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Topology optimization with adaptive mesh refinement  
Eric DE STURLER*, Glaucio H. PAULINO, Shun WANG 

*Department of Mathematics, Virginia Tech 
544 McBryde Hall, Virginia Tech, Blacksburg, Virginia 24061-0123 
sturler@vt.edu  

Abstract 
We outline a robust method for topology optimization with adaptive mesh refinement and derefinement (AMR). 
Since the total volume fraction in topology optimization is usually modest, after a few initial iterations the 
domain of computation is largely void. It is inefficient to have many small elements in such regions, as these 
contribute significantly to the overall computational cost but little to the accuracy of computation and design. At 
the same time, we want high spatial resolution for accurate three-dimensional designs to avoid significant 
postprocessing or interpretation. AMR offers the possibility to balance these two requirements, but it has 
received little attention in the context of topology optimization. We will discus approaches by Costas and Alves 
[2] and Stainko [3]. Unfortunately, both approaches may lead to suboptimal designs that are mesh dependent. 
We extend these approaches to obtain a method that yields optimal designs, and we show experimentally that 
our improvements lead to designs that are equivalent to designs computed on uniform meshes at the finest level 
of refinement. Furthermore, we demonstrate significant reductions of run time by using AMR and efficient 
methods for the solution of the resulting large, linear systems, following Wang et al. [4]. 

1.  Introduction 
Topology optimization is a powerful structural optimization method that combines a numerical solution method, 
usually the finite element method, with an optimization algorithm to find the optimal material distribution inside 
a given domain. In designing the topology of a structure we determine which points in the domain should be 
material and which points should be void; see Bendsøe and Sigmund [1].  

In topology optimization, problems are solved most commonly on fixed uniform meshes with a relatively large 
number of elements in order to achieve accurate designs. However, as void and solid regions appear in the 
design, it is more efficient to represent the holes with fewer large elements and the solid regions, especially the 
material surface, with more fine elements. Since the shape and position of holes and solid regions are initially 
unknown, the most economical mesh representation for the design is unknown a priori. Therefore, adaptive 
mesh refinement (AMR) is very suitable for topology optimization. The purpose of AMR for topology 
optimization is to get the design that would be obtained on a uniformly fine mesh, but at a much lower 
computational cost by reducing the total number of elements and having fine elements only where and when 
necessary. 

Highly accurate designs on uniform meshes may require so many elements that the solution of the optimization 
problem becomes intractable. However, AMR leads to high resolution in the mesh only when and where 
necessary. This makes it possible to do highly accurate designs with a modest number of elements against a 
reasonable cost. Obviously, we do not want the use of AMR or the AMR procedure to alter the computed 
designs. However, there is a risk of this, since the mesh influences the computed deformations and sensitivities. 
So, the solutions from the finite element analysis using AMR must be as accurate as those obtained on a uniform 
fine mesh. Moreover, it must be the accurate solution and corresponding sensitivities obtained on the finest 
mesh that govern the design. If coarse mesh solutions drive or limit the design, suboptimal designs may result 
when designs optimal on a coarser mesh differ substantially from the optimal design on a (much) finer mesh; 
see Wang et al. [5]. The early work in this area, though leading to acceptable designs in specific instances, does 
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not satisfy these properties. We propose simple but essential changes to these methodologies that lead to AMR 
based designs that are equivalent (up to some small tolerance) to designs on uniform fine meshes. 

2.  Topology Optimization in a nutshell 
In topology optimization we solve for the material distribution in a given design domain . Here, we minimize 
the compliance of a structure under given loads as a function of the material distribution. To solve this problem 
numerically, we discretize the computational domain using finite elements, where we use a lower order 
interpolation for the density field (material distribution) than for the displacement field. We take the most 
common approach using trilinear interpolation for the displacement field and constant density in each element. 
The compliance minimization problem after finite element discretization is defined as 
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Figure 1. Overview Topology Optimization Algorithm 
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The Solid Isotropic Material with Penalization 
method (SIMP) is used to make intermediate 

densities unfavorable; we define the elasticity tensor as a function of the element density, 0
p

e eE Eρ= , where 

is the penalization parameter. Withp 1p > , intermediate densities provide little stiffness per (unit) volume. 
The common choice, , results in intermediate material properties satisfying the Hashin-Shtrikman bound 
for composite materials; see Bendsøe and Sigmund 

3p =
[1]. We apply continuation on  to avoid problems with 

local minima, starting with 
p

1p =  and slowly increasing as the design converges. p

The general scheme for topology optimization using AMR is illustrated in Figure 1. Various optimization 
algorithms can be used for topology optimization. For this paper, we use Optimality Criteria (OC); see Bendsøe 
and Sigmund [1]. Dynamic mesh adaptation may be carried out before the finite element analysis. 

3. Dynamic, Adaptive Mesh Refinement 
Little research has been done in applying AMR to topology optimization. So, we briefly discuss two recent, 
important, papers in this area. The AMR method by Costa and Alves [2] goes through a predetermined, fixed 
sequence of optimizations and subsequent mesh refinements (they do not use derefinement), using (assuming) a 
converged solution on a `coarse mesh' to guide the refinement of that mesh and start the optimization on the 
next `fine mesh'. Coarse meshes and the solutions on these coarse meshes are never revisited or updated after 
generating the next finer mesh. The method aims at refining the coarse mesh design; after a fixed number of 
optimization steps on a given mesh, they refine all material elements and elements on the boundary between 
material and void. Stainko [3] follows a slightly different approach with respect to the refinements. Mesh 
refinement is done only along the material boundary as indicated by the (regularization) filter. So, elements 
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completely inside a material region or a void region are not refined. These approaches share two important 
choices that may lead to problems. First, both approaches solve the design problem on a fixed mesh until 
convergence and then refine. After refinement on a given level, the mesh on that level remains fixed for the 
remainder of the optimization. Therefore, all further refinements are constrained by the converged coarser level 
solutions. This works well in terms of refining the design, but for many design problems the optimal solution on 
a uniform fine(st) mesh is quite different from the converged solution on a coarser mesh. In that case, mesh 
refinement based only on the coarser level solution will erroneously confine the solution on the finer mesh to a 
smooth version of the coarser level solution. Therefore, the approaches proposed in Costa and Alves [2] and 
Stainko [3] may lead to suboptimal designs; see Wang et al. [5]. Second, both approaches lack derefinement. 
This may lead to inefficiencies, having too many elements. 

Next, we briefly describe the main ideas for our AMR strategy for topology optimization. Space restrictions 
prevent us from giving a detailed description, and we refer to Wang et al. [5] for details and implementation. We 
base our algorithmic choices on a set of requirements on AMR codes for topology optimization. As stated 
above, the purpose of AMR for topology optimization is to get the design that would be obtained on a uniform 
fine mesh, but at a much lower computational cost by reducing the total number of elements and having fine 
elements only where (and when) necessary.  

First, since the finite element analysis and the computation of sensitivities drive the changes in material 
distribution, they should be as accurate as on the uniform fine mesh. Therefore, we need a fine mesh that covers 
at least the material region and the boundary. Since the void regions have negligible stiffness they do not 
influence the (intermediate) linear finite element solutions and sensitivity computations. So, we do not need a 
fine mesh inside the void regions. Hence, we use a refinement criterion similar to that of Costa and Alves 
\cite{Costa2003}. At this point we focus on refinement and derefinement for shape only. Therefore, we are 
conservative with respect to accuracy, and we expect that, in future implementations, good error indicators will 
lead to further efficiency gains, in particular because of derefinement in solid material regions. Second, the 
accurate computations on the finest level should drive the changes in the material distribution. This requires 
continual mesh adaptation so that computational results after refinements can drive updates to the material 
distribution, and designs are not confined by earlier coarse grid results. This also means that as the material 
region moves close to the boundary between fine and coarse(r) mesh, additional refinements allow for further 
evolution. Third, we need to ensure that the design can change sufficiently in between mesh updates. Therefore, 
we maintain a layer of additional refinements around the material region (in the void region) and carry out 
continual mesh adaptation. Due to the additional layer of refinements and continual mesh updates, the design 
can change arbitrarily following the fine grid computations and resulting sensitivities, and it is not confined by 
earlier coarse grid results. To ensure that the design accurately reflects the fine mesh computations, we allow 
rapid refinements of the mesh early on when voids and material regions (and hence the boundary) develop. 
Fourth, since the design can change substantially from its estimate on a coarse mesh, we may have fine elements 
in void regions. Those elements must be removed for efficiency, so we need derefinement. A hierarchical 
representation of adaptive meshes facilitates our strategy of continual mesh refinement and derefinement,. 

4. A Numerical Experiment: Computing an Optimal Cantilever Beam 
We compute the optimal design for the three-dimensional cantilever beam shown in Figure 2. Exploiting 
symmetry, we discretize only a quarter of the domain. We solve this problem first on a (fixed) uniform mesh 
with 128x32x32 B8 elements and then following our AMR strategy. The initial mesh for the AMR-based design 
has 64x16x16 B8 elements. The final results are shown in Figure 3, with the AMR solution on the left and the 
uniform mesh solution on the right. We measure the relative difference between two designs as follows 
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Figure 2. 3D Cantilever beam 
with domain scale 2:1:1 



6th International Conference on Computation of Shell and Spatial Structures IASS-IACM 2008, Ithaca 

The relative difference between these two designs, as defined by (1),  is only 0.0909%. 

       

We use the incomplete Cholesky-preconditioned, recycling minimum residual solver (RMINRES) proposed by 
Wang et al. [4] to solve the linear systems arising from the finite element discretization for a given material 
distribution. The dimensions of the linear systems of equations for the adaptive mesh are less than half of those 
for the uniform, fine mesh. The difference is even larger early in the optimization iteration. Moreover, the 
number of RMINRES iterations for the linear systems derived from the AMR mesh are smaller than those from 
the uniform, fine mesh, as the adaptive meshes lead to better conditioned linear systems. In total, using AMR 
reduces the solution time roughly by a factor three.  

Figure 3. Final AMR solution of the optimal 3D Cantilever beam problem and final solution on a fixed 
uniform mesh (128 x 32 x 32). The finest elements in both meshes  are the same size.  The relative difference 
in density distribution of both designs is only about 0.1%. 

5. Conclusions 
We have used AMR to reduce the total runtime for a three-dimensional topology optimization problem by a 
factor three while obtaining essentially the same design as on a fixed uniform fine mesh. Fast iterative solvers 
also play an important role in our approach. AMR provides a promising future research direction in topology 
optimization; especially important are efficiently updating preconditioners and combining refinement and 
derefinement for shape with refinement and derefinement based on a posteriori error estimates. 
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Abstract 
A methodology of enhanced computational efficiency is presented for continuum topology optimization of 
sparse structural systems. Such systems are characterized by the structural material occupying only a small 
fraction of the structure’s envelope volume. When modeled within a continuum mechanics and topology 
optimization framework such structures require models of very high refinement which is computationally very 
expensive. The novel methodology presented here to deal with this issue is based on the idea of starting with a 
relatively coarse mesh of low refinement and employing a sequence of meshes featuring progressively greater 
degrees of uniform refinement. One starts by solving for an initial approximation to the final material layout on 
the coarse mesh. This design is then projected onto the next finer mesh in the sequence, and the material layout 
optimization process is continued. The material layout design from the second mesh can then be projected onto 
the third mesh for additional refinement, and so forth. The process terminates when an optimal design of 
sufficient sparsity, and sufficient mesh resolution is achieved. Within the proposed methodology, additional 
computational efficiency is realized by using a design-dependent analysis problem reduction technique. As one 
proceeds toward sparse optimal designs, very large regions of the structural model will be devoid of any 
structural material and hence can be excluded from the structural analysis problem resulting in great 
computational efficiency. The validity and performance characteristics of the proposed methodology are 
demonstrated on three different problems, two involving design of large-scale sparse three-dimensional 
structures for buckling stability, and the third involving design of a three-dimensional gripper compliant 
mechanism. 

1.  Introduction 
There have been many attempts during the last fifteen years to use continuum topology optimization method [1] 
to obtain optimal forms for structures and mechanical systems. Yet, the huge computational cost involved when 
dealing with such problems is a main challenge in extending this method to solve problems involving highly 
refined finite element meshes to achieve convergent solutions with clear and smooth boundaries that reflect 
realistic system performances. Additionally, the material usage constraint accompanies the mesh refinement 
problem and could have a significant effect on the performance, weight, and shape of the resulting optimal 
forms in continuum topology optimization method. Up until now, this second issue has been given little 
attention in the literature. 

One approach to achieving and dealing with fine meshes in continuum topology optimization (Maute et al.  [2]) 
is to use adaptive mesh refinements to decrease the number of design variables and to seek smooth final 
topological forms. A similar approach is now extensively involved in finding optimal design forms using the 
evolutionary structural optimization method (ESO) [3]. In another approach, researchers enforced design 
symmetry during the optimization process by reducing the design space [4] by, or to remove the void 
nonstructural elements temporarily from the structural analysis, but reintroduce them if they needed [5,6]. The 
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latter approach has been shown to be very effective in dealing with problems involving geometrical 
nonlinearity. 

The material usage constraint plays a considerable role in achieving low weight and certain performances when 
utilizing continuum topology optimization method. For example, most existing optimal large civil structures 
such as long span bridges are sparse in nature, where the real structural material occupies only a small 
percentage (less than 1%) of the structure’s envelope volume. Therefore, in utilizing continuum structural 
topology optimization to obtain optimal design forms for such systems, it is crucial to impose stringent material 
usage constraint and implement very fine meshes in order to capture a realistic performance for such systems. 

The importance of such an approach has been demonstrated in a previous work [6] where it proved to be very 
effective when designing structural systems for buckling instability. Similarly, it has been shown in designing 
hinge-free compliant mechanisms to achieve considerable flexibility [7], the amount of structural material 
comprising the mechanism can be progressively reduced until the desired flexibility of the mechanism is 
achieved. It is also crucial toward this end to use stringent material usage constraint with very fine finite element 
meshes 

This article presents a methodology for solving large-size sparse systems in continuum structural topology 
design framework based on sequential refinement and size reduction strategy in a new way that is conceptually 
simple and theoretically sound. In sequential refinement, the proposed methodology solves a preliminary 
problem on a relatively coarse mesh and with a moderate material usage constraint. The resulting optimal form 
from this stage, the solid structural material layout, is then mapped onto a finer mesh. With a more restrictive 
material usage constraint, the material layout is then refined on the finer mesh. The process of optimizing the 
material layout and projecting it onto a finer and finer mesh while gradually tightening the material usage 
constraints is both efficient and robust. A size reduction strategy is implemented within each structural analysis, 
where the void nonstructural elements are removed temporarily but can come back quite easily and naturally if 
needed. The proposed size reduction technique has been tested on many linear and nonlinear systems involving 
geometrical nonlinearity and buckling instability and shown to be a very effective and powerful tool for 
reducing the computational costs, especially when dealing with sparse systems and very fine meshes. 

It should be noted here that the current methodology is based on interpolation of nodal design variables using 
nodal basis functions [8] as opposed to element-based design variables. Although node-based design variables 
feature C0 continuity, they must generally be used with perimeter constraints to achieve design convergence with 
mesh refinement. 

2. A Brief Example 
To briefly illustrate the methods being proposed, a problem is solved as shown in Fig. 1 below. The optimal 
layout of structural material in the circular domain is sought to carry the load at the center of the domain back 
go the rigid supports at the boundary of the domain. The material layout is sought to maximize the buckling 
stability of the resulting structure as measured by the buckling stability factor λ.   
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 a) c)   e)  g) 

      
 b) d)     f) h) 

 

Figure 1. a) coarsest mesh of 896 elements; b) design with Vmat/Vstructure =0.20 and λ=2.17·103; c)mesh with 
3,584 elements; d) material layout design with Vmat/Vstructure =0.05 and λ=1.20·102; e) mesh with 14,336 

elements; f) material layout design with Vmat/Vstructure =0.015 and λ=1.00·101; g) mesh with 57,344 elements;     
h) material layout design with Vmat/Vstructure =0.015 and λ=1.05·101; 
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Abstract 
Traditionally, standard Lagrangian-type finite elements, such as linear quads and triangles, have been the 
elements of choice in the field of topology optimization. However, finite element meshes with these 
conventional elements exhibit the well-known "checkerboard" pathology in the iterative solution of topology 
optimization problems. A feasible alternative to eliminate such long-standing problem consists of using 
hexagonal elements with Wachspress-type shape functions. The features of the hexagonal mesh include two-
node connections (i.e. two elements are either not connected or connected by two nodes), and three edge-based 
symmetry lines per element. In contrast, quads can display 1-node connections, which can lead to checkerboard; 
and only have two edge-based symmetry lines. In addition, Wachspress rational shape functions satisfy the 
partition of unity condition and lead to conforming finite element approximations. We explore the Wachspress-
type hexagonal elements and present their implementation using three approaches for topology optimization: 
element-based, continuous approximation of material distribution, and minimum length-scale through projection 
functions.  Examples are presented that demonstrate the advantages of the proposed element in achieving 
checkerboard-free solutions and avoiding spurious fine-scale patterns from the design optimization process. 

1.  Introduction 
Topology optimization methods seek to find the optimal layout or topology of a fixed amount of material that 
satisfies a required set of design demands. Despite the maturity of the field, there remains a class of numerical 
issues such as the well-known checkerboard problem that continues to be the focus of extensive research. This 
work introduces a new element for the implementation of topology optimization and demonstrates its 
effectiveness in removing the checkerboard pathology.  

The checkerboard solutions appear as a result of inadequate or poor numerical modeling. Diaz and Sigmund [2] 
attributed the formation of checkerboard as a local instability to the error in the finite element approximation. 
The checkerboard pattern has an artificially high stiffness when modeled by lower order finite elements so it is 
economical in the optimization process. In a related investigation, Jog and Haber [4] addressed general 
numerical instabilities in topology optimization by formulating the corresponding mixed variational problem. 
They also concluded that insufficient interpolation of the displacement field can lead to unstable modes. 
Moreover, the discontinuous representation of the material field in the element-based approach (see section 3) is 
conducive to the appearance of checkerboard. In one approach proposed by Matsui and Terada [6], the 
continuity of the material field is enforced by using finite element shape functions to interpolate the density 
throughout the design domain from nodal densities. As a result of this choice of density field representation, the 
discontinuous checkerboard patches are naturally excluded from the design space. However, other forms of 
numerical instabilities such as “islanding” and “layering” effects have been observed with these formulations 
(Rahmatalla and Swan [8]).  

It is evident from this discussion that the approximation of the two distinct fields of displacement and density 
greatly influences the stability of the topology optimization problem. In this work, we address the checkerboard 
issue by introducing the Wachspress hexagonal element which possesses desirable characteristics in 
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representing both fields (see next section). Thus, checkerboard-free solutions are obtained without any further 
restrictions or filtering. 

2.  Features of Hexagonal Wachspress Element 
If we restrict ourselves to uniform meshes, there are only three possible regular tessellations in two dimensions, 
namely those generated by equilateral triangles, squares, and hexagons. We recognize that the hexagonal 
tessellation is distinguished from the other two in that it does not allow for corner contacts (Figure 1a). 
Consequently, unlike triangular and quadrilateral grids, the hexagonal tessellation, by the virtue of its geometry, 
constrains the material layout and naturally excludes the unwanted formation of checkerboard and one-node 
hinges. Another appealing feature of the hexagonal element is that it has more lines of symmetry per element 
compared to the triangular and square elements and, consequently, suffers from less directional constraint and 
allows for a more flexible arrangement of the final layout in the optimization process (Figure 2b). 

(a)    

 

(b)   
Figure 1: An illustration of the geometric properties of the hexagonal element 

In this work, we adopt Wachspress rational interpolation functions for the proposed hexagonal element. 
Wachspress interpolants were developed using concepts of projective geometry and are the lowest order 
functions that satisfy the conditions of boundedness, linear precision, and global continuity (Sukumar and 
Malsch [9]). The geometric construction of these shape functions is based on the algebraic equations of the 
edges of the polygonal domain and can be found in Wachspress [11]. 

3.  Topology Optimization Formulation 
The performance of the proposed hexagonal element is assessed through the implementation of benchmark 
compliance minimization problems. Using material “density” ߩ as the design variable, the minimum compliance 
problem in the discrete form is formulated as (Bendsøe and Sigmund [1]): 

 
min:
ఘ,ܝ

ܿሺߩ, ሻܝ ൌ  ܝ்܎

.ݏ .ݐ : ۹ሺߩሻܝ ൌ  ܎

න ܸ݀ߩ ൑ ௦ܸ
Ω

 
(1) 

Here ܿሺߩ,  are the global force and ܝ and ܎ ሻ is the objective function (i.e. the compliance of the structure) andܝ
displacement vectors. Moreover, ۹ represents the global stiffness matrix, which is dependent on the density 
distribution. The parameter ௦ܸ is the specified maximum volume of structural material. In order to solve this 
optimization problem, we must choose a proper descritization of the design field. We consider the following 
three different approaches for implementation of the Wachspress hexagonal element: 

3.1  Element-Based Approach 
In the element based approach, a uniform density parameter ߩ௘ is assigned to each displacement finite element. 
The element densities become the design variables, and their sensitivities are calculated using the adjoint 
method: 

  ߲ܿ
௘ߩ߲

ൌ െܝ௘
் ߲۹௘

௘ߩ߲
௘ܝ ൌ െߩ݌௘

௣ିଵܝ௘
்۹௘

଴ܝ௘ (2) 

As discussed previously, the element-based implementation using linear triangular and bilinear quadrilateral 
displacement elements suffer from the checkerboard.  
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3.2 Continuous Approximation of Material Distribution (CAMD) 
Alternatively, we can define the design parameters to be the nodal densities, from which the density through the 
domain is interpolated. Based on the concept of graded elements (Kim and Paulino [5]), we use shape functions 
to obtain the density within the each element and subsequently throughout design domain: 

 
ሻܠሺߩ ൌ ෍ ෍ ௜ܰ

௘ሺܠሻ
଺

௜ୀଵ

௜ߩ
௘

௡

௘ୀଵ

 (3) 

Here ߩ௜
௘ denotes the nodal density of element ݁, which is taken to be coincident with the corresponding 

displacement node. This approach for topology optimization is referred to as the Continuous Approximation of 
Material Distribution (CAMD) (Matsui and Terada [6]). The sensitivities of the objective function with respect 
to the nodal densities in the CAMD implementation can be computed as follows: 

  ߲ܿ
௜ߩ߲

௘ ൌ െ ෍ ௘ܝ
் ߲۹௘

௜ߩ߲
௘ ௘ܝ

௘אௌ೔

 (4) 

Here ௜ܵ is the set of all elements sharing node ݅. If we let ۰ denote the strain-displacement matrix and ۳଴ the 
constitutive matrix of the solid phase, then the sensitivity of the element stiffness matrix is given by: 

 
߲۹௘

௜ߩ߲
௘ ൌ න ݌ ௜ܰ

௘ ቌ෍ ௝ܰ
௘

଺

௝ୀଵ

௝ߩ
௘ቍ

௣ିଵ

۰்۳଴

Ω౛

۰݀Ω (5) 

3.3 Projection Method: A minimum length-scale approach 
The other scheme explored in this work is the use of projection functions with a fixed length scale. Proposed by 
Guest et al. [3] for Q4 discretization, the method assigns to each element a uniform density based on a 
projection of nodal densities surrounding that element. By choosing a fixed radius ݎ௠௜௡ independent of the 
mesh, one can obtain mesh-independent designs with prescribed minimum member size. The element density is 
given by a weighted average of nodal densities that are within radius ݎ௠௜௡ from the centroid of that element: 

  ௘ߩ ൌ
∑ ௌ೐א௜௜ߩ௜ݓ

∑ ௌ೐א௜௜ݓ

 (6) 

The linear weight functions are given by (here ݎ௜ is the distance of the node ݅ from the centroid of element ݁: 

  ௜ݓ ൌ
௠௜௡ݎ െ ௜ݎ

௠௜௡ݎ
, ௜ݎ ൑  ௠௜௡ (7)ݎ

4.  Results and Conclusions 
The benchmark MBB-beam problem (Olhoff et al. [7]) is solved using the Wachspress hexagonal element and 
results are compared with the corresponding Q4 implementation. We have solved the optimization problem 
using the Method of Moving Asymptotes (MMA) developed by Svanberg [10], along with a continuation on the 
SIMP penalty parameter. Coarse and fine meshes (with mesh sizes 60 ൈ 20 and 120 ൈ 40 respectively) were 
implemented for both elements. 

     

     
Figure 2. MBB beam design with element-based formulation: Q4 (left) and Wachspress (right) implementation 

In Figure 2, the results of the element-based formulation for the Q4 element and the hexagonal element are 
shown. The solutions with Q4 implementation contain patches of checkerboard while no such fine scale patterns 
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Abstract 
3D topology optimization technique is described for both static and dynamic problems. The enhanced assumed 
strain lower order solid finite element is adopted to produce accurate structural responses such as stresses, 
natural frequencies and strain energies. The linearly combined function of elastic and modal strain energy terms 
is employed as the objective function. Therefore, the strain energy based resizing algorithm is consistently 
adopted to deal with both static and dynamic problems. The initial volume of structures is introduced as the 
constraint function. The constraint adaptive topology algorithm (CATO) is adopted to redistribute the materials 
in structures. The artificial material model is adopted to produce clearer and more distinct structural topologies. 
The material is characterized by a density parameter that is defined in terms of the volume of the voided zone, 
which assume as the cube cell that is centrally placed in the solid finite element. The capability of the proposed 
technique is tested with shell topology optimization problem. The multi-objective problems considering both 
elastic and modal strain energies are tackled and some meaningful observations in the material redistribution of 
the structure against external loads and self-vibrations have been possibly achieved. From the numerical results, 
it is found to be that the proposed techniques is very useful to find optimum topologies and the final optimum 
topologies have also been greatly affected by the consideration of the dynamic characteristics of the structures. 

1.  Introduction 
Structural topology optimization has been studied in many ways over the last twenty years and it now became a 
popular method in design optimization process. There are two main issues such as material model and resizing 
algorithm in topology optimization. In choosing the material model, one of the important features that should be 
considered is that it should allow the density of material to cover the whole range of values from zero (void) to 
one (solid). In addition the material description should fit the periodicity assumption and should be defined by 
only a few parameters which are used as the design variables in the optimization algorithm. Apart from the 
material, another issue in topology optimization is the algorithm used to update the hole size. The optimality 
criteria methods have been used in popular since they can deal with many design variables without particular 
difficulties (Bensøe and Kikuchi [1]). On the other hands, mathematical programming methods are gradually 
becoming a more popular means of updating the material density parameter (Tenek and Hagiwara [2]). For 
example, a problem having a thousand design variables has been successfully handled using mathematical 
programming. However, the resizing algorithm based on the optimality criteria has still a great advantage to deal 
with many design variables in topology optimization. Several alternatives such as the hard-kill, the soft-kill and 
the evolutionary method (Xie and Steven [3]) can be used for various engineering problems.  

Recently, the so-called CATO algorithm (Bulman and Hinton [4]) has also emerged and some numerical results 
are provided for 2D problems. It has been mostly applied to static problems and the applications of topology 
optimization technique into the dynamic problem are limitedly available in the open literature. Besides, the 3D 
topology optimization results obtained from considering both static and dynamic characteristics of the structures 
are very few in the previous research works. Therefore, a 3D topology optimization technique based on CATO 
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algorithm is described here to find the optimum topologies of the structures with simultaneous consideration of 
static and dynamic characteristics in design optimization process. 

2.  CATO Algorithm 
The key aspect of the CATO has the constraint preserving the initial volume, which does not exist in the kill 
method. The CATO algorithm provides a means of updating the density parameters ea or the material density 
parameter er . The basic algorithm of the CATO has the following steps: 

(a). Using a given volume fraction, calculate the initial value of design variables which are the density 
parameter ea  

(b). Evaluate the appropriate constitutive properties using an artificial material model considering the 
current density parameter ea  

(c). Calculate the displacements u  
(d). Calculate the strain energies eU  
(e). Update design variables 

(e.1) Order the elements according to their stain energy density values   
(e.2) From a specified volume preserving relationship )( e

k
e faΔ evaluate the change of the density 

parameters k
eaΔ for each element and update the density parameter so that 

k
e

k
e

k
e aaa Δ+=+1  

(e.3) Update density parameters ea using the scheme described in Reference (Bulman and Hinton [4]) 
(e.4) Check whether new density parameters ea are satisfied with the volume constrain  
(e.5) If yes, go to (f). Otherwise, adjust 1+k

ea  proportionately until the volume constraint is satisfied 
and then it is satisfied, go to (f) 

(f). Filtering the design variables if lower order finite element is used (Youn and Park [5])  
(g). If the termination criterion (Lee et al. [6]) is satisfied, stop. Otherwise, repeat (b)-(f) 

     

Figure 1: (Left) The relationship )( e
k
e faΔ at an early stage (solid line) of topology optimization iteration and at 

an intermediate stage (dash line); (Right) Artificial material model (Lee et al. [6]). 

Specifically, The CATO algorithm uses an incremental relationship ( )k
e ea fΔ  to adjust the elemental density 

parameter ea  according to the strain energy density value ef  of each finite element. A special feature of this 
relationship is that it is chosen so as to preserve the total volume of the structure during the iterative 
optimization process. The details of such an updating scheme can be found in Reference (Bulman and Hinton 
[4]). Here, we will briefly describe the procedure they proposed. Figure 1 shows an example of this relationship 
at two stages of the scheme. The function is composed of a curve of the form Pcury n= . 
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3.  Strain energy  
The strain energy term of the structures is calculated with an enhanced lower order solid finite element and the 
detailed formulation of the adopted solid finite element is described in Reference (Simo et al. [7]). In the 
optimization process, we use linearly combined strain energy term of elastic and modal strain energies. 

Total strain energy term for the problem considering m -load and n -natural frequency cases are defined by the 
following form:  

1 1
, , 0

m n
i k

i k m i k
i k

U U Uλ λ λ λ
= =

= + >∑ ∑                                                                                                            (1) 

where iU , k
mU are the elastic strain energy for thi load case and the modal strain energy (Lee and Bae [8]) 

induced by the thk eigenvector associated with the thk natural frequency such as  

1

1
2

inel
i T

e eV
e

U dV
=

⎡ ⎤
= ⎢ ⎥
⎣ ⎦
∑ ∫ ε Dε     and     

1

1
2

knel
k T
m e e eV

e

U dVφ φ
=

⎡ ⎤
= ⎢ ⎥
⎣ ⎦
∑ ∫ K                                                              (2) 

where ε is strain vector and D  is the rigidity matrix, eφ is the eigenvector associated with element e and the 
,i kλ λ  are the associated weights for two strain energy terms ,i k

mU U  respectively. 

4.  Free form shell 
A free form shell subjected to a central point load is optimized. The geometry of the shell is expressed by the 
equation: 

2 2

2

( )

( / 2)

C x y
z

L

+
=  

in which C=L/10 and L=6.  

The four corners of the shell are clamped. The material properties used in this example are assumed to be: 
elastic modulus 7 23.2 10 /E N m= × , Poisson's ratio 0.3υ =  and the thickness of shell is h=0.2m. All units are 
assumed to be consistent.  

 
Figure 2: Free formed shell. (a) geometry, (b) the first mode shape, (c) the second mode shape (d) the third 

mode shape; Optimum topologies for doubly curved shell. (e) point load, (f) the first mode shape, (g) point load 
and the first mode shape (h) point load and the third mode shape 

A mesh of 400, 8-node solid element is used for the finite element analysis in a symmetric quadrant. A volume 
fraction of 50%Ω =  is used and the following solution parameters inip =5.0, iter=0.025, 

max 0.01aΔ =  are used 
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for CATO. The tolerance of the volume fraction is 0.001. In this test, 250 iterations are allowed and the filtering 
process is applied until 150 iterations. 

In this test, the multi-objective problem is tackled and therefore the external load 10P kN= and natural mode 
shape shown in Figure 2 are simultaneously considered in topology optimization process. Four cases are 
considered: (a) P , (b) 1ω , (c) P + 1ω , (d) P + 3ω . In the first case, we try to obtain the optimum topology 
against a central point load and the modal strain energy minimization is tried in the second case. Furthermore, 
multi-objective problems are considered in the other cases. Figure 2 provides the optimum topologies through 
the single-objective and multi-objective cases. Note that for the multi-objective problems, the elastic and modal 
strain energies are normalized and the uniform weight are used in the linearly combined strain energy term. 
From numerical results, it is observed that the material of shell has been re-distributed to form a discrete 
structure to resist the deformation created by external load or/ and the natural mode shapes. The values of 82%, 
81%, 70%, 72% total strain energy reduction are achieved for four cases. It is found to be that the final optimum 
topologies have been greatly affected by the consideration of the dynamic characteristics of the structures with 
the use of modal strain energy. 

5.  Conclusions 
A 3D topology optimization technique based on CATO algorithm is described in this paper. It is found to be that 
the present topology optimization technique is highly applicable to the design optimization problem trying to 
minimize both elastic and modal strain energies. In other words, simultaneous consideration of both static and 
dynamic characteristic of the structure is successfully achieved in design optimization process. We also see the 
possibility of using modal strain energy as a single load case in the framework of multi-load case problems. 
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Abstract 

Electrical Impedance Tomography (EIT) images internal objects within a body. Electrodes are attached to the 

boundary of the body, low intensity alternated currents are applied and the resulting electric potentials are 

measured. Then, an estimation algorithm obtains the three-dimensional (3D) internal admittivity distribution, 

which corresponds to the image. One of the main goals of EIT is to achieve high resolution and low 

computational time, which are related quantities. In this paper, a fast iterative solver based on the recycling of 

approximate invariant subspaces is proposed in order to reduce the time employed to obtain finite element 

solutions (the typical bottleneck in EIT), for a given resolution. Additionally, the Topology Optimization 

Method (TOM) is proposed to obtain the admittivity distribution. Results obtained show the effectiveness of our 

approach and relatively high resolutions (the mesh has 267.051 elements, 53.692 nodes and 53.691 degrees of 

freedom) at small computational time (approximately 6 hours), even on a standard PC. 

1.  Introduction 

EIT finds the admittivity (conductivity and permittivity) distribution in a given model of a body which 

reproduces the boundary measurements of currents and potentials on electrodes attached to that body (Mello et 

al. [4]). The admittivity distribution represents the solution of a non-linear and ill-posed inverse problem. 

Several combinations of current-carrying electrodes can be chosen and, therefore, many induced electric 

potential values may be available for the admittivity estimation, which is meant to reduce the solution space. 

EIT applications range from medical to industrial. In medical applications, it is applied to detect breast cancer 

and to monitor lung aeration (Mello et al. [4]), for instance. In the last case, the main interest of our group, the 

reconstruction of absolute admittivity values has shown its relevance, since these absolute values allow 

distinguishing some lung pathologies (Mello et al. [4]).  

Several algorithms have been proposed to solve the non-linear inverse problem for the absolute admittivity 

values. They are usually based on iterative methods such as Gauss-Newton or TOM (Mello et al. [4]). The 

Finite Element Method (FEM) is frequently employed to model the body, which means that linear systems must 

be solved. Since several combinations of current-carrying electrode are considered, the linear systems have 

different right-hand sides. Iterative solvers are usually reported rather than direct methods due to relatively low 

storage requirements and fast computations, even for multiple right-hand sides (see Vorst [5]). 

One of the main goals of EIT is to achieve high resolution at low computational times. However, when the 

resolution is increased, which is carried out by refining the finite element mesh, the computational time is also 

increased, especially in the case of 3D meshes. Therefore, there is a trade-off between the element size and the 

time spent to obtain an image in EIT and, in fact, the time can be prohibitive in a practical 3D case.   

In this work, we employ a relatively new technique (Wang et al. [6]) to reduce the EIT computation time for a 

constant resolution and, therefore, we address the trade-off issue. The technique is called recycling and is 



6th International Conference on Computation of Shell and Spatial Structures IASS-IACM 2008, Ithaca 

 2 

applied to diminish the time and number of iterations of each FEM solution, the bottleneck of the admittivity 

estimation. We employ TOM to solve the inverse problem, a method that has presented relatively good results 

(Mello et al. [4]). TOM combines the Sequential Linear Programming (SLP) and FEM to find the properties 

distribution which optimizes an objective function subjected to constraints. The recycling technique utilizes the 

fact that the changes in the matrices of the linear systems during the iterative optimization process are small in 

order to speed up the convergence of each system. In addition, the technique can be applied to the linear systems 

solved to compute the gradient of the objective function during one iteration. We consider the image 

reconstruction of a cylinder with relatively high resistivity within a conductive body. In other words, a binary 

(0-1) problem is solved, for which TOM is indicated (see Bendsøe and Sigmund [1]). We also simulate the data, 

which means that a numerical phantom (Kaipio and Somersalo [2]) provides the measured potentials. 

2.  FEM model 

Maxwell’s equations can describe the electromagnetic fields in the body, as mentioned by Kaipio and Somersalo 

[2]. Based on these equations and considering the quasi-static approximation for a linear and isotropic medium 

and a sufficiently small excitation frequency, a conductive medium is assumed and we can obtain 

 ( ) ( ) jj IσVσK =  (1) 

which, together with Newmann’s and Dirichlet’s boundary conditions, corresponds to the FEM model of a 

typical EIT setup. Four nodes tetrahedral finite elements comprise the FEM mesh and σ is the vector of element 

conductivities, K(σ) is the conductivity matrix and Ij and Vj(σ) are the vectors of nodal electric currents and 

electric potentials, respectively. The index j indicates different current-carrying electrodes (for simplicity, we 

consider narrow electrodes, which are modeled as point electrodes at nodes). 

3.  TOM 

The EIT inverse problem is usually based on square error function for potential values 

 ( )( ) ( )( )∑ =
−−=

ne

1j j0jj

T

j0jj
2

1
F VσVAVσVA  (2) 

where ne is the number of different current-carrying electrodes, Aj is a diagonal and square matrix whose values 

are equal to one at positions of measurement electrodes and zero otherwise, and V0j is the vector of 

measurements whose components are zero unless they represent a measurement electrode. 

Following the TOM theory (see Bendsøe and Sigmund [1]), a material model is defined. In this work, the 

continuous approximation of material distribution by Matsui and Terada [3] is chosen, which means that the 

conductivity of the m-th finite element is given by 

 ( ) B

p

mA

p

mm 1 σρ−+σρ=σ  (3) 

and depends on nodal values, varying linearly within the element in the same way as the electric potentials. In 

equation (4), σA and σB are the electric conductivities of the materials that compose the body and the exponent p 

introduces penalization into the model, which means that lower values of conductivities are favored.   

Based on equations (3) and (4), we define the following optimization problem 

 ( ) ( ) ( ) 1ρ0IρVρKρ ≤≤= andtosubjected,Fimizemin jj
 (4) 

where ρ is the vector of nodal optimization variables. The gradient of F, utilized in the SLP iteration, is given by 

 ( )
( )

( )
( ) ( )( )∑ =

− −
ρ∂

∂
−=

ρ∂

∂ ne

1j j0jj

1

k

T

j

k

F
VσVAρK

ρK
ρV

ρ . (5) 

The derivation of equation (6) is shown in detail in Mello et al. [4]. The equation shows that 2ne linear systems 

have to be solved in each SLP iteration. Each solution is obtained by the solver described in the next section. 

4.  Solution of the Linear systems: MINRES algorithm with recycling 

MINRES is a Krylov subspace method intended for solving linear systems of equations that contain a symmetric 

matrix (Vorst [5]). In each iteration, the three-term Arnoldi recurrence generates a new vector, updating the 
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orthonormal basis of the Krylov subspace. Then, an approximate solution in the Krylov subspace that minimizes 

the two-norm of the current residual is obtained.   

The recycling version of MINRES (RMINRES) selects a subspace employed in the solution of a linear system 

and utilize it in the solution of the next (Wang et al. [6]). Therefore, it must be assured that this subspace and the 

corresponding subspace of the next system are close for RMINRES to be effective. 

The recycled subspace is considered in the Arnoldi recurrence of the subsequent system, which means that each 

new vector in the recurrence has to be orthogonal to KU, where the columns of U contain a basis for the 

recycled subspace. In addition, an approximate solution in a new subspace spanned by the columns of U and the 

Arnoldi vectors is obtained. In this work, harmonic Ritz vectors with respect to this new subspace are recycled. 

The harmonic Ritz vectors are good choices since they approximate eigenvectors of the matrix of the linear 

system. 

As can be seen in equation (6), the systems differ only with respect to the right-hand sides. The RMINRES 

solver is utilized in these cases, reducing the number of iterations and the runtime of the linear solver. After 2ne 

systems are solved, the last recycled subspace is utilized in the first system of the next SLP iteration. Since the 

matrices of linear systems change slowly between SLP steps, the recycled subspace can reduce the number of 

iterations as well as the runtime of the linear solver also in these cases. Additionally, since the changes tend to 

diminish along the iterative process, the effectiveness of the technique is supposed to be increased towards the 

convergence of the optimization solution.   

5.  Results 

In all results, the incomplete Cholesky decomposition with zero fill-in of the conductivity matrix is employed as 

a preconditioner (Wang et al. [6]). These results are obtained on a PC with an Intel® Core
 TM 

2 Quad Q6700 

2.66GHz processor, approximately 8GB of RAM and the Mandriva Linux system. 

Based on the work of Wang et al. [6], the performance of RMINRES is studied. In the tests, the dimension of 

the recycled subspace (r) is varied. In this case, RMINRES is referred to as RMINRES(r). Additionally, 

RMINRES is compared to MINRES and to the Conjugate Gradient (CG) algorithm (Vorst [5]). The maximum 

dimension of the subspace kept (and hence, the maximum number of Arnoldi vectors maintained) to update the 

subspace which is recycled remains equal to 100. 

The figure 1 shows the mesh of the numerical phantom and a typical image obtained (the peculiarities regarding 

the different values of r are mentioned in the following results). Thirty-two uniformly placed point electrodes 

are considered on the surface of the mesh. Additionally, thirty-two different current-carrying electrodes are 

utilized, which means that ne=32. The electric currents and the exponent p are equal to 0.001mA and 1, 

respectively. In all cases, the electric potential in the same node is taken as ground. Also, thirty-two electric 

potentials are measured for each different current-carrying electrode, which means that 1.024 measurements are 

available. The convergence criterion is that the maximum change in the nodal optimization variables is less than 

0.02. Finally, the initial values of the optimization variables are equal to one, which correspond to 4Ωm. 
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Figure 1: (a) Resistivity distribution of the numerical phantom. (b) Mesh of the phantom (53.692 nodes – 53.691 

degrees of freedom – and 267.051 elements). (c) Estimated image. 

The number of iterations and time spent in solving the linear system in equation (2) with j=1 are shown in 

Figure 2. It can be seen that recycling become more effective towards the end of the TOM optimization process, 
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as mentioned before. It also can be seen that the RMINRES is more effective than MINRES and that the 

effectiveness increases with r. However, there is a trade-off between the number of iterations for the solver and 

the computational cost per SLP iteration and, in fact, the algorithm become unsuccessful in reducing the time of 

each solution for r=20. 

0 20 40 60 80 100

50

100

150

200

ns

n
r

MINRES

RMINRES(5)

RMINRES(10)

RMINRES(20)

 
0 20 40 60 80 100

3

4

5

6

7

ns

ti
m

e 
(s

)

MINRES

RMINRES(5)

RMINRES(10)

RMINRES(20)

  

Figure 2: Number of iteration (nr) and time of RMINRES(r) for each SLP iteration (ns). 

Finally, RMINRES(10) and CG are compared, the method of choice for symmetric and positive definite 

matrices that often arises in EIT. Again, the Cholesky preconditioner is considered. The total runtime is 

approximately equal to 6,67 hours for CG and 5,75 hours for RMINRES(10), showing an expressive difference. 

6.  Conclusion 

In this work, the recycling technique was introduced in the context of EIT in order to reduce the computational 

cost utilized to obtain a 3D image. It was shown that for suitable size of the recycled subspace, the algorithm 

leads to a 28% reduction in computation time at the end of the SLP iterative process. In addition, a 13% 

reduction in the computation time from CG to RMINRES(10) was obtained, which shows the importance of the 

extension of recycling to the CG algorithm. In future works, we intend to implement other tools in order to 

speed up the optimization process, such as parallelization of the finite element solutions and block Krylov 

Methods. We also intend to consider the recycling technique in the case of CG. 
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Abstract 
Structural topology optimization is a powerful design tool capable of discovering new solutions to engineering 
design problems.  Topology optimization, however, typically requires a large, discrete design space and 
problems must thus be simplified to become computationally tractable.  Simplification often results in solutions 
that are physically unrealizable from a manufacturing perspective, or suboptimal when considering real-world 
engineering conditions and fabrication processes.  This paper discusses methodologies for imposing length 
scales on the structural features to influence constructability, and methodologies for incorporating uncertainties 
arising from fabrications and construction errors.  These uncertainties may result from errors in geometry and/or 
flaws in material properties.  Specifically, a recently developed perturbation approach for modelling node 
location uncertainties is discussed and extended to include material property uncertainties.  We then also discuss 
application of the technique to the design of material microstructures.  It is shown that the inclusion of length 
scale constraints and fabrication flaws in the problem formulation can have substantial impact on the topology 
of optimized designs. 

1.  Introduction 
Structural optimization is the application of formal optimization methodologies to structural design problems.  
The term structure herein is not limited to civil engineering-scale structures, but refers to general load-carrying 
topologies.  The most powerful type of structural optimization is topology optimization, where the goal is to 
identify the optimal distribution of material within a design domain. The attraction of topology optimization is 
that it does not require, nor is it limited to, a predefined structural connectivity of the design space, thereby 
facilitating discovery of new design ideas.  The cost of this design freedom is an extremely large (and often 
discrete) design space.  This has led most researchers to focus on deterministic design problems with relatively 
simple governing mechanics.  Loads, boundary conditions, and material properties are often assumed known.  
Additionally, fabrication precision is assumed to be exact and the physical structure will be identical to the 
proposed design.  The reader is referred to Bendsøe and Sigmund [3] for a review of topology optimization. 

While these assumptions make topology optimization problems tractable, they can lead to designs that are 
impractical and suboptimal when considering real-world engineering conditions, including uncertainties in the 
load and fabrication process.  For example, consider the truss topology optimization problem shown in Figure 
1a with a goal of maximizing stiffness. When solving this problem under linear elastic conditions, the collinear 
design of Figure 1b is identified as the optimal solution.  However, this solution in unstable and will collapse 
under any perturbation in structure geometry or applied loading. This is certain to occur in engineering 
applications, even with tight manufacturing tolerances.  Additionally, this collinear design could be susceptible 
to flaws in material or geometric section properties as there is no alternate load path for the structure. 
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Topology optimization can also be used to design material microstructures via inverse homogenization.  Here 
the goal is to identify microstructures that yield desired effective material properties of the bulk material.  
Topology optimization at this scale often leads to complex topologies composed of idealized shapes.  Figures 
2a-b display isotropic microstructures optimized for maximal bulk modulus.  These microstructures contain 
spherical voids staggered in the pattern of a body-centered cubic Bravais lattice (Sigmund [9], Guest and 
Prévost [6]).  Microstructures optimized for isotropic fluid permeability resemble triply periodic Schwartz P 
minimal surfaces as shown in Figure 2c-d (Guest and Prévost [6]).  Such topologies are difficult to manufacture 
and subsequent imperfections may have dramatic impact on performance. 

Practicing designers account for fabrication constraints and uncertainties informally using engineering 
judgment.  In this paper we will discuss formulation and solution strategies for incorporating manufacturing 
constraints and uncertainties in topology optimization problems.  These strategies are developed in the context 
of macroscopic design problems while extensions to periodic material microstructures are also discussed.  

2.  Fabrication and construction considerations 
2.1 Feature length scale constraints  
Maximum stiffness topology optimization problems are known to be ill-posed.  Given a total volume of 
material, solutions can typically be improved by making holes smaller and more numerous.  This leads to so-
called chattering designs where the number of holes is unbounded (Haber et al. [8]).  Such designs are 
unrealizable from a manufacturing point of view.  When solved numerically, this property appears in the form 
of mesh dependencies and checkerboard patterns.  A popular approach for addressing this issue is to restrict the 
design space by requiring structural features to attain a minimum length scale.  This makes the problem well-

Figure 1: Maximum stiffness truss topology optimization assuming linear elastic behavior.  The truss 
ground structure (left) and the optimal solution (right).  The four members in the optimal solution have 

increased cross-sectional area but the resulting structure is unstable.   

 

Figure 2: Examples of periodic material microstructures optimized for 50% void ratios.  (a) Isotropic 
material with maximal bulk modulus (solid phase shown).  The void spheres are arranged in a staggered 
pattern to achieve isotropy, as shown by cut-away in (b). (c) Schwartz P minimal surface that resembles 
the base cell of material with maximal isotropic fluid permeability (fluid-solid interface shown).  The 

fluid phase of the periodic material (8 base cells) is shown in (d). 

   Maximum stiffness truss topology optimization assuming linear elastic behavior.  The truss ground 
structure (left) and the optimal solution (right).  The four members in the optimal solution have 

increased cross-sectional area but the resulting structure is unstable.   

 

          (a)     (b)     (c)             (d) 
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posed as features below this length scale are prohibited from forming.  
The minimum allowable length scale also directly influences 
manufacturing constraints and associated costs. 

Minimum length scale can be imposed in truss and frame design by 
simply assigning lower bound on cross-sectional area.  Enforcing 
minimum length scale in continuum design is more difficult as a 
structural member is defined by the union of solid elements.  Several 
researchers have proposed techniques for imposing minimum length 
scale.  The scheme used here is the Heaviside Projection Method (HPM) 
to topology optimization (Guest et al. [7]).  HPM uses an auxiliary 
design variable field that is projected onto element space to define 
topology.  This projection occurs over the minimum length scale and 
uses a regularized Heaviside function.  Figure 3 displays designs for the 
simply supported beam problem found using HPM with various user-
prescribed minimum length scales.  Designs with smaller prescribed 
minimum length scales tend to be more intricate and offer improved 
performance under deterministic linear elastic conditions.  Prescribing a 
larger minimum length scale produces simpler designs that are less costly 
to manufacture and likely less susceptible to flaws. 

To control structure geometry further, it is noted that designers could also 
prescribe a maximum length scale using a technique recently presented in 
Guest [4].  This provides the designer complete control over member 
sizes and thus influence over manufacturability, cost, and potentially 
even structural performance properties such as structural redundancy. 

2.2  Fabrication errors 
Most topology optimization methodologies assume the structure will be constructed exactly as designed.  As 
discussed, this can lead to impractical, unstable, and/or non-robust designs.  Guest and Igusa [5] recently 
proposed a perturbation approach for accounting for geometric uncertainties, represented by uncertainties in the 
locations of the nodes of the finite element mesh.  Express the inverse of the random global stiffness matrix K 
as the sum of deterministic and random components 

! 

K
"1

=K
0

"1
+ #K"1, where K0 is the deterministic (as 

designed) global stiffness matrix and δK is the random component due to geometric uncertainty.  For a single 
deterministic applied load f, the expected compliance objective function becomes 
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It was shown that when fabrication error is small in relation to structural member length scale, (1) can be 
reformulated as a random loads problem.  The equivalent random loads δf are of the form δfj =σj Qj d, where Qj 
are based on first and second derivatives of the global stiffness matrix and d are the displacements under the 
deterministic applied load f. These random forces thus depend on the current structural configuration and 
response and evolve simultaneously with the progression of the structural design throughout the optimization.   
Using the equivalent random loads approach, the expected compliance objective function is written as 
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which closely resembles the discrete random loads formulation frequently solved in literature (Ben-Tal and 
Nemirovski [1]; Bendsøe et al. [2]).  The reader is referred to Guest and Igusa [5] for the derivations and the 
details regarding computationally efficient forms of and solution algorithms for (2).  Herein we note that only 
the deterministic global stiffness matrix appears in (2) and the resulting optimization problem.  Therefore, as the 
primary computational expense is in solving the equilibrium equations, the added expense in solving the random 
nodes problem here is limited to the addition of multiple right-hand sides. 

Considering fabrication errors in the design formulation can have a dramatic affect on optimal designs as 
illustrated by Figure 4.  Under deterministic conditions, topology optimization of the ground structure in Figure 

Figure 3: Maximum stiffness 
designs for a simply supported 
beam loaded at midspan (top).  

The prescribed minimum length 
scale (shown by black bars) 

increases from top to bottom.  
The designer has control over 

member sizes and consequently 
influence over manufacturability, 

cost, and sensitivity to flaws. 
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4a results in the unstable truss structure of Figure 4b.  The vertical posts over the supports and top truss chord 
are unbraced compression members.  This structure is clearly unstable and will fail once load is applied and 
deformation occurs.  It is noted that 2nd order analysis is required to capture this instability.  When node location 
uncertainties are considered, topology optimization yields the braced truss structure of Figure 4c.  This structure 
is stable and more robust, despite considering only first order behavior.  
 

                     
Figure 4: Initial truss ground structure (left) for the maximum stiffness topology optimization design problem. If 

fabrication errors are not considered, the optimization leads to an unstable design (center).  A stable, more 
robust design (right) results when the potential for fabrication errors are incorporated into the topology 

optimization formulation.  

2.3  Extension to material microstructures  
Topology optimization can also be used to design material microstructures.  This is an inverse homogenization 
problem where the goal is to identify microstructures that yield desired effective material properties at the 
macroscale.  Fabrication uncertainties can be incorporated into the microstructural optimal design problem by 
applying the perturbation methodology to the homogenization equations used to estimate properties of the bulk 
material.  A complication of (2) over the standard multiple loads problem is that the equivalent random loads are 
functions of deterministic response.  The technique is further complicated here by the homogenization load 
cases (the applied unit test strain fields).  First, there are multiple load cases (3 in 2-d and 6 in 3-d).  Second, the 
loads are dependent upon the microstructural design.  Although the resulting equations are cumbersome and are 
omitted here for brevity, recent work has shown that the solution of these equations is straightforward. 
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Abstract 
The ability to control both the minimum size of structural members and the maximum size of the holes are 
essential requirements in the topology optimization design process for manufacturing. This paper addresses both 
requirements by means of a unified approach involving mesh-independent projection techniques. A standard 
direct projection scheme is used to control the minimum length of structural members, while an inverse 
projection is developed to control the minimum hole size. An example demonstrates features of the direct and 
the inverse projection techniques. 

1.  Introduction 
Engineers aim at improving the structural optimization process so as to find an effective answer to the problem 
of automatic design of structural components. Although optimization techniques can play a role in several stages 
of the design process, the state of the art does not allow a complete automation yet. Some techniques, such as 
parameter optimization, are more suited to the final stages of the design process because they can easily 
incorporate limit state constraints. On the other hand, topology optimization including material distribution fits 
better in the initial stages of the design process.  

Achieving control of manufacturing design and considering limit state constraints are some of the most 
important issues to make topology optimization more than a preliminary design tool. Controlling the structural 
member sizes and the minimum size of holes are just two of several manufacturing requirements that must be 
observed in the design process. Techniques to avoid numerical instabilities in the topology optimization process 
also provide an indirect control over the resulting structural member sizes. For instance, the weighted average 
over element densities adopted in most density filters (Bourdin [1]), and the weighted average over sensitivities 
adopted in the sensitivity filters (Sigmund [4] and [5]), increase the structural member size as the dimension of 
the filter is increased. Guest et al [3] presented a mesh-independent projection scheme to achieve minimum 
length scale on structural members obtained by means of topology optimization. This scheme has been extended 
to a multiphysics setting by Carbonari et al. [2]. 

The approach introduced in this paper addresses the problem of imposing a minimum size of the holes using an 
inverse projection scheme. The details of the method are given below.  

2.  Review of the direct projection scheme 
Guest et al. [3] proposed a mesh-independent projection scheme to achieve minimum length scale on structural 
members generated by topology optimization. The nodes inside a circular region Ωω

e in the neighborhood of the 
element of reference are included in the evaluation of the element density ρ e used in the finite element analysis 
(Figure 1a). The set of nodes Sw

 e to be projected are defined by  

 e
wj S∈x    if   

minrr e
j

e
j ≤−= xx  (1) 
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where x j are the coordinates of the node j, x e are the coordinates of the center of the element, and r j
 e is the 

distance between the center of the element e and the node j. The projection consists essentially of a cone of base 
2 rmin and unit height centered at the center of the element (Figure 1b).  

 

Figure 1: Direct projection scheme: (a) domain Ωω
e; (b) linear weight function 

Moreover, the following relationships are employed (see Figure 1): 
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The nodal variables y j are weighted to evaluate the element volume fraction ρ e of element e, as shown in (2), 
using the linear weight function defined in (3). Other functions can be used as well (see Guest et al. [3]). 

The weight function (3) is mesh-independent because rmin is an invariant length scale, however, the number of 
nodes evaluated in the weight function increases as the mesh is refined. The radius rmin is a physical length scale, 
which imposes that the minimum allowable member size corresponds to 2 rmin, the basis of the projection cone. 

3.  The proposed inverse projection scheme 
We propose a similar scheme to obtain the minimum size of holes in the topology using an inverse projection. 
The projection scheme is defined in a circular region Ωinv

e in the neighborhood of the element (Figure 2a). The 
set nodes Sinv

 e in the Ωinv
e region are defined by 

 e
invj S∈x    if   inv

e
j

e
j rr ≤−= xx  (4) 

 

Figure 2: Inverse projection scheme: (a) domain Ωinv
e; (b) linear weight function 
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The proposed inverse projection scheme consists essentially of an inverse cone of base 2 rinv and unit height 
centered on the circle of radius rinv (Figure 2b). Moreover, 
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The nodes in the region Ωinv
e are weighted proportionally to the distance between the node and the center of the 

element as shown in (6), and the element volume fraction ρ e of element e is evaluated using the nodal variables 
y j as shown in (5). The radius rinv indicates that the minimum allowable length scale for any hole corresponds to 
2 rinv, the basis of the inverse projection cone. 

4.  The minimum compliance problem 
Both the direct and the inverse projection schemes were applied to the minimum compliance problem (7), which 
can be solved using the optimality criteria: 
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One important feature about the implementation is the procedure to identify the nodes that influence the volume 
fraction of element e in the direct and in the inverse schemes. Search procedures are expensive, especially for 
fine meshes and large values of either rmin or rinv. As the set of nodes lying in the regions Ωw

e and Ωinv
e are the 

same for all the steps of the optimization process, these search procedures are performed only once at the 
beginning of the algorithm. 

5.  Results 
This section presents a numerical result for both the direct and the inverse schemes for a cantilever beam 
(Figure 3). The extended domain Ω is fixed along the left edge and has the aspect ratio of 2/1 and unit width. A 
point load P = -1 is applied to the lower left free corner of the beam. The length scale of the direct projection 
scheme is dmin = 2 rmin (Figure 1b) and the length scale of the inverse projection scheme is dinv = 2 rinv (Figure 
2b). For the sake of simplicity of notation, the length scale of either projection is referred as d. 

The problem is solved using 4-node quadrilateral elements and the prescribed volume of the structure is 50% of 
the domain volume Ω. Continuation technique is applied to the penalization factor of the SIMP model, p, which 
varies from 1.0 to 3.0 stepping 0.5. The Poisson’s ratio is ν = 0.25 and the Young’s modulus E = 106. Consistent 
units are employed. 

 
Figure 3: Cantilever beam 

Figure 4 shows the results obtained with the direct and the inverse schemes using a mesh of 100 x 50 elements 
and considering the radius of the projection to be 1 and 2 units. A comparison of Figures 4c and 4d illustrates 
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the tendency of the inverse projection to join the holes. The white bar represents 2 rmin in Figures 4a and 4b or 
2 rinv in Figures 4c and 4d. 

 
Figure 4: The cantilever beam with mesh 100 x 50: (a) rmin = 1 element; (b) rmin = 2 elements; 

(c) rinv = 1 element; (d) rinv = 2 elements. 

6.  Conclusions 
The inverse projection scheme developed in this paper permits control of the size of holes in topology 
optimization problems through a mesh-independent process. This work offers room for further extensions. For 
instance, the inverse projection scheme may be explored with nonlinear projections, which would reduce the 
intermediate densities obtained with the linear projection. In addition, the present schemes (direct and inverse) 
can be applied to 3D problems so as combine them to other manufacturing constraints such as symmetry, 
extrusion and machining. Finally, an improved and robust strategy to combine the direct and the inverse 
schemes is needed. 
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Abstract 

Plate-shaped piezoelectric sensors and actuators have been increasingly used in the field of smart structures. 

Some of its applications are vibration control of structures, air fan applications, fluid pumping devices and also 

energy harvesting transducers. This project aims at the development of a finite element and topology 

optimization software to design laminate piezoelectric sensors and actuators. The design of a piezoelectric 

transducer using topology optimization consists in distributing piezoelectric material over a metallic plate in 

order to achieve a desired dynamic behavior with specified vibration frequencies. The piezoelectric finite 

element applied is based on the MITC formulation, which is reliable, efficient and avoids the shear locking 

problem. The bonding between and metallic plates is based on the layer-wise model. The topology optimization 

formulation is based on the PEMAP-P model (Piezoelectric Material with Penalization and Polarization) and 

RAMP (Rational Approximation of Material Properties), where the design variables are pseudo-densities that 

describe the amount of material and polarity of the piezoelectric at each finite element. A multi-objective 

function is defined in this optimization problem. At the same time the mean transduction is maximized to 

achieve higher conversion of electric energy into elastic energy, the mean-compliance is minimized to prevent 

the structure of becoming excessively flexible, and the eigenvalues are optimized to tune the structure for a 

given frequency. This paper presents the implementation of the finite element and optimization software and 

shows preliminary results achieved.  

1.  Introduction 

Laminate piezoelectric devices have been widely applied as smart structures, for sensing, actuating and also 

energy harvesting applications. Most recently, piezoelectric laminates have found applications in the fluidics 

area, such as air fan (Açikalin et al. [1]) or fluid pumping devices (Vatanabe et al. [2]) applied to cooling 

systems designed to handle the increase of power and heat generation in electronic equipments. 

Piezoelectric laminates have been studied through analytical and numerical methods (DeVoe and Pisano [3], 

Fernandes and Pouget [4]). The distribution of piezoelectric material within material layers affects the 

performance, hence, distribution, amount, shape, size and placement of material should be simultaneously 

considered in a design optimization problem. Some authors started applying optimization algorithms to 

distribute piezoelectric material (see Frecker [5] for more details) through parametric optimization, which 

requires a previous knowledge of shape and number of actuators to be placed. Most recently, more advanced 

techniques, such as topology optimization have been applied to the design of piezoelectric laminates for static 

loads (Kögl and Silva [6]). The use of topology optimization techniques allows a free distribution of material 

over a design domain without constraints related to location, number or shape of transducers. 

The present work aims at applying the Topology Optimization Method to the design of laminate piezoelectric 

devices by distributing piezoelectric material over an elastic base layer in order to achieve maximum 

displacements at certain points of the structure, taking into account the dynamic response of the system, which 

is a novel approach to design piezoelectric laminate devices. 
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Designing sensors and actuators using Topology Optimization demands two different approaches, meaning that 

two different objective functions are formulated to distribute piezoelectric material over a design domain (Γu). In 

the case of an actuator, we must maximize the output displacement (u
max

) considering a given input charge 

applied ( Q ), as shown in Figure 1(a) above.  However, to design a sensor, it is desired to maximize the output 

voltage (φ
max

) for a given force or set of forces (FA), as shown in Figure 2(b). 

 

Figure 1: Design of piezoelectric sensors and actuators 

2.  Piezoelectric Finite Element Plate 

In this work, a Reissner-Mindlin plate model is used to model the plate. To avoid the shear-locking problem, the 

MITC approach is used within the element proposed by Kögl and Bucalem [7]. The element has five mechanical 

and one electrical degree of freedom at each node and also an element degree of freedom that represents the 

electrode voltage. The electrical degree of freedom at each node allows a representation of both applied electric 

potential and the potential induced by elastic deformation. To model the perfect bonding between plates, a layer-

wise model is used. 

 

a) b) 

Figure 2: (a) Piezoelectric plate element; (b) Electric potential in thickness direction 

3.  Topology Optimization Method 

The work applies the Topology Optimization Method, which is a powerful structural optimization technique that 

combines the Finite Element Method with an optimization algorithm to set an optimal material distribution 

inside a given design domain. The main issue to be addressed in the topology optimization is how to change the 

material density ρ1 between 0 (void) and 1 (solid material). The use of discrete values is ill-posed due to the 

multiple local minima and should therefore, be avoided. The problem can be relaxed during the optimization by 

allowing it to assume intermediate densities, which is achieved by setting an appropriate continuous material 

model. 

This work employs the PEMAP-P model combined with the RAMP model, which minimizes the grayscale 

appearance in topology optimization problems, leading to the following material model: 
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where: 
0C , 

0e and 
0ε  are the elasticity, piezoelectricity and permittivity matrices of the material and 

minC is a 

minimum value for the elasticity C . The 
2 variable defines the material polarization, where 12   when the 

polarization is positive and 02  when the polarization is negative. 

4.  Design Problem Formulation 

To achieve the goals proposed in this work, it is necessary to combine different design formulation problems in 

a multi-objective function: maximization of mean transduction; minimization of mean compliance; and 

optimization of the mean-eigenvalue.  

4.1  Maximization of Mean Transduction 

The mean transduction describes the conversion of electrical into elastic energy and vice-versa using two 

different electro-elastic states resulting from two different load cases that are applied to the structure. By 

properly choosing these load cases, L21 becomes proportional to the displacement u
max

 or the output potential 

φ
max

. The mean transduction is calculated by: 

 
1

T

21

T

2 UKUQU ˆˆˆˆ
21 L  (2) 

4.2  Minimization of Mean Compliance 

To avoid the optimization algorithm to find an overly flexible structure, the mean compliance of the structure 

can be maximized. This problem is not so relevant when a base-layer remains fixed during the optimization, but 

it can be necessary if all layers take part into the optimization procedure. The mean compliance is given by: 

 
3

T

33

T

3 UKUQU ˆˆˆˆ
33 L  (3) 

4.3  Optimization of the mean eigenvalue 

To design piezoelectric transducers considering its dynamic behavior, it is necessary to introduce the mean-

eigenvalue concept (for more details see Ma et al. [7])  
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where: α and wi are weighting coefficients, λi is the i
th

 eigenvalue of a structure, λei is the i
th

 desired eigenvalue 

and m is the number of eigenvalues considered in the optimization problem. Thus, minimizing Λ means 

minimizing the difference between the structure stiffness and the desired eigenfrequencies. Once this work 

seems not to be strongly affected by switching modes, we can set m=1 and design only the first eigenvalue. The 

weighting coefficients can be set to unity and the square root can be eliminated. Additionally, to combine the 

three design problems into one multi-objective function, it is interesting to have the logarithm values analyzed, 

in order to normalize the quantities taken into account in the optimization problem, leading to: 

 2)]ln()[ln(
iee    (5) 

4.4  Formulation of the Multi-Objective Function 

In this work, additionally to the optimization problems addressed by Kögl and Silva [6], it considers the mean 

eigenvalue problem, that aims at tuning the structure for a desired eigenvalue. The optimization problem is 

formulated as:  
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where: FEM equilibrium equations are satisfied, ρ1 and ρ2 variables and the volume fraction, Θ(ρ1), of 

distributed material lies within defined boundaries. The optimization problem is solved by using SLP 

(sequential linear programming) 
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5.  Result 

The following result considers a square domain clamped in two opposite sides (L1 and L2), and a unitary force is 

applied at the point A. The optimization process looks for a transducer that maximizes the output voltage of the 

laminate and also tunes the structure to a desired eigenvalue. 

 

a) b) c) 

Figure 3: (a) FE mesh; (b) Material layers; (c) Optimization design result 

Figure 3(a) shows the mesh used in the optimization. The design domain is 0.3x0.3m and has 30x30 elements. 

The target frequency is set to 60Hz. The base layer is made of aluminum and upper and lower layers are made 

of PZT as shown in Figure 3(b). The achieved result is shown in Figure 3(c). The output voltage is 3.68V and 

1.04V in the upper and lower layers, respectively. The resonance frequency of this device is 57.14Hz. 

6.  Conclusion 

The approach used in this work is robust to design piezoelectric laminated transducers with a specified 

eigenvalue. The resonance frequency has shown a 5% deviation of the target frequency. The use of the RAMP 

material model improved the quality of the results, minimizing the grayscale appearance. 
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