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Epidemiological Models with Age Structure, Proportionate Mixing, and Cross-Immunity 

Abstract 

Carlos Castillo-Chavez1.2.S, Herbert W. Hethcote3, Viggo Andreasen1.2, 

Simon A. Levin1·2.4, Wei-min Liu1•2 

Infection by one strain of influenza type A provides some protection (cross-immunity) against 

infection by a related strain. It is important to determine how this influences the observed co-circulation 

of comparatively minor variants of the H1N1 and H3N2 subtypes. To this end, we formulate discrete 

and continuous time models with two viral strains, cross-immunity, age structure, and infectious disease 

dynamics. Simulation and analysis of models with cross-immunity indicate that sustained oscillations 

cannot be maintained by age-specific infection activity level rates when the mortality rate is constant; 

but are possible if mortalities are age-specific, even if activity levels are independent of age. Sustained 

oscillations do not seem possible for a single-strain model, even in the presence of age-specific mortali-

ties; and thus it is suggested that the interplay between cross-immunity and age-specific mortalities may 

underlie observed oscillations. 

1. Introduction 

Infectious diseases like measles and influenza have several features in common; they cause 

recurrent epidemics and have strongly age-dependent contact rates. However, there are important 

differences. Measles is generated by a single infectious viral agent and hence individuals acquire per-

manent immunity after recovery. The situation with influenza is much more complex (see Palese and 

Young, 1982; Beveridge, 1977; Selby, 1976; Stuart-Harris and Schild, 1976; Dowdle et al., 1974; Fox 

and Kilbourne, 1973). There are three major recognized types of influenza: A (the most severe), B, and 

C; and each has various subtypes. For example, three recognized subtypes of type A - H1Nl, H2N2, 

and H3N2 - have been isolated from man; and there are several recognized strains (comparatively 
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minor variants) within each subtype. The appearance of several strains is due to the capacity of 

influenza viruses to change their antigenic structure (see Webster, et al., 1982), which effectively allows 

them to circumvent individuals' immune responses. Unfortunately, the development of vaccines and 

vaccination programs, which have been successful for diseases such as smallpox, measles and 

poliomyelitis, is greatly complicated by an ever-changing virus. 

In general, influenza (A) epidemics have severe effects on the human population and occasionally 

are responsible for pandemics, such as the infamous one of 1918, which affected 30% to 60% of the 

population. These pandemics could result from the generation of novel subtypes, or they could result 

from high population susceptibility to a reappearing old subtype. In the latter case, as for the reappear­

ance of the H1N1 subtype in 1977-78, the inter-epidemic time must depend on the time for a sufficient 

susceptible pool to develop. 

Because of the complexity and severity· of the disease, it is of utmost importance to determine the 

mechanisms responsible for the dynamics of influenza. The observed patterns associated with influenza 

include: secondary waves striking a community soon after a first attack, epidemics (occurring annually 

between pandemics and involving successive drift variants of previous pandemic subtypes), and world­

wide pandemics occurring at approximately 10-to-40-year intervals (Fine, 1982). Central issues 

currently under exploration by various investigators include study of the extent that these patterns reflect 

the influence of antigenic variants, community structure, weather, and/or geography. 

A specific question of interest to us deals with the possible mechanisms underlying the recurrence 

of epidemics and the persistence of co-circulating virus types between pandemics. In related work, Liu 

(1988) extends these approaches to consider the interaction of the human population with other host 

populations, which may be a source of recombinants or mutants 

In Section 2, we introduce a two-strain discrete-time model with cross-immunity. This model 

incorporates age structure via a contact matrix (under the assumption of proportionate mixing) and age­

specific mortality. This model has been used primarily as an exploratory simulation tool in our 

attempts to understand the dynamics generated by the highly heterogeneous interactions of this host­

pathogen system. The results of extensive but not exhaustive simulations, also recorded in this section, 
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show extrem, y complicated dynamics, ranging from damped oscillations and sustained periodic 

behavior to chaotic behavior, depending on the degree of cross-immunity between strains and on the 

age-step used. Because of the difficulty in analyzing this model, we turn in the following sections to 

continuous versions. and systematically incorporate some of the complexities of the discrete-time 

model. Differences remain, however, some of which relate to inherent properties of discrete-time 

models; therefore, some issues remain unresolved. 

In Section 3, we extend the Dietz-Elveback continuous time model (see Pietz, 1979) for homo­

geneous populations to include two strains with different degrees of cross-immunity. Our mathematical 

analysis of this model indicates results coincident with the dynamic behavior observed in our simulation 

model with age structure removed. Sections 4 and 5 consider a one-strain continuous model with age 

structure. A threshold condition is computed, and a Lotka-like characteristic equation is obtained. We 

then proceed with a preliminary local stability analysis of the steady-state age distributions and establish 

(numerically) the impossibility of bifurcating periodic solutions for a two-step age-specific contact rate. 

After a continuous two strain age-dependent model with partial cross-immunity is introduced in Section 

6, we proceed to obtain partial local stability results for a particular case of the continuous two-strain 

age-dependent model. We then comment on the relevance of these results to epidemiological studies. 

Finally, in a series of appendices, we collect the mathematical details and show that the models intro­

duced in Sections 4 and 6 are well-posed. 

2. The two-strain simulation model 

The model presented in this section subdivides the population into discrete age classes, and incor­

porate age-specific mortalities and contact rates, discrete time steps and age-dependent disease dynam­

ics. To introduce the algorithm for the model, we need some notatiOJ!. In what follows, the sub-index 

i indicates that the corresponding class has been infected by or recovered from strain i . If two related 

strains of a virus such as influenza are co-circulating in a population, then individuals who have been 

infected by one strain may have partial immunity (i.e., decreased susceptibility) to the other strain (see 

Castillo-Chavez, et al., 1987; Couch and Kasel, 1983). Assume that individuals, while infected with 

one strain, temporarily are not susceptible to the other, either because of temporary immunity or 
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because of isolation from the rest of the population. Assume further that an individual, once recovered 

from one strain of influenza, has permanent immunity to that strain but is susceptible to the other strain 

with, perhaps, a reduced level of susceptibility due to partial immunity. 

In the transfer diagram (Fig.~. X is the susceptible class, Y; denotes those infected by strain i 

but still susceptible to the other strain, and Z; denotes those recovered from strain i. We introduce cr1 

as the relative susceptibility to strain j U :1:-i) for an individual that has been infected by i. Note that 

cr=l corresponds to no cross-immunity, whereas cr=O corresponds to total cross-immunity. V; denotes 

those infected with strain i but recovered from the other strain, and W denotes those recovered from 

both strains. 

The population is divided into 80 one-year (360 day) age classes or compartments, with a fixed 

(steady-state) fraction F1c of the population being in compartment k. Note that, as is standard in such 

models, we balance births and deaths to hold population size constant; since there is no disease induced 

mortality assumed, we also assume a stationary age distribution. In general, then, F~c+l=P~cF/c> where P1c 

is the survival probability from year k to year k+l. Let Xi, Yi~c. Yk, Zib Zk, Vh, Vi.t and Wf be 

the fractions of the total population at time step t in age compartment k and the indicated epidemiolog­

ical class. Note that 

Xf+Yh+Yk+Zh+Zk+Vi~c+Vk+Wf=F~c 

for all t and all k. The daily activity level a1c of age group k is a measure of the relative amount of 

mixing done by age group k when compared to other age groups. The proportionate mixing assumption 

specifies that the number of daily contacts of an infective in group l is proportional to activity level a1, 

and that these contacts are spread among the age groups in proportion to their activity levels a1c. Thus 

the daily contact rate of an infective in group l with individuals in group k is proportional to a~ca1 • 

The incidence into Z;1 is similarly structured. 

Motivated by the fact that the average infective period of influenza lies between 2 and 6 days, we 

have used a time step of 3 days. Our preliminary investigations of the effects of the time step, how­

ever, indicate that the choice of time step may be of crucial importance, especially as the time step is 

reduced to zero. It is clear that this requires further examination, especially to the extent that it affects 
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the quantitative results. We introduce the infection at time step 0 by assuming that a fraction 11 of the 

individuals in each compartment and class are infectious, and the remainder are susceptible. At time 

80 

step t, the total infectivity of strain i is calculated as Ti = 1:a.t(Yi~+V/i), i=l, 2. Let ~; be the 
1=1 

incidence proportionality factor for a three-day period for strain i . This means that the incidences into 

the appropriate four age compartments k due to the infectives of each strain at time step t are as fol-

1 th . "d . yt+l . A xrT th . "d . yt+l . A xrT th . 'd . yt+l ows: e mc1 ence mto l.t IS ...,1 at .t 1, e mc1 ence mto 2.t IS ...,2a.t .t 2, e mc1 ence mto 1.t 

purposes by ignoring age structure within each 30-day month. All infectives recover after three days 

and move into the removed classes. After every 10 three-day time steps (one month), the fractions 

within each class in each subcompartment are adjusted to correspond to natural aging and mortality. 

Thus (1-P,t)/12 of individuals in the susceptible, infectious and removed classes in age compartment k 

are removed due to mortality, and the survivors are moved into the same epidemiological class in age 

compartment k+l. After all classes and compartments from age compartment 80 down to age compart-

ment 1 have been adjusted, susceptible newborns are introduced; to account for these, we add F 1/12 to 

X~. 

In order to approximate the age distribution in a developed country, we have chosen the fractions 

in the age compartments to be 

{1-0.2k/50, 1~~50 
F1c = 0.8-0.8(k-50)/30, 5~~80 (2.1) 

so that 80% survive to age 50 and none survive past age 80. One should, of course, explore other func-

tional forms. The most important aspect of (2.1) is that it differs qualitatively from an exponential 

model, which has age-independent mortalities. The activity levels are chosen for five age categories: 

preschool (age 1 to 5), elementary school (age 6 to 12), secondary school (age 13 to 18), adults (age 19 

to 60) and senior citizens (age 61 to 100). One would expect that the activity levels would be highest 

for the school children and lowest for the senior citizens. For these five groups, activity levels of 

4:8:4:2:1 are consistent with the non-proportionate mixing contact matrices used by Longini et al. 

(1978) and Schenzle (1985). Other activity levels are also considered, as shown in Table 1. The 
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incidence proportionality factors ~i are chosen so that the calculated incidences are consistent with 

observed incidences for influenza. The 640 susceptible, infectious and removed class-compartments 

must be updated every time step; therefore, our analysis has been facilitated by implementation on the 

Cornell supercomputer (IBM 3090/4) with FPS (Floating Point System) array processors, because of its 

parallel processing capability. We emphasize that the numerical results for the two strain model to be 

discussed below are from the discrete time simulation model, and depend critically on the choice of 

time step. 

The simulations indicate that for the symmetric contact case (cr--<J1=cr2, 13=~ 1=~:z=0.2), if the two 

strains are strongly coupled, i.e., cr is small, the system goes through cycles with a period of 10-20 

years, where each cycle may contain several outbreaks followed by a period with very low disease lev­

els (Fig. 3). For intermediate coupling (0.33~~0.8), we observe regular cycles with a period of about 

40 months (Fig. 4) and with amplitude that increases with cr. For large cr (cr1=cr2; .8~~1.0), the ampli­

tude decreases as the two strains become antigenically unrelated. In the transition between strong and 

intermediate coupling (cr-:0.32), the system exhibits complicated dynamics, indicating a complex 

interaction between age-structure and cross-immunity (Fig. 5). When the two strains have equal cross 

immunity coefficients and different transmission rates ~1:t~:f32 , we observe that the amplitude of the regu­

lar oscillation decreases for increasing 1~ 1-~2 1 (Fig. 6a, b). This indicates that as two strains become 

different, the diseases decouple and effectively act as two independent strains. In contrast, for equal 

transmission coefficients but different coefficients of cross-immunity cr1:t!:0'2, the changes in the cycles 

are less pronounced (Fig. 7). The introduction of transmission rates that oscillate with small amplitudes 

due to natural seasonal fluctuations does not change qualitatively the observed periodic behavior for the 

appropriate parameter range (Fig. 8). The use of slightly fluctuating transmission rates can also be seen 

as the formal superposition of a forcing term to check the structural stability of the observed periodic 

solutions. For an extensive discussion of this model see Andreasen (1988a). 

To understand better the mechanisms behind the observed sustained oscillations, we have per­

formed further numerical experiments. When the age structure for the mechanism for transmission of 

the viral diseases is changed by setting all the activity levels equal to one, sustained oscillations are still 
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observed for cr=0.5. If, however, instead of using the survivorship curve given by (2.1), we assume a 

constant death rate for the first 80 age classes followed by no survival into the 81st age class, then the 

results change. This mortality structure resembles a negative exponential survivorship curve (see Heth-

cote, Stech & Van den Driessche, 1981). In this situation, only a stable fixed point is observed. 

Finally, a set of numerical experiments have been performed in which a strain is removed from circula-

tion by setting its corresponding transmission coefficient (P;) equal to zero. Using again the survivor-

ship curve given by (2.1), we have performed extensive simulations (see Table 1) for different sets of 

activity levels. In all of these cases damped oscillations are observed. The dominant eigenvalues are 

complex, and their imaginary part b may be estimated by b=21tltr- where tr is the time for one revolu-

tion of the spiral. Then if a is the real part of the complex eigenvalue and peaks of :L,Yi occur at times 

t 1 and t 2, a can be estimated from 

The large ratios of b to a in Table 1 indicate that the solutions spiral slowly into the equilibrium, so 

that they would be difficult to distinguish from periodic solutions if one observed them for a short time 

period. The equilibria in Table 1 are reached before 2000 years. These results are not surprising since 

it is generally believed that symmetric age-specific contact rates by themselves can at most drive slowly 

damped oscillations (for example, see Anderson and May, 1984; Schenzle, 1985). Our results suggest 

that age structure is important, but perhaps primarily in its direct effect on the fraction of susceptibles; 

that is, an age structure relatively skewed towards earlier age classes will have a higher proportion sus-

ceptible. We remark again that these simulations have provided us only with a suggestive picture that 

we feel deserves further investigation. To examine the results just outlined, in the following sections 

we look at a sequence of continuous time approximations which can be derived from the same basic 

principles used in the derivation of our simulation model. 

3. The continuous model for two strains without age structure 

· The model in this section incorporates the effects of two co-circulating strains into the dynamics 

of a homogeneous population. Let X (t ), Y (t ), Z; (t ), V; (t ), and W (t) denote the fractions in the 
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respective classes as specified in Section 2. Here, ~i denotes the transmission coefficient of strain i, Yi 

denotes the recovery rate from strain i, J..1. denotes the constant mortality rate, and again, cri represents 

the relative susceptibility of types Z; in terms of their acquisition of strain j (i.e., the degree of cross-

immunity). If we now follow the transfer diagram in Fig. 2, we arrive at the following set of equations: 

X' (t) = -[~ 1(Y 1+V 1)+~2(Y 2+V :J]X +J..L-~ 

Y;'(t) = ~;(Y;+V;)X -(Y;+J..L)Yi 

Z;'(t) = Yi Yi-(Gj Pj{Yj+Vj )+fl)Z; 

V;'(t) = cri ~i (Yi+V;)Zi-(Yi +fl)Vi 

W'(t) = Y1V1+Y2V2-flW 

X(0)=X0, Yi(O)=Yio• Zi(O)=Zio• V;(O)=Vio• W(O)=W0 

where j=2 if i=1 and j=1 if i=2. The equation (3.5) is redundant since for all times we have 

X (t )+Y 1Ct )+Y 2Ct)+Z1(t )+Z2(t )+V 1(t)+V 2Ct)+W(t) = 1 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

The nonnegative orthant in R7 is positively invariant for (3.1)-(3.7) and unique solutions exist for all 

time. The contact number for strain i is 

R-=~ 
' Y;+J..I.. 

(3.8) 

This model is similar to the model in Dietz (1979) except that his model has cr1=crz=1 so that 

recovery from one strain does not reduce a person's susceptibility to the other strain. Dietz's model is 

based on the Monte Carlo simulation models of Elveback et al. (1964). Some of the analysis of the 

model above is similar to the analysis in Dietz (1979), so we omit some details. 

The model has four equilibria G; for i=1, 2, 3, 4. The trivial equilibrium G1 has X=1 and all 

other variables equal to zero so that neither viral strain is present If the contact numbers satisfy R 1~1 

and R 2~1. then G 1 is the only equilibrium in the nonnegative orthant and all solutions in the nonnega-

tive orthant approach G 1• The global asymptotic stability of G 1 in this case is shown by using the 

Lyapunov function Y 1+V 1+Y ~V 2 and the Lyapunov-LaSalle theorem (Hale, 1969). 

If R 1>1, then there is a boundary equilibrium G2 given by 

. _ 1 fl 1 Y1 1 
G2. (X ,Y 1.Z1.Y 2.Z2,V 1.V v- (-R .--(1--R ),--(1--R ),0,0,0,0) 

1 Y1+J..1. 1 Y1+fl 1 
(3.9) 

Analysis of the Jacobian of the system at G2 reveals that G2 is locally asymptotically stable if R 1>1 
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and 

(3.10) 

The equilibrium G 2 is an unstable saddle if condition (3.10) is not satisfied. If R 2 >1, then there is an 

analogous boundary equilibrium G3. 

If the two conditions 

R1 
R2>-------

1+cr2(R 1-1)y!/(y1+J..l) 

R2 
R 1 > ----,------,----

1+crr (R 2-l)Y:I(Yz+J..L) 

(3.11) 

(3.12) 

are both satisfied, then there is a nontrivial equilibrium G 4 at which both strains remain endemic. 

Equivalently, these may be written 

R1 Rr 
---->R2> ---­
l+(R1-1)A 1+(R 1-1)B' 

Y1+J..L Y2+J..L 
--+-- < 1. 
'Y10'2 'Y20'1 

(3.13) 

If cr1=0, then recovery from strain 2 also gives complete immunity to strain 1 so that no one ever enters 

class V1. In this case threshold condition (3.12) reduces to R 1>R 2. If both cr1=0 and cr2=0, then states 

V h V 2 and W are always empty since no one enters them. In this case the equilibrium G 2 is locally 

asymptotically stable if R 1> 1 and R 1>R 2, while the equilibrium G 3 is locally asymptotically stable if 

R 2>1 and R 2>R 1. If R 1=R 2>1, then there is a line segment of neutrally stable equilibria joining G2 and 

G3, and which equilibrium is approached depends on the initial conditions. In the following, we 

assume that cr1>0 or cr2>0 to avoid the unusual case above. 

If we let A.1 and A.z be the G4 equilibrium values of ~1 (Y 1+V 1) and ~2(Y2+Vz), respectively, then 

the coordinates of the equilibrium G 4 are 

(3.14) 

(3.15) 

(3.16) 
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(3.17) 

where j =2 if i = 1 and j = 1 if i =2. The local stability of the equilibrium G 4 is not easy to analyze since 

one must show that all eigenvalues of the 7x7 Jacobian matrix at G 4 have negative real parts. How-

ever, numerical calculations with system (3.1)-(3.4) suggest that if (3.11) and (3.12) are satisfied and 

both Y 1 and Y 2 are initially positive, then all solutions in the nonnegative orthant approach the equili-

brium G 4• The eigenvalues were computed for different values of o-1 and o-2• In all cases, we found 

that the eigenvalues have negative real parts. We note that the eigenvalue with largest real part usually 

has its real part around -10-4 and its imaginary part around w-2, so the imaginary part is approximately 

100 times the real part. Hence solutions will spiral rapidly as they approach equilibrium. More detail 

on these simulations is shown in Table 2. 

When the viral strains are similar so that ~1=~2• y1=y2, and o-1=0"2 and the initial conditions are 

symmetric, then Y 1(t)=Y2(t), Z1(t)=Z2(t) and V 1(t)=V 2(t) for all time. In this case the system (3.1)-

(3.4) reduces to a four dimensional system. Furthermore, when the threshold condition R=~/(y+Jl)>1 is 

satisfied, then there is a nontrivial equilibrium corresponding to the equilibrium G4 for (3.1) to (3.4). 

This nontrivial equilibrium is locally asymptotically stable. This suggests that periodic solutions do not 

arise by Hopf bifurcation at the equilibrium point G4 for the system (3.1)-(3.4). For further details we 

refer the reader to Appendix A. 

4. The threshold condition for the continuous age-structured one-strain model 

The basic epidemiological model for one strain of influenza virus (or one infectious agent) is for-

mulated in terms of continuous variables. Then a threshold condition is obtained which determines the 

asymptotic steady-state age distributions. The population is separated into susceptible, infected, and 

removed classes, where x (a ,t ), y (a ,t) and z (a ,t) are the probability densities in these respective 

az az az 

classes. In this SIR epidemiological model, J x (a ,t )da, J y (a ,t )da, J z (a ,t )da, denote the propor-
al al al 

tions of the population in each class that have ages in the age-interval (a 1,az) at time t. The transfer 

diagram for this model is that of Fig. 1. 
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Assume that the population has reached a steady-state age distribution, that all newborns are sus-

ceptible, and that the transfer of infection is due to a proportionately-mixed age-dependent bilinear 

incidence rate. The dynamics of the classes are governed by the following initial boundary value prob-

lem (see Hoppensteadt, 1974b; Dietz, 1975; May, 1986; Schenzle, 1984; Dietz and Schenzle, 1985; 

Webb, 1985): 

ox(a t) ox(a t) 
aa, + a/ = -A.(t )b (a )x (a ,t )-J..L(a )x (a ,t ), (4.1) 

()y~:,t) + ()y~,t) = A.(t)b(a)x(a,t)-(y+-J..L(a))y(a,t), (4.2) 

oz(a,t) oz(a,t) _ ( )- ( ) ( ) 
()a + ot - 'YY a ,t ll a z a ,t , (4.3) 

A.(t) = ~f b(a')y(a',t)da', (4.4) 
0 

x(a,O)=x0(a), y(a,O)=yo(a), z(a,O)=z 0(a), (4.5) 

1 a 
x(O,t) = p = _ , M(a) =I J..l.(a)da, y(O,t) = 0 = z(O,t). 

f e-M(a')da' 

(4.6) 

0 

where J..l.(a) is the age-specific mortality rate, p is the birth rate, "( is the constant recovery rate, b (a) is 

the age-specific activity level, A.(t) is the instantaneous force of infection, and ~ is a transmission seal-

ing factor. In this model the activity level between a susceptible person of age a and an infected one 

of age a' is proportional to b (a )b (a'). This is a particular case of the so-called proportionate mixing 

assumption used by Barbour (1978), Nold (1980), Hethcote and Yorke (1984), Dietz and Schenzle 

(1985), and Hethcote and Van Ark (1987). The initial age distributions are assumed to be zero beyond 

some maximum age. 

When the activity level b (a) and the mortality rate J..l.(a) are independent of age a, then integra-

tion of the differential equations (4.1)-(4.6) over all ages leads to a time-dependent SIR model with 

vital dynamics. For this ordinary-differential-equation model involving the fraction of individuals in 

each class at time t, the contact number R (basic reproduction number) is ~b 2/(y+J..l.). If R $1, then the 

disease dies out; if R > 1, then the fractions in each class approach endemic equilibrium values (Heth-

cote, 1976). 

The model (4.1)-(4.6) is well-posed. The proof is found implicitly in Appendix D since this 



12 

model is a special case of the two strain model that is shown to be well-posed there. In the remainder 

of this section we determine a threshold condition, that is, a quantity that must exceed one for the 

disease to remain endemic (persistent). This threshold condition was obtained previously by Dietz and 

Schenzle (1985) and also for a simpler model by Webb (1985). Due to its importance in our stability 

analysis and numerical experiments, a brief derivation of the threshold condition is presented. 

Assume that the steady-state age distributions are reached as time approaches infinity, so that the 

force of infection asymptotically is a constant denoted by 'A.* • The method of characteristics is used to 

obtain the following expressions for the steady-state age distributions. 

where 

x• (a)= pe-[).."B(a)+M(a)J, 

a 

y• (a)= pe-M<a>J 'A.* b(a')e-).."B(a'M(a-a')da'' 
0 

z • (a) = pe-M<aLx • (a )-y • (a), 

a 

(4.7) 

(4.8) 

(4.9) 

B (a)= f b(a)da. (4.10) 
0 

If we now substitute y • (a) into equation (4.4), we obtain that either A.* =0 or else A.* satisfies the 

characteristic equation 

- a 
1 = Pf b(a)pe-M<a><J b(a.)e_,_.B(a)-"((a-a)da.)da, 

0 0 
(4.11) 

which has a positive solution A.* provided that the threshold condition 

a 

1 < 13[ b(a)pe-M(a)(l b(a.)e-"((a-a)da)da (4.12) 

is satisfied. 

Above the threshold (that is when inequality (4.12) is satisfied) the force of infection A.* is a posi-

tive constant, and equations (4.7)-(4.9) correspond to an endemic (persistent) steady-state age distribu-

tion. Below the threshold (that is when equation (4.12) is not satisfied), the force of infection A.* is 

zero and equations (4.7)-(4.9) correspond to a trivial steady-state age distribution where the disease has 

died 6ut and there are no infected or recovered individuals. 
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5. Stability of the steady-state age distributions for the continuous one-strain model 

We now proceed with a local stability analysis of the steady-state age distributions of the model 

of Section 4 by taking perturbations of the steady states: 

x(a ,t) = x *(a )~(a ,t), 

y(a,t) = y* (a)+11(a ,t), 

A.(t) = A.* +9(t ). 

(5.1) 

(5.2) 

(5.3) 

A linearization approach leads to the following first order approximate model for 1;, 11. and e: 

~! + ~~ = -A.* b (a )1;-e(t )b (a )x *(a }-Jl(a )1;, 

~+ ~ =A.* b(a)l;+e(t)b(a)x* (a)-(y+-Jl(a))11, 

9(t) = Pl b(a)ll(a,t)da, 

l;(O,t) = 11(0,t) = 0, 

~ * • ~(a ,0) = Xo(a )-x (a), 11(a ,0) =Yo( a )-y (a). 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

If there exists a solution of (5.4)-(5.8) in separable form l;(a ,t )=~(a)/ (t ), then it corresponds to a 

steady-state age distribution since the fractions in any age bracket are constant. Since the right hand 

sides of (5.4)-(5.6) are linear in the parts of the separable forms involving t, these parts involve an 

exponential in t. Thus we restrict ourselves to perturbations of the form 

l;(a ,t) = ~(a )eP1, 

11(a ,t) = ft(a )eP1 , 

9(t) = fJePI, fJ a COnStant. 

(5.9) 

(5.10) 

(5.11) 

A straightforward computation shows that 

a 

~(a)= -pee-[A*B(a)+M(a)J J b(a)e-p(a-a)da.., (5.12) 
0 

a ~ 

ft(a) = -epe-M(alf b (a')e-l<P+rl(a-a')+A* B(a'll[l-A.* J b (a)e-P<~-a)d a]da', (5.13) 
0 0 

S=~ J b (a )ft(a )da. (5.14) 
0 

Putting equation (5.13) into equation (5.14) leads (provided that fl:;t()) to a Lotka-type characteristic 

equation for p : 

1 = ~ j b (a )pe-M(a{J b (a')e-')'(a-a')-A• B(a'l[e-p(a--a'LA_* J b (a..)e-p(a-a)d a..]da'}da. (5.15) 
0 0 0 
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If all roots of (5.15) have negative real parts, then all solutions of the fonn (5.9)-(5.11) will tend to zero 

as t tends to infinity. Using the threshold condition given by the expression in (4.12) so that ').,* > A 0, 

we quickly find that no non-negative p can satisfy equation (5.15). The study of the nature of all the 

roots of equation (5.15) is more difficult. Nevertheless, in some particular instances we have deter-

mined numerically that their corresponding nontrivial endemic steady-state age distributions are locally 

asymptotically stable. 

For the trivial steady-state age distribution (A: =0), equation (5.15) becomes: 

a 

1 = J3I b(a)pe-M<a>[[ b(a')e-"((a-d}-p(a-d)da']da. (5.16) 

If equation (4.12) is not satisfied, then the monotone character of the integrand in equation (5.16) 

implies that it has a unique real root p~O. and that p 0=0 only at the threshold. It is also clear that com-

plex roots (if any) appear in conjugate pairs. If we now let p=r+is denote a complex root in (5.16) 

with s>O, then by equating real and imaginary parts we observe that 

a 

1 = J3[b(a)pe-M<a>[ b(a-9)e-<'l'+r)acos(s9)d9da, (5.17) 

and since cos(s 9)<1 for some values of e in the range of integration, it follows that 

a 

J3 [b (a)pe-M<a>[ b (a-S)e-<'l'+r>adeda>l. (5.18) 

From this we conclude using (5.16) that r <p 0 ~0. Hence if we are strictly below the threshold, then 

the trivial steady-state age distribution is locally asymptotically stable, at least for perturbations of the 

fonn (5.9)-(5.11). If inequality (4.12) is satisfied, then (5.16) has a unique positive root p 0 so that the 

trivial steady-state age distribution is unstable. In this case the disease does not die out, but persists. 

In the remainder of this section we indicate how a numerical analysis of a particular case for 

equation (5.15) leads us to believe that the one-strain model without age-specific mortality rate J.L(a )=Jl 

(a constant) has an endemic equilibrium point that is locally exponentially stable. In this particular case 

we take the age-specific activity level rate to be 

b(a) ={n1', ~<C' 
C~<oo, O<D*l. 

(5.19) 
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In this case the threshold quantity in equation (4.12) becomes 

[ 1 (1-D )e-<J.L+"f)C ~·r D 2 D 1 ] 
~J.I. --=---+ +e -,...... ( +----) 

J.L(J.L+y) (J.L+y)y J.L(J.L+y) "NJ.+Y) W ' 

the characteristic equation is given by 

1 (1-D )e -{J.L+y)C 

* + • 
(J.L+A. )(J.L+y) (J.L+y)(y-A. ) 

+e-{J.L+A.")c [ Dz + D 1 ]--1- = 0 
(J.L+A.* D)(J.L+y) (y-A.")(J.L+y) (y-A.*)(J.L+A.*) J.l.~ ' 

and equation (5.15) reduces to 

(1-~ )[1-e -<J.L+'-" )C] ~ [1-e -<~t+'-" +p )C] 
y[ 1 +(D -1 )e -{J.L+"ff"P l] 

(J.L+/...")(y-A.*+p) + (y-A.")(J.L+A"+p) - (y-A."+p)(y-A.*)(J.L+y+p) 

/...* 
• 1--

e -(!l+A. )CD p D (J.I.+p ) 
+ [ • + • * 

J.l.+"f+p y-A. +p (J.L+A D )(J.L+A D +p) 

~o.· 
D-

p ] 
J.I.+A*D+p 

D~e-<J.L+A." +p)C 

+-"-----[-1-. + f ]--1- = 0. 
J.l.+y+p y-A. J.I.+A D +p ~J.l. 

(5.20) 

(5.21) 

(5.22) 

The numerical procedure computes the threshold quantity from equation (5.20). If it is greater than 

one, then the characteristic equation (5.21) is solved for/...*. Using the force of infection /...*, we solved 

the equation (5.22) numerically for p. For example, if the average infectious period 1/y is 1 week, the 

average lifetime 1/J.l is 70 years, C =5 years, D =4 and 13=0.2, then the threshold quantity (5.20) is 2.99, 

the solution of the characteristic equation (5.21) is /...* =.000132 and the roots of (5.22) with largest real 

part are p=-0.000693±i0.0228. Results of numerous runs with reasonable epidemiological parameters 

for influenza, different values of D and C, suggest strongly that the p roots always have negative real 

parts so that (at least for these particular cases) the stable age distribution is locally asymptotically 

stable for the one-strain continuous model. We note that for this b (a), the p root with the largest real 

part usually has its real part around -10-3 and its imaginary part around w-z so the imaginary part is 

approximately 10 times the real part. Since the solutions are very weakly damped, they would oscillate 

rapidly as they approach the equilibrium solution and might look numerically like periodic solutions. 

Calculations with the one-strain model in Section 2 are consistent with the results above. Thus 

age-specific activity levels do not seem to lead to periodic solutions in the one-strain model. Further-
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more, simulations with different age-specific mortalities do not lead to periodic solutions. 

Other investigators have also shown that models with age-specific mortality do not lead to 

periodic solutions. Andfeasen (1988a, 1988b) considers the model (4.1)-(4.6) with constant age-

independent activity level (b (a )=1) and age-specific mortality corresponding to a fixed lifespan of A 

years for every individual. He approximates the Lotka-type characteristic equation (5.15) by observing 

that the infectious period is four orders of magnitude smaller than the lifespan A of the host The 

approximate p roots suggest that solutions are slowly damped with the period given by 2~ where 

D =lly is the average infectious period, and K is the average age at infection. 

6. The model for two strains with partial cross-immunity 

If two related strains of a virus such as influenza both are circulating in a population, then indivi-

duals who have been infected by one strain may have partial immunity (i.e., decreased susceptibility) to 

the other strain. The two-strain model here is the continuous analog of the simulation model in Section 

2. In what follows, the sub-index i indicates that its class is infected or recovered from influenza due 

to strain i . Assume, as before, that those individuals infected with one strain are not susceptible to the 

other, and that an individual once recovered from a strain of influenza, has permanent immunity to this 

strain, and possibly a reduced level of susceptibility to the other strain. 

The initial boundary value problem governing the dynamics of these classes under proportionately 

mixed age-dependent bilinear incidence rates and the assumptions of sections 2 and 4 is: 

ax ax 
aa +at = -At (t )b (a )x (a ,t )-~(t )b (a )x (a ,t )-J.l.(a )x (a ,t ), (6.1) 

ay; ayi 
aa +at = A; (t )b (a )x (a ,t M; Y; (a ,t )-J.l.(a )y; (a ,t ), (6.2) 

az; az; 
aa +at = 'Y; Y; (a ,t )-<:Ji Ai (t )b (a )z; (a ,t )-J.J.(a )z; (a ,t ), (6.3) 

av; av; 
aa +at = CY; A; (t )b (a )zj (a ,t )-"(; Vj (a ,t )-J.J.(a )v; (a ,t ), (6.4) 

aw aw a;+Tt = 'Yt v 1 (a ,t )+y2v 2(a ,t )-J.l.(a )w (a ,t ), (6.5) 

(6.6) 

1 
x(O,t) = p = -----, Y;(O,t) = v;(O,t) = zi(O,t) = w(O,t) = 0 (6.7)' 
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x (a ,0) = x 0(a ), Yi(a ,0) = YOi(a ), vi(a ,0) = voi(a ), 

zi(a,O) = z0i(a), w(a,O) = w 0(a), (6.8) 

where i=1.2, j=1 if i=2, j=2 if i=1, Yi denotes constant recovery rate, and IJ.(a) and b(a) denote the 

age-specific mortality and activity level rates respectively. The transmission scaling factors here are ~1 

and ~2• The susceptibility factors o-1 and o-2, which are between 0 and 1, are measures of the cross-

immunity. Note that the one strain model in section 4 is a special case with ~z=O. If the age specific 

activity level b (a) and the mortality rate IJ.(a) are constant, then the integration over all ages of the 

differential equations in the model above leads to the two-strain model in Section 3. 

The well-posedness of this two-strain model is established in Appendix D. If we now assume 

that the steady-state age distributions are approached as time approaches infinity, so that the forces of 

infection asymptotically are constants denoted by A.; and A;, then proceeding as in section 4, we obtain 

that either 'At =0 or A.t satisfies the characteristic equations 

oo a 

1 = ~d b(a)pe-M<a>[J b(a.)e -y;(a--o\e -('A.;+..;)B(a) 

0 0 

(6.9) 

a a 

where M (a )=J IJ.(a.)d a. and B (a )=J b (a.)d a.. The two characteristic equations correspond to (i ,j)=(1,2) 
0 0 

and (i ,j)=(2,1). We have not found threshold conditions that are necessary and sufficient conditions for 

the two characteristic equations to have positive solutions A.; and A; (for further details see Appendix 

B). 

We now proceed to linearize the system (6.1)-(6.8) around its steady-state age distributions as in 

Section 5 (details are found in Appendix C). If we assume that 

x(a ,t) = x • (a)~(a )eP', 

Yi(a,t) = yt(a)+t\i(a)eP', 

z;(a,t) = z;"(a)+(>;(a)eP', 

vi (a ,t) = v;" (a )+&i (a )eP', 

for i=1, 2, then we arrive at the following Lotka-type characteristic equations for p: 

(6.10) 

(6.11) 

(6.12) 

(6.13) 

(6.14) 
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S; = ~i J b (a)[~; (a)+&; (a )]da, 
0 

(6.15) 

for i = 1, 2. The local stability analysis of the general case has then been reduced to the study of the 

roots of equations (6.9) and (6.15). Unfortunately, the general case is complicated; however, the 

analysis is be carried out here for the special case when cr1=0':z=(). In this case recovery from one strain 

gives complete immunity to both strains so that no one ever enters classes v 1, v 2 and w . If 

- a 
H; ('A*) = ~i Ib (a )pe-M(a)Ib (a.)e -'Y;(a-«}-A.* B(a) dada, . (6.16) 

then the characteristic equations (6.9) for a 1=0":z=() become H 1 ('A~ +"A.i)=1 and H 2(')..~ +"A.i)=1 (note that 

each characteristic equation is similar to the characteristic equation (4.11) for the one-strain model), and 

the Lotka-type characteristic equation (6.15) for p reduces to 

- a 
S; = ~;J b(a)pe-M(a)J b(a.)e -'Y;(a-«)-(A.:+A.i)B(a) 

0 0 

a 

[S;e-p(a-«L(91+Sz)A.t J b(<!l)e-p(a-;)d<!l]d ada. 
0 

For the trivial steady-state age distribution ( A~="A.i=O), equation (6.17) reduces to 

- a 
1 = ~;Jb(a)pe-M(a)Jb(a.)e -(p-+"f;)(a-«)dada, 

0 0 

(6.17) 

(6.18) 

which is similar to equation (5.16) for the one-strain model. Thus the analysis there can be used. If 

H;(0)<1 for i=1, 2, then the trivial steady-state age distribution is locally asymptotically stable. If 

H; (0)> 1 for i = 1, 2, then there is a positive real root of the characteristic equations so that the trivial 

steady-state age distribution is unstable. 

A steady-state age distribution with A~>O and "A.i>O seems to occur only for very special parame-

ter values, so we do not consider this case (see section 3). Consider the case when H 1(0)>1 and 

H 2(0)<1 so that there is a steady-state age distribution with A~>O and A;=O. Now H 2(0)<1 implies that 

equation (6.18) with i=2 has only roots p with negative real part so that this steady-state age distribu-

tion in which only the first strain persists is locally asymptotically stable. If H 2(0)>1, then there is a 

positive root p so that this steady-state age distribution is unstable. There is also a steady-state age dis-

tribution in which only the second strain persists; this has analogous stability properties. Recall from 



19 

Section 2 that the two-strain simulation model had periodic solutions for some age-specific mortalities, 

but not for exponential removal survivorship corresponding to a constant mortality rate Jl. Conse­

quently, Andreasen (1988a, 1988b) considers the symmetric version of model (6.1)-(6.8) with b(a)=l 

and age-specific mortality corresponding to a fixed lifespan of A years for all individuals. We approxi­

mate the Lotka-type characteristic equation (6.15) by using the fact that the infectious period is four 

orders of magnitude smaller than the lifespan A of the host The approximate roots are purely ima­

ginary, which suggests that there are periodic oscillations around the endemic steady state age distribu­

tion. Furthennore, the approximate period is 21t'fKI5Tci where D = 1/'y is the average infectious period, K 

is the age at first infection, and CJ is the relative susceptibility due to cross-immunity. Thus the approxi­

mate results above and the simulation results in Section 2 are consistent. 

7. Discussion 

In his excellent survey paper Fine (1982) says: "Rather than continue to force influenza into sim­

ple epidemic theory an effort should be made to tackle some of the major puzzles of influenza patterns 

in large communities- the bimodal or undulating incidence pattern which is often observed, the 

apparent disappearance of virus for several months in large areas, or the recent recognition of 

widespread cocirculation of different shift viruses. Simulation techniques which incorporate important 

factors such as weather patterns, seasonal factors (e.g., school tenns), or social geographic structure may 

be useful here." It is this challenge that motivates us to introduce and analyze (at different levels) 

models that incorporate age structure through age-dependent proportionately mixed contact rates, age­

dependent mortality rates, and interactions among viral strains or subtypes. It is the incorporation of 

two viral strains in our simulation model that produces the most interesting albeit the less reliable 

results. These two strains are coupled by a coefficient of cross-immunity (cr); the coupling is strong 

when CJ is small (antigenically very similar strains) and weaker when CJ is intennediate (different strains 

same subtype). In both instances, the simulations yield sustained oscillations. Periods of 10 to 20 years 

are observed when cr is small, while periods of 3-4 years are observed when cross-immunity is inter­

mediate. These results are consistent with the recently documented evidence on the co-circulation of 

strains of the same subtype (Couch and Kasel, 1983; Thacker, 1986 [Fig. 2]). When only one strain is 
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present, we have not found sustained oscillations; however, we observe very slowly damped oscilla­

tions. Hence, from a biological point of view, age structure by itself is capable of driving "sustained" 

(that is, slowly damped) oscillations. These results are in agreement with those previously reported by 

Anderson and May (1984) and Dietz and Schenzle (1985). When the age-structure is removed from the 

one- and two-strain models, we observe damped oscillations. Hence, for sustained oscillations, we 

require at least an age-structured population and two or more cocirculating viral strains. Age-structure 

enters this model through age-dependent activity levels and age-dependent mortality rates. Our simula­

tions suggest that the interaction between cross-immunity and age-dependent survivorship may be 

enough to drive sustained oscillations, and that age-specific activity level rates with constant mortality 

are not sufficient (even in the presence of cross-immunity) to drive sustained oscillations. Variation of 

the transmission coefficients (~1 • ~z) of our two viral strains seem to have significant effects on the 

amplitude of the oscillations. In contrast, the oscillations seem less sensitive to changes in the 

coefficient of cross-immunity (cr) and slightly fluctuating transmission rates. 

The consequences of co~circulating viruses within age-structured populations provide us with new 

insights and hypotheses into the dynamics of epidemics and pandemics. Our results suggest that the 

interactions between the immune system and multiple viruses could play a prominent role in the 

dynamics of viral infections such as influenza. The coefficient of cross-immunity provides a measure of 

this interaction between multiple strains of a virus. A very rough attempt at computing this parameter 

from the epidemiological data can be found in Castillo-Chavez, et al. (1988). 

Further numerical and analytical investigations of the models presented would be helpful in 

achieving a more complete understanding of models related to influenza. In particular, it would be 

desirable to analyze further the steady state age distributions of the continuous age-structured model in 

Section 6 and to consider various models with time delays, and numer ::ally integrate the systems of 

partial differential equations found in sections 4 and 6. 
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Appendix A 

Let At and A.z be the G 4 equilibrium values of ~t(Y t+V t) and f32(Y zrV :z), respectively. Since the 

infective replacement numbers (contact number times the susceptible fraction) R t (X +<5tR :z) and R 2 

(X +<5'lfi 1) are both one at a nontrivial equilibrium, then At and ~ satisfy the equations 

(A.t+A.z+JJ.)(O"tAt+JJ.) = J..IR tCO"tAt+c52Az'Y21(yzrJJ.}+JJ.), 

(A.t+A.zrJJ.)(0"2Az+JJ.) = J..IR 2(0'2AzrcrlAt'YtiCYt+J.l.}+JJ.). 

(AI) 

(A2) 

The coordinates of the equilibrium G4 are given by (3.14)-(3.17). In the symmetric case (~ 1=~:z=f3, 

y1=y:z=Y, O't=O':z=O') with symmetric initial conditions, the system (3.1)-(3.4) reduces to a four dimen-

sional system 

X'(t) = -2~(Y +V)X +JJ.-JJ.X 
Y '(t) = ~(Y +V)X -(y+JJ.)Y 

Z'(t) = yY-(O'~(Y+V)+!J.)Z 

V'(t) = 0'(3(Y +V)Z-(y+JJ.)V 

(A3) 

(A4) 

(A5) 

(A6) 

where W(t) can be found from X+2Y+2Z+2V+W=l. The existence of a nontrivial equilibrium 

corresponding to the equilibrium G 4 is guaranteed provided that the threshold condition R =(31(-y+JJ.)> 1 is 

satisfied. The Jacobian of the system (A3)-(A6) is 

l= 

-(2A.+JJ.) 
0 

0 
A. 

0 
-(O"A+IJ.) 

O"A. 
0 

-2(3X 
-a(3Z+y 

0'(3Z 

(3X -"t-JJ. 

At the nontrivial equilibrium, the equations (A1) and (A2) reduce to 

(2A. +J.l. )( O'A +J.l.) = JJ.f3[ O'A.(2y+JJ. )+JJ.( "f+J.l.) ]I ( y+JJ.)2 

(A7) 

(A8) 

Using the expressions (3.14) and (3.16) for X and Z and equation (A8) for (3, the characteristic equation 

det (J -s/)=0 for the nontrivial equilibrium reduces to the following equation in the four parameters y, 

J.l., 0' and A.. 

[')'(20'A+JJ.)+(JJ.(O'A.+JJ.)](2A.+IJ.+s )(O'A+IJ.+s )(y+JJ.+s )2 

-(y+J.1}2( O'A+JJ.)(JJ.+s )[( O'A+J.l.+s )("f+J.l.+S )+<JA. y] 

-O'A ')'(y+J.1)(2A.+JJ.+s )(y+JJ.+s )(JJ.+s) = 0 (A9) 

We have shown using the symbolic manipulator MACSYMA that the Routh-Horwitz criteria are 

satisfied for the fourth degree polynomial equation (A9) so that all eigenvalues have negative real parts. 
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Thus this nontrivial equilibrium is locally asymptotically stable. 
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Appendix B 

The steady-state age-distributions and characteristic equations are now described for the continu-

ous two-sttain model (6.1)-(6.8). Assume that steady-state age-distributions are approached as time 

approaches infinity so that the forces of infection are asymptotically constants denoted by A.; and A;. 

tJ tJ 

The following steady-state age distributions with B (a >=Jb (a.)d a. and M (a )=jiJ.(a.)d a. are solutions of 
0 0 

(5.1)-(5.10) that are independent oft. 

tJ • • ·c ) -M <tJ > f 'I "b ( ) -'Y; (tJ-a>-Q.l +A.i)B <a.>d Yi a = pe '6 11.; a. e a., 

z;"(a) = pe--M(tJ)I "(;'Ate -Gi"-j£B(a}-B(a)][1b(~)e -'Y;Ca.-.r<A;+~")B<+>d~]da., 

a a • 
"( ) - -M<a>[ 'I "b( ) -"f;(tJ-G)[J 'I • -G;"-; [B(a}-B(9)J v; a - pe 0;11.; a. e 'Yi~~.ie 

. 0 

w • (a) = pe--M<aLx • (a )-y~ (a )-y; (a )-v ~(a )-v; (a )-z; (a )-z; (a) 

Substituting y;"(a) and v;"(a) in 

A.;"= ~;J b(a.)[y;"(a.)+v;"(a.)]da. 
0 

we find that either A.;" =0 or A.;" satisfies the characteristic equations 

- a 
1 = ~d b(a)pe-M(tJ)[J b(a.)e -"f;(a-a)(e -Q.:+'Az")B(a.) 

0 0 

a * e • • 
+CJ;"fi A.j J e -G;"-; <B <a>-B ca>>rJ b (~)e -ri<a-.}-(A.1 +l.i)B <+l d ~]d 9)d a.]da, 

0 0 

(i ,j)=(l,2) and (i J)={2,1). 

(B1) 

(B2) 

(B3) 

(B4) 

(B5) 

(B6) 

(B7) 
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Appendix C 

Let us consider the following perturbation solutions from the steady-state age distributions to the 

system (6.1)-(6.8) 

x(a ,t) = x • (a )+~(a ,t ), 

Yi(a ,t) = yt(a)+Tti(a,t), 

zi(a,t) = zt(a)+Pi(a,t), 

vi(a,t) = vt(a)+roi(a,t), 

A.i(t) = A.t+9i(t), 

(Cl) 

(C2) 

(C3) 

(C4) 

(C5) 

where 0 = ~(O,t) = Tti(O,t) = Pi(O,t) = roi(O,t) for i=l, 2. Neglecting terms of order higher than one, we 

find that ~. Tti , Pi, roi and S; satisfy the following linear system 

(:a+ ;, )~(a ,t) = -cA.; +t.v;)b (a )~(a ,t )-b (a )[91 (t )+92(t )]x • (a )-J.L(a )~(a ,t ), 
a a '\. ):. • 

( aa +at )Tti (a ,t) = 1\.i b (a )~(a ,t )-Ql.(a )+Yi )Tti (a ,t )+b (a )9i (t )x (a), 

(:a+;, )Pi (a ,t) =-<Jib (a )A.j Pi (a ,t )-<Jib (a )9 i (t )zt(a )+Y;ll; (a ,t )-J..L(a )p; (a ,t ), 

a a '\. • 
( aa +at )<0; (a ,t) = (Jib (a)/\.; p j (a ,t )+crib (a )9; (t )Zj (a )-[y; +J.L(a )]<Oi (a ,t ), 

9i(t) =~if b(a)[Tti(a,t)+ro;(a,t)]da. 
0 

(C6) 

(C7) 

(C8) 

(C9) 

(CIO) 

Separable perturbations of the form A (a )T (t) require that T(t)=eP1. Hence we consider perturbations 

of the form ~(a)eP1 , fti(a)eP1 , p;(a)eP1 , &;(a)eP1 , and S(a)eP1 , where e is a constant. We then find 

that: 

a • • a 
fti(a) = pe-M(a)J b(a.)e -yi(a-ilHA1 +A.i)B(a)[Oie-p(a-iX)_(0 1+0vA.tJb(cp)e-p<a~)d4>]da.. (C12) 

0 0 

The expressions for p;(a) and &;(a) are omitted since they are very complicated. When cr1=crz=O, then 

no one enters the classes v h v 2, and w . Hence equation (C 10) reduces to 

ei =I b(a)ft;(a)da. (C13) 

After substituting (C12) into (C13), we arrive at the following Lotka-type characteristic equation for p 
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a 
[a; e-p(a-a)_(et+a~A.;* J b(cj))e-p(a ... }dcj)]d ada. 

0 
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Appendix D 

In this appendix we show that the models (4.1)-(4.6) and (6.1)-(6.8) are well posed. The method 

of proof is similar to that used by Hoppensteadt (1974) to show the well-posedness of a very general 

one agent age dependent epidemic model. First let U(a,t) = col[x,y 1,z 1,y2 ,z 2,vhvz,w] and let A 

denote the matrix 

o .. l+Az)b (a )~(a) 0 0 0 0 0 0 0 

-A.1(t)b(a) Yt+Jl(a) 0 0 0 0 0 0 

0 -yl cr2A.z(t )b (a )+Jl(a) 0 0 0 0 0 

-A,z(t)b (a) 0 0 'Yz+Jl(a) 0 0 0 0 

0 0 0 -yz cr1A.1 (t )b (a )+Jl(a) 0 0 0 

0 0 0 0 -cr1A.1 (t )b (a) Yt+Jl(a) 0 0 

0 0 -cr2A,z(t )b (a) 0 0 0 Yz+Jl(a) 0 

0 0 0 0 0 -yl -yz Jl(a) 

Then the two-strain model is given by 

a a 
(Dl) (-+-)U+A(U)U = 0, 

at aa 

which along characteristics parametrized by s is given by the system 

d {U (O,t) = col [p,O,O,O,O,O,O,O], t >0, 
-U = -A(U)U· U(O) = ds ' U(a ,0) =col [xo(a),Yol(a),zt(a),yoz,Zz,VOI,voz,zo], a>O. 

(D2) 

Since -A (U) has only non-negative off-diagonal terms, all solutions to (6.15) are nonnegative for s~O 

provided that U~O at s=O. If we now let 

n (a ,t) = IIU (a ,t )II = x (a ,t )+y 1(a ,t )+y 2(a ,t)+z1(a ,t)+z 2(a ,t)+v1(a ,t)+v2(a ,t )+w (a ,t ), 

then the dynamics of n (a ,t) obeys a particular case of the MacKendrick (1926) I Von Foerster (1957) 

model, namely: 

a a 
( aa +-ar+Jl(a ))n (a ,t) = 0, 

n(O,t) = p, 

n(a,O) = IIU(a,O)II. 

(D3) 

(D4) 

(DS) 

Our formulation (6.1)-(6.8) is chosen so that the total population probability density n (a ,t) is at the 

steady-state age distribution given by P- lf(a) before the disease dynamics starts. Thus the epidemiolo-

gic dynamics are not complicated by simultaneous demographic dynamics. Our choice of 



31 

p=[Je-MCa'>da'r1 implies that the total population size has been normalized to 1. With the a priori 
0 

bound given by 1, the existence and uniqueness proof is now exactly the same as the well known con-

traction mapping proof for initial value problems of systems of ordinary differential equations. More-

over, the a priori bound shows that the solution can be continued for all time. Continuous dependence 

on the data follows from known results on continuous dependence of fixed points to parameter-

dependent contraction maps. 
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Table 1 

A (3 I a b 

-5 -4 
1:4:4:4:4 0.10 7.2x10 -3.1x10 0.11 

-4 -4 
1:1:1:1:1 2.95 1.3X10 -2.7x10 0.19 

-4 -3 
1:8:1:1:1 0.23 1.2x10 -2.8x10 0.35 

-4 -4 
1:4:4:4:8 0.195 1.3x10 -3.0x10 0.21 

-5 -3 
4:8:4:2:1 0.10 . 7.4x10 -1.9x10 0.15 

-4 -4 
4:8:4:2:1 0.13 1.1x10 -9.0x10 0.22 

-4 -4 
4:8:2:4:1 0.15 1.2x10 -9.0x10 0.25 

Dominant eigenvalues for the non-trivial equilibrium in the 
one-strain age-structure model with proportionate mixing 
for different sets of activity levels. The first column (A) 
shows the activity levels for the different age categories: the 
second gives the incidence proportionality factors ({3). the 
third gives the equilibrium proportion of infected individuals 
(I). and the fourth and fifth give the real and imaginary 
part of the dominant eigenvalues. For more details see the 
text. 
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Table 2 

cr1 cr2 Re (o ) 
1 

hn (0 ) 
1 

Re (o ) 
2 

hn <o ) 
2 

-'i -3 _<; -3 
0.9 0.9 -3.767x10 4.136x10 -6.514x10 4.683x10 

0.9 0.8 -3.137x10 _; 4.076xl0-3 -7.137x10 -~ 4.603xl0-3 

_<; -3 -~ -3 
0.9 0.4 -2.790x10 3.581x10 -7.696x10 4.423x10 

0.9 
_; -3 -~ -3 

0.8 -3.655x10 3.946x10 -6.622x10 4.704x10 

_ ... -3 -~ -3 
0.8 0.8 -3.184x10 3.869x10 -7.031x10 4.643x10 

_.c; -3 -~ -3 
0.8 0.4 -2.670x10 3.369x10 -7 .546x10 4.477x10 

_.c; -3 -~ -3 
0.4 0.9 -3.964x10 3.024x10 -6.571x10 4.746x10 

_<; -3 _'i -3 
0.4 0.8 -3.533x10 2.927x10 -6.715x10 4.719x10 

_; -3 _; 
0.4 0.4 -2.300x10 2.453x10 -6.959x10 0 

Dominant and subdominant eigenvalues, 81 and 82, for the nontrivial equilibrium in the 

two-strain model for different values of cr1 and cr2 (~ 1 = 0.8, ~2 = 0.9, y1 = y2 = 0.33, ~ = 
0. 00004). All the eigenvalues have negative real parts including those not shown here. The 

imaginary part of the dominant eigenvalue is about 100 times larger than its real part. 
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Figure Legends 

Fig. 1. Transfer diagram for a single viral strain on a single host population. The variables X ,Y, and 

Z are defined in the text 

Fig. 2. Transfer diagram for two co-circulating viral strains or subtypes on a single host population. 

The variables X, Yi , Zi, Vi and W are defined in the text 

Fig. 3. Proportion of the population infected with strain I, I 1 when 0'=0.05; i.e., very strong cross­

immunity. The incidences of the two strains are strongly coupled and the system will go through cycles 

wi( · period of 20 years, ~=0.20 and the infectious period (=time step) is 3 days. 

Fig. 4. Proportion of the population infected with strain 1, I, when 0'=0.34 (smaller amplitude), cr=0.4 

(intermediate amplitude), and cr=O.S (larger amplitude). For these intermediate values of cr, I 1 cycles 

with a period of 3-4 years (~=0.20 and infectious period is 3 days). 

Fig. 5. For cr=0.32 and ~=0.20, the model exhibits very complicated dynamics, switching between two 

unstable spirals. The trajectories are shown here in the coordinate system (I 1(t), I 1(t+T 1), I 1(t+TiJ), 

T 1 =300 days, T 2=600 days. Note that T 1 is about half the period of the oscillation and T z==2 T 1• Coor­

dinate systems of this kind were proposed by Ruelle and Takens (1971) and first used in ecological 

models by Schaffer and Kot (1985). Technically and practically, Ruelle-Takens' coordinate systems 

may provide more insightful dynamical representations. 

Fig. 6a. Sensitivity of the regular cycles (cr1=cr2 =0.50, ~ 1=0.15) to changes in ~2• ~2= 0.15, 0.17, 0.18. 

The amplitude of the cycle decreases with increasing ~2• When the transmission coefficients, and 

thereby the time scales of the two strains, become different, the disease dynamics decouples. 

Fig. 6b. Proportion of the population infected with strain 1, It. when ~ 1=.15 and ~2=.15 (larger ampli­

tude), ~2=.17 (intermediate amplitude), and ~3=.18 (smaller amplitude). The coordinate system (not 

shown for clarity) is as in Fig. 4. 
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Fig. 7. Sensitivity of the regular cycles (0"1=0.50, cr2 =0.50, ~~=~2=0.20) to changes in the cross­

immunity of the strain cr2, where Ch= 0.50, 0.55, 0.60. The coordinate system is as in Fig. 4. The 

cycles change very little when cr2 changes. 

Fig. 8. The effect of a small seasonal variation in the transmission coefficient ~=0.20+0.005sinrot 

where ro=27t/year, cr=0.50. The coordinate system is as in Fig. 4. 



s •I ----~•• R. 

Figure 1 



s 

y 
2 

z 
2 

----~·· y --~·~ z 
1 1 

----~·· v 
1 

Figure 2 

v 
2 

---~~•·w 



0 0 0 0 0 0 . . . . . . ro 0 N v (() 00 I r r r r- r 

' ( 4-) I Uf 

0 . 
0 
ro 

0 . 
0 
(() 

0 
• 

0 
v 

0 . 
0 
N 

0 
• 

0 

, 
L 
0 • ).. M 

Q) 
1-1 c ::s - tTl 

·r1 .... ~ 



<:: 
.,.._---_ 

~--- --~------------

- -_::> 

,_ ..... _----

-

0 . 0 

IX) 

. 0 

0 N 
r 

I 
r 

.. 
( 4-) I Ul 

0 
0 
N 

0 
1.() 

0 . 
0 

0 
1.() 

0 
0 

rn 
'-
0 
G) 
>. 

o::r 

QJ 
1-! c :::1 - tJ1 
·r-i 

.... ~ 



I~+ r1) 

Figure 5 



t....... _____ , 
-----,-

(._ ,, -- ... , -- ' 

.. 
---) 

,, ----( .. ___ _ 
--,-,_ ' -- .... --' 

-- - -{./- - - - - -
~ ' ---- _ ..... ~- -- --

-1/ ---------

~ 

m 
I 

(!) 

m 
I 

l 

(+) I UJ 

00 
m 
I 

0 
0 

0 . 
L[) 

0 
0 
~ 

0 
L[) 

0 
0 

, 
1.. 
0 Cl3 
Q) 1.0 

"' Q) 
1-1 
~ 

c tli - ·r-1 
~ 

+-



0 

Figure 6b 



l(t+iJ 



' 

Figure 8 


