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1 Introduction

Cardiovascular disease is the number one killer of men and women in the US and is the primary cause of
congestive heart failure (CHF), which afflicts over 4.7 million Americans. There are 550,000 new cases of
CHF reported annually. Cardiovascular disease produces a number of physiological changes to the tissues
of the cardiovascular system (e.g., loss of elasticity of the arteries as in arteriosclerosis, ischemic damage
and cardiomyopathies). These change the hemodynamics of the cardiovascular system with potentially
disastrous consequences. The geometric and physical complexity of the human cardiovascular system and
the limited possibility to perform experiments and measurement opened doors for computational analysis
of vascular blood flow with the purpose of designing predictive tools for treatment planning or evaluation
of assist devices for individual patients. The concept of patient-specific cardiovascular modeling was first
established in Taylor et al. [1], where real-life geometries were used to simulate blood flow. In the
last decade, the computational technology has experienced further advances, which includes simulating
more complicated geometries corresponding to larger and larger portions of the cardiovascular system,
accounting for arterial wall elasticity, heart valves, and growth and remodeling of arterial tissue.

Recently, Isogeometric Analysis has emerged as a new computational technology and as an alternative
to the standard finite element method (see Hughes et al. [2]). Isogeometric analysis improves upon
finite elements in the areas of geometric modeling and solution representation. The first instantiation
of isogeometric analysis was based upon Non-Uniform Rational B-Splines (NURBS), although other
alternatives, such as subdivision and T-Splines, are possible and are currently under investigation. Despite
its recent emergence, NURBS-based isogeometric analysis has already been applied to many areas of
contemporary interest in computational mechanics. These include: fluids and turbulence, solids and
thin structures, fluid-structure interaction and, recently, phase-field modeling. Improved geometry and
solution approximation properties of NURBS functions has led to superior performance of the isogeometric
approach in comparison to standard finite elements in these applications.

In this paper, isogeometric analysis is applied to fluid-structure interaction (FSI) problems with
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particular emphasis on arterial modeling and blood flow. It is believed that the ability of NURBS to
accurately represent smooth exact geometries, that are natural for arterial systems, but unattainable
in the faceted finite-element representation, and the high order of approximation of NURBS, render
fluid and structural computations more physiologically realistic. This work adopts the ALE framework.
The arterial wall is treated as a nonlinear hyperelastic solid in the Lagrangian description governed by
the equations of elastodynamics. Blood is assumed to be a Newtonian viscous fluid governed by the
incompressible Navier-Stokes equations written in the arbitrary Lagrangian-Eulerian form. The fluid
velocity is set equal to the velocity of the solid at the fluid-solid interface. The coupled FSI problem is
written in a variational form such that the stress compatibility condition at the fluid-solid interface is
enforced weakly. Because our aim in this work is to obtain a robust isogeometric analysis formulation for
fluid-structure interaction, we opted for a monolithic approach to solving the coupled equation system
that we further developed in Bazilevs et al. [3].

The paper is organized as follows. In Section 2 we present and make an assessment of the solid
model describing the behavior of arterial wall tissue. In Section 3 we present results of the fluid-structure
interaction calculation of a patient-specific abdominal aortic aneurysm.

2 Investigation of the solid model for a range of physiological stresses

(a) (b)

Figure 1: (a) Setup for a uniaxial stress state. (b) Equilibrium on a cylinder with imposed internal
pressure.

The arterial wall is modeled as a hyperelastic solid for which the elastic potential ψ is given by (see
Simo and Hughes [4])

ψ =
1

2
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where C = F
T
F, F = J−1/3

F, F is the deformation gradient and J is its determinant, and µs and κs are
the shear and bulk moduli, respectively. We examine the behavior of the material model (1) on a simple
state of uniaxial stress. We consider a bar with an applied stress in the x-direction, denoted by σ, and
zero stress in the the orthogonal directions, as illustrated in Figure 1(a).

The relevant values of σ corresponding to the physiologically-realistic range of intramural pressure are
obtained using the following analysis. We approximate the arterial cross-section as a hollow cylinder. Let
Ri and Ro denote its inner and outer radii. We also assume that a pressure of magnitude p0 is applied
at the inner wall of the cylinder, as shown in Figure 1(b). We assume an approximately constant state
of stress through the thickness. From force equilibrium considerations it follows that

2Rip0 = 2σt (2)
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Figure 2: Cauchy stress plotted against strain. Physiological range of stresses and strains due to intra-
mural pressure are indicated by dashed lines.

where t = Ro −Ri is the thickness of the arterial wall. Solving for σ, we get

σ = p0Ri/t. (3)

Assuming µs = 1.43 × 106 dyn/(cm2) and κs = 1.38 × 107 dyn/(cm2), a thickness-to-radius ratio of
15%, and p0 varying from 80 mmHg to 120 mmHg, we get the physiologically-realistic stress ranging
from approximately 530 mmHg to 800 mmHg. The stress-strain curve is plotted in Figure 2. Note
that the stress-strain curve exhibits a superlinear behavior throughout the range of loadings considered,
showing stiffening with deformation. Also note that for the physiological range of stresses the deviation
from linearized stress-strain relationship is not significant. Obviously, significant improvements are pos-
sible. However, the present model is both qualitatively and quantitatively reasonable for the following
application.

3 Flow in a patient-specific abdominal aortic aneurysm

We present results of the fluid-structure interaction calculation of a patient-specific abdominal aortic
aneurysm. Patient-specific geometry is obtained from 64-slice CT angiography courtesy of T. Kvamsdal
and J.H. Kaspersen of SINTEF, Norway. The computational mesh, consists of 44892 quadratic NURBS
elements. Two quadratic NURBS elements and four C1-continuous basis functions are used for through-
thickness resolution of the arterial wall. A periodic flow waveform, with period T = 1.05 s, is applied at
the inlet of the aorta, while resistance boundary conditions are applied at all outlets. The solid is fixed
at the inlet and at all outlets. Material and flow rate data, as well as resistance values are taken from
Figueroa et al. [5]. We compute with the time-varying inflow boundary condition until periodic-in-time
response is attained. This usually takes four or five cycles.

Figure 3 shows snapshots of the velocity field plotted on the moving domain at various times during
the heart cycle. The flow field is quite complex and fully three-dimensional, especially in diastole. Figure
4(a) shows the magnitude of the wall shear stress (i.e., the tangential component of the fluid (or solid)
traction vector) averaged over a cycle. Note that the wall shear stress is significantly lower in the aneurysm
region than in the upper portion of the aorta and at branches. Also note the smoothness of the stress
contours due to the NURBS representation of the geometry and solution fields. Figure 4(b) shows the
oscillatory shear index (OSI), which is a measure of variability of the wall shear stress over a heart beat.
In contrast to the wall shear stress, OSI is largest in the aneurysm region, especially along the posterior
wall, suggesting that wall shear stress is highly oscillatory there due to the recirculating flow. Low time-
averaged wall shear stress in combination with high shear stress temporal oscillations are indicators of
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(a) t = 4/25 T (b) t = 10/25 T

Figure 3: Flow in a patient-specific abdominal aorta with aneurysm. Large frame: fluid velocity vectors
colored by their magnitude and detail of the top portion of the artery. Left small frame: volume rendering
of the velocity magnitude. Right small frame: fluid velocity isosurfaces.

(a) (b)

Figure 4: Flow in a patient-specific abdominal aorta with aneurysm. (a) Magnitude of wall shear stress
averaged over a cycle plotted in three different views. (b) Oscillatory shear index (OSI) plotted in three
different views.

the regions of high probability of occurrence of atherosclerotic disease.
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Abstract 
Subject of this contribution is form finding of “optimal” structural shapes with regard to the load carrying 
behaviour of surface structures under certain load cases. In general, those optimal shapes prefer a membrane 
state of stress to transfer loading. Bending is omitted as much as possible. It will be focused on two different 
disciplines and related numerical approaches which deal with solutions of the mentioned task: form finding of 
pre-stressed membranes and general shape optimization. As design is an inverse problem both approaches share 
similar problematic properties as e.g. indeterminate in-plane location of surface discretization or necessary 
regularization and filtering of sensitivity and other data. As it will turn out, those remedies found for the very 
special methods of membrane design can be abstracted and transferred to general optimization procedures. That 
merges into elegant, numerical shape optimal design techniques which combine advantages of both approaches 
and allow for effective and efficient shape optimization of free formed surfaces, directly on the finite element 
mesh and for a large number of variables. Typical applications are, for example, membrane design, free form 
architecture and structural engineering, and metal sheet design. 

1.  Form finding of surface structures with membrane action 
The geometry of membrane structures is defined by “form finding” as the equilibrium shape of given surface 
and edge cable stresses σ and additional surface loading q.  

 
Figure 1: Form finding of membrane  

The equilibrium surface can be identified as actual (deformed) configuration, which has to fulfil the equilibrium 
condition governed by the principle of virtual work: 

 ( ) 0    =⋅−=− ∫∫
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The total virtual work δw can be separated into two parts: The internal work resulting from the given internal 
Cauchy stresses σ and the derivatives of virtual displacements δu with respect to the material points x of the 
equilibrium surface, and the external virtual work due to the virtual displacements of the external loading q. At 
this point, no restrictions concerning the load case are made and even deformation dependent loads (e.g. 
pressure loads) can be consistently considered. The integration domain is the area a of the final surface. 
Thickness t is assumed to be constant during deformation. 

Eq. (1) might be transformed by standard pull back operation to the reference configuration: 

 ( ) ( )( ) 0 1 =⋅⋅⋅==− ∫∫ −−
−

dA:dettda:tw
A

T
backpull

a
int FFσFFF

x
uσ δ

∂
δ∂δ  (2) 

Integration domain is now the area A of the known reference configuration. F is the deformation gradient. 

Note: The shape is defined by equilibrium of given stress fields. As no material law is defined stress is 
independent from strain. As a consequence standard application of discretization results in singular, non-linear 
systems of equations. That is the typical property of an inverse problem. It might be graphically explained by 
the fact that discretization nodes can be moved around on the corresponding equilibrium surface without 
resistance while still maintaining a valid discretization of the sought-after surface, i.e. Eq. (1) is always fulfilled. 
To overcome this problem, many different strategies were developed over the years. In the following, a method 
which is consistently derived from nonlinear continuum mechanics is presented. 

  
Figure 2: Alternative surface discretization: “Floating” mesh for hypar-like membrane structure 

 

2.1  Regularization of inverse problem 
First, the Cauchy stress tensor σ is expressed by the 2nd Piola-Kirchhoff stress tensor S. We get from Eq. (2): 

 ( )( ) ( ) 0 1 =⋅=⋅⋅⋅=− ∫∫ −− dA:tdA:dettw
AA

T
int FSFFFσFFF δδδ  (3) 

Since the intensity of Cauchy surface stress is given, Piola Kirchhoff stresses are a function of deformation. 

Second, now, the intensity of Piola Kirchhoff surface stress is prescribed by Ŝ  with respect to the choice of a 
suitable reference configuration. Consequently, Cauchy stresses are now a function of deformation and we solve 
a similar but slightly different problem which, however, is not singular anymore: 

 ( ) 0 =⋅=−=− ∫ dA:ˆtŵJ
A

int FSF δδδ  (4) 

The original problem might be regularized by adding some portion of Eq. (4) to Eq. (3), weighted by homotopy 
factor λ which might be chosen appropriately: 
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 ( ) 0 1  =−−−=− intintint ŵww~ δλδλδ  (5) 

Choice of λ = 1 might be interpreted as the generalized force density method. 

2.2  Updated reference strategy, URS 
Solution of Eq. (5) might be used as “updated” reference configuration for a next solution. Subsequently applied 
the procedure will converge to a solution of the original problem, Eq. (2). That holds for the extreme case of 
λ = 1 also. Additional considerations are necessary for anisotropic pre-stresses or special boundary conditions.  

2.3 Examples of pre-stressed surfaces applying URS 
 

 
Figure 3: Five point tent; given surface stress and edge cable pre-stress 

 

  
Figure 4: Form finding of an air supported cushion; prescribed surface stress and internal pressure 

 

 
Figure 5: Form finding of compression dome under snow loading and fixed edges (λmax refers to additional 

means of mesh control indicating anisotropic stress fields at the solution) 

3.  Shape optimization 
Alternatively to form finding, most general shape optimal design procedures are defined by minimization of an 
objective f (e.g. strain energy, weight etc.) with respect to design variables s subject to constraints g and h: 

 ( )
( )
( )

⎪
⎩

⎪
⎨

⎧

≤≤
=
≤

→
ul

),(h
),(g

.t.smin),(f
sss

ssx
ssx

ssx 0
0

 (6) 

Geometry x is a function of design variables s. The most general situation is defined by directly identifying 
coordinates of the FE mesh as design variables. As a consequence that formulation must be regularized with 
respect to in-plane and out-of-plane design modification, again because of inverse problem characteristics. 
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3.1  In-plane Regularization 
Except for discretization errors objective functions f are independent from surface discretization. That is the 
same phenomenon as shown in Fig. (2). As a consequence the optimization problem must be regularized for in-
plane modification of surface discretization. That can be done in abstract notation by adding a stabilizing term 

 ( ) ( ) ( )( ) minJfsf~ →+= sPs  (7) 

to the objective function. The variation of functional J is related to geometrical modification tangential to the 
structural surface, refer to Eq. (4). J is defined by an artificial surface stress field used to generate a smooth 
mesh. P is a projection operator which is defined by the surface normal n and which determines the tangential 
action of design modification. 

3.2  Out-of-plane Regularization 
To prevent mesh dependent results when directly using finite element coordinates as design variables additional 
filter methods are applied. Consider response f at node m. Then, the sensitivity of f with respect to a design 
variable s is computed by: 
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p
iD  is the value of filter function of order p at node i which is defined inside a given, mesh independent filter 

radius. The most simple choice of a filter is a linear decreasing, radial hat function (p = 1).  

3.3  Example 
A bend cantilever made of a thin (metal) sheet is loaded as shown, Fig. 6. Shape is modified to maximize 
stiffness. A filter radius as large as the width of support is used. The model consists of appr. 5.000 shape 
variables. The optimal shape (most right) is reached after 19 iteration steps. 

Figure 6: Shape optimization of cantilever shell. 
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Abstract 
In [2, 3, 4] we had introduced the iso-geometric subdivision elements for discretising thin-shell energy 
functionals that require smooth shape functions. In the present work we have extended the subdivision elements 
to shells with non-smooth reference configurations and shells with intersections. Furthermore, the new elements 
simplify the enforcement of displacement, rotation, traction and moment boundary conditions. In our original 
approach we had used ghost nodes at the boundaries that were not suitable for enforcing some combinations of 
boundary conditions. The extended elements rely on new type of subdivision stencils, which allow to control the 
smooth surface normals in addition to the surface positions [1]. A new discrete parameterisation technique has 
been developed for obtaining shape functions from the schemes with normal control. The versatility of the newly 
developed elements will be demonstrated with a number of test cases, including the pinching of a square tube 
subjected two diametrically opposite forces. 

 
Figure 1: Pinched square tube: three snapshots at successively increasing load levels. 
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Abstract 
A study of using an explicit nonlinear dynamic finite element code for simulating the water landing of a space 
capsule was performed. The space capsule was modeled with Lagrangian shell elements; the water and air 
modeled with Eulerian solid elements. An Arbitrary Lagrangian Eulerian (ALE) solver and a penalty coupling 
method were used for predicting the fluid and structure interaction forces and water diving characteristics and 
depths. The space capsule was first assumed to be rigid, so the numerical results could be correlated with 
classical von Karman and Wagner solutions. Then, the bottom portion of the rigid capsule was changed to a 
flexible shell for water impact analyses. For small pitch angle cases, the maximum deceleration from the 
flexible capsule model was found to be significantly greater than the maximum deceleration obtained from the 
corresponding rigid model. For large pitch angle cases, the difference between the maximum deceleration of the 
flexible model and that of its corresponding rigid model is small. Test data of Apollo space capsules with a 
flexible heat shield qualitatively support the findings presented in this paper.  

1.  Introduction 
Water landing was used exclusively for the final phase of returning the Apollo space capsule to the Earth. Most 
of the analytical solutions published in the Apollo reports were based on the von Karman approach, and the 
space capsule was considered to be a rigid body. However, some Apollo water landing test data showed that for 
certain impact orientations, the bottom-structure’s flexibility had a significant effect on the maximum 
accelerations at the center of gravity (CG) of the space capsule. For these cases, the predictions based on the 
rigid body spacecraft often underestimated the actual structural responses (Benson [1]).  

The flexible bottom structure of the space capsule is a heat shield that may be made of stiffened or sandwich 
panels with nonuniform thicknesses. Closed form solutions for a flexible capsule water landing can be difficult 
to obtain. Recent advancements in the high speed computing technology for large-scale analyses and the 
development of the advanced explicit nonlinear dynamic finite element method provide a powerful capability 
for solving the fluid and flexible structure interaction (hydroelastic) problems. Explicit nonlinear dynamic finite 
element codes with an Arbitrary Lagrangian Eulerian (ALE) solver (Belytschko et al. [2]) for modeling water 
landing impact are currently available in commercial codes such as LS-DYNA® (Hallquist [3]).  

This paper provides the results from a preliminary study of using LS-DYNA® for simulating a conceptual space 
capsule water landing. The objective of this preliminary study is to demonstrate that the numerical results 
obtained are reasonable and can be used to adequately assess the water landing characteristics of various design 
configurations. This paper first compares the rigid body results with classical solutions using the von Karman 
and Wagner approaches. Next, the numerical results of a flexible capsule model are compared with published 
Apollo water landing test data. Lastly, the water diving characteristics and penetration depths for the capsule 
landing with large pitch angle and high horizontal velocity are investigated. 

2.  Finite Element Model of a Conceptual Space Capsule 
An  early  conceptual  design of  an  Apollo-like  space  capsule  for future  space  exploration was  modeled. A 
representative finite element (FE) model is shown in Figure 1. The capsule was discretized with 4-node quad 
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Flexible Bottom 
Portion

Rigid Upper  
Portion

Figure 2: The flexible capsule model 
containing a flexible bottom portion and 
a rigid upper portion.  

shell elements. The nominal edge length of the capsule shell elements in the impact area is about 3.0 in. Coarser 
meshes were used for the other areas. The air and water were discretized with 8-node solid elements with an 
ALE multi-material element formulation (Hallquist [3]). In the interaction region where the capsule enters the 
water as shown in Figure 1, the ALE solid element size, 2.4 in. x 2.4 in. x1.2 in, is finer than the other regions. 
This mesh size was found to be sufficient for producing adequate results (Wang and Lyle [4]). Note that the 
mesh of the capsule is immersed in the Eulerian water and air meshes, but the fluid nodes and structure nodes do 
not need to be coincident. 

Figure 1 shows the local coordinate system (fixed on the capsule) that was used for the output of all the CG 
acceleration results in this paper. The local 
coordinate system is attached to and rotates 
with the vehicle. These results can be 
compared directly with experimental results 
without coordinate transformations. The pitch 
angle, θ, is measured from the water surface. 
VV and VH denote the positive directions of 
vertical and horizontal landing velocities, 
respectively.  

In this study, air was modeled as a vacuum and 
water was modeled as a null hydrodynamic 
material.  An equation of state (EOS) was used 
to compute the water pressure under impact 
force. The explicit finite element code, LS-
DYNA®, and an ALE solver were used to 
analyze the model shown in Figure 1. A 
penalty method was used to determine the 
fluid-structure interaction forces (contact 
forces) between the capsule and the water.  

3.  Analysis Results for Rigid and Flexible      
Capsule Models 

Water landing analysis results for both rigid and flexible 
capsule models are presented in this section. For the rigid 
model, the entire capsule was assumed to be a rigid body. The 
flexible capsule model has a flexible bottom portion and a 
rigid upper portion as shown in Figure 2. The flexible bottom 
portion was modeled with linear elastic shell elements. These 
capsule models impacted the water with various pitch angles. 
The vertical landing velocity (VV) was assumed to be 25 ft/s; 
the horizontal velocity (VH) was assumed to be 0 ft/s.  A paper 
describing the Apollo water impact (Benson [1]) shows that 
the interaction, between water and a flexible bottom structure 
(heat shield), can generate greater impact forces than that of a 
rigid capsule resulting in larger CG acceleration levels for low 
pitch angle landings. 

The maximum accelerations as a function of pitch angle for both the rigid model and the flexible model are 
plotted in Figure 3. For the rigid model, the maximum accelerations for 0, 10, and 15-degree pitch angles are 
around 15 g and for 30 and 40-degree pitch angles are below 5 g. The von Karman (Hirano et al. [5]) and 
Wagner (Miloh [6]) solutions for the 0-degree pitch angles are also shown in the figure. Note that the maximum 
X-acceleration for the 0-degree pitch angle case is bounded by the closed form solutions based on the von 
Karman and Wagner approaches, thus indicating that the analyses performed can produce satisfactory results. 
For the flexible model at low pitch angles (< 20 degrees), the maximum accelerations are significantly greater 
than those predicted by the rigid model. However, the difference between the maximum accelerations from the 

θ VH

Z 

VV 

Y Air 
Region

Water 
Region

X 

Figure 1: Finite element model showing the local 
coordinate system at the CG with positive vertical 
velocity (VV) and positive horizontal velocity (VH). 

Interaction 
Region
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flexible and the rigid models diminishes as the pitch angle increases. These predicted results for the flexible 
model agree with those in the Apollo reports. 

The maximum Y-rotational accelerations as a function of pitch angles for both models are plotted in Figure 4.  
For low pitch angles, greater Y-rotational accelerations were predicted for the flexible model than for the rigid 
model. The maximum Y-rotational accelerations predicted for the flexible model at pitch angles greater than 20 
degrees are similar to those predicted for the rigid model.  

Three significantly different Apollo diving characteristics, associated with the Regions I, II, and III of the 
landing profile, were reported (Benson [1]). Apollo test reports (Benson [1] and Wood [7]) indicated that 
landing scenarios within the Regions II and III could produce greater diving depths than that of the Region I; 
therefore, the water diving characteristics of the rigid capsule model with Regions II and III landing scenarios 
were examined here.  

For the Region II landing scenario, the capsule impacted the water with a pitch angle of 40 degrees, a vertical 
landing velocity (VV) of 35 ft/s, and a horizontal velocity (VH) of 30 ft/s. Figure 5 shows the dynamic motions 
of the capsule and the water movement. The front half of the water block was removed to reveal the detailed 
dynamic motions of the capsule and the water. The buoyancy force for the capsule, due to the gravity induced 
pressure gradient in the water, was modeled in the analysis. For the Region III landing scenario, the capsule 
impacted the water with a pitch angle of 45 degrees, a vertical landing velocity (VV) of 31 ft/s, and a horizontal 
velocity (VH) of 47 ft/s. The capsule trips at its lower edge and rotates clockwise as shown in Figure 6, which 
may cause significant impact pressures on the conical sidewall and top deck. The maximum diving depths of the 
rigid capsule with the Regions II and III landing scenarios are 11.01 ft and 11.53 ft, respectively. These depths 
are less than those, around 18.0 ft, reported from the Apollo capsule tests for the same landing scenarios. The 
shallower diving depths predicted from the rigid capsule model may be due to the fact that its weight to volume 
ratio is about 60% of that of the Apollo capsules tested. 
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Figure 3: Maximum X-acceleration as a 
function of pitch angle.  
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4.  Concluding Remarks 
Water landing analyses for a rigid capsule model and a flexible capsule model with various pitch angles were 
performed. The solutions for the rigid capsule are bounded by the closed form solutions based on the von 
Karman and Wagner approaches, indicating the LS-DYNA® explicit code can produce satisfactory results to use 
in design studies. The maximum X-accelerations for low pitch angles obtained from the flexible model are 
significantly greater than the rigid body solutions, nearly twice as large for the 0-degree pitch angle case. The 
maximum X-accelerations for pitch angles above 20 degrees predicted by both the flexible model and the rigid 
model are similar. Thus, for large pitch angles, the water landing solutions from the rigid model may be 
sufficient for the conceptual design. The findings from the flexible bottom model qualitatively agree with the 
experimental data of Apollo capsules with a heat shield attached. 

The water landing scenarios for the rigid capsule with high horizontal velocity and large pitch angle were 
studied. The water movements, the capsule dynamics such as diving or tumbling, and the maximum diving 
depths were predicted. The capsule’s water diving characteristics were very similar to those reported in the 
Apollo reports. The maximum diving depths for the two cases simulated were found to be much less than the 
maximum diving depths from the Apollo test reports. This difference may due to the fact that the capsule model 
used in this report has a smaller weight to volume ratio than that of the Apollo capsules tested.  
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Abstract 
Current computational models for shells allow effectively to describe the behavior of thin-walled structures 

made of materials incorporating various non-linear constitutive relations independent of the order of 
approximation of shells. However, in combination with contact, new problems arise due to the remaining 
geometrical discontinuities of the normal vectors on element boundaries. This led to the development of 
smoothing techniques for contact interfaces based on covering the linear mesh with other surface 
approximations possessing the required smoothness on the element boundaries. The main difficulty is then a 
contact description including the correct kinematics and tangent matrices with regard to the new smooth 
surfaces. The covariant description developed during the recent years allows to enforce the exact kinematics 
point-wisely on contact surfaces with arbitrary approximation following then the exact geometry of the surfaces 
together with the formulation of tangent matrices in a covariant explicit form. Various examples starting with 
bi-linear and bi-quadratic solid-shells elements and finally with hierarchically constructed high order finite 
elements are chosen to show the efficiency of the proposed approach. 

1. Introduction 
Modern computational models for shells cover many aspects in numerical modeling of real engineering 

structures. Thus, the effectiveness of e.g. the solid-shell elements with different locking free formulations 
including EAS, ANS approaches, see e.g. for bilinear finite elements in Hauptmann et.al. [1], and for biquadrate 
FE in Hauptmann et.al. [2] has been verified for various cases of geometry and loading. Rank et.al. in [3] 
systematically applied the high order finite element technique in order to model shell structures with an exact 
geometry (via the, so-called, blending function method). In order to deal with arising discontinuity on element 
boundaries when the linear finite elements are used, in due course, in computational contact mechanics various 
smoothing techniques have been developed based on covering the linear mesh with other surface 
approximations possessing the required smoothness on the element boundaries, see the overview in Wriggers 
[4] and in Laursen [5]. In order to describe contact interactions between arbitrarily shaped bodies including 
various geometrical situations such as surface-to-surface, surface-to-curved line etc. a unified geometrical 
description fully based on the geometrical properties of those features, a, so-called, covariant approach has been 
developed recently, see Konyukhov and Schweizerhof [6], [7]. The approach is based on the description of all 
necessary parameters for contact in the specially defined coordinate system invoked by the corresponding 
closest point projection (CPP) procedure:  

 min),(),( 2121 →−= ξξρξξ srF  (1) 

where  is vector of the slave contact point and  is its projection onto the contact surface. The 
projection leads to a spatial curvilinear coordinate system defined by surface tangent vectors and the normal:  

sr ),( 21 ξξρ

 
21

21
2211 n ; ;

ρρ
ρρ

ξ
ρρ

ξ
ρρ

×
×

=
∂
∂

=
∂
∂

=  for  (2) nr 321321 ),(),,( ξξξρξξξ +=

 1 



6th International Conference on Computation of Shell and Spatial Structures IASS-IACM 2008, Ithaca 

One of the fundamental results achieved within the developing description is the solvability problem of the 
CPP procedure for surfaces of arbitrary geometry considered in Konyukhov and Schweizerhof [8]. Based on 
these results it is possible to construct the projection domains for arbitrary surfaces for which the projection 
exists and is unique. It has been shown that for arbitrary surfaces the CPP procedure should be generalized and 
should include projections not only onto surfaces, but also to edges and to points.  

An extensive application of the differential geometry of surfaces is necessary then a) to formulate a weak 
form; b) to formulate various known methods to enforce contact conditions (penalty, augmented Lagrange 
multiplier, full Lagrange multiplier and Mortar methods); c) to consider linearization procedures in the form of 
covariant derivatives. Such a methodological procedure is then following the intrinsic surface geometry exactly 
and is thus independent of the following approximation of the contact surfaces. 

2. Contact kinematics 
As natural measures of normal contact interaction representing the non-frictional case the third coordinate  is 
taken, and the rate of the first two convective coordinates  is taken as a measure of the tangential 
interaction representing the frictional case. A formulation in rate form allows then successfully to exploit the 
kinematical analogy for covariant derivatives as well as to formulate frictional forces with regard to the elasto-
plastic analogy. Some further parameters for the isotropic frictional case are summarized in the Table 1: 
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where TN εε  ,  are normal resp. tangential penalty parameters,  are components of the metrics resp. 
the curvature tensor and  are Christoffel symbols for the contact surface. 
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Table 1: Summary of contact kinematics 

The real tangential tractions are computed via the standard return-mapping scheme. The covariant formulation 
for the isotropic case can be generalized via the principle of maximum dissipation into coupled anisotropy 
including adhesion and friction, see Konyukhov and Schweizerhof [9], [10].  

The weak form is obtained taking into account the pointwise equilibrium on the contact area. The 
contact integral is represented then as integral over the slave area  as  ss

  (3) ∫∫ +=
ss S

s
i

i
S

sc dsTdsNW δξδξδ 3

The linearization of the integral (3) is fully taken in the metrics of the master surface and is expressed in explicit 
covariant form via the corresponding convective coordinates and force components, see in [6], [7]. 
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3. Incorporation of a nonlinear approximation of the boundary 
It is shown within the covariant description; see [6], [7], [9], that all tangent matrices formulated in explicit 

form contain a geometry approximation operator . This leads to a straightforward 
implementation of the derived algorithm with regards to any approximation of the geometry. In the case of 
application of high order FEM in combination with the blending function method as well as in the case of an 
iso-geometrical finite element approach the corresponding geometry approximation operator 

 is a non-linear operator with respect to the nodal (resp. knot) vector . In this case 
this operator should be additionally linearized as 

),(A(x) 21 ξξρ sr−=

),(),A(x, 2121 ξξρξξ sr−= x

 . (4) ),DA(0,...),DA(0,),A(0,),x,A(),( 2121212121 ξξξξξξξξδξξδδρ =++==− sr

Thus, in the case of a nonlinear approximation of the boundary all contact matrices will be computed following 
the pattern for linear approximation but with the corresponding linearized matrix , see [10]. ),DA(0, 21 ξξ

4. Numerical examples 
The simple deep-drawing problem in Fig. 1 is chosen to show the result of smoothing considering different 
order of the finite element approximation. The strip is modeled, first, with bi-linear solid shell elements. The 
solution though converging leads to a highly oscillatory behavior of the “control displacement-thickness strain” 
curve, Fig. 1 b). The application of bi-quadratic finite elements leads to almost perfect elimination of the 
oscillations. 

a)  

 b)  c)  

Figure 2: Deep drawing of a strip. a) – finite element model and thickness strain-control displacement curve for: 
b) bi-linear finite elements, c) bi-quadratic finite elements. 

 Another numerical example is aimed to show an application of the contact description to high order 
finite elements. The classical Hertz problem is modeled first with a completely linear finite element mesh, see 
Fig. 2 a). Afterwards, a few elements on the contact boundary are modified into, so-called, Contact Layer finite 
elements, Fig. 2 b). These elements are constructed as anisotropically p-refined elements with an exact 
representation of the boundary via the blending function method, see details in [10]. A good correlation with the 
Hertz solution is found even in cases where the contact zone lays inside the single finite element, Fig. 2c). 
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a) b)   

c)  

Figure 2: FE model for the Hertz problem. a) – initial bi-linear mesh; b) six elements are modified into Contact 
Layer finite elements; c) contact pressure vs. contact radius, contact zone is inside a single element. 
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