow decay in

mitochondrial polarity over the course of multiple hours. Calcium concentra-

tion largely followed the same pattern, with some cells which exhibited tran-

sients on the scale of minutes (See supplementary Video 2). Conversely, nuclear

membrane permeability initially showed a very low intensity throughout the re-

gion and reached higher intensities in a fraction of the cells in regions extending

down to 400µm below the impact site on a time scale of hours. Finally, con-

sistent with the short time calcium response, this pattern of cell death did not

extend to areas of the tissue which experienced primarily shear strains.

Collectively, these distinct spatiotemporal patterns of cell response indicated

that multiple mechanobiological pathways may have been activated in response

to local strain. Cells at the impact site most likely died immediately due to mem-

brane rupture caused by extremely high strains [6]. Cells further away from

impact, which are subjected to lower strain intensities, may have activated dif-

ferent signaling pathways such as physiologic calcium signaling which led to

normal tissue response (i.e. TRPV4 pathway [15, 40]) or superphysiologic cal-

cium signaling which led to apoptosis (i.e. Piezo 1/2 [63, 36, 37]) each of which

produced cellular signatures with characteristic combinations of fluorescence

intensity curves. Developing an understanding of how such processes are re-

lated requires identifying distinct cellular signatures and mapping out where

in the tissue they are localized. To obtain these maps, however, we must first

identify each cell, track its movement and multi-channel fluorescence response

over time (Fig.1e), and classify its cellular signature (Fig.1f).
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Manual sorting of fluorescent intensity analysis in impacted articular carti-

lage shows spatially distinct cell behaviors

Below the impact site, we observed that many chondrocytes showed a high level

or a rapid increase in their nuclear membrane permeability and low mitochon-

drial polarity, which most likely indicated that they were undergoing cell death.

Interestingly, we observed different shapes in this channel. In some cells, nu-

clear membrane permeability was immediately elevated following impact and

stayed high (Fig.4a). These cells were primarily localized in the 150µm just be-

low the impact site. A second group showed a rapid increase in permeability in

the 20 min following impact and maintained this intensity throughout the ob-

servation window (Fig.4b). These cells were distributed in a region extending

400 µm below the impact site. A third group showed a similar rapid increase

in nuclear membrane permeability in the first 20 min following impact but then

decayed in this channel to an intermediate level still higher than baseline. These

cells could be found up to 1 mm below the impact site (Fig.4c). Additionally,

in some cells down to 450µm below the impact site we observed a late rise in

nuclear membrane permeability with no obvious trigger (Fig.4d), while in oth-

ers we observed a rapid rise in nuclear membrane permeability despite the cell

maintaining high mitochondrial polarity (Fig.4e).

There were a number of distinct behaviors associated with changes in cell

calcium concentration. In the region located 150 - 400µm below the impact site,

one group of cells showed a rapid drop in calcium concentration followed by

a rapid increase in nuclear membrane permeability (Fig.4f). Another group

showed calcium transients in cells where the nuclear membrane permeability

was already elevated (Fig.4g). A third group of cells exhibited one or more su-
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perphysiologic calcium signals with mostly rounded peaks, and a subsequent

increase in nuclear membrane permeability indicating cell death (Fig.4h). In re-

gions greater than 400 µm below the impact site there was a group of cells that

exhibited one or more physiologic calcium signals with mostly square peaks,

maintained relatively high mitochondrial polarity, and showed no change to

the nuclear membrane permeability (Fig.4i).

Finally, we observed two additional groups of cells that maintained low nu-

clear membrane permeability throughout the experiment. In the first group the

mitochondria remained polarized (Fig.4j), while in the second all three signals

were low (Fig. 4k). Both of these groups were evenly distributed throughout

the impacted samples and the controls.

2.6.2 Decision Tree Methodology

See Fig. 3.3 below for a graphical description of the decision tree logic.

2.6.3 Tracking and Intensity Analysis Code

This set of codes requires Crocker Grier particle tracking code found here:

https://site.physics.georgetown.edu/matlab/, and export fig from

the MATLAB Fileshare found here: https://www.mathworks.com/

matlabcentral/fileexchange/23629-export_fig, as well as the MAT-

LAB Signal Processing Toolbox.

The tracking code does not necessarily re-assign the same cell ID to the same
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Figure 2.5: The full decision tree algorithm for our system. Each cell time series
is run through the tree separately. Grey boxes indicate final sorted categories.

cell each time it is run, due to the nature of the way the Crocker and Grier code

is written. Because of this, different sample data is provided for some of the

different steps here. This is because the manually-sorted data is not necessarily

going to have the same cells with the same ID when the user runs the sample

data.
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The post-impact input files for this code should be in RGB format .tif files.

ImageJ or Fiji can be used to convert from other image formats. Ensure that the

colors are in the correct channels (for example, Slidebook likes to swap R and

B). The impact input file should be an 8-bit .tif file.

For cells that are not moving, the video can be registered onto the first frame.

This will allow the user to connect tracking between the impact and post-impact

videos (and only works at the impact site). MATLAB’s fitgeotrans and imwarp

functions are used to accomplish this. An example snippet of code is provided,

but this is not used in the final data analysis so is not integrated into the code as

a whole.

To run the codes provided, ensure that the MATLAB directory includes all

files within the folder. Start with all tracking function calls. This code will re-

quire the user to fill in the various parameters associated with the timing of

the images, where the images are saved, alongside the positions that the user

wishes to track. Impact and post-impact tracking parameters for the Crocker

and Grier algorithm must be filled in, with example values saved within the

code itself. Feature extraction parameters should also be filled in (for detailed

explanation see the code). Once all parameters are filled, the code can be run.

Input parameters for each of the called functions can be found in the functions.

Most of the functions require a folder and date to designate where the images

are stored and where the output files should be sent to. TrackImpact, Track-

PostImpact, and FeatureExtraction have print parameters, which can be set to

‘on’ or ‘off’ to determine whether or not the tracking images or feature extrac-

tion images are printed. These images are used to help optimize the parameters

for tracking or feature extraction. The first time the code is run, the should be
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set to ‘on’ in order to ensure that the tracking is working correctly, and that the

peak detection looks correct. Future iterations of the code with optimal param-

eters do not require printing the images. The code takes significantly longer to

run if printing all images, but will be faster on a computer with a better GPU

(MATLAB renders faster).

Once all tracking function calls is run, the tracking and feature extraction is

complete. The user is given a choice between the sorting function calls manual

and sorting function calls nomanual codes. For the first time running the data,

the user should use the GUI (detailed below) to identify the categories of all of

the cells. These categories are then used to label and sort all of the cells. Sorting

can be easily accomplished by creating a copy of all intensity curves, then using

the first section of sorting function calls manual to make folders corresponding

to all of the input categories. ManualDataCompilation will then scrape file-

names from within each of these folders to add them to a structure with the

correct labels. From here, both of the sorting codes will run CellAttributes to or-

ganize features for each time series and DecisionTree to categorize them, finally

using SplitPeaksDataCompilation to format the data into shape for time series

classification.

The decision tree was custom programmed for our system. After CellAt-

tributes is run in the main script, the features are used to categorize cells into

their respective categories. The parameters of the tree must be changed for each

new system, with the overall structure remaining quite similar. For other sys-

tems, new categories may be identified, and used to determine the if-else state-

ments building the tree.
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2.6.4 MATLAB GUI

The GUI requires MATLAB 2019a or newer. If other code has been run that

has changed figure defaults (like code above), it is recommended that a new

instance of MATLAB is opened or the command ’reset(groot);’ is run before

starting the GUI to avoid figure sizing errors. A video detailing how to use the

GUI is included, along with example data.

The GUI has several main functions: to observe cells and groups of cells

within the video and plot their individual fluorescence intensities, and to look

at how these intensities are distributed. First, pre-processed data is loaded in

using the interactive menu and Windows explorer dialog. The pre-processed

data consists of the video, tracked intensities of each cell, and location of each

cell, with the same naming convention (see example data). Intensity data is

taken from ‘pos () intensity’ and ‘pos () locs’ .mat files. Then, the video player

in the center can be used to either play at a specified framerate or scroll through

all of the frames within the video. Individual cells can be clicked on within the

video to display their intensities on the plot side of the GUI. The Cell ID (given

by the particle tracking code) or x-y coordinates can be used to find cells as well.

Groups of cells can be selected using the rectangular selection tool. When

using this functionality, the plots on the right side of the GUI can be interacted

with. First, click within the plot area on one of the three colored plots (but not

directly on a line). Then, a cursor will appear. Click on a point within the graph.

After this process is completed, ‘highlight cell’ can be clicked on to circle the cell

within the image, ‘Timepoint Histograms’ can be clicked on to produce a pop-

up with histograms of all three colors at the selected time, and ‘Cell Populations’

can be clicked on to produce a pop-up with the selected area split into three
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populations based on the intensity of the blue curve at the selected time. At any

point, ‘Clear Current Data’ can be used to start over. At the end of analysis,

‘Save Cell ID List’ will pop out a Windows dialog to save the list of cells that

were interacted with within this session of the GUI.

2.6.5 Time Series Classification Code

The hand-sorted data above is used to train several time series classifiers. Data

is loaded as a MATLAB .mat file, which is converted to a dataframe. All of the

classifier functions are located within classifier functions.py. In order to train

models, labeled data is used, alongside the trainCIF, trainDrCIF, trainROCKET,

and trainArsenal functions. These functions will save the models, alongside the

accuracy of the model tested on a subset of the data. To use the trained models,

the loadCIF, loadDrCIF, loadROCKET, and loadArsenal functions can be used.

This will label new data. The model will not be trained exactly the same every

time, due to random seeding. However, the accuracies should be very similar.

Dependencies of this code are listed within the functions file. Sktime can be

found at https://www.sktime.org/en/latest/.

2.6.6 Example Application of STRAINS to Worm Neuron Data

We tested our system on data obtained from Wen, et. al. eLife, 2021 [64]. Using

GCaMP and calcium dynamics data from Fig. 5 in that publication, we ap-

plied our modified particle tracking to the video of a moving worm brain. Our

GUI was modified to automatically accommodate the new video dimensions,
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Figure 2.6: Example screen capture of modified GUI on worm GCaMP data for
selecting single cells within the video.

Figure 2.7: Example screen capture of modified GUI on worm GCaMP data for
selecting groups of cells within the video.
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tracking, and single channel data (Fig. 2.6 and Fig. 2.7). Based on manual classi-

fication, unmodified time series classification was trained and tested on calcium

dynamics data, reaching classification accuracy of up to 91.2% for all four clas-

sifiers, CIF, DrCIF, Arsenal, and ROCKET (similar accuracy is obtained for all

classifiers due to small population size of data - 137 cells total).
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CHAPTER 3

VARIATIONAL AUTOENCODER FOR CLUSTERING CARTILAGE DATA

Zheng, J., Teoh, H.K., Delco, M., Bonassar, L. J., & Cohen, I., Manuscript in

preparation

3.1 Abstract

In various biological systems, analyzing how cell behaviors are coordinated

over time would enable a deeper understanding of tissue-scale response to

physiologic or superphysiologic stimuli. Such data is necessary for establish-

ing both normal tissue function and the sequence of events surrounding injury.

However, collecting and analyzing these large datasets presents a challenge—

such systems are time consuming to process and the overwhelming scale of

data makes it difficult to parse overall behaviors. This problem calls for an anal-

ysis technique that can quickly provide an overview of the groups present in

the entire system and also produce meaningful categorization of cell behav-

iors. Here, we demonstrate the application of an unsupervised method—the

Variational Autoencoder (VAE)—to learn the features of cells in cartilage tis-

sue after impact-induced injury and identify meaningful clusters of chondro-

cyte behavior. We quickly generated new insights into the spatial distribution

of specific cell behavior phenotypes and connected specific peracute calcium

signaling timeseries with long term cellular outcomes, demonstrating the value

of the VAE technique.
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3.2 Introduction

Exploring how cells coordinate their behaviors in response to stimuli is im-

portant for understanding tissue function in health and disease. Tissues are

complex systems where many factors such as spatial location and structural

mechanics can affect how mechanical and biochemical signal transduction be-

tween cells and dictate the subsequent cellular response. Methods have been

developed to approach this problem through imaging the behaviors of individ-

ual cells over time [39, 65, 66, 67, 68, 69] or taking snapshots of pooled cell pop-

ulations [38, 70, 71]. However, fully addressing this problem can be difficult.

In order to make specific conclusions about how coordinated cellular behav-

iors are affected by external factors, the spatial and temporal behaviors for each

of thousands of cells within a tissue must be collected, processed, and inter-

preted for many iterations of experiments. Experiments with different stimuli

must then be compared in order to determine how behaviors may change. This

process amounts to an overwhelming amount of data for analysis using well-

established methods.

Recently, we developed a technique that combines real-time in situ imaging

of cartilage tissue during tissue impact with supervised learning techniques to

establish and probe specific behaviors within the system (STRAINS) [72]. Our

method enables the detailed spatiotemporal analysis of individual cell behav-

iors and the classification of specific cell responses and phenotypes. However,

such process requires initial manual classification, which is initially time con-

suming for large datasets and may miss subtle differences between cells due to

human error.
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An unsupervised machine learning method that would allow the simultane-

ous analysis of thousands of time series alongside other factors such as location

or strain would enable the fast and unbiased categorization of cellular behav-

iors. We propose a promising new technique using a Variational Autoencoder

(VAE) to learn the basic behaviors of a tissue system in an unsupervised manner

and make use of this learning to cluster cells by behavior.

The Variational Autoencoder (VAE) is a recently developed probabilistic

generative neural network [73]. Comprised of an encoder, a decoder, and a

loss function, the VAE iterates upon itself to learn how to accurately reproduce

input data, and map that data to a latent space. The latent space of the VAE is

connected (two points in the space that are close together give similar decoded

results) and complete (all points in the latent space give meaningful information

upon decoding). This feature of the VAE latent space both prevents overfitting

and allows for generation of new data. As an unsupervised machine learning

tool that can easily process large amounts of data, VAEs have been applied to a

wide range of fields, from reconstructing complexities in many-body physics to

anomaly detection in industrial robots [74].

In biomedical research, VAEs have been more commonly applied as a diag-

nostic tool for image classification in MRIs and other medical imaging [75], for

the classification of tumors and image segmentation [76, 77], multi-omics data

integration, and even molecule and protein design [78]. The processing capabil-

ity of VAEs have led to its use in single cell analysis techniques have focused on

specific biomarkers in separate cells [79] or single cell transcriptome profiling

[80] and in time dependent biological signals in spectrographic data with the

clustering and analysis of budgie and mouse vocalizations [81].
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Here, we propose to expand the use of a VAE to analyze cellular response

in articular cartilage, where tissue-scale data of thousands of cells subject to

stimuli is recorded over space and time for multiple cellular functions via con-

focal imaging. The VAE is highly suited for processing this complex spatiotem-

poral dataset; cartilage consists of chondrocytes within a heterogeneous extra-

cellular matrix with mechanical properties and cellular phenotypes that vary

with depth [1]. We use the VAE to accurately reconstruct time series cell data

and at the same time, learn a compressed representation of the cellular pro-

file which is subsequently used to cluster via the agglomerative hierarchical

clustering method. These clusters are used to identify the phenotypes of be-

haviors present in the cartilage. Additionally, the VAE reduces complex high-

dimensional time series data to a compressed representation, which allows us

to identify the dominant effects in the system from the principal components in

the latent space [82]. Finally, we use the generated clusters to correlate between

sub-second cellular responses and long-term cellular outcomes, to build a fuller

picture of cell response after injury. This application of the VAE is a demon-

stration of an effective tool for the large-scale analysis of spatiotemporal data

alongside meaningful clustering for biological insights.

3.3 Results

We trained the VAE on multiple sets of cartilage data. As shown in Fig. 3.1 a-c,

articular cartilage samples were loaded onto a confocal-mounted impactor, side-

by-side with a control. The sample was impacted, and videos were taken of the

impact and the longer-term cell processes in the hours after impact. All of the

cells at multiple locations around the impact site and similar sites on the control
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sample were tracked over time, and the calcium concentration, mitochondrial

polarity, and nuclear membrane permeability data was extracted as timeseries,

as described in previous work [72]. This is repeated for multiple experiments.

We input these timeseries into the VAE, which we then iterate until the recon-

structions match the input data. Once we are confident that the VAE effectively

encapsulates the information contained within all of the cell timeseries, we use

it as an effective tool to quickly cluster cell time series data to obtain useful

insight into what behaviors are present in the system. This is done in several

ways: the latent space of the VAE shows us information about the defining axes

upon which the system varies, the clusters generated allow us to speedily learn

about which behaviors are present in the system, the breakdown of the cluster

tree teaches us about how similar clusters are, and clustering the post-impact

data allows us to discern interesting patterns in the impact data itself and learn

about how the two timeseries are related.

3.3.1 Principal Components of the VAE Generate Valuable In-

sights

The VAE process itself can provide us with useful information about our system.

The principal components (PCs) of the latent space generated by the VAE show

us the dominant behaviors that comprise the system. These form an orthonor-

mal basis upon which we can construct any of our cell behaviors—each cell is

composed of some linear combination of all of the PCs. This process identifies

the most basic behaviors, the building blocks of all cell behaviors in the system.

Different samples may produce different clusters, but the basis on which these
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Figure 3.1: Sample processing, imaging, tracking, and VAE structure. a) Biopsy
punches of condylar articular cartilage are collected, bisected, and halved.
Hemicylinders are stained for calcium concentration, mitochondrial polariza-
tion, and nuclear membrane permeability (cell death) via Calbryte 520 AM,
Sytox Blue, and Tetramethylrhodamine, respectively. b) Paired hemicylinders
are glued side-by-side to the back plate of a confocal-mounted impactor. One
hemicylinder is impacted (site 1) while the other serves as control. Imaging oc-
curs during impact at site 1 and after impact at sites 1-6. c) Individual cells are
tracked through all time points. Stain intensities are extracted and manually
sorted (for one sample, to provide comparison baseline for VAE analysis). d)
Structure of the Variational Autoencoder (VAE). The first portion of the encoder
consists of three 1D convolution layers and a reshape operation that is subse-
quently fed into fully connected layers of a dense neural network which out-
puts the mean and diagonal covariance vectors of the compressed latent space
representation. A sample z is drawn from the d-dimensional Gaussian and sent
through the decoder to obtain a reconstructed intensity profile. The decoder has
the same architecture as the encoder, with the exception that the 1D convolution
layers are replaced with 1D transposed convolution layers. e) Example recon-
struction of cell intensity data. Light colored lines represent the input data and
dark colored dashed lines represent the reconstruction.
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cell fingerprints are constructed are the same.

In this system, 75% of the cumulative explained variance can be accounted

for in the first four PCs and 90% in the first eight PCs. The three color timeseries

data is used without normalization because the absolute intensity value carries

important information. Thus, more PCs are required to fully account for the ex-

plained variance than some other systems due to the broader range of possible

timeseries combinations.

Examples of Principal Components (PCs) can be seen in Fig. 3.2, for three

different datasets. Fig. 3.2a plots the first four PCs as they vary from α = −3 to

α = +3 with all other PCs at α = 0. The corresponding heatmaps for each of

those PCs is seen on the right in Fig. 3.2b, with each cell represented by a dot of

color varying from purple α ≈ −3 to pink α ≈ 0 to yellow α ≈ +3. From these

heatmaps, we can see that the PCs show strong spatial correlations.

For example, PC0 varies from a cell that dies due to impact at α = −3 to a

cell with decaying but elevated calcium concentration and decaying mitochon-

drial polarity at α = +3. This PC covers the spectrum between cell death due

to impact and cells with slowly decaying function (as expected in an ex vivo

setup). Notably, cells at the exact impact location (shown with orange arrows in

Fig. 3.2b) and some cells below the impact show strongly negative values in this

PC, whereas cells to the side of impact and on the control sample show strongly

positive values in this PC.

PC1 demonstrated a different trend, with negative values associated with

low calcium signal and high but decaying mitochondrial polarity and high val-

ues associated with decaying calcium signal and slightly elevated nuclear mem-
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Figure 3.2: Principal components and associated spatial heatmaps for three
impact experiments. Left: example reconstructed plots showing the variation
along the first twelve principal components, varying from α = −3 to α = 3.
Right: Spatial maps of all cells and their associated α values for each PC, where
α varies from −3 (purple) to 3 (yellow). Impact location shown with orange
arrow. The experiment in the rightmost column was subject to larger impact
strain than the other two experiments (left and center).
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brane permeability. Cells with high values in this PC were generally found at

the impact site or below. PC2 captured a different type of cell death/dysfunction

at high values, where all three signals decayed. This was most prevalent in the

dataset on the right, at and below the impact location. Specifically, this dataset

experienced the highest strain, indicating that this PC may be positively cor-

related with strain. PC3 represented no cell death/dysfunction, varying from

normally decaying signals to cells with higher calcium activity, which was more

often seen on the impacted sample. More examples of principal components can

be seen in Fig. 3.3.

Subsequent PCs each contributed less to describing the explained variance

ratio, which is obvious from the trend of heatmaps becoming more uniformly

pink (α ≈ 0), there are some notable features that the VAE was able to learn.

PC5, PC9, and PC10 all showed an increase in calcium concentration followed

by cell death, but at uniquely different timepoints. PC6, PC7, and PC8 showed

late cell death also at unique timepoints. These behaviors were known to be less

common within the population of cells observed, but were still captured by the

VAE during its learning process.

By observing the relative importance and spatial distributions of these PCs,

we find that while the dominant behavior of cell death is quite obvious, there are

three distinct modes: Instantaneous cell death—highly elevated nuclear mem-

brane permeability signal with minimal other signals, cell death/dysfunction—

somewhat elevated nuclear membrane permeability signal with elevated cal-

cium signal, cell death/dysfunction—highly elevated but decaying nuclear

membrane permeability signal with decaying other signals. Notably, these are

three of the most distinctive features used in manual labeling, which the VAE
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Figure 3.3: Example branching of the hierarchical clustering tree. Left: Overall
agglomerative hierarchical clustering, with example cutoff line for 14 clusters
shown in black. Each vertical line is a cluster. The x-axis shows cell counts
and the y-axis represents distance between the clusters represented by the sym-
metrized Kullback-Liebner divergence. Right: Expanded view of gray shaded
box. Clusters break down into smaller groups with more detail when the total
number of clusters is increased. Bolded lines represent cluster averages, and
thin lines represent individual cells within a cluster. Red represents mitochon-
drial polarity, green calcium concentration, and blue nuclear membrane perme-
ability (cell death). Four levels are shown, showing the specificity of clusters
when there are 3, 5, 9, and 14 total clusters. Letters are used to name clusters for
ease of identification and have no specific meaning.

distinguished quickly without the need for time-consuming analysis.
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3.3.2 Clustering Post-Impact Data into Distinct Behavior Phe-

notypes

Once the VAE learns how to accurately reconstruct cell timeseries data, we use

the latent features to determine how different cells are from each other. We use

the symmetrized Kullback–Leibler divergence, which measures differences be-

tween probability distributions, to quantify distances based on latent variables

of each cell. Using this metric, we perform agglomerative hierarchical cluster-

ing to cluster our cells, where similar cells are grouped together until clusters

form. This process builds up a tree, whereby we can set our desired distance

cutoff to select for any number of clusters (Fig. 3.3a).

Starting from a small number of clusters, we get some separation between

behaviors, but each cluster still contains too many cells and overlapping behav-

iors. As we increase the number of clusters, we see separation in behaviors.

Eventually, the process produces clusters that are too small to be meaningful.

Mapping this out produces a hierarchical clustering tree (Fig. 3.3a). Moving

down the cluster tree allows us to determine when it becomes relevant to stop

decreasing cluster size. This allows us to look at what number of clusters is rel-

evant to the system. The way that the clusters split up tells us which types of

behaviors the VAE considers to be more similar, informing us that we should to

look more closely at how to similar clusters differ.

For example, Fig. 3.3a shows the overall hierarchical clustering tree for this

dataset and demonstrates an example cutoff distance that produces fourteen

total clusters. The shaded gray box highlights one branch of the cluster tree

and is expanded in Fig. 3.3b to show the timeseries within each cluster. We
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determined fourteen clusters to be a reasonable cutoff, as eleven clusters still

produced clusters that appeared to encompass multiple behaviors, and eighteen

resulted in too many clusters with very small cell counts.

At three total clusters, we see that cluster A is largely comprised of cells

with decaying calcium concentration and decaying mitochondrial polarity with

lower overall intensity. As we increase in specificity to five total clusters, we

see cluster A split into cluster B, which looks largely similar to cluster A, and

cluster C, which has a overall higher mitochondrial polarity signal and a flat cal-

cium concentration. Moving to nine clusters, we see cluster B split into D and

E. Cluster D is very different, showing dead/damaged cells with elevated and

decaying nuclear membrane permeability and calcium concentration, whereas

cluster E again looks similar to its parent cluster. Cluster C splits, and we see

that cluster F is very unique, pulling out cells where there is a calcium transient

at roughly two hours into imaging, after which the cell dies. Again, cluster

G looks similar to its parent cluster. Finally, at fourteen total clusters, we see

cluster E split, this time into two clusters (H and I) where both the calcium con-

centration and mitochondrial polarity decay, but have different overall intensity

values.

Interestingly, we found that the dead/dysfunctional cells in this data set are

not separated at a low cluster count and instead split from clusters that look

like largely normal cells. The clusters with increased nuclear membrane perme-

ability all appeared at the 9 or 14 cluster level. However, for a different dataset

with higher total strain and more cell death trained on the same VAE, we found

that the dead/dysfunctional cells were split into different clusters at the 3 clus-

ter level. By doing this exercise, we can gain a sense of the similarity measure

59



for specific cell behaviors, and their resistance or willingness to be clustered to-

gether. These distances between clusters can be used to guide which specific

biological factors should be changed in future experiments, or which types of

behaviors should be specially probed.

In Fig. 3.4, one dataset is shown broken down into fourteen clusters. For each

cluster, the spatial distribution of cells on the cartilage tissue, the timeseries for

all of the cells within the cluster, and the UMAP visualization of cells is shown,

with cells represented as orange dots. The UMAP embedding visualization in-

cludes all of the cells from multiple experiments that were simultaneously used

to train our VAE (shown in gray). Notably, the UMAP embedding shows two

big groups of cells, with the left group correlated with cells where the nuclear

membrane permeability rises at any point during the experiment, and the right

group correlates with cells with no nuclear membrane permeability.

In this dataset, the majority of cells at the 14 total clusters level are grouped

into cluster 1, which has low and decaying mitochondrial polarity and low

calcium and nuclear membrane permeability signals. These cells are present

throughout the sample. Clusters 2-9 all showed low nuclear membrane perme-

ability, but different configurations of calcium and mitochondrial polarity decay.

When classifying by hand, these cells were all grouped within one phenotype,

due to the difficulty of assigning cutoffs (rather arbitrary). By clustering with

the VAE, we were able to separately identify cells with constant mitochondrial

polarization, cells where the mitochondrial polarization decreased over time,

and separate out groups where the calcium concentration was higher/lower

than the mitochondrial polarization with varying relationships to the mitochon-

drial polarization. This produced a more detailed analysis of differences be-
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Figure 3.4: All fourteen clusters from one example data set, organized in two
columns. Each cluster is shown in three panels: the spatial distribution of cells
within the cluster (cells represented as orange dots), the timeseries plots of cells
within the cluster (with means as bolded lines), and the UMAP distribution of
cells within the cluster (cells represented as orange dots). The clusters do not
have a specific ordering.
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tween viable cells, which will help to further our understanding of beneficial

processes in subsequent experiments.

Clusters 10-14 all showed cells with increases in nuclear membrane perme-

ability, but in different ways. Cluster 10 highlights cells mostly at and directly

below the impact site that have a large increase in nuclear membrane perme-

ability at the very beginning of imaging then decayed, with no other signals.

Cluster 11 showed similar timeseries, but the cells were more spread out to the

sides of the impact site, and all of the cells showed high but decaying calcium

concentration. Cluster 12 also showed cells that died near the beginning of im-

age, but with a much more rapid calcium decay and less nuclear membrane

permeability decay, spread around the impacted sample. Clusters 13 and 14

showed much later cell death after a calcium transient, with cluster 13 cells dy-

ing roughly 2 hours into imaging and cluster 14 cells at 1.3 hours.

The differences between these two clusters highlights the utility of the VAE

in picking out small clusters that are very different than other behaviors that

may not be picked out by hand but are in fact distinct clusters. The two dif-

ferent timepoints of these cell death events may indicate different methods or

triggers of cell death (for example, there were many more cells in cluster 13,

including a few present on the control). The ability of the VAE to generate this

distinction demonstrates its value as a fast and effective way to generate cell

behavior clusters in any stage of analysis.

62



3.3.3 Correlating Peracute Calcium Response with VAE Gener-

ated Clusters

By clustering the post-impact data and plotting the corresponding impact clus-

ters, we were able to quickly identify distinct differences in immediate calcium

signaling post-impact between cells that remain viable and cells that display

necrotic behavior (Fig. 3.5).

Cells at the impact location are tracked for both immediate impact calcium

signaling (1 minute) as well as the longer term post-impact imaging (several

hours). Using the post-impact clusters generated by the VAE, we constructed

the corresponding clusters for impact calcium signaling. From this, we noticed

that the shape of the initial calcium signal is highly correlated with cell death.

Cells that show sharp calcium peaks within milliseconds of impact with a sub-

sequent exponential decay were associated with cells that died within the first

hour after impact (Fig. 3.5b). Among those groups, the cells that showed higher

overall calcium intensity and faster decay of the calcium signal were associated

with higher nuclear membrane permeability in the hours after impact. These

cells were generally localized directly below the impact site.

Conversely, cells that demonstrated broad peaks or plateaus of calcium con-

centration after impact (reaching lower overall intensity compared to peaks in

the previous categories) were more often associated with cells that did not die

after impact (Fig. 3.5a). These cells were generally located away from or to the

side of the impact site. While these associations were hinted at from directly

viewing videos, they were not fully established until viewed using these VAE

generated clusters. Additional analysis could be conducted to further distin-
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Figure 3.5: Impact calcium signatures associated with VAE-produced clusters.
Differentiation between healthy cells and damaged or dying cells can be seen
from clustering on post-impact long term data. Each cluster has three panels:
the timeseries of all cells in the cluster for longer-term imaging (3 hours) which
includes all three color channels, the timeseries of the impact imaging for that
cluster (1 minute) which includes only calcium concentration, and the spatial
distribution of cells in said cluster which are shown as orange dots. In time-
series plots, bolded lines represent means while thin lines represent individual
cells within the cluster. The exact impact location is indicated with an orange
arrow. Left: clusters showing functional/healthy cells. Right clusters showing
damaged/dying cells.
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guish between the decay time of the calcium signal and the sKL divergence, the

distance metric used to establish clusters.

3.4 Discussion

This novel application of a VAE to analyzing tissue scale spatiotemporal cellular

behavior data (confirms, emphasizes, validates) the utility of this unsupervised

learning method. The VAE streamlines analysis by quickly processing large

amounts of high dimensional data in multi-channel fluorescence microscopy

videos with minimal (oversight). This enables us to rapidly iterate through ex-

perimental inputs and test hypotheses by changing individual factors and ob-

serving changes to clusters or identifying varying spatial distributions.

Using our VAE, we produced clusters that allowed us to identify the types

of behaviors occurring in our system, ranging from various types of normal

behaviors to distinct patterns of cell death. We also used it to quickly identify

correlations between immediate impact and post-impact imaging by using the

clusters produced by the VAE.

The VAE method has demonstrated several advantages over a traditional

manual labeling system or supervised machine learning. The VAE is capable

of working with noisy data, eliminating the need to do extensive background

correction. The VAE is fast: once input parameters are set up, no additional

work is necessary in order to produce meaningful results. Additionally, the

VAE can work with multi-channel and non-normalized data, allowing us to take

into consideration the importance of both absolute intensity and relationships

between channels in dictating cellular behaviors.
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This implementation of the VAE is easily adaptable to analyze any tissue sys-

tem where behaviors of cells are captured over time, not only from fluorescence

microscopy. The method is not confined to any specific geometry, has no lim-

itations on dataset size, and can work with time series data of any dimension.

The VAE can be trained on any number of samples while still producing unique

clusters for individual samples, enabling us to quickly look at sample to sam-

ple variation while simultaneously gaining a sense of the dominant overarching

behavioral themes with the principal components.

Finally, the VAE can be combined with other methods in order to compre-

hensively analyze cellular data in a tissue system, specifically with recently de-

veloped techniques focusing on spatially-resolved cell data (cite). Addition-

ally, the VAE is compatible with our previously published supervised learn-

ing/decision tree method, STRAINS, and works as a complementary technique

for high-throughput analysis of spatiotemporal cell data. Further, samples are

preserved after imaging, allowing for post-imaging analysis of gene expression,

protein synthesis, cell metabolic activity, etc. By combining our VAE method

with these analyses, a fuller picture of tissue-scale behaviors can be created.

3.5 Methods

The method detailed in this manuscript focuses on the VAE. Data acquisition

methods for this dataset in cartilage can be found in our previous work [72].

However, relevant descriptions for the experimental procedures are included

here.
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3.5.1 Impacting articular cartilage tissue

Sterilely-dissected 6mm cylindrical explants of articular cartilage were cultured

and stained for calcium concentration (Calbryte 520AM), mitochondrial po-

larity (tetramethylrhodamine, TMRM), and nuclear membrane permeability

(Sytox Blue). Selected stains were chosen to reflect relevant parameters for this

study, but can be readily modified. Samples were bisected and attached to the

back plate of a confocal-mounted impactor while submerged in a bath of PBS

(Dulbecco’s Phosphate Buffered Saline) and Sytox Blue stain (to capture cells

dying over the course of the experiment). One half of the sample was impacted,

and the other half served as control. The impactor delivers an energy-controlled

impact using a spring-loaded piston, producing a peak stress of ∼1MPa over 5-

10ms and replicating a superphysiologic loading rate which is known to induce

tissue damage in cartilage.

The impactor was mounted to the stage of an inverted spinning disk confocal

microscope (3i Marianas) for the course of the experiment. Using a 10x objective,

the region of impact, the regions lateral to and and below the impact, and two

regions of corresponding depth on the control sample were imaged. Each region

was 660µm x 660µm (512 x 512 pixels) in size. During the impact itself and

the following one minute, the region of impact is imaged at approximately 40

frames per second. Longer term imaging was continuously conducted at all

sites, with ∼12 seconds between frames. The imaging depth was selected to

be approximately 30 µm below the cut surface of cartilage in order to avoid

imaging chondrocytes damaged during sample handling.
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3.5.2 Extracting time series data of chondrocyte behavior

Cells in the images are tracked using a modified version of the Crocker and

Grier algorithm [43]. As described in previous work, the color channels are

summed and linear interpolation and static extrapolation are used to obtain cell

centroid locations [72]. These centroid values are then used to obtain a small

sub-cellular surrounding region over which fluorescence values are averaged.

This procedure is used to produce fluorescence traces for all three channels

for each cell. Additional moving-average smoothing is used to reduce high-

frequency noise, with a window size small enough to not affect features within

the timeseries.

After tracking is complete, additional background subtraction is imple-

mented. During and after cartilage impact, cell-localized stains leak into the

extracellular matrix and eventually dissipate. However, this phenomenon lo-

cally increases the background intensity for some frames of the video, causing a

non-uniform background both spatially and temporally. This background is re-

moved by generating a grid of 8x8 subsets within each image, and subtracting

the mean of the twenty lowest non-zero pixel values within each subset. The

timeseries data for each cell is then plotted in its own image for ease of analysis

and organized into dataframes for use in the VAE.

3.5.3 VAE Structure

The variational auto-encoder (VAE) architecture employed in our analysis is as

illustrated in Fig. 3.1d. Specifically, we parameterized the encoder as a stack

of 1D convolution layers, whose operation derives interesting features from
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shorter data segments. The derived features are then mapped into latent means

and latent diagonal co-variance vectors that describe a d-dimensional normal

distribution, qϕ(z|x) = N (µϕ(x), σϕ(x)). In the VAE framework, qϕ(z|x) acts as

an approximation for the true posterior probability pθ(z|x). The first portion of

the encoder consists of three 1D convolution layers with kernel of size 3, stride

of size 2 and padding of size 1. The input and output channels are i) 3 → 4,

ii)4 → 8 and iii) 8 → 16 respectively. This is followed by a reshape opera-

tion that turns the transformed data into one dimensional array that is subse-

quently fed into fully connected layers which are used to compute the mean

and diagonal co-variance vectors of size d. The input and output channels are

i) 1488 → 128, ii) 256 → 128 and iii) 128 → d respectively. A sample z is then

drawn from the d-dimensional Gaussian and sent through the decoder to obtain

a reconstructed intensity profile. The decoder has the same architecture as the

encoder, with the exception that the 1D convolution layers are replaced with 1D

transposed convolution layers. Batch normalization is applied on the convolu-

tion and transposed convolution layers. Non-linearity is introduced with RELU

activation function on each layer.

One can then use drawn samples from the encoder distribution to recon-

struct the data via the decoder, whose layers are the inverse operations of the

encoder. In training the VAE, one wishes to maximize the log-likelihood of gen-

erating real data log pθ(x), and at the same time minimizing the information loss

when the encoder distribution qϕ(z|x) is used to approximate the true posterior

distribution, pθ(z|x). The information loss can be quantified via the KL diver-

gence, DKL(qϕ(z|x)||pθ(z|x)).

LVAE = log pθ(x)−DKL(qϕ(z|x)||pθ(z|x)). (3.1)

In practice, this optimization is achieved by minimizing the evidence lower
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bound objective (ELBO),

LELBO = −Ez∼qϕ(z|x) log pθ(x|z) +DKL(qϕ(z|x)||pθ(z)) (3.2)

which consists of two terms: 1) expected log-likelihood of the decoder distri-

bution, which minimizes the prediction error of the reconstruction, and 2) a

regularization term that seeks to minimize the difference between the encoder

distribution qθ(z|x) and the prior distribution, p(z). Here, we assume the prior

distribution over the latent features z to be unit Gaussian, N (0, I).

3.5.4 Training details

To create training and test dataset for our VAE, we first smooth the cell intensity

profile with a window size of 10 and down-sampled the time series to a length

of 750. We then randomly selected 80% of the data as our training set and the

remaining 20% as our validation set.

The VAE is implemented using PyTorch (v1.1.0) [83], where we set the latent

dimension d to be 32 and applyed batch normalization on the convolution and

transposed convolution layers. The nonlinear RELU activation function is acted

upon each layer. We train the VAE for a maximum of 100 epochs with a batch

size of 32 using the Adam optimizer with a learning rate of 0.001. In order to

make the network learn robust representations [84, 85], we also injected a unit

Gaussian noise N(0,0.01) to the cell data in our training process.
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3.5.5 Principal Component Analysis

Beyond simply clustering, we can also learn how cellular responses are encoded

within the latent representation. We performed principal component analysis

(PCA) on the latent mean vectors µ⃗z generated via the VAE encoder. PCA re-

duces the dimensionality of our data by projecting the data onto a new set of

axes, with each subsequent axis capturing less of the variation. This allows us to

determine the first few orthonormal axes e⃗i within the latent space that captures

the most variation of the cell’s latent mean vectors,i.e µ⃗z =≈ α1e⃗1 + α2e⃗2 + ...,

where αi = ⟨z⃗ · e⃗i⟩ is the dot product between µ⃗z and e⃗i. We can then learn about

what cellular profile is encoded within each e⃗i. This can be done by sampling

along e⃗i by tuning αi and keeping the rest of αjs zero. The cellular profile en-

coded is recovered by feeding these sampled latent representations through the

decoder.

3.5.6 Hierarchical Clustering

To cluster the cell data in an unsupervised manner, we made use of agglomera-

tive hierarchical clustering technique. This technique works by treating each cell

data as an individual cluster. At each iteration, similar clusters are then merged

until a predefined clusters are formed. We performed the clustering using the

latent representation of cell data obtained from the VAE. As the clustering tech-

nique requires a metric to quantify the differences between latent representa-

tion, we use symmetrized Kullback-Liebler divergence (sKL), a distance mea-

sure that quantifies the dissimilarity between two distributions. This choice is

motivated from the fact that the latent representation consists of a pair of 32 di-
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mensional vectors (mean and diagonal variance) that describe a 32-dimensional

Gaussian distribution.
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CHAPTER 4

CONCLUSION

4.1 Conclusions

The two methods outlined in this thesis provide a new way of studying mechan-

otransduction in articular cartilage. By incorporating big data analysis with ex-

perimental techniques, we enable future experiments to study changes to chon-

drocyte phenotypes under different experimental conditions with new stimuli.

In Chapter 2, we demonstrate that the specific behaviors of articular chon-

drocytes can be captured using fast confocal microscopy for the milliseconds

and hours timescales after impact. Cellular fluorescence from these images can

be tracked, linked between immediate and long term, and effectively catego-

rized based on their specific behavior patterns. The shape and interaction be-

tween three tracked values provide enough information to be classified using

a manually-defined decision tree algorithm and train a number of time series

classifiers via supervised learning. This technique enables the processing of

thousands of cells within an experiment, opening up new possibilities for un-

derstanding both individual and coordinated cellular responses to strain.

In addition, we show that the chondrocyte timeseries data obtained via

STRAINS can be analyzed using an unsupervised learning technique in Chap-

ter 3. The VAE is a probabilistic neural network that has been applied across

many fields. This work demonstrates that a VAE is capable of accurately recon-

structing cell behavior data with multiple channels and that the learning process

of the VAE generates principal components of the latent space with meaningful
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information. Additionally, this is the first application of such a neural network

for clustering chondrocyte timeseries data to quickly generate clusters of cell

behaviors which are comparable to and surpass manual classification. The VAE

method both

Together, these two methods provide the framework for a wide variety of

studies probing chondrocyte response to stimuli. The multiple classification and

clustering methods enable the analysis of thousands of cells per experiment and

streamline the identification of behaviors. The phenotypes identified through

these experiments raise a number of questions about chondrocyte responses and

the relationship between specific timeseries events, generating a wide variety of

new hypotheses to test.

4.2 Future Directions

Based on the methods outlined in this thesis, a number of future projects can be

envisioned.

4.2.1 Mitoprotective Therapy

Previous work has shown that mitochondrial depolarization after impact leads

to cell death and that mitoprotective compounds like SS-31 can mitigate both

mitochondrial depolarization and cell death [6]. SS-31 is a small peptide

that acts to stabilize the inner mitochondrial membrane and prevent apopto-

sis through inhibition of caspase-3. By targeting the cardiolipin/cytochrome C

complex in the inner mitochondrial membrane, both membrane curvature and
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membrane surface area can be preserved, preventing cytochrome C release and

apoptosis. Additionally, SS-31 has been shown to improve mitochondrial bioen-

ergetics and reduce the generation of reactive oxygen species [86, 87, 88, 89].

While the processes behind SS-31’s mechanism of action are well defined,

how the distribution of cell phenotypes as defined by STRAINS and clustered

by the VAE changes when SS-31 is introduced into the system is not yet known.

Mitochondria are known to buffer Ca2+ in the tissue during injury. SS-31 af-

fects cell signaling and reduces cell death. By testing SS-31 mitoprotection using

STRAINS, we will be able to further understand how cell responses after injury

are coordinated and mitigated through changes in the spatiotemporal distribu-

tion of phenotypes.

4.2.2 Changing Impact Magnitude

Articular cartilage has depth-dependent heterogeneity, where the superficial

zone has much lower moduli in both shear and compression. This layer

is known to play a protective sacrificial role and significantly alters impact-

induced strain fields. Current experiments have also identified cells in the mid-

dle zone of tissue that experience much lower strain from impact but show sim-

ilar phenotypes of cell death to those at the surface. Impacting samples with

different peak strain magnitudes while analyzing changes to phenotypes with

STRAINS or the VAE would enable the decoupling of zonal effects and strain-

induced effects.

Additionally, preliminary evidence has shown that chondrocytes respond

differently to compression and shear. Experiments performed in the above
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chapters show that cells subject to high shear strains do not die at the same rate

as cells experiencing compression, despite similar overall strain magnitude. Al-

tered peak strain from impact or alterations to impact geometry could be used

to further probe cellular response to shear strain.

4.2.3 Cell-to-cell Signaling and Gap Junctions

The ability to map cell behaviors onto specific locations allows us explicitly

probe interactions between spatially adjacent cells. Preliminary use of the GUI

and additional analyses have looked at the affect of calcium signaling in one cell

on the likelihood of calcium signaling or cell death in neighboring cells. While

the results proved inconclusive, the method could be combined with various

channel activators or inhibitors to probe signaling between neighboring cells.

Specifically, chondrocytes have been demonstrated to communicate through

intercellular connections—gap junctions[90, 91]. Chondrocytes were shown to

exchange nutrients to maintain homeostasis. It would be interesting to probe

these connections in response to impact.

4.2.4 Combining STRAINS and VAE with other techniques

As outlined in the conclusions of both chapters, the experimental techniques

demonstrated in both methods is highly compatible with other analysis tech-

niques. Confocal microscopy of the cartilage tissue is non-destructive and the

samples can be preserved post-experiment. This opens up the possibility of

combining our methods with techniques to measure gene expression, protein
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synthesis, cell metabolics, and others.

4.2.5 Using Automated Algorithms to Improve Decision Tree

Structure

Many different methods of setting up a decision tree exist. This thesis uses a

very traditional set of if/else statements based on specific time series features

that I determined to be relevant. It is possible that an unsupervised technique

to develop a decision tree will improve accuracy.

4.2.6 TRPV4 and Piezo 1/2

One of the most direct next steps using this system is to probe changes in cal-

cium signaling when blocking or activating specific ion channels. TRPV4 has

been demonstrated to be a mechanotransducer of physiologic strain in cartilage

[15, 92, 40]. Preliminary experiments blocking TRPV4 with HC-067047 have

shown that TRPV4 inhibition may be affecting the strain threshold of an impact-

induced calcium signaling wave. Lower strain impacts with TRVP4 inhibition

demonstrate a significantly slowed initial spreading wave of calcium signaling

with almost no subsequent cell death. Activating TRPV4 with GSK101 may be

beneficial when affecting chemical signaling, but preliminary experiments with

similar concentration [15] show almost full mitochondrial depolarization before

impact and increased cell death. Further experiments tuning the concentrations

of agnoists and antagonists will be useful to look more specifically into how

strain affects TRPV4 signaling.
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Piezo 1/2 have been demonstrated to be mechanotransducers of hyperphys-

iologic strain and inhibition of these channels has been demonstrated to pre-

serve cell viability [63, 37, 36]. Activating or inhibiting these channels with the

STRAINS method would give more detailed maps of potential strain thresholds

for cell death and provide a potentially interesting look into how cell behavior

categories change.
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APPENDIX A

IMAGING CHONDROCYTES IN CARTILAGE IMPACT

A.1 Introduction

The confocal-mounted impactor used throughout these experiments was devel-

oped by Bartell, Delco, Bonassar, and Cohen [5]. This impactor is uniquely ca-

pable of enabling real-time imaging of cartilage during the impact itself. When

used in conjunction with a high speed camera, the impactor can be used to map

strain fields in cartilage during an impact.

The impactor has been used to demonstrate that the threshold of cell death

is 8% microscale strain norm [5] and that SS-31, a mitoprotective compound,

can prevent mitochondrial depolarization and apoptosis after impact injury [6].

Designed as an instrument to probe chondrocyte behavior, the impacting tip

is a 0.8mm diameter rod, which impacts to induce a peak stress of ∼ 1MPa

over 5 to 10 ms. This geometry produces a wide range of strains which can be

observed within the field of view of a 10x objective, but does not mimic injury-

like hyperphysiologic strains. To observe the full strain field during impact, a

5x objective should be used.
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A.2 Experiments

A.2.1 Dissection and Culture

Standard sterile dissection practices should be used for these experiments.

However, extra care must be taken to ensure that the cartilage tissue never dries

during any part of the process. Once the joint capsule is opened, if the joint itself

has plenty of synovial fluid, then a sterile transfer pipette can be used to coat

the cartilage in its own synovial fluid. More often than not, the joint will have

very little synovial fluid, and PBS should be used instead. Always err on the

side of caution.

The dissection of plugs from the cartilage should be done on the dissec-

tion bench for these experiments—placing cut cartilage into a conical can cause

avoidable cell death at the surface. When cutting, ensure that there is synovial

fluid on the biopsy punch. Additionally, if the tissue is thick, make sure that

the plastic end of the biopsy punch never touches the surface of the tissue—i.e.

do not push the biopsy punch to its full extent, or the cells at the surface will be

dead. Use fresh scalpels to cut around the biopsy punches. Use the scalpel blade

to push the punch up out of the tissue, then gently nudge the side of the punch

with the blade to fully push it out enough to grab with flat forceps. Place the

plugs in a conical with PBS (with 1% penicillin/streptomycin). Use extra PBS in

the conicals to store explants, so that they do not fall as far when dropped into

the conical.

Transfer everything into the biosafety cabinet. Set up two petri dishes with

PBS, and gently swish the explants or use a sterile transfer pipette to gently
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squeeze PBS at the explants to remove excess synovial fluid from cutting. Use a

12 well culture plate with 2.5mL media (see below). The plugs should be placed

gently into the dish with the articular surface up (the cut surface touching the

plate). There should be enough media to cover the explants. If there is not, use

a razor to cut off part of the bottom surface. If there is excess blood in the tissue,

let them sit in the PBS to gently rinse for ∼ 5 min. Following these protocols,

the surface death of chondrocytes should be incredibly minimal.

These experiments use extra low glucose media (0.45g/L). This was deter-

mined previously (cite lena/michelle) to allow for changes in mitochondrial po-

larity to be observed. However, the low glucose concentration can lead to cells

in the center of the explant dying after a few days, or having very low signal

while on the microscope. If necessary, increase glucose as needed. There cannot

be any phenol in the media, since it may interfere with imaging.

Per 100mL of (no glucose, no glutamate, no pheno, no pyruvate DMEM),

use 0.045g glucose, 2mL Sodium Pyruvate, 2.5mL HEPES, 1mL FBS, 1mL Peni-

cillin/Streptomycin, 1mL L-Glutamine, 1mL Amino Acid Master Mix. The

Amino Acid Master Mix is made by combining 500mg Ascorbic acid and 300mg

α-Ketoglutaric acid with 100mL L-Glutamine, which can then be aliquoted and

frozen at -20◦C.

A.2.2 Staining

Cartilage is stained with Calbryte 520 AM for calcium concentration, Tetram-

ethylrhodamine (TMRM) for mitochondrial polarity, and Sytox Blue for nuclear

membrane permeability (stains DNA). Staining must occur immediately before
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imaging, in the incubator. Chondrocytes take up much more of the stain while

incubating, and this also minimizes the amount of time that the tissue is a room

temperature prior to an experiment. Room temperature cartilage tends towards

mitochondrial depolarization and reduced cell activity (including calcium tran-

sients). Prior to use, individual aliquots of stain are produced to minimize

freeze-thaw cycles which will affect stain viability. The same media used for

culture is also used for staining.

Cartilage samples should be cut with the cutting cube as guide and using

extra-sharp stainless steel razors. During the cutting process, the cube should

be wetted with PBS and the blade and cartilage coated with synovial fluid. The

cut samples should be rinsed in PBS prior to staining—synovial fluid prevents

the stain from diffusing into the tissue correctly. Always stain at least two well-

cut samples, since there are many stages of the experiment where things can go

wrong (cartilage glued incorrectly, cut surface not flat enough, chondrocytes in

explant are dead before impact, etc).

Calbryte 520AM should be stained first, since it is partitioned into the chon-

drocytes and the excess is washed away. TMRM and Sytox Blue are stained

simultaneously afterwards. Any additional probes (i.e. TRPV4 inhibitor HC-

067047) should be incubated for one hour in media after all stains. Each staining

or agonist/antagonist step takes one hour. Store in a warmed 50mL conical of

media for transport. At least 30mL of Sytox Blue in PBS should also be prepared

for the impactor well.
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Selecting Stains

When choosing stains for chondrocytes, several things should be considered:

the ability of the stain to partition into cells and then be washed away (Cal-

bryte AM), whether or not there will be overlapping emission/excitation wave-

lengths, and compatibility with available lasers. Most importantly, stains

should not affect other cellular functions being measured.

The concentration of staining may need to be increased when adjusting for

explants. Too much of a stain like TMRM, however, can affect mitochondrial

function. So adjust as needed, carefully. Additional methods for improving

staining include: ensuring that the imaging surface is facing up in the culture

dish, increasing staining time, staining in the incubator, and combining with

compounds that facilitate stain uptake (this will be unique to specific stains).

Most cell stains have a stated washing time—this ensures that excess stain is

removed from the tissue before imaging and reduces background intensity. The

washing time can be used for other staining. Finally, some stains, agonists, and

antagonists should be included in the impactor well while imaging to allow for

uptake during the experiment.

A.2.3 Using the Impactor

Fill impactor well with Sytox Blue solution. Set spring spacing and prime im-

pactor tip. Gently remove both halves of the plug from the conical and set onto

a glass slide that has plenty of PBS on it. Dry the deep zone surface of the plugs

with a kimwipe. Put glue onto the impactor backplate and use the tweezers or
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spatula to push the plugs into the glue. Keep the plugs as flat as possible. Set

glue using Zip-Kicker pipetted on the entire sample, and rinse with PBS. Line

up impact tip with the center of one of the plugs. Screw backplate onto im-

pactor, making sure that backplate is aligned so that the force from the impact

will not move it (the slots are wider than the screw posts).

Remove all parts—impactor tip, back plate, back plate base, and any screws.

Use razor blade to scrape sample and glue off of the back plate. Clean with

soap/water, making sure to remove all traces of PBS (to prevent corrosion). Use

a transfer pipette to suck out as much of the PBS as possible, then use a kimwipe

to wipe out the inside of the well until dry. Use the pipette to transfer water

inside the well to rinse, then remove and wipe dry again. If using compounds

that may transfer easily, spray the inside of the well with isopropanol and wipe

dry. Place impactor back in box, on top of the foam and close the top of the box.

A.2.4 Microscopes

The 3i confocal must first be enabled through the CCMR FOM system. To prop-

erly turn on the microscope, make sure that the computer is on (this is not con-

trolled through FOM), the laserstack is turned on and cycle the shutter key—

all keys should be in the ON position. Open Slidebook (no piezo) and load

jz848 3color imaging parameters. Find the impact tip and move to the sample.

Offset the sample slightly so that the impact can be captured clearly. The impact

tip should be near the bottom of the screen. Cover the impactor well with the lid

of the cryopro box to block light. Set location 1 to be centered on the impact, and

the surrounding locations as 2-4. Set locations 5-6 to be on the control sample,
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one at the surface and one adjoining. Set any additional locations as needed.

During impact, image 1000 frames only of the green calcium signal at 25ms (or

less?) exposure and 1000 intensification. Set other exposures as needed. Set

wait interval as needed. Turn off the light in the room. When done, save the

slidebook file and upload it to Google Drive (upload speeds on Box are very

slow).

Open the slidebook software and load in the correct imaging parameters.

When consistently using the 3i for similar experiments, save the parameters

needed to speed up setup. Unless otherwise directed, the camera should be at

max intensification and the laser power and exposure as low as possible while

still giving reasonable images. This reduces photobleaching and light toxicity.

When using the impactor on the 3i microscope, the head of the microscope

should be tilted back so that the impactor will fit. Use the 10x objective and

ensure that it is in loading position (minimum z). Add the lens extenders be-

fore loading the objective onto the microscope. Then, slot the impactor into the

microscope stage. When doing this, 3 clicks should be heard, and the impactor

should be nudged to ensure that it is fully locked into the stage. Center the ob-

jective under the cartilage samples, and move to the correct z focus for imaging.

Check that all of the stains are visible, and that there is not excess cell death. If

the sample is not viable, switch to the backup sample. During imaging, ensure

that the imaging depth should be ∼30µm into the tissue from the cut surface,

to avoid imaging cells that died due to the cutting and handling process. Addi-

tionally, a cardboard box (usually the lid of a cryopro microtube box) is placed

over the impacting well to block out all of the light.

Using the x-y controls (with the laser ON), find the location of the impact-
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ing tip. To ensure that the impact is centered on the cartilage tissue, adjust the

impacting tip location to the configuration shown below, and remove the box to

allow for better viewing. Once complete, put the box back on the impactor. It

should stay on the impactor for the rest of the experiment.

Then, move back over to the cartilage sample and save six locations in a con-

figuration seen in Fig. ??b. When finding locations, z-positioning may need to

be adjusted depending on quality of cut surface and gluing. Additional depths

may be used, depending on the age of the tissue and the presence of blood

vessels. Ensure that the edge of the surface is close to the edge of the image.

Then, used saved parameters to take 10 frames of each location. This is the pre-

imaging control. For active samples with lots of calcium signaling, this should

capture enough baseline signaling to allow for calibration.

The impact is capture using the ’stream to disk’ feature in the focus window

of slidebook. Impact videos capture only the calcium signal (green) channel.

The lowest reasonable framerate for an experiment like this is roughly 40fps,

with an exposure time of 25ms. The laser power should be increased to com-

pensate, but not too much as to saturate the video upon impact. Roughly 2000

frames should be just over 1 minute. Before triggering the capture, ensure that

the image is centered on the impact site, and that the camera is on and the shut-

ter open. Start the video before impacting, and make sure that it is recording.

Once the impact video is complete, quickly swap to pre-saved parameters in

the capture window and start the post-impact capture. The time between im-

pact and post-impact videos should be minimized. Capture the post-impact

videos for 2-3 hours.

The impactor can also be used on the Zeiss LSM 880 (inverted). The usage
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process is largely the same, but care must be taken in selecting which stains

should be imaged in which channels, since overlapping absorption/emission

spectra may affect the final data.

A.2.5 Strain Mapping with the High Speed Camera

Maps of chondrocyte strain can be produced using Ncorr (Matlab digital image

correlation function) and videos from a high speed camera. The high speed

camera is set up on the COOL confocal and used with the mercury (Hg) arc

lamp. The Hg lamp requires special bulbs that must be replaced after 200 hours.

The digital display shows how many hours have elapsed, but a written logbook

is helpful to prevent any errors. To use the lamp, it must first warm up for at

least half an hour. Additionally, keep the lamp on for at least one hour before

turning off, and keep the lamp off for at least one hour before turning on. This

prevents issues related to sudden temperature fluctuations.

Normal cartilage samples are used (bisected 6mm plugs). The cells do not

need to be alive, so no culturing is necessary. To make the sample visible, we

use 2µm fluorescent microspheres from Polysciences, as detailed in Lena’s pa-

per. The microspheres are allowed to dry onto the cut surface of the sample for

roughly ten minutes before the sample is loaded in the impactor.

To ensure that the entire strain map of impact is captured, a 5x objective is

necessary. Additionally, when focusing on the impact, know that the sample

will bulge out of focus during the impact itself, so ensure that the focus is on a

z-plane slightly below where the microspheres are in focus. Videos are captured

on the group laptop using phantom camera software.
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Strain mapping is conducted using Ncorr, a package for 2D digital image

correlation in MATLAB that can be downloaded from www.ncorr.com/. The

Ncorr manual has detailed instructions on its use. For this system, use the small-

est region size that still produces a flat strain surface for calculation.

A.3 Impactor Calibration and Maintenance

The force on the back plate of the impactor is measured with a load cell. A

roughly T-shaped piece of aluminum is used to attach the load cell in a config-

uration that allows it to fit in the impactor.

If the glass plate of the impactor well breaks, it can be fixed using epoxy and

a large glass slide. Remove the screws attaching the well to the main body of the

impactor, remove the impacting rod section, and soak the entire thing in boiling

water to help loosen the epoxy.

The well of the impactor is attached using two-part epoxy. The glass window

is a large glass slide. There are several grooves in the metal impactor parts

where epoxy should be placed for everything to be attached properly. Do not

use too much epoxy, or the parts will not screw on properly. I have found that

the faster setting epoxy (in small packets as opposed to the tubes) removes more

easily, with no observable downside besides less working time.

The impacting tip must be oiled every once in a while, with 3-in-1 oil (avail-

able with the rest of the impactor parts). This is most helpful to lubricate the

trigger mechanism. Notably, when pressing the trigger button, do not press all

the way in. I have marked a position with black sharpie that allows the impact
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to happen with the least friction, which increases experimental consistency.
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APPENDIX B

STRAINS AND OTHER SUPPORTING CODE

B.1 Code Breakdown

The setup and analysis codes are broken down into a few components. Initial

image setup is accomplished in ImageJ/Fiji. The tracking, data formatting, fea-

ture extraction, and decision tree codes are written in Matlab. Timeseries figure

generation codes, as well as the STRAINS GUI, are written in Matlab. Time se-

ries classification via supervised machine learning and the VAE are realized in

python.

B.2 Image Setup

Images saved from the 3i Marianas spinning disk confocal are in the .sld format.

Download the program from the website to extract the images to .tiff files. Im-

ages from the COOL and HOT (Zeiss LSM 5/7 Live) microscopes are saved as

.lsm files which can be converted to .tiff in Fiji.

Images from the i880 are saved as .czi files which can be read by Fiji if the

Bio-Formats extension is installed

To speed up image setup, two macros have been written for Fiji (ImageJ):

image setup and impact setup. To ensure that they are properly installed in Fiji,

they should be added to the startup macros.iji file in the Fiji installation folder.

Once images are exported from the Slidebook file and opened in Fiji, the macros
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will output the correct images for use in the subsequent Matlab codes. The save

folder for these macros may need to be modified to work with your own file

system.

B.3 Tracking

Cell tracking uses the Crocker and Grier particle tracking algorithm in conjunc-

tion with supporting code. After image setup is completed, the workflow is as

follows:

1. The folder, date of experiment, and positions are input into any of the

’**tracking function call’ codes.

2. The relevant time information is manually input into the tracking function

call, based on the information from the output text files when exporting

from slidebook.

3. Impact tracking occurs with the parameters as listed in the ’**track-

ing function call’ codes. This calls the ’TrackImpact’ function.

4. Post-impact tracking occurs with the parameters as listed in the ’**track-

ing function call’ codes. This calls the ’TrackPostImpact’ function.

TrackImpact and TrackPostImpact use the Crocker-Grier algorithm, which

can be found at https://site.physics.georgetown.edu/matlab/. The

tracking is run on the sum of all three color channels. Both of these functions

will run the tracking and output timeseries data, as well as generate any relevant

plots to the tracking process. The tracking algorithm used will produce the

centroid of each cell, around which a 3x3 grid of pixels is averaged to produce
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the ”intensity” of that cell at that time point. Additional background subtraction

is performed, where the 512x512 image is broken up into an 8x8 grid. The lowest

20 (this should be optimized to the image) nonzero pixel values within each

subsection are averaged to find the background within this region, which is

then subtracted out of this subsection.

Tracking at the impact site can occur one of two ways: the impact video

can be concatenated with the post-impact video at position one (often called

pos1 full) and the entire video tracked, or the impact and pos1 videos are

tracked separately and linked afterwards. There are drawbacks to either

method. Tracking with the longer video often means that more cells are lost

and not tracked properly. This is especially true if the post-impact video con-

tains movement. Conversely, linking the two videos loses all of the cells that are

not tracked in both videos, and can lead to some issues where the impact data of

one cell is linked to the post-impact data of another cell. The best course of ac-

tion is to usually run both techniques and see which one is better. Always check

the output tracking images to make sure that the tracking is reasonable. The

linking function works by finding cells that are within a certain set Euclidean

distance between the last impact frame and the first post-impact frame.

Once the cells are tracked and intensities extracted, the timeseries plots for

each cell are saved into the folder containing the cell images. The plots are

often generated using a moving average filter to remove high frequency noise

(for plotting purposes only). This window size can be tuned, but should be

somewhere between 5 and 20 frames, in order to reduce noise but keep relevant

signals. These timeseries plots should be examined to ensure that background

subtraction was reasonable and that there are not a lot of obvious ”jumps” in the
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data that are a sign of bad tracking. The timeseries plots are used for manual

labeling of categories.

B.4 STRAINS GUI

The STRAINS GUI is programmed in the Matlab App Designer. There are two

versions, one for pre-Matlab 2019 and earlier, and one for Matlab 2019 and later.

For the pre-Matlab 2019 the UIFigureWindowButtonDown function is used

to record clicks. This is a workaround because ginput and other click detection

mechanisms do not work. The Matlab 2019 and later version of the GUI uses

drawpoint to record clicks. When possible, use the newer version, which is

much more robust and is more intuitive to use.

B.4.1 GUI Operation

The GUI front panel consists of three main regions: controls, the video player,

and plots. This is the user interface, where the plots and image display area are

fully interactable.

The back end of the GUI is composed of two main components: functions

and callbacks. Here, functions are snippets of code that we expect to use re-

peatedly and are defined in the methods section, which are mostly for plotting.

Callbacks are the code segments that are triggered when a user interacts with

something in the interface (i.e. push a button, change a number, move a slider,

etc). The individual functions and callbacks are all commented with specific de-
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tails about how they work. Additionally, there is a startup function that runs

automatically when the GUI is opened. This controls how the GUI looks at

startup, and cannot be modified. Each function and callback is labeled with

its specific purpose, and the MATLAB appdesigner debugger can be used to

iterate through how each line of code works. Finally, properties that are used

throughout the GUI are initialized at the top.

The GUI has several main features:

1. Loading and playing a cell video

2. Plotting an individual cell from the video (the GUI always finds the closest

cell)

(a) By clicking on a cell in the video

(b) By entering coordinates of a cell

(c) By entering the Cell ID (from particle tracking)

3. Plotting an individual cell from the video, including the impact curve (this

requires the user to upload a specific dataset that has both the impact and

post-impact timeseries from each cell)

4. Plotting all of the cells within a selected rectangular region (with mean in

bold, color channels split)

(a) A specific timeseries can be clicked on in the plot to circle the cell on

the video and bold the selected timeseries on the plot

(b) A specific time can be selected on the plots to produce a histogram of

all three colors
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(c) If a time has been selected, a mixed-model Gaussian can be fit on the

blue channel to split the data into low, medium, and high blue signals

at that timepoint.

5. Cell IDs of selected cells can be saved for future reference

B.5 Feature Extraction

The feature extraction method uses various MATLAB functions to identify

important shapelets in the timeseries. The current iteration finds peaks and

changepoints in the green and blue channels. Peak detection uses MATLAB’s

findpeaks function to record peak intensity, time, width, prominence, and

the width-to-prominence ratio (manually calculated to help with later filter-

ing). The detection method uses minimum peak prominence (above baseline).

Changepoints are locations in the timeseries where the derivative is high. These

are detected using MATLAB’s findchangepoints function, with linear threshold-

ing as the method. Changepoint location is recorded. The difference in slopes

before and after a changepoint are calculated manually, with slope differences

less than a set amount eliminated. This allows the changepoint detection to find

small changepoints, but removes ones where the slope is changing very gradu-

ally.

Peak detection is used to find calcium transients in the green channel and

cells where the nuclear membrane permeability rises and falls in the blue chan-

nel. Changepoint detection is used to find places where the calcium concentra-

tion rises or falls suddenly in the green channel, and where the nuclear mem-

brane permeability rises suddenly in the blue channel. The functions include
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an optional parameter to plot detected peaks and changepoints for manual val-

idation. To speed up normal function, plots should be turned off. All detected

peaks and changepoints with their respective statistics are recorded in struc-

tures.

These structures are then incorporated into one large structure containing

all of the features of each cell through the CellAttributes function. This func-

tion reads in all of the peak and changepoint data alongside the cell number

and location as well as calculating statistics including: red and blue ranges, red

and blue means, red and blue maximum values (along with maximum value

frame), red means for the last 100 frames, and the difference between red and

blue means. This final cell attributes structure is then passed to the decision

tree.

B.6 Decision Tree

The decision tree makes use of peaks, changepoints, and additional timeseries

statistics to decide in which category a cell should belong. These categories are

established by previous manual labeling. The structure of the decision tree itself

was optimized through multiple iterations in order to determine which cutoffs

were more important, which features the system was better at identifying, the

ordering of questions to ask, etc. The decision tree itself is a complex series of

if/else statements. A full diagram of the tree can be found in Chap. 2. The

decision tree itself consists of several branches of if/else statements as it iterates

through the cell attributes structure in the order of the index. Each statement

is commented with the output that it would produce. Individual parameters
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are hard-coded into the tree itself, but can be modified easily. Additional code

at the end of the DecisionTree function checks accuracy compared to manually

sorted labels.

B.7 Time Series Classification

As noted in Chap. 2, the basis of the time series classification uses the sktime

library in python. There are multiple models used in this system: two that are

interval-based (CIF and DrCIF) and two that are kernel-based (ROCKET and

Arsenal). Interval-based methods are generally more accurate, but kernel-based

methods are generally faster. Only multivariate methods are used, where each

channel corresponds to one dimension. The models highlighted here are the

ones that produced the best accuracy when testing on the hand-sorted dataset.

When using these models for repeated experiments, use all of the classifiers

(and possible new classifiers) and allow them to vote on the correct category to

get a final label. Sktime has recently updated with newer classifiers, including

a convolutional neural network that works with multivariate time series, that

may be relevant to include.

Univariate classifiers can also be used, where the three color channels are in-

put as one timeseries. Generally, the accuracy of univariate classifiers is lower,

but a much wider array of univariate classifiers are available. When reformat-

ting data for univariate classification, concatenating the data (i.e. red, then

green, then blue) produced the best accuracy.

The code is split into two sections: the functions and the function calls. Clas-

sifier functions.py includes all of the functions for loading and reformatting
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data from MATLAB, training classifier models, and loading classifier models.

The training functions include splitting data into training and testing sets with

a random seed. To use the functions, implement some code similar to what can

be found in all classifier function calls.py, which will set up proper directories

for storing the classified data, dump and load for the models, and inputting

parameters for each classifier model.

When using these classifiers, split the data into two sets: one that includes

calcium transients detected in MATLAB with peak detection, and one that does

not include calcium transients. The classifiers do not work well with randomly

occurring transients. The two sets can be combined together at the end after

classification.

The parameters for these models can be adjusted. The specific parameters

accepted in the current training functions were the ones found to impact the

training accuracy the most, but training functions can easily be rewritten to in-

clude additional parameters. These parameters can be found in the sktime doc-

umentation. I have found that the sktime github is easier to access and more

up-to-date than the website sometimes, but sktime.net has some good exam-

ple implementations. Python library dependencies are noted in the functions.

B.8 VAE Clustering

There are several MATLAB codes used to restructure data for use with the Vari-

ational Autoencoder. These codes also process the cell location into a global

location for the experiment, instead of local pixel location within a single imag-

ing position. Locations and timeseries for all cells in order of position and cell
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ID are saved to a .mat file, which is then imported in python. The rest of the VAE

code is implemented in python, consisting of the cell script, which imports all

of the data and calls the VAE functions, the loaders, the wrapper, the encoder,

and the decoder.
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