
--

plane are applied to a body at different points .111 and ./J.2, their action 
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SECTION III. 

STATICS OF RIGID BODIES. 

CHAPTER I. 
GENERAL LAWS OF THE STATlCS OF RIGID BODIES. 

§ 83. Tra11ifere:nce o.f the Point of .Rpplication.-Althougb every
rigid body is changed in form by the action of forces upon it, i. e.
becomes either compressed, extended, or bent, &c., it is nevertheless 
allowable for us to consider it for the most part as a rigid and inva­
riable union of material points, partly because this change of form or 
displacement of parts is often ,·ery slight, and partly because it takes
place in very short spaces of time. We shalJ, therefore, in the fol­
lowing, unless it be other\vise mentioned, regard every rigid body as 
a system of points, firmly connected, and we shall thereby essentially 
simplify the investigation. 

A force P, Fig. 45, which acts upon a point Ji. of a rigid body
Jlf, is transmitted in its pro-

Fig. 45· --.... per direction XX uniformly
throughout the body, and an
equal and opposite force P1
puts itself in equilibrium with 
it, then only when the point
of application .JJ1 lies in the

direction XX of the first force. The distance of .IJ and .111 is without
influence on this condition of equilibrium. The two opposite forces 
�old themselves in equilibrium at every distance if the two points be _ngidly connected. We may, therefore, assert that tlie action of a 

force P, Fig. 46, remains tlte 
Fig. 46. same at whatever point .li.1, .112, 

.113, �c. of its direction it may
be applied or may act directly 
upon the body. 

§ 84. When two forces P1
and P, acting in the same. 
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upon the body is the same as if they had the point C, ,vhere the direc­

=.P, there be put an opposite force DP=-P equally great at any 
p�1nt D of the direction of the diagonal C, the t,Yo forces P1 and Pz 

and -P are, therefore, "'tll be thereby held in equilibrium; P1 P2, , 
three forces in equilibrium. 
of the forces perpendiculars ON1, ON�, and ON upon the directions 
of the component forces P1 and P, an<l their resultant P, ,ve have a;-

2 = a., angle P1 CP ,ve then have: 
1. The ma�nitntle of the resultant P = ✓ P/"+ P2

1
P1 the angle PCP =t, then: 

TRANSFERENCE OF THE POlNT OF APPLICATION. 

tions of the t,,·o forces intersect, for tLeir 
Fig. 47·con1mon point of application, for from 

the proposition enunciated above, each
of these points of application may be 
transferred to C without thereby pro­
ducing any change in their effects. If,
therefore, we make CQ 1=.R1P1=P1 andCQ2 =.IJ2P2=P2, an<l then complete the 
parallelogram CQ1 QQ2, its diagonal
will give us the resultant force CQ=P
of CQ1 and C�, and, thereiore, also of 
the forces P1 and P2, and ,vhose point
of.application may be any other point
.ll 1n the direction of this <liagonal.

If to the resultant force so found .llP 

§ 85. If there be let fall from any point O, Fig. 48, in the plane 

' 

Fig. 4s. ------= 

====== 

cording to § 79,
P .  ON= P1 • ON1 +P12• 0�,
and the distance ON of the resultant 
force may be found from the perpen­
diculars or distances ON

i 
and ON2of the component forces, 1f we put: 

.ON-- pl ONl + p2 . ON2.p
Whi]st we find the direction and 
magnitude of the resultant by the 
application of the parallelogram of 
forces, its position is given \\·ith the
he]p of the last formula, by tleter1nining its distance O.N". 

If the prolonged direction of the forces includes bet,veen them an 

i P1 P2 cos. 0• 

Further, 1f the resultant 1nakes with the direction of the component 

-p2 sin. a.2.. si'n. t- ----�--
_ If the directions pCP and CP2 of the gi,·en forces _are distant �1 - a. an� OJ( 1 

,. = a2 fro1n an arbitrary point 0, �e �1stance ON- a 
of the d1rect1on CP of the resultant from this point 1s: 

7• 
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= ci directions n1ect 11mler nu nnglo P1 OP2 

4 = 20X4+ 34 X l = 114 = 21530 feet. ,J.i,90 
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P a3. a= 1 1 + P2as. 
p

With the help of this distance a, the position of the resultant is.given "·ithout regard to the point C, if ,ve describe a circle from 0 
as a centre \\·ith radius a, and to this dra,v a tangent NP, "'hose 
<lirection is determined by the angle 4>· 

forces P1 =20 lbs. ancl Pi, lbs. ,vltosc 

distnut 1rom n certain point 

34&ampl�. There ncl upou a body the = 

70°, and F .49 ____•g_ • ___ O = = are 
O 1-r, = =a1 4 feet, o.nd O Na= a'l = 

1 ioot; ·whnt .is the inn,milUde, direction, antl 
position of the resultant? 'fho magnitude of 
the re::mlttult is: 

P =v120�+ 34�+ 2 x2ox 34 ros. 70° 
=✓400+ 1150+ 1:!t.iOX0,34-:l02 

=✓20211 15 = 44,96 lbs.; further, for its 
.,. . . 34- X silt. 70° 
uirec11on, .flll.1> ------,:

44,96 
I.og. ,in. f = 9,8lH 6384, tl1ercforo, t=450 

171 
, the nn�le which tl1is resultant makes ·with 

the ufrection of P 1• The positiou finally is 
determined by Its cllstar:ice ON from 0, \vltich 
is: 

4•J,{l(i
§ 86. 1'he normal distances ON 

=al ' ON,.=a2, &c., of the directio�
of the forces from an arbitrary point 0, Fig. 50, are called the arms
of the forces, because they form essential elements in the theory of
the lever, to be treated of subsequently. The product Pa of the force
and Je,·er arm, is caJJed the statical moment of the force. But since
Pa = P1a + P2a2, the statical moment of the resultant is equivalent1

to the sum of the statical moments of the components. 
In the addition of the moments, regard must be had to the signs

plus and minus. If the forces P1 and P2, Fig. 50, act about the point 
0 in like directions, and if the directions of force coincide with the 
direction of motion of the hands of a ,vatch, these forces, as ,vell as 

Fig. 50. Fig. 61. 

C 
/ 

' / 

7( 
·, 

.,.v,· "' ·O
P1 

\
\ 

•
\' 

' Pi 

t�eir statical moments, are said to ha,·e like signs; if the one be posi­
tive, the ?ther must be positive likewise. If, on the other hand, Fig. 
51, the <l1rections of the forces about the point O be opposite to each
other, then the same, as well as their statical moments, are of con-
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if the one be negative, the other must be positive. In trary signs ; 
!he �omposition of forces represented 

Fig. 52· 

§ 87. Co,nposition of jotces in a 
l 

the fo�ces Dll =2
C'Q

3
�u1<l J)R3 · It is l =, �3/'3 • 

l1a�onul Dll = p is the re<1u1re<l resultant of Pi PPThe , , a2<

resultant might be found if a 
fourth force P ,vere to be intro-
duced. 

r magnitude an<l direcces, ;? • 
n 10 of 

the 
the resultant is as accurate-1

one single point tbe rules § 77)( ; 

lts line of nction, ,ve 1uust make 
of the equation bet,veen the use .statical moments. Here, also, 

and ON= a, are the arms of the O� = an OJV; = a = a3ON3 , , 2ee components p p p and of their resultant P, ,vith reference rth . 0 an arb1trory point O. So that ; 
1, ,, 3J 

3Pa = Q .  OK+ P 1 , and , 1 1 and Pided Q is the resultant of P1 2Q.  OK= P a + P a pro,
a� K the arm. If ,ve combine these t,vo equations we en ° • t b h d O 
tain :  

Pa = P1 1 + P,/t2 + P3n:P and also for se,·eral forces : 
t e of nthe (statical) mom,; Pa = P 

a
a + p a + p a + e &c 

algebraical su1n of the (stahc ) • • ) I ' 
ie resultant is alwal/s e.qui11alen

, • ' 

e 
J J • 'l 2 

to tht 
1 1 al ) t� 

moments oj" t/,e con1jJonents. sy5tem of a of § 88 Fig. 54, are the singJe force. If P1, P. , P2 � 3, 

�c., �nder which an arbitrarily chosen axis XX is intersected by the 
s OJYp ON2, llrections of force and if a a a <lesiO'nate the anu<

0 f b th 
s, 0!::_!hese forces \\'ith regard to the point of intersection ON. ° 0 

• 

in �ig. 52, P<t = Pla1 - P2a1., because 
1:2 is opposed to the force l\ ; its sta­
tical moment is, therefore, negative. 

P ane.-I[ three forces, Pl' P2, P3, �'ig.
�' act upon a body nt the points .111, 

2, .!13, two of these forct�s (Pi > I\) by
the last rule 1nust be joined, an<l their
:e.sultant l'(J = (J found, this again
J0tne<l to the third forct• ([J3), and the 
parallclograrr1 JJR RR constructed fron1 

ho,v thefrom this �asy to see 

4 

In this composition of the 

y found as if the forces acted in 

of calculation (§ 77) are, there•
fore, applicable for finding these 
two �rElt elements ofthe resultant ; 

Ut in order to find the third, viz.,
!he position of the resu1tant or 

t 

1 1 .e t' 

D1forces ; if, further, a.1 ,  o2, a.3, &c., are the angles P1 X, P,D2X, P,DaX, 

' < 1 ' 2' 3' 0 • 

axes XX and YY, ,ve have from §§ 77 and 87: 
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Fig. 54. 

1 , The component para1lel to the axis XX : 
Q = pl cos. Clt + p'J, cos. c,.2 + P3 cos. °'3• • • , 

2. The component paral]e] to the axis YY: 

R = P1 sin. c.r.1 + P2 sin. a.i + P3 sin. a.3• • •  ,

3. The resultant of the whoJe system : • 

p = ✓ Ql+R2,
4. The angle "·hich the resultant makes with the axis by

Rtang. fl =Q, 

5. The arm of the resultant or the diameter of the circle to \Vhich 
the direction of the resultant is a tangent : 

a = P1a1 + P
P
2a2 + . . . 

If this resultant be replaced by an equivalent opposite force (-P),
then the forces P1, P2, P3 

• • • • (-P) are in equilibrium. 
Exa,nple. The forces P = 40 lbs., P = 30 lbs., P3 = 70 lbs., Fig. 55, intersect the

1 9

axis XX at angles " = 60° , "2 = - 80° , "a = l42° , and 1l1a distnnres of the points
of intersection D1, D

i 

'» D31 of the rurections of the forces with the wets : D1 D2 = 4 ft., 

Fig. 65. 



- -----

---

p = v1 �.R2 = vf29,052448,19312 =✓3219,68 = 56,742 lbs. 
The angle t, which it makes v.itb I.be axis, is further determined by : 

56,742 50,742 

81 

° tang. t = .!!:_ = 52.' = - 1,6090, it is therefore t = I 80°-58° 8' = 121 
- 29,952 

The arm ON1 of the force P, is = OD 1 ,in. 11 1 = (4+5) sin. 60° = 0X0.86603 = 
7,794 feet; the arm ON. of p = ODa sin. °'SI = 5 ,in. 80° = 4,924 feet; lastly, the arm 

3 e The arm of th e p;int of application O is transferred to D3. of P 3 = 0, when 
2ON th 

resultant is finally given by: 

&c., Fig. 56, of 
56,7.J.2 

§ 89. Parallel Forces.-If the forces P
i

, , P3P2, 
a rigid system are parallel, 
the arms ON. ON OJ\.. Fig. 56. 

e e �r th same straight 1n 
1f no,v we dra,v 
. ; hne 

th�ou�h the point of ap­
an arbitrary �hcation 

line XX, the directions of 
O 

e th s fo rces cut off the part
OD , OD OD3i 2 , , &c., ,, hich 
are proportional to the arms 

ON2ON1 ON3 &c., be­, , , 

2 , • 1 2' l . b 

21 2Pa= Pa . .  + P a , + . 

----=- + P2a2+ . . . P �----:�-=-----1 , a
1 2 a 

48•193 

---

PARALLEL FORCES. 

and D2 D3 = 5 ft. Required the elements of the resultant. The sum of the compo­
nent forces parallel to Ilis: 

Q = 40 COi. 60°+30 CO$, (- 80°)+70 COi. 142° 
= 40 COi, 60°+30 COi. 80°-70 COi. 38° 
= 20+5,209-55,161 = -29,052 lbs. 

The sum of the components parallel to YY: 
R = 40 ,in. 6o0+ao nn. (-S0°)+7o sia. 142° 

= 40 s-iii. 60°-30 sir,. so0+10 Ii.•&. 38 
34,641 -291544+48,096 = 48,193 lbs. 

The resultant sought is therefore : 
= 

Q 

31 1,76-147,72 I64,o440X7,79,t-30X4,9244 = 2,891 feet.=== 

1' 2' 3,, 

causei� OD1N1"'AOD'1.N2""AOD3N3• =D2 ON2 

by a , a , &c., the
ON1If the angle D1be designated by a., &c., the arms ON, ON. &c 

a sc1sses OD1, OD2, &c., by b1, b2, &c., ,ve then havei
a1=b1 cos. a., a2

If, lastly, these values be substituted in the formula : 

: 
=b2 cos. a., &c. 

,ve then obtain:  
Pb cos. cos. o.+P'Jb'J cos. 

or if the common factor cos. a. be left out : 
a.= Plbl 

a. + . . . ' . 

Pb=P1b1+ P2b2+ . . .  
In every system of parallel forces it is allo,vable to replace the 

arms by the distances OD1 OD2, cut off from any line XX. Because' 
the magnitude and direction of the resultant is the same, the forces 
may act at one or at different points ; hence the resultant of a system
of parallel forces has the same direction ,vith the single forces, aocl
is equivalent to their algebraical sum. 

Therefore 
1 .  P=P1 +P2+P3+ . . .  and 

alor .so.P1 + P2 + • . .  
. 



of this force is P = 12 - 32 -t- 25 = 5 lb!!., 11:5 •stnncc ron\ I 

§ 90. Cot1,ples,-T\,o parallel, equal and opposite forces, p and 1 
Fig. 57, ha,·e the resultant -P1' = 0, with tl1e arm - P1 ) = P1 + (-P1P = P1 

obtain likewise a =  oo, a proof that in this case also there is n� re­sultant, but only a couple, possible. 
. E�ampl.t If a couple consists of tbe forces P1 =2� lbs , and - P1 = - 25 lbs., and .ano er of the forcese-Pr, = - 18 lbs., and Pi of th e 1irst pa.u = 3 feet for the condition of equilibriw111 tlle normal distance of the 

= 18 lbs.; if, lastly, the normal distance _ 
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3. b = Plbl + Pibi + .s. ·•P1+ P2+ . . s. 
Examplt. The forces P1 = 12 lbs , Pa = - 32 l�., _P,=:: 25 lbs., n.ntl their dirCCJtionsintersect a straight line at the points D1, Di, and D'S'. Fig. 56, \�·hose discan·es from l"ach�qtured esuttnother are D1D1-21 inches, DlD3=30 inche� ; r

d
rfithu 

0
nt. • The mngniludo11 lS thor<'fore· . 

b = 
D 0e

12X0-32X21 + 25X (21 + 30) -_ 0- 672+ 1275
5 - 1206e. - 1 t.nches,[) 

P,a1 + P,a,a -- --=--=-::�---- =00 •
0 

Fig. 68.Fig. 67. 

For restoring equilibrium to such a couple, according to this asingle finite force P acting at a finite distance, is not sufficient buttwo such couples may easily hold each other in equilibrium. ir p
and -P1 and -P and P2, Fig. 58, are t\\'O such conples, and O,M1 

=«1, ON,_s= OJJf �.'Al1.N,_ = a1 - b1 ; " if further, O�lf2=a2 and OJV".1 

= O.;lf2-��=1 
a2-b2 are the arms taken from a certain point 02

' ,ve have for equilibrinm: 
P1a1 -P1 (a1-b1) -P2a2 + P2 (a2-b2) =0, i.oe. 

Plbl = P'J.b2. 
Two such couples are, therefore, in equilibrium if the product of 

one force, and its distance from the opposite force, are as great in the 
one couple as in the other. 

A pair of equal opposite forces is called simply a couple, and the
product of one of the forces and its normal distance from the other
force, the moment ofthe couple. From the above, two couples acting
in opposite directions are in equi]ibrium, if they have equal moments.

If we substitute in the formula (§ 87) for the arm a of the resultant : 
_ P1a1 +P1a�+ . . .  

a _  
p

P -. 0 without the sum of the statical moments becoming nulls· ,ve 

... 

second must amount to =25 X 3=4¾ feet.
18 



= p , • • K.11. + P2 • K.fl 1 
As now B B and B are the proiections of the points of apphca-l 

K. 11.2. (Pl + P2
) 

t1on .fl, .111, .IJ. on the plane XY, we have : 1, 
and therefore also JU12K.11K..J1 : , 

( Pi +  Pi) .l1B= P
1 : 

B . ./1 .l1B1 + P 2 21 z 1 • • 

In such a system of parallel forces the product of a fo�ce, and . . distance of its point of application from a plane or ]me, is called 
the 
the 

CENTRE OF PARALLEL FORCES. 83 

§ 91. Centre of Parallel Forces.-If the parallel forces lie in dif-
ferent planes, their union may
be effected in the follo,ving F,g. 59. 

manner. If the straight line 
.IJ.1 .IJ.2, Fig. 59, ,vhich unites
the points of application of t,vo
parallel forces P1 and P,, be 
prolonged to the plane XY be­
tween the rectangular axes hIX,
MY, and if the point of inter­
section K be taken for the
initial point, we shall in this 
manner obtain for the point of
application .fl. of the resultant 
(P1 + P2) of these forces, 

JJ 1, 2• 

AB : .IJ.1B1 : ./J.2B2 = 
If we designate by z1, z2, z3, &c., the normal distances .ll1

B
1
, .l12B2, 

.11:sB,, &c., of the points of application from the principal plane XY,
and by w1 that of the point .11 from the same plane, ,ve have for the
two forces: 

( Pi + P2) wi::..- P1 z1 + P2 z2 ; for three or more, and generaJly
(Pi + P2 + l-'3 + • • .) W= P1z1 + P�2+ P3z3 

• • • Consequently 
I. w = P1z1+ PzZ2+ · • • .P1 + P2+ . . .

If we put likewise the distances .llC and AD of the point of appli­
cation of the resultant from the planes XZ and YZ = v and u, we
then obtain : 

2. v = P1Y1+ P2Yi+ • • • and 
pl+ p2 • • •

P1x1 + P2x2+ .3. u = • • 
pl +-P2+ • • "

The three distances u, v, w from the principal planes, as for �x-
amp]e, from the floor and the two side walls of a room, fully determine
the point .11, for it is the eighth terminating point of the paral­
lelopi�ed, constructed from u, v, w, consequently, in such a s,ystem
there 1s but one single point of application of the resultant.As the three formulre for u, v, w, do not contain the angles �hi<:h_
!he forces make with the principal planes, the point of apphcat1on 18 

independent of these forces and also of their directions; the "·h�le
'syst�m admits, therefore, of being turned about this poin! "'it�out its

�easing to be the point of application, provided only that in this turn­
ing the parallelism of the forces be preserved. 
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17 = I 0+:;o+ 12-28 = � = .!_.!: = 3,66 . . .  feet i 
to = 4o+7o+40-21 = 129 _ 43 = 10175 feet. 

FORCES lN SPACE. 

moment of the force with reference to this plane or line, and gene­
rally, the point of application of the resultant is called the centre of
parallelforces. The distance of the centre of a system of parallel
forces from any plane or line ,vhatever, (the latter ,vhen the forces lie
in the same plane,) is obtained, ,vhen the sum of the moments is
dirided by the sum of the forces. 

F�ample. If the forces nre Pn 
the i.lktnnccs Xn
cc " Yn
II ,, •-a

Themo1neots are Pa Xn" " 
" " Pn !In 

Pn z. 

5 -7 

1 2 
2 4 
8 3 
5 -)4

10 -28 
40 -21 

8 UM. 
10 3 lbs. 
0 9 fl 
5 3 ,, 
7 10 u 
0 30 ft. lbs. 

(I50 12 
II70 40 

NowJ if the snm of the forcese= 19 - 7 = 12 lbs., the distances of the central point
of this syste1n from the three principal planes are consequently : 

5+36-14 27 9u = --'---- = - = - =2,25 feet; 
12 12 4 

12 12 3 

12 12 3 

§ 92. Forces in Space.-If it be required to unite a system con­
stituted of differently directed forces, a plane must be carried through 
the system, the different points of application transferred to this plane, 
and each force resolved into two component forces, the one coinciding
with the plane, the other at ri�ht angles to it. If >31, ili . . .  are the
angles under which the plane 1s intersected by the directions of the
forces, then the normal forces are P1 sin. 13, P� sin. J3 • • • , and those 
in the plane P1 cos. 131, P3 cos. 131,, &c. The latter from § 88, and the
former from the last § 91 may be combined to a resultant. In gene­
ral, the directions of both resultants ,vill no,vhere intersect each other 
and accordingly a composition of these is impossible, but if the result� 
ant of parallel forces passes through a point K, Fig. 60, in the direc-

tion .11.B of the resultant of the forces 
Fig. 60. in the plane (the plane of the paper)

a romposition is then possible. If 
we put the distances O C =DK= u,
and OD = CK = v for the point of
application of the first resultant, on
the other hand the arm ON of the
second = a, and the angle B.11.0,
at which it intersects the axis XX 
= o, the con?!tio� for the possibility 
of a compos1t1on 1s : 

u sin. a. +  v cos. a.=a.
If this equation is not satisfied

if, for example, the resultant of th�
normal forces passes through K1' the reduction of the whole system
of forces to a resultant is then itnpossible, but it readily admits of 
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couple P, - P, if the 
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a resultant R, Fig. 61 ,  and being reduced to a 

a state 80) is equivalent to those of the components, and in sense of § 

� coinciding with the directions of the forces of the common space

then the mechanical effect of the re-
, = ./12 Bz, &c., = B s s./1 , , 1 211 

Ps= P1 2+ . . .  s1 + P2s

VELOCITIES. 

- P 

PRINCIPLE OF VIRTUAL 

resultant N of the paralJel components is resol,·ed into the forces
and R, of which the one is equal,
and directed parallel an<l opposite Fig. 61. 

to the resultant P of the forces in 
the plane.

§ 93. Principle of Virtual Jre­
locit·ies.-If a system of forces Pi,!'2, P3, acting in a plane, Fig. 62,
1s progressive, i. e. moYes for\vard 
so that all the points of application 
./11, .fl.2, .ll.3, . . •  pass through equal 
parallel spaces .IJ.1 B1, .!12 B2, ,!}3 B3,

the effect of the resultant (in the 

= 0. If the projections .111 N" .11.� .J\1"2 ,  &c.,of equilibrium therelore 

sultant is : 
Ps= P

1
s

1 + P
2
s

2
+ . . .  

This Ia,v fo11o"·s 
Fi�. 62. from one of the for­

mulro of § 88, accord­
ing to ,vhich the com­
ponent of the resu]tant 
running parallel ,vith 
the axis XX is equal to
the sum Q1 

+ Q2 
+. . .

&c., of the sin1ilarly 
•running components

of the forces P1, P2 ; 

no,v from the simi­
larity of the triangles 
.IJ.1

B
1
N

1 
and .f11 P1Q1,

there follows the pro­
portion 

sQ1 ./J.1Ha 1p=.fl 
B 

= , and f'rom th'1s : 
.IJ.B1 l 1 

• Fig. 63. P
1
s

1 
P'ls2 &c.Qi = .11.B , Qi = .11.B ' ,

' · we may, therefore, in place of ·'-f,,
Q= Ql + Q2+ • • • pttt 

.-4:. _� ' 
• 

, '>f·--C,,--
.•

I 

§ 94. If the system of forces PI 

,4-jc,\ , 
./ I't- I ',,"-._

1'1-' P2, 
,

i
�c., Fig. 63, be made to revolve a very
l1t!le �bout the point 0, the Ja,v of the 
pr1nc1ple of virtual velocities enunciated 
abov� in § 80 anc.l § 93 holds equally gooc.I, as may be pro,ed in the fol-



reYoluhon through the small a The space .11 B corresponding to 
"' is perpendicular to the dia-4> angle ./1 OB -�0 or the arc �= • 

�hich is formed �f _C1B1therefore, the triangle ./11 a per1meter 0./ ­, 

pendicular line B C be let fall on the <l1rechon of the force, 1s similar 
, 1

1 determined by the arm ON1 and accord-to the triangle OJi , A· = a 11

=P1 .+ P2
§ 80. &c., the same as in

So that, for small revolutions the mechanical effect (PO") of the re­
11 + P . O" t1 •2 1 

OB1 S'in. N1 qi, sin. 
sin. t, &c., 

=a
=a2 sin. �OB2

= 
= 

OB
OB

C
C2

B
B2 , 

1 1 1 1 

1:a= P a + P a , . 1 1 2 2and multiplying by t, we have 
;a 4'= P1t1 t+ . . .  tfl+P2a , 

a=P
i. e. 

11 1+P <1 + . • •  ' ,1 2
21
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lowing manner. From § 86 the moment P .  o.N· of the resultant is
equivalent to the sum of the moments of the components, so that :

Pa= P1a1 + PJlaJl +. • •n. 
l 1 

O 

1 1 - T  T 180 

ingly o.�. .111 c1

0.11, = JltBl
If the virtual velocity .IJ.1 C1=r11 and the 

then obtain : 
O.IJ.1 .(1l O'I I d'Ja1 = _..:.......; = -, a so ai = -, &c. 
OJJ.1 ·t t ct>

H these values be substituted in the above equation for av a2, we
then have 

pd= p10'1 + p'!O'i +. • .  &.c., 
4' tt 

or, as t is.a common divisor, 

sultant is equivalent to the sum
Fig. 64. of the mechanical effects of the

components.
§ 95. The principle ofvirtual

velocities holds likewise for ar­
bitrarily great revolutions if
instead of the virtual velocities 
of the points of application, the
projections �D1, NJlD2, &c.,

Fig. 64, of the spaces commencing at the points Xi, N22, be intro-
duced, and their values 

be substituted for t11, a2, we then obtain 
Pa sin. t=PJ.a1 sin. t+ P,ai si1i. t . . n. +, or, dividing

by sin. t,
Pa=P1a1 +P2a2+ . . . ,

the kno,vn equation for statical moments.
This principle is correct also for finite revolutions, if the directions

of _the forces rev?l,·� simultaneously with the system, or if, while the 
point.of application incessantly changes, the arm ON12= OB1 remains 
1nvar1able, then from 

_n

• 

http:point.of
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&c., designate the circular arcs, N1 if a, a > a B , N2 B2, &c., of the 
t 2 1, _
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points N, �, &c.
§ 96. Every small motion or displacement of a body in a p]ane 

may be regarded as a small revolution about a movable centre, and 
may be proved in the follo\ving manner. Let two points .fl and B,
Fig. 65, of this body (this surface or line) be advanced by a small
motion to ..i1 and B1, let also ..i1B1 = 
..iB. If at these points we draw per- Fig. 65. 
pendiculars to the small spaces de­
scribed .ll./11 and BB1, they will intersect
at a point C, from which as a centre
�./11 and BB1 may be considered the
cucular arcs described. Now from the 
equalities .l1B=.l11B1, .IJC=.111 C, and
BC= B1 C, the triangles .lll3C and 
./J. 1 B1 

C are equal, therefore, also the 
L B1 C./11 = L BC.fl and the L .llC./11 = 
L BCB1• If we make .l11D1=.l1D, we
obtain from tbe equality of the L s  
.f!1.J11 C and D.llC, and frotn that of the
sides C.111 and C.11. in C.11 D and C.llD, again two congruent trian­
gles in which CD1= CD, �n� L .fl1 CD1=L .11CD. Consequently a�y
arbitrary point D in .llB, by its small advancement, describes a cir­
cular arc DDl2" If lastly E be any point without the line .llB, and
rigidly connected ,vith it, the small space EE1 may be regarded as 
the arc of a circle from C as a centre, for if we make the L E1.ll1B1
=E.llB and the distance .ll.1E1 =.ll.E, we aaain obtain two congruent 
triangles E1.ll.1 C and E.11.C ,vit.h equal side� CE and CE, and equal 
L s ./11 CE1 .fl.CE, and the same may be sho,vn for every other point
rigidly connected ,vith .ll.B. We may consequently regard every
small motion of a surface rigidly connected with .11.B, or of a rigid
body, as a small revolution about a centre, which is given when the 
point of intersection C is determined, in which the perpendiculars to 
the paths .ll./11 and BB1 of the t"'o points of the body intersect each 
other. 

§ 97. From § 94, for a small revolution of a system of forces, the
me?hanical effect of the resultant is equivalent to the algebraical sum 
of its components ; from § 95, every small displacement may be re­
garded as a small revolutioni: hence the law of the principle of ,·irtual
velocities above enunciated is, therefore, applicable to every small 
motion of a rigid body or system of forces. 

If equilibrium obtain in a system of forces, i. e. if the resultant be 
null, the sum of the mechanical effects must be also null for a small 
arbitrary motion. If inversely for a small motion of �be body, t_he 
sum of the effects be null, eq11ilibrium does not from this necessanly 
foll��; _the �um for all possible small displacements mus� be = O, if 
equihbnum 1s to take place. Since the formula expressing _th� law 
of '1rtual velocities on]y fulfils one condition of equilibrium, it is re­.quisite for equilibrium that this Ia,v be satisfied, at least for as many 



1s 1n any position 1n f"quilibrium 
�f a point in vertical line pass­
ing through 

the 
the centre of gravity 
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motions as can be m�de from these conditions for example, i n  a sys­
tem of forces i n  a plane, for the three motions independent of each
other. 

r C II A P TER II . 
C E N T R E  O F  G R A Y J T Y .  

§ 98. Centre of Grattify.-The weights of the parts of a heay
body form a systern of parallel forces, ,vhose resultant is the '\VeigJ
of ti1e �vhole, nnd \Yho e centre may be determined fron1 the three 
for1nufae of § 91. This inid<lle point of a body or system of bodies 
is called the centre of gra\;ty, and a]so the centre of the mass of the
body or system of bodies. If a body be turned about its centre of 
gravity, this point <loes not cease to be the central point of gravity
for if the three planes, to ,vbich the points of application of th� 
separate weights are referred, revolve at the same time with the
body, the position of the directions of force to these planes alone
changes by this revolution, the distances of the points of application
from these planes remain invariable. The centre of gravity is, there­
fore, that point of a body in which its ,veight acts vertically down­
,vards, and which must be, therefore, supported, aud fixe<l, in orderthat in every position the body may remain at rest. 

§ 99. Every vertical slraight line in ,vhich this point lies is called
the line of gravity; and every plane passing through the centre of
gravity, a plane o.f gravity. The centre of gravity is determined by
the intersection of t\VO lines of gravity, or that of a line of gravity
an<l a plane of gra·vity, or by the intersection of the planes of gravity.

Since the point of application toay be displaced at ,vill in  the
direction of force, without changing the action of ��e force, so. a body_i . .

Fig. 66• 

is fixed. 
If a body .Jlf, Fig. 66, be sus­

pended by a thread CA, i n  its
prolongation AB \.Ve have a line
of gravity, and if it be similarly
suspended by a second line, we 
get a second Jine of gravity DE.
The intersection 8 of both lines 
i s  the centre of gravity of the 
body. If the body be suspended 
upon an axis, orbe brought upon 
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from these three planes, 

c., we may put therefore 1'1, ,-,, ,-3, 

If the body be homogeneous, i. e. all parts of the same density r, 

, 
or since the common factor r above and below is cancelled 

•1 . )( V 1 •+ V ,-+ 
: 

gravity a problem of pure geometry. 

DETERMINATION OF THE CENTRE OF GRAVITY. 

a sharp edge (knife edge) into a state of equilibrium, we shall obtain 
in the vertical plane passing through the axis, or through the knife 
edge, a plane of gravity, &.c. Experimental determinations of the 
centre of gravity, as just pointed out, are rarely applicable ; we have 
g�nerally to make use of geometrical rules, which will presently be
given for the determination of this point with accuracy.

In many bodies, for example, in rings, the centre of gra,•ity falls 
�ithout the mass of the body. If such a body is to be fixed in 
its centre of gravity, it is necessary to connect a second body with 
th� fi�st, in such· a manner that the centres of gravity of both may
co1nc1de.

§ I 00. lhtmnination of·the Centre of Granty.-lf z1, z1, :r3, y1,

Y2, Y3, z1, z1, z3, &.c., be the distances of the parts of a heavy body 
from the three planes zz, yz, :i:y, and the weiRbts of these parts be
Pl, P'l., P3, &c., we then have the distances or the centre of gravity 

P1z1 + P,.Zs + PJzJ + · · · z -=  �-=---=---=---=-=--=•---, 
pl + pl + P3 + 

., p1Y1 + P,!Js + PJY3 + · · · ., - --"'""='--�-=---=..::;:...::i---, 
pl2+ P, + p3 + • • • 

_ P1z1 + PsZ, + P3z3 + . . .z • 
pl + P. + P3 + • • • If the volumes ofthese parts be V. V. V.:,, &c., and their densities1' st& 

z b V1'Y1Z1 + Vs1'sZs +
V.1'Y1 + V1Y1 + • 

then : 
• • 

z = (V1z1 + V .Zs + . . .  ) ,, 

. 

l Vlzl + Vrs + . . ..... 
v1 + v1 + . . .  

2. y == V1Y1 + V.Ys + · · . ,v1 + v, + . . .  
3. z == V1z1 + VsZs + . . . • 

v1 + v1 + . . .
We may also, instead ofthe weights, substitute the volumes of the

sepa�ate parts, and thereby make the determination of the centre of 

When bodies are a little extended in one or in two dimensions, 81 
thin pl3:tes, fine wires, &.c., they may be regarded as surfaces or Jines;
and their centres of gravity likewise determined with the help of the 
three last formulce, if for the volumes Y., V., the arms or lengths be 
substituted. 1 s 

§ 101. In regular figures the centre of granty coincides with �e 
·centre of figure, as in dice, cubes, ipheree, equilat...i triangles, c1r-

s• 



straight line lies in its middle . 
The centre of gravity of a circular arc .llB = b, Fig. 70, lies in the . 

ameter d C.J.1, an� pa� sses through the middle J.II of the arc, for this .d!ameter 1s the aX1s of symmetry of this arc. But in order to find the 
dtStance C8=x_ of the centre of gravity 8 from the middle point, or centre of the c:-rcle, the arc must be divided into many elementary parts, and statical moments of these, with reference to an axis XX 
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cles, &c. Symmetric figures ba,·e their centre of gravit� i_n the plane 
or axis of symmetry. 1'be plane of symmetry JJBCD d1v1<les a body_
JJDFE, Fig. 67, into t,vo congruent halves ; the portions on both 

Fig. 67. Fig. 68. 

si<les of this plane are equal ; the motnents also on the one side are
equal to those on the other, and, consequently, the centre of gra,·ity 
falls within this plane. Because tl1e axis of symrnetry EF cuts the
plane surface .l1BCD, Fig. 68, into t\VO congruent parts, here the 
portions on the one side are equal to those on the otb�r ;  the moments 
also on both sides are equal, and the centre of gravity of the whole 
lies in this line. Lastly, the axis of sy�me�ry KL of a bo�y .11.BGH,
Fig. 69, is its line of gravity, because it arises from the intersection 

Fig. 69. • . ' Fag. 70 • 

of hvo planes of symmetry, .fl.BCD and EFGH. For this reason, the 
centre of gravity of a cylinder, of a cone, and of a surface of revolu­
tion, or of a rotating body formed on the potter's wheel, lies in the
axis of these bot.lies. 

§ _102. Centre of Gravity of Lines.--The centre of gravity of a 



8iC/2 = x = L
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If P Q be a part of the arc, and P N be its distance from XX, 

bx = sr, we then obtaino: 
, and x - sr. x - �

"· We have then b = responding to the diameter 1 is J3 = lbOo . 
r • 2 sin. ½ 13 -- r sin. 2 ; w ence it follows that, x= ---=-:..--. 

1 ;  therefore, x = 2 r = For the semicircle /3 = ,,:  and sin. � = 

§_ 103. To find _the centre of grayity of a polygon or a connection of hn_es .IJBCD, Fig. 71, we must seek the distances of the midd]e points H K, .M, of the lines .IJB=L BC-L ' = I' 
3, &c.CD L . , from t,vo axes OX and O Y,  VIZ : HH = y HH = KK 1 1 t X 2 J) l 

the centre of gravity sought from these 
+L�2+ . . .  1 1 , x

Li'Y1 +L2Y2+ S81 = · · · y = ' L1 + L2+ . . .  
For example, the distance of the 

from the base is:  

a + b + c a + h + c  2 
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passing through the centre C andparallel to the chord .IJB=s, be de­
termined. -

= Ifthen the statical moment of this portion of the arc P Q .  PN. 
DO\V the radius PC=MC=r be dra\,·n, and QR parallel to .flB, 
,ve obtain the two similar 6.• PQR and CP•.7\f, for ,vhich : 

PQ : QR= CP : PN,
from which the statical moment of the elementary arc PQo. PN = 
QR. CP = QR . r is determined. 

No,v, for the statical moments of all the remaining arcs, the 
ra<lius r is a common factor, and the sum of all the projections QR 
of the elementary arcs is equal to the chord corresponding to the pro­
jection of the whole arc ; it follo,vs, therefore, that the moment of the 
,vhole arc is a]so = the chord (s) times the radius r. If this mo­
ment be put equal to the arc (b) times the distance x, and therefore 

- b 
• 

r - b  
So that the distanr.e of the centre of gravity, from the middle point. 

1s to the radius, in the ratio of the arc to the chord. 
If the angle at the centre .11.CB of the arc b be = p0 

, 

. 
the arc cor-

o
P

,.,(.fr, and s 2 • f3 .h 
>3 

" 
7 r nearly.110,6366 . . .  r= 

Fig. 7t.  

- 2' 

= x2,Y2, KK2 = &c.; the distances of 
axes are then : 

Ll + L2+ . .  . 

centre of gravity 8 of a ,vire bent into the form of a A .llBC, Fig. 72, 

NS = x = a +-'-½__li____,;;c½_b_h = _a_+_b _ . h, 

• 
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if the sides opposite to the angles .fl., B, C be designated by a b, c, , 

-'fhe ce�tre of �rav�ty of a p�ra11elogra� 
§ 104. Centre of Gravity of Plane Figu res 

In a plane A .llBC, Fig: 74, e,·ery Jine CD f�om

.IJBCD, Fis, 73, hes 1n the point of inter .. 

. one angle to th� 

If further we add SD, it follows that CS + 8D, or CD = 3 DS, and 
similar to the A C.IJS, ancl last1y, CS= 2 SD. 

from the base of the A. 

CENTRE OF GRAVITY OF PLANE FIGURES. 

and the height CG by Ii. . . 

Fig. 73. 

section of its diagonals, for all strips, such _as KL, ,,·hich are formed l>y dra\.\·ing Jines 
parallel to one of its diagonals B.D, are bi .. 
sected by the other diagonals .11.C; each of 
the diagonals, therefore, is a line of gravity 

m.Iddle D of the opposite side .llB, is a line 
Fig. 74. of gra·vity, for the same bisects all the eJe-=== ments KL of the A which are given when

lines parallel to .11.B are dra,vn. If from a
second angle .Ii a second line of gravity be
drawn to the middle E of the opposite side
BC, the point of intersection of the t,Yo ,vill
give the centre of gravity of the whole A. 

Because BD = tBJl and BE = ½BC, DE 
is parallel to .11.C ands= ½ JlC, and A DES 

. therefore, inverseJr, DS = ½ en: ____F_•_ 6·__ _ 
,,__ 

g._7_ The centre of gravity S !ies at ¼ of_
the hne CD from the middle point
D of the base, and at J of the same 
from the angle C. If CHand SN
be drawn perpendicular to the base,
we have also SN= ! CH; the cen­
tre of gravity S is at ½ of the height 

Fig. 12. 
If the middle points II, K .Jl.f. 

of the si<lP.s of the triangl� b� 
connect�<l ,vith each �ther, and
in  the triangle so obtained a cir.
cle be describe<l, its centre ,;ill 
coincide with the centre of gra­
Yity S, for the distance SD from 
one si<le 11 I( is 
= DN- SN= �- a + b  

2 a+b+c  .
IL C ,,, 0. .f.lBC 
2 =�(a+ b+ c) = a+b+ c= 

the distances SE and SF from the other s1<les. 

The distance 881 of the centre
of gravity of a A_ .11.BC, Fig. 75,
from an axis XX is = DD1 + ½ 



= bh (

93 

= .11.111 + BB1 + ee1, i. e., the arithmetical mean of the distances 

vity of these three equal �veights. 

2 Ji h + B-b) h h =(B+ 2b. ) ' . 
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! (.fl.Ill + BB1 ), consequently, X = 881
¼ ce1 + ¼ - ½ (A.111 + BB1) :  

( eel - DD1), but DDl = = 

3
of the three angular points. 

Since the distance of the centre of gravity is determined in the same 
manner by three equal weights at the an�u)ar points of a d, so the 
c�ntre of gra,ity of a plane triangle coincides with the centre of gra-

§ 105. The determination of the centre of gravity S of a trape�um 
.llBCD, Fig. 76, may be made in the following manner. The straight 

Fig. 76. 

1i ne MN, which connects the middle points of the two bases .llB and 
CD with each other, is a line of gravity of the trapezium ; for lines
drawn parallel to the bases decompose the trapezium into elementary
parts, \vhose middle points or centres of gravity lie in :AfN. Now to 
deterrnine completel3r the centre of gra'\'ity 8, we have onJy, therefore, 
to find its distance SH from a base 11.B..

Let B repreE:ent the one, and b the other of the parallel sides .llB 
and CD of the trapezium, Ii the height or the normal distance of 
these si<les. Let DE be now drawn parallel to the side BC, we shall 
then obtain a parallelogram BCDE of the area bh, and whose centre 

hof gravity is  81, and distance from .llB = 
2

, and a A .llDE of the 

area (B -
2 

b) Ii and centre of gravity 82, and whose distance from 

.11. B = h_ 

The statical moment of the trapezium, about the line .llB, is there­
fore 

2 2 3 6 

but the area of the trapezium is = ( B +b) h ; it folJo,•ts, therefore, 
2that the normal distance of the centre of gravity 8 from the base is 

� (B+ 2b) h22 B+2 b hHS = = . . ! (B+b) h B+b 3 

• 



MS= B + 
NS

= 
2B+
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- B+b 3 
Jl!NnB+2b JtIN NS 2B+b . . cl , an d 3 an . 3 b = B + b 

� �G+NC- -!'fG ' = B+¼b h 
,vhich actually arises from the s1milar1ty of the triangles J'(JSF and 

= 
by the diagonal .IJC into t,vo triangles 
.IJBCD, Fig. , 7, ,,·c may decompose it 
and from the foregoing, determine thei; 
centres of 8 and S , and thereby 1 'J

line of 
gravity 

gravity 81a 82 If now the four­• 

centre of gravity of A .llBO from YY according to § 104 = U = 1 
�+�+o 

:A-IS B+2b 
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To find the centre of gravity by construction, let the two bases be
prolonged, the prolongations CG made = B and JlF = b! and the
two extreme points obtained, F and G, con.nected by.a straight line :the point of intersection 8 with the middle line .ilfN,,•1ll be the centre

B+2b h. , it follo,,·s thatof gra,•ity sought •' for from HS-' 

�LIJ.+.IJ.F_ �IF _ }B+b 

NSG.
§ 106. To find the centre of gravity .of !ny other four-sided figure 

Fig. 11. 

sicle<l figures be decomposed into t,\'o
other triangles by the diagonal BD, and
their centres of gravity determined, ,ve
obtain another line of gravity, whose in­
tersection "•ith the first will gi"e the
centre of gravity of the whole figure.

We may effect this more simply if we bisect the diagonal .IJ.C in
.ilf, apply the greater part BE of the second diagonal to the less'nsothat DF=BE, join F.JlI an<l divide it  into three equal partsn; the 
centre of gravity lies in the first point 8 from .A-f, as may be proved
in the following manner. :A-181=½ JifD and M82 = l Ji.IE, conse.
quently 8182 are parallel to BD, but 881 times A .l1CD=882 times A
ACB, or 881 • DE=882 • BE ; therefore, 881 : 882= BE : DE. Now,
BE=DF an<l DE=BF, consequently 88\ : 882 = DF : BF. The 
straight line MF intersects, therefore, the hne of gravity 8182 in the 
centre of gravity of the figure.

§ 107. If it be required to find the centre of gravity 8 of a polygon
.flBCDE, Fig 78, we must decompose the polygon into triangles, and
determine their statical moments ,vith reference to t\\·o rectangular 
axes XX and YY. 

If the co-ordinates O.f11=x1, O.ILi,2=Y1, OB1=x2, OB2=yg, &c., of
the extremities are gir-en, the statical moments of the triangles .Ii.BO,
BCO, COD, &c., may be determined simply in the following manner.
The area of A .Ii.BO, from the remark belo\v, = D1 = ½ (x1y2 -X.iJJ1) ;
of the following A BCO=Di=½ (x.iJJ3-x3y2), &c., the distance of the 

x +x -= 1 
3 2 = y +y3 , from XX=v1 

1 
3 

2 ; of the centre ofgravity 
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&c. If these distances are 

and from the axis XX: 
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of � BCO=u2 = x2+x3 and v2= Y2 +Y3 ,
2 3

areas of the triangles, the moments of these last multiplied by the 
Fig. 78, 

are obtained ; and if the values so obtained are, substituted in the
formulren: 

D1u1 + D2u2 + . . .tt = --''--=-- -=--= '-----

Dl + D2 + . .  . • 
- D1v1 + D2v2 + . . .V - --=--=------=----=----,

Dl + D2 + . . .
,ve have the distances u and v of the centre of gravity from the axes 
YY and XX. 

Examplt. A pent11gon ./.fBCJJE, Fig. 78, is given by the following �rdinates of its 
extretuities .11, B, C, &c.: to find the co-ordi nate-s of its centre of gra viry : 

Co-ordinates given. 

X y 

24 1 1
7 21 

-16 15
-12 - 9

18 -12 

l 

Six Limes the sta•Triple co-ordinates 
tical moments.of centre of gravity. Twice the area. 

of triangles. 
GDotla 6Dat4a3 'Un 3 11D 

-

24 . 21e- 7 .  11 = 427
7 . 15 + 21 . 16 = 441

16 . 9 + 12 . 15 = 324
12 . 12 18 . 9 = 306
18 . 11 + 24 . 12 = 486 

Sum: 1984 

31 32 
- 9  36
-2S 6

-21 
t4� - 1 

1366413237 
15876-3969 
1944-9072 

-64261830 
- 48620412 

2457222444 

The dk;tnnce of the centre of gravity from the axis YY is: 
1 22444U =- . - -- = 3,771, 
3 lVt:i-t

SS0 

SS, = v  = 

= 

l 24572 
10�4 = 41128.3. 
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r2
- .!_ ther the moment of the triangle = triangle x CS. = � I 4 .  
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Rr·mark. If CA, = ::r11 CB, = .r11, CA, = y11 and CB = y . the co-orclinates of the t,vo., .,angles of a trin11glc .aBC', Fig. 79, who,eFig. 79. third 8111-{le C coincides ,vitlt the pointof application of the systrm of l'o-on.li.niue� we hnvo the 11.rc-r, of the snn1e :D = tmpezium ./JTJD,JJ, + triangleOBB, - triangle C' ./1.A, 

= (Y, + Y,) (.r,2- x2) +  :i·2Y2 -2!!. 
2 2 2 

- .t·, y� - .r, y, 
I)'l'hc area of this trin11gle is the diifer­enre of t\\·o other trinngles, CJ�'! .11, and C)J, B,, ond th<' one co-onlinnteof n pointis the bnso of tho onu, and the 01Ler co­ordinate th� height of the other triangle ' nud inversely. 

§ 108. The centre of gravity of the sector of a circle ACB, Fig.
80, coincides with that of a circular arc .ll1 B1 which has the same

angle "'ith the sector, and whose radius 
Fig. so. CJ11 is two-thir<ls of the radius C.11 of

the sector ; for the sector may be divided
by an infinity of radii into very smal]
triangles, ,vhose centres of gravity are
distant t,vo-thirds of the radius from the 
centre C, and these form by their con­
tinuity the arc .fl1J,,t,.B1• The centre of
gravity S of the sector lies in the radius

chordi. 
C.JltL, bisecting the surface., and at the d. CS = = --1stance x arc · 

4� C.11 =- • S'in. ½ /3. r ;  r representing the radius CA of the sector' 3 3 �
and J3 the arc ,vhich measures the angle at the centre .flCB.

For the semi-circle f3 = n, S'in. ½ >3 = sin. 90° = 1, therefore x = 
4 14  4 ✓½r = 0,4244 r or about 33 r. For a quadrant x = 3 . ½ n r3 re 

4 ✓ 2  4 ½ 2= r = 0,6002 riand for a sixth part x = " r3� 3 . ½ n  r = 
= 0,6366 r. 

§ 109. The centre of gravity of a seg-Fig. St. ment of a circle .llBM, Fig. 81, is given, 
if we put the moment of the sector .IJ.CBM
equal to the sum of the moments of the 
segment and the moment of the triangle
.llCB. If r be the radius C.11, s the chord 
.llB, and A the area of the segment .llB.M,
the moment of the sector = the sector x 

r . arc chord 2 1
csl = • • 3 r = 3 S'r, fur-2 3TC 

2 2 � 

http:l'o-on.li
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tance sought is x = s3 • 

drawn through the body parallel to the base, 

form line of gravity. For the same reason the 

CENTRE OF GRAVITY OF CURVED SURFACES. 

2 ✓ s2 sri s3 - - -, and from this the moment of the segment : r2 - - = 
4 3 12 

.fl . CSs= �) = �;  consequently the dis-
12 12

./J.x = .!. sr-(� _
3 3 

1 8r3
12e./l 

For the semi-circle 

4r= a";;' as found above. 

s = 2 r ancl .11. = - " r, hence x = ,2 12 • 1('
2 

and DCE. If the radii be C.11.=r and 
CD=r1, and the chords .IJB=s and DE 
=s11 the statical moments of the sectors 

s r  $ 1' 2 

3 
1 

3 
1are: -- and , therefore the stah-

cal moments of the portion of ring:=
sr-s r 2 • S 1' ) •---=1--=1:...., or (since __!_ = -1 1s = 

3 s r
r3-r/ . !.. But the area = /3 r _3 r �

/3r 2 (r-r 2) . d. 
, provided that fl represents the arc correspon 1ng

2
1 = f.f 2 

1 

to the angle at the centre .llCB; the centre of gravity, therefore, of 
. . moment r3-r 3 

...2the portion follows from the distance CS =X=--- = \ •area .,--r1 
3= .� 2 (r3-r/ ) .  chords= � si,n. ½ J3s r3-r1= •.3 rjj 3 'r-r1'i 8fC 3 /3 'r-r1
2 

Example. The- radii of the sttrfaces of a dome are: r= 5 ft., r1 = 3½ ft., and the angle
at the centre, po = 1300, then is the distance of the centre of gravity of tbesA surfaces
from their central point:

4 ai11. 650 5'-3.� 4 .  0,9063 125-42,87:; 3,6252hX82,126 X=- --- . , =-----c • ---- =-----
3 arc. 1300 5'-3,5' 3 . 212089 25-12126 618067 X 12, 75 

=3,430 feei. 
Fig. S3. § 110. Centre of Gravity of Cttrved Sur-

faces.-Tbe centre of gravity of a curved sur­
�a:ce ( enveJope) of a cylinder .IJBCD, Fig. 83,_lies 10 the middJe S of the axis J,fN of this 
b�y, for all the annu]ar elements of the cylin­
dncal envelope ,vhich are obtained by sections 

In like manner we may find the centre of gravity S of a  portion of 
a ring .fl.EDE, Fig. 82, which is the difference of two sectors ,JJCB 

Fig. 82• 

are equal, and their centres of gravity lie in _the ax.is ; these centres of gravity form a uni­

9 



------

of grn:ity of n spherical zone The ce:itre __ ,./lBDE, Fig. So, and ltke,v1 ·e that of a spherical cup lies in the centre 8 of its height MN; for from 

,, 

through the same ; according to this 
the centre of gravity of the zone coin, 

. 87: hes in straight line �IF from the vertex F to the centre } �g
Vo_f �ra:ity • �I of 

the 
the base, fo OPQR, have from their r all slices as J

s1mtlar1ty with �e base, their centres of gravity in this line. If the pyra1n1d be triangular as .llBCD, Fig. 88, each of the four 
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centre of gravity of the surfaces of a prism lies in t�1e middle point
of the straight lines <'onnccting the centres of gra,·1ty of both the 
bases. 

The centre of gravity of the envelope �f a right cone ..llBC, Fio-..84, lies in the axis of the cone, an� 1s one-third 
Fig. 84. of this line from the base, or t\\'O-thtrds from the 

,·ertex ; for this cur,·ed surface n1ay be derom.
posed into an infinite number of small triangles
by traight lines, ,vhich are cal!c<l the sides of 
the cone ,vhose ceutres of gra\'1ty form a circle
HK, ,vhich is distant t ,,·o-t1,irds of tl!e axis fron1 
the Yertex, an<l ,vhose centre of gravity or centre
8 lies in the axis C.'/l,1. 

the rules of geometry the zone has the
1''ig. 85. sa1ne urface as a cylindricaJ envelope

FGHK, "·hose height i s  equal to that 
- of Jl,lN> and \vbose radius is equal toE'•K. •If' lJ

I' .� that of the ra�ius Co_ of the sphericalrl' 

zone ; and this equality also exi ts in
the annular elements, ,vhich are ob,
tained by carrying an infinite n1unber
of planes parallel to the circular bases 

,.·,1tt,, �f•r, 
]�,,�
/ 

. 

,·o:  

cicles "·ith that of the cylinc.lrical envelope. 
R£mark. The centre of gravity of the bllrfuce of cul obl111ne oone or oblique pyrauiitllies at about one•third of the height ('rorn the base, but not 1n !ho str11ight lino passingfro1n the vertex to tlie centre of gravity of the bWlo, beoanso shces pnmllcl to 1be hasedooompose ll1e surface into rings, which vury in breadth at different pans of theirsurface. 

§ 1 1 1 .  Centre of Gravity of Bodies.-The centre of gravity of a
prism JlK, Fig. 86, is the centre 8 of the

Fjg. 86. straight line ,vhich connects the centres of
gravity Jlrl and N of both bases AD and GK
for the prism may be decomposed by section�
parallel to the base into exactly congruent
slices, ,vbose centres of gravity Jie in A1N.
and by their superpo!-ition make the line .}J,f.JV' 
a uniform line of grarity. 

For the same reason the centre of gravity
of a cylinder ]ies in the mitld)e of its axis.

The centre of gravity of a pyramid .llDF,.... 
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angular points may be consiuered as vertices, and the opposite sur­
faces as bases ; the centre of gra\·ity 8 is deter1nined by the intersec-

Fig. 87. 

tion of t\VO straight lines <lra,vn from D and .IJ to the centres of gra­
vitye.Meand N of the opposite surfaces .11.B(! and BCD. 

If the straight lines E.ll and ED be g1\"en, we then have from 
§ 104 E.Jrl = ½ E.8. and EN= ½ ED; therefore .�[N is parallel �o 
.lllJ ande= k .IJ.D, and the t:i. MN8similar to t:i. D.118. Again from th1s 
similarity ,ve ha,·e J,[8 = ¼ D8, or D8 = 3 J,[8, also .A-ID = 8D + 
.7'118 = 4 J.!18, and inversely .r.fS = ¼ .A-ID. Hence tbe centre of gra­
vity is found to be one-fourth of the line joining the centre of gravity 
M of the base with the vertex D. 

Further, if the heights DH and SG be given, and H.ill be dra\\·n, 
'\\'e then obtain the t,vo similar t:i.• DH.ll an<l 8G.1lf, in "·hich from the 
foregoing 8G = ¼ DH. \'Ve may, therefore, say that the distance of 
the centre of gravity 8 of a triangular pyramid from tbe base is equal 
to one-fourth, and that from the ,ertex three-fourths of the height of 
the pyramid. 

As every pyramid, and also e,�ery cone, is made up of an infinite 
number of three sided pyramids of the same height, the centre of 
gravity of every pyramid and 
cone is a fourth of the height Fig. 89. 

from the base and three­
fourths from the vertex. 
We may, therefore, find the 
centre of gravity of a pyra-
1nid or cone, if a plane be 
drawn parallel to the base 
at a distance one-fourth from 
the base, and the centre of 
gra\.�rty of the section or its 
intersection ,-.·ith the line 
joining the vertex and the 
centre of gravity of the base 
be determined. 

§ 112. If the distances 
.IJ./J.17 BBH of the four an-



.-=========== --

+BB,+cc,+DD1, ss - ..i.t1i

=ltf.lf -.illilf ,), +¼(DD88 ll 1

:J "'""" +J..DD _ .IJ.l:l1 + BB,+ cc,+DDl cro 

consequently the centre of gra­

the co-orcliuatc:1 of its nuglc�, is silnple If ,ve tlraw planes XY, )(Z, l'Z, thro11gl; 

y,, '!/ '¥'< y3, nod x0 x21 x3, the volume .::: ,, , ::-3 , 

moments of the single pyramids. 

and the distances of their centres of gravity: 
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gles of a triangular pyramid .l:JBCD, Fig. 89, fron1_ a plane HK be
known, the distance of the centre of gravity S frorn this plane is found
from the mean value 

•la -

'fhe distance of the centre of graYity .Jl/ of the base JlBC from thisplane is (§ 104) : 
.11.111 + B:1+ CC, 

' JJ/�!1 = 
and that of the pyramid S is :  
,vhere DD1 is the distance of the vertex: hence it follo,vs by com­
bining the t\\'O last equations, thnt : 

= 1•'tJ.JU 1 4 l -001 •4 
The distance of the centre of graYity of four equal weights applied 

to the angles of a triangular pyramid, is equivalent to the arithmetical 
mean JJ.IJ1 + BB1 + CC, + DD 

4Fig. 90. J ,  

vity of the pyramid corresponds
with that of the system ofweights.

Remark. The ileterrnination of the 
,•olume of n triangular pyrnmid, from 

tho vextex O of such a pyramid .llBCO 
Fig. 00, anu teprasent lllo di11tances of1he angles .tlBC from tb.csc plo.ncs by -.. ., 
of the pyrumi<l ,�•HJ be 

V=f (r1y�=
3 + Xs!J,, =•+ X,!J,=,-x

Y,Z,-J:.,Y,Z
3
-X:,!/�,), , 

which will be given, if the py11Unjd be
considered as an aggregate of four oblique prisms. 

The distances of the centre ofgravity of these J>yramids from the three planes are: 
x _ x, + x2 + x:i .,,_ Y, + Y2+ Ys nnd z= z, + =9+ =s.- , :r -4 4 4 

§ 1 13. Since e,ery polyhedron as .IJBCDO, Fig. 91, may be decom­
posed into triangular pyramids .fl.BCD, BCDO, \Ve may also find its
centre of gravity 8 if we caJculate the volumes, and the statical 

If the distances of the angles JJ, B, C, &c., from the co-ordinate
planes passing through the common vertex O of all the pyramids, are 
x1, x2, .xJ, &c., 'Yt> y3, y3, &c., z1, z2, z3, &c., the volumes of the single
pyra1n1ds are : 

JT1 = + i (xJYr3 +X.J1a=1+x3y1=22-X1Y?2-XJ/1Z3-X'Jl/,JZ1),p•a-:-±i (x�J=i_.2+XJY.z2+x._vr3-X�4z3-XJY'J.Z42-X.J13ZJ, 

http:1�'tJ.JU
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Fig. 91. 

tt _ X2 + X3 + x4 v _ Y2 + Y3 + Y4 _ Z2 + Z3 + Z4 &.c .w2 - )
2 - ' 2 ' 4 

-
4 4 

From these values the distances of the centre of gravity of the ,vhole 
body may be finally ca]culated by the formula : 

., _ V1u1 + V2u2. + . . . _ V1v1 + V2v2 + . . e.w -��-__:-=:.---, V- --"=;..--=-=;.__--, 

vi + v2+ • . . �+ v2+ • . . 
- V1w1 + V2w2 + . • .  w - -"'----"----'=-..;'----• 

vi + v2 + . . .  
Example. A body bounded by six triangles .IJDO, Fig. 911 is determined by the fol­

lowing values for the co-orcUnates of angles; ,vhence the co-ordinates of its centre of 
gravity may be found. 

Four times 
Twenty-four times the the co-or-

Given statical moments.Six times the area of the triangular dinates of 
CO-Ordi- pyramids. centre of 
uates gravity. 

-
X y z ,:!..,. r: 

--
20 23 41  

30 f3 V.= 4 1.45.40 - 23.28.45 =31072 ?? 
0.29.28

1 i,o.•
0.3

01r45 29 23.30.12 4 1.12.29 
12 40 28 5.35.2

29.20.12 8e .5.40.20 � 
0 Vi= - 29.28.38 =17204 9538 35 20 30.38.40 30.12.35

i 

Sum: 48276

r 
1 

24 Ya ID■24-Vn un 24 P'n Vn.;:,..,. I r:s""' -
2392544 2858624 3076126 9992 

78 16343S0 1789216 1341912 

4026U24 464?ij40 4418040 

104 

From the results of this calculation1 the distances of the centres of gravity from the 
three planes yz XZ1 a.nd XYfollow. 

_ 1 4026924 _ " - - - ---- 20 81(3 ,
4 48276 

1 11 

9• 

http:30.12.35
http:30.38.40
http:29.28.38
http:29.20.12
http:41.12.29
http:23.30.12
http:23.28.45
http:41.45.40


114. 'fhe centre of gravity of truncated pyramid .llDQN (Fig. a § 
88), lies in the line MG, which connect� the ctn!res of gravity of the 

distance of this point two parallel bases; in order to deter�1ne 
from one of the bases, we must determine 

the 
the volumes an<l moments 

- J�, and z- !!_✓g _ ;  as also h + x 
(k+x)'G == or � +  l , 

that of the supplementary , 

22 lt g' 1 h ✓g3 1 . . gx( x) 

follows that the moment of the truncated pyramid: 

g g . 
Now the solid contents of the truncated pyram d are: i

� u1s R = 12 and r = 8 inches, always lies in the line joining the centres of th; �n 
circu ar basea, and is distant from the greater by: 

y = � . 122+2.12.8+3.82 = 5 .  528 =- 2640 == 8 684 . inc es. h ' 304 304 

15
4 122+12.s+82 

A pontoon is a body enclosed bl two dissimilar rectangular . § �
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11 - !_ • 4647840 - 24,069,
4 48270 
1 44180f0 -221879.

48276'°. -4 . 

of the entire pyramid .llDF, and the supplementary pyramid NQF.
If the areas of the ba�s .llD and HQ -G and g, and the normal dis­
tance of both - A, the height of the supplementary pyramid will be
given from the fonnul�: _ _ 

g ✓G-✓
g 

.r' zg 

h✓G= ✓G-✓ · g
The moment of the whole pyramid \\•ith reference to the base G is 

now
G (h + x) h+x = _!_ h2 02 . 

3 12 
• 

(✓G-✓g
_)'4 

3 h+
4 

hence itpyramid 3 ✓G-✓g 
+ 12 • (✓G- ✓g)2 ,== = 

(G'-4 (✓ Gg'-g')-g')= 12 (✓;:-✓g)' . 
h2(G2-4g✓Gg+3g') h22

. (G+2✓G + 3  ).1 2 ( G-2✓Gg+g). 12== 

V=n (G + ✓Gg+g) ; 
hence it follows final1y that

a 
the distance of its centre of gravity 8fromthe base is 

h G+2✓Gng+3g

.MS=y= 4 • G+ ✓Gg+g .
The radii of the bases of a truncated cone are R and r, and therefore G=n R' and g=n r, we have then for this

h R2+2Rr+3r
Y= 4 . .

R3+Rr+r 
:ample. The centre of gravity of a truncated cone of the height h= 20 inches d 

wo 
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fore the vertical distance sought is: 
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bases and four trapeziums .l1CC1.IJ1, Fig. 92, and may be decomposed 
into a paralleJopiped .l1FC1.fl1, t,vo triangu-
lar prisms EJIC1B1, GKC1D11 and a quad.. Fig. 92. 

rangular pyramid RKC 1 ; we may, there­
fore, with the help of these constituents, 
find the centre of gravity of the body.

It is easy to see that the line from the 
one bases to the other is the line of gravity 
of this body ; there remains only to deter­
mine the distance of the centre of gra¥ity 
from either base. If we represent the 
length BC and breadth .flB of one base by 
l and b, and that of .ll B1 and B c of the 

l l lother base by l1 and b ,  and the height of 
the body by h, then the volume of the parallelopiped = b1l1h, and 
its moment b l  li .  

2 
h = 

2 
1 b1 hz, further the volumes of the two trian-1 1 l1

gular prismss= ([h-b1] l1 + [l-lJ b1) ! and their moments= ([b-b1] 

l1 + [l-l1] b1)
h . h,, Iastlythe volume ofthe pyramid =(h-b1) . (l-l1)2 3

h . h h-3 and its moment = (b-bi) .  (l-lJ _ . -. The volume of the whole 
3 4

bo<ly is, therefore : 
V= (6blll + 3hl1 + 3lb1-6hlll + 2hl+ 2blll-2bll-2bll) . h 

6 
= (2 bl+2b1l1 +bl1 + lb1) .  

h, and its moment 
6 

h2
Vy = (6b1l1 +2bl1 +2lb1--4b1l1+bl+b1l1-bl1-lb1) . -12 

h2= (3b1l1 +bl+bl1 +b1l) -· 12  
Hence it follows that the distance of the centre of gravity from the 

base bl is : 
bl+3b1l1 +bl1 +b1l h 

y = -.,-,,--..,:...::--...,....=...--=-- • -·2bl+2b1l1 +bl1 +b1l 2 
Remark. This formula isalsoapplicable to bodies whh elliptical bases. The axes of �e 

one base are a and h, and of the other a, and b,; the volume of such 11 body, therefore, 1�: 

V= � (2 ab+ 2 a,b,+ ab,+ail>), and the distance of the centre of gravity; 

_ ab+ 3 a,b,+ab,+ a,b hy --..,.:...--..:...�---....:�� . -2 ab+2 a,b,+ab,+a,b 2 
Example. A dam, .IJ.CC,.11." Fig. 93, is of the height 20 feet, 250 feet Jo�g at the_IJ?t• 

tom. and 40 feet wide, at the top 400 feet long an<l L5 �·i<le ; to nud the dicitnnce 01 its 
centre ofgravity from the base. He-re b = 401 l = 2501 b1 = 151 I,e= 400,4 =20, there­

40.  250 + 3 .  15 . 400 + 40. 400 + 15 .  250 -MS - = .
- '!I  2 . 40 . 250 + 2 . 15 . 400 + 40 . 400+ 1 5 , 250 2 

•4775 1910= - . 10 =-= 9,-2'7 feet. 
5175 207 

http:IJ.CC,.11


1s therefore = ¾ n h (2 r-h) (r- [r-h]2) = ¼ " h2 (2 r-h)2. The 
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Fig. 93. 

§ 1 16. If the sector of� circle .llCD, Fig. 94, revolves abo�t its ra-
d1us CD, there is generated the spher1ca! sec-. _F,i!. fl-t. tor .flCB, whose centre of grav1ty we ,v1sh to===== =---- determine. We may represent the body as 
containing infinitely many an<l infinitely thin 
pyramids, whose common ,·ertex is the centre 
C, and whose base forms the spherical sur­
face .llDB. The centres of gra,ity of all 
these pyramids are at ¾ of the radius of the 
sphere from the centre Ci; they therefore form 
a second spherical surface .l11D,B1 of the ra­
dius C.IJ.1 = ¾ C.11. But the centre of gra­
vity 8 of this cur\'ed surface is the centre of 
gravity of the spherical sectors ; because the 

,veights of the elementary p_yramids are uniformly distributed over
this surface, and therefore it 1s uniformly heavy.

If we no\v put the radius C.11= CD=r and the height DM of the
outer surfacei= h, we get for the inner CD1 = ¾ r, and .Jlf1D1 = ¾ h ;
consequentlyi(§ 110) D18 = ½ M1D1 = i h, ancl the distance of the
centre of gravity of the sector from the centrei: 

cs� CD1-Dl8-! r-j- h=i (r - :)• 
For the semicircle, for example, h=r, therefore the distance of its

centre of gravity S from the centre C is: 
- 3 r 3CS= - - - = - r. 

4 2 8
§ 1 17. The centre of gravity 8 of the segment of a sphere .11.BD,

Fig. 95, is obtained when its mo-
Fie-. 95. ----. ment is put equal to the difference 

of the moments of the sector.flDBC
and that of the cone .llBC. Again,
if we put the radius of the cone CD
=riand the height D:A-l=lt, the mo­
ment of the sector = ½ rcrli. i (2
r-h) = ¼ rc r2 h (2r-h) and that of
the cClne =½rch(2r-h) . (r-lt) . f
(r-h) = ¼ nh (2 r-h) (r-h)2 ; the 
moment of the segment of the sphere. 
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h\,o is constant and = 1 = -, if h represent the sem1-

§ 118. To find the centre of �ravity of an irregular body .11.BCD, . 

)h_ M.8='!/= 
(0 . F0+ l  . 4 F1 +4 F+2 . 2 F2+3 . 4 F ,.3

• 
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-rolume of the segment = ¼ " h2 (3 r-h)i; hence, the distance in 
question is : 

CS= ¼tth2 (2 r-h )2 (2 r-li)2 
_= f .½tth2 (3 r-h) 3 r-h 

If, again, we put /1, = r, the segment becomes a semicircle, and as
above, CS i r. 

'!his formula holds good for the segment of a spheroid A1DB1, 

�vhich is generated by the revolution of an elliptical arc D.111 about 
its major semi-axis CD=r;  for both segments may be divided into 
thin slices by planes parallel to the base .liB, so that the ratio of any 

b2CE 2· Jll .11 12 

�f .lJ. 2 
= • 

CV r
axis minor of the ellipse. The ,olume, as well as the moment of the 
segment of the sphere must be multiplied by b

22
, in order to give the r

volume and moment of the segment of the spheroid, and thereby the 
moment will remain unchanged. 
volume

quotient CS= 

F�g. 96, we must decompose it into thin 
F,Q'. 96•slices, by planes equi-distant from each 

other, determine the solid contents of
each slice, their moments with reference 
to the 1irst parallel plane .IJ.B serving for 
the base, and finally connect them toge­
ther by Simpson's rule.

The contents of these slices are F0, Fi,
F2,F3,F4, and the ,vhole height or distance 
of the outer1nost parallel plane isi= li ; the 
vol

ll:
me of the bo<ly, therefore, according 

to Simpson s rule (approximately) iis :'
V = (F0, +4 F1+2 Fi+4 F3+F4) :;. 

If we multiply in this formula each of these volumes by their dis­
tance, we obtain the moment : 

Vy=2(O . F0+ I i. 4 F1 +2i. 2 F2+3i. 4 F3+4 F4) 4 
hi . !!_ ;12

lastl,r, by dividing one expression by the other, we get the distance
required : 

4• �+4 �+2 �+4�+� = 6, we have : 
+5.4F5 +6.F6• �-

If the number of elementary slices 
Y= O.Fo+ 1.4F1 +4.2F4

F0 +4FJ +2F2 +2F.,

+2.2F2 +3.4F3

+4F3. +4F5+F6 6
It is easy to understand ho,v this formula may be altered ':hen the 

number of slices is different from the above. This rule requires only 



otahon, generated 1n commonly met with in practice are solids of a �

This forwuJa, lastly, is applicable to the <leter1�1nahon of the 

Hence the Yolume of this bo<ly is: 

3650 0 nr.on • 14.00 2,5 h 
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that the number of the slices should be even, and, therefore, that of
the surfaces une¥en. 

In most cases of application, the determ�nat!on of one distancen
enough, because, besides this, a line of gravity 1s �no\vn. The bo�1es

is. 

lathe ,vhose axis of rotation is the line of gravity. .. 

centre of gravity of a surface, in which case the sections F0, F1, F2,

become lines. 
&a,nple.-1. For the parabolic conoid ..iBC. Fig. 97, which is genemtet! by the revo·Jntion of a parabola .11.BMabout its axis .IJ.M,,ve obtain by makiog the sectlon D1VE, thefollowing : 
The height ..ill/= h, the mdius 13M=r, ..iN = NM= !!:..., n.nd bence the radius DN2 

= rJ � • The area of the section tbroug;1 ..i is FO= 0, of thnt through N= F1 = 1t' 

i w r' h = ½ F2th ; 
n rDNl = -, and of that through M =Fil = .,, r.2 

h hV= 6 (0 + 4 Fl+ Fil)t = 6 (2n-r+ rr) = 
h'on the other hand, the moment js = - ( J •2 .,,r+ 2 . ,,. r) =½ ,,,. ,4 h' = ! F, h'; lnstly, 
12the distance of the centre of gravity S from the vertex, is: 

.11S = t F2 h" 1 h.= j F2 h 
Fig. 97. Fig. 9S. 

. Example 2. A vessel ..i13CD, Fig. 98, bas its 1neau half breadths, r0 = J inch, r, = 1,tincl,, r2 =0,9 inch, r3 = 0,7 inch, r� =0,4 in.ch, �vith a height 1l1N = �,5 inch. TLe sec­
ti?ns Rre F

0 = l . n, F
1 = 1,2 l .  'IT, �•'J = 0,81t. '", F

8 
= 0,40t. 91', F, = 0,16t. ,r; hence, the distance of the centre of gravity from the horizontal plane ./l_]J, is:JtJS _ 0 .  J w+ 1 . 4 .  1,2 1 .  '" +  2 .  2 .  0,81 -.- +  3 .  4 .  0,49 w-+ 4 0,16 . 'IT  2,5-

l 'IT+ 4 .e1,21e.,, +2 .  0,81 'IT+ 4 .  0,49 '"+ 0,16 ,r 

-- . - = -- = ,�o ., inc es. 
38,32
= 6,270 cubic inches. 

4 
= 

9.58 4 
The capacity, therefore, is  = 9,58 .,,.  . 212 ·5 

§ 1 1 9- An interesting and sometimes very useful application of the 
18"'8 0� the centre of gravity is the pro1,erties of GuldinttS or the ba­
fo�entric method. Accordinng to these, the volume of a b�dy of revo­
utlon (?r of a surface of revolution) is equal to the product of the 

generating surface ( or generating line), and the space described by its 
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&c., may be considered as F1, F'J, , 
curved pris1ns haring the bases F11 F2

&c., and the volumes F1 r F2 r';l, 1 a, 

a. If .A-ISh= x be the distance of the centre of gravity 8 of + . . .  ) . 
conseqnently the volume of the whole F + . . .  ) x = F1 + Fr r2 2 2 + . . .  , 1 

GULDINUS' PROPERTIES. 

centre of graYity during the generation of the body or surface of revo­
lution. The correctness of this proposition may be made evident in 
the foJlowing manner.

Guldinus' Properties.-If the plane area .IJ.BC, Fig. 99, revolve 
about an axis XX, each element F1Fi, Fig. 99·&c., of the same will describe an an-
nulus ; if the distances F1 G1, Fll.G2,

&c., of these elements from the axis 
of revolution xx be = r , &c.,1 l, r.2
and the angle of revolution A.A1.ll1 = 
a.° , therefore the arc corresponding to
the radius 1 = a., the circular paths of 
the elements �•ill be = r1a, r'la, &c.
'The spaces described by the elements 

__ 

, &c., and the he1ghts r10, r20.,

a, &c., and therefore the volume
+ F2r2of the �·hole boc.ly .IJBCB1.1J1 C1 : V= F1r10. + F2r20.• • •  = (F1r1. 

the generating surface from the axis of revolution, \Ve have also (F,+ 

body V= (F1 + F2 + . . .) x (1. But F1 + F2 + . . .  are the contents of 
the whole surface F, and xa.  the circular arc w 881, described by the 
centre of gravity 8; consequently, V = Fw, as aboYe enunciated. 
This formula holds good also for the revolution of a line, because it 
may be considered as a surface made up of infinitely small breadths ;
F is namely = Lw : i.e. the surface of revolution is a product of the 
generating line (L) and the path (w) of its centre of gravity. 

Example.-!. In a half ring of an elliptical
section .fl.BED, Fig. 100, let the serni axis of Fig. 100.
the section be C./1 =a and CB =b, and let 
the distance CMof the; centre C from the ax.is 
XX r; then the elliptical generating sur• 
face F=1r ab, and the path of the centre of 
graV1Ly (C) w =,,,.r; hence the volume of this 
half.dog Tl=,r'abr, and that ofthe whole ring 
=2 r abr. IC thedimensions be, a =  5 inches,
b= 3 inches, r=6 inches, the volume of one­
fourth of the ring = ½ .  vr2. 5 .  3 .  6 =9,8606
•5 .  9= 444,132 cubic inches. 

&ainplt.-2. For a ring ·with a semicircu­
lar section .lllJD, Fig. 101,  if C./1_ = CB= a, 
represent the radius of this se<.'tion1 and ]}fO= r that of the hollow space or neck, the
volume is 

,r a' ( 4 a) ( 4V= •2 ,r r + 3" =,r a' ,r r + 3 a) .
2 

Exa"}ple.-3. To find the surface and volume ofa cupola .IJDB of the do�a ofa con­
vent, �Jg. 102, half the width JJf..i= MB =a, nnd the height .lllD= h aregiven.. From 
both 1.hmensioos il follo,vs that the radius C..i -- CD of rhe oeneratingC circle = r = 
a,1+ h� • 

, and rhe angle ./JCD subtended at the centre by .J1D = .so, if ,,•e pot rhe Jtn. a=
2 a 



the path described by the centre of gravity in the generation of the surfuce .11.DB = 
1 a, anti since it only is required 
: « _ ro,. 11). The generating line D..i.JJ1 = 2 r 2 1rr. ( 6

a., and consequently ,ve nu1st PL1t the ,vbole to detennine the half .11.DB, this line = r 
11 2 .,,. r ( ri,i. 11-" co,. ")· surf nee O = r" 2 .,,. r(si,: - co,. •) = . 

nearly allied to the last rule, is the follo"·ing. We may assume that every oblique prismatic body .llBCHKL, Fig. 
103, consists of an infinite number of thin prisms, similar to F1 G1• 
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.!!..... The centre of grav-ity S of an arc D.J1D1= 2 .Ill) is determined by the distance CS.,
chord M.D r sin.n" 11.rc:., f the= r. ---- = --; further, C.b[= rcos. a, consequently the distance ,,.1.uo 

aro .JlI) a 
MD (nn. • --r 8iti. " --- r cos. a.= r 

Cl 

. .centre of grav1ty S from the a.·ns = - co,. 11 )1 and 
A 

Fig. JOI. Fig. J02. 

-'11'Very commonly aO = 60° j therefore, a. = -, Bin." = !✓3J and the co,." = j; hence 
3 

it'follows that 0 = ,.. r ( ✓ 3-; ) = 2,1515 .r:1. 

For the segment D.11.D, = .11. =,-- (111 -½n11. 2 a) the distance of the centre of gravity 
. ·C . (2 . MD)3 · • 2 ' r3 Bin. a.s hfr the centre 1s = -'-----' = - . ---.,,..- , ence h d. the aJUs om - t e 11rtanoe .firom

12 .11 3 .11. 
MS= CS- CM= .:.. . r3 ,in. 43 

- r co,. " i finally, the path of this centre of gravity
3 .IJ. 

described in one rev-olution � : 
w = 2 " r (!rsin. 4S-.8 cos. 11) = 2 '"r3 (¾sin. 113- [ca-½ sin. 2 "] cos. a) . 

.Jl .IJ.
The volnme of the whole body generated by the segment D.11.Du is given 1f this path be 
multiplied by .Jl, and the Yolume of the dome found by taking the half of this: there-
fore, V = ,r r3 (-J sin. a3 - (4 - ½ Ji11.n2 ,s] COS.nCl). For example, a0 = 600 = a n-i-

8i1t. • = ½✓3, and cos.• =i ; hence : 
V= r r3 c�✓3 - !!.... = 0,3956 . ,-3,

8 6 
Rmiark. Guldinus' properties find their application in those bodies wbiol.t arise when 

the generating surface so moves that in every posit.ion it remains perpendicular to the
pat.b of its centre of gravity, because w& may assume every l!maU part of a curvilinear
motion to ?6 circular. From this we may fiod the solid contents of the tbreatls of screws,
and sometimes also calculate the masses of earth, heaped up or removed, as in the case
ofcanals, roads, railroads, &c. 

§ 120. Another application of the doctrine of the centre of granty,_o

http:V=,rr3(-Jsin.a3


acting ,·ertically down\vards . 

by other bodies. 
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If G1, G2 are the bases, and hi, h2 the heights of these elementary
prisms, we haYe for their solid contents G1 h1, G2 h2, &c., and the 
volume of the ,vhole obliqne prism
V Fig. 103.= G1 h1 + G2 h, + . . . Now an 
element F1 of the oblique section 
HKL is to the element G1 of the 
base .llBC as the \\1hole oblique sur­
face F to the base G; therefore, 

G GG1 = .F' F1, G2 = F F,., &c. and 
GV = 
F 

(F1h1+ F,.h2+ . . .  ). 

And because F1h1 + F,/t2 + . . .
is the statical moment Fh of the 
whole oblique section, it follow� thati: 

V = ; . Fh = Gh, i. e., 
the volume of an oblique prism is equal to the volume of a perfect 
prism, which stands upon the same base, and whose height is equal
to the distance SO of the centre of graYity 8 of the oblique surface
from the base.

In a right or oblique triangular prism, if h1, h2, /13, be the edges of 
the sides, the distance of the centre of gravity of the oblique surface 
from the base h = h1 + 

3 
h2 + h3, hence the Yolume 

V = G (Ji• + h2 + hs)
3 

C H A P T E R  I I I .  

EQUILIBRIUM OF BODIES RIGIDLY CONNECTED AND SUPPORTED. 

§ 121. Kinds of Support.-The rules developed in the first chapter
of this section, on the equilibrium of a rigid system of forces,iare.applicable to that of rigid bodies acted upon by forces, if we �ons1der
the weight of the body as a force applied to its centre of gravity, and 

Bodies balanced by forces, are either freely movable, i. e. yield to 
the action of forces, or they arefixed by one or more points,or suppurted 

I� a point of a rigid body is fixed, any other point m�y take up a
motion :vhose path lies in the surface of a sphere, d�scr1bed £:om the
fixed point as a centre by the distance of the other point as rad1us. If, 

10 

http:F1h1+F,.h2


it back into its first position, whilst the fixed point C counteracts the her compo�ent P. Ont the other hand, if a body .llB, Fig. 106, be .lixed at a point C below 1ts centre of gravity S the bo<ly is then in 3 stat� of unstable equilibrium · for if the centr: of gravity be dra,vn out of the f al 
th b 

�e le r passing thro 1gh C, the component N of the weight f e G not only does not bring it back into its former position, 
1

� u t d. ra"'8 it more and more out of that position, until the centre of gravity at last comes belo,v the fixed point. 
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on the other hantl, t\.\·o points of a bo<ly are fixed in every possiule
motion, the paths described by the remaining points are circJes, which 
are the intersections of t,vo spherical surfaces described from the 
fixed points. These circles are parallel to each other, and perp.en­
dicn1ar to the straight line joining the two fixed points. The. po!nts
of this line remain imn1ovable ; and the body revolves about this line,
which is called the axis of revolution. 

The ra<lins of the circle in which each point moves, is foun<l by
letting fall from the point a perpendicular upo_n the _axis �f re,oluti�n.
'Fhe greater this is, the greater a]so is the circle 1n ,vh1ch the point
reYolves.

If three points of a body, not falJing within the same line, be £�Pd, 
the body can in no sense take up motion, because the three spherical 
surfaces, ia which a fourth point must move, intersect each other in 
a point only. 

§ 122. Kinds of Equilibrium.-If a body, fixed at one point, be 
balanced by one force or by the resultant of several forces, the direc­
tion of this force must pass through the fixed point ; for a point is
fixed when every force passing through it is counteracted. If this 
force consist merely of the ,\Teight of the body, it is then necessary
that its rentre of gravity sbolll<l lie in the vertical line passing through 
the fixed point. If the centre of gravity coincide ,,·ith the fixed, or
the so calJed point of suspension, we then have in<lifferent equilibrium,
because the body is balanced, in vrhatever <lirection it may revol,·e 
about the fixed point. If a body .R.B, Fig. 104, be .fixed or sustained 
at a point C lying above its centre of gravity 8, it then fincls itself in a 

Fig. 104. Fig. 105. 

condition of stable equilibrium, because, if this body be brought into
�y oth�r po_sition, the component N of the ,veight G tends to bring 

' · 
od:>: 
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The same reasoning ,vill also apply to the case of a body fixed by 

mined, if ,ve put P1 • 

and P P, ,v-hich may be calculated from the distances CD=x, 2 = 5. . 

PRESSURE ON THE AXTS. 

hvo points, or by an axis ; i t  will be either in indifferent, stable, 
or unstable equilibrium, 
according as the centre Fig. 106. 
of gra\;ty lies "ertically
above or vertically below
the axis.

§ 123. Pressure on the 
Jb:is.-If a body, acted 
upon by forces in  space,
be fixed by two points or 
by a line, relations then 
take place, ",·hich we
,,·ill no\v investigatei . We 
may reduce, according 
to § 92, every system of 
forces to t\,o, viz., one

running parallel to the
fixed axis, and the other
acting in the plane normal to this line. Let JJN=N, Fig. 106, be 
the first, parallel to the axis XX, passing through the fixed _goints C 
and D ;  and OP= P, the second force acting in the plane YZYat right 
angles to the axis XX. If we introduce other forces, as BN = -
N, CN1 = N1, and DN2 =- N2, ,ve change nothing in the condi­
tion of equilibrium or of motion, because these forces are entirely
taken up by the axis. No�,. the forces JY and - N form together a 
first couple, and the forces N1 and - �' acting in the plane XY and
perpendicular to XX, a second couple; ,ve may, therefore, so manage,
that these shall perfectly replace each other. If EO is the normal
distance between the force N and the axis XX = y, and CD that of 
the fixed pointi= x ;  from § 90, \ve have the moments of both couples 
= Ny and N1x, and these are equivalent to each other, if .J\y=N1x. 
We may also assume inversely that the force N is entirely taken up 
by the axis XX, ,vhilst the axis has to sustain in its proper direction 
the pressureN, and the forces.l\r1 = "!L N, and - N1 = - Y Napplied 

X X
perpendicularly to it at the points C and D.

That the body may be in a state of equilibrium, it is necessary that 
the direction also of the resultant acting in the normal plane YZ ( at 0)
pass through the axis. This force P may be replaced by two parallel
fo:ces P1 and P2 applied at the points C and D, which may be deter­

CDB= P .  D O  and P2 • CDB= P .  CO; the 
axis XX ,vill have, therefore, besides the forces BN= - N, CN1= 

. _ X2 pJ\191 and DN2 = - N1, also to react against the forces P1 - x · 

OC=:ri, and 0D=x2• 

X 



ho� of revolution, is equivalent to the sum of the moments of those . acting in the opposite direction. By the help of this last formula we 
ay 6!1? e� _ither a force or an arm for an element of a system of forces 1n equ1hbr1um. 

ca ��;;�;· .Jn�e forces of ro�tion P1 = 50 lbs., and P, == - 35 lbs., act upon a body tth P ti p h?g about an axis at the arms a, == I¼ foot, and a, == 2½ feet; required, • orce , w ich shall act at the arm a1 == 4 feet, in order to restore the balance. i. t. . to prevent rotauon about the axis 1 It is: 

112 EQUILIBRIUM OF FORCES ABOUT AN AXIS. 

§ 124. From th_e results of the investigations of the foregoing_ para­
graph we may easily calculate the forces sustained by the axis and
the fixed points C and D. First, the axis has a pressure to su�tain
equi,·alent to the force N in its own direction, which may be entirely
rt:siste<l by one or other of the two fixed points. Secondly, from the 
forces N1 = '!I N, P1 = x2 P and-N1 =- '!I Nand P2 = 

x
X 

1 P, act-
Xx X 

ing in planes normal to XX, and applied at the points C a�d D, there 
arise the resultants R,_ and R2, which must be also sustained by the
fixed points C and D.

If we put the angle PO Y, which the direction of the force P makes 
with the plane XY containing the axis XX and the direction of the 
force N-== e1, the angle N1 CP1 is alsoi= e1 ;  on the other hand, N2D P2 = 180 ° - e1, and the resultant pressures are therefore given by : 

R1 = ✓N1 
2+ P12 +2N1 P1 cos. a, and 

R2 = ✓N/ + P2 
2-2N1P2 cos.ea. 

Exampk. A set of forces of a bo<ly fixed by its axis XX, is resolved into a norm�Iforce P= 36 lbs., and a parallel force N= 20 lbs.; the distance of the last fron1 the axisis y =  1 ½  feet, and the distance CD = x = 4  feet. To find the forces sustained by the axis, or by the fixed points in it, with the condition that the direction of P deviate Ly an angle • = 650 from the plane XY, and its point of application O be distant by CO= x. = l foot from the fixed point C? The force N=20 lbs. imparts to the axis along its 
direction a thrust N = 20 lbs.; besides, it generatea also the forces N. =!. N= 1 •5 . 20 = . X 47,5 lb. and- N1 = - 7,5 lb., against which the fixed points C and D react. From the 
force P arise the forces P1 = x.,. P== 4-l . 36s::27 lbs. and P, == x, P =_!. . 36== 9 lbs. 

X 4 X 4and by substitution of these values we have the resultant forces:----:-
R, = ✓ 7,5'+279+ 2 .  7,5 . 27 . co,. 65° = .,./56,25+7"29+ 171,160 

= .,./950,410 = 30,926 lb., and 
R, = ✓ 7,5'+99-2 . 7,5 . 9 .  co,. 65° = .,./56,25+81-57,054 

= .,./80,1 96 = 8,955 lbs. 
· § 125. Equilibrium of Forces about an Axis.-The force P is the
resultant of all those component forces whose directions lie in one or
inore planes normal to the axis. But now in these cases, from § 86,
the statical moment Pa of the resultant is equivalent to the sum P1a1 . +P2a2+ . . . of the statical moments of the components, and for the
condition of equilibrium of the fixed body the arm a of the resultant 
.= O, because this passes through the axis ; hence the sum is also : 
. P1a1+P2a2+ . . . .  = O ;
'· e. a body fixed by its axis is in a state of equilibrium, and remains
also �ithout revolving, if the sum of the moments about this axis = 
�' or if the sum of the moments of the forces acting in one direc­

• 



material or physical lever . 

by t,vo forces, is either one-armed or two-armed, according as the 
points of application lie on the same or on opposite �ides of the fiiJ­
crum. There is a distinction made of }eyers of the first, second and 
third order · the t,vo-armed le,·er is termed a lever of the first order ; 
the one-ar�ed, of the second or third order, according as the \\·eight 

THE LEVER. 1 1 3  
50e. l,2!5-35e. 2,5 + 4 P3 = O, 11ence 

P3 87,5-62,5 -6,25 lb. 
4 

§ 126. The Lever.-A body capable of turning about a fixed axis,
and �cted upon by forces, is r.alled a lever. If we imagine it to be 
<levo1d of weight, it is then called a mathematical, but other\vise, a 

It is generally assumed that the forces of a lever act in a p]ane at.
right angles to the axis, and that the axis is replaced by a fixed point, 
called the fulcrum. The perpendiculars let fall from this point on the 
direction of the forces, are called arms. If the directions of the forces 
of a lever are parallel, the arrns form a single straight line, an<l the 
lever is called a straight lever. If the arms make an angle \\'1th each 
other, it is then called a bent Ie,er. The straight le\'er acted upon 

�cting vertically down,vards, or the po,ver acting ,ertically up\\·ards, 
lies nearest to the fulcrum.

§ 127. The theory of the equilibrium of the· ]eYer has been already
fully laid clo\vn ; "'e haYe now, therefore, 

Fig. 101. only to treat of each specialJy.
In the t"·o-armed lever, .llCB, Fig. 107, .1f the arm C.ll of the power P be designated 

by a, and the arm CB of the weight Q Ly b,
from the general theory : Pa = Qb, i. e. the 
moment of the force is equal to the moment 
of the "Teight ; or also, P :  Q=be: a, i. e. the 
power is to the weight inversely as the arms. 
The pressure on the fulcrum is R= P + Q.

In the one-armed levers .fl.BC, Fig 108, 
ancl B.110, Fig. 109, the same relation takes 
place between the po\ver P and the weight Q, but here the direction 

Fig. JOS. Fig. J09. 

10* 



- P, an<l in the second, R = P - Q. 

..i be r� as
,, the fu lcrum, we must put Pg ; . ..iJJ = Q • .OC + G .IJS, and in . 3,-, • 120 + 2,5 . 12 = 420+ 30=450; hence, the power P'J of the :;, 2 -

4 50 , = 0 = 75 lbs.; also, the sum of the forces P, + Pg acting upwards, = 57 + 75 = 132 Jb.. · �., is exact y equal to the sum of che forces o.cung do,\rnwards, J 

114  THE LEVER. 

of the power is opposite to that of the weight, and therefore the pres­
sure on the fulcrum is their difference, and in the first case R = Q 

Also in the bent lever .flCB, with the arms CN-a and CO=h,
Fig. 110, P : Q=b : a, her� the pres-.Fig. 110. sure on the fulcrum 1s equ1,·alent to
the diagonal R of the parallelogram
CP RQ , ,vbicb may be constructed 
fro� th; po"'er P, the '\'eight Q and
the angle P CQ1 =PDQ=a., ,vhich 
their direction

1 
s make ,vith each other.

Let G be the weight of �he Jever,
and CE=e, Fig. 1 1 1 ,  the d1�tance. of
the fulcrum C from the "ertical hne
BG, passing through its centre ofgra­
vity ; we shall then have to put Pa+ 
Ge= Qb, and the plus or minus sign
before G, accor<ling as the centre of
gravity lies on the side of the power
P, or on that of the "·eight Q. 

Remark. The theory of the le�er finds its ap­
pllc-arion in many tools antl 1nnchi11es, viz. iu the 
different kinds of balances, cro,v-uars, the brakes 

of pumps, wheelbarro,vs, &c. The 
second part ,vill treat fully of these.Fig. 1 1  I. Example.-1. If we press down the 
end .11 of n cro,v-bnr .IJCB, Fig. 1J2
\\tith a force P=OO lbs., nnJ ,vitb th� 
arm C'.4 of the po,ver equal to 12 
ti,nes that of thearm CB of the weight
then "'ill this, or rawer the force ex�
erted at 13, be =  Q= 12 ti1ncs that of p = 12 . 00 = 720 lbs.-2. If a load Q
hanging from a pole, Fig. 1 1 3, be car: 
ried by two me� ,vh1ch pole the one 
lays hold of nt .11 ancl the other at .B 
we n1ay readily find out ,vhat ,veigh; 

Fig. 112. each has to sustain. Let the load Q = J 20 lbs., the ,veight of tLe pole G = 12 lbs., the distance .flB of both 
points of application = 6 ft., the dis­
tance BC of the load from one of Lhese 
points = 2½ feet, the distance of the 
centre of gravity S of the pole fro1n
thi� same point .BS=3½ feet. If ,ve
take B for the fulcnnn, the power P, 
has to balance at ..i the ,veights Q and 
G, therefore P, . B./J. = Q . BC+ G • 
BS, i. e. 6 P1 = 2,5 . 120 + 3,5 . 12 = 300 + 42 = 3·12; hence, P, = 
342 = 57 lbs. On the other hant.l, if 

numbe�?�

• 61 'c) 

second man is p 

' 
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foo� w bat is the amount of the po"•er P, an<l the 6 ft ,  and that of 1he "'eight CE = 1 
C.9 . P = C B  • Q + CE · pressure on the pivot R required 10 restore the balnnce � 

th� b?<lies in equilibriuo1. 

1s found to subsist bet\veen the normal 
components N and �-

8.11.P = from the direction of the second component 8, we have i3 

PRESSURE OF BODIES ON ONE ANOTHER. 

Q+G=12o+ 12=132 lbs.-3. In a bent lever, .BCB1 F1g. 114, of 150 lbs. ,vt. the vertically
pulling force_ Q= 650 lbs., an<l I.be arm CB= 4 ft.1 but the ar,n C.9 of the power P = 

Fig. 113. Fig. 114. 

B 

2750
G, i. e., 6 P = 4- • 650 + 1 . 150 = 2750; consequently, the power P = =458¼ 

lhs. ; the pressure on the pivot consists of the vertical force Q+ G =650 +6 
I :50 = 800 

lbs., and the horizonto.1 power P =458½ lbs., and is tuerefore: 
= R =✓(Q+ G)a + P' 
= ✓c1:100)1 + <458½Y' 
= ✓�50070 = 922 lbs. 

§ 128. Pressure of Bodies on one another.-The experimental la\\r 

announced in § 62, that action and reaction are equal to eac/1, otlie_r,
is the basis of the whole mechanics of machines. It is necessary 1n 
this place to make the meaning of this still clearer. When two bo<lies 
M

1 
and M2, Fig. 1 15, act upon each

other with the forces P and P1 ' "' hose Fig. 115. 
- ------= directions deviate from the normal com-

mon XX to the t\\·o surfaces at their 
point of contact, a decomposition of the 
forces is al,vays possible ; the one com­
�onent N or Ni, ,vhich is in the direc­
tion of the normal, passes over from the 
one body to the other, the other com­
ponent 8 or 81 remains in the body,
and must be counteracted by another 
force or resistance, in order to maintain 

From the
principle set forth, perfect equilibrium 

If the direction of the force P de­

(§ 75) 

viates by the angle N.JlP=a from the normal .JlX an<l by the angle 



� 

�' 

1 16 

P sin. ii 

- sin. (a.+iJ) 
l .  1 l 

,3 P sin. 

si,i. (a+S) 
250 sin. 350 

= ]t�osin. «1 = 187,1 8  si1,. 65° = 221 40 lbs. 1, S

subsists 1£ the vertical Jine containing the centre of gra,·ity passes 
through_ the triangle or polygon ,vhich is formed by the straight lines connecti g the points of support. �In bothes \\·hie� re supported, '"°e must distinguish bet\Yee� stable . �and u�stable equ1hbr1um. The ,v eight G of body .11.B, F1g. 1 18, a _dra" s its centre of granty do,vnwards ; if no resistance be opposed 

STABILITY. 

- • 

and 81
.111 P1 

P sin. i3'1'1'_Jf - S,sin. (o.+�)
If we represent N.ll1P byh by )31, ,ve also haYe 

.J stn. Gl 
" 

J>pl sin • .131N_ _
1 anc] S,

1sin. (n1 + p1)

lastly, froUl the equality N = 
sin. (a.1 

+ P1)
_ 
--

P1 sin. �1= sin. (<i1 + P1f 
&am;,le.-1-Vuut re�lution of tlt

bo<ly .ft!,, Fig. 1 16, susrn111(.•fl by u sup. port DE, l,o prcsse1l npon by tu1othl.'r, cnpable of 

sin. (o.+.J) ie forces takes
pl0<·e if n _

Fig. 1 16 ,  

revolvmg aLout nn nxis C wjtl1 n force P = 25U
lbs., tile nnglei1 of direction being the followi11g ;

P.IJN=•=  3:-,o,
P.tl.Se= S = 480,
P,.IJJr, = "• = 650,
P,.1//J, =S, = 50°.Fron1 the first fo11nula rhe normal prl'ssure 00•tween the t\\.'O bo<lk•s j..; deterrniuccl hy.J8°�5u_,,,i:= = 

Bt,,. 83U 
187,J S lbs.; fro,n tlie s£>t•ond tlte pre.\!St1ro 011 theaxis, or on the point C1 is 

Ps1,L f1_N=lt� = 

p sin.t" s - --- = --
- Slit, (a+S) si,,. b30 

144,-17 Jb!l. ; nnd by coanbininl{ tho third nnd fourthequntion, tbl'r<> follows ftnnJly for tl1e componentoppo ec.l to DE: 

sin. /J, sw. Ou0 

Stability.-Vrnen a body pressing_ ag.ainst a horizontal § 129.
plane is acted upon by no other f�rce tha� gravitt, 1t has no tendency 
to move for,vard, because the weight acting vertically do\\:nwards is
exactly sustained by this plane ; nevertheless, a revolution of the
body is possible. If the body .11DBF, Fig. 1 1 7, rests at a point D 

upon the horizontal plane HR, it ,vill 1·e-Fig. J 17.  main at rest, if its centre of gra�ity 8 be 
supported, i.Be., if it lie in the vertical line
passing through D. If a body is supporte<l 
at two points on the horizontal surface of:r:i', <F ,

' \'t:·. ! " another, it is requisite for its equilibriu1n . .-�1\< -��- ··£ that the vertical line of gravity should inter­
L <•; : B sect the line connecting the t,vo points.. -.R 

Lastly, if a body rests three or 
points on a horizontal plane, equilibriu1n 

at more 
.. 
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a body having a J?I ne ba�e �
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to this force it ,vill cause the body to turn until Fig. 118. 

its centre of gravity has attained its lo,vest po­
sition, an<l equilibrium will then be restored. 
We may mention that the equilibrium is stable 
when the centre of gravity is in its lo,vest pos­
sible position, Fig. 119, and unstable when in 
its highest, Fig. 120, and indifferent, when the 
centre of gravity in every position of the body
remains at the same height, Fig. 121. 

Fig. 119. Fig. 120. Fig. 121. 

Example.-1. The homogeneous body ..i.DBF,oconsi::iting ofa bemispheTe and_ a cyl�­
de_r, Fig. 1 1 7, rests upon a horizontal plane HR. What height SF=h must 1ts. cylin·
dncal pan hnve, that the body may be in equilibrium? The radius of a sphere 1s per­
pendicular to the oorresponding plane of contact : now the horizontal plane is such a 
one i consequently the radius SD must be perpendicular to the horizontal plane, and the 
centre of wa,vity of the body lie in it. The axis FSL of the body passing through the 
c_entre of the sphere is its second line of gravity ; the point S, the intersection of the two .hnes, 1s tl1erefore t.he centre of gravity of the body. 
Let us now put the radius of the sphere and. cylin- Fjg. 122. 
dt>r S..i = SB =r, and the height of the cylinder
SF= BE= /1., we then have for the volume of thi,
�emisphere : V. =! 'Ir r3, for the volume of the oy­
hnder � ='Ir rt h ;  1br the distance of tile centre of 
gravity of the sphere S, : SS, = i r, an<l for that of 
�e cylinder S'J : SS� =½ h. That the centre of gra­
v11y of the ,vl1ole boJy may fall in S, the moment 
of the sphereo¾ .,,. ,.a .  i r must be put equal to the 
moment of the cylinder, rr rt h . !h ;  fro111 which we
have: 

h2 = ½r11, i. e., h =  r J½ 0,7071o. r.
2. The pressure ,vhich each of the three legs, ..i,

B, C, Fig. 122, of a.ny loaded table has to sustain, is 
�etermine<l in the following manner. Let S be the centre of gravity of the table with 
its load, and SE, CD, perpendiculars upon .llB. If G be the weight of the whole table,
and R the pressure on C, ,ve may, considering .l1B as the axis, put the moment of R = 

SE t...i.BS 
10 the mon1ent of G, i. e., R . CD=G . SE, and ·we then obtain R = CD • G =1:,._.lllJO 

= Q = 6 ..i CS • G, and that on .11 = P =G; like,vise a]so the pressure on B· 

ll. B C S  
t::. .flB C 

• G. 

§_ 130. Let us now take the case of
resting on a horizontal plane. Such a bo<ly possesses stability, or 1s 
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in stable equilibrium ,,·hen its centre of graYity is supported, i. e. 
when the vertical line containing the centre of gravity of the bocly 
passes through its base, because, in this case, the tendency of the 
weight of the body to cause it to turn is prevented by its own rigi<lity. 
\iVben the Jine of gravity passes through the edge �f the base, the
body is then in unstable equilibrium, and Vi1ben the hne pass�s out­_side the base, no equilibrium subsists. The body falls to one ·ale an<l
o,·erturns� The triangular prism ABCDE, Fig. 123, is, according
to the above, stable, because the Yertical SG passes through a point
N of the base. The parallelopiped .IJBCG, Fig. 1.24, is in  unstable 

Fig. 123. Fig. 124. 

equilibrium, because SG intersects a side CD of the base. The
cylinder .lllJCD, Fig. 125, is ,vithout sta-

Fig. 125. bility because SG no "·here intersects the 
base CD.

Stability is the power of a body to pre­
serve its position by its ,veight alone, and 
to oppose resistance to any cause tending
to overturn it. If we have to choose a
measure of the stability of a hotly, we rnnst
distinguish whether this has reference to a
displacement or to an actual overturning of 
the body. Let us now take into considera­
tion the first only of these circu1nstances. 

§ 131 .  Forrnulte <if Stability.-A force, 
P, not directed vertically, tends not only to overturn a body .llBCD,

Fig. 126, but also to push it forward ;Fig. 126· let us assume in the mean time that a 
re�istance is opposed to the pushing or
pulling forwards, as it may happen, and 
have regard only to its revolving about 
one of its edges C. If we let fall from 
this edge C a perpendicular CEn= a 
upon the direction of the force, and CN 
=X upon the vertical line SG passing
through the centre of gravity, ,ve havt! 
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the distance or arm x, &c. 
§ 132.-1. In a paralle]opipe<l JJBCF, Fig. 1�7, of the le�gth 

.11.E=l breadth .llB= CD=b and height .IJD=BC=h, the ,ve1ght 

b�hly, provided 'Y represent the density of the mass of the parallelo-

secondly for that about E, 

FO.RMULlE OF STABILITY. 

only to consider a bent le\"er ECJY, for "'bich Pa= Gx, so that P = 
x G ;  if the external force P be greater than x G the body revolvesa a
a?�ut the point C, and, therefore, loses its stability. Hence the sta­
b1hty depends upon the product (Gx) of the ,veight of the body, and 
the shortest distance bet,veen a side of the perimeter of the base and 
the vertical Jine passing through the centre of gravity ; Gx may there­
fore be regarded as a measuTe of the stability, and for this reason is 
properly called the stability itself. 

Hence we see that the stabiJity increases simultaneously ";th the 
weight G ancl the distance x, and may conclude that under otherwise
similar circumstances a body t,vice or thrice as heavy does not pos­
sess more stability than one of the single weight with twice or thrice 

' ' 
½G= Vr= blilr, and the stability 8- G .  KNs= G. ! CDs= Gb 

= 2 
p1ped.

2. In a body .liCFII consisting of two parallelopipeds, Fig. 128,
the stabilities about the t"·o edges of the base C and E are different 

Fig. 127. Fig. 12$. 

from one anothrr. Let us take the heights BC and EF,_/1, and h1,
and the breadths CD and DE = b and bv the weights of the parts G 
and G1 = bli"'1 and b1li1"'1 ;  then the arms about C will be KN1 = ¼
b and KN2 = b1 + ½ 61, an<l those about E = b1 + ½ b and ½ b1. 
The stabilities accordingly are : first for the re,olution about C,

S =  ½ Gb + G1 (b + ½ b1), = (½ b2h+bb1h1 +½b}ih1)lr, 

sl = <; (b1 +½b) + ½ G1b1 = (½b/1h1 +bb1h+lb2li) Zr.
The la_tter sta�ility i� about 81-8= (h-h1 ) bb1ly greater than the 

former ;  if \ve wish to increase the stability of a \vall JJ_C by offsets, 
these must be placed on that side of the wall to,vards which the force 
of revolution (,Yincl, water, pressure of earth, &c.) acts. 



_e _ 

120 DYNAMICAL STABILITY. 

3. The following is the stability of a ,vaU .11.BCEF, Fig. 129,
batterino- on one side. The upper breadthFig. 129. .11.B = b:the height BC= h a�d the length
CH= l, and the batters= n, i.se. upon .Ii.I_= a height of 1 foot ; IL = n feet or inches
of batter, therefore upon IL fe;t ED = nli.
The weight of the para1le1op1ped .IJCF is 
G1 = bh lr, that of the three sided prism
.IJDE = 02 = ½ rtl,i. hlr, the arms for a revo­
lution about E are = DE + ½ b = snh +  ½ b
and i DE=½ nh, consequently for the sta-
bility we have

8= G1 (nh+½h) + J G2nh 

= (½b2+nhb+ !n2hi) hi,,.
A parallelopipedical wall of equal vol­

ume has the breadth b + ½ nh, hence the
stability is : 

81 = ½ (b+ ½nhy1 hlr = (i b2+½nhb+tnih2) hlr ;
its stability is, therefore, about 8-S1 = (b+ .52nli) . ½ nh2lr, less than
that of the battered wall. 

For a wall sloped upon the opposite side, the stability is 82 = 
(b2+nhb+ ½n2h2) • ½ hlr, less also than 8, and indeed about 8-82= (b+ ½nh) . ½nh2lr, as well as about 82-81 = �\r n"h3ly less than
the stability of the parallelopipedical walls. 

Example. What is the stability for each foot in Jengtl.t of a stone ·we11 of JO feet in
height, and J¼- feet of upper brf'1ldlb ,vilh baetter of � in 5eon the buck? The specific
gravity of this wall (§ 58) is taken at 2,4, Jts density )' 1s, therefore, = 62,:S . 2,4, = 
130 lbs. ; now l= 1, h = 10, b = 1,25, and n= i =0,2 ; hence it follows, that the sta­
bility sought is: 

S= (½.  (1,25]1+ 0,2 . 1,25e. 10 + ! . [o,2r.  JO� 10 . 1  . 130 
= (0,78 L:25+ 2,5+ 1,3333) 130 = 4,ti146 . 130 = 603,4 ft. lbs. 

With the same quantity of material, and under other,vise similar circumstances, the 
stability of a paralJelopipedical wall ,vould be: 

S1 = (½. (1,25]1 + ½ , 0,2e. 1,25e. 10+ t . 0129 • 10�) . 130 = (0, 78125 + 1,25+ 0,5) . 130 =2,53 l . 130 = 329 ft. lbs. 
The same ,vall, wi1.h a sloping front, would have the stability: 

�= c½. [1,25r+ 1 . 0,2e. 1,25e. 10+ 1 .  [o,2r.  1�)e. 130 
=(0,78125 + 1,25+ 0,666 . . .  ) . 130 =2,6979e. 130 = 350,7 ft. lbs.

.Remark.-It is eviuent from the foregoing that it allo,vs of a saving of material to 
batter walls, to construct them ,vith counterforts, to give them offsets, or to place them 
upon plinths, &c. The second part will give a further extension of this subject, ,vhen 
,ve come to treat of the pressure of earth, and of vaults, chain briJges, &c. 

§ 133. Dynamical stability.-We may distinguish from the mea­
sure �f stability treated of in the last paragraph, still another to a 
certain degree dynamical measure of stability, when we consider the 
effect w!uch is to be expended in order to overturn a body. Now the 
mechanical effect of a force is equal to the product of the force and 
the space, but the force of a heavy body is its weight G, and the 
space e9ual to the vertical projection of that described by its centre 
of gravi_tr, we may consequently take for the dynamical measure of
the stab1hty ot: a body the product Gs, ifss be the height to which the 
centr� of gravity of the body must ascend in order to bring the body
from its stable condition into an unstable one. 
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= ✓ r+y2 -y, and the stability in the last form of expression is 

symmetrical trapezo1<lal transverse prism with a If the body is a 
as Fig. 130 represents, and if the dimensions are the follo,v­section, 

upper ing: length = l, height MO = Ji, lower breadth CD = b , 1

bhS = a[  f • h)
2
- + 2 b2 •  h] + (bi + 2 2 · 1 

lume of this body is (§ 115): 

. f I) s,,o . = (2 t .  1 + 2 . . . 4 + 4 t+ l = 40,25 5 = 201,25 cubic feet� . 
gravity above the base is: , + b,i + bsf!l , , . h 1

Pro;1ided it ?8 a re'volution about the longer edg� of the base, the ;honzontal distance of the centre of gravity from tlli'J e<lge ,vill be: 
gravity from the axis ,vill be :  8010,4t= 0,002 1 1 tv' = ' -) -2 

:,"'."" -=-""'" 
(-

.,--
(-10-, 34 height : anJ tlie _CS=_z =vr+ y2 = v l,7�5)s+

2 b,i,+ 2 b1/1 

DYNAMICAL STABILITY. 

Let C be the axis of revolution and 8 the centre of gravity of a 
body .fl.BCD, Fig. 130, whose dynamical stability we wish to find. 
If we cause the body to revolve so that 
its centre of gravity comes to Si, i. e. Fig. 130. == vertica11y over C, the body will be i n  
unstable equilibrium, for if it only re­
volve a little further it will fall over. 
If we draw the horizontal line SN, this 
will cut off the height N8

1
=s to which 

the centre of gravity has ascended, from 
which the stability Gs is given. If 
now CS = CSh= z, C.'NI = SN= x,
and the height 

1
CN= Jl18 = y, it fol­

lows that the space 8lN= s = z- Y 

8 =  G (✓:r + y2 - y). 

2 b Ii ( § 105 )  breadth .11.B = b2, we then have MS= y = b1 + 2 •
b1 +b'll 3 

and CM= x = ½bi, hence 
CS = f (�)2 

+ (b1 + 2 b� . Ji) 2 ,,..J 2 bl + b2 3
and the dynamical stability, or the mechanical effect, required to 0l"er• 
turn it : 

(!!J.2 ) 2 3 bl +b2 3bl + b'.l 

.Examplt.-Wbat is the dynamical stability or the mechanical effect necessary for theoverturning of an obelisk ..i.BCD, Fig. 131, of gmnite, if its height h = 30 ft., its upper length and breadth l = Ii, and bt = I ft., and lower length and breadth � = 3j ft.1 The vo- Fig. 131.1 
4 fl, h, = 

V= (2 b, 1, + 2  b, la+b, lo+b!l l,) � 
6 

Now a cubic foot of granite 187,5 lbs.; the ,vhole ,veight of this body is: =377341 3 lbs. The height of the centre of weighs = 3 . 62,5 = G = 201 125 . 187,5 

+ b,l,+ b,l, 2 
_ 4 · t + 3 . t .  l + 1 .  4+ ½ .  t 30 271 75 . 1 5  - . 2 = = 10,342 ft.4025 40 25 
x =. ½ b, = ¼ • ¼ = i ft.; hence, the distance of the centre of 
to which the centre of gravity must be raised to bring about an o,erthro,\· will be: 

1 1  
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without stability. Besides, a body .11.C resting on the inclined plane _
�H, Fig. 134, has a stability different from that of one on a horizontal 
ih 

ane. If DAI � and JJ1.8 y are the rectangular co-ordinates of 
of gravity S, we h�ve he arm of t�e stabilit� DE=.D0-_ !. s �-y sin. o, "'htle, if the body 1s on a horizontal plane . "1 15 = x. t S1nce x 

0

os. 4 - y  sin. o., e sta 1 1ty ,v 1t · th b't re erence to the I ower edge D comes out Jess for the inclined than for the hori. 
. 

> x c 
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1 = ::  - y = 10,4S0 - 10,342 = 0,147 fl ;  Jn-:tly, the corrt'!'ponlling mcchnnical effect
or stal.,ility will be: Gsn= 37734.3 .  0,1-17 = �547 fi. Jt,-1.

Remark. _!he factor , = ...; ,;cl +  y' 
:t (..,/2 - 1) = 0,4 14 x, for y 

0, • = x. for !I - y gives for Y = 
, = (✓11

9 + 1 - u) x, npproximately
X 

= 2, 

, = 
1, + -

= fl.t', 

'= X--, an l fcl 
oo 

=
e-, also for y = 10 :r,- n) X =( 

<lynumicnl stability is therefore so much the grent�r, the lo,ver the centr� o: g�vity 1ie3,and it npproxj1natcs moro and more to null, tho higher tho centre _of gravJty he nuove
the base. Sledgei;i, carriage<-, t.hips, floating docks, &.�., muSl Oil tlu!I n�count ho o con­
structed nod loac.led, that the centre of gravity tnoy lie n" lo,v ns possil>Je, nn<l Wi:!itles,
be situaw<l over the middle of the base. 

§ 134. Theory of t!Le Inclined Plane.-A b�<ly JJC, Fig. 132, rest..
ing on an inclined pla_ne, that is, onFig. 132. one inclined to the horizon, may take•=---- up t"·o motions; it ll:1ay slide <lo,vn the
inclined plane, and 1t may also re\"olve
about one of the edges of its base and
overturn. If the body is left to itself.
its weight G is resolveJ into a fore�
N normal, an<l to a force P parallel
to the base, the first is resisted by the
reaction of the plane, and the last 

urges the body down the plane. Let the angle of inclination FlJR
of the inclined p]ane to the horizon = 11, "·e have therefore the angle
G8N = a., and hence the normal pressure : 

N= G cos. ll,

and the force parallel to the planei: 
P = G sin.i"· 

If the vertical line SG passes through the base CD as in Fig. 132
a sliding motion only can take place, but if this line passes outside th;
base, as in Fig. 133, an overturn ensues, and the body, therefore, is 

Fig. 133. Fig. 134. 

· · h fi 
, 
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If another force besides gravity acts upon body .IJ.BCD, Fig. 
1 35, its stability continues if the direction of 

the 
the resultant N of the 

weight G and the force P intersects the base CD of the body. 
Lo.mpfe. The obelisk in the example of the preceding paragraphs has x = i ft. and 

and will lose its stability, consequently, if transferred to an inclined Y = 10,342 fi., plane, for ,vhose angle of inclination: 

°� _ sin. [90 - (a. + J3)] _ cos. (a+f3) 

THEORY OF THE INCLINED PLANE, 

• 
zontal plane ; it is null for x cos. a. =  y sin. a., i. e. for tang. a.=x.y
When a body that is stable G x on a horizontal plane is transferred 
to an inclined one, ,vhose angle of inclination corresponds to the ex-
pression tang. a=� it will lose its stability. On the other hand, a 

y
body may acquire on an inclined plane the stability which is wanting
to it on a horizontal one. For a turning about the upper edge C, the 
arm CE1 = CO1+MN x1 cos. a.+y sin. a., whilst in its position on
the horizontal plane it is = xr If now x1 is negative, the body has 
no stability so long as it remains on a horizontal plane, but if it rests 
on an inclined one, for whose angle of inclination tang. a isi> xy 

1 , the 

body is stable. 

tang. a =  0,16922, and inclination 4 
7 ?OOO = = 

4 .  10,342 41368 
= 9° 36'. 

§_ 135. As the inclined plane only counteracts that pressure which.
1s directed perpendicularly against it, the force P which is necessary
!o pre,ent a body supported upon an inclined plane from overturning, 
1s determined by the condition that the
resultant N of P and G, Fig. 135, must Fig. 135. 

be at right angles to the inclined plane.
From the theory of the parallelogram of 
r: P sin. ONP1orces ,ve have - = --- now the

""'i"iJG sin. POJv 
L PNO = L GON =  FHR = a, and 
L PON= POK+KON=>3+ 90°, in so
far as ,ve represent by J3 the L PEF­
P OK, by which the direction of the
force deviates from the inclined plane ;
hence we have 

P sin. a. • P sin. a.- = --- --, i. e. - = --,
G sin. (90 + >3) G cos. il 

therefore the force which maintains the body on the plane is: 
G sin. a.. p = cos. J3

For the normal pressure N
N sin. OGN but the L OGN= 90° - (a.+'3) and' G =i

sin.iONG
ONG PON =  90+J3, hence it follows 

..... 

G - sin. (90°2-J3) - cos. p 

= 



P = G and N = O, the inclined plane has then no control over the 

Lastly, if the force acts horizontally, J3 = - a, and cos. >3 = cos. o, 

p = 500 nn. 50° = 5oo lin. 60° = 422,6 · bsl ; and the pressure on tho plane: . 
·-t = 500 . cos. 750 = 142,8 lbs. l
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and for the normal pressure against the plane 
N= G cos. (a+>J). 

cos. /3
If the force P is parallel to the plane, /3 = 0 and cos. J3 = 1, since 

P = G sin. o. and N= G cos. o.. 
If P acts vertically a+�i= 90°, hence 

cos. i3 =osin.oa., cos. (a.+>3) = 0 and 

body. 

hence 
G sin. a. . G cos. 0 GP = --- = G tang.ia ,  an d N=i--- =  cos.oa. cos.oa cos.oa. 

Example. To maintain a body of 500 lbs. upon an inclined plone of 5�0 inclination tothe horizon, a force is applied ,vbose direction makes au an2"le of 75° \\'Jlh the horizon"·lJal is Lhe m�TD:itude of lllis force, an<l the 1nessure of the l.iody against the }Jlnne ,iTLe force is : 
ros. (75-50) cos. 2:>0 

cos. 25° 

§ 136. Principle of Virtual Velocities.-If ,ve com�ine the prin.. 
ciple of the equality of action and reaction set f�rth 1n § 128, ,vith
that of virtual velocities (§ 80 and § 93), the follo,ving la,v transpires.

If two bodies M1 and hf,, Fig.Fiir. 136. 136, hold each other in equili-
brium, then for a finite rectilinear 
or infinitely small curvilinear mo­
tion of the point ofcontact or pres­
sure .11, the sum of the mechanical 
effects of theforces of tlie one body
is equivalent to the sum of the me­
chanical effects of those ofthe other.
If P1 and 81 be the forces of the 
one body, and P" an<l 82 those of
the other, then, for a displacement 
of the point of contact from .11 to
B, the respective distances de­

scribed are .11D1'.l1E1, .l1D<J. and .llE'J,, and according to the above law: 
PJ. . .llDl + 8 . .11E1 = p'}, • .llD'J + 89. . .IJE'J,. 

The correctness of this proposition may be proved in the follo,ving 
ma��er: As the nor1nal pressures � and � are equal, there is also 
equihb�1u� between their mechanical effects, N1 • .llC and N,.2: .llC, 
'�'•!h this <l1fference, that the mechanical effect of the one force 1s po­
sitive, and that of the other negative. Now from what has preceded
,,�e have the mechanical effect N. . .11.C of the resultant N equivalent 
fo the sum P1 .llDi + 81 • .IJE1 of\he mechanical effects of its compo..
nents P1 an<l 81, and like\\·ise .N"2 • • IJ.C= P2 • .flD2 + 82 • .11E2 ; hence
also P1 • .l1D1 + S . .J:LEl 

= p .flD2 + S. .IJE2'l 2 ' 2 • 
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The application of the principle of virtual velocities thus made more 

• .11.0 + that of G + that of P hence we have to put N .  0 = - G 
sin. a. .llC . G 

cos. µ .llD 

I� order to fin<l the normal pressure N, we must mo Ye forward the . 

THEORY OF THE WEDGE. 

general possesses great ad vantage 
in statical investigations, as by it  
the evolution of algebraical expres­
sions becomes much simplified. If, 
for example, we move a body .11. up
an inclined plane FH, Fig. 137, a 
distance .11.B, the corresponding path 
of the weight G, = ./JOi= .f1B sin . 
.flBC = .llB . sin. F BR = .11.B si.n. 
a,. On the other hand, the path of 
the force P is .llD = .llB . cos. BJJ.D 
= .llBi. cos. 13, and lastly, that of the 
nortnal force N = 0; nov; the me­
chanical effect of N is equivalent to 

' 
P . .IJD, and so we find P = ---- . G = ---, 
quite in accordance with the former paragraph. 

Fi.I!, 138,
inclined plane HF, Fig. 138, through
a space .11.B at right angles to the
direction of the force .11.P, to deter­
mine the corresponding paths of the 
forces, and again put the mechani­
cal effect of N equivalent to that of
G + the mechanical effect of P. The
path of N is .flD = .IJ.B cos. B.11.D 
= .llB cos. J3, that of G is.110 = .11.B
cos. B.11.C = .11.B cos. (a. + 13) and 
that of P = 0, hence the mechani­
cal effect 
N • .llD = G . .flC + P . 0, and N

G . .IJ.O co�·. (a. + �) .G • --'------'- , Just as was found 1n the former pa­cos. >3 
== 

.IJ.D 
ragraph.

§ 137. Theory of the Wedge.-After this the theory of the wedge
comes out very simply. The wedge is a movable inclined plane, 

Fig. 139. 

•11 



. .AB sin"C .llB sin .llBC . . a. 

a. -a 

foo the wedge mmt pass over the space .dB s= .4 C = t, 

m e h chapter, where the eff"ect of friction ia taken into accowit. 

( 
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formed by a triangular prism FHR, Fig. 139, generaUy the force KP 
1s = P, and at right angles to the back FR of the wedge, and holds
in equilibrium another force or load .AQB-= Q, which presses againstits lateral surface FH. If FHR == a. be the angle measuring the
sharpness of its edge, and further, the angle by which the directionof the force KP or .llD deviates from the surface FH, therefore FHK = H.llD = 3 and lastly the angle L.AH, the deviation of the direc­
tion of Q from' this same surface, = >3, then the paths wiH be given
which are described by the advance of the wedge from the position
FHR into that of F1 H1R1, in the fo1lowing manner. _The path of the
wedge is .llBB-=- FF1 == HR., and that of the force is = .llD == .JJB 
cos. B.llD =- .llB cos. (B.11.H- DAH) = .JJB cos. (a.-3) ; further, the 

sin.• H.111s .1.1. = . 
. sin . .Jl C =thpa Co the bar "L,.,.1. or Ioad = C1J

.JJBBsin. 0 _ , and the simultaneous path of the normal pressure N be..sin. J3 
tween the wedge and the foot of the bar = .llE -= .llB sin. a.. 

By the advance of the ,vedge a distance .llB, the normal pressure
N produces the mechanical effect N. .llE a: N• .llB sin. a., the force 
however, develops the mechanical effect P . .JJD == P • .ABBcos. (a.-a)_
and the resistance the mechanical effect, Q . .llCB- Q •.llB"_n. a., hencesin. >3 
N. .llB sin. a. =- P • .llB cos. (e1-a) i. e. N sin. a. == P cos. ( e1-4'), as 

. "B sin. ca • lll" • Q sin. a. d r.a1so N• .IJB sin. a. =  Q . .n . , i. e . .,, sin. a. =  • , an 1romsin. s sin. s 
these equations the equation bet"·een the power and resistance sought..1s given ; 

Q sin. a. 
P cos. (�4')= .sin.iµ 

, or 
Q sin. a. 

P .. .sin. � cos. )'which may likewise be obtained by the decomposition of the forces. 
If the direction. of the force is parallel to the base or lateral surface 

HR, 4'= a., hence P = Q _sin. a., and if� further, the di�ection of the load
sin. JJ 

is perpendicular to the side FH, '3=90°, and P follows = Q sin. a. 
Ezampk. The edge F HR of a .wedge = • = 25° , the force is directed parallel to

the base HR, therefore, 1' = a, and the weight Q acts at right angles to the side FH,
therefore S = 90° , in what proportions are the power and weight to each other 1 Pis= 
Q NI. a, therefore ,!_ == ,i 11. 25° = 0,4226. For a weight Q of 130 lbs. the power PQ
comes out = 130 • 0,4226 = 54,938 lbs. In order to drive forward the weight or bar 1 

2,3662 feet. 
,in• 0,4226Rffllark . . . 

1 

oped . th�theones of the inclined plane and the wedge will be more fully deve-

· '  . 
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called solid or rigid, the latter flexible bodies. In truth there is no 
many of them, ho,vever, such as strings, body perfectly flexibleo; 

ropes, cords, &c., and in some respects chains also, require so small 
a force to bend them that they may in many cases be regarded aij 

Such bodies, which are moreover extensible, will perfectly flexible. 
be the subject of the follo,ving investigations. 

We understand by a funicular machine, a cord or a c?nnechon of 
cords (the \\'ord cord taken in its general sense) which becomes 

Hence we 

= 8cord K8 and K82 = 82 are 1 1 

applied at the node K, for the tensions 

as equal and opposite forces, and 
t?r�e forces hold each other in equi­
librium, if one of them is equal to 
and acts opposite to the resultant of 
the other t,vo ( § 75 ). The resultant 
R of the force P and the first tension 
81 i� equal and opposite to the second 
tens1on 82, &c. In every case this _equation may be used to find out two 

FUNICULAR. MACHINES-KNOTS OR. NODES. 

C H AP"fER I V . • 

EQUILIBRIUl\-i IN FUNICULAR MACHINES. 

§ 138. Funicular Machines.-We have hitherto assumed that 
bodies, on which forces act, <lo not change their form in consequence 
of this action ; we ,vill now take up the equilibrium of such bodies as 
suffer a change in their form by the smallest forces. The former are 

stretched by forces, and in this chapter we will consider the theory of 
the equilibrium of these machines. 

That point of a funicular machine to which the force is applied, and 
where the cord forms an angle with the <lirection of the force, is called 
a knot or node. This may be either fixed or movable. Tension is 
the force "·hich a stretche<l cord transmits in the direction of its axis. 
The tensions at the ends of a straight cord or portion of a cord are 
equal and opposite, § 83 ; also a straight cord cannot transmit other 
forces than the tension acting in the direction of its axis, because it 
must other,vise bend, and, therefore, cannot remain straight. § 139. Knots or Nodes.-Equilibrium obtains in a funicular ma­
chine, when there is equilibrium at each of its nodes. 
must next find what are the relations of equilibrium at any one node. 

Equilibrium takes place at a node K, ,vhich a portion of a cord 
.llKB, Fig. 140, forms, when the 
resultant KS of the tensions of the Fig. 140. 

Pequal and opposite to the force 

81 and 82 produce the same effects 

of the quantities to be determined, viz. the tension of the cord and 



=�----- = .,.. 

2Si = ✓ P + 8/ - 2 PS cos. o,. I 

force, the resulting point of contact is the place of the node, because the normal to t�e eJJip�e KS makes equal angles with the radii vec­tore
d
s
8
K.il and KB, as does the resultant 8 "·ith the tensions of the 

l28 KNOTS OR NODES. 

its direction. Let, for example, the force be P, the tension 81 and
the L between the t\VO .RKP= 180°- .RKS= 180°-(1,, "Vt' have for 
the other tension. 

and for its direction or deviation from KS, Bl(S=>3, and 
. .� sin. asin. fl 

81= --=---· 
Ss 

&ample. If the cord .1J.KB1 Fig. 140, is fixed at the extremity B, and at LIie exrrornity 
./J. stretched by a ,veigLt G = l3:'> lb�., antl the michlle K hy a force Pe !OU lh!I., which .pulls upwards under on angle of 25° ; required the duection ant.I te11:;1on of tho Portion
of cord KB. The magnitndc of the tension is : 

�= ✓1092 + J 35� - 2 .  J 01) , J 35 l'OS. (90° -25°)
= ✓11&8 1 + lb:.!2� - 2!1430. ros.65° = ✓ 171368,3e= 13:2,02 lbs. 

. 8 80l. CL 1 35 . ,in. 05° 
For the angle /J, Sin. S = l = ----� Log. s111, S = 0,9640l7 - l h, once fJs, 132,0:J=67° O', and the inclination of tLe portion of the cord to the horizone=e" +  fJ-90° = 
t\5° + 67° - 90° = 42° . 

§ 140. If the node K is a running or movable one, or the force P
acts by means of a ring running along the.F,g. 141 .  cord .llKB, Fig. 141, the resultant 8 of
the tensions 81 and 82 is equal antl oppo­
site to the force P at the ring ; besides
this, the tensions are equal, for if the cord
be drawn a certain space s through the
ring, each of the tensions S1 and 82 will 
pass o,·er the space s, ancl the force P 
over a spacei= 0 ;  consequently, provicle<l 
there is perfect flexibility, the mechanical 
effect P . 0 = 81 • s - 81 • s, i. e. 81 s = 
82 s and 81 = 82• From this equality of
the tensions there follo,vs the equality of 

the angles .IJKS and BKS, by which the resultant 8 deviates from the 
directions of the cords. If we put these 

Fig. 142• angles = a., the resolution of the rhomb 
K81 8S2, gives

8 = P = 2 sl cos. a. and inversely 

81 = 82 = p .2 cos. a. 
.IJ and B are the nxed points of a cord 

.IJKB ofgiven length (2 a) ,vith a mova­
ble node K, the place of this node may
be found by constructing an eJJipse, ,vhose
foci are Ji and B, and ,vhose major axis
i� equal to the length of the cor<l 2 a, and
if a tangent is dra"'n to this curve at 
right angles to the given direction of the. . 

cor 1 and S,,. 

http:135.,in.05
http:lb:.!2�-2!1430.ros.65
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and from thls the base BD of v3l:!,75 = 6,225 feet i 
the equilateral triangle BD K, = CD - CB= 6,225--
2 = 4,225 ft. The sirnilarily of the triangles DKJJf 

4,225.9 

KNOTS OR NODES. 

If .fl.D be drawn parallel to the given direction of the force, and BD
be made equal to the given length of the cord, ADbisected at_.NI and.the perpendicular M.Kbe raised, the place of the node K may l1kew1se 
be obtained without the construction of an ellipse, for since the L .llKM 
= � DKM and .fl.K= DK, it follows that L ./1K8 also = ✓- BK8 and
.fl.K + KB = DK + KB = DB. 

Example. Between the points .IJ. andB, Fjg. 143, a rope of 9 feet in length is stretched 
by a weiglu G of 170 lbs. suspended to it by a ring ; 
the horjzonta� distance .11.C of the two points is (ij Jl., Fig. 143.
autl the vertical distance J,C =2 ft. ; to find the po• 
sition of the node, the tensions antl directions of the 
rope. From the length .Ill) = 9 ft. as hypothenuse 
and the horizontal line ..iC =6½ ft. ;  it follo\\'S that 
the vertical CD = v9.2 - 6,52 = 

and D..iC gives DK= BK ·..DC 

v81 - 42,25 = 

D'AI D= .IJ. =2•6,2�0 = 3,054 ft. ; hence it follows, that .llK=9- 3,054= 
5,946 feet; and for the angles a, by which the sides of 
the rope a.re inclined to tb.e vertical: 

BM 211 1 2 5cos. • = = = 016917;
BK 3,054 

G l?O.hence, 4 =46° 14'; and lastJy, the tens10n of the rope S1 =S, = . = 2 0 OO l 72 COi. 4 • I = 122,0 lbs.• 

• If the demonstrations appliec.l in the text to the simple funicular machine, where 
a single ,veigbt is represented as sustained by means of hvo parts of a flexible cord,
attached to two .fixed supports, be applied to the ease o_f two rigid planes lliogeJ toge• 
ther at a middle point, and also joined by hinges to t\\·o other planes capable of 
sliding to and fro1n each other, but in opposite directions, then ,viii the principles of the 
formulro above given, be found to afford the relation l,et,veen the force applied and 
the resistance which it is capable of overcoming, in the \veil-known mncbine called 
the lri.t"ardo, vulgarly the " toggle joint," which has been much applied of late years in 
the construction of printing, coining, and other presses. 

When two ropes bang parallel to eacu other, the whole gravitating po"•er of tbe 
tceighl is tlivided between them, and equally so between tl1e points of support which sus­
tain t.beir upper extremities. The limit of the weight is 1be absolute strength of the 
ropes, and, iu caso of the tricar<lo1 the force \vhich could be applied to the planes 
,voul<l, in that poaiLion, be limiLed by tLe crushing force of the material:i of the planes.

In Lile funicular machine, Lile question generally relates 10 the tension on the cords, not 
to the force tending to bring together the pointS of support, wl1ile, in the tricardo, the • 
effon to separate the opposite extremities of the mo·vable plnnes is the thing to be calcu­
lated. The following figure (143•) may rendex this more evident. 

Fig. 143•. 

Let a. aud b be the two planes of the tricardo, hinged at .IJ. and B ID two other planes 



stretrhed cord ,vhirh is acted 
upon by forces applied to <lif­
ferent points, are in accordance 
,,·ith those of the equilibriu,n of 

·hich are applied to one ,\forces, 
point. Let JJKB, Fig. 144, be 

cord stretched by the forces a 

P act at .IJ, P3 at K, and p 

tension of the portion .fl K = S 

� � e force \t·Lich resists the thrust of the planes, the rcln1io11 of the siue to tho cosine 1
�a-.e .. ie f a;gl� of incliuution, or, ,vuat is the same, tllat of 1aogen1. to radiu_:a or, in the ; _mova�Je plant>s forming one nnd the srune plane, that of O to l, or l to co . Ill! su JJect \\'1ll b Ii. tl 
l1tit vocal .�.0• 111.,� paper by the \\·riler of 1Ws 1101e in thu Jourflal of tlte }'ra11kli11 lnati-ihe tri r 1 . 

• 111' 1'· -,J�, Jvz l\.lay, 1&20.-.AM, Eo. ' 
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§ 141. Funicular Polygon.-'fbe relations of equilibriu1n in the 
funicular polygon, i. e. in aFig. 144. 

: let P1 andP,, P2, P3, P,., P
2

and P5 at B. ◄ 

J 

Le� us put the 
l

and that of BJ(h= 82, we shall
then obtain 81 

for the resultant
of P1 and P2 applied to .11, and
if ,ve carry the point of appli­
cation .fl. of this tension from A

to K, we shall again get S2 for the resultant of 81 and P3, or of P1
,

P
2, P ; lastly, if we transport the point of application.of 82 from K to 

B, we 3 
shall then obtain in 82, P and P , or since 82 1s the resultant

of P
1, Pz, P3, also in P1, P2, P

3
, 
,. 
P,., P5 

5

a set of force� balancing each 
other. We may accordingly assert that, wlten certain forces P17 P ,P3, tc., hold afunicular polygon in equilibrium, tl1ey will liold each 
other in equilibrium also, ifapplied at a single point C, tlte:ir direction 
and magnitude remaining invariable.

If the cord .111(1 K2 • • • B, Fig. 145, be stretched .a.t the points or 
nodes, K

1
, � by weights G1, G2 • • •  and !be ex1rem1hes .fl and B by

the vertical forces V. and V0 , and the horizontal forces If, and Jfn, the
sum of the vertical f�rces will be : v + vn- ( 01 T 02 :+- G� :+- .h. .).and of the horizontal forces : H1 - H

l 
n, The cond1t1on ot equ1hbrium

requires that both sums = 0 ;  therefore 
l .  V + v" = Gl + G2 + G3 + • • • and .2. Blt = Hn ; i. e.

ln afunicular polygon stretched by iveights, the sum of tl,e vertical 
forces or vertical tensions at the extremities or points of suspension is 

c and d, supposed to be capable of moving freely to and from each other nloog the planeMN. The hinge of a and b at P being supposed to be a.cte<l on by tho small constantfor� P, the practicru. question is the relation of the resi&rances P., P2 to ibis constant force P, in I.he different positions of the l\\'O planes a a.nd b. If the angle P ./JC or PBO= 4 

: P, = sin. 11: tm. Ai or ns ta,&�. u : rad. 
l'ei:iresent the angle of divergence of the Jllane a allC.l b fro111 the �tmight line QQ1, ic is 
I 
evidenr 
1 

. that thebyforce�dB =P -w2ill cos.1rce 
be 

ci..

represented
applied ut the

by• CE
ccnt.r1ll 

= 2 
hinge 
CP= 

of 
2 •in. 

tho 
11, 

" toggle 
and the 

Joint" 
forces 

hns 
P'and P. h Heuce Peacs1�lhu.c; i,ho\\·11 that the fi.

Tl ? let
i . .e onn more fully trun1ed of, ancl 1ll11:.-trated \\'1th th,rures of 



- zl. = tang. a.1 
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erui:valent to the sttm of the suspended weight�, and the horizontal tP:n_­.sum at tile one extremity is equal and oppositely directed to the hon­
zontal tension at the other extremity. 

Fig. 145. 

If the directions of the tensions 81 and Sn at the cords .fl ant.I B be 
prolonged to their intersection C, and the points of application of these 
tensions be transferred to this point, ,ve shall then have the single 
force P = V1 + Vn, because the horizontal forces � and Ha counter­
act each other. Since this force holds in equilibrium the sum G1 + 
Gi + G3 + . : . of the suspe!'lded ,veights, the point of app]ic�tion� or 
centre of gravity of these ,ve1ghts must, therefore, lie in the direction 
of the same, i. e., in  the vertical line passing through the point C. 
. § 142. From the tension 81 of the first portion .IJK1 whose angle of 
inclination 81 .fl� = a.t> the vertical tension follo\vs ; V1 = 81 sin. 01,

and the horizontal H1 = 81 cos. a.1• If, no\v, we transfer the point of 
application of these forces from .fl to the first node K11 the weight G,
acting vertically do,vn,vards meets these tensions, and no,v for t?e 
following portion Kl K , the vertical tension v2 = vl - Gl 

=.81 sin. 
a.1 - G1, for which the 

2

horizontal tt'nsion � = H1 = H refl!a1ns un­
changed. Both forces u nited give the tension of the axis of the 
second portion 89, = ✓ V1

2 + JP and its inclination � by the formula 
T 81 sin. a.1 - •-. G1tang. ()2 = 11 _.;:;..---"---�, i. e.
H 
,,.

= 81 cos. o.1 

tang, a2 

�(1 

If the point of npplication of the forces Vito K2, we obtain in the weight G2 meeting them. another.tical force, and therefore the vertical force of the th1r<l portion of the 

and lli is transferred from 
new ver­

cord 



+ G'I. + . . .  + Gn ) - vl 

the third portion is 

1ngly that at the extremity B :  Vn = ( Gl . 

Vn tang. «la 

V 
= t ang. at 

, and, therefore, 

1�11 = Ji; tang. a" 

and Cla at both 

132 FUNICULAR POLYGON. 

v3 = v, -: G'J - ( Gl + G,),
The whole tenston of

-( Gl + G2 )whilst the honzontal force H remains
• = vl t= s

JI.
sin. 01 

= 
3 

tang. G3 = 
83 = ✓ v;J + H2, and for its angle of inclination o3, we have 

v3 = 81 sin. °'1 - (  Gl + G,), i.ie. 
H 81 cosi . o.1 

tang o3 = tang. a1 -
GI + G'J .

Il 
For the angle of inclination of the fourth portion of the cord, 

tang. a4 = tang. -
Gt + 02 + G3, &c .o1 H 

Besides, the tensions 8z, 82, 83, &c., as weJl as the ang]es of incli­
nation 0 7 02, &c., of the separate portions of the cord may easilyCl3,

1

be represented geometrically. If ,ve make the horizontal line C.A= 
CB, Fig. 146, = the horizontal ten-

Fig. 146. sion H and the vertical CK1 = verti-
cal tension � at the point of suspen­
sion .Ii., the hypothenuse .IJK1 gives the
whole tension 81 and the I'. C.IJK1, also
its inclination to the horizon ;  if now
further ,ve apply the weights 011 G2,

03, &c., as parts K1K2, K2K3, &.c., of 
CK, and dra,v the transversal lines
.1JK2, .f1K3, &c., we shall have in  them 
the tensions of the successive portions
of the cord, and in the angles �.11.C
K3.R.C, &.c., the angles of inclinatio� 
a.1, a , &c. of these portions.

§ 143. From the investigations 
3

of the precedini paragraph, the
law for the equilibrium of cords stretched by weights, comes out
thus: 

I.  The horizontal tension is at all points of the cord one and the•same, viz.s: 
H = 81 COS. a1 = Sn COS. Ga,

2. The vertical tension at any one point is equal to tlie vert-ical ten.­
sion at the other extremity above it, less the sum of the intermediate 
suspended weights, therefore 

V.. = V1 - ( G1 + G2 + . . .  Gm -1)-
� 1he angle a.1 be known and the horizontal tension H, the vertical

�ens1on at the extremity .fl is :known ; � = H .  tang. o1, and accord-

�' on the other hand, the angles of inclination a.1poin_ts of suspension .fl. and B are known, the horizontal and Yertical 
tensions are given at the same time, viz. : 

t 

tangi . Cl1 
• 
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i. P. G'l + . . .  ' 

Gl + Gvl = ) tang( 
( G. + G2 + 

2 . °'1+ • ,  
) tang. °'11 ,  and from this: 

• , 

If both sides have the same inclination a.o = 0. 

· · · 

, then � = Va = 
G1 + G2 + + Ga and the one extremity .fl supports as much as 

1

· 

For the rest these laws hold good also for the funicular polygon, 

· · 

especially \vhe� stretched by forces, if the directions of the forces are 

K3 B, Fig. 147Example. The funicular polygon ..iK, K2 1 is stretched by three weights 

33 

FUNICULAR POLYGON. 

V1 

Since vl + Vn = Gl + 

(
tang. o.1 + tang. 

tang. o.1 

:= a. a ) G1 + G2 • • •  , it follows thath

tarzg, o.1 + tang, a0 

Va = tang. (ll + tang, Gn

H = � cotg. (J,l = v.. cotg. O.a, 

2 ' 
the other B. 

substituted for the verticals. 

= tang. 44 

H 
V. 

cond and third portions by the tang. tSs = tang. «, _ G, = 1,32 _ 20 = 0,521 and
H 25 

tang. 43 = ta11g. 44 _ 
G3 = I,32 _ � = 0168; hence a1 

= 44 = 52° 5 l'i � = 27°28' 
H 25 

34° 4s = 13' ; lastly, the tensions of the axis are 81 = 84 =✓Jl;l+ IP=h✓ 33� + 252 

= vl714  = 41,40 lbs., S'J= ✓Vi+JP=✓13' + �5,1 =✓7�4 =28,18 lbs.1 and 83 = 
vV,2+ 1/l = ✓172 + 25!1 = 30,23hlbs. 

§ 144. The Parabola as Ca­ Fig. 148. 
tenary.-Let us snppose that _the string .IJCB, Fig. 148, is 
stretched by equal weights G1, 

G2, &c., suspended at equal
horizontal distances from each 
other. Let us represent by b
the horizontal distance .llM be� 
tween the point of suspension .fl
and the Io,vest C, but the ·ver­
tical distance C.M by a. Let 

12 
• 

G, = 201 G'J = 30, and G3 = 16 lbs., 
as well as by the horizontal force H, =25 lbs,; required to find the ten-
sions of the axis and the angles of in­
clination of the sides, in the hypothe• 
sis that the ends of the string have the 
same inclination. Here the vertical
tensions are equal, viz.1 J7; = V. = 
G,+ G, + G3 20+ 30 + 16
---'----'---= -- --'---....:..- --

2 2 

33 lbs. The vertical tension of the 
second portion of the string is V, = 
'Va-G, = 33-20= 13 lbs., that of 
the thirtl y; = JT G or ( G1 + G,4 - ., 

- Vi) = 33-16 = l? lbs. ; the an­
gles of inclination 41 and 44 of tbe ends 
are determined by tang . .s1 

= ...!. = _ = 1,32 ; that of the se-
25 

Fig. 1 47. ===== 
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V y 
• · 21,H x =;a 

Therefore the tangent OT cuts the axis of the abscissre, so that CT 
� the chai111 and rod, o! 
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us put further for another point O of the polygon, the corresponding
co-ordinates ON= '!I and CN = x. If, now, the vertical tension of 
.11. be = V, that of O will be = : . V, and hence for the angle of in-

clination to the horizon, NOT= ROQ = t of the portion of the string 
OQ, we shall have tang. t == '!I • V ,  where H is the constant of the

l, H
horizontal tension. 

Hence QR =- OR . tang. t .. OR . '!I • y is the vertical distance
b H

of two adjacent angles of the funicular polygon. If we substitute for 
'!I OR, 2 OR, 3 OR, &c., the last equation will give the corresponding
vertical distances of the first, second, and third angles, &c., reckoned
from below upwards ; then, if we add together all these values, whose 
amount may be = m, we shall obtain the height CNof the point O
verticaUy above the lowest point C, viz. : 

x = CN = H 
V 

• 
OR (OR + 2 OR + 3 OR + . . .  + m.  OR) b 

•H b 
V m(m + 1)  OR2 

' 1 . 2• b.(I + 2 + 3 + . . .  + m) = H 
in accordance with the theory of arithmetical series. 

Lastly, if OR be put =- �, we shall have : m
V m (m + 1) y

X = If • 2 m1 • 1,• 
If the number of weights be very great, m + 1 may be taken = 

whence we shall have : 
m, 

For x = a, '!I = b, hence also :
V b .a =  H • 2, an d more s1mp 1y :  

: = �, which is the equation to a parabola. 
If, therefore, a string devoid of ,veight be stretched by infinitely 

many weights applied at equal horizontal distances, the funicular 
polygon will pass into a parabola.

For the angle of inclination t we ha Ye besides: 
tang. t - ! . 2a =- 2 y . � == 2 '!I . �  = 2x, as also 

u 1.u b" y2 '!I 
2atang. Cl a: -•, b 

CH111111nz. =-
• chain bridge, Fig. 149, were without 



_i _i

&ample. The whole load of a chain-bridge in Fig. 149, = 320000 Jbs.j the span ..iJJ 
= 2b = 150 feet, and the height of the arch C],:f =a= 15 feet; to fin� the te11Ston_s _

The inclinations of the ends of the cbam to the hon-
2a 30 2 0 4 h fc -210 ere ore, •-zon is determined by the forn1ula tang 1& - = - = - = , t . , , -- b 75 5 

48'. The vertical tension at each point of suspension is 171 = ½ tlte weight = 160000 

the horizontal, H = 171 cotg. ,. = 160000 • _!_ = 400000 lbs.; lastly, the whole ten-lbs. ; 
0 4 

IS equivalent to the weight of 
chain from that point to the 

the vertex ; and the vertical 
ten ion at each place also �
equ1valent to the weight of the _
p�rtion of the rope or chain 
lying below it. 

If equal lengths of the chain be equal1y heavy, we have then 
only we ,vill now consider. If 
the comm?n catenary, which 
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weight, or light enough in respect to the weight of the loaded bridge 
DEF, which only is to be taken into consideration, then the chain
.11CB would form a parabola. 

Fig. 149. 

and other relations of the chains. 

,
sion at one end : 

S=✓�+IP =  V✓1 + cotg. 1&1 = 160000o. J i + (�4)' 

= 100000 J¥ = 80000✓29 = 430813 lbs. 

§ 145. Catenary.-When a perfectly flexible and extensible string
suspended from two points, or a chain consisting of short links, is
stretched by its own ,veight, its axis forms a curved line, to which the 
name of catenary has been gi,·en. The imperfectly elasticiand �x­_tens1ble cords, ropes, bands, chains, &c., met with in practice, give
curved lines which approximate to the catenary only, but may usually
be treated as such. From the foregoing, the horizontal tension of the 
catenary is equalJy great at all points, on the other hand, the vertical
te!lsion is equivalent to the vertical tension of the points of suspension
lJ:Ing above it, less the v.1eight of the portions of the chain above.
Since the tension at the vertex, where the catenary is horizontal, is
null, the vertical tension, there-
�ore, a� the point of suspension, Fig. 150. 
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a portioa of the rope, or chain one foot in length, weighs ,., and if the 
arc corresponding to the cerordinates C.ltf==a �nd M.ll=h, F_ig. 150,
.11.OC= l, we then have the weight of the portion of the chain .IJOC =l"I ;  if, on the other hand, the length of the arc (l) corresp�nding
to the co-ordinates ( CN =x, and NO=y) =S, �� have th� weight of
this arc =s 'Y· If we put the length of a s1m1lar portion, whose
weight = H, = c, (the horizontal tension,) ,ve have further l�=c 'Y,
and, therefore, for the angles of inclination o. and t at the points �Ii
and 0 :  

ta11g. a. =  tang. RIJH = E_ = � = �, and
H C y  C 

ta11g. 4> =itang. NOT= � =  s. 
C y  C

§ 146. If ,ve make the horizontal line CH, Fig. 151 , = the length 
c of the portion of chain measuring the ho-

Fig. 151 .  rizontal tension, and CG = the length l of
the arc of the chain on one side, ,ve have,
in accordance ,vith § 142, in the hypothe­
nuse GH, the measure and <lirection of the
funicular tension at the point .fl, for 

C G  ltang. CHG = and
C H  = c

GH= ✓ cos+ ClPi= ✓t'+c2,
or 8 = ✓ G'- + JP = ✓r+ c2 • ,, 

= G H .  ,-. 
If now \Ve divide CG into equal parts 

and <lraw from H to the points 1 ,  2, 3, &c.
straight Jines, these will give the measur� 
ancl directions of the tensions of those points 
of the catenary '\Vhich ,ve obtain ,vhen we

divide the length of the catenary arc .JlC into as many equal parts.
So, for example, the line H3 gives the measure an<l direction of the 
tension or the tangents at the point (3) to the arc .llC, because in this
point the vertical tension = C3 . r, ,vhilst the horizontal tension re-
n1ains the same =C . r, therefore for this point tang. 4> = Ca · 'Y = Ct

C "f
,vhich the figure actuaJ]y gives. 

C n  

This peculiarity of the catenary is of use in constructing this curve
mechanically, ,vith an approximation to correctness After the given
length CG of the catenary arc for construction has been divided into 
verr m�ny equal parts, the line CH= c measuring the horizontal
tension 1� applied to it, and the transversal Jines Ill , H2, 113, &c.,
dr�wn ; 1t: � part Cl of the arc be placed npon CH, and through the 
}>Otnt of �1v1s1on obtained (1 )  a parallel to Hl be drawn, ,vhich cuts 
�ff from Jt a part (12) ; and like"·ise through the point (.2) another
ltne paraJJel to H2 be dra\\·n, and ,vhich cuts off from it  a point (23)
equal to a part of the arc, and again through this (3) another, parallel 



For the angle .flK C = q,0 subtended at the , 

But inversely, y = 

l + :  . ( �;��) ,] = 3,5 (1+} . �,1431)=h3,'5+ 3,5 . 0,0136=3,MS ft. 
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to H3, and (34) be made equal to another part of the arc, and we 
proceed in this manner, ,ve shall obtain a polygon ( C l 2 3 4 . . .) ;
as we have taken these sides very small, we may consider it as a
curve and easily find the cur, .. e to it, if we connect the middle points
of the small sides ( C 1 ), (12), (23), by a trace or line. 

For practical purposes, a finely linked chain suspended against a
perpendicular wall enables us to determine accurately enough a
ca!enary answering certain conditions, as those of given length and
height, or of given width or length of the arc. 

§ 147. In many cases, and also in applications to architecture and
to machines, the horizontal tension of the catenary is very great, and 
the height of the arc small in comparison with the "'idth. Under
this supposition, an equation to this curve is obtained in the following 
manner.

Let s be the length, x = CM the absciss, and y = .fiJ,,f the ordi­
nate of a very compressed arc .liC, Fig. 162. If w� make .liK= CK,
we may consider this arc as a circular one described from K as a 
�entre. Since from the kno,vn equation of the circle y2 = x (2 r-x), 
1t follows that the radius CK of the circle, 

Fig. 152. 
r = fx + ;, or more simply, if we neglect 

�
2 

as small in comparison with r ,  r = r.
2x 2x 

centre by .liB si,n, T "'i= .11.M - Y 2x and-.Ii K - r - y'
1 · s 

3 •the arc ....,, = si,n. t + 6 sin. t + 40 sin . 

.,S + . . .  ; if we have regard only to the two 
nrst members, it therefore follows that : 

t (x)
3 _ 2x + 1 (2x)3 - 2x 4 

- .
Y 6 y - "y + ai · y • 

Now the arc .liC = s = r t =  �
2 . t ;  hence :
xi

S = Y + :  . : = y[l + ! (;)'J 
; 2, which may be put: 

1 + 3 (;) 

- ; (:)J, an<l on the other handi:y = s [1 

X = J!y(s-y). 
�amplt.= The width of a very compressed arc whose Ja,v for the rest is not known, 

3,5 feet, and the height a = 0125 feeth· it.s length, therefore, is :  
.
18

2 1 = 3,5 
[ 

12• 
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� 

Fig. 153, ,,·bile we put the Yert1cal tension at a point O, = V = sy 

g. t = !.. = Y [1 + 2 
(�)crent TON= t, ta

2
n ]. 

Now for a very great number of members, the sum of the natural 
m• rom to m = 2, and the sum of their cubes = -, ac-

. x = y ('Y + 1 • y3) . C 2 6 c2 4 t. e
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§ 148. We will now apply the formuJa s = y [1 + ! (�)2] for' 

Fig. 163. 

the ]ength of a compressed arc t? a stron�ly stretch�d catenary .llCB, 
2] • ,., and therefore for the angle made by the tan-

C C 3 y 

y [1 + ;(;) 
b 

= 

If ,ve divide the ordinate y into m equal parts, ,ve .find the portion
RQ = NU of the absciss x corresponding to one such part OR 
when we put RQ = OR . tang. t = OR . ! [1 + (;)'J

Since x is small in comparison with y, RQ is approximatelyn= OR . 
'Y. If now we put ORn= .JL and successively for y :  JL, 2Y, �, &c.,c m m m m
we obtain by degrees the several parts of x, whose sum, therefore, is 
x = '!I (In+ 2 + 3 + . . . + m) = y21 • 

m (m + l) (§  144) = 
cm2 cm 2 

L, and which corresponds with the equation to the parabola.2c 
But if we wish to attain greater accuracy, we must put QR= OR . 

! [ 1 + : (;) ], substitute fur :t its value last found fc,and we shall 
then obtain : 

QR= OR y (1 + 1 . i.) = 
OR 

( y + ! . y3).• 
C 6 � C 6 � 

Let us again successively put y = .JL, 2Y, �, &c., and for OR· m m m 
likewise .JL, we shall then find the several values of x, and the sum 

m
itself: 

X=�[¾c1+2+a+ . .  .+m)+ 6l ·(!)3
(13+23 +33+ . . .  +m3) ]· 

c2 

minumbers fj 1 
4:cordinglyn



--
-- -

�

2 2 
= YI. X=y J, the equationofa strongly (Y)"+ '!I' [1 + _!_ _ 

stretched catenary. 

2 c

The measure of the horizontal tension is further given : 
2 . 4 xy2 . e. !I '!I' i'!I' ' · '!I' 

2x 

t

+ ; (;)'] [ + ! ( ; ) '], i, e. 1 1 =�1
4. tang. t == 2

y
x 

[ 1- !  (;)
2

]. 

5. s = y[1 + ! (;)] = y [1 + ! ( ! ) 'J· 

2a 12 

I 

: 19,596 Iba. The tangent of the angle of auapenaion84 ms 3
the mea�re of 4 i 2' - , 2, the angle f itself - 11 ° 30 04 J 2
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2 c  c24 c3 122 c  

By inversion it follows that y2=2 c x '!I' 4 c2
- 12 c2 = 2 c x -

12 
J;,;· 

x2= 2 ex - -, therefore : . 3 

-, or approximatelyi= ✓2 c x (1 - l;:; c)·2. ;= J2 c x-

c = 2x + 2 x . 12 ct
=

2x + 24x

3. C =  y + �.6
The angle of the tangent t is determined by : 

+ 2 (x)2]= 
{1 + ;(�)'�

3 y �l + 1 (X) ]2xl_ .  3 y 

ang. t=Y[1C 

Lastly, we must here place the formula of rectification found in the 
former paragraph : 

2½ feet, the length==.&ampk.-1. For a span 2 b 16 feet and height of arc a = 1
2 l ise= 16 [1 + : (2 5 

) ] = 16 + 16e. 0,065 = 
of chain which measures the horizontal tension : c== �+ � 
= 

17,04 feet, the length of the portion 

= 64 +�= 12,s+0,417
6 6 1

]13,217 feet; the tangent of the angle of 8118penaion: tang. •-== �a [1 + :(:) 
5� [ J + � (�)1

]== · l,
�

32:;5 

32°= 5<Y.-2. A chain of 10 feet length and 91 span, has the height of its arc 

=0,6453 • • •  , the angle of 8118pension, therefore,== 
• 

= v 1,7812 = 

a ==  J� (l--b)eb ==J� (l0-91) �= _!_ .  �- f?i7 
2 2 2 2 2 16 .J32 

1,336 feet, and the measure of the horizontal tension: 
c =h ,  + � == 4,7:;• + 1,335 � 8,673 feet. 

2• 6 2 . 1,335 6f a line 30 feet long and weighing 8 Iba., be stretched horizontally by a3· 
20 lbs., the vertical tension V ½ G == 4 Iba.; the horizontal force H -vS'-:V­

lloroe of

==
a:: ..,;'2()1---4• -= .,/
tang. f- � ._

H 19,596 



for the catenary, and which hold good for all tens1o_n�s·----= 

= c  Ln (c+ 

� 
= 2 )

1
] =: 30 - 0,208 - 29,792 ft., ;![ 1 - ¼ ·  (+)•] = 30 .  [ 1 - f .  (l 87 1

§ 149. The higher calculus gives the followi�g general fotmulre 

4 2 4is exactly= c Ln (c+ x+ v;,_ 2_c _x _+ _0
_, 

graphs y , i. t, 3 ). + ;1' c+ 

4 82 ✓3,53 
) = 3 -2,53 Ln ( 128?6

) 
•

2,53 
53 + 

1 

1 .  s == ✓ i1' + r 

then have the error / = 3 - 2,53 Ln (
- 0,002. In order now to find the true value of c 
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!!_ = H + � =- � H =-
30 8

the horizontal tension c == 73,485 feet; the span 2 b 

3 29,792 . 0,208 -3and the height of the arc a =  - b (l-b) = 
J2

✓.29,792 . 0,078 
2 . 22 

= = 1,524 feet. 

- c and✓ 2 c x + x2, and inversely, x -
r - zii  

C •=- 2x 

- ;(e:-; :), inversely y=c L n (s + �c2+ st
) , where e is2. s

the base 2, 71828 of the natural system of logarithms, and L n the
logarithm = 2,30258 times the common logarithm. 

. ] =-= _.!!._)-c,3. y= cL n c+x+ ✓2 C x+r) , ,inverse y x 2
C (e.!' + e c

(
c 

4 _ r-r.L (s+ .r) 
· '!I - 2x n s-x · 

The use of these formu1re is very troublesome, especial1y in com. 
plicated problems, where a direct solution is generally not possible. 

Example. The two co-ordinates of a catenary are x =:= 2 feet, and Y = 3 feet ; 
required the horizontal tension c of this curve 1 Approximately from No. 3 of the

9 2
(ormer paragraphs c = 

2.r
y' X 

4 
-+ = 2,58.-+ -= - From No. 3 of the present para,6 6 

If c be here put = 2,58, we then have the error /= 3 - 2,58 Ln (4•58 +2✓3•58n
2,58 ) 

,,_ ( 8,3642 ) 
- 3�035 0,035 ; but if c be put == 2,53, we2158 

. .= 3 - ..:,58 Ln = 3 = -

'2,53 
·, if, according to a.-= 3 - 3,002 = 

known rule, we put 
�2,58 / 0,035 . .1·7· "-,.,; m th" . . ·11 fc II o ow th .a : t---,.-==-==--..:_ 1s manner 1t w1 
�2,53 /1 0,002

16,5 . c == 17,5 . 2;53 -2,58 =4:1,69; therefore: 
4 1 69 ' C ::S =: 2-,527 feet 
16,5

Rm.ark. Practical applications ofthe catenary will be given when, in the Second Part,
we come to treat of the construction of vaults, chain-bridges, &c. 

� 150. The Pulley.-Ropes, cords, &c., are the usual means by
which forces are transmitted over the wheel and axle. We wi11 here 
develop '!hat is most general in the theories of these two arrange._
ments, without, howel·er, taking into account friction and rigidity of
cords. 

A pulley �s a circular disc, .llBC, Fig. 154 and Fig-. 155, turning
about an axis on whose circumference lies a cord or string, and whose 
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extremities are stretched by the forces P and Q. In a fixed pulley, 
the block in  ,vhich the axis or pivot reposes is immovable ; in a free 
pulley, on the other hand, it is movable. 

Fig. 164 . Fig. 155. 

• 

• 

• 

In the condition of equilibrium of a pulley, the forces P �nd Q at 
the extremities of the string are equal ; for every pulley 1s a be?-t 
lever, the arms of which are equal in length, which ,ve may obtam 
if we let fall perpendiculars C.IJ. and CB from the axis C on the 
directions of the forces, or of the strings DP and DQ. It is clear that 
the forces P and Q in any revolution about C describe the same space,
viz. r 4', if r be the radius C.11= CB and q,0 the ang]e of revolution ; 
and that from this we may infer the equality between P and Q. From 
the forces .P and Q there arises the resultant CR= R, which is taken 
up by the block and is dependent on the angle .IJ.DB=o., '\\1hich the 
directions of the string include ; and moreover it gives as the diagonal 
of the rhomb CP1RQ1 constructed from P and a. : R = 2 P cos. ;. 

§ 151 .  In the fixed pulley, Fig. 154, the force Q consists of the 
weight to be overcome or raised at one extremity of the string; here,
therefore, the force is equal to the weight, and the application of this 
pulley effects nothing but a change of direction. In the movable 
pulley, Fig. 155, on the other hand, the ,veight on the hook R acts !t 
the extremity of the block, ,vhilst the one extremity of the string 1s 
fastened to a fixed object ; here, thereforce, the force P is to be put = 

R . If we represent the chord .fl.MB, which corresponds to the 
2 cos. � 2 
arc over ,vhich the string passes, by a, the radius C.11= CB, a.s before 
= r, then a =  2.11.Af = 2 .  C.IJ. cos. C.11..Jlf = 2 C./1 cos . .flDJ,f = 2 r  

r 1 . . p r Fromcos· a. h2, ence - may be pute= ---, and likewise - = -. 
a a.2cos. - R a 

2 



radius of the pulley to tlie c!tord of tlie arc v r o e
which tlie string passe!· = 2 r, the string p�sses overa a. sem1c1rcle, If . 
Fig 156 the force then 1s at a m1n1mum ;  ,•iz. = r, t�at is 60° of the part of the a p .:._ ! R\ if 
pulley overwhicb the stnng passes, ,,·eshave P � R ;  
the smaller, therefore, a becorues, the greater 1s P, 
and for a infinitely small, the force P becomes in­

An �verse proportion tak�s place finitely great. .

responds to a space R = h, ,ve have then Ps = Rll, 

tion as there is gain in force, there is loss in space. 
, as ,veJl 

t Part 

t a 
s is 

greater one the ,vheel. 
The round extremities 
E and F, on which this 
arrangement rests, are 
called guclgeons. The 
axis of revolution of the 
wheel and axle is either 
horizontal, or vertical 
or inclined. Here ,v; 
shall only speak of the 
wheel and axle which 
reYolves about a hori­
zontal axis. We sha]l 

what pressures the gudgeons E and F have to sustain? 
the points of application .Ii. and B of the po\ver P, and the weight Q 
transferred to this plane, and therefore P and Q applied at ./i and BP If the angles .IJ../11 C and BB1D, ,vhich both forces make with the 

1 
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this, therefore, tlte power in tlie 1novable pulley is to tile weight as tlie 

Fig. 156. . .  

in the spacess: 1f s 1s the ·pace of P, ,vluch cor­

s a 

means be raised by a smaller force, but in propor­

Remark. We shall treat of the co1nposition or pulleys ancl sy<tfe�<t of pulley,
as of the resistances arising fr om friction and rigidity, Jnore fully 1n a subsequen

§ 152. The Wheel and Axle.-Tbe wheel and axle is � rigid con.
nection of two fixed pulleys or \vheels, capable of re,,0Jv1ng abou
common axis JJ.BFE, Fig. 157. The smaller of these ,vheel

callecl the axle, the 

therefore, 7,, = -r. 
The movable pulley is thus a meansof modifying

force ;  for example, a given weight 1nay by this 

Fig. 101. 

also here suppose, that 
the forces P and Q, or
the po,ver P and the
weight Q act at the ex-

tremities of a perfectly flexible string, which passes round the cir­
cuznt:erence of the wheel and axle. The questions to be answered 

and weights are to each other, andare, 1n ,vhat relations the po\vers 
Let .us io1agine a horizontal plane passed through the axis CD and 
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1 , or, as ;P1 • Q1 - �� , • DB1C.111 ::;:s 

C.11 C.111 = Q p · • e. . • · DB i, DB1

and axle applied at the centre of gravity 8. The sup�rts of the 

L, the part EC -the ,vheeo and axle measured from E to F z:: f l l 1 1

we shall obtain since also L = d1 + d1, 

, as � = .,,,.---aa..,,_ 

�t the gudgeon � :  for the vertical pressure :/(1 

. , ,. e. L 

. L . . 

Gdl + (Pl + Q.) (11 + P . •+ Q i) . X, =- . _ L . .. , , •·_ e

THE WHEEL AND AXLE. 

horizon == a and '3, these forces may be replaced by the horizontal.
forces R = P cos. a, 8 = Q cos. 13, and by the vertical forces P1 = P 
sin. ", Q1 = Q sin. J). ,.fhe horizontal forces are directed towards the 
axis, and being applied at C and D, become perfectly counteracted 
by the axis. The vertical forces P1 and Q1, on the other hand, t�nd .to tum the wheel and axle a bout its axis. If K be the intersection
with the axis of the line connecting the points .111 and B1, KIJ1 and 
KB1 are the arms of P1 and Q1, and equilibrium subsists about K,
and also about CD, ifi: 

K.111 C./Jl if
KB DB '

.or, sinceP V tJ i,i • .n.a1 KB= Q1 • =-
an4

11 

Q1 DB 
1 

Q �  DB/ 

DB1C.111
P . C.11 = Q . DB, or Pa = Qb, 

. the power and weight, or the radii 
In the wheel and axle, therefore, as in every

lev�r, the moment of the power is equivalent to the moment of the 

if a and l, represent the arms of
of the wheel and axle. 

weight . 
§ 153: The forces P1with which must also be associated the weig�t G

and Q1 give at K a vertical pressure P1 +Q1,. 
of th_e whole wheel 

gudgeons at E and F have als() to sustain the vertical pressure
If we put the whole length 

and the distances ES and 

P1+ Q.+ G = P sin. " + Q sin. JJ + G. 

CDi= 11 DF= l2, therefore L = l+l1 +11,
FS of the centre of gravity 8 �rom_ the supports d1 and d1, th�efore 

DK PllDK pl 
DC . Pi+ Ql 

- -==-____,P1+ Ql 

EF= a .  Fs + (P1 + Q1) FK,xl . 

=-

· e+1Gds + (P1 + Q.) (zs + P1

X == Gd, + (Pl + Ql) '· + Pll 

Ql • 1) 
. 

On the other hand, for the vertical pressure X, at F: 
i 

X1 • EF== G .  ES+ (P,+ Q1) EK, i, e. 
' Q 

L 
l.X,- Gdl + ( pl + Q.) ,. + Q.



we shall obtain: Y2, 

The horizontal force at E is : 

= 0 .  (f + 1) -Y ,100 5 - 1  = - 18,8 lbs. 2 

the sum of these is exactlyh= R + S = 100,5 lbs. 

ang .., _ Xi 404t • r_ 8 

The pressure itself: zl = !'1 = 413,0 lbs. 
n e other hand, for the inclination ,I, of the pressure at F: 

and the pressureh: 
COi. ,I. 
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The· horizontal forces R and S have the mon1ents about F, R .FC = R (l + l2), and S . FD S . li, and about E : � . ED = 8= 
(l + l1), and R . EC= Rl1 ; if, therefore, we put the horizontal pres.. 
sures upon E and F effected by them = Y1 and 

Y1 • FE= R . FC-S . FD, as 
R (l + l,)-Sl1 •Yi = / and'L

Y2 • FE= S . ED-R . EC, as 
S (l + l1)-Rl1•Y._

i - L
From X1 and Y1 the total pressure at E is :  

== ✓X1 ' + �2 
, and likewise from X2 and �' · X II yz= ✓ 2 + t • 

the same at F:z1 
zz

Lastly, if t and 1" be the angles which the directions of these pres.. 
sures make ,vith the horizon, we shall then have 

tang. t = xi d tang 4- = x,-y .- an 
yl 'l 

Example. The weight Q of a wheel and axle pulls perpendicularly downwards and
amounts to 365 lbs. ; the radius of the wheel a = Ii ft.; that of the axle b = i n.'. theweight of the machine itself is 200 lbs.; its centre of gravity S lies distant from E'and
F, d1 = 1 ½, and d2 = 2½ ft.; the middle of the wheel is about /1 = i ft. from the gud.
geon E, and th€' vertical plane in which the weight acts is about /" = 2 ft. from the
gudgeon F. Now if the force P necessary for restoring the equilibrium at the wheelinclined to the horizon at an angle 50° = •• pulls downwards, what will this be and
what will be the pressures on the gudgeons 1 Q = 36:i, S= 90° , consequently Q '= Qlin. S = Q and S = Q co1. S = 0 ;  further, P being unknown, and a = 50° , �nse.
quently P 1 = P ,in. a = 0,7660 . P and R = P co1. •= 0,6428 . P;  but now a = 1¾ 
= i and b = i, it follows, therefore, P = !!.. Q = ½ .  365 = 156,4 lbs., P1 = 1 19  8,a 
and R = 100,5. Further, because G = 200, d, =j-, d9 = f, 11 = ¾, /2 = 2, L = ! +f = 4, and l = L - (l1+l'l) =4- 1-i' = i, so that the vertical pressure at E is: 

200 . f + (365 + J 19,8). 2 + 1 l O,� . f 16 l 9,35 
X1 = = = 404,8 lbs.4 4

and that at F: 
200h. i+ (365 + 119,8) . i + 365 . f _ 1 1 19,85 

Xi = - = 280,0 lbs. 4 4
Both of these forces together give : 

� + x'l = Q + G + pl = 684,8 lbs. 

100, 5 . (¾ + 2)- 0 .  2 - ---=-----'----
4 

4 

Y1 = 8I,7 lbs., and that at F:= 

The pres!ure at E is inclined at an angle ♦ to the horizon, for which we have: 
• -r - Y. = --:::-,--, .u1g. tang. ♦ 

I 81,7 

""· t 0 th 

0 950 7 ° 35',6 2, ♦ 8 .= = 

tang ,1, X2 280 0� Ys = 18,�, Log. tang. ,I, =  1,17300, ./, = 860. , 9', 5 ;  

z,.. = ___Y:"=e- = 28016 lb1. 
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	STATICS OF RIGID BODIES. 
	SECTION III. 
	STATICS OF RIGID BODIES. 
	CHAPTER I. 
	GENERAL LAWS OF THE STATlCS OF RIGID BODIES. 
	§ 83Tra11ifere:nce o.f the Point of .Rpplication.-Althougb everyrigid body is changed in form by the action of forces upon it, i. e.becomes either compressed, extended, or bent, &c, it is nevertheless allowable for us to consider it for the most part as a rigid and inva­riable union of material points, partly because this change of form or displacement of parts is often ,·ery slight, and partly because it takesplace in very short spaces of time. We shalJ, therefore, in the fol­lowing, unless it be other\vis
	. 
	.

	simplify the investigation. A force P, Fig. 45, which acts upon a point Ji. of a rigid bodyJlf, is transmitted in its pro-
	Fig. 45· 
	--.... per direction XX uniformlythroughout the body, and an
	Figure

	equal and opposite force Pputs itself in equilibrium with it, then only when the pointlies in thedirection XX of the first force. The distance of .IJ and .11is withoutinfluence on this condition of equilibrium. The two opposite forces Łold themselves in equilibrium at every distance if the two points be 
	1
	of application 
	.
	JJ
	1 
	1 

	_
	ngidly connected. We may, therefore, assert that tlie action of a force P, Fig. 4, remains tlte 
	6

	Fig. 46. 
	same at whatever point .li., , Łc. ofits direction it maybe applied or may act directly upon the body. 
	Figure
	1
	, 
	.11
	2
	.11
	3

	§84. When two forces P
	1

	and P, acting in the same
	. 
	TRANSFERENCE OF THE POlNT OF APPLICATION. 
	of the t,,·o forces intersect, for tLeir 
	tions 

	Fig. 47·
	con1mon point of application, for from proposition enunciated above, eachthese points of application may be transferred to C without thereby pro­ducing any change in their effects. If,therefore, we CQ=.RP=Pand2 IJ=P, an<l then complete the parallelogram CQQQits diagonalgive us the resultant force of CQand C�, and, thereiore, also of the forces Pand P, and ,vhose pointofapplication may be any other point.ll 1n the direction of this <liagonal.
	the 
	of 
	make 
	1
	1
	1
	1 
	CQ
	=
	.
	2
	P
	2
	2
	1 
	2
	, 
	will 
	CQ=P
	1 
	1 
	2
	.

	If to the resultant force so found .llP 
	Figure
	§ 85. If there let any point O, Fig. 48, in the 
	be 
	fall 
	from 
	plane 

	' 
	Fig. 4s. 
	------= 
	====== 
	cording to § 79,
	P. ON= P• ON+P• 0�,and the distance ON of the resultant force may be found from the perpen­diculars or distances ONand ONof the component forces, 1f we put: 
	1 
	1 
	12
	i 
	2

	.
	ON.
	--
	p
	l 
	ON
	l 
	+ 
	p
	2 
	. ON
	2

	p
	Whi]st we find the direction and magnitude of the resultant by the application of the parallelogram of 
	forces, its position is given \\·ith the
	of the last formula, by tleter1nining its distance O.N". 
	he]p 

	Iprolonged direction of the forces includes bet,veen 
	f 
	the 
	them 
	an 

	iPPcos. 0• the resultant 1nakes with the direction of the 
	1 
	2 
	Further
	, 
	1f 
	compo
	nent 

	a.
	-
	p
	2 
	sin. 

	2.. si'n. t-----Ł-
	-

	_ Idirections CPand CPof ,·en forces _are distnt Ł1 
	f 
	the 
	p
	2 
	the gi
	a

	-a. an
	Ł 
	O
	J(
	1 

	afro1n an arbitrary point 0, Łe d1rect1on CP of the resultant from this 
	,. 
	= 
	2 
	Ł1stance 
	ON
	-a 
	of 
	the 
	point 
	1s: 

	7• 
	Figure
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	TRANSFERENCE OF THE POlNT OF APPLICATION. 
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	a
	a
	P


	3a
	. 
	= 
	11 
	+ 
	P
	2
	a
	s
	. 

	p
	p

	With the help of this distance a, the position of the resultant is
	With the help of this distance a, the position of the resultant is
	.

	given "·ithout regard to the point C, if ,ve describe a circle from 0 centre \\·ith radius a, and to this dra,v a tangent "'hose <lirection is determined by the angle 4>
	as 
	a 
	NP, 
	· 

	forces P=20 lbs. ancl Plbs. ,vltosc 
	1 
	i, 

	distnut 1rom n certain point 
	distnut 1rom n certain point 
	34

	&amplŁ. There ncl upou a body the 
	= 
	= 

	70°, and 
	F .49 
	F .49 

	____•g_• ___ 
	O 
	= 

	= 
	are 
	are 

	O 1-r, = =
	1 
	1 
	a

	4 feet, o.nd O Na= a
	'l 
	= 


	1 ioot; ·whnt .is the inn,milUde, direction, 
	antl 

	position of the resultant? 'fho magnitude of the re::mlttult is: 
	P=v120Ł+ 34Ł+ 2 x2ox 34 ros. 70° 
	=✓400+ 1150
	+ 1:!t.iOX0,34-:l02 

	=✓202115 =44,96 lbs.; further, for its .,. . . 34-X silt. 70
	1 
	° 

	uirec11on, .flll.1> ------,
	:
	:
	44,96 

	I.og. ,in. f = 9,8lH 6384, tl1ercforo, t450 17, the nnŁle which tl1is resultant makes ·with the ufrection of P • The positiou finally is determined by Its cllstar:ice ON from 0, \vltich 
	=
	1 
	1

	is: 
	4•J,{l(i
	4•J,{l(i

	§ 86. 1'he normal distances ON 
	=a' ON=a, &c., of the directioŁof the forces from an arbitrary point 0, Fig. 50, are called the armsof the forces, because they form essential elements in the theory the lever, to be treated of subsequently. The product Pa of the forceand Je,·er arm, is caJJed the statical moment of the force. But sinceP= Pa+ Pa, the statical moment of the resultant is equivalent
	l 
	,.
	2
	of
	a 
	1
	2
	2

	1
	to the sum of the statical moments of the components. 
	In the addition of the moments, regard must be had to the signsplus and minus. If the forces Pand P, Fig. 50, act about the point like directions, and if the directions of force coincide with the direction of motion of the hands of a ,vatch, these forces, as ,vell as 
	1 
	2
	0 
	in 

	Fig. 50. Fig. 61. 
	C 
	C 
	/ 
	Figure

	/ 
	' 

	7( 
	·, 
	.,.v,· "' 
	·O

	P1 
	\
	\
	\
	\ 
	•
	\
	' 

	' Pi 

	Figure
	t�eir statical moments, are said to ha,·e like signs; if the one be posi­tive, the ?ther must be positive likewise. If, on the other hand, Fig. 51, the <l1rections of the forces about the point O be opposite to eachother, then the same, as well as their statical moments, are of con
	-

	Sect
	Figure

	Figure
	• 
	• 

	Łig. 52, a1., because 
	in 
	P<t 
	= 
	Pla
	1
	-
	P
	2

	1:2 opposed to the forl\ ; its sta­moment is, therefore, negative
	is 
	ce 
	tical 
	. 

	-I[ three forces, Pl' P, P3
	P 
	ane.
	2
	, Ł'ig.

	' upon a body nt the points .11, 
	Ł
	act 
	1

	.!13, two of these forctŁs (Pi > I\) byrule 1nust be joined, an<l sultant this again0tne<l to the third forct• ([J3), and the ograrr1 JJR RR constructed fron1 
	2
	, 
	the 
	last 
	their
	:e
	.
	l'(J = 
	(J found, 
	J
	par
	allcl

	ho,v the
	this Łasy see 
	from 
	to 

	4 
	4 

	this composition of 
	In 
	the 

	as if the forces acted 
	y 
	found 
	in 

	of calculation (§ 77) are, there•
	fore, applicable for finding these ŁrElt elements ofthe resultant; 
	t
	wo 

	order to find the third, !osition of the resu1tant 
	Ut 
	in 
	viz
	.
	,
	he 
	p

	or 
	t 
	1 1 
	1 1 
	.
	e t' 
	D1

	ces; if, further, a.1, oare the angles P
	for
	2, 
	a.3, 
	&c., 
	1 
	X, 
	P
	,D
	2
	X, 
	P,
	D
	a
	X
	, 

	' < 1' 2' 3' 0 
	• 

	Sect
	Figure

	XX and YY, ,ve have from §§ 77 
	axes 
	and 
	87: 

	• 
	COMPOSITION OF FORCES IN A PLANE. 
	Fig. 54. 
	Figure
	1The component para1lel to the axis 
	, 
	XX : 

	Q= pl cos. Clt + cos. c,.2 + Pcos. °'3• • • , 
	p
	'J, 
	3 

	2. The component paral]e] to the axis YY: 
	R = Psin. c.r.Psin. a+ Psin. a.• •• ,
	1 
	1 
	+ 
	2 
	.i 
	3 
	3

	3. The resultant of the whoJe system: 
	• 
	✓lR2,
	p 
	= 
	Figure
	Q
	+

	4. The angle "·hich the resultant makes with the axis by
	R
	tang. fl =Q, 
	5. The arm of the resultant or the diameter of the circle to \Vhich 
	the direction of the resultant is a tangent : 
	a= 
	P
	1
	a1 
	+ 
	P
	P
	2a2 
	+ 
	. 
	. 

	. 
	Ifthis resultant be replaced by an equivalent opposite force (-P),then the forces P, PP••• (-P) are in equilibrium. 
	1
	2
	, 
	3 
	•

	Exa,nple. The forces P= 40 lbs., P= 30 lbs., P= 70 lbs., Fig. 55, intersect the
	3 

	1 9
	1 9

	axis XXat angles " = 60, "= -80, "a = l42, and 1l1a distnnres of the pointsof intersection D, DD31 of the rurections of the forces with the wets: DD2 = 4 ft., 
	° 
	2 
	° 
	° 
	1
	i 
	'» 
	1 

	Fig. 65
	. 

	Figure
	Figure
	48•193 
	48•193 

	---
	PARALLEL FORCES. 
	and DD= 5 ftRequired the elements of the resultant. nent forces parallel to Ilis: 
	2 
	3 
	. 
	The sum of the compo­

	Q= 40 COi. 60+30 CO$, (-80)+70 COi. 142= 40 COi, 60+30 COi. 80-70 COi. 38= 20+5,209-55,161 = -29,052 lbs. 
	°
	°
	° 
	°
	°
	° 

	The sum of the components parallel to YY: 
	R = 40 ,in. 6o+ao nn. (-S0)+7o sia. 142= 40 s-iii. 60-30 sir,. so+10 Ii.•&. 38 
	0
	°
	° 
	°
	0

	34,641 -29544+48,096 = 48,193 lbs. 
	1

	The resultant sought is therefore: 
	= 
	= 
	Q 

	311,76-147,I,
	72 
	64
	o
	4

	40X7,79,t-30X4,924
	40X7,79,t-30X4,924

	4 = 
	2,8feet.
	2,8feet.
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	1' ' 3,
	1' ' 3,
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	, 
	causeiŁ ODN
	causeiŁ ODN
	causeiŁ ODN
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	"'AODN""AODN• 
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	3
	3


	=DON
	2 
	2 


	,a , &c., the
	,a , &c., the
	,a , &c., the
	by 
	a 

	N
	O
	1


	If the angle D
	1


	be designated by a., &c., the arms ON, ON. &c 
	a sc1sses OD, OD&c., by b
	1
	2
	, 
	1, 
	b
	2
	, &c., 
	,ve 
	then 
	havei

	=bcos. a., a
	a
	1
	1 
	2

	If, lastly, these values be substituted in the formula: 
	: 
	: 

	=bcos. a., &c. 
	2 

	,ve then obtain: 
	Pb cos. 
	Pb cos. 

	cos. o.+Pbcos. 
	'J
	'J 

	or if the common factor cos. a. be left out: 
	a.= Pb
	a.= Pb
	l
	l 

	a. +...' 

	. 
	Pb=Pb+P+ 
	1
	1
	2
	b
	2
	... 

	In every system of parallel forces it is allo,vable to replace the 
	arms by the distances OD1OD,cut off from any line XX. Because
	arms by the distances OD1OD,cut off from any line XX. Because
	2

	' 

	the magnitude and direction of the resultant is the same, the forces may act at one or at different points; hence the resultant of a systemof parallel forces has the same direction ,vith the single forces, aoclis equivalent to their algebraical sum. 
	Therefore 
	1. P=P
	1 

	+P+P+ ... and al
	2
	3

	or .so.
	P+P+ •.. 
	P+P+ •.. 
	1 
	2 


	. 

	COUPLES. 
	COUPLES. 
	82 

	. b ++ ..s. 
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	1
	P
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	Examplt. The forces P1 = 12 lbs, P= their dir
	a 
	-3
	2 
	lŁ.,
	_P,
	=:: 
	25 
	lbs., 
	n
	.
	ntl 
	CCJtion
	s

	teand D. Fig. 56, \Ł·hose discan
	in
	rsect 
	a 
	st
	r
	aight 
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	at 
	the 
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	D
	1
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	other are D1D-21 inches, DlD3=30 Ł
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	r
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	thu 
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	0
	nt
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	11 lS tor<'fore· 
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	. 
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	D0e
	12X0-32X21 + 25X 
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	0-
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	1275
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	1 t.nches,
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	[) 
	P,aP,a,
	1 
	+

	a --=--=-::Ł----=00 •
	--

	0 
	Fig. 68.
	Fig. 67. 
	For restoring equilibrium to such a couple, according 
	to 
	this 

	a
	single finite force P acting at a finite distance, is not two such couples may easily hold each other in equilibriumand -Pand -P and P, Fig58, are t\\'O such conples, ,M=«, ON,_s= OJJf Ł.'Al.N,_ = a-b; "if further, OŁlf2aJV".= O.;lf-ŁŁ=a-bare the arms taken from a certain 0
	sufficie
	nt 
	bu
	t
	. ir 
	p
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	2
	. 
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	O
	1 
	1
	1
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	O
	1 
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	2 
	poin
	t 
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	' 
	,ve have for equilibrinm: 
	PaP(a-b)-PaP(a-b)0, i.oe. 
	1
	1 
	-
	1 
	1
	1
	2
	2 
	+
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	2
	2
	=

	ll 'J.2
	P
	b
	= 
	P
	b
	. 

	Two such couples are, therefore, in equilibrium if the product of one force, and its distance from the opposite force, are as great in the one couple as in the other. 
	A pair of equal opposite forces is called simply a couple, product of forces and its normal distance from force, the moment ofthe ouple. From the above, two couples in opposite directions are in equi]ibrium, if they have equal momeIf we substitute in the formula (§87)for the arm a of the result: aPaŁ... 
	and 
	the
	one 
	of 
	the 
	the 
	othe
	r
	c
	actin
	g
	nts
	.
	ant
	_ P
	1
	1 
	+
	1
	+ 

	a_ 
	p
	-. 0 without the the statical moments becoming 
	P 
	sum of 
	nulls· 
	,ve 

	... 
	second must amount to =25 X3=4¾ feet.18 
	CENTRE OF PARALLEL FORCES. 83 § 91. Centre of Parallel Forces.-If the parallel forces lie in dif-ferent planes, their union maybe effected in the follo,ving F,g. 59. manner. If the straight line .IJ.1 .IJ.2, Fig. 59, ,vhich unitesthe points of application of t,voparallel forces P1 and P,, be prolonged to the plane XY be­tween the rectangular axes hIX,MY, and if the point of inter­section K be taken for theinitial point, we shall in this manner obtain for the point ofapplication .fl. of the resultant (P1 + P
	J
	J 1, 2
	J 1, 2
	• 

	AB : .IJ.B
	1
	1 

	: 
	./J.22 
	B
	= 

	If we designate by z, , , the normal distances .ll
	1
	z
	2
	z
	3
	&c., 
	1

	B, .
	1
	l12
	B
	2
	, 

	.11:sB,, &c., of the points of application from the principal plane XY,and by wthat of the point .11 from the same plane, ,ve have for the
	1 

	two forces: 
	2
	-
	1 
	1 
	+ 
	2 
	z
	2 
	for three or 
	more, and 
	i+ + l-'3 + • • .W=Pz+PŁ+Pz• • Consequently 
	(P
	P
	2
	) 
	1
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	• 

	I. P11+zZ2· • • 
	I. P11+zZ2· • • 
	I. P11+zZ2· • • 
	w 
	=
	z
	P
	+ 

	.

	P+P+ ...
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	2


	If we put likewise the distances .llC and AD of the point of appli­cation of the resultant from the planes XZ and YZ = v and u, wethen obtain: 
	1Y12Yi• • • and l+2 • • •
	2. 
	v 
	= 
	Figure
	P
	+
	P
	+ 
	p
	p

	Px1+P+ .
	1
	2
	x
	2

	. u = pl +-2+ •"
	3
	Figure
	•
	• 
	P
	•

	The three distances u, v, w from the principal planes, as for �x-amp]e, from the floor and the two side walls of a room, fully determinethe point .11, for it is the eighth terminating point of the paral­lelopi�ed, constructed from u, v, w, consequently, in such a s,ystemthere 1s but one single point of application of the resultant
	.
	As the three formulre for u, v, w, do not contain the angles Łhih
	<:

	_
	!make with the principal planes, the point of ap1independent of these forces and also of their directions; the "·hŁle
	he 
	forces 
	ph
	cat
	on 
	18 

	'
	systm admits, therefore, of being turned about this poin"'itŁout its
	Ł
	! 

	�easing to be the point of application, provided only that in this turn­the parallelism of the forces be preserved. 
	ing 

	FORCES lN SPACE. 
	the force with reference to this plane gene­the point of application of the resultant is called centre ofparallelforces. The centre of a system of parallfrom any plane or line ,vhatever, (the latter ,vhen the forces liethe same plane,) is obtained, ,vhen the sum of the moments isdirided by the sum of the forces. 
	moment 
	of 
	or 
	line, 
	and 
	rally, 
	the 
	distance 
	of the 
	el
	forces 
	in 

	FŁample. If the forces nre the i.lktnnccs 
	Pn 
	Xn

	cc " II ,, •
	Yn

	-a
	Themo1neots are Pa 
	Xn

	" " 
	Pn !In 
	" " 

	Pn z. 
	5 -7 
	1 2 
	2 4 8 3 
	5 -)4
	10 -28 
	40 -21 
	8 UM. 
	10 3 lbs. 0 9 fl 
	5 3 ,, 
	7 10 u 0 30 ft. lbs. 
	(I
	50 12 
	II
	70 40 
	NowJ if the snm of the forcese= 19 -7 = 12 lbs., the distances of the central pointof this syste1n from the three principal planes are consequently: 
	5+36-14 27 9
	u = --'---=-=-=2,25 feet; 
	-

	12 12 4 
	12 12 3 
	12 12 3 
	§ 92. Forces in Space.-If it be required to unite a system con­stituted of differently directed forces, a plane must be carried through the system, the different points of application transferred to this plane, and each force resolved into two component forces, the one coincidingwith the plane, the other at ri�ht angles to it. If >3, il... are theangles under which the plane 1s intersected by the directions of theforces, then the normal forces are Psin. 13, P� sin. J3 ••• , and those in the plane Pcos. 131,
	1
	i
	1 
	1 
	-

	tion .11.B of the resultant of the forces 
	Fig. 60. in the plane (the plane of the paper)
	a romposition is then possible. If we put the distances O C =DK= u,and OD = CK= for the point ofapplication of the first resultant, onthe other hand the arm ON of thesecond = a, and the angle B.11.0,at which it intersects the axis = o, the con?!tioŁ for the possibility of a compos1t1on 1s : 
	v 
	XX 

	u sin. a.+ v cos. a.=a.
	If this equation is not satisfied
	if, for example, the resultant of passes through K1the reduction of forces to a resultant is then itnpossible, but it readily admits of 
	thŁ
	normal 
	forces 
	' 
	of 
	the whole 
	system

	Figure
	Figure
	Figure
	VELOCITIES. 
	-P 
	PRINCIPLE OF VIRTUAL 
	aralJel components is resol,·ed into 
	resultant Nof the p
	the 
	forces

	and R, of which the one is equal,and directed parallel an<l opposite to the resultant P of the forces in the plane.§ 93. Principle of Virtual Je­s.-If a system of forces P,, P, acting in a plane, Fig. 62,1s progressive, i. e. moYes for\vard so that all the points of application ./11.fl., .ll., ..• pass through equal parallel spaces .IJ.B, !1B, ,!}B,
	Figure
	Fig. 
	61. 
	r
	locit·ie
	i
	!'
	2
	3
	, 
	2
	3
	1 
	1
	.
	2 
	2
	3 
	3

	the effect of the resultant (in the 
	0. If the projections .11N" 
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	1 
	.11.Ł 
	.J\1"
	2, 
	&c.,

	of equilibrium therelore 
	sultant is: 
	Ps=Ps+Ps+... This Ia,v fo11o"·s 
	1
	1 
	2
	2

	FiŁ. 62. 
	from one of the for­mulro of § 88, accord­ing to ,vhich the com­ponent of the resu]tant running parallel ,vith the axis XX is equaltothe sum ...&c., of the sin1ilarly 
	Q
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	+
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	•
	running componentsof the forces P, P; no,v from the simi­larity of the triangles 111 f11 1Q1
	1
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	.IJ.
	B
	N
	and 
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	,

	there follows the pro­portion 
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	Q1 ./J.Ha 1
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	1 l 1 
	Fig. 63. 
	• 

	11 'l2 &
	P
	s
	P
	s

	c.
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	94. If the system of forces P
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	1'1
	-
	' P, 
	2

	,
	i
	Łc., Fig. 63, be made to revolve a veryl1tle bout the point 0, the Ja,v of the 
	!
	Ł

	pr1nc1ple of virtual velocities enunciated 
	abovin §80 anc.l § 93 holds equally gooc.I, as may be pro,ed in the fol
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	manner. From § 86 the moment P. resultant equivalent to the of the components, so 
	lowing 
	o.N· 
	of 
	the 
	is
	sum 
	of the 
	moments 
	that:

	Pa=Pa+Pa+.••n
	1
	1 
	Jl
	Jl

	. 
	l 1 
	O 
	1 1-T T 
	180 
	ingly 
	o.Ł. .11cvelocity .IJ.C=r1and the then obtain : 
	1 
	1
	0.11, 
	= 
	Jl
	t
	B
	l
	If the 
	virtual 
	1 
	1
	1 

	Figure
	1(1l O'I I 
	O.IJ.
	.
	d
	'J

	a
	1 
	i
	1·t 
	OJJ.
	t ct>

	H these values be substituted in the above equation for av 
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	sultant is equivalent to the 
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	Fig. 64. of the mechanical effects of components.§95. The principle ofvirtualvelocities holds likewise for ar­bitrarily great revolutions ifinstead of the virtual velocities of the points of application, , ND, 
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	projections ŁD
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	Figure
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	equation for statical moments.
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	Tprinciple is correct also for finite revolutions, if the directionsof_the forces revl,·Ł simultaneously with the system, or if, while the application incessantly changes, the arm ON12= OBremains 
	his 
	?
	p
	oint.of 
	1 

	1nvar1able, then from 
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	points N, Ł, &c.
	Every small motion or displacement of a body in a p]ane may be regarded as a small revolution about a movable centre, and may be proved in the follo\ving manner. Let two points .fl and B,Fig. 65, of this body (this surface or line) be advanced by a smallmotion to ..iand Blet also ..iB= ..iB. If at these points we draw per-pendiculars to the small spaces de­scribed .ll./1and BB, they will intersectat a point C, from which as a centre
	§ 
	96. 
	1 
	1
	, 
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	1 
	Fig. 65. 
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	1

	Ł./1and BBmay be considered thearcs described. Now from the equalities .l1B=.l1B, .IJC=.11C, andBC, the triangles .lll3C and /J.1 1 are equal, therefore, also the C./1= L BC.fl and the L .llC./1L BCB• If we make .l1D=.l1D, weobtain from tbe equality of the .C and D.llC, and frotn that of the
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	sides C.11and C.11. in C.11 D and C.llD, again two congruent trian­gles in which CD=CD, �n� L.flCD=L.11CD. Consequently a�arbitrary point D in .llB, by its small advancement, describes a cir­cular arc DD" If lastly E be any point without the line .llB, andrigidly connected ,vith it, the small space EEmay be regarded as the arc of a circle from C as a centre, for if we make the 1.ll11=E.llB and the distance .ll.E=.ll.E, we aaain obtain two congruent triangles E.ll.C and E.11.C ,vit.h equal side� CE and CE, a
	1 
	1
	1 
	1
	y
	l2
	1 
	L E
	B
	1
	1 
	1
	1 
	1 
	1 
	1 
	1 

	other. 
	97. From § 94, for a small revolution of a system of forces, theme?hanical effect of the resultant is equivalent to the algebraical sum of its components; from § 95, every small displacement may be re­garded as a small revolutioni: hence the law of the principle of ,·irtualvelocities above enunciated is, therefore, applicable to every small 
	§ 

	motion of a rigid body or system of forces. 
	If equilibrium obtain in a system of forces, i. e. if the resultant be null, the sum of the mechanical effects must be also null for a small arbitrary motion. If inversely for a small motion of �be body, t_he sum of the effects be null, eq11ilibrium does not from this necessanly foll�;the �um for all possible small displacements mus� be = O, if 1s to take place. Since the formula expre_� of '1rtual velocities on]y fulfils one condition of equilibrium, it is re­
	Ł
	_
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	hbnum 
	ssing 
	th
	law 

	.
	quisite for equilibrium that this Ia,v be satisfied, at least for as many 
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	tions as can be m�de from these conditions for in a sys­forces in a plane, for the three motions of eaother. 
	mo
	example, 
	tem 
	of 
	independent 
	ch

	r 
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	CENTRE OF GRAYJTY. 
	§ 98. Centre of Grattif.-The weights of the parts of a heaya systern of parallel forces, ,vhose resultant is of ti1e Łvhole, nnd \Yho e centre may be determined fron1 the three for1nufae of § 91. This inid<le point of a body or system of bodies is called the centre of gra\;ty, and a]so the centre of the mass ofthebody or system of bodies. If a body be turned about its centre of gravity, this point <loes not cease to be the central point of gravityfor if the three planes, to ,vbich the points of application 
	y
	body 
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	the 
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	with 
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	s 
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	ne
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	is, 
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	§ 99. Every vertical slraight line in ,vhich this point lies the line of gravity; and every plane passing through the centre ofgravity, a plane o.f gravity. The centre of gravity is determined bythe intersection of t\VO lines of gravity, or that of a line of gravityan<a plane of gra·vity, or by the intersection planes of gravi
	is 
	calle
	d
	l 
	of
	the 
	ty.

	Since the point of application toay be displaced at ,vill direction of force, without changing theaction ofe force, so
	in 
	the
	ŁŁ
	. 
	a 
	body

	_i
	. .
	is fixed. 
	Figure
	Fig. 66• 
	Fig. 66• 


	a body .Jlf, Fig. 66, be pended by a thread CA, in itsprolongation AB \.Ve have a lineof gravity, and if it be similarlysuspended by a second line, we get a second Jine of gravity DE.The intersection 8 of both lines is the centre of gravity of the body. If the body be suspended upon an axis, orbe brought upon 
	If 
	sus­
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	a sharp edge (knife edge) into a state of equilibrium, we shall obtain the vertical plane passing through the axis, or through the knife edge, a plane of gravity, &.c. Experimental determinations of the centre of gravity, as just pointed out, are rarely applicable; we have gŁnerally to make use of geometrical rules, which will presently begiven for the determination of this point with accuracy.
	in 

	In many bodies, for example, in rings, the centre of gra,•ity falls 
	Łithout the mass of the body. If such a body is to be fixed in its centre of gravity, it is necessary to connect a second body with Ł fiŁst, in such· a manner that the centres of gravity of both mayco1nc1de.
	th

	§ I 00. lhtmnination of·the Centre of Granty.-lf y2, z&.c., be the distances of the parts of a heavy body from the three planes zz, yz, :i:y, and the weiRbts of these parts bel, P, &c., we then have the distances or the centre of gravity 
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	instead ofthe weights, substitute the volumes and thereby make the determination of the 
	We 
	may 
	also, 
	of
	the
	sepaŁate 
	parts, 
	centre 
	of 

	bodies are a little extended in one or in two 
	When 
	dimensio
	ns, 
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	pltes, fine wires, &.c., they may be regarded as surfaces centres of gravity likewise determined with last formulce, if for the volumes Y., V., the arms 
	thin 
	3:
	or 
	Jines;
	and 
	their 
	the 
	help 
	of 
	the 
	three 
	or 
	length
	s be 

	ituted. 
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	In regular figures the centre of granty coincid
	§ 
	101. 
	es 
	with 
	Ł
	e 

	·
	centre of figure, as in dice, cubes, ipheree, equilat...i triangles, c1r
	-
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	cles, &c. Symmetric figures ba,·e their centre of gravitin the plane or axis of symmetry. 1'be plane of symmetry JJBCD d1v1<les a body
	Ł 
	_

	_
	JJDFE, Fig. 67, into t,vo congruent halves; the portions on both 
	Fig. 67. Fig. 68. 
	si<les of this plane are equal; the motnents also on the one equal to those on the other, and, consequently, the centre of gra,·ity falls within this plane. Because tl1e axis of symrnetry EF cuts plane surface .l1BCD, Fig. 68, into t\VO congruent parts, here the portions on the one side are equal to those on the otbr; the moments also on both sides are equal, and the centre of gravity of the whole lies in this line. Lastly, the axis of syŁmeŁry KL of a boŁy .11.BGH,Fig. 69, is its line of gravity, because i
	side 
	are
	the
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	ctio
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	Fig. 69. • . ' Fag. 70 • 
	of hvo planes of symmetry, .fl.BCD and EFGH. For this reason, the centre of gravity of a cylinder, of a cone, and of a surface of revolu­tion, or of a rotating body formed on the potter's wheel, lies in theaxis of these bot.lies. 
	Centre of Gravitof Lines.--The centre of gravity of 
	§_102
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	passing through the centre C andparallel to the chord .IJB=s, be de­termined. 
	-
	If
	= 

	the statical moment of this portion of the arc PQ. DO\V the radius PC=MC=r be dra\,·n, and QR parallel to .flB, ,ve obtain the two similar 6.• PQR and CP•.7\f, for ,vhich: 
	then 
	PN. 

	PQ: QR= CP:PN,
	from which the statical moment of the elementary arc PQo. PN QR. CP =QR.r is determined. 
	= 

	No,v, for the statical moments of all the remaining arcs, the ra<lius r is a common factor, and the sum of all the projections QR of the elementary arcs is equal to the chord corresponding to the pro­jection of the whole arc ; it follo,vs, therefore, that the moment ofthe ,vhole arc is a]so = the chord (s) times the radius r. If this mo­ment be put equal to the arc 
	(b) times the distance x, and therefore 
	-
	b 

	• 
	r-b 
	So that the distanr.e of the centre of gravity, from the middle point
	So that the distanr.e of the centre of gravity, from the middle point
	. 

	1s to the radius, in the ratio of the arc to the chord. If the angle at the centre .11.CB of the arc b be = p, 
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	and the height CG by Ii. . . 
	Figure
	Fig. 73. 
	Figure
	section of its diagonals, for all strips, such 
	_
	as KL, ,,·hich are formed l>y dra\.\·ing Jines parallel to one of its diagonals B.D, are bi .. sected by the other diagonals .11.C; each of the diagonals, therefore, is a line of 
	gravi
	ty 

	of the opposite side .llB, Fig. 74. of gra·vity, for the same bisects all the 
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	Figure
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	lines parallel to .11.B are dra,vn. second angle .Ii a second line of drawn to the middle E of the oppositthe point of intersection of the t,Yo give the centre ofravity of the whole A. 
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	Because BD = tBJl and BE= ½BC, DE is parallel to .11.C ands= ½JlC, and A DES 
	therefore, inverseJ, DS = ½ 
	. 
	r
	en: 

	____F_•_6·__ _ 
	The centre of gravity S!ies 
	,,__ 
	g._7_
	at 
	¼ 
	of

	_
	the hne CD from the middle D of the base, and at J of the same from the angle C. If CHand SNbe drawn perpendicular to the base,we have also SN= ! CH; the cen­tre of gravity Sis at ½ of the height 
	point

	Fig. 12. 
	If the middle points II, K Jl.f. 
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	of the trianglŁ ectŁ<l ,vith each ther, the triangle so obtained describe<l, its centre coincide with the centre of S, for the distance one si<le 11 I( is 
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	The distance 88of the centreof gravity of a A_ .11.BC, Fig. 
	1 
	75
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	from an axis XX is = DD
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	! (.fl.IlBB), consequently, X = 88¼ c+ ¼-½(A.11+ BB): 
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	( e-DD), but DD= 
	e
	l 
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	= 
	3
	of the three angular points. 
	the distance of the centre of gravity is determined manner by three equal weights at the anu)ar points of a d, so the of gra,ity of a plane triangle coincides with the centre 
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	c
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	The determination of the centre of gravity Sofa trape
	§ 
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	.llBCD, Fig. 76, may be made in the following manner. The straight 
	Fig. 76. 
	Figure
	1i ne MN, which connects the middle points of the two bases .llB and CD with each other, is a line of gravity of the trapezium; for linesdrawn parallel to the bases decompose the trapezium into elementaryparts, \vhose middle points or centres of gravity lie in :AfN. Now to deterrnine completel3r the centre of gra'\'ity 8, we have onJy, therefore, to find its distance SH from a base 11.B.
	.
	Let B repreE:ent the one, and b the other of the parallel sides .llB and CD of the trapezium, Ii the height or the normal distance of these si<les. Let DE be now drawn parallel to the side BC, we shall then obtain a parallelogram BCDE of the area bh, and whose centre 
	h
	of gravity is 8, and distance from .llB = , and a A .llDE of the 
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	and centre of gravity 8, and whose distance from 
	area 
	(
	B 
	-
	2 
	b)
	Ii 
	2

	.11. B = 
	h
	_ 

	The statical moment of the trapezium, about the line .llB, is 
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	To find the centre of gravity by construction, let two bases prolonged, the prolongations CG made = ! and extreme points obtained, Fand G, con..straight point of intersection 8with the middle line ilf,•1the cent
	the 
	be
	B 
	and 
	JlF 
	= 
	b
	the
	two 
	nected 
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	§ 106. To find the centre of .other four-sided 
	gravity 
	of 
	!ny 
	figur
	e 

	Fig. 11. 
	sicle<l figures be decomposed into t,\'o
	Figure

	other triangles by the diagonal BD, and
	their centres of gravity determin
	ed, 
	,ve

	obtain another line of gravity, whose 
	in­

	tersection "•ith the first will gi"e 
	the

	centre of gravity of the whole .
	figur
	e

	We may effect this more simply if we bisect the diagonal 
	.IJ.C 
	in

	.ilf, apply the greater part BE of the second diagonal to the that DF=BE, join F.JlI an<l divide it into three equal partsn; the centre of gravity lies in the first point 8 from .A-f, as may be provedin the following manner. :A-18=½ JifD and M8= l Ji.IE, conse.8are parallel to BD, but 881 times A .l1CD=88times AACB, or 88• DE=88• BE; therefore, 88: 88=BE: DE. Now,BE=DF an<l DE=BF, consequently 88\ : 88= DF: BF. The 8in the centre of gravity of the figure.
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	straight line MF intersects, therefore, the hne of gravity 8
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	§ 107. If it be required to find the centre of gravity 8of a polygon.flBCDE, Fig 78, we must decompose the polygon into triangles, anddetermine their statical moments ,vith reference to t\\·o rectangular 
	axes XX and 
	YY. 

	If the co-ordinates O.f1=x, O.IL, OB=x, OB=y, &c., ofextremities are gir-en, the statical moments of the triangles .Ii.BO,&c., may be determined simply in the following manner.TofA .Ii.BO, from the remark belo\v, = DyX.iJJ);following A BCO=D=½ (x.iJJ-xy), &c., the distance of the 
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	ofŁ BCO=u= and = ,
	2 
	x
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	x
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	v
	2
	Y
	2+
	Y
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	2 3
	areas of the triangles, the moments of these last 
	multiplied by the 
	Fig. 78, 
	Figure
	are obtained ; and if the values so obtained are, substituted in theformulren: 
	DD2u2 +...
	1
	u
	1 
	+

	tt = --''--=---=--= '-----
	Dl +D2 +.. . 
	-1v1 +2v2 + ...
	• 
	D
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	V---=--=------=----=----,
	l 2 +...
	D
	+
	D

	,ve have the distances u and v of the centre of gravity from the 
	axes 

	YY and XX. 
	Examplt. A pent11gon ./.fBCJJE, Fig. 78, is given by the following Łrdinates of its extretuities .11, B, C, &c.: to find the co-ordi nate-s of its centre of gra viry: 
	Co-ordinates given
	. 

	X 
	y 
	24 
	11
	7 
	21 
	-16 
	15
	-12 
	-9
	18 
	-12 
	l 
	Six Limes the sta•
	Triple co-ordinates 
	tical moments.
	of centre of gravity. 
	Twice the area. 
	of triangles
	. 

	GDotla 
	6Dat4a
	3 'Un 311
	D 

	-
	24. 21e-7. 11 = 427
	24. 21e-7. 11 = 427
	24. 21e-7. 11 = 427
	7 
	7 
	7 
	. 15 + 21 . 16 = 441

	16 
	16 
	. 1215 = 324
	9 
	+ 
	. 


	12 
	12 
	12 18 . 9 = 306
	. 


	18 
	18 
	. 11 +24 . 12 = 486 


	Sum: 1984 
	31 32 -9 36-2S 6
	-21 
	-1 
	t
	4Ł 

	13664
	13237 
	15876
	-3969 
	1944
	-9072 
	-6426
	1830 
	-486
	20412 
	24572
	22444 
	The dk;tnnce of the centre of gravity from the axis YY is: 1 22444
	U=-.---=3,771, 
	3 lVt:i-t
	SS0 
	SS, =v = 
	= 
	l 24572 
	Ł=4128.
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	Rr·mark. If CA, = ::rCB, = .r, CA,= yand CB= y. the co-orclinates of the t,vo
	11 
	11
	1
	1 

	., .,
	angles ofa trin11glc .aBC', Fig. 79,who,e
	Fig. 79. third 8111-{le C coincides ,vitlt the point
	of application of the systrm of .niueŁ we hnvo the 11.rc-r, of the snn1e:
	l'o-on.li

	D=tmpezium ./JTJD,JJ, + triangleOBB,-triangle C' ./1.A, 
	=(Y,+Y,) 
	(.r,2-x
	2
	)+ 
	:i·2Y2 -2!!. 

	2 2 2 
	-.t·, yŁ-.r,y, 
	I)
	'l'hc area of this trin11gle is the diifer­'! .11, and C)J, B,, ond th<' one co-onlinnteof n pointis the bnso of tho onu, and the 01Ler co­ordinate th� height of the other triangle 
	enre of t\\·o other trinngles, CJŁ

	' 
	nud inversely. 
	§ 108. The centre of gravity of the sector of a circle ACB, Fig.80, coincides with that of a circular arc .ll1 B1 which has the sameangle "'ith the sector, and whose radius 
	CJ11 is two-thir<ls of the radius C.11 the sector; for the sector may be dividedby an infinity of radii into very smal]triangles, ,vhose centres of gravity aredistant t,vo-thirds of the radius from the centre C, and these form by their con­tinuity the arc .flJ,,t,.B• The centre ofgravity S of the sector lies in the radius
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	Ł C.11 =-S'i/3. r; r representing the radius CA of the sector
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	and J3 the arc ,vhich measures the angle at the centre .flCB.For the semi-circle f3 = n, S'in. >3 = sin. 90= 1, therefore 
	½ 
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	r = r or about r. For a quadrant x . ½ n r
	r = r or about r. For a quadrant x . ½ n r
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	Figure
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	Figure
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	4 
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	r = 0,6002 riand for a sixth part x = " r
	= 

	3 ½n 
	3Ł 
	. 
	r 
	= 

	= 0,6366 r. 
	§ 109. The centre of gravity of a seg-ment of a circle .llBM, Fig. 81, is given, 
	Fig. 
	St. 

	if we put the moment of the sector .IJ.CBMequal to the sum of the moments of the segment and the moment of the triangle.llCBIf r be the radius C.11, s the chord .llB, and A the area of the segment .llB.Mthe moment of the sector = the sector x 
	. 
	,

	r . arc chord 2 1
	csl = • • r = 3 S'r, fur
	3 
	-

	2 3TC 
	Figure
	Figure
	Figure
	2 
	2 Ł 
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	---, and from this the moment of the segment : 
	r2 
	r2 
	-

	-= 
	4 
	3 12 
	.fl . CSs= 
	Ł) = Ł; consequently the dis
	-

	12 12
	./J.x = .!. sr-(Ł _
	3 3 
	1 8r3
	12e./l 
	the semi-circle 
	For 

	4r
	= a";;' as found above. 
	s = 2 r ancl .11. = -" r, hence x = 
	,

	2 
	12 • 1('
	2 
	and DCE. If the radii be C.11.=r and 1, and the chords .IJB=s and 
	CD=r
	DE 

	11 the statical moments of the sectors 
	=s

	$1'
	sr 
	2 

	1 1
	3 
	3 

	, therefore the stah-
	are: 
	--and 

	cal moments of the portion of ring:=
	sr-s r • S 1' ) •
	2 

	, or (since __!_ = -1s = 
	-
	-
	-=1
	--=
	1
	1 

	3 s r
	r3-r
	r3-r
	/ 

	. !.But the area = _
	. 
	/3
	r 


	3 r 
	Ł

	2 (r-r 2) . . 
	/3r 
	d

	, provided that fl represents the arc correspon 1ng
	, provided that fl represents the arc correspon 1ng
	2f.f 2 
	1 
	= 
	1 


	the angle at the centre .llCB; the centre of gravity, therefore, moment r3
	to 
	of 
	. . 
	-r 
	3 

	...2
	he portion follows from the distance CS =X=---= •
	t
	\ 

	.,--r1 
	area 

	3
	=.Ł 2 r3-r/chordssi,n. ½J3sr3-r
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	). 
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	1

	= 
	= 
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	The-radii of the sttrfaces of a dome are: r= 5 ft., r= 3½ ft., and the anglecentre, po= 1300, then is the distance of the centre of gravity of tbesA surfacesfrom their central point:
	Example. 
	1 
	at 
	the 

	4 ai11. 650 5'-3.Ł 4. 0,9063 125-42,87:; 3,6252hX82,126 
	X=----. =-----c • ----=----
	, 
	-

	3 arc. 1300 5'-3,5' 3 . 212089 25-1226 68067 X 12, 75 
	1
	1

	3,430 feei. 
	=

	Fig. S3. 
	110Centre of Gravity of Cttrved Sur
	§ 
	. 
	-

	f.-Tbe centre of gravity of a curved sur­
	aces

	Ła:ce ( enveJope) of a cylinder IJBCD, Fig. 83,
	.

	_
	the middJe S of the axis J,fN of this b�y, for all the annu]ar elements of the cylin­envelope ,vhich are obtained bysections 
	lies 
	10 
	dncal 

	In like manner we may find the centre of gravity Sofa portion of a ring .fl.EDE, Fig. 82, which is the difference of two sectors ,JJCB Fig. 82• 
	Figure
	are eual, and their centres of gravity lie in 
	q

	_
	x.is; these centres of gravity form a uni­
	the 
	a

	9 
	Figure
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	centre of gravity of the surfaces of a prism lies in tŁ1e middle pointof the straight lines <'onnccting the centres of gra,·1ty of both the 
	bases. 
	The centre of gravity of the envelope f a right cone ..llBC, Fio-.
	Ł

	.
	84, lies in the axis of the cone, anŁ 1s one-third 
	of this line from the base, or t\\'O-thtrds from the ,·ertex; for this cur,·ed surface n1ay be derom.posed into an infinite number of small trianglesby traight lines, ,vhich are cal!c<l the sides of ,vhose ceutres of gra\'1ty form is distant t,,·o-t1,irds of tl!e an<l ,vhose centre of gravity 8lies in the axis C.'/l,1
	Fig. 84. 
	the cone 
	a 
	circl
	e
	HK, ,vhich 
	axis 
	fron
	1 
	the 
	Yertex, 
	or 
	cent
	re
	. 

	Figure
	rules of geometry the zone 
	the 
	has 
	the

	1''ig. 85. sa1ne urface as a cylindricaJ env
	elop
	e

	FGHK, "·hose height is equal to 
	that 

	-
	and \vbose radius is equ
	of 
	Jl,lN
	> 
	al 
	to

	E'
	•
	K. •If' lJ
	I' 
	of the raŁius Co_ of the spher
	.Ł 
	that 
	ical

	rl
	' 
	and this equality also annular elements, ,vhich by carrying an infinite n1unplanes parallel to the circular 
	zone; 
	exi 
	ts 
	in
	the 
	are 
	ob,
	tained 
	ber
	of 
	base
	s 

	,.·,
	1t
	,, 
	t

	•
	Łf

	r, 
	]Ł,,Ł
	/ 
	. 
	,·
	o: 
	cicles "·ith that of the cylinc.lrical envelope. 
	R£mark. The centre of gravity of the bllrfuce of cul obl111ne oone or oblique lies at about one•third of the height 'rorn the base, but not 1n ho str11ight lino fro1n the vertex to tlie centre of gravity of the bWlo, beoanso shces pnmllcl dooompose ll1e surface into rings, which vury in breadth at different pans surface. 
	pyraui
	itl
	(
	!
	passin
	g
	to 
	1be 
	hase
	of 
	thei
	r

	§ 111. Centre of ravity of Bodies.-The centre of gravity prism JlK, Fig. 86, is the centre 8 Fjg. 86. 
	G
	of 
	a
	of 
	the
	Figure
	straight 
	line 
	,vhich 
	connects 
	the 
	centre
	s 
	of

	gravity Jlrl and N of both bases AD for the prism may be decomposed by parallel to the base into exactly slices, ,vbose centres of gravity Jie in A1N.and by their superpo!-ition make the line .}J,f.JV' a uniform line of grarity. 
	and 
	GK
	sectio
	nŁ
	congr
	uent

	For the same reason the centre of of a cylinder ]ies in the mitld)e of its 
	gravi
	ty
	axis.

	The centre of gravity of a pyramid 
	.llD
	F,
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	angular points may be consiuered as vertices, and the opposite sur­faces as bases; the centre of gra\·ity 8 is deter1nined by the intersec-
	Fig. 87. 
	Figure
	Figure
	Figure
	tion of t\VO straight lines <lra,vn from D and .IJ to the centres of gra­vitye.Meand Nof the opposite surfaces .11.Band BCD. 
	(! 

	If the straight lines E.ll and ED be g1\"en, we then have from § 104 E.Jrl = ½ E.8. and EN= ½ ED; therefore .�[Nis parallel o .lllJ andek .IJ.D, and the t:i. MN8similar to t:i. D.118. Again from th1s similarity ,ve ha,·e J,[8 = ¼ D8, or D8 = 3 J,[8, also .A-ID = 8D .7'118 = 4 J.!18, and inversely .r.fS = ¼ .A-ID. Hence tbe centre of gra­vity is found to be one-fourth of the line joining the centre of gravity Mof the base with the vertex D. 
	Ł
	= 
	+ 

	Further, if the heights DH and SG be given, and H.ill be dra\\·n, '\\'e then obtain the t,vo similar t:i.• DH.ll an<l 8G.1lf, in "·hich from the foregoing 8G = ¼ DH. \'Ve may, therefore, say that the distance of the centre of gravity 8of a triangular pyramid from tbe base is equal to one-fourth, and that from the ,ertex three-fourths of the height of the pyramid. 
	As every pyramid, and also e,Łery cone, is made up of an infinite number of three sided pyramids of the same height, the centre of gravity of every pyramid and 
	cone is a fourth of the height 
	Fig. 89. 

	from the base and three­fourths from the vertex. We may, therefore, find the centre of gravity of a pyra1nid or one, if a plane be drawn parallel to the base at a distance one-fourth from the base, and the centre of gra\.�rty of the section or its intersection ,-.·ith the line joining the vertex and the centre of gravity of the base 
	-
	c

	be determined. 
	§ 112. If the distances 7 BBof the four an
	.IJ./J.
	1
	H 
	-
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	of a triangular pyramid .l:JBCD, Fig. 89, HK the distance of the centre of gravity Sfrorn is founfrom the mean value 
	gles 
	fron1_ 
	a 
	plane 
	be
	known, 
	this plane 
	d

	•l
	a 
	-
	-


	'fhe distance of the centre of graYity .Jl/ of the JlBC from 
	base 
	thi
	s

	plane is(§ 104): 
	.11.11B:1CC, 
	1 
	+ 
	+ 

	' 
	JJ/Ł!1 
	= 

	and that of the pyramid Sis: 
	1 is the distance of the vertex: hence it follo,vs by bining the t\\'O last equations, thnt: 
	,vhere DD
	com­

	1 4 l 
	= 
	1•'tJ.JU 
	-

	00
	00
	1 

	•
	4 
	The distance of the centre applied to the angles of a triangular pyramid, is equivalent to eticaJJ.IJ+BB+ CC,+DD 4
	of 
	graYity 
	of 
	fo
	ur 
	equal 
	weights 
	the 
	arithm
	l 
	mean 
	1 
	1 

	Fig. 90. 
	J, 
	vity of the pyramid correspowith that of the system 
	nds
	of

	weights.
	Remark. The ileterrnination of the ,•olume of n triangular pyrnmid, from 
	tho vextex O of such a pyramid .llBCO Fig. 00, anu teprasent lllo di11tances 1he angles .tlBC from tb.csc plo.ncs by 
	of
	-
	-


	Figure
	.. ., 
	of the pyrumi<l ,Ł•HJ be 
	V=f (r1yŁ=+ Xs!J,, =•+X,!J,,-xY,Z,-J:.,Y,Z-X:,!/Ł,), 
	3 
	=
	3
	, 

	which will be given, if the py11Unjd 
	which will be given, if the py11Unjd 
	be

	considered as an aggregate of four oblique prisms. 

	The distances of the centre ofgravity of these J>yramids planes are: 
	from 
	the 
	three 

	x _ x, + x2+x:i .,,_ Y, +Y2+ Ys nzz, =9+ s.
	nd 
	= 
	+ 
	=

	,:r
	-
	-

	4 4 
	4 

	§ 113. Since e,ery polyhedron as .IJBCDO, 91, decom­into triangular pyramids .fl.BCD, BCDO, \Ve also find itsof gravity 8 if we caJculate the volumes, and the statical 
	Fig. 
	may 
	be 
	posed 
	may 
	centre 

	the distances of the angles JJ, B, C, &c., from the co-ordinatethrough the common vertex O of all are 
	If 
	planes 
	passing 
	the 
	pyramids, 

	x
	y3, y3, &c., z, z, z, &c., the volumes ofthe single
	1
	, 
	x
	2
	, 
	.xJ, 
	&c., 'Y
	t> 
	1
	2
	3

	pyra1n1ds are: 
	3a=131=22X1Y?2-XJ/1Z3-'Jl/,JZ1
	JT
	1 
	= 
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	i 
	(x
	JYr
	+X
	.J1
	+x
	y
	-
	X
	),

	a±i ŁJ=i_.2+XJY.z+x._vr-XŁz-XJY-X.J1, 
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	tt _ X2 + X3 + x4 _Y2 + Y3 + Y4 _ &..
	v 
	Z2 + Z3 + Z4 
	c 
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	w
	-

	2 -' 2' 
	4 4 
	4 
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	From these values the distances of the centre of gravity of the ,vhole body may be finally a]culated by the formula: ., _ Vu+ Vu+ . . . _ + ..e
	c
	1
	1 
	2
	2. 
	V
	1
	v
	1 
	+ V2v2 
	.

	w-ŁŁ-__:-=:.---,V---"=;..--=-=;.__--, 
	i v2+•. Ł+v2•. 
	v
	+
	.
	+
	.

	-V1w1 V22 + .•. 
	+ 
	w

	--"'----"----'=-..;'---
	w 
	-• 

	++.. 
	v
	i 
	v
	2 
	.

	Example. A body bounded by six triangles .IJDO, Fig. 91is determined by the fol­lowing values for the co-orcUnates of angles; ,vhence the co-ordinates of its centre of gravity may be found. 
	1 

	Four times 
	Four times 
	Four times 
	Twenty-four times the 

	the co-or-

	Given 
	Given 
	statical moments.

	Six times the area of the triangular dinates of 
	CO-Ordi-
	pyramids. centre of 
	uates gravity. 
	X 
	-
	y 

	,:!
	z 

	..,. 
	..,. 
	r: 

	-
	-
	0 23 
	0 23 
	2

	41 

	f3 V.= -=31072 ?? 
	30 
	41.45.40 
	23.28.45 

	.22,o.•0
	0
	9.
	8
	1 
	i
	0.3
	1

	r
	45 29 
	12 55.2.5.40.20 Ł i= -=17204 95
	23.30.12 
	41.12.29 
	40 28 
	.
	3
	29.20.12 
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	8e
	0 V
	29.28.38 

	38 35 20 
	30.38.40 
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	i 
	Sum: 48276
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	99
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	104 
	om the results of this calculationthe distances of the centres grvfrthree planes yz XZ1 a.nd XYfollow. _ 1 4026924 
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	a
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	"-------20 81(3 ,
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	-24,069,
	11 -!_ 
	• 
	4647840 

	4 48270 
	1 44180f0 48276
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	1
	879.

	'°. -4 
	. 

	.llDF, and the ry pyramid If the areas ofthe baŁs the norm
	of 
	the 
	entire 
	pyramid 
	sup
	plementa
	NQF
	.
	.llD 
	and 
	HQ 
	-G and 
	g, 
	and 
	al 
	dis­

	height of the supplementary given from the fonnulŁ: 
	tance 
	of both -
	A, the 
	pyrami
	d 
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	_ g G-
	✓
	✓
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	Figure
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	· 
	g
	The moment of the whole pyramid \\•ith reference to the 
	base 
	G 
	is 

	now
	G (h xh+x _!_ h0
	+ 
	) 
	= 
	2 
	2 

	. 12 (✓✓
	3 
	• 
	G-
	g

	_
	)'
	4 
	Figure
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	hence 
	i
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	pyramd2
	i
	3 ✓
	G
	-✓
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	(✓
	G-
	✓
	g
	)
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	== 
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	h
	22
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	. 
	)

	+). 
	12(G-2✓G
	g
	g
	12

	=
	= 
	V=n(G + ✓Gg+g; 
	)

	hence itfollows final1y thatthe distance its centre of gravity the base is 
	a 
	of
	8fro
	m

	+3
	h G+2✓Gn
	g
	g

	.M• G+ ✓Gg+g .
	S
	=
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	= 
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	The radii ofthe bases of a truncated cone are Rand fore G=n R' and g=n r, we have then for thish R+2Rr+3r
	r, 
	and 
	ther
	e
	2

	= 
	Y
	4
	. 
	.

	R+Rr+r 
	3

	Figure
	The centre of gravity of a truncated cone of the height h
	:
	ample. 
	=
	20 
	inche
	s 

	d 
	wo 
	Figure
	CENTRE OF GRAVITY OF .BODIES. 
	Figure
	bases and four trapeziums .l1CC.IJ,Fig92, and may be decomposed into a paralleJopiped .l1FC.fl,t,vo triangular prisms EJICB, GKCDand a quad.. 
	1
	1
	. 
	1
	1
	-
	1
	1
	1
	11 
	Fig. 
	92. 

	rangular pyramid RKC; we may, there­fore, with the help of these constituents, find the centre of gravity of the body.
	1 

	It is easy to see that the line from the one bases to the other is the line of gravity of this body; there remains only to deter­mine the distance of the centre of gra¥ity from either base. If we represent the length BC and breadth .flB of one base by and b, and that of .llBand Bcof the 
	l 
	1 

	ll l
	base by land b, and the height of 
	other 
	1 

	body by h, then the volume of the parallelopiped = blh, and 
	the 
	1
	1

	moment bl li. = bh, further the volumes of the two trian
	its 
	2 
	h
	2 
	1 
	1
	z
	-

	1 1 1
	l

	gular prismss([h-b]l+[l-lJ b)! and their moments= ([b-b] 
	= 
	1
	1 
	1
	1

	1 + [l-l]b). ,,Iastlythevolumeofthepyramid=(h-b).(l-1
	l
	1
	1
	h 
	h
	1
	l
	)

	2 3
	h h h
	. 

	-and its moment = (b-b). (l-lJ _ . -. The 
	3 
	i
	volume of the 
	whole 

	3 4
	bo<ly is, therefore: 
	V= (6bl+ 3hl+ 3lb-6hl+ 2hl+ 2bl-2bl-2bl). 
	l
	l 
	1 
	1
	l
	l 
	l
	l
	l
	l
	h 

	6 
	6 
	= (2 bl+2bl+bl+lb). , and its moment 
	1
	1 
	1 
	1
	h


	6 
	2V= (6bl+2bl+2lb--4bl+bl+bl-bl-lb).
	h
	y 
	1
	1 
	1 
	1
	1
	1
	1
	1
	1
	1
	-

	12 
	h2
	= (3bl+bl+bl+bl)-· 
	1
	1 
	1 
	1

	12 
	Hence it follows that the distance of the centre of gravity from the base bl is: bl+3bl+bl+bl h 
	1
	1 
	1 
	1

	y-.,-,,--..,:...::--...,....=...--=--·
	= 
	• -

	2bl+2bl+bl+b1l 2 
	1
	1 
	1 

	Remark. This formula isalsoapplicable to bodies whh elliptical bases. The axes of Łe one base are a and h, and of the other a, and b,; the volume of such 11 body, therefore, 1Ł: 
	V= (2 ab+ 2a,b,+ ab,+ail>), and the distance of the centre of gravity; _ ab+3a,b,+ab,+a,b h
	Ł 

	y --..,.:...--..:...Ł---....:ŁŁ . 
	-

	2 ab+2a,b,+ab,+a,b 2 
	A dam, " Fig. 93, is of the height 20 feet, 250 
	Example. 
	.IJ.CC,.11.
	feet 
	JoŁg 
	at 
	the
	_IJ?t• 

	ta40 <l LŁ·i<; nud the dicitnncits tre ofgravity from the base. 
	om. 
	nd 
	feet 
	wide, 
	at 
	the 
	top 
	400 
	feet 
	long 
	an
	5 
	le
	to 
	e 
	01 
	cen
	He-re 
	b 

	4=20, there­
	= 
	40
	1 
	l 
	=
	250
	1 
	b
	1 
	= 
	15
	1 
	I,e
	= 
	400,

	40. 250 +3. 15 . 400 40. 400 15. 250 
	+ 
	+ 
	-
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	MS-
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	-'!I 20 
	.40.250+2.15.400+40.400+15,25

	2 
	•
	4775 1910
	10 =-=9,-2'7 feet. 
	= -. 
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	Figure
	If the sector ofcircle .llCD, Fig. 94, revolves aboŁt its ra
	§ 
	116. 
	Ł 
	-

	d1us CD, the spher1ca! sec
	there 
	is 
	generated 
	-

	. 
	_

	F,i!. fl-t. 
	tor 
	.flCB, 
	whose 
	centre of 
	grav1ty 
	we ,v1sh 
	to

	===== =-
	---

	determine. We may represent the body as 
	containing infinitely many an<l infinitely thin pyramids, whose common ,·ertex is the centre C, and whose base forms the spherical sur­face .llDB. The centres of gra,ity of all these pyramids are at ¾ of the radius of the sphere from the centre Cithey therefore form a second spherical surface .l1D,Bof the ra­dius C.IJ.= ¾ C.11. But the centre of gra­vity 8 of this cur\'ed surface is the centre of gravity of the spherical sectors; because the 
	; 
	1
	1 
	1 

	,veights of the elementary p_yramids are uniformly distributed over
	this surface, and therefore it 1s uniformly heavy.If we no\v put the radius C.11= CD=r and the height DMof theouter surfacei= h, we get for the inner CD= ¾ r, and .JlfD= ¾consequentlyi(§ 110) D8= ½ MD= i h, ancl the distance of thecentre of gravity of the sector from the centrei: 
	1 
	1
	1 
	h;
	1
	1
	1 

	csŁ CD-D8-! r-j-h=i(r-
	1
	l
	:)• 

	For the semicircle, for example, h=r, therefore the distance of itscentre of gravity S from the centre C is: 3 r 3
	-

	CS=---=-r. 
	4 2 8
	§ 117. The centre of gravity 8of the segment of a sphere .11.BD,Fig. 95, is obtained when its mo-
	Fie-. 95. 
	---. ment is put eual to the difference 
	-
	q

	of the moments of the sector.flDBCand that of the cone .llBC. Again,if we put the radius of the cone CD=riand the height D:A-l=lt, the mo­ment of the sector = ½rcli. i rh) = ¼ rcr2h(2r-h) and that ofthe cClne =½rch(2r-h) . (rlt) . f(r-h) = ¼ nh (2rh) (r-h); the 
	r
	(2
	-
	-
	-
	2

	moment of the segment of the sphere
	. 
	Figure
	Figure
	Figure
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	-rolume of the segment = ¼ " h(3 r-h)i; hence, the distance in question is: 
	2 

	¼tth(2 r-h )(2 r-li)_
	CS= 
	Figure
	2 
	2 
	Figure
	2 

	.
	= 
	f 

	½tth(3r-h) 3 r-h If, again, we put /1, = r, the segment becomes a semicircle, and asabove, CS 
	2 
	i 
	r. 

	DB, 
	'!
	his formula 
	holds 
	good 
	for the segment of a spheroid A
	1
	1

	vhich is generated by the revolution of an elliptical arc 1 major semi-axis CD=r; for both segments may thin slices by planes parallel to the base .liB, so that the ratio 
	Ł
	D.11
	about 
	its 
	be 
	divided 
	into 
	of 
	any 

	2
	2
	2
	b

	CE 
	2


	· 

	Jll .11 
	1
	2 

	Łf .lJ. 
	2 

	= 
	• 
	CV r
	of the ellipse. The ,olume, as well as the moment of the 
	axis 
	minor 

	segment of the sphere must be multiplied by b, in order to give the 
	22

	r
	and moment of the segment of the spheroid, and thereby the 
	volum
	e 

	will remain unchanged. 
	moment 

	volume
	= we must decompose it into thin 
	quotient CS
	FŁg. 
	96, 

	F,Q'. 96•
	slices, by planes equi-distant from each 
	other, determine the solid contents ofeach slice, their moments with reference to the 1irst parallel plane .IJ.B serving for the base, and finally connect them toge­ther by Simpson's rule.
	The contents of these slices are F, F,F,F,Fand the ,vhole height or distance ofthe outer1nost parallel plane isi= li; the volme of the bo<ly, therefore, according s:
	0
	i
	2
	3
	4
	, 
	ll:
	to Simpsons rule (approximately) ii

	'
	V = (F, +4F+2 F+4 F+F) :;. 
	0
	1
	i
	3
	4

	multiply in this formula each of these volumes by their tance, we obtain the moment : 
	If 
	we 
	dis­

	Vy(O. F+Ii. 4F+2i. 2F+3i. 4F+4F) . !!_;
	=2
	0
	1 
	2
	3
	4
	4 
	hi
	12

	,rdividing one expression by the other, we get the 
	lastl
	, 
	by 
	distance

	required: 
	4
	• 
	Ł+4 Ł+2 Ł+4Ł+Ł 
	= 6, we have: 
	+6.FŁ
	+5.4F
	5 
	6
	• 
	-

	number of elementary slices +4.2F
	If 
	the 
	Y
	= 
	O
	.
	F
	o+1.4F
	1 
	4

	+4F+2F+2F
	F
	0 
	J
	2
	.,

	+2.2F
	2 

	+3.4F+4F
	3
	3

	. 
	+4F
	+4F
	5

	6 
	+F

	6
	to understand ho,v this formula may be of slices is different from the above. This 
	It 
	is 
	easy 
	altered 
	':
	hen 
	the 
	numb
	er 
	rule 
	requires 
	only 

	106 CENTRE OF GRAVITY OF BODIES. 
	that the number even, and, therefore, that the surfaces une¥en. 
	of the 
	slices 
	should be 
	of

	n nat!on of one distancenenough, because, besides this, a line of gravity ŁŁ1es
	I
	mos
	t 
	cases 
	of 
	applica
	tion, 
	the 
	determ
	Ł
	1s 
	no\vn. 
	The 
	bo

	is
	. 
	lathe ,vhose axis of rotation is the line of 
	gravity. 
	.

	. 
	01become lines. 
	centre of gravity of a surface, in which 
	case 
	the 
	sect
	i
	ons 
	F
	, 
	F
	, 
	F
	2
	,

	..iBC. 
	Fig. 
	tion 
	2 
	rJ Ł • The area of the section tbroug;1 ..i is F=0, of thnt through N1 1t' 
	= 
	O
	=
	F
	= 

	wr' h=½F2th ; 
	i

	nr
	DNl = -, and of that through M =F= .,, r.
	il 

	2 
	h h
	V= 6 (0 + 4Fl+ Fil)t= 6 (2n-r+ rr) 
	= 
	h'
	on the other hand, the moment js = -( J •2.,,r+2. ,,. r) =½ ,,,. ,4 h'= ! F, h'; lnstly, 
	12
	the distance of the centre ofgravity S from the vertex, is: 
	.11S t F2 h" h.
	= 
	1

	= 
	jF
	jF
	2 
	h 

	Fig. 97. Fig. 9S. 
	Figure
	. Example 2. A vessel ..i13CD, Fig. 98, bas its 1neau half breadths, r= J inch, r, = 1,tincl,, r2 =0,9 inch, r= 0,7 inch, r� =0,4 in.ch, �vith a height 1l1N =�,5 inch. TLe sec­ti?ns Rre F= l.n, F= 1,2l. 'IT, �•= 0,81t. '", F= 0,40t. 91', F,=0,16t. ,r; hence, the distance of the centre of gravity from the horizontal plane ./l_]J, is:
	0 
	3 
	0 
	1 
	'J 
	8 

	JtJS _ Jw+ 1.4. 1,21. '"+ 2. 2. 0,81-.-+ 3. 4. 0,49 w-+4 0,16 .'IT 2,5
	0. 

	Figure
	-
	l 'IT+4 .e1,21e.,, +2. 0,81 'IT+ 4. 0,49 '"+ 0,16 ,r 
	-. -= --= ,Ło ., inc es. 
	-

	38,32
	6,270 cubic inches. 
	= 

	4 
	= 
	9.58 4 
	capacity, therefore, is = 9,8.,,. . ·
	The 
	5
	2
	12 
	5 

	eresting and sometimes very useful application of the 8"'8 0the centre of gravity is the pro1,erties of GuldinttS or the ba­o�entric meof a b�dy of revo­n (?r of a surface of revolutionis equal to the product of the enerating surface ( or generating line), and the space described by its 
	§ 
	119
	-An int
	1
	Ł 
	f
	thod. 
	Accordinng to the
	se, 
	the 
	volume 
	utlo
	) 
	g

	GULDINUS' PROPERTIES. 
	centre of graYity during the generation of the body or surface lution. The correctness of this proposition may be made the foJlowing manner.
	of 
	revo­
	evident 
	in 

	Guldinus' Propertie.-If the plane area .IJ.BC, Fig. 99, revolve 
	s

	about an axis XX, each element FF, 
	1
	i

	Fig. 99
	·

	&c., ofthe same will describe an annulus; if the distances FG, FG,&c., of these elements from the axis of revolution be = r, &c.,
	-
	1 
	1
	ll.
	2
	xx

	l.2
	1 
	, 
	r

	a., therefore the arc corresponding tothe radius 1 = a., the circular paths of the elements Ł•ill be = ra, ra, &c.spaces described by the elements 
	and the angle of revolution A.A1.ll
	1 
	= 
	° 
	1
	'l
	'The 

	__ , &c., and thehe1ghts r10, r20.,a,&c., and therefore the volume+ F2r2
	of the Ł·hole boc.ly .IJBCB.1JC: VFr0. + Fr0.••• (1r1. the generating surface from the axis of revolution, \Ve have 
	1
	1 
	1 
	= 
	1
	1
	2
	2
	= 
	F
	also 
	(F,+ 

	the contents of , described by the centre of gravity 8; consequently, V = Fw, as aboYe enunciated. his formula holds good also for the revolution of a line, because it may be considered as a surface made up of infinitely small breadths;Fis namely = Lw : i.e. the surface of revolution is a product of the generating line (L) and the path (w) of its centre of gravity. 
	body 
	V
	= 
	(
	F
	1 
	+ 
	F
	2 
	+ 
	...
	)
	x 
	(1. 
	But 
	F
	1 
	+ 
	F
	2 
	+ 
	... 
	are 
	the whole surface F, and xa. the circular arc w 88
	1
	T

	Example.-!. In a half ring of an ellipticalsection .fl.BED, Fig. 100, let the serni axis of 
	Fig. 100.
	the section be C./1 =a and CB =b, and let 
	the distance CMof the; centre C from the ax.is 
	XX r; then the elliptical generating sur• face F=1r ab, and the path of the centre of graV1Ly (C) w =,,,.r; hence the volume of this half.dog Tl=,r'abr, and that ofthe whole ring =2r abr. IC thedimensions be, a= 5inches,=3 inches, r=6 inches, the volume of one­fourth of the ring =½. vr2. 5. 3. 6=9,8606•5. 9= 444,132 cubic inches. 
	b

	&ainplt.-2. For a ring ·with a semicircu­lar section .lllJD, Fig. 101, if C./1_ = CB= a, 1 and ]}fOr that of the hollow space or neck, thevolume is 
	represent the radius of this se<.'tion
	= 

	,r a' ( 4a) ( 4
	= •2,r r =,r a' ,r r a).
	V
	+ 
	3
	" 
	+ 
	3 

	2 
	the surface and volume ofa cupola .IJDB of ŁŁhalf the width JJf..i= MB =a, nnd the height Dil follo,vs that the radius C..i CD of rhe C 
	Exa"}pl
	e.-
	3. 
	To 
	find 
	the 
	do
	a of
	a 
	con­
	vent, 
	Jg. 
	102, 
	.lll
	= 
	hare
	given.. 
	From 
	both 
	1.hmen
	sioos 
	--
	oenerating
	circle 
	= 
	r = 

	a,+ hŁ • 
	1

	angle ./JCD subtended at the centre by .J1D = 
	angle ./JCD subtended at the centre by .J1D = 
	, 
	and 
	rhe 
	.so, 
	if 
	,,•e 
	pot 
	rhe 
	Jtn. 
	a=

	2a 
	2a 


	Figure
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	.!!..... The centre of grav-ity S of an arc D.J1D1= 2.Ill) is determined by the distance CS
	.chord M.D r sin.n" 
	,

	11.rc:., fthe
	= r. ----= --; further, b[= rcos. a, consequently the distance 
	C
	.
	,,.1.u
	o 

	aro .JlI) a 
	M(nn. • 
	D 
	-
	-


	r 8iti. " 
	---r cos. a.= r 
	Cl 
	. .
	centre of grav1ty S from the a·ns = -co,. 11 )1 and 
	.

	A 
	Fig. JOI. 
	Fig. J02. 
	Figure
	-
	-
	'11'

	Very commonly a= 60° j therefore, a. = -, Bin." =!✓3and the co,." = j; hence 
	O 
	J 

	3 
	it'follows that 0 ,.. r ( ✓ 3-; ) = 2,1515 .r. 
	= 
	:1

	For the segment D.11.D, =.11. =,--(111 -½n11. 2a) the distance of the centre of gravity 
	. 
	·

	C . (2 . MD)3 · • 2' r3 Bin. a.s 
	h

	fr the centre 1s = -'-----'= -. ---.,,..-, ence h dthe aJUs 
	. 

	om -t e 11rtanoe .firom
	12 .11 3 .11. 
	MS= CS-CM= :.. . 3 ,i-r co,. " i finally, the path of this centre of gravity
	.
	r
	n. 4
	3 

	3 .IJ. 
	described in one rev-olution Ł : 
	w = "(!rsin. 4-.8 cos. 11) = '"3 (¾sin. 113-[ca-½ sin. 2 "]cos.a) . 
	2
	r 
	S
	2 
	r

	.Jl .IJ.
	The volnme of the whole body generated by the segment D.11.Dis given 1f this path be 
	u 

	multiplied by .Jl, and the Yolume of the dome found by taking the half of this: there
	-

	-(4-½Ji11.n2,s] COS.nCl). For example, a=600=an
	fore, 
	V=,rr3(-Jsin.a

	3 
	0 
	-i-
	-i-


	8i1t. •= ½3, and cos.• =i ; hence: 
	✓

	V= r r3 c�✓3 -!!.... = 0,3956 . ,-3,
	8 6 
	Rmiark. Guldinus' properties find their application in those bodies wbiol.t arise when the generating surface so moves that in every posit.ion it remains perpendicular to thepat.b of its centre of gravity, because w& may assume every l!maU part of a curvilinearmotion to ?6 circular. From this we may fiod the solid contents of the tbreatls of screws,and sometimes also calculate the masses of earth, heaped up or removed, as in the caseofcanals, roads, railroads, &c. 
	application of the doctrine of the centre of granty,
	§ 
	120. 
	Another 

	_o
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	If G, Gare the bases, and h, hthe heights of prisms, we haYe for their solid contents G1 h, Gh, volume of the ,vhole obliqne prism
	1
	2 
	i
	2 
	these 
	elementary
	1
	2 
	2
	&c., 
	and 
	the 

	Fig. 103.
	V 

	= Gh+ Gh, + . . Now an 
	1 
	1 
	2
	. 

	element Fof the oblique section HKL is to the element Gof the base .llBC as the \\1hole oblique sur­face Fto the base G; therefore, 
	1 
	1 

	G G
	= .F' F, G= F, &c. and 
	G
	1 
	1
	2 
	F 
	,.

	G
	V = (+ ... ). 
	F 
	Fh+Fh
	1
	1
	,.
	2


	And because Fh+F,/t+...the statical moment Fh of the whole oblique section, it followŁ thati: 
	1
	1 
	2 
	is 

	V = ; . Fh = Gh, i. e., 
	the volume of an oblique prism is equal to the volume of a perfect prism, which stands upon the same base, and whose height is equalto the distance SO of the centre of graYity 8 of the oblique surfacefrom the base.
	In a right or oblique triangular prism, if h, h, /13, be the the sides, the distance of the centre of gravity of the oblique surface 
	1
	2
	edges 
	of 

	from the base h = + , hence the Yolume 
	h
	1 
	3 
	h
	2 
	+
	h
	3

	V G Ji• 2 s3 
	= 
	(
	+
	h
	+
	h
	)

	CHAPTER III. 
	EQUILIBRIUM OF BODIES RIGIDLY CONNECTED AND SUPPORTED. 
	121. Kinds of Support.-The rules developed in the first chapterof this section, on the equilibrium of a rigid system of forces,iare
	§ 

	.
	applicable to that of rigid bodies acted upon by forces, if we ons1derof the body as a force applied to its centre of 
	Ł
	the 
	weight 
	gravity, 
	and 

	Figure
	balanced by forces, are either freely movable, of forces, or they arefixed by one or more points
	Bodies 
	i. 
	e. 
	yield 
	to 
	the 
	action 
	,or 
	suppurt
	ed 

	rigid body is fixed, any other point 
	IŁ 
	a 
	point 
	of a 
	mŁy 
	take 
	up 
	a

	:vlies in the surface of a sphere, dcentre by the distance of the other point 
	motion 
	hose 
	path 
	Ł
	scr1bed 
	£:om 
	the
	fixed 
	point 
	as 
	a 
	as 
	rad1us. If, 

	10 
	110 KINDS OF EQUILIBRIUM. 
	on the other hantl, t\.\·o points of a bo<ly are fixed in every possiule
	motion, the paths described by the remaining points are circJes, which 
	are the intersections of t,vo spherical surfaces described from the 
	fixed points. These circles are parallel to each other, and perp.en­
	dicn1ar to the straight line joining the two fixed points. Thepo!nts
	. 

	of this line remain imn1ovable; and the body revolves 
	about 
	this 
	line,

	which is called the axis of revolution. 
	The ra<lins of the circle in which each point letting fall from the point a perpendicular upo_n _'Fhe greater this is, the greater a]so is the circle 1n reYolves.
	moves, 
	is 
	foun<l 
	by
	the 
	axis 
	Łf 
	re,olutiŁn.
	,vh1ch 
	the 
	point

	If three points of a body, not falJing within the same line, be £ŁPd, the body can in no sense take up motion, because the three spherical surfaces, ia which a fourth point must move, intersect each other in a point only. 
	§ 122. Kinds of Equilibrium.-If a body, fixed at one point, be balanced by one force or by the resultant of several forces, the direc­tion of this force must pass through the fixed point; for a point isfixed when every force passing through it is counteracted. If this force consist merely of the ,\Teight of the body, it is then necessarythat its rentre of gravity sbolll<l lie in the vertical line passing through the fixed point. If the centre of gravity coincide ,,·ith the fixed, orthe so calJed point of su
	Fig. 104. Fig. 105. 
	of stable equilibrium, because, if this body be brought po_sition, the component Nof the ,veight G tends to bring 
	condition 
	into
	Ły 
	othŁr 

	' 
	· 
	od:>: 
	Figure
	Figure
	PRESSURE ON THE AXTS. 
	hvo an axis ; it will be either in indifferent, 
	points, 
	or 
	by 
	stable, 

	or unstable equilibrium, 
	according as the centre Fig. 106. 
	of gra\;ty lies "ertically
	above or vertically below
	the axis.
	§ 123Pressure on the 
	. 

	Jb:is.-If a body, acted 
	upon by forces in space,
	be fixed bytwo points or 
	by a line, relations then 
	take place, ",·hich we
	,,·ill no\v investigatei. We 
	may reduce, according 
	to § 92, every system of 
	forces to t\,o, viz., one
	running parallel to the
	fixed axis, and the other
	acting in the plane normal to this line. Let JJN=N, Fig. 106, be 
	the first, parallel to the axis XX, passing through the fixed _goints C and D; and OP=P, the second force acting in the plane YZYat right angles to the axis XX. If we introduce other forces, as BN = N, CN= N, and DN=-N, ,ve change nothing in the condi­tion of equilibrium or of motion, because these forces are entirelytaken up by the axis. No�the forces JY and -N form together a first couple, and the forces Nand -�' acting in the plane XY andperpendicular to XX, a second couple; ,ve may, therefore, so manage
	-
	1 
	1
	2 
	2
	,. 
	1 
	1
	by 
	the 

	pressureN, and the forces.l\r= "!LN, and-N= YNapplied 
	the 
	1 
	1 
	-

	X X
	perpendicularly to it at the points C and D.
	That the body may be in a state of equilibrium, it is necessary that the direction also of the resultant acting in the normal plane YZ ( at 0)pass through the axis. This force P may be replaced by two parallel
	fo:ces Pand Papplied at the points C and D, which may be deter­
	1 
	2 

	CDB= P. DO and P• CDB= XX ,vill have, therefore, besides the forces BN1
	2
	P. 
	CO; 
	the 
	axis 
	= -N, 
	CN
	= 

	_ X2 p
	. 

	1 DN-N, also to react against the 1 -x 
	J\19
	and 
	2 
	= 
	1
	forces 
	P

	· 
	:r, and 0D=x• 
	OC=
	i
	2

	X 
	112 EQUILIBRIUM OF FORCES ABOUT AN AXIS. 
	From th_e results of the investigations of the foregoing_ may easily calculate the forces sustained by the andfixed points C and D. First, the axis has a pressure to suŁtainthe force Nin its own direction, which one or other of the two fixed points. the 
	§ 124. 
	para­
	graph 
	we 
	axis 
	the 
	equi,
	·
	alent 
	to 
	may 
	be 
	entirely
	rt:siste<l 
	by 
	Secondly, 
	from 

	forces N= '!I N, P= P and-N=-'!I Nand P= P, act-
	1 
	1 
	x
	2 
	1 
	2 
	x
	X 
	1 

	X
	X
	x 
	X 


	normal to XX, and applied at the points arise the resultants R,_ and R2, which must be also sustained by thefixed points C and D.
	ing 
	in planes 
	C a
	Ł
	d D, 
	there 

	If we put the angle PO Y, which the direction of the force P makes 
	with the plane XY containing the axis XX and the direction the force N-== e1, the angle NCPis alsoi= e1; on the other hand, 2= 180 -e1, and the resultant pressures are therefore given 
	of 
	1 
	1 
	N
	D 
	P
	2 
	° 
	by: 

	R✓
	R
	1 
	= 
	✓N
	1 
	2
	+ P1
	2 
	+2N
	1 
	P
	1 
	cos. a, and 
	2 
	= 
	N/+P
	2 
	2
	-2N
	1
	P
	2 
	cos.ea. 

	Exampk. A set of forces of a bo<ly fixed by its axis XX, is resolved into ŁIforce P= 36 lbs., and a parallel force N=20 lbs.; the distance of the last fron1 the axisis y= 1½ feet, and the distance CD=x=4 feet. To find the forces sustained by the axis, or by the fixed points in it, with the condition that the direction of P deviate Ly an angle • = 650from the plane XY, and its point of application O be distant by CO=. =l foot from the fixed point C? The force N=20 lbs. imparts to the axis along its 
	a 
	norm
	x

	direction a thrust N = 20 lbs.; besides, it generatea also the forces N. =!. N= •. 20 = 
	1
	5 

	. 
	. 
	X 4

	5 lb. and-N1 =-7,5 lb., against which the fixed points C and D react. From the 
	7,

	force Parise the forces P= P== -l. 36s::27 lbs. and P, == x, P =_!. . 36== 9 lbs. 
	1 
	x.,. 
	4
	Figure

	4 X 
	X 
	4

	and by substitution of these values we have the resultant forces:
	--
	--:-

	R, = ✓ 7,5'+27+ 2. 7,5 . 27. co,. 65=.,./56,25+7"29+ 171,160 
	Figure
	9
	° 

	= .,./950,410 = 30,926 lb., and 
	R, = 5= .,./56,25+81-57,054 
	✓ 7,5'+9
	Figure
	9
	-2. 7,5 . 9. co,. 6
	° 
	Figure

	= .,./80,1 96 = 8,955 lbs. 
	· 
	§ 125. Eilibrium of Forces about an Axis.-The force P is theof all those component forces whose directions lie in one orinore planes normal to the axis. But now in these cases, from § 86,statical moment Pa of the resultant is equivalent to the sum Pa. +P2a+...of the statical moments of the components, and for thecondition of equilibrium of the fixed body the arm a of the resultant .= O, because this passes through the axis ; hence the sum is also : 
	qu
	resultant 
	the 
	1
	1 
	2

	Pa+Pa+ . .. = O;
	. 
	1
	1
	2
	2
	.

	body fixed by its axis is in a state of equilibrium, and remainsrevolving, if the sum of the moments about this axis = sum of the moments of the forces acting in one direc­
	'· 
	e. 
	a 
	also 
	Łithout 
	Ł' 
	or 
	if 
	the 

	• 
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	50e. l,2!5-35e. 2,5 + 4 P= O, 11ence P3 
	3 

	lb. 
	87,
	5-6
	2
	,
	5 
	-
	6,25

	4 
	§ 126. The Lever.-A body capable of turning about a fixed axis,and cted upon by forces, is r.alled a lever. If we imagine it to be <levo1d of weight, it is then called a mathematical, but other\vise, a 
	Ł

	generally assumed that the forces of a lever act in a p]ane at
	generally assumed that the forces of a lever act in a p]ane at
	It 
	is 

	.

	right angles to the axis, and that the axis is replaced by a fixed point, called the fulcrum. The perpendiculars let fall from this point on the direction of the forces, are called arms. If the directions of the forces of a lever the arrns form a single straight line, an<l the lever is lever. If the arms make an angle \\'1th each otherIe,er. The straight le\'er acted upon 
	are 
	parallel, 
	called 
	a 
	straight 
	, 
	it 
	is 
	then 
	called 
	a 
	bent 

	cting vertically down,vards, or the po,ver acting lies nearest to the fulcrum.
	Ł
	,ertically 
	up\
	\·ards, 

	The theory of the equilibrium of the· ]eYer has been alreadyfully laid clo\vn ; "'e haYe now, therefore, 
	§ 
	127. 

	Fig. 101. 
	only to treat of each specialJy.
	In the t"·o-armed lever, .llCB, Fig. 107, 
	In the t"·o-armed lever, .llCB, Fig. 107, 
	.

	1f the arm C.ll of the power P be designated by a, and the arm CB of the weight Q Lyb,from the general theory : Pa = Qb, ie. the moment of the force is equal to the moment of the "eight; or also, P: Q=be: a, i.e. the power is to the weight inversely as the arms. The pressure on the fulcrum is R= P + Q.In the one-armed levers .fl.BC, Fig 108, ancl B.110, Fig. 109, the same relation takes 
	. 
	T

	Figure
	place between the po\ver P and the weight Q, but here the direction 
	Fig. JOS. Fig. J09. 
	Figure
	10* 
	THE LEVER. 
	114 

	power is opposite to that of the weight, and therefore the pres­sure on the fulcrum is their difference, and in the first case R = 
	of 
	the 
	Q 

	in the bent lever .flCB, with the arms CN-a and CO=h
	Also 
	,

	Fig. 110, P : Q=b herŁ the pres
	: a, 
	-
	-


	.
	Fig. 110. the diagonal R of the parallelogramCP RQ, ,vbicb may be constructed fro� th; po"'er P, the '\'eight Q a.,vhich their directions make ,vith each otheLet G be the weight of �he Jevand CE=e, Fig. 111, the d1�tancthe fulcrum C from the "ertical BG, passing through its centre ofgra­vity; we shall then have to put P+ Ge= Qb, and the plus or minus gnbefore , accor<ling as the centre gravity lies on the side of the poweP, or on that of the "·eight Q. Remark. The theory of the leer finds its ap­pllc-arion 
	sure on 
	the 
	fulcrum 
	1s 
	equ1,·ale
	nt 
	to
	an
	d
	the angle 
	P CQ
	1 
	=PDQ=
	, 
	1 
	r.
	er,
	e. 
	of
	hne
	a
	si
	G
	of
	r
	Ł

	Fig. 11 I. 
	Example.-1. If we press down the end .11 of n cro,v-bnr .IJCB, Fig. \\tith a force P=OO lbs., nnJ ,vitb arm C'.4 of the po,ver equal to 12 ti,nes that of thearm CB of the weightthen "'ill this, or rawer the force erted at 13, be= Q= 12 ti1ncs that of p 12 . 00 = 720 lbs.-2. If a load Qhanging from a pole, Fig. 113, be car: ried by two meŁ ,vh1ch pole the one lays hold of nt .11 ancl the other at .B we n1ay readily find out ,vhat ,veigh; 
	1J2
	thŁ 
	exŁ
	= 

	Fig. 112. each has to sustain. Let the load Q = J 20 lbs., the ,veight of tLe pole = 12 lbs., the distance .flB of both points of application = 6 ft., the dis­tance BC of the load from one of Lhese points = 2½ feet, the distance of the centre of gravity S of the pole fro1nthi� same point .BS=3½ feet. If ,vetake B for the fulcnnn, the power P, has to balance at ..i the ,veights Q and G, therefore P,. B./J. = Q . BC+ G • BS, i. e. 6 P= 2,5 . 120 + 3,5 . 12 = 300 42 = 3·12; hence, P, = 
	G 
	1 
	+ 

	342 
	Figure

	= 57 lbs. On the other hant.l, if 
	Figure
	Figure
	numbeŁ?Ł
	• 
	6

	1 'c) 
	second man is p 
	' 
	PRESSURE OF BODIES ON ONE ANOTHER. 
	Q+G=12o+ 12=132 lbs.-3. In a bent lever, .BCB1 F1g. 114, of 150 lbs. ,vt. the verticallypulling force_ Q=650 lbs., an<l I.be arm CB= 4 ft.1 but the ar,n C.9 of the power P = 
	Fig. 113. Fig. 114. B 
	2750
	G, i. e., 6 P 4-1 . 150 2750; conseuently, the power P = 
	= 
	• 
	650 
	+ 
	=
	q
	=
	4
	5
	8¼ 

	6 800 
	lhs. 
	; 
	the 
	pressure 
	on 
	the 
	pivot 
	consists 
	of 
	the 
	vertical 
	fo
	rce 
	Q+ 
	G 
	=
	650 
	+
	I :50 
	=

	lbs., and the horizonto.1 power P =458½ lbs., and is tuerefore: 
	R ✓(Q+ G)+ P' = ✓= ✓�50070 = 922 lbs. 
	= 
	=
	a 
	Figure
	c1:100)
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	§ 128. Pressure of Bodies on one another.-The experimental la\\announced in § 62, that action and reaction are equal to eac/1, otlr,is the basis of the whole mechanics of machines. It is necessary 1n this place to make the meaning of this still clearer. When two bo<lies Mand M, Fig. 11, act upon each
	r 
	ie_
	1 
	2
	5

	other with the forces P and P' "' hose Fig. 
	1 
	115. 

	-------= 
	-------= 
	directions deviate from the normal com
	-


	mon XX to the t\\·o surfaces at their point of contact, a decomposition of the forces is al,vays possible; the one com­
	onent , ,vhich is in the direc­tion of the normal, passes over from the one body to the other, the other com­remains in the body,and must be counteracted by another or resistance, in order to maintain 
	Ł
	Nor N
	i
	ponent 8 or 8
	1 
	force 

	From theset forth, perfect equilibrium 
	principle 
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	If the direction of the force P de­
	(§ 5) 
	7

	angle N.JlP=a from the normal .JlX 
	viat
	es 
	by 
	the 
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	by 
	the 
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	sin. (o.+.J
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	ie forces 
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	pl0<·e if n 
	_
	Fig. 116, 
	revolvmg aLout nn nxis Cwjtl1 n force P= lbs., tile nnglei1 ofdirection being the followi11;
	25
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	P.tl.Se= S 480,P,.IJJr, = "• = 650,
	=
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	al 
	00
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	ent

	sin. /J, sw. Ou0 
	Stability.-Vrnen a body pressing_ ag.ainst a horizontal 
	Figure
	§ 129.
	plane is acted upon by no other fŁrce thagravitt, 1t has no tendency to move for,vard, because the weight acting vertically do\\:nwards isexactly sustained by this plane; nevertheless, a revolution of thebody is possible. If the body .11DBF, Fig. 117, rests at a point D 
	Ł 

	upon the horizontal plane HR, it ,vill main at rest, if its centre of graŁity 
	1·e-
	Fig. 
	Figure
	J 17. 
	8 
	be 

	supported, i.Be., if it lie in the vertical 
	Figure
	line

	passing through D. If a body is supportwo points on the horizontal surface 
	te<l 
	at 
	of

	:r:i'
	, 
	<
	F 
	,

	\:·. ! another, it is requisite for its equilibri
	' 
	't
	" 
	u
	1n 

	..-Ł1\<
	..-Ł1\<
	-ŁŁ-
	··£ 

	that the vertical line of gravity should B sect the line connecting the t,vo 
	inter­
	Figure
	L 
	<•
	; 
	: 
	point
	s.

	. -.R 
	Lastly, if a body rests three or 
	points on a horizontal plane, equilibriu1n 
	at more 
	.
	.
	. 

	STABILITY. 117 
	to this force it ,vill cause the body to turn until 
	Fig. 118. 

	its centre of gravity has attained its lo,vest po­
	sition, an<l equilibrium will then be restored. 
	We may mention that the equilibrium is stable 
	when the centre of gravity is in its lo,vest pos­
	sible position, Fig. 19, and unstable when in 
	1

	its highest, Fig. 120, and indifferent, when the 
	centre of gravity in every position of the body
	remains at the same height, Fig. 121. 
	Fig. 119. Fig. 120. 
	Figure
	Figure
	Fig. 121. 
	Fig. 121. 


	Example.-1. The homogeneous body ..i.DBF,oconsi::iting ofa bemispheTe and_ a cyl�­de_r, Fig. 117, rests upon a horizontal plane HR. What height SF=h must 1ts. cylin·dncal pan hnve, that the body may be in equilibrium? The radius of a sphere 1s per­pendicular to the oorresponding plane of contact: now the horizontal plane is such a one i consequently the radius SD must be perpendicular to the horizontal plane, and the centre of wa,vity of the body lie in it. The axis FSL of the body passing through the c_ent
	.
	hnes, 1s tl1erefore t.he centre of gravity of the body. 
	Let us now put the radius of the sphere and. cylin-
	Fjg. 122. 

	dt>r S..i =SB=r, and the height of the cylinder
	SF= BE= /1., we then have for the volume of thi,
	�emisphere: =!'Ir r3, for the volume of the oy­hnder � ='Ir rh; 1br the distance of tile centre of gravity of the sphere S,: SS, =ir, an<l for that of �e cylinder S: SS� =½h. That the centre of gra­v11y of the ,vl1ole boJy may fall in S, the moment of the sphereo¾ .,,.,.a. ir must be put equal to the moment of the cylinder, rr rt h . !h; fro111 which we
	V. 
	t 
	'J 

	have: 
	have: 
	h= ½r, i.e., h= r J½ 0,7071o. r.
	2 
	11


	2. The pressure ,vhich each of the three legs, ..i,B, C, Fig. 122, of a.ny loaded table has to sustain, is 
	Łetermine<l in the following manner. Let S be the centre of gravity of the table with SE, CD, perpendiculars upon .llB. If G be the weight of the whole pressure on C, ,ve may, considering .l1B as the axis, put the moment 
	its 
	load, 
	and 
	table,
	and 
	R 
	the 
	of 
	R
	= 

	SE t...i.B
	S 

	mon1ent of G, i. e., R. CD=G. SE, and ·we then obtain R = • 
	10 
	the 
	CD 
	G 
	=1:,._.lllJO 

	Figure
	= Q = 
	6 ..i CS 
	• 
	G, 
	and 
	that 
	on 
	.11 
	= 

	P 
	P 
	=

	like,vise a]so the pressure on B
	G; 

	· 
	ll.BCS 
	t::. .flB C • G. §_130. Let us now take the case ofresting on a horizontal plane. Such a bo<ly possesses stability, or 1s 
	118 
	FORMUL./£ OF STABILITY. 
	in stable equilibrium ,,·hen its centre of graYity is supported, i. e. when the vertical line containing the centre of gravity of the bocly passes through its base, because, in this case, the tendency of the weight of the body to cause it to turn is prevented by its own rigi<lity. \iVben the Jine of gravity edge f the base, then in unstable equilibrium, and Viben the �s out­
	passes 
	through 
	the 
	Ł
	the
	b
	ody 
	is 
	1
	hne 
	pass

	_
	ibase, no equilibrium subsists. The body falls to one ·ale an<lThe triangular prism ABCDE, Fig. 123, accordingabove, stable, because the Yertical SG passes pointof the base. The parallelopiped .IJBCG, Fig. 1.24, unstable 
	s
	de 
	the 
	o,·erturnsŁ 
	is, 
	to 
	the 
	through a 
	N
	is in 

	Fig. 123. Fig. 124. 
	Figure
	equilibrium, because SG intersects a side CD of the base. The
	cylinder .lllJCD, Fig. 125, is ,vithout sta-
	bility because SG no "·here intersects the 
	Fig. 
	125. 

	base CD.
	Stability is the power of a body to pre­serve its position by its ,veight alone, and to oppose resistance to any cause tendinto overturn it. If we have to choose measure of the stability of a hotly, we distinguish whether this has reference to adisplacement or to an actual overturning of the body. Let us now take into considetion the first only of these circu1nstances. § 131. Forrnulte <if Stability.-A force, 
	g
	a
	rnnst
	ra­

	directed vertically, tends not only to overturn a body .llBCD,Fig. 126, but also to push it forward 
	P, 
	not 
	;

	Fig. 126· 
	let us assume in the mean time that reŁistance is opposed to the pushing orpulling forwards, as it may happen, and have regard only to its revolving about one of its edges C. If we let fall from this edge C a perpendicular CEn= a upon the direction of the force, and CN =upon the vertical line SG passingthrough the centre of gravity, ,ve havt! 
	a 
	X 

	Figure
	Figure
	FO.RMULlE OF STABILITY. 
	only to consider a bent le\"er ECJY, for "'bich Pa= Gx, so that P = G; if the external force P be greater than the body revolves
	x 
	x 
	G 

	a 
	a

	a?�ut the point C, and, therefore, loses its stability. Hence the sta­b1hty depends upon the product (G)of the ,veight of the body, and the shortest distance bet,veen a side of the perimeter of the base and the vertical Jine passing through the centre of gravity; Gx may there­fore be regarded as a measuTe of the stability, and for this reason is properly called the stability itself. 
	x

	Hence we see that the stabiJity increases simultaneously ";th the weight G ancl the distance , and may conclude that under otherwisesimilar circumstances a body t,vice or thrice as heavy does not pos­more stability than one of the single 
	x
	sess 
	weight 
	with 
	twice 
	or 
	thrice 

	' 
	' 
	½
	Vrlilr, and the stability 8-G. KNs= G. ! CDs= = 
	G= 
	=b
	Gb 

	2 
	p1ped.
	. body .liCFII consisting of two parallelopipeds, the stabilities about the t"·o edges of the base C and E are different 
	2
	In 
	a 
	Fig. 
	128,

	Fig. 127. Fig. 12$. 
	from one anothrr. Let us take the heights BC and EF,_/1, and 1,the breadths CD and DE = b and bthe weights of the parts G= bli"'1 and bli"'1; then the arms about C will be K= ¼b and KN= b6, an<l ½ b and ½ stabilities accordingly are: first for the re,olution about 
	h
	and 
	v 
	G 
	and 
	1 
	1
	1
	N
	1 
	2 
	1 
	+ 
	½ 
	1
	those 
	about E 
	= b
	1 
	+ 
	b
	1
	. 
	The 
	C,

	S= ½ Gb + G(b + ½b=(½bh+b+½b}h)lr, 
	1 
	1
	), 
	2
	b
	1
	h
	1 
	i
	1

	sl <; (b+½b) +½Gb
	= 
	1 
	1
	1 

	= (½b/h
	1
	1 

	+bbh+lbli) Zr.
	1
	2

	la_tter stagreater than the former; if \ve wish to increase the stability of a \vall JJ_C by offsets, these must be placed on that side of the wall to,vards which the force of revolution (,Yincl, water, pressure of earth, &c.) acts. 
	The 
	Ł
	ility 
	iŁ 
	about 
	8
	1
	-8
	= (h-h
	1 
	) 
	bb
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	Figure
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	. The following is the a ,vaU .11.BCEF, Fig. 129batterino-on one side. The upper bread
	3
	stability of 
	,
	th

	Fig. 129. 
	.11.B 
	= 
	b:
	the 
	height 
	BC= 
	h 
	a
	Łd the 
	leng
	th

	CH= l, and the batters= n, i.se. up
	on 
	.Ii.I

	_
	= a height of 1 foot; IL = n feet or of batter, therefore upon IL fet ED= liThe weight of the para1le1op1ped .IJCF is 1 = bh l, that of the three sided prism.IJDE = 0= ½rtl,i. hl,the arms for a revo­lution about E are = DE + ½b=snh+ ½band i DE=½ nh, consequently for the sta
	inch
	es
	;
	n
	.
	G
	r
	2 
	r
	-

	bility we have
	8= G(nh+½h) + J Gnh = (½b+nhb+!nh)hi,,.
	1 
	2
	2
	2
	i

	A parallelopipedical wall of equal vol­ume has the breadth b + ½ hence thestability is: 
	nh, 

	8= ½ (b+½nhy1 hlr = (i b+½nhb+tnh) hl;
	1 
	2
	i
	2
	r 

	its stability is, therefore, about 8-S(b+ .52nli). ½ less thanthat of the battered wall. 
	1 
	= 
	nh
	2
	lr, 

	For a wall sloped upon the opposite side, the stability is 8= (b+nhb+ ½nh) • ½ hlr, less also than 8, and indeed about 8-= (b+½nh) . ½nhlr, as well as about 8-8= Ł\r n"hly less thanthe stability of the parallelopipedical walls. 
	2 
	2
	2
	2
	8
	2
	2
	2
	1 
	3

	Example. What is the stability for each foot in Jengtl.t of a stone ·we11 of JO height, and J¼-feet of upper brf'1ldlb ,vilh baetter of Ł in 5eon the buck? The specifigravity of this wall (§ 58) is taken at 2,4, Jts density )' 1s, therefore, = 62,:S . 2,4, 130 lbs.; now l= 1, h 10, b = 1,25, and n= i =0,2 ; hence it follows, that the bility sought is: 
	feet 
	in
	c
	= 
	= 
	sta­

	S= (½. (1,25]+ 0,2. 1,25e. 10 + ! . [o,2r. JOŁ 10 .1 .130 
	1

	4 ft. lbs. With the same quantity of material, and under other,vise similar circumstances, the 
	= (0,78 L:25+ 2,5+ 1,3333) 130 = 4,ti146. 130 = 603,

	stability of a paralJelopipedical wall ,vould be: S1 = (½. (1,25]+ ½,0,2e. 1,25e. 10+t.02• 10Ł) . 130 =(0, 78125 + 1,250,5) . 130 =2,53 l . 130 = 329 ft. lbs. 
	1 
	1
	9
	+

	The same ,vall, wi1.h a sloping front, would have the stability: 
	Ł= c½. [1,25r+ 1.0,2e. 1,25e. 10+ 1. [o,2r. 1Ł)e. 130 =(0,78125 + 1,25+0,666 ... ) . 130 =2,6979e. 130 = 350,7 ft. lbs.
	.Remark.-It is eviuent from the foregoing that it allo,vs of a saving of material to batter walls, to construct them ,vith counterforts, to give them offsets, or to place them upon plinths, &c. The second part will give a further extension of this subject, ,vhen ,ve come to treat of the pressure of earth, and of vaults, chain briJges, &c. 

	§ 133Dynamical stability.-We may distinguish from the mea­f stability treated of in the last paragraph, still another to a certain degree dynamical measure of stability, when we consider the effect wuch is to be expended in order to overturn a body. Now the mechanical effect of a force is equal to the product of the force and the space, but the force of a heavy body is its weight G, and the space e9ual to the vertical projection of that described by its centre of gravi_tr, we may consequently take for the d
	§ 133Dynamical stability.-We may distinguish from the mea­f stability treated of in the last paragraph, still another to a certain degree dynamical measure of stability, when we consider the effect wuch is to be expended in order to overturn a body. Now the mechanical effect of a force is equal to the product of the force and the space, but the force of a heavy body is its weight G, and the space e9ual to the vertical projection of that described by its centre of gravi_tr, we may consequently take for the d
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	sure 
	Ł
	!

	the stab1hty ot: Gs, height to which the centrŁ of gravity of the body must ascend in order to bring the bodyfrom its stable condition into an unstable one. 
	a 
	body 
	the 
	product 
	ifss 
	be 
	the 

	Figure
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	Figure
	DYNAMICAL STABILITY. 
	Let Cbe the axis of revolution and 8the centre of gravity body .fl.BCD, Fig. 130, whose dynamical stability we wish If we cause the body to revolve so that its centre of gravity comes to S, i. e. 
	of 
	a 
	to 
	find. 
	i
	Fig. 130. 

	== 
	== 
	vertica11y over C, the body will be in unstable equilibrium, for if it only re­volve a little further it will fall over. If we draw the horizontal line SN, this will cut off the height N8=s to which the centre of gravity has ascended, from which the stability Gs is given. If now CS= CSh= z, C.'NI = SN= x,and the height CN= Jl18 = y, it fol­lows that the space 8N= s = z-Y 
	1
	1
	l


	8= G (✓:r + y-y). 
	2 

	Figure
	b Ii 
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	(§ 105) 
	breadth .11.B = b2, we then have MS= y= 
	b
	1 
	+ 
	2 
	•

	1 ll and CM= x = ½b, hence 
	b
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	b'
	3 
	i

	S(Ł)b+ 2 bŁ Ji
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	. 
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	,..J 2 b+ b3and the dynamical stability, or the mechanical effect, required to 0l"• turn it: 
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	+
	2 

	l '.l 
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	.Examplt.-Wbat is the dynamical stability or the mechanical effect necessary for theoverturning of an obelisk ..i.BCD, Fig. 131, of gmnite, ifits height h= 30 ft., its upper length and breadth l= Ii, and b= I ft., and lower length and breadth Ł = 3j ft.1 The vo-
	t 

	Fig. 131.
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	4 fl, h, = 
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	lo+b
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	Figure
	Now a cubic foot of granite 187,5 lbs.; the ,vhole ,veight of this body is: =377343 lbs. The height of the centre of 
	Now a cubic foot of granite 187,5 lbs.; the ,vhole ,veight of this body is: =377343 lbs. The height of the centre of 
	1 

	3 . 62,5 = G= 201125 . 187,5 
	weighs= 


	+b,l,+b,l, 
	2 
	_ · t + 3 . t. l + 1. 4+ ½. t 30 2775. 15 
	4 
	1 

	-
	. = 
	2

	= 10,342 ft.
	4025 4025 
	x =. ½ b, = ¼ • ¼= i ft.; hence, the distance of the centre of 
	to which the centre of o,erthro,\· will be: 
	gravity 
	must be 
	raised to bring 
	about 
	an 
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	THEORY OF THE INCLINED PLANE. 
	1 =:: -y = 10,4S0 -10,342 0,147 fl; Jn-:tly, the corrt'!'lmchnnicaeffor stal.,ility will be: Gsn= 37734.3. 0,1-17 = Ł547 fi. Jt,-1.
	= 
	pon
	ling 
	c
	l 
	e
	ct

	Remark. _!he factor , = ,;cl+ y' :t (..,/2 -1) = 0,414 x, for y 
	...; 

	• = x. for !I 
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	-y gives for Y = , = (✓11+ 1 -u) npproximately
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	Wi:!itle
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	be situaw<l oer the middle of the base. 
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	§ 134. Theory of t!Le Inclined Plane.-A 132, on an inclined plane, that inclined to the horizon, 
	bŁ<ly 
	JJC, 
	Fig. 
	rest
	..
	ing 
	_
	is, 
	on
	Fig. 
	132. 
	one 
	may 
	tak
	e

	---
	•
	=
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	·motions; it ll:1ay slide inclined plane, also re\"oabout one of the its base overturn. If the is left to its weight is into a N normal, an<l paralbase, the first is resisted reaction of the the 
	up t"
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	the
	and 1t 
	may 
	lve
	edges 
	of 
	and
	body 
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	f.
	G 
	resolveJ 
	foreŁ
	to 
	a force 
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	by 
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	plane, 
	and 
	last 

	the body down the plane. Let the angle ation of the inclined = 11, "·e have therefore the G8N = a., and hence the normal pressure: 
	urges 
	of 
	inclin
	FlJR
	p]ane 
	to 
	the horizon 
	ang
	le

	N= G cos. ll,
	and the force parallel to the planei: 
	P = G sin.i"· 
	If the vertical line SG passes through the base CD as in a sliding can take place, but if this line passes base, as in an overturn ensues, and the body, therefo
	Fig. 
	132
	motion only 
	outsid
	e 
	th;
	Fig. 133, 
	re, 
	is 

	Fig. 133. 
	Fig. 134. 

	Figure
	Figure
	Figure
	· 
	· 
	h fi 
	Figure
	, 
	THEORY OF THE INCLINED PLANE, 
	• 
	plane; it is null for x cos. a.= y sin. a., i. e. for tang. a.=x.
	zontal 

	y
	When plane is transferred to an inclined one, ,vhose angle of inclination corresponds to the ex
	a 
	body 
	that 
	is 
	stable 
	G 
	x 
	on 
	a 
	horizontal 
	-

	pression tang. a=Ł it will lose its stability. On the other hand, a 
	y
	body may acquire on an inclined plane the stability which is wantingto it on a horizontal one. For a turning about the upper edge C, the arm CE= CO+MN xcos. a.+y sin. a., whilst in its position onthe horizontal plane it is = xIf now xis negative, the body has no stability so long as it remains on a horizontal plane, but if it rests 
	1 
	1
	1 
	r 
	1 

	on an inclined one, forwhose angle ofinclination tang. a isi> , the 
	x
	y 
	1

	body is stable. 
	0,16922, and inclination 4 
	0,16922, and inclination 4 
	tang. a= 

	?OOO 
	7 
	= 


	= 
	4. 10,342 41368 
	= 9
	° 

	36'. 
	§_ 135. As the inclined plane only counteracts that pressure which
	§_ 135. As the inclined plane only counteracts that pressure which
	.

	1s directed perpendicularly against it, the force P which is necessary!o pre,ent a body supported upon an inclined plane from overturning, 1s determined by the condition that the
	resultant Nof P and G, Fig. 135, must 
	Fig. 
	135. 

	be at right angles to the inclined plane.
	From the theory of the parallelogram of 
	r: P sin. ONP
	1orces ,ve have = ---now the
	-

	G sin. POJv 
	L PNO = L GON= FH= a, and L PON= POKKON=>3+90, in sofar as ,ve represent by J3 the L PEF­POK, by which the direction of theforce deviates from the inclined plane;hence we have 
	R
	+
	°

	P sin. a. • P sin. a.
	-= -----i. e. = --,
	, 
	-

	G (90 + G cos. il 
	sin. 
	>3) 

	therefore the force which maintains the body on the plane is: 
	G sin. a.. 
	p = 
	cos. J3
	cos. J3

	For the normal pressure N
	N sin. OGN 
	N sin. OGN 
	N sin. OGN 
	N sin. OGN 
	but the L OGN= 90°-(a.+'3) 
	an
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	G sin.iONG
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	ONGPON= 90+J3, hence it follows 
	..... 
	G 
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	sin. 90J3) -cos. p 
	(
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	= 
	Figure
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	and for the normal pressure against the plane G cos. (a+>J)
	N
	= 

	. 
	. 

	cos. /3
	Ithe force P is parallel to the plane, /3 = 0 J3 1, since P = G sin. o. and N= G cos. o.. If P acts vertically a+Łi= 90, hence 
	f
	and 
	cos. 
	= 
	°

	cos. i3 =osin.oa., cos. (a.+>3) = 0 and 
	body. 
	hence 
	Gsin. a. G cos. 0 
	. 
	G

	P=---= G tang.ia, an d N=i-= 
	--

	cosa. cos.oa cos.oa. 
	.o

	Example. To maintain a body of 500 lbs. upon an inclined plone of 5Łinclination tothe horizon, a force is applied ,vbose direction makes au an2"le of 75\\'Jlh the horizon"·lJal is Lhe mŁTD:itude of lllis force, an<l the 1nessure of the l.iody the }Jlnne ,iTLe force is : 
	0 
	° 
	against 

	ros. (75-50) 
	cos. 2:>
	0 

	cos. 25
	° 

	§ 136. Principle of Virtual Velocities.-If ,ve comŁthe prin.. ciple of the equality of action and reaction set ,viththat of virtual velocities (§ 80 and §es.
	ine 
	fŁ
	rth 
	1n 
	§ 
	128, 
	93), 
	the 
	fo
	llo,
	ving 
	la,v 
	transpir

	If two bodies Mand hf,, Fig.
	1 

	Fiir. 136. 136, hold each other in equili
	-

	brium, then for a finite rectiliner or infinitely small curvilinear mo­tion of the point ofcontact or pres­sure .11, the sum of the mechanical effects oftheforces oftlie one bodyis equivalent to the sum of the me­chanical effects ofthose ofthe other.
	a

	If Pand 8be the forces of the one body, and P" an<l 82 those ofthe other, then, for a displacement of the point of contact from .11 toB, the respective distances de­
	1 
	1 

	are .11D'.l1E,.l1Dand .llE, and according to the above law: 
	scribed 
	1
	1
	<J. 
	'J,

	J. l 1 '}, 'J 9. 'J,
	P
	. 
	.llD
	+ 
	8 . .11E
	= 
	p
	• .llD
	+ 
	8
	. 
	.IJE
	. 

	The correctness of this proposition may be proved in the follo,ving As the nor1nal pressures Ł and Ł are equal, there is also equihb1ubetween their mechanical effects, N• .llC and N: .llC, 'Ł•!<l1fference, that the mechanical effect of the one sitive, and that of the other negative. Now from what has preceded,,Łe have the mechanical effect N. . .11.C of the resultant N equivalent fo the sum P.llD+ 8• .IJEof\he mechanical effects of its compo..nents Pan<l 81, and like\\·ise .N"• • IJ.C= P• .flD+ 8• .11E; hen
	maŁ
	Ł
	er: 
	Ł
	Ł 
	1 
	,.2
	'
	h 
	this 
	force 1s 
	po­
	1 
	i 
	1 
	1 
	1 
	2 
	2 
	2 
	2 
	2
	also 
	P
	• .l1D
	+ 
	S . 
	.J:L
	l 
	= 
	2 
	2'

	l 2 ' 2 • 
	Figure
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	general possesses great ad vantage in statical investigations, as by it the evolution of algebraical expres­sions becomes much simplified. If, for example, we move a body .11. upan inclined plane FH, Fig. 137, a distance .11.B, the corresponding path of the weight G, = ./JOi= .f1B sin . .flBC= .llB sin. F BR = .11.B si.n. a,. On the other hand, the path of the force Pis .llD = .llB. cos. BJJ.D = .llBi. cos. 13, and lastly, that of the nortnal force N = 0; nov; the me­chanical effect of N is equivalent to 
	. 

	' 
	P . .IJD, and so we find P = ----. G= --, 
	-

	quite in accordance with the former paragraph. 
	Fi.I!, 138,
	Figure
	inclined plane HF, Fig.138, throughes to the
	a space .11.B at right angl

	direction of the force .11.P, to deter­mine the corresponding paths of the forces, and again put the mechani­cal effect of N equivalent to that ofG + the mechanical effect of P. Thepath of N is .flD = .IJ.B cos. B.11.D = .llB cos. J3, that of G is.110 = .11.Bcos. B.11.C = .11.B cos. (a. + 13) and that of P = 0, hence the mechani­cal effect 
	• .llD = G. .flC+ P . 0, and N
	N

	G . .IJ.O coŁ·. (a. + Ł) 
	.
	G •--'------'-,Just as was found 1n the former pa­
	cos. >3 
	=
	= 
	Figure
	.IJ.D 
	ragraph.
	Theory of the Wedge-After this the theory of the out very simply. The wedge is a movable inclined 
	§ 
	137. 
	.
	wedge
	comes 
	plane, 

	Fig. 139. 
	•11 
	Figure
	( 
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	formed by a triangular prism FHR, Fig. 139, generaUy the force K1s and at right angles to the back FR holdsin equilibrium , which presses its lateral surface FH. If FHR == a. be the angle measuring of its edge, anfurther, the angle directionforce KP or .llD deviates from the surface therefore FHH.llD = 3 and lastly the angle L.AH, the deviation of the direc­tion of Q from' this same surface, = >3, then the patwiH be givwhich are described by the advance of the wedge positioFHR into that of FHR, in the fo1lo
	P 
	= P, 
	of 
	the 
	wedge, 
	and 
	another 
	force 
	or load 
	.AQB-= Q
	again
	st
	the
	sharpness 
	d 
	by 
	which the 
	of 
	the 
	FH, 
	K 
	= 
	hs 
	en
	from the 
	n
	1 
	1
	1
	_The 
	path 
	1 
	s = 
	.llD 
	B 
	s
	a.
	the 

	H.11
	sin.
	• 

	1s .1.1. = . 
	. sin . .Jl 
	C 
	=
	pa Co the bar "L,.,.1. 
	th

	or 
	oa
	I
	d 

	= 
	1J
	C

	n. 0 
	.JJBBsi

	_ , and the simultaneous path of the normal pressure Nbe
	Figure
	..

	sin. J3 
	tween the wedge and the foot of the bar = .llE -= .llB sin. a.. 
	By the advance of the ,vedge a distance .llB, the normal pressNproduces the mechanical effect N. .llE a: N•.llB sin. the force however, develops the mechanical effect P . .JJD == P • cos. (a.-a
	ure
	a.
	, 
	.ABB
	)

	_
	and the resistance the mechanical effect, Q.llCB-Q•"_, henc
	.
	.llB
	n
	. 
	a.
	e

	sin. >3 
	N. .llB in. a.=-P • .llB cos. (e1-a) i. e. Nsin. a. == P cos. ( e1-4'), 
	s
	as 

	"in. ca lll" sin. a. r.
	. 
	B 
	s
	• 
	• 
	Q
	d

	a1so N• .IJB sin. a.= Q. .n . , i.e . .,, sin. a.= • , an 1ro
	m

	sin. s sin. s 
	these equations equation bet"·een the power and resistance 
	the 
	sought

	.
	.
	1s given; 
	Q sin. a. 
	P cos. (Ł4')= .
	sin.iµ Qsin. a. 
	, or 

	P .. .
	sin. Ł cos. 
	)'
	which may likewise be obtained by the decomposition of the forces. If the direction. of the force is parallel to the base or lateral surface 
	HR, 4'= a., hence P = _, and ifŁ further, the diŁection ofthe load
	Q 
	sin. 
	a.

	sin. JJ is perpendicular to the side FH, '3=90, and P follows= Q sin. a. 
	°

	Ezampk. The edge F HR of a .wedge = • = 25, the force is directed parallel tothe base HR, therefore, 1' = a, and the weight Q acts at right angles to the side FH,therefore S =90, in what proportions are the power and weight to each other 1 Pis= 
	° 
	° 

	Q NI. a, therefore ,!_ == ,i 11. 25° = 0,4226. For a weight Q of 130 lbs. the power 
	P

	Q
	comes out = 130 • 0,4
	226 

	54,938 lbs. In order to drive forward the bar 1 
	= 
	weight or 

	662 feet. 
	2,3

	4226
	,in• 0,

	Rffllark . 
	. . 

	1 
	oped 
	. 

	Łof the inclined plane and the wedge will be more fully deve-
	th
	theones 

	·' . 
	FUNICULAR. MACHINES-KNOTS OR. 
	NODES. 

	CHAP"fER IV. • 
	EQUILIBRIUl\-i IN FUNICULAR MACHINES. 
	§ 138. Funicular Machines.-We have hitherto assumed that bodies, on which forces act, <lo not change their form in conseqof this action; we ,vill now take up the equilibrium of such bodies asuffer rm by the smallest forces. The former are 
	uence 
	s 
	a 
	change 
	in 
	their 
	fo

	stretched by forces, and in this chapter we will consider the equilibrium of these machines. 
	the 
	theory 
	of 

	That point of a funicular machine to which the force is applied, and where the cord forms an angle with the <lirection of the force, is called a knot or node. This may be either fixed or movable. Tension is the force "·hich a stretche<l cord transmits in the direction of its axis. The tensions at the ends of a straight cord or portion of a cord are equal and opposite, § 83; also a straight cord cannot transmit other forces than the tension acting in the direction of its axis, because it must other,vise bend
	§ 139. Knots or Nodes.-Equilibrium obtains in a funicular ma­
	chine, when there is equilibrium at each of its nodes. 
	must next find what are the relations of equilibrium at any one node. 
	Equilibrium takes place at a node K, ,vhich a portion of a cord .llKB, Fig. 140, forms, when the resultant KS of the tensions the 
	of 

	Fig. 140. 
	P
	Figure
	and opposite to the force 
	equal 

	1 82 produce the same effects 
	8
	and 

	of the quantities to be determined, viz. the tension of the cord and 
	Figure
	l28 KNOTS OR NODES. 
	direction. Let, for example, the force be P, 8andthe L between the t\VO .RKP= 180-.RKS= 180-(1,, "Vt' have for the other tension. 
	its 
	the tension 
	1 
	°
	°

	and for its direction or deviation from KS, . Ł sin. a
	Bl(S=>3, 
	and 
	.

	fl 
	fl 
	sin. 
	8
	1

	= --=--· 
	-


	s 
	S

	&ample. If the cord .1J.KBFig. 140, is fixed at the extremity B, and at LIie exrrornity ./J. stretched by a ,veigLt G = l3:'> lbŁ., antl the michlle K hy a force Pe!OU lh!I., which 
	1 

	.
	pulls upwards under on angle of 25; required the duection ant.I te11:;1on of tho Portionof cord KB. The magnitndc of the tension is : 
	° 

	�= ✓90-25)= 2�✓ 171368,3e= 13:2,02 lbs. 880l. CL 135.,in.05
	�= ✓90-25)= 2�✓ 171368,3e= 13:2,02 lbs. 880l. CL 135.,in.05
	1092 + J 35Ł -2. J 01), J 35 l'OS. (
	° 
	°
	✓11&81+lb:.!
	-2!1430.ros.65
	-2!1430.ros.65

	° 
	= 
	. 
	° 

	For the angle /J, Sin. S = l = ----Ł Log. s111, S = 0,9640l7 -lh, once fJ

	132,0:J
	s, 

	67O', and the inclination of tLe portion of the cord to the horizone=e"+ fJ-90= t\5+ 67-90=42. 
	=
	° 
	° 
	° 
	° 
	° 
	° 

	§ 140. If the node Kis a running or movable one, P
	or 
	the 
	force 

	acts by means of a rinrunninalong the
	acts by means of a rinrunninalong the
	g 
	g 

	.

	F,g. 141. 
	F,g. 141. 
	cord 
	.llKB, 
	Fig. 141, 
	the 
	resultant 
	8 
	of

	the tensions 8and 8is equal antl oppo­
	1 
	2 


	site to the force P at the ring; besidesthis, the tensions are equal, for if the cordbe drawn a certain space s through thering, each of the tensions Sand 8will pass o,·er the space s, ancl the force P over a spacei= 0; consequently, provicle<l there is perfect flexibility, the mechanical effect P . 0 = 8• s -8• s, i. e. 8s = 
	1 
	2 
	1 
	1 
	1 

	8and 81 = 8• From this equality ofthe tensions there follo,vs the equality of 
	2 
	s 
	2

	the angles .IJKS and BKS, by which the resultant 8 deviates from the directions of the cords. If we put these angles = a., the resolution of the rhomb 
	Figure
	Fig. 142• 

	K88S, gives
	1 
	2

	8 = P = 2sl cos. a. and inversely 
	81 82 = p.
	=

	a. 
	2 cos. 

	.IJ and B are the nxed points of a cord .IJKB ofgiven length (2 a) ,vith a mova­ble node K, the place of this node maybe found byconstructing an eJJipse, ,vhosefoci are Ji and B, and ,vhose major axisi� equal to the length of the cor<l 2 a, andif a tanent is dra"'n to this curve at right angles to the given direction of the
	g

	. 
	. 

	cor 
	and S. 
	1 
	,,

	Figure
	Figure
	Figure
	KNOTS OR NODES. 
	If .fl.D be drawn parallel to the given direction of the force, and BDbe made equal to the given length of the cord, ADbisected at_.NI and
	.
	the perpendicular M.Kbe raised, the place of the node Kmay l1kew1se be obtained without the construction of an ellipse, for since the L .llKM = � DKM and .fl.K= DK, it follows that L ./1K8 also = ✓-BK8 and.fl.K + KB= DK+ KB= DB. 
	Example. Between the points .IJ. andB, Fjg. 143, a rope of 9 feet in length is stretched by a weiglu G of 170 lbs. suspended to it by a ring; the horjzontaŁ distance .11.C of the two points is (ij Jl., 
	Fig. 143.autl the vertical distance J,C =2ft. ; to find the po• sition of the node, the tensions antl directions of the From the length .Ill) = 9 ft. as hypothenuse and the horizontal line ..iC =6½ ft.; it follo\\'S that 
	rope. 

	the vertical CD = v9.2 -6,52 = 
	and D..iC gives DK= BK
	and D..iC gives DK= BK
	and D..iC gives DK= BK
	·

	..DC 

	Figure
	v81 -42,25 = 
	D'AI 
	D
	= 
	.IJ. 26,2Ł0 
	=
	•

	3,054 ft.; hence it follows, that .llK=9-3,054= 
	=

	5,946 feet; and for the angles a, by which the sides of 
	the rope a.re inclined to tb.e vertical: 
	11125
	BM 2

	cos.• = 06917;
	= 
	Figure
	= 
	1

	054 
	054 
	BK 3,

	G l?O

	.
	hence, 4 =4614'; and lastJy, the tens10n of the rope S1 =S, = . 
	° 

	2 0 OO l 7
	= 

	2 COi. 4 • I 
	122,0 lbs.• 
	= 

	• If the demonstrations appliec.l in the text to the simple funicular machine, where a single ,veigbt is represented as sustained by means of hvo parts of a flexible cord,attached to two .fixed supports, be applied to the ease o_two rigid planes lliogeJ toge• ther at a middle point, and also joined by hinges to t\\·o other planes capable of sliding to and fro1n each other, but in opposite directions, then ,viii the principles of the formulro above given, be found to afford the relation l,et,veen the force a
	f 

	When two ropes bang parallel to eacu other, the whole gravitating po"•er of tbe tceighl is tlivided between them, and equally so between tl1e points of support which sus­tain t.beir upper extremities. The limit of the weight is 1be absolute strength of the 1 the force \vhich could be applied to the planes ,voul<l, in that poaiLion, be limiLed by tLe crushing force of the material:i of the planes.
	ropes, and, iu caso of the tricar<lo

	In Lile funicular machine, Lile question generally relates 10 the tension on the cords, not to the force tending to bring together the pointS of support, wl1ile, in the tricardo, the • effon to separate the opposite extremities of the mo·vable plnnes is the thing to be calcu­lated. The following fire (143•) may rendex this more evident. 
	gu

	Fig. 143•. 
	Let a. aud b be the two planes of the tricardo, hinged at .IJ. and B ID two other planes 
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	§ 141. 
	Funicular Polygon.-'fbe relations of equilibriu1n the 
	in 

	funicular polygon, i. e. in 
	a

	Fig. 144. 
	Figure
	and P5 at B. 
	and P5 at B. 


	: let P
	1 
	and

	P,, P, P, 
	2
	3
	P
	,.
	, 
	P

	2
	◄ 
	J 
	LeŁ us put 
	the 

	l
	, shall
	and that of BJ(h= 
	8
	2
	we 

	then obtain 8the resultantof Pand Papplied to .11, if ,ve carry the point of cation .fl. of this tension from 
	1 
	for 
	1 
	2 
	and
	app
	li­
	A

	to K, we shall again get Sfor the resultant of 8and P, or of P,P, P; lastly, if we transport the point of applicationof 8from K to we shall then obtain in 8, Pand P, or since resultantof PPz, P, also in P, P, P, P,., Pa set offorcebalancing each other. We may accordingly assert that, wlten certain forces P3, tc., hold afunicular polygon in equilibrium, tl1ey will liold each other in equilibrium also, ifapplied at a single point C, tlte:ir direction and magnitude remaining invariable.
	2 
	1 
	3
	1
	2
	.
	2 
	B, 
	3 
	2
	8
	2 
	1s 
	the 
	1
	, 
	3
	1
	2
	3
	,. 
	5 
	5
	Ł 
	17 
	P 
	,
	P

	If the cord .111(K•••B, Fig. 15, be stretchedat the points or nodes, K, Ł weights G, G••• and be ex1rem1hes .fl and , and the horizontal forces If, and sum of the vertical fŁrces will be : v+ vn-( 01 T 02 :+-:..
	1 
	2 
	4
	.
	.
	1
	by 
	1
	2 
	!
	B 
	by
	the vertical forces V. and V
	0
	Jfn, 
	the
	G
	Ł 
	+-
	.h
	)

	.
	and of the horizontal forces: H-Hn, The cond1t1on ot equ1hbrirequires that both sums = 0; therefore 
	1 
	l 
	um

	l. V + v" = GGG• • • and 
	l 
	+ 
	2 
	+ 
	3 
	+ 

	.
	2. Bt = Hn ; i. e.
	l

	ln afunicular polygon stretched biveights, the sum of tl,e vertical forces or vertical tensions at the extremities or points of suspension 
	y
	is 

	supposed to be ach other nloog the planeMN. The hinge of a and bat P being supposed to be a.cte<l on by tho small constantfŁthe practicru. question is the relation of the resi&rances P.,Pto ibis constant force different positions of the l\\'O planes a a.nd b. If the angle P ./JCor PBO= 4 
	c and 
	d, 
	capable of moving freely to and from e
	o
	r
	P, 
	2 
	P, 
	in 
	I.he 

	: P, = sin. 11: tm. Ai or ns ta,&Ł. u :rad. 
	l'ei:iresent the P-will be representedbyCE= 2 CP= 2•in. 11, and the forces P
	l'ei:iresent the P-will be representedbyCE= 2 CP= 2•in. 11, and the forces P
	l'ei:iresent the P-will be representedbyCE= 2 CP= 2•in. 11, and the forces P
	angle 
	of 
	divergence 
	of 
	the 
	Jl
	lane 
	a 
	allC.l 
	b
	fro111 
	the 
	Łtmight 
	line 
	QQ
	1
	, 
	ic 
	is 
	I 
	evidenr 
	1 
	. 
	that 
	the
	by
	force
	ŁdB =
	2
	cos.
	1
	r
	ce 
	ci..
	applied 
	ut 
	the
	• 
	ccnt.r1ll 
	hinge 
	of 
	tho 
	"toggle 
	J
	oint" 
	hns 
	'

	and P. h 

	Heuce P

	eac
	s
	i,ho\\·11 that 
	1
	Ł
	lhu.c; 
	the 
	fi.

	Tl? li . .
	et

	onn more 
	e 

	fully trun1ed of, ancl 1ll11:.-trated \\'1th th,rures of 
	11
	• 
	3
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	erui:valent to the sttm ofthe suspended weight, andthe horizontal t­
	Ł
	P:n_

	.
	sum at tile one extremity is equal and oppositely directed to the hon­zontal tension at the other extremity. 
	Fig. 145. 
	Figure
	If the directions of the tensions 1 prolonged to their intersection C, and the points of application of these tensions be transferred to this point, ,ve shall then have the single force P = VV, because the horizontal forces � and Ha counter­act each other. Since this force holds in equilibrium the su1 + GG: . of the suspe!'lded ,veights, the point of app]ic�tion� or centre of gravity of these ,ve1ghts must, therefore, lie in the direction of the same, i. e., in the vertical line passing through the point 
	8
	and S
	n 
	at the 
	cords .fl ant.I 
	B 
	be 
	1 
	+ 
	n
	m 
	G
	i 
	+ 
	3 
	+ . 
	C. 

	. 142. From the tension 8of the first portion .IJKwhose inclination 8.flŁ = a.t> the vertical tension follo\vs; V= 8sin. 01,the horizontal H= 8cos. a.• If, no\v, we transfer the application of these forces from .fl to the first node K11 the weight G,vertically do,vn,vards meets these tensions, and no,v for following portion KK, the vertical tension v= vl -G=.8sin. 
	§ 
	1 
	1 
	angle 
	of 
	1 
	1 
	1 
	and 
	1 
	1 
	1
	point 
	of 
	acting 
	t?e 
	l 
	2 
	l 
	1 

	a.1 -G, for which the horizontal tt'nsion Ł = H1 = Hnged. Both forces united give the tension of the axis 
	1
	2
	refl!a1ns 
	un­
	cha
	of 
	the 

	portion 89, = ✓VJP and its inclination � by 
	seco
	nd 
	1
	2 
	+ 
	the 
	formula 

	T8ia.-•
	1 
	s
	n. 
	1 

	-. 
	G
	1

	tang. ()= _.;:;..---"---Ł, i. e.
	2 
	11 

	H 8cos. 
	,,.
	= 
	1 
	o.
	1 

	tang, a
	2 

	Ł(
	Ł(
	1 

	of npplication of the forces V
	If 
	the 
	point 
	i

	to K
	2, 

	in the weight Gmeeting them. .therefore the vertical force of the th1r<l 
	we 
	obtain 
	2 
	another
	tical 
	fo
	rce
	, 
	and 
	portion 
	of the 

	lli is transferred 
	and 
	from 

	new ver­
	cor
	d 

	Cla at both 
	and 
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	v3 v, -: 
	= 
	G
	'J 

	-+ ,)The whole tenston 
	(G
	l 
	G
	,
	of

	-(G+ G)the honzontal force H remains
	l 
	2 
	whilst 

	• 
	= 
	v
	l 

	t
	JI.
	= 
	s

	sin.01 
	= 
	3 
	= 
	tang. 
	G3 

	3 v+ H2, and for its angle of inclination o, we have = , i.ie. 
	8
	= 
	✓
	;J 
	3
	v
	3 
	8
	1 
	s
	i
	n. 
	°'
	1 
	-( 
	G
	l + 
	G
	,
	)

	H 8cosi.o.
	1 
	1 

	tang o= tang. a-.
	3 
	1 
	G
	Figure
	I 
	+ 
	G
	'J 

	Il 
	For the angle of inclination of the fourth portion of the cord, 
	tang. a= tang-2 , &c.
	4 
	. 
	Gt 
	Figure
	+ 
	0
	+ 
	G
	3

	1 
	o

	H 
	Besides, the tensions 8z, 8, 8, &c., as weJl as the ang]es of inclination 07 0, &c., of the separate portions of the cord easil
	2
	3
	­
	2
	may 
	y

	Cl,
	3

	1
	be represented geometrically. If ,ve make the horizontal line C.ACB, Fig. 146, = the horizontal -
	= 
	ten

	sion Hand the vertical CK= verti
	Fig. 146. 
	1 
	-

	cal tension Ł at the point of suspsion .Ii., the hypothenuse .IJKgives whole tension 81 and the I'. C.IJK1, alsoits inclination to the horizon; if further ,ve apply the weights 0&c., as parts K1K, KK3, &.c., and dra,v the transversal .1JK, .f1K, &c., we shall have in them tensions of the successive of the cord, and in the angles &.c., the angles of inclina
	en­
	1 
	the
	now
	1
	1 G
	2
	,
	0
	3
	, 
	2
	2
	of 
	CK, 
	line
	s
	2
	3
	the 
	portio
	ns
	Ł.11.
	C
	K
	3
	.R.C, 
	tioŁ 

	a., a, &c. of these portions.
	1

	§ 143. From the investigations of the precedini paragrlaw for the equilibrium of cords stretched by weights, comes outthus: 
	3
	aph, 
	the

	I. The horizontal tension is at all points of cord one and 
	the 
	the

	•
	same, viz.s: 
	H = 8COS. a= Sn COS. Ga,
	1 
	1 

	2. The vertical tension at any one point is equal to tlie vert-ical ten.­sion at the other extremity above t, less the sum of the intermediate suspended weights, therefore 
	i

	V.. = V-(G+ G+ ... G-1)
	1 
	1 
	2 
	m 
	-

	Ł1he angle a.1 be known and the horizontal tension H, the verticaat the extremity .fl is :known; Ł = H. tang. o, and accord
	l
	Łens1on 
	1
	-

	Figure
	' the other hand, the angles of inclination a.of suspension .fl. and B are known, the horizontal Yertical 
	Ł
	on 
	1
	poin_ts 
	and 

	tensions are given at the same time, 
	viz. 
	: 

	t 
	tangi. 
	tangi. 
	Cl
	1 

	• 
	Figure
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	1 
	V

	Since v+ Vn G+ 
	l 
	= 
	l 

	tang. o.+ tang. 
	(
	1 

	tang. o.
	1 

	:
	= 
	a. ) 
	a 

	1 2 
	G
	+ 
	G

	••• , it follows thath
	o.
	tarzg, 
	1 

	+ tang, a
	0 

	a = 
	V

	(ll + tang, Gn
	tang. 

	H= Ł cotg. (J,l = v.. cotg. O.a, 
	2 
	' 
	the other B. 
	substituted for the verticals. 
	tang. 4
	= 
	4 

	Figure
	H 
	V. 
	cond and third portions by the tang. tSs =tang. «, _ , 1,32 _ 0,521 and
	G
	= 
	20 
	= 

	H 25 
	tng. 4= ta11g. 4_ = I,32 _ Ł 068; hence a= 4= 525 l'Ł= 2728' 
	a
	3 
	4 
	G
	3 
	= 
	1
	1 
	4 
	° 
	i 
	°

	H 25 
	34
	34
	° 

	s 13'; lastly, the tensions of the axis are 8= 8=✓Jl;l+ IP=h✓ 33� + vl714 = 41,40 lbs., S'J= ✓Vi+JP=✓13' +�5,1 =✓7�4 =28,18 lbs.1 and 83 vV,+ 1/l = ✓17+ 25= 30,23hlbs. 
	4
	= 
	Figure
	Figure
	1 
	4 
	Figure
	25
	2 
	= 
	= 
	Figure
	2
	Figure
	2 
	!1 

	Figure
	§ 144. The Parabola aCa­tena.-Let us snppose that 
	s 
	Fig. 148. 
	ry

	_
	the string .IJCB, Fig. 148, is stretched by equal weights G, 2, &c., suspended at equalhorizontal distances from each other. Let us represent by bthe horizontal distance .llM be� tween the point of suspension .fland the Io,vest C, but the ·ver­tical distance C.M by a. Let 
	1
	G

	12 
	• 
	G, = 201 G'J = 30, and G= 16 lbs., as well as by the horizontal force H, 
	3 

	25 lbs,; required to find the tensions of the axis and the angles of in­clination of the sides, in the hypothe• sis that the ends of the string have the same inclination. Here the verticaltensions are equal, viz.1 J7; = V. = 
	=
	-

	G,+ G, + G20+ 30 + 16
	3 

	---'----'---= ----'---....:..-
	-

	-
	2 2 
	33 lbs. The vertical tension of the second portion of the string is V, = 'Va-G, = 33-20= 13 lbs., that of the thirtl y; = JTGor ( G+ G,
	1 

	4 ., 
	-

	-Vi) = 33-16 = l? lbs.; the an­4and 4oftbe ends are determined by tang . .s
	gles of inclination 
	1 
	4 
	1 

	...!. _ = 1,32 ; that of the se
	= 
	= 
	-

	25 
	Fig. 147. 
	===== 
	Figure
	Figure
	Figure
	Figure
	!34 FUNICULAR POLYGON. 
	us put further for another polygon, the correspondco-ordinates ON= '!I and CN = x. If, now, tension of .11. be = V, that of O will be . Vand hence for the angle of in
	point O 
	of the 
	ing
	the 
	vertical 
	= 
	: 
	, 
	-

	clination to the horizon, NOT= ROQ = t of the portion of the string 
	OQ, we shall have tang. t == '!I • V, where His the constant the
	of 

	l, H
	horizontal tension. 
	Hence QR =-OR . tang. t .. OR . '!I y is the vertical distance
	• 

	b H
	of two adjacent angles of the funicular polygon. Ifwe substitute for '!I OR, 2 OR, 3 OR, &c., the last equation will give the correspondinvertical distances of the first, second, and third angles, &c., reckonedbelow upwards; then, if we add together ll these values, whosmount may be m, we shall obtain the height CNof the point OverticaUy above the lowest point C, viz. : 
	g
	from 
	a
	e 
	a
	= 

	x = CN = (OR +2 OR +3 OR ... +m. OR) 
	H 
	V 
	• 
	OR 
	+

	b 
	•
	H b 
	V m(m +1) OR
	2 

	' 
	1 . 2
	• 
	b
	.
	Figure
	Figure
	(I +2 +3 + ... + m) = 
	H 

	in accordance with the theory of arithmetical series. 
	Lastly, if OR be put =-Ł, we shall have: 
	m
	V m(m+1) y
	Figure

	X 1 
	= 
	If 
	• 
	2m
	• 1,
	• 

	Ifthe number of weights be very great, m + 1 may be taken whence we shall have: 
	= 

	m, 
	Figure
	For x 
	= a, '!I = b, hence also :
	V b .
	a= , an d more s1mp 1y: 
	H 
	• 
	2

	Figure
	: = , which is the equation to a parabola. 
	Ł

	If, therefore, a string devoid of ,veight be stretched by infinitely many weights applied at equal horizontal distances, the funicular polygon will pass into a parabola
	.

	the angle ofinclination t we ha Ye besides: tang. t -! . =-2yŁ == 2'!I.Ł = , as also 
	For 
	2
	a 
	. 
	2
	x

	u u b" y2 '!I 
	1.

	2a
	Cl a:-•
	tang. 

	, 
	b 
	CH111111nz. 
	=-
	=-

	• chain bridge, Fig. 149, were without 
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	weight, or light enough in respect to the weight of the loaded bride DEF, which only is to be taken into consideration, then the chain.11CB would form a parabola. 
	g

	Fig. 149. 
	Figure
	and other relations of the chains. 
	,
	sion at one end : 
	S=✓�+IP= V✓1+cotg.1&=160000o. Ji+ (�)' 
	1 
	4

	= 100000 =80000✓29=430813 lbs. 
	J¥ 

	§ 145. Catenary.-When a perfectly flexible and extensible stringsuspended from two points, or a chain consisting of short links, isstretched by its own ,veight, its axis forms a curved line, to which the name of catenary has been gi,·en. The imperfectly elasticiand x­
	Ł

	_
	tens1ble cords, ropes, bands, chains, &c., met with in practice, givecurved lines which approximate to the catenary only, but may usuallybe treated as such. From the foregoing, the horizontal tension ofthe catenary is equalJy great at all points, on the other hand, the verticalte!sion is equivalent to the vertical tension of the points of suspensionlng above it, less the v.eight of the portions of the chain above.Since the tension at the vertex, where the catenary is horizontal, isnull, the vertical tension
	l
	J:I
	1
	-
	Ł

	Fig. 150. 
	Figure
	Figure
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	a portioa of the rope, or chain one foot in length, wei,., and if the arc corresponding to the cerordinates C.ltf==a Łnd M.ll=h, F_ig. 150,.11.OC=l, we then have the weight of the portion of the chain .IJthe other hand, the length of the correspŁndingthe co-ordinates (CN =x, and NO=y) =S, ŁŁ have thŁ weight this arc =s 'Y· of a s1m1lar portion, weight = H, = ,ve have further lŁ=and, therefore, for the angles of inclination o. t e points ŁIiand 0: 
	ghs 
	OC 
	=
	l
	"I; 
	if, 
	on 
	arc (l) 
	to 
	of
	If 
	we 
	put the 
	length 
	who
	se
	c, (the 
	horizontal 
	tension,) 
	c 
	'Y
	,
	and 
	at 
	th

	ta11g. a.= tang. RIJH = E_ = Ł = Łand
	, 

	Cy C 
	H 

	ta11g. 4> =itang.NOT=Ł= . 
	s

	Cy C
	§ 146. If ,ve make the horizontal line CH, Fig. 151, = the lengt
	h 

	c of the portion of chain measuring the ho-
	Fig. 151. the arc of the chain on one side, ,ve have,in accordance ,vith § 142, in the hypothe­nuse GH, the measure and <lirection of thefunicular tension at the point .fl, for 
	rizontal 
	tension, 
	and CG 
	= the 
	length 
	l 
	of

	CG l
	tang. CHG = and
	CH 
	= 
	c

	GH=✓ = ✓t'+c,or 8 = ✓ G+ JP = ✓r+c,, = GH. ,-. 
	Figure
	co
	s
	+ ClPi
	2
	'-
	2 
	• 
	Figure

	If now \Ve divide CG into equal parts and <lraw from Hto the points 1, 2, 3, &c.straight Jines, these will give the measurŁ ancl directions of the tensions of those points of the catenary '\Vhich ,ve obtain ,vhen we
	divide the length of the catenary arc .JlC into as many equal parts.So, for example, the line H3 gives the measure an<l direction of the tension or the tangents at the point (3) to the arc .llC, because in thispoint the vertical tension = C3 . r, ,vhilst the horizontal tension 
	re
	-


	n1ains the same =C. r, therefore for this point tang. 4> Ca · Ct
	= 
	'Y 
	= 
	Figure

	C"f
	,vhich the figure actuaJ]y gives. 
	Cn 

	This peculiarity of the catenary is of use in constructing this curvally, ,vith an approximation to correctness After the givenlgth CG of the catenary arc for construction has been divided into r Łequal parts, the line CH= c measuring the horizontalapplied to it, and the transversal Jines Ill, H2, 113, &c.,Ł; 1t: Ł part Cl of the arc be placed npon CH, and through the }Otnt Ł1v1s1on obtained (1) a parallel to Hl be drawn, ,vhich cuts 
	e
	mechanic
	en
	ver
	m
	ny 
	tension 
	1Ł 
	dr
	wn
	>
	of 

	ff from Jt a part the point (.2) anotheraJJel H2 be dra\\n, and ,vhich cuts off from of the arc, and again through this (3) l 
	Ł
	(12); and 
	like"·ise 
	through 
	ltne 
	pa
	r
	to 
	·
	it 
	a 
	point 
	(23)
	equal to a 
	part 
	another, 
	paralle
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	to H3, and (34) be made equal to another part of the arc, and we proceed in this manner, ,ve shall obtain a polygon ( C l 2 3 4 ...);as we have taken these sides very small, we may consider it as acurve and easily find the cur, .. e to it, if we connect the middle pointsof the small sides ( C 1 ), (12), (23), by a trace or line. 
	For practical purposes, a finely linked chain suspended against aperpendicular wall enables us to determine accurately enough aca!enary answering certain conditions, as those of given length andheight, or of given width or length of the arc. 
	§ 147. In many cases, and also in applications to architecture andto machines, the horizontal tension of the catenary is very great, and the height of the arc small in comparison with the "'idth. Underthis supposition, an equation to this curve is obtained in the following manner.
	Let s be the length, x = CM the absciss, and y = .fiJ,,f the ordi­nate of a very compressed arc .liC, Fig. 162. If w� make .liK= CK,we may consider this arc as a circular one described from K as a 
	Łentre. Since from the kno,vn equation of the circle y= x (2 r-x), follows that the radius CK of the circle, 
	2
	1t 

	Fig. 152. 
	r = fx +,or more simply, if we neglect 
	;

	Figure
	2 as small in comparison with r, r = r.
	Ł

	2x 2x 
	centre by .liB si,n, "'i.11.Y 
	T 
	= 
	M
	-
	2x 
	and

	-
	.Ii K-r -y'
	· s 
	1 
	3 
	•

	the arc ....= si,n. t +s
	,, 
	6 
	in. 
	t 
	+ 
	40 
	sin . 

	.,S + ... ; if we have regard only to the two nrst members, it therefore follows that: 
	3 
	t
	(
	x
	)

	_ 2x 1 (2x)-2x 4 -.
	+ 
	3

	6y "yaiy • 
	Y 
	-
	+
	· 

	Now the arc .liC = s =rt= . t; hence :
	Ł
	2 

	xi
	S=Y+: . : =y[l + !(;)'J 
	; , which may be put: 
	2

	() 
	1 
	+ 
	3 
	;

	-;(:)J, an<l on the other handi:
	= s [1 
	y 

	X = J!y(s-y). 
	Łamplt.
	= 
	a very compressed arc whose Ja,v for the rest is feet, and the height a it.s length, therefore, is: 
	The 
	width 
	of 
	not known, 
	3,5 
	= 
	0
	125 feeth· 

	.
	1821=3,5 [ 
	12• 
	Figure
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	§ 148. We will now apply the formuJa s [1 !Łfor' 
	= y 
	+ 
	(
	)
	2
	] 

	Fig. 163. 
	the ]ength of a compressed arc t? a stronary .llCB
	Ł
	ly 
	stretchŁd 
	caten
	, 

	2
	] • ,., and therefore for the angle made by the 
	tan-

	C C 3 y 
	[1 ;() 
	y 
	+
	;

	b 
	= 
	If ,ve divide the ordinate y into m equal parts, ,ve .find the RQ = NU of the absciss corresponding to one such part 
	porti
	on
	x 
	OR 

	when we put RQ = OR . tang. t = OR . [1 + (;)'J
	! 

	Since xis small in comparison with y, RQ is approximatelyn'Y. If now we put ORn= .JL and successively for y: JL, Y, Ł
	= 
	OR 
	. 
	2
	, 
	&c
	.

	,
	c m mmwe obtain by degrees the several parts of xwhose sum, therefo
	m
	, 
	re, 
	is 

	x = '!I (In+ 2 +3 +...+m) = 2• l(§ 144= 
	y
	1 
	m 
	(m
	+
	) 
	) 

	cmcm 2 
	2 

	L, and which corresponds with the equation to the parabola.
	2c 
	But if we wish to attain greater accuracy, we must put QR= 
	OR . 

	! [ 1 + : (;) ], substitute fur :t its value last found fc,and we 
	shall 

	then obtain : 
	QR= OR (1 + . i.) = y + ! . y3).
	y
	1 
	OR 
	(

	• 
	C 6 Ł C 6 Ł 
	Let us again successively put y= .JL, Y, Ł, &c., and for 
	2
	OR

	· 
	· 
	m m m 

	.JL, we shall then find the several values of x, and the sum 
	likewise 

	m
	itself: 
	X=Ł[¾c1+2+a+ .. .+m)+ l ·(1+2++... +m) ]· 
	6
	(!)
	3
	3
	3 
	3
	3
	3

	c2 
	i
	m

	numbers fj 
	1 

	4
	:
	cordinglyn
	Figure
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	2c 
	c
	24 c
	3 

	12
	2c 
	By inversion it follows that y=2 c x 
	2

	'!I' 4c2-12c2=2cx-12 
	J
	;,;· 
	x2
	2 ex --, therefore: 
	= 

	. 
	3 
	-, or approximatelyi= ✓c x (1 -;
	2 
	l

	:;
	·
	c
	)

	2. ;= J
	2
	c
	x
	-
	-


	c= 2x + 2x.12ct=2x+ 24x
	3. C= y Ł.
	+ 

	6
	The angle of the tangent t is determined by: 
	+ 2 (x)2]= {1 + ;(Ł)'Ł3 y Łl + 1 (X) ]2xl_. 3 y 
	ang. t=Y[1C 
	Lastly, we must here place the formula of rectification found 
	in 
	the 

	former paragraph : 
	2½ feet, the 
	length

	==
	.&ampk.-1. For a span 2 b 16 feet and height of arc a = 
	1
	l [1 + : () ]= 16 + 16e. ,065 = 
	2 
	ise= 16 
	2
	5 
	0

	which measures the horizontal tension: c== ŁŁ 
	of 
	chain 
	+ 

	= 
	17,04 feet, the length of the portion 
	= Ł= 12,s+0
	64 
	+
	,417

	6 6 
	1
	]
	13,217 feet; the tangent of the angle of 8118penaion: tang. •-== Ła [1 :(:) 
	+ 

	5
	Ł [ J + Ł (Ł]== · lŁ:;
	)
	1
	,
	32
	5 

	°
	3
	2

	5<Y.-2. A chain of 1feet length and 9span, has the height of its arc 
	= 
	0 
	1 

	=,6453 ••• , the angle of 8118pension, therfor
	0
	e
	e,

	== 
	• 
	v 1,7812 = 
	= 

	a== JŁ(l--b)eb ==JŁ(l0-91) Ł= _!_. Ł-f?i7 2 2 2 2 2 16 .J32 
	336 feet, and the measure of the horizontal tension: c h, + Ł == 4:;• ,Łfeet. 2• 6 2 . 1,35 60 feet long and weighing 8 Iba., be stretched 
	1,
	=
	Figure
	,
	7
	+ 
	1
	Figure
	335 
	8,673 
	3
	f 
	a 
	line 
	3
	horizonta
	lly 
	by 
	a

	3· 
	vertical tension V ½ G == 4 Iba.; the horizontal 
	2
	0 
	lbs., 
	the 
	force 
	H 
	-
	vS'
	-:
	V­

	lloroe of
	==
	a::..,;'2()1---4• -= .,/tang.f-Ł._H 19,596 
	1. ✓ i1' r 
	s 
	== 
	+ 

	then have the error /= 3 -2,53 Ln(-0,002. In order now to find the true value of c 
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	!!_ H + Ł =-Ł H 
	= 
	=-

	30 8
	the horizontal tension c == 
	73,485 feet; the span 2 
	b 

	792 . 0,208 
	3 
	29,

	-
	3
	and the height of the arc a= -b (l-b) = 
	J
	J
	2

	✓.29,792 . 0,078 

	2.2
	2 
	= 
	1,524 feet. 
	= 

	and
	-
	c 

	, and inversely, x 
	✓
	2 
	c 
	x 
	+ 
	x
	2
	-

	r-zii 
	C 
	Figure
	•

	=-2x 
	;(:-; :), inversely y=c L n (Łc2), where e 
	;(:-; :), inversely y=c L n (Łc2), where e 
	-
	e
	s 
	+ 
	+ 
	s
	t
	is

	2. s

	the base 2, 71828 of the natural system of logarithms, and L n logarithm = 2,30258 times the common logarithm. 
	the

	. ] =-= )-c,
	_

	3. y=cL n , inverse y x ' + e c
	3. y=cL n , inverse y x ' + e c
	c+x+ 
	✓2 
	C x+r) 
	,
	2
	C 
	(
	e
	.!

	c 
	(


	_ r-r.L (s+.r) 
	4 

	· '!I-2x n s-x · 
	The use of these formu1re is very troublesome, especial1y in com. plicated problems, where a direct solution is generally not possible. 
	Example. The two co-ordinates of a catenary are x =:= 2 feet, and Y = 3 feet; required the horizontal tension c of this curve 1 Approximately from No. 3 of the9 2
	(ormer paragraphs c = -= 2,58.
	2.r
	y' 
	X 
	4 
	+ 

	--= -From No. 3 of the present para,
	+ 

	6 
	6 
	If c be here put = 2,58, we then have the error/= 3 -2,58 Ln (
	4
	•
	58 
	+
	2
	✓
	3•58n

	2,58 
	) 

	,,_ ( 8,3642 ) 
	-3Ł035 0,035 ; but if c be put == 2,53, we
	258 
	1

	..
	3 -..:,58 Ln 
	= 

	= 3 
	= 
	-

	'2
	'2
	,
	5
	3 

	·, if, according to a
	.
	-= 3 -3,002 = 
	known rule, we put 
	58 / 0,035 . .
	Ł2,

	1,.,; m th·11 fc II o ow th a : t
	·
	7
	· "-
	" 
	. 
	. 
	.

	---,.-==-==..:_ 1s manner 1t w1 
	--

	Ł2,53 /0,00216,5 . c == 1,5 . 2;53 -2,58 =4:1,69; therefore: 4169 
	1 
	7

	' 
	C ::S =: 2-,527 feet 
	16,5Practical applications ofthe catenary will be given when, in the Second Part,we come to treat of the construction of vaults, chain-bridges, &c. 
	Rm.ark. 

	Ł 150. The Pulle.-Ropes, cords, &c., are the usual means byare transmitted over the wheel and axle. We here develop '!hat is most general in the theories of these two arrange.
	y
	which 
	forces 
	wi11 

	_
	ments, without, howel·er, taking into account friction and rigidity ofcords. A pulley Łs a circular disc, .llBC, Fig. 154 and Fig-. 155, turningabout an axis on whose circumference lies a cord or string, and whose 
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	extremities are stretched by the forces P and Q. In a fixed pulley, the block in ,vhich the axis or pivot reposes is immovable ; in a free pulley, on the other hand, it is movable. 
	Fig. 164 . Fig. 155. • • • 
	In the condition of equilibrium of a pulley, the forces P Łnd Q at the extremities of the string are equal ; for every pulley 1s a be?-t lever, the arms of which are equal in length, which ,ve may obtam if we let fall perpendiculars C.IJ. and CB from the axis C on the directions of the forces, or of the strings DP and DQ. It is clear that the forces P and Q in any revolution about C describe the same space,viz. r 4', if r be the radius C.11= CB and q,the ang]e of revolution; and that from this we may infer 
	0 
	From 
	1

	of the rhomb CPRQconstructed from P and a. : R = 2 P cos. . 
	1
	1 
	;

	§ 151. In the fixed pulley, Fig. 154, the force Q consists of the weight to be overcome or raised at one extremity of the string; here,therefore, the force is equal to the weight, and the application of this pulley effects nothing but a change of direction. In the movable pulley, Fig. 155, on the other hand, the ,veight on the hook R acts !t the extremity of the block, ,vhilst the one extremity of the string 1s to a fixed object; here, thereforce, the force P is to 
	fast
	ened 
	be 
	put 
	= 

	R . If we represent the chord .fl.MB, which corresponds 2 cos.Ł 
	to 
	the 

	2 
	the string passes, by a, the radius C.11= 
	arc 
	over 
	,vhich 
	CB, 
	a.s 
	before 

	= 
	2.11.Af = 2. C.IJ. cos. C.11..Jlf = 2 C./1 
	r, 
	then 
	a= 
	cos . 
	.flDJ,f 
	= 
	2r 

	r 1 .p r F
	. 
	rom

	cos· a.h, ence -may be ---, and likewise 
	2
	pute= 
	-
	= 
	-. 

	a a.
	2cos. -
	R 
	a 

	2 
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	this, therefore, tlte power in tlie 1novable pulley is to tilwight as tli
	e 
	e
	e 

	Fig. 156. .. in the spacess: 1f s 1s the ·pace of P, ,vluch cor­s a means be raised by a smaller force, but in propor­Remark. We shall treat of the co1nposition or pulleys ancl sy<tfe�<tofpulley,asof the resistances arising fr om friction and rigidity, Jnore fully 1nasubsequen§152. The Wheel andAxle.-Tbe wheel and axle is�rigid con.nection oftwo fixed pulleys or\vheels, capable of re,,0Jv1ng aboucommon axis JJ.BFE, Fig. 157. The smaller of these ,vheelcallecl the axle, the 
	therefore, = 
	7
	,, 
	-
	r
	. 

	The movable pulley is thus a meansof modifforce; for example, a given weight 1nay by this 
	ying

	Fig. 101. 
	also here suppose, that the forces P and the po,ver P and theweight Q act at the exof a perfectly flexible string, which passes cir­
	Figure
	Q, 
	or
	-
	tremities 
	round 
	the 

	znt:of the wheel and axle. The questions d are to each other, and
	cu
	eren
	ce 
	to 
	be 
	answere
	and 
	weights 

	1n ,vhat relations the po\vers 
	are, 

	Let
	.a horizontal plane passed through the axis CD and 
	us 
	io1agine 

	Figure
	Figure
	Figure
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	horizon == a and '3, these forces may be replaced by the horizontal
	.
	forces R = P cos. a, 8= Qcos. 13, and by the vertical forces P= P sin. ", Q= Qsin. J). ,.fhe horizontal forces are directed towards the axis, and being applied at C and D, become perfectly counteracted by the axis. The vertical forces Pand Q, on the otherhand, tŁnd 
	1 
	1 
	1 
	1

	.
	to tum the wheel and axle a bout its axis. If K be the intersectionwith the axis of the line connecting the points .11and B, KIJand KBare the arms of Pand Q, and equilibrium subsists about K,and also about CD, ifi: 
	1 
	1
	1 
	1 
	1 
	1

	K.111 ifKB DB 
	C
	./J
	l 
	'

	.
	or, since
	V tJ 
	P 
	i
	,

	i • .n.a1 
	K
	B

	Q1 • 
	= 

	=-
	=-

	an4
	1

	1 
	1 
	Q

	DB 
	1 
	Figure
	QŁ DB/ 
	1
	DB

	C.11
	1

	P . C.11 = Q 
	. DB, or Pa = Qb, 
	the power and weight, or the In the wheel and axle, therefore, as in everylevŁr, the moment of the power is equivalent to the moment of the 
	.
	radii 

	l, represent the arms ofof the wheel and axle. 
	if 
	a 
	and 

	weight . 153: The forces P
	§ 
	1

	must also be associated the weigŁt G
	must also be associated the weigŁt G
	must also be associated the weigŁt G
	with 
	which 

	and Qgive at Kavertical pressure PQ
	1 
	1 
	+
	1,


	. 

	of th_e whole wheel F have als() to sustain the vertical 
	gudg
	eo
	ns 
	at 
	E 
	and 
	pressure

	If we put the whole and the distances 
	le
	ngth 
	ES
	and 

	P+ Q.+ G
	1

	= P sin. " + Qsin. JJ + G. CDi= 1DF= l, therefore L = l+l+1
	1 
	2
	1 
	1
	,

	gravity 8 Łrom_ the supports dand d1, thŁ
	FS 
	of 
	the 
	centre 
	of 
	1 
	efore 

	K l
	D
	P
	l

	DK 
	pl 
	DC . PQ
	i
	+ 
	l 

	1+ l 
	P
	Q

	EF= a. Fs+ (P+ Q) FK,
	1 
	1

	xl . 
	=-
	=-

	·e1
	+

	Gds + (P1 + Q.) (zs + 
	P1

	==Gd,+ (Pl+ Ql) '· + Pl 
	X
	l

	• 1) 
	Q
	l 

	. 
	Figure
	other hand, for the vertical pressure X, at F: 
	On 
	the 

	i 
	XEF== G. ES+ (P,+ Q) EKi, e. '
	1
	• 
	1
	, 
	Q 

	L 
	l
	.
	Figure
	X,-Gdl+ ( pl + Q.),. + Q.
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	The· horizontal forces S the mon1ents about FC = R lE : Ł 8
	R and 
	have 
	F, 
	R 
	.
	(
	+ l
	2), 
	and 
	S . 
	FD S
	. 
	l
	i
	, and 
	about 
	. 
	ED 
	= 

	= 
	(l + l), and R . EC= Rl; if, therefore, we put l pres.. sures upon E and F effected by them = 1 Y• FE=R. FC-S . FD, as R (l l,)-Sl
	1
	1 
	the 
	horizonta
	Y
	and 
	1 
	+ 
	1 
	•

	= an
	Y
	i 
	/ 
	d

	'
	L
	Y• FE= S ED-R . EC, as 
	2 
	. 

	S (l l)-Rl•
	Figure
	+ 
	1
	1

	Y._
	i-
	L
	From Xand Ythe total pressure at E is: 
	1 
	1 

	== X' + Ł, and likewise from Xand 
	✓
	1 
	2 
	2 
	Ł

	' 
	· 
	X
	II yz

	= 
	✓ 
	2 
	+ 
	t 
	• 

	the same at F:
	1 
	z

	z
	z

	Lastly, if t and be the angles which the directions of make ,vith the horizon, we shall then have 
	1" 
	these 
	p
	res
	.. 
	sures 

	tang. t = i d tang 4-= x,-y.
	x

	-an 
	l 'l 
	y

	Example. The weight Q of a wheel and axle pulls perpendicularly downwaramounts to 365 lbs.; the radius of the wheel a = Ii ft.; that of the axle b = i n.'. hweight of the machine itself is 200 lbs.; its centre of gravity S lies distant from F, d= 1 ½, and d= 2½ ft.; the middle of the wheel is about /= i ft. from geon E, and th€' vertical plane in which the weight acts is about /" = 2 gudgeon F. Now if the force P necessary for restoring the equilibrium at inclined o the horizon at an angle 50= •• pulls down
	ds 
	and
	t
	e
	E'
	and
	1 
	2 
	1 
	the 
	gud.
	ft. 
	from 
	the
	the 
	whe
	el
	t
	° 
	be 
	and
	° 
	Q
	a 
	5
	0

	, Łnse.
	quently P = P ,in. a = 0,7660 . P and R = P co1. •= 0,6428 . P; but now 
	1 
	a 
	= 
	1¾ 

	= i and b = i, it follows, therefore, P = !!.. Q= ½. 365 = 156,4 lbs., P= 
	1 
	119 
	8

	,
	a 
	and R = 100,5. Further, because G = 200, d, =j-, d= f, 1= ¾, /= 2, L !f =4, and l = L(l+l) =4--i' = i, so that the vertical pressure at E is: 
	9 
	1 
	2 
	= 
	+
	-
	1
	'l
	1

	200 . f + (365 + J19,8). 2+ 1lO,Ł . f 16 l 9,35 
	X1 = 404,8 lbs.
	= 
	= 

	4 
	4 
	4 
	4

	and that at F: 

	00h. i+ (365 + 119,8). i + 365 . f _ 1119,85 
	2


	i -= 280,0 lbs. 
	X
	= 

	4 
	4

	Both of these forces together give: 
	Ł + x'l = 
	+ G + p= 684,8 lbs. 
	Q 
	l 

	100, 5 . (¾+ 2)-0. 2 
	----=-----'--
	-
	-

	4 
	4 
	1 
	Y

	= 8I,7 lbs., and that at F:
	= 
	Eis inclined at an angle♦ to the horizon, for which we have: 
	The 
	pres!ure 
	at 

	•-r -Y. = 
	81,7 
	I 

	""· t 
	0 th 
	0 950 7 35'
	° 

	,6 2, ♦ 8 .
	= 
	= 
	tang ,1, X2 2800
	Ł = Ł, Log. tang. ,I,= 1,17300, ./, = 86
	Ys 
	1
	8
	,
	0

	. 
	, 9', 5; 
	=___Y:"
	z,.
	. 
	=e-

	=
	16 lb1. 
	280








