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Ethanol (EtOH) is a teratogen, but the mechanisms by which 

EtOH exerts its teratogenic effects aren’t fully understood. Vitamin A 

(all-trans retinol/ROL) can be oxidized to all-trans-retinoic acid (RA), 

which plays a critical role in differentiation and development.  Using 

an embryonic stem cell (ESC) model to analyze effects of EtOH on 

differentiation, we show that mRNAs associated with differentiation are 

increased by EtOH and its metabolite acetaldehyde, but not its acid 

metabolite acetate. EtOH also decreases pluripotency-related mRNA 

levels. Kinetics assays showed that ALDH2, and not ALDH1A2, is 

responsible for metabolizing most of the acetaldehyde in ESCs. Using 

reporter assays, chromatin immunoprecipitation assays, and RARγ-

knockout ESC lines generated by CRISPR/Cas9 or homologous 

recombination, we demonstrate that EtOH signals via RARγ binding to 

RA response elements (RAREs) in differentiation-associated genes. We 

also demonstrate that EtOH-mediated increases in Hoxa1 and 

Cyp26a1 transcripts, used as examples of direct RA target genes, 

require expression of the RA-synthesizing enzyme ALDH1A2. This 

result suggests that EtOH-mediated induction of Hoxa1 and Cyp26a1 

transcripts requires ROL from serum. The retinol dehydrogenase gene 



	

	

RDH10 and a functional RARE in the ROL transporter Stra6 gene are 

required for EtOH induction of Hoxa1 and Cyp26a1 mRNAs, as shown 

with CRISPR/Cas9 knockout lines. Thus, we identify a mechanism by 

which EtOH stimulates stem cell differentiation via increased influx 

and metabolism of ROL for downstream RARγ-dependent 

transcription. Our data suggest that in stem cells EtOH may shift cell 

fate decisions to alter developmental outcomes by increasing 

endogenous ROL/RA signaling via increased STRA6 expression and 

ROL oxidation. Furthermore, we suggest that stem cells, which 

generally cannot produce retinyl esters, may be particularly vulnerable 

to EtOH teratogenesis. 
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CHAPTER ONE 

 

INTRODUCTION 

 

Ethanol (EtOH) is a potent teratogen that adversely dysregulates 

the processes controlling cellular differentiation during embryonic 

development (1,2). The mechanisms by which EtOH affects the 

differentiation of stem cells, which form the foundation underlying the 

teratogenic potential of EtOH, are not well-characterized, despite 

ongoing efforts to elucidate the factors causing teratogenic phenomena 

(1,3-9). A brief description of stem cells and their differentiation in 

response to various morphogenic signals is first warranted before 

further examining how EtOH interferes with stem cell differentiation. 

 

PLURIPOTENCY AND DIFFERENTIATION OF EMBRYONIC STEM 

CELLS  

 

Embryonic stem cells (ESCs) are derived from the inner cell 

mass of blastocysts, and are considered pluripotent in that they 

contain the potential to differentiate into any cell type in the human 

body (10,11). Pluripotent cells from the inner cell mass differentiate 

into primitive ectoderm prior to giving rise to three embryonic germ 

layers (ectoderm, mesoderm, endoderm) (10). These three layers then 

establish the body plan of an embryo and eventually a fetus through 

the coordinated expression of temporally controlled, morphogen-

responsive differentiation programs (12). Naïve ESCs express a set of 
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pluripotency factor genes, including Oct4, Nanog, and Sox2 (13) that 

enable the maintenance of an undifferentiated state characterized by 

symmetric self-renewal while retaining the capability to form cells 

comprising the germ layers in addition to more specialized 

downstream derivatives (14).  

Transcriptional control of the stem cell state is maintained by 

high levels of pluripotency factors that bind throughout the genome at 

cis-regulatory elements, particularly at promoters and enhancers of 

target genes (15). Enhancers are genomic regions that are typically 

comprised of a few hundred base pairs and contain binding motifs for 

a number of different transcription factors (16). Clusters of large 

enhancers that are densely occupied by specific transcription factors 

are called superenhancers (17,18). Superenhancers are instrumental 

in dictating cell fate, as they contain binding motifs for “master” 

transcription factors that are expressed in a cell-type and tissue-

specific manner and maintain the identity of the particular cell they 

occupy (17,18). Once one or more of the core transcription factors 

binds the superenhancer, cooperative binding of other factors occurs 

within the enhancer region to activate target genes as transcriptional 

units that program the cell to express the characteristics of a 

particular fate (17,19). 

In ESCs, the five major transcription factors that maintain stem 

pluripotency through their interactions with superenhancer domains 

are OCT4, SOX2, NANOG, KLF4, ESRRB, and Mediator (17). While the 

function of Mediator is mainly to recruit RNA Polymerase to target 

gene promoters (20), the remaining transcription factors maintain 
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pluripotency and self-renewal properties intrinsic to stem cells (15). 

Because of the vital role that the major pluripotency-associated 

transcription factors play in defining and maintaining the properties of 

ESCs, altering one or more of these five core pluripotency factors may 

result in the loss of stem cell identity and precocious differentiation 

(21-24). 

Maintenance of the stem cell state is additionally controlled by 

epigenetic factors, including DNA methylation patterns and chromatin 

modifications that provide distinct regulatory signatures that either 

favor or repress transcription (13,25-28). Histone acetylation is a type 

of modification that is relevant to the research presented here in that 

an increase in this modification is often indicative of transcriptionally 

active chromatin involved in the recruitment of transcription factors 

(29). Histone acetylation at lysine 9 or 14 on histone 3 (H3K9/14) 

occurs in euchromatin to activate transcription, and acetylation at 

lysine 27 (H3K27me3) is often present in active enhancers (30). In 

contrast, trimethylation of H3 (H3K27me3) is a well-characterized 

repressive histone modification that maintains many differentiation-

associated genes in a transcriptionally silenced state in ESCs (31,32). 

Many key regulators of ESC differentiation contain a “poised” bivalent 

chromatin structure, expressing some activating histone modifications 

(H3K4me3) and some repressive modifications (H3K27me3) that allow 

for faster, more flexible control of expression (33). As ESCs begin to 

differentiate, the epigenetic landscape changes so that promoters and 

enhancers controlled by the core pluripotency factors gradually exhibit 

more repressive marks (25,31). Those loci containing differentiation-
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associated genes then recruit chromatin regulatory proteins that 

deposit modifications that are associated with transcriptionally active 

euchromatin that become finely tuned throughout stages of 

differentiation to express different gene signatures at the appropriate 

times based on intrinsic factors and external stimuli (25,26,34,35).  

Because they represent the most primitive stage of development, 

ESCs hold great potential as tools for delineating some of the core 

mechanisms by which EtOH exerts its effects. The potential for 

widespread phenotypic changes that impact the largest number of 

downstream processes is greater the earlier that a toxic insult is given 

in terms of stage of development: the more primordial the stage, the 

more encompassing the effects. Therefore, it is logical to study the 

effects of a teratogenic substance like EtOH in highly plastic stem cells 

representing the most primordial stage of development, like ESCs.  

In order to understand how EtOH influences normal ESC 

differentiation, it is crucial to understand how physiologic 

differentiation unfolds. Stem cell differentiation is a tightly regulated 

process (11,15). The loss of pluripotency and onset of differentiation is 

controlled by the response of ESCs to specific morphogens, such as 

retinoic acid (RA), that signal in the nucleus to suppress the 

pluripotency-related programs and to activate transcriptional hubs for 

the expression of differentiation-associated genes (36). Depending on 

the type of morphogen, its concentration, and its interactions with 

additional morphogenic signals, the differentiation of stem cells as 

they lose pluripotency characteristics is directed toward different 

lineages at different stages (12).  
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ETHANOL INTERFERES WITH THE DIFFERENTIATION OF STEM 

CELLS 

 

Profound changes in embryonic patterning and development can 

result from small changes in the expression of some of the initial 

differentiation-associated genes to be expressed when a stem cell 

begins to differentiate along a specific lineage (37). Several studies 

have capitalized on the potential of stem cells to form cell types of 

different terminal fates depending on time- and signal-dependent 

factors in directed differentiation cell culture models to assess the 

ability of EtOH to influence differentiation down specified lineages (38-

40). Studies using directed differentiation are useful for analyzing the 

emergence of differentiation defects that occur as a stem cell is in the 

process of differentiating into a terminal cell of particular interest. 

However, one must bear in mind that these results cannot always be 

extrapolated to draw conclusions for general ESC differentiation 

because of the many differences correlated with each stage of 

development that are recapitulated in cell culture by using lineage-

specific differentiation protocols. Our use of pluripotent ESCs avoids 

these confounding variables. 

The phenotypes observed following EtOH treatment of stem cells 

have been explored in various studies in disparate contexts. Many 

studies have probed defects during directed stem cell differentiation 

into different terminal cell types, including neural, hepatic, and 

cardiac cells (38-42). In all three cell types, EtOH either delays or 

diverts differentiation from the terminally differentiated cell of interest. 
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EtOH was demonstrated to divert differentiation of neural stem cells 

away from a neuroectoderm fate (39,41,42) and toward a 

mesoendoderm fate (39). This diversion of differentiation was 

accompanied by distinct subpopulations of cells that exhibited a high 

OCT4/SOX2 ratio that gave rise to cells characteristic of 

mesoendoderm as well as fewer β-tubulin-III-positive cells indicative of 

neuroectoderm (39). Additional studies showed that EtOH causes 

defects in directed differentiation of stem cells to hepatic (38) and 

cardiac progenitor cells (40), respectively. The mechanism for 

dysregulated differentiation in each case was attributed to suppression 

of WNT signaling necessary for proper differentiation (38,40,41).  

         The role of EtOH in embryonic stem cell (ESC) differentiation was 

probed using naïve ESCs (3), and also with ESCs differentiated using 

leukemia inhibitory factor (LIF) removal as a trigger for loss of 

pluripotency (4). VandeVoort et al. used alkaline phosphatase staining 

and staining for specific human stem cell-related markers (TRA-1-81, 

TRA-1-60, OCT4, SSEA4) to analyze changes in pluripotency following 

0.1% and 1% EtOH exposure to ESCs for two weeks (3), and 

demonstrated a loss of pluripotency in ESCs treated with EtOH via 

staining with alkaline phosphatase and TRA-1-81, despite OCT4, 

SSEA4, and TRA-1-60 staining remaining unaffected by EtOH 

compared to untreated ESCs (3). The loss of pluripotency in EtOH-

treated cells coincided with changes in cell morphology, including a 

decrease in colony size, differences in densities, increased opaqueness, 

and changes in shape. In particular, EtOH caused colonies to exhibit 

irregular borders characterized by dendritic projections (3). This 
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phenotype is consistent with differentiated cells as opposed to ESCs, 

which form spherical colonies with smooth borders (3). These results 

showed that EtOH treatment of pluripotent ESCs may cause 

differentiation, but the mechanisms by which the cells differentiated 

remain unknown. A central part of my thesis work was to elucidate the 

mechanisms causing ESC differentiation by EtOH, given that we could 

first recapitulate a differentiation phenotype. 

 There remains some debate over whether EtOH treatment 

causes ESC differentiation. In a second report studying the effects of 

EtOH on differentiation, Arzumanyan et al. treated cultured ESCs with 

100 mM EtOH for two days followed by differentiation over 6 days by 

removing Leukemia inhibitory factor (LIF), a signaling protein required 

for maintaining stemness in cell culture (43), from the medium (4). 

There was a delay in the decline of specific pluripotency-related 

transcription factor mRNAs, including OCT3/4, SOX2, NANOG, and 

SSEA-1, while these transcripts were unaffected in ESCs treated with 

EtOH for 48 hours (4). These results are inconsistent with the previous 

findings (3), and argue against the capacity of EtOH to facilitate ESC 

differentiation. One possibility for these discrepancies is the method of 

differentiation used by Arzumanyan et al., as depletion of LIF causes a 

specific differentiation signature characterized by expression of Fgf5, 

which is a marker of primitive ectoderm, which gives rise to 

neuroectoderm (44,45). Because EtOH specifically inhibits 

neuroectoderm differentiation (39,41), it is unsurprising that EtOH 

would delay differentiation caused by LIF removal, which recapitulates 

the neuroectodermal phenotype (44,46).  
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My thesis work does not utilize medium LIF removal as a 

method of differentiation. Instead, we administer EtOH to ESCs over 

different time courses and then measure pluripotency- and 

differentiation-associated transcript levels to initially analyze potential 

changes related to differentiation. Because I initially do not use a 

differentiation protocol, I would expect to see a decline in pluripotency 

factor mRNAs and an increase in transcripts involved in differentiation 

if EtOH does stimulate ESC differentiation. 

 

ETHANOL IS METABOLIZED TO ACETALDEHYDE, WHICH IS 

DETOXIFIED BY ALDEHYDE DEHYDROGENASE ENZYMES.  

 

To better comprehend how EtOH affects differentiation, it is 

imperative to first understand how it is metabolized. EtOH is 

metabolized through oxidation reactions to additional chemically 

reactive compounds that also confer biological activity, including 

acetaldehyde (AcH), acetate, and acetyl coenzyme A (acetyl CoA) 

(47,48).   

EtOH metabolism requires a two-step oxidation process (49,50). 

First, EtOH is oxidized to the reactive aldehyde species, acetaldehyde 

(AcH), by either a member of the alcohol dehydrogenase (Adh) family or 

catalase (49,50). The metabolism of AcH to acetate is carried out 

primarily by aldehyde dehydrogenase 2 (ALDH2, NCBI #11669) and 

the metabolism of acetate is performed by acetyl CoA synthetase short 

chain family member 2 (ACSS2/ACECS1, NCBI #60525) (48). Acetyl 

CoA then serves as a central metabolite for several biochemical 
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processes, including lipogenesis, energy production from the 

tricarboxylic acid cycle, and protein acetylation (51-53). Because 

distinguishing between the effects of EtOH and its metabolites may 

provide information on how EtOH affects differentiation, our strategy 

included the generation of ESC lines in which the enzymes (ALDH2 

and ACSS2) that primarily oxidize AcH and acetate are knocked out, 

respectively, by CRISPR/Cas9-mediated deletion (Figure 1.1). As a 

result, AcH levels would increase from deletion of ALDH2 and acetate 

levels would increase from deletion of ACSS2, allowing us to better 

analyze the effects of each individual metabolite and enzyme on ESC 

differentiation. 
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Figure 1.1: Strategy for dissecting the effects of ethanol 
metabolism on embryonic stem cell differentiation. In WT ESCs, 
EtOH is first metabolized to AcH by an ADH family member or 
catalase. AcH is then oxidized to acetate by ALDH2, and acetate is 
further metabolized to acetyl CoA by ACSS2. Knocking out ALDH2 
would prevent AcH metabolism to acetate upon EtOH treatment, 
leading to increased AcH in cells and decreased acetate compared to 
WT cells treated with EtOH. Deleting ACSS2 would prevent acetate 
metabolism to acetyl CoA following EtOH addition, leading to increased 
acetate levels compared to WT cells treated with EtOH. 

 

AcH can alter the structure and function of many 

biomacromolecules, including proteins, nucleic acids, and membrane 

lipids, by forming covalent adducts (54). These adducts can cause a 

variety of toxic effects such as DNA damage, loss of protein function, 

or organelle dysfunction (54,55). Although much is known about the 

mechanisms by which AcH damages cell components, questions in the 

field of stem cell biology still remain. We attempt to investigate 

whether AcH and its metabolism, in particular, play roles in ESC 

differentiation by creating and using an ALDH2-knockout ESC line to 
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prevent efficient metabolism of AcH to its less toxic downstream 

product, acetate.  

Whereas many types of enzymes are capable of metabolizing 

EtOH to AcH, members of the aldehyde dehydrogenase family uniquely 

detoxify acetaldehyde and other reactive aldehydes by converting them 

to acids (56). In the human adult liver, ALDH2 is expressed at high 

levels and oxidizes xenobiotic aldehydes such as AcH as well as 

endogenous aldehydes, including 4-hydroxynonenal (4-HNE) (57-60). 

ALDH2 executes metabolism of its substrates as a homotetramer 

through thiol-dependent, nucleophilic attack on the carbonyl carbon of 

the aldehyde, transferring the hydrogen atom as a proton and electron 

pair to the reducing equivalent NAD+ (56). An oxygen atom from a 

water molecule then forms a covalent bond with the carbonyl group, 

breaking the thiol bond to generate a terminal acid product (Figure 

1.2). 

Figure 1.2: Mechanism of ALDH2 activity. A reactive thiol group in 
the catalytic site of ALDH2 attacks the electrophilic carbonyl group of 
AcH to form a covalent adduct. A water molecule then bonds with the 
same carbonyl, dissociating the newly formed acid from the enzyme. 
The proton and electrons extracted from the aldehyde group are 
transferred to the NAD+ cofactor in the process. 
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While other members of the aldehyde dehydrogenase family of 

enzymes can metabolize AcH, Aldh2 has the greatest affinity for AcH, 

with a Km of 0.2 µM (61). In humans, the hereditary dissemination of 

an allele that silences ALDH2 activity is fairly common in certain 

populations, including in approximately 40-50% of people of Asian 

descent (62). The most predominant genetic variant associated with 

ALDH2 inactivation is the ALDH2*2 allele, in which there is a single 

base pair alteration of glutamate to lysine (E487K) that leads to a 

dominant negative phenotype (63). This variant is associated with 

accumulation of AcH upon EtOH ingestion and with more severe 

complications, including higher risk of cancer development compared 

to members of the population with functional ALDH2 (64,65). This 

information is presented here as it shows that ALDH2 is responsible 

for most of AcH metabolism in humans, and that loss of its function 

implicates AcH in several EtOH-mediated disease complications with 

severe phenotypes. 

Although most EtOH metabolism occurs in the liver, AcH can 

produce toxic effects in other tissues (66). Human adult stem cells (67)  

as well as stem cell progenitors (68) are highly sensitive to the effects 

of the metabolic byproducts of EtOH. Stem cell compartments that 

regenerate tissue are vital for maintaining functional integrity of many 

body compartments (69), and thus must be able to withstand toxic 

insults from xenobiotics. Adult stem cells are multipotent rather than 

pluripotent, in that they are limited in the types of cells into which 

they can differentiate, yet they share several essential core genetic 

regulatory networks and bioenergetics pathways with ESCs (70), 
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making ESCs a relevant model system for extrapolating some general 

functions of stem cell components within the body. In addition, 

targeting ALDH2 for deletion in ESCs would allow us to distinguish 

between effects on differentiation that are caused by AcH versus 

effects potentially caused by EtOH in the absence of oxidative 

metabolism. 

 

RETINOL METABOLISM IS SIMILAR TO ETHANOL METABOLISM AND 

CRITICAL FOR DIFFERENTIATION 

 

Central to stem cell differentiation are a group of compounds 

known as the retinoids (36). Retinoids are signaling molecules that 

exert paramount effects on development and differentiation, primarily 

via the vitamin A derivative, retinoic acid (RA).  

Retinol (vitamin A/ROL) is a compound that is obtained from the 

diet and serves as a precursor for RA formation. One well-

characterized manner in which ROL enters cells from the bloodstream 

is via binding to retinol-binding protein-4 (RBP4) followed by binding 

to STRA6, a retinol transporter protein (71). Upon entry in the cell, 

ROL releases RBP4 and binds RBP1 (CRBP1), which then translocates 

to a retinoid oxidation complex consisting of the retinol oxidase, 

Retinol dehydrogenase-10 (RDH10) and the retinaldehyde reductase, 

Dehydrogenase/Reductase-3 (DHRS3) (72). RDH10 converts ROL to 

retinaldehyde, and DHRS3 prevents excessive production of 

retinaldehyde and its derivative, RA, by serving as a rheostat to 

perform the reverse catalytic reaction (reduction) when RA 
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accumulation is sensed (73,74). Retinaldehyde is then converted to RA 

by the actions of one of three aldehyde dehydrogenase 1 family 

members, ALDH1A1, ALDH1A2, and ALDH1A3 (75). Importantly, 

ALDH1A2 is the first ALDH1 family member to be expressed in 

embryos, and is expressed in high levels on E7.5 in mice (76).  

The mechanism of ROL metabolism is similar to that of EtOH, in 

that the alcohol form becomes oxidized first to an aldehyde and then 

an acid, with the first step usually catalyzed by an alcohol or retinol 

dehydrogenase enzyme and the second step catalyzed by an ALDH 

family member (Figure 1.3). Because of the similarities in metabolism 

between EtOH and ROL, many studies have focused on elucidating 

whether EtOH competes with (5-8,77,78) or activates (9,79) the RA 

synthesis pathway. Before expounding on these studies in more detail, 

further explanation of the RA signaling pathway is necessary due to 

the profound effects that RA exerts in activating transcription of a 

differentiation gene signature. 

Once RA is produced, it binds to the CRABP2 protein and 

translocates to the nucleus (80). Here it serves as a ligand for one of 

three retinoic acid receptor (RAR) isoforms: RARα, RARβ, and RARγ 

(81). The RARs form heterodimeric complexes with a member of the 

retinoid X receptor (RXR) family (RXRα/β/γ) (36). While all three RARs 

exhibit some degree of functional redundancy in signaling (82,83), 

RARγ has been shown to be particularly important for ESC 

differentiation (84,85). When unbound to RA, RARs remain in the 

nucleus but are devoid of transcriptional properties, as they remain in 

a repressive state, bound by several co-repressor proteins (25). Upon 
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binding to RA, coactivators bind the RA-RAR/RXR complex, replacing 

the corepressors, and transcription occurs rapidly (86,87). 

Figure 1.3: Metabolic oxidation of ethanol and retinol in stem 
cells. Both EtOH and retinol are oxidized to an unstable aldehyde 
intermediate and then further metabolized to an acid by the actions of 
an enzyme in the aldehyde dehydrogenase family. Several enzymes are 
capable of oxidizing EtOH to acetaldehyde in stem cells, including 
members of the alcohol dehydrogenase (ADH) family and catalase. 
Aldehyde dehydrogenases primarily metabolize acetaldehyde and 
retinaldehyde (retinal), with ALDH2 exhibiting the lowest Km for 
acetaldehyde  and ALDH1A2 being the first of the retinoid-oxidizing 
aldehyde dehydrogenases (ALDH1A1/1A2/1A3) to be expressed in 
embryos (76). 

 

RA-RAR/RXR complexes bind to cis-elements on DNA referred to 

as retinoic acid response elements (RAREs) (36,88). RAREs, which are 

often in enhancers, consist of a consensus sequence of either direct or 

inverted repeats separated by a short series of nucleotides. Some of 

the most frequently bound sites are direct repeat (DR)-2 and DR-5, 

which are annotated in the following manner, for example: 5’-

(A/G)G(G/T)TCA-(N2)-(A/G)G(G/T)TCA-3’ (36). Genes that contain 

RAREs for direct activation by RA are called “primary response”, or 

“immediate early” genes, while targets of RA that become activated as 
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a result of activation by a primary response gene that is a 

transcription factor are called “secondary response” genes (86,87). 

Retinoid metabolism and signaling is further illustrated in Figure 1.4. 

Figure 1.4: Diagram of uptake and intracellular metabolism of 
retinol. Retinol binds RBP4 extracellularly and is transported into 
certain cell types by the STRA6 receptor. Intracellular retinol binds 
CRBP1 and is either metabolized by LRAT to retinyl esters for storage 
or oxidized to retinaldehyde by RDH10 of the retinoid oxidation 
complex. Retinaldehyde is converted to RA by ALDH1A2. RA is then 
either metabolized to polar metabolites by CYP26A1 for excretion, or 
binds CRABP2 and is translocated to the nucleus. In the nucleus, RA 
binds one of three RARs, where it activates transcription of primary 
response genes upon recruitment of coactivators to the RARE-bound 
complex. Modified from Mongan and Gudas (2007) (88), by Daniel 
Stummer.	

 

A major family of genes that are important regulators of 

embryonic development in response to RA signaling is the HOX family 

(87). Hox genes exhibit colinearity in expression, with genes clustered 

in the 3’ end, including Hoxa1 and Hoxb1, being transcribed first, 
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followed by derepression and subsequent transcription of genes from 

3’ to 5’ in temporally defined succession (89). The timing of the 

expression of Hox genes from initial activation following the loss of 

pluripotency through successive stages of differentiation is dependent 

on both the RA:RAR/RXR binding dynamics and the epigenetic profiles 

of chromatin state (90,91). Of the Hox gene cluster, Hoxa1 is one of the 

first primary response genes to be expressed during embryogenesis in 

response to RA-dependent transcription (87,92), and therefore serves 

as a salient readout for early RA signaling activity.  

 

ETHANOL AND RETINOIC ACID SIGNALING IN DEVELOPMENT AND 

DISEASE 

 

Because of the importance of RA in stem cell differentiation and 

in a wide range of developmental processes (36), RA-dependent 

signaling pathways have been studied extensively in conjunction with 

EtOH to investigate potentially toxic effects that may arise from 

dysregulation of RA signaling by EtOH (1,93). Despite persistent 

research in this field, there is still controversy regarding the precise 

mechanisms by which EtOH interacts with RA signaling (5-7,9,78,79). 

Therefore, it has been difficult to establish the role that RA plays in 

EtOH-mediated teratogenicity, and my thesis work was performed with 

the intent of illuminating how EtOH mechanistically interacts with 

components of the RA synthesis and RA signaling pathways.  

Much of the disparate results stem from differences in model 

systems used, the use of indirect techniques for assessment, or the 
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differences in the timing of experiments in the differentiation protocols 

and developmental stages studied (94,95). To further complicate 

matters, phenotypes are not straightforward, with similar 

developmental phenotypes presenting in cases of both RA deficiency 

and RA overexposure (96,97). These include changes in mental status 

and behavior (93), increased risk for cancers (96,98), craniofacial 

abnormalities (2,97), defects in brain development (99,100), and 

inhibition of neurogenesis (101,102). 

Phenotypes from cell culture and animal models of EtOH toxicity 

are complicated to assess, with some studies suggesting that RA 

signaling is inhibited (6-8,78,94), while other studies suggest that RA 

signaling is activated by EtOH exposure (9). Prior to the utilization for 

highly sensitive, mass spectrometry-based approaches for directly 

detecting RA (103), it was proposed that EtOH competed with ROL for 

a limiting amount of alcohol dehydrogenase (ADH), due to the 

similarities in metabolism between EtOH and ROL (94,104,105). In 

this model, because AcH is a toxic intermediate, the metabolism of 

EtOH took precedence over RA production to prevent AcH 

accumulation and the damage that it caused as a result (104). 

However, under normal physiologic conditions, a member of the retinol 

dehydrogenase (RDH) family of enzymes, RDH10, was identified to 

conduct the first step in retinol oxidation rather than members of the 

ADH family (106). Furthermore, tissue RA levels were later shown to 

be either unaffected by EtOH or increased by EtOH exposure in vivo 

(9,79). 
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Since precise measurement of RA levels has become possible 

with advances in liquid-chromatography-mass spectrometric 

approaches (103), serum and tissue levels of RA have been quantified 

following acute and chronic EtOH dosing (9). A 6.5% EtOH diet was 

given to pregnant dams for 7 days before harvesting embryos at day 

E19. RA levels were increased by 1.5-20-fold in the hippocampus and 

2-50-fold in the cortex, with the degree of fold change directly 

correlating with the maternal blood alcohol concentration at the time 

of harvest. Furthermore, adult mice fed a high single dose of EtOH (3.5 

g/kg) exhibited high RA levels in the hippocampus, testis, and liver, 

and mice fed a 6.5% EtOH diet for one month displayed increased RA 

levels in the hippocampus, cortex, testis, and serum. None of the mice 

tested in any experiment displayed lower levels of RA in serum or any 

tissue tested than control dams. These results are consistent with ESC 

cell culture experiments showing EtOH causing differentiation (3), and 

they support a model whereby EtOH stimulates differentiation via the 

activation of RA signaling, a hypothesis that we endeavored to further 

test in my thesis work in ESCs. 

There remain many unanswered questions in understanding 

how EtOH affects RA signaling. Despite being detected at increased 

levels in a tissue-specific manner (9), other studies have shown 

evidence that retinoid administration can partially rescue some of the 

developmental defects caused by EtOH (5,7,8). These findings have led 

to a modified version of the competition hypothesis where ALDH1A2 

was postulated as the rate-limiting step in both retinaldehyde and AcH 

metabolism to inhibit RA-mediated differentiation (6,78), despite its 
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high Km of 650 μM (107). When 0.5% EtOH was administered to 

Xenopus embryos for 48 hours during the late blastocyst stage, when 

ALDH1A2 was the predominantly expressed aldehyde dehydrogenase 

family member, mRNAs of RA-responsive genes were decreased and 

rescued by 4-methylpyrazole, an ADH inhibitor (78). These results 

demonstrate that developmental stage must be appreciated when 

considering any interactions between EtOH exposure and RA 

signaling.  

For my thesis work, we used ESCs to investigate the effects of 

EtOH on differentiation and to meticulously probe the relationship 

between EtOH metabolism to RA signaling. Using ESCs allowed us to 

bypass the many variable intermediate stages associated with EtOH 

exposure in different systems that are in constant flux during various 

phases of development. In this manner, our focus has primarily been 

on identifying the mechanisms of action by which EtOH affects 

differentiation in cells representing the most primitive stage of 

development.  

Because there is no consensus as to whether EtOH activates or 

inhibits RA-mediated transcriptional effects associated with 

differentiation, my thesis work aims to identify which of the 

phenotypes is present, if either, in ESCs, and delineate the 

mechanisms by which that phenotype is expressed. We attempt to 

resolve some of the apparent paradoxes in how EtOH affects stem cell 

differentiation via a twofold strategy: 1) to identify the role, if any, that 

EtOH and its metabolism plays in ESC differentiation, and 2) to 

determine how EtOH (or its metabolites) interact with RA signaling to 
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exert effects on ESC differentiation. If EtOH or its metabolites are 

shown to activate differentiation, deleting ALDH1A2 (NCBI #19378), 

the principal enzyme that metabolizes retinaldehyde to RA (Figure 1.3), 

could additionally provide us with a unique opportunity to directly test 

whether RA synthesis is required for EtOH- or AcH-mediated 

differentiation.  
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CHAPTER TWO 

 

ETHANOL PROMOTES DIFFERENTIATION OF EMBRYONIC STEM 

CELLS THROUGH RETINOIC ACID RECEPTOR-γ 

 

INTRODUCTION 

 

Complex regulatory circuitry is required for maintaining the 

properties of stem cells so that symmetric self-renewal is not diverted 

prematurely to drive differentiation toward terminal cell fates (1). High 

levels of blood ethanol (EtOH) lead to aberrant regulation of normal 

differentiation in developing embryos and fetuses, making EtOH a 

teratogen (2-4). Unraveling the mechanisms by which EtOH interferes 

with endogenous cell signaling pathways that control differentiation is 

critical for understanding EtOH-mediated toxic effects which lead to 

disease states that arise during development, i.e., fetal alcohol 

spectrum disorders (FASD) (5) and diseases such as cancers, which 

are caused in part by changes in cell plasticity (6).  

Of particular importance in stem cell differentiation is the 

interaction between EtOH and the vitamin A (retinol, ROL) metabolite, 

all-trans-retinoic acid (RA), which lies at the nexus of physiologic 

differentiation of stem cells (7,8). Dysregulated RA signaling (from 

either supra- or subphysiologic levels) leads to several teratogenic 

phenotypes in common with EtOH (9-11). Several studies have shown 

interactions between EtOH and RA signaling (4,12-16), possibly owing 

to the similarities in metabolism between ROL and EtOH. Both EtOH 
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and ROL metabolism rely on parallel two-step oxidation processes; 

ROL is metabolized to retinaldehyde and then to RA, while EtOH is 

metabolized to acetaldehyde (AcH) and then to acetic acid (Figure 

2.1A). Some studies have shown that EtOH decreases retinoid 

production and RAR signaling (13,14,16). In contrast, embryos of 

EtOH-treated mice show higher RA levels in specific sites (15), 

prompting us to explore the mechanisms underlying the effects of 

EtOH on RAR signaling in embryonic stem cells (ESCs) in greater 

depth.  

In ESCs, RA is an endogenous agonist for the three retinoic acid 

receptor (RAR) members (RARα/β/γ) of the nuclear receptor family of 

transcription factors (8,17). RA bound RARs and members of the 

retinoid X receptor (RXRα/β/γ) family form heterodimers (17), and 

these RA:RAR/RXR complexes cause displacement of corepressors 

that maintain chromatin in a transcriptionally inactive state (17,18). 

Posttranslational acetylation of histones by histone lysine 

acetyltransferases, which are components of the multi-protein 

coactivator complex, increases accessibility for binding of 

RA:RAR/RXR complexes at cis-acting RA-response elements (RAREs) 

(19). RAREs are frequently located within promoter and/or enhancer 

regions that control transcription of lineage-specific genes necessary 

for stem cell differentiation by bound RA:RAR/RXR complexes (19).  

Here we provide evidence that EtOH causes ESC differentiation 

by increasing RA synthesis by ALDH1A2 following uptake of ROL from 

the medium by the Stra6 transporter and ROL oxidation by Rdh10. 

Downstream RA signaling is then dependent on RARγ-mediated 
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transcription via direct RARE activation in primary RA-responsive 

genes. Elucidating the precise mechanisms underpinning the 

interactions between EtOH and RA-mediated transcription during ESC 

differentiation enhances our fundamental understanding of several 

disease phenotypes during development. 

 

METHODS 

 

CELL CULTURE AND REAGENTS 

 

ESCs were cultured as previously described (18). We treated 

ESCs with 95% EtOH, 1 mM AcH (Calbiochem, San Diego, CA), 1 mM 

sodium acetate (Sigma, St. Louis, MO) pH=7.4, 0.1, 0.5 or 1 µM ROL 

(Sigma) and all-trans-RA (Sigma) at concentrations of 0.1 or 1 µM 

dissolved in 100% dimethyl sulfoxide (DMSO). AcH was aliqoted from a 

freshly opened bottle and tubes were stored at -20oC for no more than 

2 months. Each aliquot was immediately discarded after being added 

to the medium. Retinoids were prepared in dim light from a 1 mM 

stock solution. 0.1% DMSO was added to each treatment group not 

containing RA. ESCs were seeded in 6 well plates and harvested 

simultaneously for treatments conducted 72, 48, or 24 hours prior to 

collecting lysates. Reagents were changed twice daily approximately 12 

hours apart, with the final reagent change completed 8 hours prior to 

harvest. EtOH was used at concentrations of 40 mM and 80 mM in 

various experiments. 103 units/ml of LIF was added to medium for all 
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experiments, including medium in which KnockoutTM SR (Gibco, 

Dublin, IRE) replaced ESC-grade fetal calf serum. 

 

ALKALINE PHOSPHATASE ASSAY 

 

Cells were plated at a concentration of 250 cells/well in 

gelatinized 6 well plates and given 72 hours to adhere prior to 

treatment. Media and reagents were changed every 12 hours. We used 

0.1% DMSO-treated and 40 mM EtOH-treated ESCs for quantitation, 

and we used 1 µM RA-treated cells as a positive control for loss of 

staining. Alkaline phosphatase (AP) activity was visualized by Fast Red 

(Sigma) staining, and monitored by bright field microscopy after 96 

hours. We randomly selected five colonies from vehicle-treated and 

EtOH-treated wells for photographic imaging. We then performed 

intensity quantitation on these images using Image J software. 

 

WESTERN BLOTTING AND ANTIBODIES 

 

ESCs were harvested in 4% SDS lysis buffer, boiled, and 

resolved on SDS-PAGE gels. Antibodies were applied using the 

following dilutions: ALDH1A2 (1:500), RARγ (1:1000), RDH10 (1:1000), 

and actin (1:40,000). H3K27ac (Ab4729; Lot GR183919-2; Abcam, 

Cambridge, MA) and normal rabbit IgG (sc-2027; Lot A3014; Santa 

Cruz Biotechnology, Santa Cruz, CA) antibodies were used for ChIP 

assays. Aldh1a2 (ab156019; Lot GR117687-8; Abcam), RARγ 

(ab97569; Lot 102512 ; Abcam), Rdh10 (14644-1-AP; Lot 26; 
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Proteintech, Rosemont, IL), and β-actin (MAB1501; Lot 2665057; 

Millipore, Etobicoke, ON) antibodies were used for Western blotting. 

 

RNA ISOLATION AND REAL-TIME PCR 

 

We extracted RNA using TRI Reagent (Sigma) according to the 

manufacturer’s instructions. We then quantified and reverse 

transcribed 1 µg RNA using the qScript cDNA synthesis kit (Quanta 

Biosciences, Gaithersburg, MD) and diluted fivefold. We used SYBR 

Green quantitative PCR Supermix in a 15 µl reaction mix to carry out 

reactions on a Bio-Rad iCycler using 3 µl of cDNA. Quantification was 

performed using the Ct method and a standard curve was generated 

for all runs to assess efficiency. The quantified levels of all mRNA 

transcripts were normalized using a 36b4 internal control. Table S2.1 

displays a list of primers used. 

 

ACTINOMYCIN D ASSAY 

 

Experiments were performed using 2 µg/ml actinomycin D 

(Calbiochem). Briefly, CCE cells were seeded in 12-well plates and 

treated for 48 hours with 40 mM EtOH or 1 µM RA. After 48 hours, 

RNA was isolated from one well containing each of the treatment 

groups, and actinomycin D was added to the remaining wells for 30, 

90, and 240 minutes before lysing cells and extracting RNA for 

analysis by RT-qPCR. 36b4 was used as an internal control as levels 

remained stable through all treatment groups. 
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β-GALACTOSIDASE ASSAY 

 

CCE cells were grown in 6 well plates and transfected the 

following day with 2-3 ug of either WT Hoxa1 minigene-lacZ or Hoxa1-

LacZ muRARE constructs. A pGL3-luciferase construct with an 

upstream SV40 promoter was simultaneously transfected at 0.1-0.2 

ug (15:1 ratio sample:control) to normalize β-galactosidase activity to 

luciferase expression. Cells were treated 48 hours after transfection 

with DMSO (0.05%), 40 mM EtOH, or 0.5 µM RA for 24 hours with a 

reagent change 8 hours prior to harvest. RA doses above 0.5 µM did 

not cause additional stimulation of reporter assays. Cells were 

collected in TEN buffer and sonicated to prepare lysates for the β-

galactosidase assays. 

 

GENERATION OF CCE-ALDH1A2E5-/- CELL LINE 

 

CRISPR constructs for CCE-ALDH1A2-E5-/- line creation were 

generated using the pX461-hSpCas9n(BB)-2A-GFP nickase vector. 

Guide RNAs targeting the sequence TTCACAAGACACGAGCCCAT (A) in 

the sense strand of exon 5 and the sequence 

CTCTGGAGTGACCGTGCTTA (B) in the antisense strand of intron 5 of 

the Aldh1a2 gene were cloned into the BbsI sites of disparate pX461-

hSpCas9n(BB)-2A-GFP vectors. Vector A was digested with XbaI 

overnight, dephosphorylated with shrimp alkaline phosphatase, run 

on an agarose gel, excised, and purified. Vector B was amplified using 

primers targeting the hU6 promoter (Fwd: 5’-
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TTTGCTAGCGAGGGCCTATTTCCCATGAT -3’) and a downstream 

CRISPR sequence (Rev: 5’-GGTACCGCTAGCGCCATTTGTCTGC-3’). A 

400 bp product was excised from an agarose gel, purified, and ligated 

into vector B. Clones were transformed into DH5α E. coli. Clones 

positive for both gRNAs exhibited an 850 bp band, 400 bp greater than 

clones which failed to incorporate vector B, following XbaI and PciI 

double digestion. Following transfection, single cell dilutions were 

plated and grown for 1 week. Colonies were subsequently grown in 24-

well plates and harvested in PBS. and single cell clonal expansion, 

colonies were harvested in PBS and their DNA was amplified by PCR 

(Fwd: 5’-TGTGTAGGATGTGCCTCAGTTTC-3’/Rev: 5’-

ACCACACATCGCTAAGGACCG-3’, 254 bp product), and digested with 

BanII to genotype CRISPR-edited clones. Clones lacking the restriction 

site were Sanger sequenced on both alleles. We expanded double 

positive knockout clones in culture and tested for protein expression 

by Western blotting. 

 

GENERATION OF CCE-RDH10E2-/- CELL LINE 

 

The CRISPRevolution Synthetic RNA kit was used in generating 

CCE-Rdh10E2-/- cells (Synthego, San Francisco, CA). A guide (g)RNA 

targeting the sequence G*C*U*CAUUGAAAGAACCAUGA in the sense 

strand of exon 2 was purchased (Synthego), with asterisks 

representing bases modified with 2’-O-methyl groups and 3’-

phosphorothionate linkages to stabilize the RNA for transfection. CCE 

ESCs were transfected for 24 hours with gRNA, Cas9 RNA (TriLink, 
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San Diego, CA), and mCherry RNA (TriLink), the latter being used to 

control for transfection efficiency. After the transfection, we grew 

clones for 8 days following single cell dilutions and transferred to 24 

well plates. We then harvested colonies in PBS and extracted DNA for 

genotyping. DNA was amplified by PCR (Fwd: 5’-

CAAGGAGGTTGGCGAGGTCTC-3’/Rev: 5’-

GGACAGCTCATTAGACAGGCATCT-3’, 254 bp product), and digested 

with BccI. Clones lacking the BccI cut site were expanded and 

sequenced on both alleles to confirm a homozygous deletion. We 

expanded double positive knockout clones in culture and tested for 

protein expression by Western blotting. 

 

CHROMATIN IMMUNOPRECIPITATION ASSAYS 

 

Experiments were performed as previously described (18) with 

described antibodies. Briefly, we plated AB1 ESCs overnight in 25 cm2 

plates at a density of 2.5X106 and added 1 µM RA and/or 80 mM EtOH 

for 24 hours with a media/reagent change 8 hours prior to harvesting 

for four biological repeats. Cells were cross-linked with 1% 

formaldehyde for 10 minutes and quenched with 125 mM glycine for 5 

minutes. Lysates were prepared in 3 ml PBS, sonicated, and pre-

cleared with 50% Protein A Sepharose beads (CL-48; GE Healthcare, 

Uppsala, Sweden).  We used 45-150 µg of DNA for 

immunoprecipitation experiments conducted with 2-3 µg of antibodies 

against H3K27ac. An IgG negative control was included with each 

experiment. qPCR analysis was performed using 3 µl of purified DNA, 
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which was normalized against 3 µl of input DNA. All values were 

normalized to the IgG control. 

 

RETINOID EXTRACTION AND HIGH PERFORMANCE LIQUID 

CHROMATOGRAPHY-TANDEM MASS SPECTROMETRY 

 

Lysates were collected in PBS and extracted using 50% 

acetonitrile (ACN)/butanol and saturated K2HPO4 (53). The organic 

phase was vacuum dried and reconstituted in 100% ACN before 

loading. Retinoid separation was conducted using HPLC (Agilent 1290 

Infinity, Palo Alto, CA) and JetStream electrospray ionization (ESI) in 

positive ion mode.  

AB1 ESCs were grown in 10 cm2 plates at a density of 330,000 

cells/well and treated with 80 mM EtOH or 1 µM RA for 8 hours. 

Alternately, we treated CCE cells with 40 mM EtOH for 48 hours, 

switching to high vitamin A medium (VAM, +0.5 µM of exogenous ROL) 

6 hours prior to lysis. Retinoid extraction was done in a dark room 

under red light. Cells were washed twice with PBS after 48 hours and 

harvested in 3 ml PBS. Lysates were centrifuged and PBS was removed 

completely. Cells were re-suspended in 500 ul PBS, vortexed and 

stored at -70oC for up to 2 weeks. An internal standard of 5 µM RAc 

was added to each sample prior to extraction, and compared to a post-

extraction RAc standard to determine extraction efficiency. The post-

extraction standard was also compared to a 5 uM RAc standard 

prepared in 100% ACN to find the recovery rate, which was determined 

to be 1.5. Cells were extracted using 50% ACN/butanol followed by 
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saturated K2HPO4. The organic phase was collected after 

centrifugation and transferred to a new tube, which was vacuum dried 

on organic mode and then re-suspended in 100% ACN, vortexed, 

centrifuged and transferred to new vials.  

          LC-MS/MS analysis was performed using an Agilent 6460 Triple 

Quad LC/MS system (Agilent Technologies, Palo Alto, CA) with an 

Agilent 1290 Infinity HPLC and a JetStream ESI source. The mass 

spectrometer was operated in positive ion multiple reaction monitoring 

(MRM) mode. Retinoids were separated on an Agilent SB-Aq C18 

column (2.0 X 150 mm, 1.8 µm) at a flow rate of 400 µl/min. The 

sheath gas used was N2 (12 L/min at 400oC). The mobile phases were 

0.1% formic acid in water (mobile phase A) and 0.1% formic acid in 

ACN (mobile phase B). The LC elution gradient was: 0-8 min., 50% B 

to 95% B; 8-11 min., hold at 95% B; 11-11.1 min, 95% B to 50% B; 

11.1-15 min., 50% B. Standards of RA, ROL, and the internal 

standard RAc (Sigma) were prepared in 100% ACN and pooled to 

generate calibration curves. The primary mass transition used for RA 

monitoring was m/z 301.2à123.1 with a secondary transition of 

301.2à159.1. The MRM transitions used to assay for other retinoids 

were as follows:  RAc and ROL (m/z 269.2à93.0), retinaldehyde (m/z 

285.2à161.0), 4-hydroxy-RA (m/z 299.2à95.1), 4-oxo-RA (m/z 

315.2à91.1, 315.2à165.5), 5,6-epoxy-RA (m/z 317.2à159.1), and 

5,8-epoxy-RA (m/z 317.2à159.1). A peak area of 200 was used to 

mathematically determine the lower limit of quantitation (LLOQ). 

Retinoid standards were prepared in 100% ACN. Raw data were 



	 44 

processed using Agilent MassHunter Qualitative and Quantitative 

Analysis Software 6.0. 

The concentration of each standard was first verified by 

measuring absorption in the UV/Vis range by spectrophotometry 

(Nanodrop 2000c, Thermo Scientific, Waltham, MA) and applying 

Beer’s law (A = ε * l * c). Absolute values of retinoids were calculated by 

comparing ion counts in the sample to ion counts from 40 pmoles of 

its respective standard. The total (in pmoles) was divided by the 

injection volume (4 µl) to attain the concentration in pmoles/µl in the 

post-extraction samples. Concentration in the pre-extraction volume 

was then calculated before obtaining the molar concentrations and 

amounts of each in moles per 1 million cells.  

 

STATISTICAL TREATMENT OF THE DATA 

 

Statistical analysis was conducted on at least three, 

independent biological replicates for each experiment using Graph Pad 

Prism 7.0 software. The means ± SEM were determined. ANOVA was 

used to determine statistical significance within sets of 3 or more 

groups, and Student’s t-test was used to compare two independent 

populations. A two-tailed p value < 0.05 was considered statistically 

significant. 
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RESULTS 

 

ETHANOL DECREASES PLURIPOTENCY TRANSCRIPTS AND 

INCREASES TRANSCRIPTS OF DIFFERENTIATION-ASSOCIATED 

GENES IN EMBRYONIC STEM CELLS.  

 

To establish the phenotype of alcohol-exposed ESCs we 

performed quantitative reverse-transcriptase (rt)-PCR on AB1 ESCs 24, 

48, and 72 hours after 40 mM EtOH addition (Figure 2.1B). This EtOH 

dose is representative of human blood concentrations typical of binge 

drinking (0.184%) (20). Using alkaline phosphatase staining, we 

demonstrated a reduction of pluripotency in ESCs upon EtOH 

treatment for 96 hours, as EtOH decreased staining intensity by 7.6% 

(p=0.020) (Figure S2.1A). We additionally compared the mRNA levels of 

genes associated with pluripotency in EtOH-treated versus untreated 

cells. We measured lower mRNA levels of Klf4 (78±6%, p=0.02), Dppa5 

(83±4%, p=0.003), and Nanog (58±7%, p=0.009) 24 hours after EtOH 

addition, while others, including Oct4 (21) and Sall4, were unchanged 

(Fig. S2.1B).  

Transcripts increased by >2-fold by 40 mM EtOH treatment 

included those of the homeotic (HOX) family (Hoxa1, Hoxb1, Hoxa5) 

and Cdx1 (Figure 2.1C, Fig. S2.1C). Because several transcripts 

increased by EtOH are direct RAR/RXR transcriptional targets (22-24), 

we then analyzed the primary RA target genes RARβ2 and Cyp26a1. 

We detected increases after 48 hours of EtOH treatment (Figure 2.1C) 

compared to vehicle-treated ESCs. We additionally measured	
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transcripts of RA-responsive genes in another ESC WT line, CCE, to 

rule out any AB1 ESC line-specific effects of EtOH. We found that 

EtOH also increased transcript levels of RA-responsive genes in CCE 

cells, and that 40 and 80 mM doses of EtOH elicited similar effects 

(Fig. S2.1D). EtOH treatment did not increase transcript levels of 

lineage-specific genes that were also unaffected by RA treatment at 48 

hours, such as Fgf5 (ectoderm) and Sox17 (endoderm) in ESCs (Fig. 

S2.1E). Thus, EtOH increases transcript levels of specific RA target 

genes rather than effecting a broad differentiation phenotype. 

To probe for additive effects of EtOH and retinoids we added 40 

mM EtOH to ESCs that were also treated with 1 µM RA or ROL. We 

used Hoxa1, Cdx1, and Hnf1β as readouts for both RA responsiveness 

and ESC differentiation and did not detect additional increases in 

transcript levels compared to RA/ROL-treated cells alone at 48 hours 

(Fig. S2.1F), suggesting that transcript induction of differentiation-

associated genes by RA and EtOH converges on the same pathway. 

Because EtOH is rapidly oxidized to acetaldehyde (AcH) (Figure 

2.1A) (25), we treated CCE cells with either 40 mM EtOH or 1 mM AcH 

for 72 hours. AcH caused transcript increases in Hoxa1 (4.29±0.2, 

p=0.004), Cdx1 (3.32±0.82, p=0.046), RARβ2 (5.86±0.5, p=0.0006), 

and Cxcl12 (5.75±1.01, p=0.009), a developmental gene that was not 

significantly increased by EtOH treatment (Figure 2.1D). In contrast, 1 

mM acetate treatment for 48 hours did not increase mRNA levels of 

Hoxa1, Cyp26a1, and RARβ2, and partially inhibited the EtOH-

mediated increases in Cyp26a1 (Figure 2.1E). Therefore, we conclude 
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that the EtOH-induced transcript increases result from EtOH 

metabolism to AcH, and not to acetate. 

To determine if EtOH increases Hoxa1 mRNA levels by 

enhancing mRNA stability or by increasing transcription, we treated 

CCE ESCs with 40 mM EtOH or 1 µM RA for 48 hours, isolated RNA 

immediately from some wells, and added 2 µg/ml of actinomycin D to 

other wells for 30, 90, or 240 minutes to block transcription. The 

differences in the derivatives of the linear regression lines between 

untreated and EtOH-treated WT ESCs were -0.034±0.09 (p=0.76) for 

Hoxa1 (Figure 2.1F) and -0.043±0.04 (p=0.54) for Cyp26a1 (Figure 

2.1G). The absence of major changes in half-lives of both Hoxa1 and 

Cyp26a1 mRNAs between vehicle-treated and EtOH-treated ESCs 

suggests that the increases in transcript levels upon EtOH treatment 

do not primarily result from increased mRNA stability from EtOH. 

 

RARγ IS REQUIRED FOR ETHANOL REGULATION OF GENES 

INVOLVED IN STEM CELL DIFFERENTIATION.  

 

RARγ controls the expression of several genes that exhibited 

increased mRNA levels in response to EtOH, including Hoxa1, 

Cyp26a1, RARβ2, Crabp2, and Hnf1β (23,26-28). In addition, our lab 

has established that RARγ is essential for RA-induced Hoxa1 

transcription through its 3’ RARE (29). To define the role of RARγ in 

EtOH-mediated transcription in more depth, we used an ESC line in 

which both alleles of a target sequence in exon 8 of RARγ were deleted 

by CRISPR knockout (RARγE8-/-) (Fig. S2.2A) (26). We cultured WT and 
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RARγE8-/- cells with 40 mM EtOH for 48 hours, and found that 

transcript levels of Hoxa1 (11.6±2.2-fold, p=0.008), Cyp26a1 (9.1±1.1-

fold, p=0.002), RARβ2 (6.7±1.8-fold, p=0.034), Crabp2 (5.3±1.1-fold, 

p=0.018), Cdx1 (20.2±4.4-fold, p=0.012), Hnf1β, (4.8±1.3-fold, 

p=0.044) and the long non-coding RNA Hotairm1 (8.9±1.3-fold, 

p=0.003), which regulates transcription of the Hoxa cluster (30), 

increased in WT ESCs compared to vehicle-treated cells. In contrast, in 

RARγE8-/- cells deletion of RARγ prevented these mRNA increases 

(Figure 2.2A, Fig. S2.2B). 

Moreover, transcripts of the late differentiation marker, Col4a, 

increased in EtOH-treated WT (2.8±0.19-fold, p=0.0006), but not in 

RARγE8-/- cells (Figure 2.2B). Since Col4a transcripts are only induced 

in RA-treated ESCs at late times (2-3 days) when the cells are fully 

differentiated (31), these data demonstrate that EtOH causes ESCs to 

differentiate along an epithelial lineage. 

We confirmed the RARγ requirement for EtOH-mediated ESC 

differentiation using another RARβ+/-γ-/- line (29) treated for 2 hours 

with EtOH±RA. We found that Hoxa1 and Hoxb1 transcripts increased 

by 1.6±0.01-fold (p<0.0001) and 1.7±0.18-fold (p = 0.014), respectively, 

in 40 mM EtOH treated AB1 WT samples, and that RA+EtOH samples 

displayed a 4.7±0.99-fold (p=0.021) increase in Hoxa1 and a 6.1±1.0-

fold (p=0.007) increase in Hoxb1 compared to vehicle-treated cells (Fig. 

S2.2C). In contrast, Hoxa1 and Hoxb1 transcript levels did not 

increase in EtOH-treated RARβ+/-γ-/- cells±RA (Fig. S2.2D). These data 

clearly demonstrate that RARγ mediates the effects of EtOH with 

respect to ESC differentiation.  
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Figure 2.1: Ethanol increases transcript levels of genes necessary for 
RA-mediated differentiation in ESCs. A, Schematic of the metabolic 
pathways of EtOH and ROL. B, Timeline for cell culture experiments. C, Fold 
changes in mRNA levels by 40 mM EtOH; these transcripts are targets of RA. 
Treatment groups at 48 and 72 hours were compared to untreated ESCs at 
24 hours, except where indicated by bar. D, Fold changes in mRNA levels by 
EtOH and 1 mM AcH at 72 hours. E, Fold changes in mRNA levels by EtOH 
or 1 mM acetate±EtOH at 48 hours. F-G, RT-qPCR analysis of relative 
stabilities of Hoxa1 (F) and Cyp26a1 (G) transcripts at 30, 90 or 240 minutes 
after administering 2 µg/ml of actinomycin D to inhibit transcription. Y-axes 
vary with samples being analyzed, and mRNA levels are shown in arbitrary 
units. Error bars represent standard errors of independent experiments 
where n = 3 biological repeats. *, p≤0.05, **, p≤0.01, ***, p≤0.001.  
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Figure 2.2: RARγ is required for the expression of a subset of RA-target 
genes induced by ethanol. A, Fold changes in transcript levels of RA-
inducible genes in WT and RARγE8-/- ESCs at 48 hour treatment with EtOH 
(40 mM) or RA (1 µM RA). B, Fold changes in transcript levels of the late 
differentiation marker Col4a in CCE WT and CCE-RARγE8-/- cells at 48 hour 
treatment with EtOH (40 mM) or RA (1 µM RA). C, β-galactosidase activity of 
CCE cells transfected with Hoxa1 minigene (13.5 kb of Hoxa1 DNA + 6.5 kb 
of 5’ + 3 kb of 3’ flanking sequences with in-frame fusion of LacZ) with either 
WT DR5 RARE (CAGGTTCACCGAAAGTTCAAG) or Hoxa1-LacZ muRARE (C-
cTagcCCGAAAaTTacAG), where underlined bases represent consensus 
RAREs and lowercase bases represent mutations; at 24 hours ± EtOH (40 
mM) or RA (0.5µM), normalized to luciferase activity of each sample (15:1 
test:control). D, Acetylation state of H3K27 near Hoxa1, RARβ2, and Cyp26a1 
RAREs after treating ESCs with 80 mM EtOH for 24 hours, relative to DMSO-
treated controls set to 1. The RAREs analyzed are located in a 3’ enhancer 
4.6 kb downstream of the Hoxa1 proximal promoter (pp), in the RARβ2 pp, 
and in a 5’ enhancer 2 kb upstream of the Cyp26a1 pp. ChIP assays were 
normalized to pre-IP input DNA.  Y-axes vary with samples being analyzed, 
and mRNA levels are shown in arbitrary units. Error bars represent standard 
errors of independent experiments where n = 3 biological repeats. *, p≤0.05, 
**, p≤0.01, ***, p≤0.001. 
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RARE ACTIVATION IS NECESSARY FOR ETHANOL-MEDIATED 

HOXA1 TRANSCRIPTION IN EMBRYONIC STEM CELLS.  

 

To determine whether a functional RARE is required for 

signaling by EtOH we next performed a transient transfection in CCE 

ESCs using HOXA1-LacZ minigene reporter constructs in which lacZ 

was cloned into the Hoxa1 coding sequence (22). We used two different 

constructs; one contained an enhancer with an intact RARE (WT, 

AGTTCA) and the other contained an RARE that was inactivated by 

mutation (HOXA1-LacZ muRARE, AaTTac). We treated these 

transfected ESCs with vehicle (0.1% DMSO), EtOH (40 mM), or RA (0.5 

µM) for 24 hours. We observed a 1.5±0.15-fold (p=0.034) increase in β-

galactosidase activity in the EtOH-treated, and a 1.9±0.28-fold 

(p=0.036) increase in RA-treated WT ESCs transfected with the 

construct harboring an intact, WT RARE (Figure 2.2C). We did not 

observe any increase in β-galactosidase activity in either EtOH- or RA-

treated lysates from WT cells transfected with the HOXA1-LacZ 

muRARE construct. These results show first, that the effects of EtOH 

occur at the transcriptional level, and second, that there is a 

requirement for a functional RARE to mediate EtOH-induced 

transcriptional effects on Hoxa1.  

Enrichment of histone 3 lysine acetylation (acetyl-H3) allows 

RAREs to become more accessible for the RAR/RXR complex to bind 

and induce transcription. We performed chromatin 

immunoprecipitation (ChIP) assays using an antibody against the 

H3K27ac modification, which identifies transcriptionally active 
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enhancers (32), to examine histone acetylation patterns in chromatin 

near RAREs of genes which exhibited mRNA increases by EtOH. Both 

Hoxa1 and Cyp26a1 contain at least one RARE at enhancers, while 

RARβ2 contains an RARE near its proximal promoter (18). Genes from 

the EtOH-treated WT ESCs exhibited >1.5-fold H3K27ac enrichment 

near RAREs compared to vehicle-treated ESCs (2.1±0.25-fold, p=0.01, 

Hoxa1; 2.7±0.54-fold, p=0.036, RARβ2; 1.6±0.07-fold, p=0.001, 

Cyp26a1) (Figure 2.2D). These increases in H3K27ac chromatin marks 

upon EtOH treatment suggest that the chromatin near the RAREs is in 

a configuration in which transcription is activated.  

	

ETHANOL INCREASES TRANSCRIPTS ASSOCIATED WITH RETINOL 

METABOLISM.  

 

To determine whether RA is a required intermediate for the 

EtOH-mediated increases in differentiation-associated genes, such as 

Hoxa1 and Cyp26a1, we first measured transcript levels of several 

genes required for RA synthesis from ROL. ROL is primarily 

metabolized to retinaldehyde (RAL) by retinol dehydrogenase-10 

(Rdh10) (7). Using semiquantitative rt-PCR, we showed that 

transcripts of Rdh10, but not Rdh5 or Rdh11, were increased by EtOH 

in WT ESCs (Figure 2.3A). By RT-qPCR analysis we also showed EtOH-

associated increases in transcript levels of the RARγ target gene, 

Rdh10 (1.7±0.12-fold, p=0.004) and the intracellular ROL transporter 

Rbp1 (Crbp1) (6.7±1.3-fold, p=0.011) (Figure 2.3B-C) in WT ESCs. 

Crabp2, which transports RA to the nucleus (33), displayed increased 
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transcript levels (5.28±1.1-fold, p=0.018) in WT ESCs upon EtOH 

addition. Rbp1 and Crabp2 exhibited regulation by RARγ, since the 

RARγE8-/- ESC line showed attenuated increases in these transcripts 

by EtOH compared to those in WT ESCs (Figure 2.3C). Transcripts for 

the retinaldehyde reductase, Dhrs3, but not Dhrs4, were increased by 

EtOH treatment (15.7±3.1-fold, p=0.009) in WT ESCs (Figure 2.3D). 

Importantly, Dhrs3 stabilizes the Rdh10-containing retinoid 

oxidoreductase complex (34). These data show that EtOH increases 

mRNAs of key genes that metabolize ROL to RAL. In contrast, the 

Aldh1a2 mRNA level was not increased by EtOH in WT ESCs (Fig S2.3, 

Figure 2.1A).  

 

ALDH1A2 IS REQUIRED FOR ETHANOL-MEDIATED 

TRANSCRIPTIONAL CHANGES.  

 

Because EtOH increased transcripts of genes involved in RA 

synthesis and nuclear transport, we ablated ALDH1A2 activity using 

CRISPR/Cas9 targeted to two sequences in intron and exon 5 to 

generate an ALDH1A2E5-/- cell line (Figure 2.4A-B). The absence of 

ALDH1A2 prevented the EtOH-mediated Hoxa1 and Cyp26a1 

transcript increases observed in WT ESCs (Figure 2.4C). These data 

indicate that metabolism of retinaldehyde to RA is required for EtOH 

to increase Hoxa1 and Cyp26a1 transcripts.  
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Figure 2.3: Transcripts involved in RA synthesis are upregulated 
following ethanol addition. A, Representative semiquantitative rt-PCR 
analysis of a panel of retinol dehydrogenase family transcripts expressed in 
ESCs, ±40 mM EtOH and 1 µM RA (n=2). B, Fold changes in Rdh10 
transcript levels in WT and RARγE8-/- ESCs at 48 hour treatment with EtOH 
(40 mM) or RA (1 µM RA). C-D, Fold changes in transcript levels of genes 
associated with retinoid transport (C) and retinaldehyde reduction (D) in WT 
and RARγE8-/- ESCs at 48 hour treatment with EtOH (40 mM). Y-axes vary 
with samples being analyzed, and mRNA levels are shown in arbitrary units. 
Error bars represent standard errors of independent biological experiments 
where n = at least 3 biological repeats. *, p≤0.05, **, p≤0.01, ***, p≤0.001.  
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We next cultured WT ESCs in knockout serum replacement 

medium (KOSR), which, unlike fetal calf serum, does not contain ROL. 

EtOH did not increase Hoxa1 and Cyp26a1 mRNAs in WT ESCs 

cultured in KOSR medium (Figure 2.4C). Adding ROL to the KOSR 

medium at 0.1 µM, typically found in 10% serum-containing medium 

(35), restored the EtOH-mediated increases in Hoxa1 (1.7±0.14-fold, 

p=0.01) and Cyp26a1 (2.1±0.4-fold, p=0.035) transcripts to levels 

similar to those measured in serum-containing medium (1.8±0.05-fold, 

p<0.0001, Hoxa1; 2.1±0.17-fold, p=0.0005, Cyp26a1) (Figure 2.4C). In 

contrast, Hoxa1 transcript levels were similarly increased by 1 µM RA 

in WT ESCs cultured in either serum-containing or KOSR medium 

(Fig. S2.4). Collectively, these data clearly demonstrate that ROL, via 

its two-step oxidation to RA, is required for EtOH-mediated Hoxa1 and 

Cyp26a1 transcript increases.  

 

ETHANOL TREATMENT DOES NOT CAUSE INCREASED RA LEVELS 

IN EMBRYONIC STEM CELLS.  

 

We measured RA levels in EtOH-treated ESCs using reversed 

phase high performance liquid chromatoraphy-tandem mass 

spectrometry (RP-HPLC-MS/MS) to determine whether increased 

intracellular RA levels correlated with the increases in Hoxa1 and 

Cyp26a1 transcripts. Using a triple quadrupole mass spectrometer, we 

detected a peak for 20 pmoles of an RA standard at a retention time of 

3.5 minutes (Fig. S2.5A). Calibration curves were generated for RA 

with a limit of detection (LOD) of 40 fmoles and a lower limit of 
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quantitation (LLOQ) of 382 fmoles (95 nM for 4 X 106 cells, where 1 µl 

volume=1 X 106 cells and 4 µl=injection volume), for the transition m/z 

301.2à123.1, and 341 fmoles (85 nM for 4 X 106 cells) for a secondary 

m/z 301.2à159.1 transition (Fig. S2.5B-C). We also generated a 

calibration curve for 4-oxo-RA, a metabolite of RA (Fig. S2.5D). RA 

levels in AB1 cells treated with either vehicle or EtOH were too low to 

detect, but we detected an RA peak in cells treated with exogenous RA 

for 8 hours (Figure 2.4D, Fig. S2.5E). We observed a second peak at 

RT 3.25 minutes for transition m/z 301.2à159.1, but this peak did 

not correspond to any known RA isomer or metabolite (Fig. S2.5F-H).  

To increase the sensitivity for RA detection, we next treated WT 

ESCs with 40 mM EtOH for 48 hours and switched to a high vitamin A 

containing medium (VAM, +0.5 µM ROL) 6 hours prior to collecting 

lysates. This medium contained a tenfold higher ROL concentration 

than that in standard 10% serum-containing medium (0.05-0.1 µM). 

In WT ESCs cultured in 0.5 µM ROL we could measure intracellular 

RA above the sensitivity threshold of the mass spectrometer, but we 

still detected no changes in RA levels in EtOH-treated WT ESCs 

compared to vehicle-treated cells (Figure 2.4E).  

RA is oxidized to 4-oxo-RA (36), so we measured 4-oxo-RA as a 

surrogate for RA and observed a downward trend in 4-oxo-RA levels 

after EtOH addition that was not statistically significant (Figure 2.4F). 

Thus, we did not observe increases in intracellular RA levels by mass 

spectrometry after EtOH addition.  
  



	 57 

 
 
  

Figure 2.4: RA synthesis by Aldh1a2 is necessary for ethanol-
mediated increases in Hoxa1 and Cyp26a1. A, CRISPR/Cas9 
deletion strategy using an nCas9 nickase vector. The parental 
sequence of exon 5 of the Aldh1a2 gene is shown above with sgRNA 
target sequences underlined. Sequences of both edited alleles of the 
ALDH1A2E5-/- ESC line are shown below with deleted nucleotides 
represented by dotted lines and mutated sequences in bold. B, 
Western blotting of ALDH1A2 in WT and ALDH1A2E5-/- ESCs 
compared to β-actin loading control. C, Quantitative analysis of 
transcript levels of Hoxa1 (left panel) and Cyp26a1 (right panel) by 40 
mM EtOH, 0.1 µM ROL, or EtOH (40 mM) + ROL (0.1 µM). Fold 
changes in transcript levels of genes in ALDH1A2E5-/-  ESCs grown in 
10% FCS-containing medium are compared to those of ESCs grown in 
standard medium+10% FCS and in chemically defined KOSR-
containing medium. Transcript levels are compared to those of 0.1% 
DMSO-treated cells set to 1. D-F, Reverse-phase liquid-
chromatography-tandem MS/MS followed by MRM analysis of selected 
retinoids was performed on ESCs±EtOH. D, all-trans RA ion counts 
after treating ESCs with 80 mM EtOH or 1 µM RA for 8 hours (RT = 
3.5 min). Intracellular RA (E) and 4-oxo-RA (F) concentrations 48 
hours after EtOH addition and 6 hours following switch to VAM. 
Quantitation of RA was calculated in pmoles/1 X 106 cells after 
normalizing to cell number, protein count, and recovery rate. An 
internal standard (5 µM retinyl acetate) not present in biological 
samples was added to all samples prior to extraction to calculate 
extraction efficiency. Y-axes vary with samples being analyzed, and 
mRNA levels are shown in arbitrary units. Error bars represent 
standard errors of independent experiments where n = at least 3 
biological repeats. *, p≤0.05, **, p≤0.01, ****, p≤0.0001. 
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STRA6 IS NECESSARY FOR ETHANOL-DEPENDENT INCREASES IN 

HOXA1 AND CYP26A1, BUT NOT DHRS3 TRANSCRIPTS. 

 

STRA6 is a ROL transporter that is expressed in some, but not 

all tissues and cell types (37,38), and its high expression is associated 

with a ROL requirement for differentiation (39). If EtOH induces RA-

mediated transcription by enabling increased entry of ROL into ESCs 

for oxidation to RA, then the loss of STRA6 function should abrogate 

this effect. We first measured Stra6 mRNAs in WT and RARγ-/- ESCs. 

Stra6 transcripts were elevated by 18.4±2.8-fold (p=0.003) in WT ESCs 

treated with EtOH, but were not elevated in the absence of RARγ 

(Figure 2.5A). We saw effects of EtOH on the long and short Stra6 

isoforms similar to those we observed with 1 µM RA, with the long 

isoform upregulated to a greater extent by both EtOH and RA 

treatment (Fig. S2.6).  

We compared the effects of EtOH in WT ESCs versus ESCs 

containing biallelic deletions of the Stra6 RARE, which prevents 

binding of the RA:RAR/RXR complex (STRA6RARE-/-) (37). First, we 

verified that STRA6RARE-/- ESCs display a considerably weaker 

response to RA stimulation than WT ESCs. Treating STRA6RARE-/- ESCs 

with 1 µM RA for 48 hours resulted in a 3.13±1.01-fold (p=0.044) 

increase in STRA6 levels compared to a 13.03±0.95-fold (p=0.0004) 

increase in WT ESCs, confirming that RA does not robustly increase 

Stra6 mRNA in STRA6RARE-/- cells (Figure 2.5B). We then detected a 

4.68±1.44-fold (p=0.042) increase in Stra6 mRNA by 40 mM EtOH and 
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a 3.44±0.59-fold (p=0.015) increase by 0.5 µM ROL in WT ESCs (Figure 

2.5C). In contrast, Stra6 transcripts were not induced by either 40 mM 

EtOH or 0.5 µM ROL in STRA6RARE-/- cells (Figure 2.5C). While Hoxa1 

and Cyp26a1 mRNAs were similarly increased by both EtOH 

(1.55±0.12-fold, p=0.004, Hoxa1; 4.64±1.36-fold, p=0.024, Cyp26a1) 

and ROL (1.79±0.11-fold, p=0.0004, Hoxa1; 5.89±1.4-fold, p=0.008; 

Cyp26a1), respectively, in WT ESCs, we did not detect increases in 

Hoxa1 or Cyp26a1 transcripts upon EtOH or ROL treatment of Stra6-

RARE-/- cells (Figure 2.5D). These data demonstrate that EtOH-

mediated increases in Hoxa1 and Cyp26a1 transcript levels depend on 

greater ROL uptake via STRA6.  

We then measured Dhrs3 transcript levels and found no 

differences between EtOH-dependent increases in WT (1.64±0.15-fold, 

p=.004) and STRA6RARE-/- (1.86±0.31-fold, p=0.04) ESC lines (Figure 

2.5E). In addition, ALDH1A2 deletion did not prevent EtOH-mediated 

Dhrs3 mRNA increases as a 2.39±0.39-fold increase (p=0.018) was 

observed in EtOH-treated ALDH1A2-/- ESCs compared to a 1.80±0.3-

fold (p=0.037) change in EtOH-treated WT cells (Figure 2.5F). These 

data indicate that EtOH-mediated increases in Dhrs3 mRNA levels 

occur independently of ROL import by STRA6 and RA production from 

retinaldehyde.  
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RDH10 IS REQUIRED FOR ETHANOL-DEPENDENT INCREASS IN 

DIFFERENTIATION-ASSOCIATED GENES.  

 

To demonstrate a requirement for RDH10-dependent oxidation 

of ROL for EtOH-mediated increases in differentiation-associated 

transcripts we used CRISPR-Cas9 to generate deletions in both alleles 

in exon 2 of the Rdh10 gene (Figures 2.5G-H). Adding 0.5 µM ROL to 

the culture medium caused increases in mRNA levels of Hoxa1, 

Cyp26a1, and Stra6 in WT (5.31±1.19-fold, p=0.011, Hoxa1; 

22.05±5.17-fold, p=0.015, Cyp26a1; 4.86±1.29-fold, p=0.016, Stra6) 

and Rdh10E2-/- (4.55±1.45-fold, p=0.05, Hoxa1; 22.02±5.00-fold, 

p=0.014, Cyp26a1; 5.01±1.36-fold, p=0.017, Stra6) ESCs. Transcripts 

of the same genes were unchanged by 40 mM EtOH in the RDH10E2-/- 

ESCs compared to vehicle-treated cells despite induction in WT cells 

(1.55±0.21-fold, p=0.038, Hoxa1; 1.87±0.18-fold, p=0.009, Cyp26a1; 

1.61±0.24-fold, p=0.045, Stra6). These data show that oxidation of 

intracellular ROL by RDH10 is required for EtOH-dependent increases 

in Hoxa1, Cyp26a1, and Stra6 transcripts. 
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Figure 2.5: STRA6 and RDH10 are required for ethanol-
mediated increases in Hoxa1 and Cyp26a1 transcripts. A, 
Fold changes in transcript levels of the ROL transporter Stra6 
in WT and RARγE8-/- ESCs at 48 hour treatment with 40 mM 
EtOH. B, Fold changes in Stra6 mRNA levels in 1 µM RA-
treated WT and STRA6RARE-/- ESCs at 48 hours. C-D, Fold 
changes in transcript levels of Stra6 (C), and Hoxa1 (D, top 
panel) and Cyp26a1 (D, bottom panel) in WT and STRA6RARE-/- 

ESCs at 48 hour treatment with 40 mM EtOH or 0.5 µM ROL. 
E, Fold changes in Dhrs3 mRNA levels in WT versus STRA6RARE-

/- ESCs treated with EtOH or 0.5 µM ROL. F, Fold changes in 
Dhrs3 mRNA levels in WT versus ALDH1A2E5-/- ESCs treated 
with EtOH, 0.1 µM ROL or ROL+EtOH. G, Western blotting of 
RDH10 in WT ESC and clones containing gRDH10E2 edits 
compared to β-actin loading control. Clone 20 was selected for 
sequencing based on loss of protein expression. H, Sequences 
of both edited alleles of the RDH10E2-/-  ESC line are shown 
below the WT sequence with deleted nucleotides represented by 
dotted lines. I, Fold changes of mRNA levels of Hoxa1, 
Cyp26a1, and Stra6 by EtOH and ROL at 48 hours (n=4). 
Transcripts levels in 0.1% DMSO-treated WT cells were set to 1. 
Treatment groups were compared to untreated WT ESCs, 
except where indicated by bar. Y-axes vary with samples being 
analyzed, and mRNA levels are shown in arbitrary units. Error 
bars represent standard errors of independent experiments 
where n = at least 3 biological repeats. *, p≤0.05, **, p≤0.01, 
***, p≤0.001, ****, p≤0.0001.	
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DISCUSSION 

 

The effects of EtOH on RA levels and signaling are highly 

debated; either potentiation (15) or inhibition (12-14,16) of RA 

signaling in cell culture and animal models was reported. Early 

studies relied on indirect assessment of RA activity or addition of 

exogenous ROL (13,40), as a sensitive method of detecting RA levels 

was lacking until more recently. Recent studies have found that 

fluctuations in retinoid levels following EtOH administration often vary 

in a sex- or tissue-specific manner (15,16). For example, Kim et al. 

showed that retinyl esters (REs) were depleted in lungs of adult rats 

from dams fed 6.7% alcohol between embryonic day 7 and 21, with 

decreased levels in the ventral prostates and livers of males only (16). 

RA levels were not measured in this study, however, and depletion of 

retinyl esters could imply increased transport and utilization of 

retinoid stores for RA production in other tissues. Another study used 

both RE and RA levels as readouts for retinoid activity, revealing a 

complex physiological response to EtOH (15). Using a 6.5% EtOH- 

containing diet in mice for one month, Napoli and colleagues showed  
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that RE levels were unchanged in the brain and increased in kidneys 

and testis, yet hippocampal and cortex RA levels were increased by 20-

fold and 2-fold, respectively, kidney RA levels were unchanged, and 

serum and testis RA levels were also increased (15).  

 
Figure 2.6: Model for ethanol regulation of stem cell differentiation via 
activation of RA signaling. ROL, in complex with Rbp4, is a substrate for 
Stra6, which imports ROL into the cell. EtOH increases the mRNAs of Stra6 
and several genes in the RA synthesis pathway, including Rdh10, Dhrs3, 
Rbp1, and Crabp2. Since the LRAT pathway is not functional in ESCs, 
intracellular ROL is presented to the RA synthesis machinery upon binding 
to RBP1 rather than stored as retinyl esters. The RDH10/DHRS3 complex 
oxidizes ROL to retinaldehyde, which serves as a substrate for ALDH1A2-
catalyzed oxidation to all-trans-RA. Newly formed RA is then transported to 
the nucleus by CRABP2, where it activates the RARγ/RXR transcriptional 
complex to stimulate expression of RA-responsive genes necessary for ESC 
differentiation.  
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The contextual relationship between EtOH and RA may also be 

influenced by developmental stage, contributing to differences in the 

literature. Shabtai et al. demonstrated in Xenopus embryos that a 

deficiency in ALDH2 expression during gastrulation may create a 

competition for limiting amounts of ALDH1A2 enzyme and diminish 

RA production (41). Using a zebrafish model of high dose (100 mM) 

EtOH exposure during gastrulation, addition of RA partially rescued 

some toxic effects on anteroposterior axis formation, ear development, 

and craniofacial cartilage defects but exposure to low dose (1 nM) RA 

alone or with EtOH recapitulated other FASD-like developmental 

defects (12). Exposure to pharmacological doses of retinoids, such as 

through use of the prescription acne medication isotretinoin, also 

causes severe birth defects resembling an FASD-like phenotype (42). 

Hence, retinoid teratogenicity is complex, as RA is central to cell 

differentiation and organismal development (7), and phenotypes 

present similarly whether low or high levels of RA are present (9-

11,42). The effects of EtOH are equally complex, and are associated 

with both increases and decreases in RA levels in accordance with 

tissue physiology as well as gene expression patterns at different 

developmental stages.  

Our use of ESCs allowed us to determine mechanistically how 

retinoid signaling in pluripotent stem cells, representing the most 

primitive stage of development, is affected by EtOH exposure. 

Additionally, we used a dose of EtOH (40 mM) that is representative of 

a concentration that will be present in the bloodstream of a binge 

drinking adult to analyze the effects in stem cells without subjecting 
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the cells to concentrations that may be potentially lethal in humans 

and induce a variety of secondary toxic events. 

 

MRNAS OF DIFFERENTIATION GENES ARE INCREASED AND 

PLURIPOTENCY FACTORS ARE DECREASED IN EMBRYONIC STEM 

CELLS TREATED WITH ETHANOL.  

 

Prior studies have shown that EtOH delays or interferes with 

proper differentiation along specific lineages in cell culture models of 

directed differentiation (3,43,44). Thus, we probed the acute effects of 

EtOH on selected self-renewal and differentiation-associated genes in 

undifferentiated ESCs. We detected decreases in some pluripotency 

marker transcripts, and increases in several differentiation-related 

transcripts (Figures 2.1C, S2.1B). The loss of pluripotency in EtOH-

treated ESCs was confirmed using alkaline phosphatase staining 

(Figure S2.1A). Addition of 1 µM RA to cultured ESCs directly 

increases mRNAs of many lineage factors to cause differentiation along 

a parietal endoderm (epithelial) lineage (24). We showed here that 

EtOH addition to cultured ESCs induced transcripts of several 

differentiation-associated genes, which was recapitulated by 

administering the EtOH metabolite AcH but not by acetate, suggesting 

that either EtOH or AcH is responsible for these increases in 

differentiation-associated mRNAs (Figure 2.1D-E). 
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RARγ BINDING TO RARES IS NECESSARY FOR ETHANOL-INDUCED 

INCREASES IN MRNA LEVELS OF DIFFERENTIATION-ASSOCIATED 

GENES.  

 

The activation of genes associated with differentiation by RA via 

RARs is well-characterized (7,19). Activation of RAR-controlled 

transcriptional hubs in stem cells produces localized effects within RA-

controlled chromosomal regions in factories of related differentiation 

genes containing RAREs that configure to their proper spatial position 

for transcriptional effects (17,45). RARγ is an essential transcription 

factor in RA-dependent differentiation of ESCs (27,46,47). Some 

functional redundancy exists among the three types of RARs in ESCs 

(26,48,49), but only RARγ was demonstrated to mediate F9 embryonic 

carcinoma cell differentiation and override activity of other RARs (46). 

Additionally, the loss of RARγ, but not RARα, was associated with 

differentiation defects and altered Hoxa1 expression (28,50), which are 

likely caused by the dynamics of RAR subtype binding patterns 

following ligand activation. Both RARα and RARγ occupy a large 

number of sites genome-wide during ESC differentiation (47). However, 

whereas RARα is enriched 24-48 hours after RA signaling commences 

to sustain differentiation, RARγ initiates differentiation via direct 

activation of primary response genes (22,28,47,50). We showed here 

that the increases in mRNAs induced by EtOH were prevented by 

ablation of RARγ, implicating direct RARγ/RXR-mediated signaling in 

promoting transcriptional effects of EtOH on differentiation genes 

(Figures 2.2A-B, S2.2).  
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ETHANOL INDUCTION OF DIFFERENTIATION-ASSOCIATED 

TRANSCRIPTS IN EMBRYONIC STEM CELLS IS DEPENDENT ON 

ALDH1A2.  

 

We demonstrate here that EtOH treatment of ESCs likely 

increases intracellular ROL from the serum to generate RA to activate 

transcription. This effect of EtOH requires Aldh1a2 expression, as 

genetic ablation of Aldh1a2 prevented EtOH-mediated increases in 

Hoxa1 and Cyp26a1 transcripts (Figure 2.4C).  

Despite our inability to detect differences in RA levels between 

EtOH-treated and untreated ESCs (Figure 2.4D-E), depleting medium 

of ROL caused abrogation of EtOH-mediated transcriptional effects 

(Figure 2.4C). Precedence for potent RA activity in the absence of 

detectable RA increases by mass spectrometry is found in the 

literature. For example, Blaner and colleagues demonstrated that Lrat 

(Lecithin-retinol acyltransferase) ablation in the livers of mice was 

associated with increases in several RA response genes despite no 

detectable changes in RA levels measured by a highly sensitive LC-MS 

protocol (51). This is in line with our own findings, as an Lrat-deficient 

state in the liver mimics the natural state of ESCs, which are not 

equipped for ROL storage as esters (27). Excess retinaldehyde that is 

not oxidized to RA for downstream transcription would instead be 

converted back to ROL by DHRS3 to maintain homeostasis (34).  

Restoration of Hoxa1 and Cyp26a1 transcript induction by 

EtOH occurred upon adding ROL back into ROL-depleted medium, 

showing a retinoid requirement and implying enhanced sensitivity to 
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available ROL in the presence of EtOH (Figure 2.4C). To determine the 

mechanism underlying increased sensitivity to available ROL by EtOH, 

we measured mRNAs of genes in the ROL metabolism pathway and 

found increases in several, including Rbp1, Crabp2, Rdh10, and Dhrs3 

(Figure 2.3). RDH10 and DHRS3 exist in a bifunctional complex to 

ensure that RA levels are tightly controlled (34). While increasing the 

Rdh10 level in the presence of ROL proportionally increases detectable 

RA levels, an increase in both protein components, RDH10 and 

DHRS3, of the oligomeric complex, prevents overall levels of RA from 

rising intracellularly (34). In our study, both Rdh10 and Dhrs3 mRNAs 

increase following EtOH treatment, with larger increases in Dhrs3, 

consistent with higher levels of Dhrs3 being required for fine-tuning 

retinoid oxidoreductase complex activity (34).  

In addition, though Cyp26a1 transcript levels were elevated by 

EtOH, we do not think that CYP26A1 is a major contributor to the lack 

of detectable changes in RA levels after EtOH addition, as levels of 4-

oxo-RA, a common polar metabolite formed from CYP26A1 oxidation of 

RA, were not increased but rather trended downward (Figure 2.4F). 

This finding is consistent with a model of EtOH causing enhanced 

sensitivity of ESCs to low amounts of RA generated from ROL 

metabolized by the retinoid oxidoreductase complex (model, Figure 

2.6).  
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STRA6-DEPENDENT RETINOL UPTAKE FROM THE MEDIUM 

FACILITATES CONVERSION OF RETINOL TO RETINOIC ACID BY 

RDH10 FOR SIGNALING IN ETHANOL-TREATED EMBRYONIC STEM 

CELLS.  

 

The STRA6 transporter, which facilitates ROL intracellular 

uptake, exhibited increased mRNA levels following EtOH treatment 

(Figure 2.5A), and loss of Stra6 RARE function was sufficient to 

abrogate EtOH-mediated increases in Hoxa1 and Cyp26a1 transcripts 

(Figure 5D). STRA6 has “gatekeeper” functions in ESCs; in the absence 

of EtOH we speculate that the “gate” remains closed and ROL cannot 

enter the cells in high enough quantities to facilitate signaling. Given 

that ESCs express only a very low level of LRAT for ROL storage as 

retinyl esters (27,52), ROL entering the cells via the STRA6 transporter 

should be preferentially oxidized to RA. This suggests that EtOH may 

exert more toxicity via greater signaling through the RA pathway in cell 

types that do not express much Lrat. Since RA levels were not 

increased despite functional effects on expression of differentiation-

related genes, it is likely that a steady influx of ROL through STRA6 

followed by ROL conversion to RA via Rdh10 occurs, with efficient 

usage of newly synthesized RA to trigger nuclear signaling and 

subsequent differentiation through RARγ-mediated transcription 

(model, Figure 2.6). Our findings in RDH10-null ESCs further support 

this model. The activation of differentiation-associated genes by EtOH 

was completely abrogated in RDH10-null ESCs (Figure 2.5I). These 

results suggest that ROL is preferentially oxidized by RDH10 upon 
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EtOH treatment. Despite the failure of ROL to induce differentiation-

associated mRNAs in the absence of a functional Stra6 RARE, 

induction of these mRNAs in RDH10-null ESCs by EtOH was similar 

to that in WT. This suggests that once ROL is imported into ESCs it 

can still signal in the absence of oxidation by RDH10, possibly via its 

efficient intracellular conversion to 4-oxoretinol, which serves as a 

direct ligand for RARs (52,53).  

 

CONCLUSIONS 

 

Our findings collectively improve our understanding of the 

mechanisms by which EtOH metabolism affects RARγ signaling and 

differentiation in stem cells. We have demonstrated that EtOH causes 

stem cell differentiation via the activation of RA:RARγ-mediated 

transcription in pluripotent stem cells. We propose a model of 

enhanced ROL uptake in EtOH-treated ESCs, whereby EtOH causes 

Stra6-dependent ROL uptake into ESCs, followed by its conversion to 

RA by RDH10 and ALDH1A2. RA is then transported to the nucleus to 

bind RARγ for RA:RAR/RXR-mediated transcription (Figure 2.6). 

Because ESCs represent an early stage in a dynamic cascade of events 

in early embryogenesis, they serve as a good model for studying EtOH 

stem cell toxicity. Our lab has previously shown that exogenous RA 

stimulates target gene transcription in doses as low as 100 pM (24), 

and thus EtOH effects, via changes in RA signaling, can potentially 

greatly shift the trajectory of cell fate decisions to alter developmental 

outcomes. Our data raise the exciting possibility that stem cell-related 
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complications of EtOH exposure may be amenable to manipulation of 

RAR target genes for prevention or treatment of EtOH-associated 

toxicities and diseases. 

 

ABBREVIATIONS 

 

AcH, acetaldehyde; ACN, acetonitrile; DMSO, dimethyl sulfoxide; 

EtOH, ethanol; ESC, embryonic stem cell; FSC, fetal calf serum; gRNA, 

guide RNA; H3K27ac, acetylated histone 3 lysine 27; KOSR, knockout 

serum replacement; LLOD, lower limit of quantitation; LOD, limit of 

detection; IgG, immunoglobulin G; MRM, multiple reaction monitoring; 

RA, retinoic acid; RAc, retinyl acetate; RAR, retinoic acid receptor; 

RARE, reinoic acid response element; ROL, retinol; RP-HPLC-MS/MS, 

reversed phase high performance liquid chromatography-tandem mass 

spectrometry; RT, retention time; RXR, retinoid X receptor; VAM, high 

vitamin A medium; WT, wild type 
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Table S2.1: Primer sequences used for semiquantitative PCR and 
qPCR with predicted product size. 
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Figure S2.1: Ethanol alters mRNA levels of genes associated with 
pluripotency and differentiation. A, Relative intensities from alkaline 
phosphatase stained 0.1% DMSO-treated versus 40 mM EtOH-treated 
WT ESCs. We selected colonies at random and quantified intensities 
using Image J software. B, Relative transcript levels of genes 
associated with pluripotency and stem cell function in 40 mM EtOH-
treated AB1 ESCs. Transcript levels in vehicle-treated cells were set to 
100%. C, Fold changes in mRNA levels of Hoxb1 and Hoxa5 by EtOH. 
D, Fold changes in transcripts of selected EtOH-inducible genes are 
shown for 40 mM- and 80 mM-EtOH treated samples after 48 hour 
treatments in CCE ESCs. E, Representative semiquantitative rt-PCR 
analysis of Fgf5 and Sox17 transcripts expressed in AB1 ESCs, ±40 
mM EtOH and 1 µM RA. cDNA from J1 ESCs treated with 1 µM RA for 
72 hours was used as a positive control for Sox17 transcripts and 
cDNA from AB1 ESCs cultured in the absence of LIF for 48 hours was 
used as a positive control for Fgf5, respectively (n=2). F, Fold changes 
in transcript levels of Cdx1, Hoxa1, and Hnf1β in WT AB1 ESCs 
treated with 1 µM RA or 1 µM ROL±40 mM EtOH for 48 hours. Fold 
changes were expressed as ratios relative to the vehicle-treated groups 
of the same gene set to 1. Error bars represent standard errors of 
independent experiments where n = 3 biological repeats except where 
otherwise indicated. *, p≤0.05, **, p≤0.01, ***, p≤0.001.	
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Figure S2.2: mRNA levels of differentiation-associated genes are 
increased by ethanol in the presence and absence of RA in CCE 
WT but not RARβ+/-γ-/- ESCs. A, Western blotting for RARγ in WT and 
RARγ-edited cell line (Clone #33643) in the presence and absence of 
RA compared to β-actin loading control. B, Fold changes in transcript 
levels of RA-inducible genes in WT and RARγE8-/- ESCs at 48 hour 
treatment with EtOH (40 mM) or RA (1 µM). C-D, Quantitative analysis 
of Hoxa1 (C) and Hoxb1 (D) transcripts in AB1 WT and RARβ+/-γ-/- 

ESCs at 2 hours after treatment with EtOH (40 mM), RA (1 µM), or 40 
mM EtOH+1 µM RA, compared to 0.1% DMSO-treated cells. Y-axes 
vary with samples being analyzed, and mRNA levels are shown in 
arbitrary units. Error bars represent standard errors of independent 
experiments where n = 3 biological repeats. *, p≤0.05, **, p≤0.01, ****, 
p≤0.0001.  
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Figure S2.3: Aldh1a2 transcript levels are not altered by ethanol. 
Fold changes in transcript levels of Aldh1a2 in CCE WT and Aldh1a2-/- 
ESCs treated with 40 mM EtOH, 0.1 µM ROL, and 40 mM EtOH+0.1 
µM ROL. Error bars represent standard errors of independent 
experiments where n = 3 biological repeats. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S2.4: Hoxa1 transcript levels are increased by similar fold 
changes in WT ESCs cultured in serum-containing and chemically 
defined medium. mRNA levels of Hoxa1 following 48 hours of 1 µM 
RA treatment in standard ESC medium and KOSR. Error bars 
represent standard errors of independent experiments where n=3 
biological repeats. 
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Figure S2.5: Tandem MS/MS characterization of retinoids. A, 
Chromatogram for RA standard (20 pmoles) at primary transition (m/z 
301.2à123.1) B-C, Representative calibration curves for all-trans RA 
at 2 transitions, m/z 301.2à123.1 (B) and 301.2à159.1 (C). D, 
Representative calibration curves for 4-oxo-RA. E, RA ion counts at 
m/z 301.2à159.1 transition (RT = 3.5 min.) F-G, Chromatograms for 
RA isomers (F) and RA metabolites and other retinoids (G). H, Ion 
counts for 5,6- and 5,8-epoxy-RA standards compared to samples 
treated with 1 µM RA.   
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Figure S2.6: Ethanol increases transcript levels of both short and 
long isoforms of Stra6. Representative sample of semiquantitative 
RT-PCR analysis of transcripts of full length Stra6 and its short and 
long isoforms (n=2). Stra8, which has similar homology but different 
function from Stra6, was not induced by EtOH. 36b4 was used as an 
internal control. 
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CHAPTER THREE 

 

ETHANOL-INDUCED DIFFERENTIATION OF EMBRYONIC STEM 

CELLS IS MEDIATED BY ACETALDEHYDE 

 

INTRODUCTION 

 

Alcohol use disorders affect millions of adults in the US every 

year, and are responsible for approximately 4% of the global disease 

burden each year (1). Binge drinking is defined as acute intoxication 

from ethanol (EtOH) ingestion that causes blood concentrations to 

exceed 0.08% in grams (2). The Centers for Disease Control and 

Prevention has established that there is no safe level for alcohol intake 

in pregnancy, yet binge drinking occurs most frequently in adults 

between the ages of 18-34 (2), when women are in prime child bearing 

age. EtOH diffuses into the placenta in concentrations similar to those 

that are present in maternal blood (3,4), and causes a variety of 

teratogenic effects in embryos, leading to birth defects which fall under 

the category of fetal alcohol spectrum disorders (FASD) (5). Thus, we 

used embryonic stem cells (ESCs), which represent the most 

primordial stage of development, to serve as a model system for 

investigating whether EtOH or its metabolites can alter differentiation 

capacity. 

Alcohol is metabolized in a two-step oxidation process (6). First, 

EtOH is oxidized to acetaldehyde (AcH) by members of the alcohol 

dehydrogenase (ADH) family of enzymes, CYP4E1, or catalase, and 
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subsequently, AcH is metabolized to acetate by aldehyde 

dehydrogenase (ALDH) family members (Figure 2.1A) (6-8). Acetate can 

then either exit the cell through monocarboxylate (MCT1/4, SLC16A1-

3) transporters (9) or serve as a substrate for acetyl CoA formation, 

primarily via the enzymatic actions of cytoplasmic Acyl-CoA synthetase 

short chain member 2 (ACSS2/ACECS1) (10). Acetyl CoA is a central 

metabolite in several physiologic processes, including anabolic 

production of fatty acids and triglycerides (lipogenesis), protein and 

histone acetylation, and catabolic processes to generate energy, such 

as its entry into the tricarboxylic acid cycle (Figure 3.1A) (11-13). AcH 

is a highly reactive aldehyde intermediate (14) that causes damage to 

nucleic acids, proteins, lipid membranes, and can disrupt the 

functions of organelles such as mitochondria (15). The major toxic 

effects of AcH result from formation of covalent modifications with 

several biomacromolecular species to generate adducts that interfere 

with their physiologic functions, resulting in protein inactivation and 

DNA damage and mutations (14). 

The primary enzyme that metabolizes AcH, ALDH2 (7), has a Km 

for AcH of 0.2 µM (16). There is no consensus as to how AcH is 

metabolized in ESCs, which express ALDH2 as well as ALDH1A2, an 

enzyme required for retinaldehyde conversion to retinoic acid (RA). 

Data from some studies have suggested that EtOH can be metabolized 

by ALDH1A2 at the expense of RA formation at some early stages of 

embryonic development (17,18). 

In this research, we show that ALDH2 primarily metabolizes AcH 

in ESCs. We also show that EtOH, AcH and 4-hydroxynonenal (4-
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HNE), an endogenous aldehyde that requires ALDH2 for metabolism 

(19), induce transcripts of genes associated with differentiation and RA 

signaling, such as Hoxa1, Cyp26a1, and Stra6. Furthermore, we show 

that loss of ALDH2 partially inhibits the EtOH- and aldehyde-mediated 

induction of these differentiation-associated genes, and also partially 

inhibits the ability of RA to induce these transcript levels. We conclude 

that EtOH stimulates differentiation downstream of its metabolism by 

ALDH2, and thus, that the loss of ALDH2 may result in aberrant 

differentiation to extraembryonic endoderm by RA. 

 

METHODS 

 

CELL CULTURE AND REAGENTS 

 

CCE ESCs were cultured as previously described (20). Cells were 

treated with 40 mM 95% EtOH, 1 mM AcH (Calbiochem, San Diego, 

CA), 1 µM 4-hydroxynonenal (HNE) (Sigma, St. Louis, MO), 1 mM 

sodium acetate (Sigma) pH=7.4, and 1 µM all-trans-RA (Sigma) 

dissolved in 100% dimethyl sulfoxide (DMSO). AcH was aliqoted from a 

freshly opened bottle and tubes were stored at -20oC for no more than 

2 months. Each aliquot was immediately discarded after a single use. 

RA was prepared in dim light from a 1 mM stock solution; the final 

concentration of DMSO was 0.1%. ESCs were seeded in 6 well plates, 

and reagents were changed twice daily approximately every 12 hours 

for 48 hours, with the final reagent change completed 8 hours prior to 
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harvest. 103 units/ml of LIF were added to medium for all 

experiments. 

 

WESTERN BLOTTING 

 

CCE WT and mutant ESCs were harvested in 4% SDS lysis 

buffer, boiled, and resolved on SDS-PAGE gels. Antibodies were 

applied using the following dilutions: ALDH1A2 (1:500, Abcam; 

ab156019; Lot GR117687-8), ALDH2 (1:2000, Abcam; ab108306; Lot 

GR97098-10), ACSS2 (1:1000, Cell Signaling; 3658S; Lot 2), RARγ 

(ab97569; Lot 102512 ; Abcam),  and actin (1:40,000 or 1:60,000, 

Millipore, MAB1501; Lot 2665057). 

 

GENERATION OF ALDH2-/- AND ACSS2-/- EMBRYONIC STEM CELLS 

 

Guide (g)RNAs targeting the sequence 

GAAGTCGCCGTCGATGGGAA (A) in the sense strand of exon 5 and the 

sequence TATACCCGCCATGAGCCTGT (B) in the antisense strand of 

the Aldh2 gene were cloned into the BbsI sites of disparate pX461-

hSpCas9n(BB)-2A-GFP vectors. Vector A was digested with XbaI 

overnight, dephosphorylated with shrimp alkaline phosphatase, run 

on an agarose gel, excised, and purified. Vector B was amplified using 

primers targeting the hU6 promoter (Fwd: 5’-

TTTGCTAGCGAGGGCCTATTTCCCATGAT -3’) and a downstream 

CRISPR sequence (Rev: 5’-GGTACCGCTAGCGCCATTTGTCTGC-3’). A 

400 bp product was excised from an agarose gel, purified, and ligated 
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into vector B. Clones were transformed into DH5α E. coli. Following 

XbaI and PciI double digestion, clones positive for both gRNAs 

exhibited an 850 bp band, 400 bp greater than clones that failed to 

incorporate vector B. Following transfection, we harvested colonies, 

amplified their DNA by PCR (Fwd: 5’-TGAGCATGGCTGACCCCAAGT-

3’/Rev: 5’-AGCCAAATGCCAGGGTTGTTGC-3’, 272 bp product), and 

digested the DNA with BccI to genotype CRISPR-edited clones. Clones 

lacking the restriction site were sequenced on both alleles and double 

positive knockout clones were expanded in culture.  

The same procedure was followed for the Acss2 gene, using 

gRNAs CAGCAATGTTCTCCGTAAAC (A) and 

GAGTTCACGGTATGTGATCT (B) targeting exon 3, and EcoNI for 

genotyping clones. The primers used for PCR amplification are as 

follows: Fwd: 5’-GTTGGAATTTTGTGACTGCTCCTG-3’/Rev: 5’-

CCTGTTACCAGATCCATCCATTTC-3’, 283 bp product. 

 

GENERATION OF ALDH1A2-/- EMBRYONIC STEM CELLS 

 

gRNAs targeting the sequence TTCACAAGACACGAGCCCAT (A) 

in the sense strand of exon 5 and the sequence 

CTCTGGAGTGACCGTGCTTA (B) in the antisense strand of intron 5 of 

the Aldh1a2 gene were cloned into the BbsI sites of disparate pX461-

hSpCas9n(BB)-2A-GFP vectors. We prepared vectors as described for 

Aldh2-/- ESC line generation. We harvested clonal colonies in PBS 

following transfection and amplified their DNA by PCR (Fwd: 5’-

TGTGTAGGATGTGCCTCAGTTTC-3’/Rev: 5’-



	 91 

ACCACACATCGCTAAGGACCG-3’, 254 bp product), and digested with 

BanII to genotype CRISPR-edited clones. We sequenced clones lacking 

the restriction site on both alleles. We then expanded double positive 

knockout clones in culture and tested for protein expression by 

Western blotting. 

 

KINETIC ASSESSMENT OF WILD TYPE, ALDH2-/-, AND ALDH1A2-/- 

EMBRYONIC STEM CELL LINES 

 

We cultured ESCs in either 6 well plates or 10 cm dishes and 

harvested in a mild TEN buffer pH=7.2 (50 mM Tris, 150 mM NaCl, 1 

mM EDTA) to retain enzymatic activity of cells. We then centrifuged 

the cells, resuspended them in 250 mM Tris pH=7.8 with vortexing, 

frozen, and lysed them by performing snap thawing. We then 

centrifuged the ESCs at high speed, concentrated them using 10K 

concentrators (Amicon Ultra, Sigma), and then performed two 

additional concentration steps with 250 mM Tris pH=7.8.We 

conducted kinetics assays to determine the rate of AcH metabolism in 

various cell lines using the SpectraMAX 340PC plate reader (Molecular 

Devices, San Jose, CA) We measured absorbance readings every 60 

seconds using a 340 nm primary wavelength for NADH detection and 

600 nm secondary wavelength for background determination. The 

concentrations of reagents used for the assay were as follows: AcH 3.2 

mM, NAD 3 mM, Alda1 (Sigma) 15 µM, and diethylaminobenzaldehyde 

(DEAB) (Sigma) 1 µM. 10 µg/µl of protein lysate was added to each 

well. AcH was added last each time to prevent early oxidation prior to 
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measuring readings. The averages of three technical replicates for each 

sample were used to quantitate rate values in nM•min-1•mg-1protein 

units, and two biological repeats were performed. Rates were 

calculated using the slopes of linear regression lines generated for the 

average each sample in Microsoft Excel. 

 

RNA ISOLATION AND REAL-TIME PCR 

 

We performed RNA extraction using TRI Reagent (Sigma) 

according to the manufacturer’s instructions. We quantified 1 µg RNA 

and reverse transcribed to make complementary DNA using the 

qScript cDNA synthesis kit (Quanta Biosciences, Gaithersburg, MD). 

All cDNA was diluted fivefold. We used SYBR Green quantitative PCR 

Supermix in a 15 µl reaction mix to conduct reactions on a Bio-Rad 

iCycler using 3 µl of cDNA. We performed quantification using the Ct 

method and generated standard curves for all runs to assess 

efficiency. We normalized the levels of all mRNA transcripts using a 

36b4 internal control. Table 3.1 shows a list of primers used. 

 

STATISTICAL TREATMENT OF THE DATA 

 

We conducted statistical analysis on qPCR data on at least 

three, independent biological replicates for each experiment using 

Graph Pad Prism 7.0 software, and determined the means ± SEM. We 

used ANOVA to determine statistical significance within sets of 3 or 

more groups, and Student’s t-test to compare two independent 
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populations. A two-tailed p value < 0.05 was considered statistically 

significant. 

 

RESULTS 

 

ALDH2- AND ACSS2-KNOCKOUT EMBRYONIC STEM CELL LINES 

WERE GENERATED VIA CRISPR/CAS9.  

 

We sought to ablate ALDH2 activity in CCE embryonic stem cells 

(ESCs) using CRISPR/Cas9 targeted to two sequences in exon 5 of the 

Aldh2 gene. Likewise, we targeted two sequences in exon 3 of the 

Acss2 gene for CRISPR/Cas9-mediated deletion. We identified 5 clones 

from guide (g)RNA-Aldh2-treated ESCs that lacked functional ALDH2 

protein via Western blotting (Figure 3.1B). We also identified two 

clones from the gRNA-ACSS2-treated cells that were negative for 

protein expression (Figure 3.1C). We selected one clone from each 

knockout line for sequencing on both alleles to ensure loss of both 

alleles in the targeted exon of the Aldh2 (Figure 3.1D) and Acss2 

(Figure 3.1E) genes. 

 

ALDH2 PRIMARILY METABOLIZES ACETALDEHYDE IN EMBRYONIC 

STEM CELLS.  

 

To determine if ALDH2 is responsible for most of the AcH oxidation in 

wild type (WT) ESCs, we compared the kinetics of NADH production 

secondary to AcH consumption in ESCs (Figure 3.2A). In some 
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situations, ALDH1A2, instead of ALDH2, has been reported to 

metabolize AcH instead of ALDH2 (17,18). Thus, we generated 52 and 

46 base pair deletions in each allele of exon 5 of ALDH1A2 to generate 

an ALDH1A2-knockout ESC line to probe the extent of AcH oxidation 

by ALDH2 versus ALDH1A2 in ESCs (Figure 3.2B). The cofactor NAD+ 

is reduced to NADH upon conversion of AcH to acetate by members of 

the aldehyde dehydrogenase family of enzymes, making detection of 

NADH production at a wavelength of 340 nm diagnostic for enzyme 

activity (21). We determined the rate of AcH (3.2 mM) oxidation by WT 

ESCs to be 72.4 nmole•min-1•mg-1protein (Table 2). The rate at which 

Aldh2-/- ESCs oxidized AcH was decreased by 94.9% (3.67 nmole•min-

1•mg-1 protein) compared to that of WT ESCs, whereas we observed 

only a 20.2% reduction in the rate of AcH oxidation in Aldh1a2-/- (57.8 

nmole•min-1•mg-1protein) compared to that of WT cells (Figure 3.2C). 

These results confirm that AcH is primarily metabolized by ALDH2, 

and not by ALDH1A2, in ESCs. 
 
 
Table 3.1: List of primer sequences used for qPCR with predicted 
product size. 
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Figure 3.1: ALDH2 and ACSS2 were targeted by CRISPR/Cas9 to 
generate knockout cell lines. A, Schematic of the EtOH oxidation 
pathway. EtOH is first oxidized to AcH by an alcohol dehydrogenase 
family member, Catalase, or CYP4E1 using NAD+ as a cofactor. AcH 
can then generate reactive carbonyl or oxygen species which damage 
macromolecules and mitochondria. ALDH2 metabolizes AcH to acetate 
while reducing another molecule of NAD+. Acetate is then either 
exported by a transporter in the SLC16A family or converted to acetyl 
CoA by ACSS2. Acetyl CoA can then enter into a number of physiologic 
pathways, including lipogenesis, pathways of energy production, and 
protein acetylation. B-C, Western blotting of ALDH2 (B) and ACSS2 (C) 
in WT and CRISPR/Cas9-generated mutant clones. β-actin was used 
as a loading control in both experiments. D-E, Gene sequences for WT 
and mutated alleles for a selected clone of Aldh2-/- (28 and 9 base pair 
deletions) (D) and Acss2-/- (28 and 11 base pair deletions) (E) ESCs. 
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Figure 3.2: ALDH2 primarily metabolizes acetaldehyde in 
embryonic stem cells. A, Diagram of experimental design for kinetics 
assays. ESCs were lysed, concentrated, and treated with 3.2 mM AcH, 
3 mM NAD+ ±15 µM Alda1 ±1 µM DEAB prior to measuring absorbance 
at 340 nm (λ for NADH formation) on a plate reader. B, Western 
blotting of Aldh1a2 in WT, Aldh1a2-/-, and Aldh2-/- ESCs, compared to 
a β-actin loading control. C, Kinetic analysis of rate of NADH formation 
in WT, Aldh1a2-/-, and Aldh2-/- ESCs over 5 hours. D-E, Kinetic 
analysis of rate of NADH formation in WT (D) and Aldh2-/- (E) ESCs 
treated with only NAD and AcH compared to WT ESCs treated 
additionally with ALDH2 agonist Alda1 or ALDH2 antagonist DEAB. A 
representative experiment of n=2 biological replicates is shown. 
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To ensure that NADH was primarily being produced by AcH 

conversion to acetate and not other non-specific reactions, we treated 

the cell lysates with 1 µM diethylaminobenzaldehyde (DEAB), which is 

a pharmacological inhibitor of ALDH2, or 15 µM Alda1, an ALDH2 

agonist, in addition to AcH. Alda1 increased (30.4%, 104 nmole•min-1 

•mg-1protein) and DEAB decreased (51%, 35.5 nmole•min-1•mg-1 

protein) the rates of AcH oxidation in WT ESCs compared to that in 

lysates from WT ESCs treated only with AcH (72.4 nmole•min-1•mg-1 

protein) (Figure 3.2D). The changes in the rates of AcH oxidation in 

Aldh2-/- ESCs ± Alda1 ±DEAB were small; addition of Alda1 caused an 

8.3% increase and addition of DEAB resulted in a 15.3% decrease in 

AcH oxidation rate. These data suggest that the roles of additional 

ALDH family enzymes in the oxidation of AcH in ESCs are minimal 

(Figure 3.2E, Table 3.2).  

 
Table 3.2: Kinetic rates of acetaldehyde oxidation in wild-type 
and mutant cell lines. 
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ETHANOL INCREASES TRANSCRIPTS INVOLVED IN 

DIFFERENTIATION, BUT ONLY WHEN ALDH2 IS PRESENT.  

 

To probe the phenotypes of ESCs lacking either Aldh2 or Acss2, 

we first measured cell proliferation of Aldh2-/- and Acss2-/- compared to 

WT ESCs. Aldh2-/- ESCs displayed a 56.5% lower proliferation rate 

than WT cells (p<0.0001), while Acss2-/- ESCs exhibited no change in 

proliferation rate (Figure 3.3A). To analyze the roles of ALDH2 and 

ACSS2 in the induction of differentiation-associated transcripts, we 

measured transcript levels of Hoxa1, Cyp26a1, and RARβ2 ±40 mM 

EtOH for 48 hours. EtOH increased mRNAs of these transcripts in WT 

(3.7±0.1-fold, p<0.0001, Hoxa1; 4.4±0.7-fold, p=0.009, Cyp26a1; 

2.0±0.1-fold, p=0.007, RARβ2) and Acss2-/- (2.5±0.3-fold, p=0.03, 

Hoxa1; 3.5±0.8-fold, p=0.049, Cyp26a1; 1.97±0.3-fold, p=0.031, 

RARβ2) ESCs compared to the levels in untreated ESCs (Figure 3.3B). 

However, levels of these transcripts were not increased by EtOH versus 

untreated cells in Aldh2-/- ESCs compared to WT (2.2±0.3-fold, 

p=0.018, Hoxa1; 4.0±0.98-fold, p=0.027, Cyp26a1; 1.6±0.2-fold, 

p=0.044, RARβ2) cells (Figure 3.3C).  

To examine whether the reductions in EtOH-mediated induction 

of differentiation-associated mRNAs in Aldh2-/- ESCs were the result of 

specific increases in oxidative stress secondary to a defect in AcH 

clearance when ALDH2 was deleted, we treated WT and Aldh2-/- ESCs 

with the free radical scavenger, N-acetylcysteine (NAc). Addition of 2 

mM NAc to EtOH-treated cells failed to restore EtOH-mediated mRNA 
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increases in Hoxa1 in Aldh2-/- ESCs, ruling out a general oxidative 

stress signature in preventing Hoxa1 induction (Figure 3.3D).  

We hypothesized that the loss of differentiation-related 

transcript induction in EtOH-treated Aldh2-/- ESCs could have 

resulted from either a loss of ALDH2 enzyme function or a decrease in 

acetate, as loss of ALDH2 function leads to a reduced conversion of 

AcH to acetate following EtOH exposure (Figure 3.3E). Whereas 

circulating acetate levels in serum are normally 20-50 µM, acetate 

levels increase to 1-2 mM following exposure to EtOH from the actions 

of ALDH2 (22). Therefore, we added 1 mM acetate into the cell culture 

media of WT and Aldh2-/- ESCs ± EtOH in an attempt to restore the 

increases in differentiation-associated mRNA levels. Combining acetate 

with EtOH did not result in increased transcript levels of Hoxa1, 

Cyp26a1, and RARβ2 genes in either WT or Aldh2-/- ESCs compared to 

untreated cells (Figure 3.3F), ruling out acetate production from AcH 

as causative for the increased levels of these differentiation-associated 

transcripts. 

 

TRANSCRIPTS ASSOCIATED WITH DIFFERENTIATION AND 

RETINOIC ACIS SYNTHESIS ARE INCREASED BY ETHANOL, 

ACETALDEHYDE, AND 4-HYDROXYNONENAL. 

 

Both AcH and 4-hydroxynonenal are reactive aldehyde species (RAS), 

which are substrates for ALDH2 (19). We tested whether treating WT 

ESCs with 1 mM AcH or 1 µM 4-HNE for 48 hours could recapitulate 

the increases in differentiation-associated transcripts compared to 
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untreated ESCs that we observed following EtOH treatment. In WT 

ESCs, both EtOH and AcH similarly increased Hoxa1 (EtOH: 1.7±0.2-

fold, p=0.003; AcH: 1.8±0.4-fold, p=0.044) and Cyp26a1 (EtOH: 

2.8±0.4-fold, p=0.003; AcH: 2.2±0.5-fold, p=0.048) transcripts 

compared to untreated cells, and 4-HNE caused Cyp26a1 mRNA 

elevations (1.6±0.2-fold, p=0.010) (Figure 3.4A). Neither Hoxa1 nor 

Cyp26a1 transcripts were increased by EtOH, AcH, or 4-HNE in Aldh2-

/- ESCs versus untreated ESCs (Figure 3.4A), suggesting that ALDH2 

activity is required for increases in differentiation-associated 

transcripts in the presence of aldehyde substrates.  

Because Hoxa1 and Cyp26a1 are targets of retinoic acid (RA) 

(20,23), we measured mRNAs of genes involved in retinol import and 

oxidation: the retinol transporter Stra6 and the retinol dehydrogenase 

Rdh10. Addition of either EtOH, AcH, or 4-HNE increased transcripts 

of both Stra6 (EtOH: 1.7±0.1-fold, p=0.0003; AcH: 1.4±0.1-fold, 

p=0.016; 4-HNE: 1.5±0.1-fold, p=0.006) and Rdh10 (EtOH: 2.5±0.3-

fold, p=0.008; AcH: 2.4±0.5-fold, p=0.044; 4-HNE: 1.7±0.1, p=0.002) in 

WT but not Aldh2-/- ESCs compared to untreated ESCs (Figure 3.4B). 

We conclude that the aldehyde substrates of Aldh2, AcH and 4-HNE, 

stimulate mRNA increases of differentiation-associated genes related to 

retinoid signaling in stem cells, but only when functional ALDH2 is 

present. 
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INCREASES IN TRANSCRIPT LEVELS OF RETINOIC ACID-

RESPONSIVE GENES ARE PARTIALLY INHIBITED IN ALDH2-NULL 

EMBRYONIC STEM CELLS. 

 

To determine whether the inhibition of differentiation that we 

observed in ALDH2-null ESCs are specific to EtOH or extend to more 

general ESC differentiation, we used 1 µM RA to differentiate WT and 

Aldh2-/- ESCs along an extraembryonic, or epithelial, lineage (24). 

Hoxa1, Cyp26a1, and RARβ2 are primary RA-responsive genes and 

were used as readouts for RA signaling activity (20,23,24). We found 

that Hoxa1 (-54.6%, p=0.027), Cyp26a1 (-51.2%, p=0.034), RARβ2 (-

43.2%, p=0.009), and Stra6 (-41.7, p=0.040) all displayed decreased 

mRNA levels in Aldh2-/- ESCs compared to WT ESCs treated with RA 

(Figure 3.5). The lesser extent to which differentiation-associated 

transcripts are increased in response to RA treatment indicate that RA 

signaling is partially inhibited in Aldh2-null ESCs. 
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Figure 3.3: Ethanol induces differentiation-associated transcripts, 
which is inhibited by ALDH2 ablation. A, Proliferation rate of WT, 
Aldh2-/-, and Acss2-/- ESCs at 72 hours. B, Fold changes in mRNA 
levels by 40 mM EtOH in WT and Aldh2-/- ESCs. C, Fold changes in 
mRNA levels by 40 mM EtOH in WT and Acss2-/- ESCs. D, Fold 
changes in mRNA levels of Hoxa1 by EtOH, 2 mM NAc, and 
EtOH±NAc. E, Summary of effects of differentiation-associated 
transcripts by EtOH in WT ESCs vs. ESCs lacking ALDH2 or ACSS2. 
F, Fold changes in mRNA levels by EtOH, 1 mM acetate, and 
EtOH±acetate in WTand Aldh2-/- ESCs. All qPCR experiments were 
conducted at 48 hours. Y-axes vary with samples being analyzed, and 
mRNA levels are shown in arbitrary units. Error bars represent 
standard errors of independent experiments where n = 3 biological 
repeats. *, p≤0.05, **, p≤0.01, ***, p≤0.001, ****, p≤0.0001.  



	 103 

 
 

Figure 3.4: Differentiation-associated transcripts are increased by 
aldehyde substrates of ALDH2. A, Fold changes in mRNA levels of 
genes involved in differentiation by 40 mM EtOH, 1 mM AcH, and 1µM 
4-HNE in WT and Aldh2-/- ESCs. B, Fold changes in mRNA levels of 
genes involved in RA synthesis by EtOH, AcH, and 4-HNE in WT and 
Aldh2-/- ESCs. All qPCR experiments were conducted at 48 hours. Y-
axes vary with samples being analyzed, and mRNA levels are shown in 
arbitrary units. Error bars represent standard errors of independent 
experiments where n = at least 3 biological repeats. *, p≤0.05, **, 
p≤0.01, ***, p≤0.001. 
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Figure 3.5: Loss of ALDH2 causes partial inhibition of RA-
mediated transcript increases.  Fold changes in mRNAs by 1 µM RA 
in WT and Aldh2-/- ESCs. B, Fold changes in mRNA levels of genes 
involved in RA synthesis by RA in WT and Aldh2-/- ESCs. qPCR 
experiments were conducted at 48 hours. Y-axes vary with samples 
being analyzed, and mRNA levels are shown in arbitrary units. Error 
bars represent standard errors of independent experiments where n = 
at least 3 biological repeats. *, p≤0.05, **, p≤0.01. 
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DISCUSSION 

 

ALDH2 IS THE ALDEHYDE DEHYDROGENASE FAMILY MEMBER 

THAT PRIMARILY METABOLIZES ACETALDEHYDE IN EMBRYONIC 

STEM CELLS.  

 

We showed here, using knockout models of Aldh2 and Aldh1a2, 

that ALDH2 preferentially metabolizes AcH in ESCs (Figure 3.2C). 

ALDH2, with a Km of 0.2 µM, is the enzyme that primarily metabolizes 

AcH when it is adequately expressed in cells (16). In comparison, 

ALDH1A2, which is also expressed in ESCs and is the first retinoid-

oxidizing aldehyde dehydrogenase enzyme expressed in the embryo 

(25), has a very low affinity for AcH (Km = 650 µM) (26).  

The importance of ALDH2 in AcH detoxification in humans is 

best illustrated by analyzing the phenotypes of those lacking its 

enzymatic activity in at least one allele (ALDH2*2) A large population of 

humans of East Asian descent is genetically predisposed to toxic 

accumulation of AcH from alcohol consumption from harboring this 

dominant genetic variant (27), which has been directly linked to 

increased risk of cancers (28,29) and neurologic sequelae (30). The 

ALDH2*2 variant is a glutamate to lysine (E487K) substitution that 

inactivates ALDH2 by causing conformational changes to its active site 

and greatly weakening its affinity for the NAD+ cofactor (31). The 

severe phenotype caused by the ALDH2*2 variant upon alcohol 

exposure earmarks ALDH2 as a critical catalyst for EtOH 

detoxification in humans. 
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Despite the important role that ALDH2 plays in EtOH 

detoxification, some studies have shown that in certain situations, 

ALDH1A2 can metabolize AcH (17,18). For example, Xenopus embryos 

do not express ALDH2 during gastrulation and EtOH could instead be 

metabolized by ALDH1A2 during this window of time (18). In ESCs, we 

showed that loss of ALDH2 was sufficient in halting most AcH 

oxidation, while deletion of ALDH1A2 caused little change from WT 

(Table 3.2, Figure 3.2). Therefore, in our ESC model, ALDH2 is the 

enzyme that primarily metabolizes AcH and thus is a salient protein to 

target for ablation in our strategy to dissect the functional 

consequences of EtOH metabolism in ESCs. 

While the ALDH2 agonist Alda1 induced activity and the Aldh2 

antagonist inhibited activity of AcH metabolism, the same 

pharmacological agents had no marked effect in Aldh2-/- cells. What 

little effect by the drugs was observed could be explained by either 

normal variability or by the low activity of a different ALDH family 

member with redundant properties, such as mitochondrial Aldh1b1, 

which has a fairly low Km for AcH (30 µM) (32) and is also activated by 

Alda1 (33) despite its low expression in stem cells and embryos (34).  

 

ALDH2 IS REQUIRED FOR ETHANOL-MEDIATED INCREASES IN 

MRNAS OF DIFFERENTIATION-ASSOCIATED GENES. 

 

Because EtOH has strong teratogenic potential, understanding 

its effects in stem cell differentiation is crucial. We found that EtOH 

increased the mRNA levels of Hoxa1, Cyp26a1, and RARβ2 compared 
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to untreated WT ESCs, and these EtOH effects were inhibited by 

deleting the Aldh2 gene (Figure 3.3). Loss of ALDH2 enzyme 

additionally led to a robust decrease in proliferation compared to WT 

cells (Figure 3.3A). In contrast, knocking out ACSS2 had no effect on 

either growth (Figure 3.3A) or mRNA increases of Hoxa1, Cyp26a1, 

and RARβ2 (Figure 3.3C). Furthermore, substituting acetate into the 

medium of ALDH2-null ESCs in a concentration that is expected to be 

present in the serum following EtOH ingestion (22) was insufficient to 

rescue EtOH-mediated transcript increases (Figure 3.3F). This 

demonstrates that the increase in differentiation-associated mRNAs by 

EtOH was not due to an increase in acetate or any downstream 

metabolite of acetate, but rather the result of either a direct effect by 

AcH or a secondary effect of ALDH2 activation.  

Using EtOH to dissect its effects on stem cell differentiation has 

resulted in context-dependent changes in pluripotency and 

differentiation-related factors (35-38). For example, treating ESCs with 

a wide range of doses, from 0.1%-1% (17.4 mM-174 mM), of EtOH for 

two weeks caused a loss of pluripotency and spontaneous 

differentiation, as measured by alkaline phosphatase and TRA-1-81 

staining, despite some pluripotency-related genes remaining highly 

expressed (35). In contrast to these findings, a 48 hour treatment with 

100 mM EtOH followed by 6 days of differentiation via Leukemia 

inhibitory factor (LIF) removal caused a delay in the loss of 

pluripotency factor-related mRNAs, suggesting that differentiation was 

also being delayed by EtOH (36). Furthermore, EtOH can interfere with 

directed differentiation toward specified cell lineages by diverting 
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differentiation away from neuroectodermal (38,39), hepatic (40), or 

cardiac (41) fates, indicating a wide scale of defects resulting from 

exposure during differentiation.  

We showed here that differentiation-related transcripts were 

induced in ESCs upon exposure to EtOH within 48 hours (Figure 3.3). 

These results are consistent with a model of EtOH stimulating stem 

cell differentiation (35). The delay in differentiation observed by 

Arzumnayan et al. (36) may have been unique to the method of 

differentiation being utilized, via depletion of LIF in cell culture 

medium. Our lab has shown several transcriptional differences 

between ESC differentiation by LIF removal compared with 

differentiation by adding exogenous RA (42,43). Depletion of LIF from 

culture medium causes ESCs to express the primitive ectoderm 

marker, Fgf5 (43,44), which increases over time to drive cells along a 

neuroectodermal fate (45). In contrast, RA treatment of ESCs 

suppresses Fgf5 mRNAs and differentiates cells along an 

extraembryonic endodermal, or epithelial, lineage (24,43). EtOH has 

been demonstrated to robustly inhibit neuroectodermal differentiation 

(38,39,46), thus it is expected that ESC differentiation secondary to 

LIF depletion would also be inhibited by EtOH.  
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ALDH2 OXIDATION OF ACETALDEHYDE AND 4-HYDROXYNONENAL 

IS REQUIRED FOR DIFFERENTIATION-ASSOCIATED TRANSCRIPT 

INCREASES.  

 

Reactive aldehyde species (RAS), such as AcH and 4-HNE, are 

becoming increasingly appreciated for their roles in initiating signaling 

responses (47,48). Adducts formed from covalent modifications with 

the electrophilic groups may not only act as toxic stimuli but may also 

serve as relevant post-translational modifications for proteins to effect 

downstream signaling pathways (48). What effects these changes have 

on stem cell biology are still largely unknown on a mechanistic level, 

thus we explored the potential role that AcH plays in EtOH-mediated 

differentiation by using an ALDH2-knockout ESC model, in which AcH 

could not become efficiently metabolized (Figure 3.2).  

We showed here that when functional Aldh2 is present, both 

exogenous AcH and 4-HNE can upregulate the mRNA levels of several 

differentiation-related genes compared to untreated ESCs, including 

genes in the RA signaling pathway. Ablating ALDH2, the enzyme 

primarily responsible for metabolizing both AcH and 4-HNE (19,49) 

partially inhibited these increases (Figure 3.4), while basal levels of 

untreated Aldh2-/- ESCs trended higher than untreated WT ESCs 

(Figures 3.3-3.4). This suggests that the inhibition of EtOH-mediated 

transcript increases is caused by AcH, which is consistent with studies 

in animal models which demonstrate that AcH induces the same types 

of developmental defects as EtOH (50-52).  
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4-HNE, another substrate of ALDH2, is also associated with 

differentiation in stem cell and cancer cell models (53,54), and 

exhibited similar effects on differentiation-associated transcripts in WT 

ESCs, increasing the mRNA levels of Cyp26a1, Stra6, and Rdh10 

(Figure 3.4). The induction in transcripts compared to untreated cells 

by 4-HNE was observed in only three of the four genes investigated. 

This lack of robust induction of differentiation-related genes may be 

attributed to the high instability and short half-life of 4-HNE in cell 

culture compared to EtOH (54,55). While we detected AcH metabolism 

after 4 hours (Figure 3.2C), 4-HNE is undetectable in medium after 45 

minutes (55). This may result in less 4-HNE available as a substrate 

for Aldh2-dependent oxidation and thus a weaker effect on 

differentiation-associated transcript induction.  

The transcript increases versus untreated ESCs that we 

measured following both AcH and 4-HNE treatment implies that RAS 

such as AcH and 4-HNE may disrupt stem cell function and 

predispose ESCs to precocious differentiation. We did not observe 

these increases in differentiation-associated genes upon treatment 

with EtOH or aldehyde substrates in Aldh2-/- ESCs. However, basal 

levels of many of these transcripts were often higher and variable in 

untreated Aldh2-/- ESCs (Figures 3.3-3.4). Because cells produce and 

may accumulate 4-HNE and AcH endogenously (14,56), ESCs lacking 

Aldh2 may be poised for differentiation by endogenous aldehydes and 

thus do not respond as robustly to external insults as stem cells 

containing ALDH2.  
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RAS, including AcH and 4-HNE, cause secondary accumulation 

of reactive oxygen species (ROS) in cells that effects a wide range of 

additional non-specific toxic events (15,47). However, we showed that 

the effects on differentiation-associated mRNAs are unrelated to the 

ability of AcH to increase ROS in ESCs, as N-acetylcysteine, a radical 

scavenger, did not prevent the EtOH-mediated increases in Hoxa1 

transcript levels, nor did it affect mRNA levels in Aldh2-/- ESCs (Figure 

3.3D). 

 

LOSS OF ALDH2 BLUNTS THE INDUCTION OF DIFFERENTIATION-

ASSOCIATED TRANSCRIPTS UPON RETINOIC ACID EXPOSURE.  

 

The RA signaling pathway is critical to stem cell differentiation 

and embryogenesis (57). Our results show that the differentiation 

markers that increase at an mRNA level by EtOH and aldehyde 

treatments are targets of RA, and that transcripts involved in retinol 

transport, Stra6 (58), and oxidation, Rdh10 (59), to produce RA, are 

also increased (Figure 3.4). In addition, Aldh2 deletion not only 

inhibits the increases in EtOH/aldehyde-mediated differentiation-

associated transcripts but also blunts the increases in these mRNAs 

after RA treatment (Figures 3.4-3.5). This suggests that ALDH2 loss is 

sufficient to impair RA-mediated increases in transcripts associated 

with differentiation to extraembryonic endoderm (epithelium) (24). This 

is important as a weakened transcriptional response of key genes 

expressed early in development by RA has profound consequences on 

differentiation and embryonic development (57,60). Further research is 
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necessary to qualify the extent to which stem cell differentiation 

mediated by EtOH and by retinoids relate to one another, and if RA 

signaling is directly activated downstream of AcH metabolism. 

 

CONCLUSIONS 

 

Our findings illuminate the role of EtOH on stem cell 

differentiation through its conversion to AcH and subsequent 

metabolism by Aldh2. Both EtOH and AcH stimulate increases in 

differentiation-associated genes, including Hoxa1, Cyp26a1, Stra6, 

and Rdh10. Without ALDH2, we did not measure further increases in 

these transcript levels upon EtOH or aldehyde treatment. 

Furthermore, loss of ALDH2 slows proliferation of ESCs and 

diminishes the responsiveness of several differentiation-related mRNAs 

to RA. Also pertinent is that AcH and other RAS that are metabolized 

by ALDH2 may cause premature differentiation. Because the response 

of differentiation marker transcripts to RA was also partially inhibited, 

loss of ALDH2 may potentially cause general defects in RA-mediated 

differentiation along an extraembryonic endoderm lineage, even in the 

absence of EtOH. These data raise the possibility that the mechanism 

by which EtOH differentiates ESCs overlaps with RA-activated 

transcriptional programs, which are crucial to embryonic development 

and teratogenic when dysregulated (61,62). 
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ABBREVIATIONS 

 

AcH, acetaldehyde; DMSO, dimethyl sulfoxide; ESC, embryonic stem 

cell; EtOH, ethanol; gRNA, guide RNA; qPCR, quantitative polymerase 

chain reaction; RA, retinoic acid; RAS, reactive aldehyde species; ROL, 

retinol; WT, wild type; 4-HNE, 4-hydroxynonenal 
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CHAPTER FOUR 

 
CONCLUSIONS AND FUTURE DIRECTIONS 

 

The research presented here centered on the premise that 

ethanol (EtOH) affects embryonic stem cell (ESC) differentiation. 

Determining how EtOH influences differentiation mechanistically is of 

an urgent nature due to the many complications that arise from EtOH 

exposure to stem cells during development (1,2). While there is much 

extant evidence showing that EtOH impacts stem cell differentiation, 

the literature in the fields of stem cell and developmental biology is 

comprised of reports that show apparently conflicting data that EtOH 

may promote (3,4) or suppress (5-8) differentiation. We addressed the 

relationship between EtOH and differentiation by using embryonic 

stem cells (ESCs), which allow us to investigate how EtOH affects 

differentiation in the most primitive and malleable stage of 

development prior to expression of any differentiation-associated 

genes. 

 

ETHANOL PROMOTES DIFFERENTIATION OF EMBRYONIC STEM 

CELLS VIA RETINOIC ACID SIGNALING 

 

RA causes differentiation of stem cells upon binding one of its 

cognate nuclear receptors, retinoic acid receptor (RAR)-α/β/γ, with 

RARγ being especially relevant in activating transcriptional signatures 

driving ESC differentiation (11,12). To test the ability of EtOH to 
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activate RA signaling, we first treated WT ESCs and ESCs in which 

RARγ was deleted by CRISPR/Cas9 with EtOH and measured the 

transcript levels of RA-responsive differentiation-associated genes (13-

15). Loss of RARγ completely abrogated the increases in mRNA levels 

of several differentiation-associated genes by EtOH compared to 

untreated ESCs, implicating RA:RARγ-dependent signaling in 

differentiation secondary to EtOH treatment. We showed via a β-

galactosidase reporter assay that such increases in mRNAs by EtOH 

compared to untreated ESCs resulted from transcription, as loss of the 

Hoxa1 retinoic acid response element (13) completely blocked these 

EtOH-mediated increases in Hoxa1. 

To examine whether RA synthesis is required for EtOH-mediated 

differentiation, we created CRISPR-Cas9-generated ALDH1A2-/- ESCs 

to inhibit the final step of RA production from retinol (ROL). We also 

generated Rdh10-/- ESCs, as RDH10 is the major retinol-oxidizing 

enzyme in most cell types (16). Compared to WT ESCs, increases in 

differentiation-associated transcripts by EtOH were inhibited in both 

Rdh10-/- and Aldh1a2-/- ESCs. This demonstrates that RA synthesis 

from ROL is required for EtOH-mediated ESC differentiation, and that 

production of RA in ESCs occurs via sequential oxidation steps 

conducted by RDH10 and ALDH1A2, respectively.  

To assess whether EtOH was causing ESCs to import ROL from 

the serum to promote differentiation, we first substituted serum-

containing medium with medium containing knockout serum 

replacement devoid of ROL to attempt to differentiate ESCs with EtOH, 

ROL, and RA. While differentiation-associated mRNAs were increased 
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by RA compared to untreated ESCs in ESCs grown in both types of 

medium, these transcripts were not increased by EtOH. Adding ROL 

back into the medium at a concentration (0.1 µM) expected in serum 

(17) restored EtOH-mediated transcript induction versus untreated 

cells to the levels measured in serum-containing medium. These data 

demonstrate that ROL from serum is required for EtOH-mediated 

differentiation. 

One of the mechanisms by which ROL is imported into some cell 

types is through the actions of the Stra6 transporter (18,19). To test 

whether STRA6 was importing ROL from the serum following EtOH 

treatment, we used an ESC line in which the Stra6 RARE was deleted 

(20). Ablation of the Stra6 RARE prevented EtOH-mediated induction 

of differentiation-associated mRNAs compared to untreated cells, 

implicating STRA6 in facilitating ROL import in ESCs following EtOH 

treatment.  

Together, our findings here showed that EtOH, through its 

metabolism by ALDH2, caused extracellular ROL to enter ESCs from 

the medium via STRA6 and become metabolized to RA by consecutive 

oxidation reactions catalyzed by RDH10 and ALDH1A2, respectively. 

RA then signals in the nucleus through RARγ to activate transcription 

of genes that cause differentiation.  
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ETHANOL CAUSES DIFFERENTIATION OF EMBRYONIC STEM CELLS 

VIA ACETALDEHYDE 

 

We found that several differentiation-associated transcripts were 

reproducibly increased by 48 hours of treating ESCs with 40 mM 

EtOH dosed every 12 hours, compared to untreated ESCs. Many of the 

transcripts studied were targets of retinoic acid (RA), and included 

mRNAs of primary response genes such as Hoxa1, RARβ2, and 

Cyp26a1, as well as those of secondary response genes associated 

with terminal differentiation, such as Col4a.  

EtOH is oxidized to the biologically active metabolites 

acetaldehyde (AcH) and acetate (9). Therefore, we attempted to 

distinguish the differentiation-related effects of the parent compound 

from its metabolites by designing knockout ESC lines for aldehyde 

dehydrogenase 2 (ALDH2) and acetyl CoA synthetase short chain 

family member 2 (ACSS2), which metabolize AcH and acetate, 

respectively. This gave us a unique opportunity to dissect the roles of 

individual metabolites and enzymes involved in EtOH metabolism in 

the context of stem cell differentiation. 

We initially expected that if AcH caused ESC differentiation, 

then loss of Aldh2 would lead to mRNA levels of Hoxa1, RARβ2, and 

Cyp26a1, used as readouts for differentiation, that were higher than 

wild type (WT) ESCs upon EtOH treatment, and if acetyl-CoA was 

responsible for differentiation then the same transcripts would be 

decreased by EtOH in ACSS2-null ESCs compared to WT ESCs treated 

with EtOH. What we found was that loss of ACSS2 did not affect 
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EtOH-mediated mRNA increases of differentiation-associated genes by 

EtOH, as both WT and Acss2-/- ESCs showed similar increases in 

transcript levels compared to untreated ESCs; however, loss of ALDH2 

prevented further EtOH-mediated increases of these mRNA compared 

to untreated ESCs. Adding additional substrates of ALDH2, including 

the EtOH metabolite AcH and the endogenous aldehyde 4-

hydroxynonenal (4-HNE) (10), also caused increases in differentiation-

associated transcripts versus untreated cells in WT but did not further 

increase mRNA levels compared to untreated Aldh2-/- ESCs, in which 

basal transcript levels generally trended higher than in WT ESCs. To 

determine whether lack of acetate production rather than an increase 

in AcH was responsible for the loss of EtOH-mediated differentiation, 

we added 1 mM acetate into the medium of WT and Aldh2-/- ESC to 

observe if differentiation occurred in Aldh2-/- cells by EtOH, but 

acetate failed to restore the EtOH-mediated induction of 

differentiation-related transcripts. Furthermore, loss of ALDH2 caused 

1 µM RA to induce target genes (Hoxa1, Cyp26a1, RARβ2, Stra6) to a 

lesser extent compared to WT cells, implicating Aldh2 in RA-dependent 

differentiation. Therefore, we conclude, first, that AcH is required for 

EtOH-mediated differentiation, and secondly, that because RA 

signaling was also partially inhibited by ALDH2 deletion, that Aldh2 

loss is sufficient for impaired RA signaling along the extraembryonic 

endoderm lineage. Furthermore, inhibition of both EtOH- and RA-

mediated transcripts of differentiation-associated genes by ALDH2 

deletion implies a possible common mechanism for ESC differentiation 

by the two compounds.  
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FUTURE DIRECTIONS 

 

The research presented here illustrates the mechanisms by 

which EtOH causes stem cell differentiation via RA-RARγ signaling 

following ROL import by STRA6 and RA synthesis. Elucidating the 

processes occurring after AcH formation by EtOH and preceding the 

activation of RA signaling is worthwhile, and may be amenable to 

investigation in future studies. Assessing genomewide transcript 

activity using an RNA-Seq platform is one method by which the 

differences in EtOH metabolism in the presence and absence of 

functional ALDH2 activity may be examined. Such an experiment may 

provide additional details to illuminate the genetic changes that 

predispose EtOH- and AcH-treated ESCs to RA-mediated 

differentiation. In addition, the phenotype of Aldh2-/- ESCs could be 

further explored using alkaline phosphatase staining and 

measurement of pluripotency factor mRNAs compared to WT ESCs. 

These assays will determine if Aldh2-/- ESCs are exhibiting premature 

differentiation in the absence of exogenous aldehyde treatment. 

While loss of Aldh1a2 and the Stra6 RARE led to a loss of 

induction in most differentiation-associated transcripts in EtOH-

treated compared to untreated ESCs, Dhrs3 was a notable exception. 

Transcripts of Dhrs3 were increased compared to untreated cells in 

Stra6RARE-/- and Aldh1a2-/- ESCs in addition to the WT line. This 

demonstrates that induction of Dhrs3 by EtOH occurs independently 

of RA and therefore could precede the activation of the downstream 

transcriptional targets of RA. The mechanisms behind its activation 
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could be further explored by generating a Dhrs3-knockout ESC line. 

Despite serving as a retinaldehyde reductase traditionally associated 

with shifting reacting equilibrium from RA to ROL production (21), 

DHRS3 was recently found to be a major component of the retinoid 

oxidation complex that colocalizes with RDH10 in vivo to control ROL 

metabolism (22,23). Some striking features of DHRS3 include the 

13fold increase in ROL oxidation by RDH10 when it colocalizes with 

DHRS3 in a complex compared to when RDH10 is expressed alone, as 

well as the ability to increase the half-life of RDH10 (22). Therefore, 

changes in DHRS3 activity may potentially link EtOH metabolism with 

the initial events that lead to the inexorable drive toward 

differentiation once RA-RARγ signaling commences. To date, there are 

no studies that examine DHRS3 in the context of EtOH treatment or 

AcH metabolism, so further experimentation exploring this possible 

connection based on our novel findings may be lucrative, potentially 

shedding light on some of the processes that lead to the initial 

activation of RA signaling upon ESC exposure to EtOH. 

Because we demonstrated a STRA6 requirement for EtOH-

mediated differentiation (Figure 2.5), future experiments related to 

DHRS3- and RDH10-dependent activity on ROL must take into 

account the amount of ROL entering the cells. Using a STRA6-

knockout ESC line would allow us to demonstrate whether EtOH 

causes some ROL to enter cells via a different mechanism than STRA6. 

Intracellular ROL would be measured directly in EtOH-treated WT, 

STRA6-KO, and STRA6-RARE-KO ESCs, with the latter cell line 

included to distinguish RA-dependent STRA6 activity from total ROL 
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intake (Figure 4.1). To ensure that intracellular ROL levels are 

undetectable before EtOH is administered, ESCs would be grown in 

knockout serum replacement containing media that lacks ROL, and 

0.5 μM would then be added to measure the amount imported into 

cells under each condition (Figure 4.1). If some ROL enters WT cells in 

the absence of EtOH or in STRA6-KO cells, then it is possible that this 

small amount of ROL may be converted to RA via activation of 

RDH10/DHRS3 complex by EtOH, which could trigger further uptake 

of ROL through Stra6 gene activation by RA. We may then overexpress 

RDH10 and DHRS3 to examine whether expression of either enzyme is 

sufficient to stimulate differentiation. If differentiation-associated 

transcripts (Hoxa1, RARβ2, Cyp26a1) are induced by RDH10 or 

DHRS3 overexpression in the absence of EtOH, then EtOH is 

potentially acting through this complex to differentiate ESCs. 

If we show that ROL import into ESCs is completely dependent 

on STRA6 (no intracellular ROL detectable in STRA6-KO cells), then we 

would focus on EtOH effects on the STRA6 protein instead of the 

RDH10/DHRS3 complex. The crystal structure of STRA6 reveals that 

the intracellular domain of STRA6 binds to two calmodulin (CaM) 

proteins (24). CaM is activated by calcium and regulates several 

transporters and ion channels (25); thus, it is possible that calcium 

release secondary to oxidative damage by acetaldehyde may be 

responsible for the initial STRA6 activation by EtOH. The biophysical 

mechanisms for STRA6 activation are still unknown, and whether or 

not EtOH is involved in STRA6 activation may lead to lucrative novel 
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findings that may link acetaldehyde-related cellular stress to EtOH-

mediated RA signaling. 
 
 

 
 
Figure 4.1: Schematic for testing the ability of ethanol to import 
ROL through STRA6. We would grow WT, Stra6-/-, and Stra6RARE-/- 
ESCs in medium containing knockout serum replacement rather than 
ROL-containing serum. We would then add 0.5 μM ROL to each line, 
except for negative controls, (not pictured) and measure the amount of 
intracellular ROL that is detectable in each cell line ± 40 mM EtOH. 
Performing this experiment will demonstrate 1.) whether ROL may be 
imported in the absence of STRA6, 2.) whether trace amounts of ROL 
are imported into WT ESCs in the absence of EtOH, and 3.) whether all 
imported ROL is dependent on RA signaling. The results in this 
experiment would guide future experiments concerning the effects of 
EtOH on differentiation via the activities of STRA6 and the 
RDH10/DHRS3 complex.  
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