FINDING REPEATED ELEMENTS*

J. Misra+
David Gries++

TR 82-505
July 1982

*This work was supported under Air Force grant AFOSR81-0205 A at Austin and NSF grant MCS81-03605 at Cornell.

+University of Texas at Austin
++Cornell University

Department of Computer Science
Cornell University
Ithaca, New York 14853
Finding Repeated Elements

J. Misra
University of Texas at Austin+$

David Gries
Cornell University+$

July 1982

Keywords Majority detection, repeated elements

Abstract

Two algorithms are presented for finding the values that occur more than $n+k$ times in array $b[0:n-1]$. The second algorithm requires time $O(n \cdot \log(k))$ and extra space $O(k)$. We prove that $O(n \cdot \log(k))$ is a lower bound on the time required for any algorithm based on comparing array elements, so that the second algorithm is optimal. As special cases, determining whether a value occurs more than $n/2$ times requires linear time, but determining whether there are duplicates—the case $k=n$—requires time $O(n \cdot \log(n))$.

The algorithms may be interesting from a standpoint of programming methodology; each was developed as an extension of an algorithm for the simple case $k=2$.

1. Introduction

Given is an array $b[0:n-1]$, where $n>0$, and an integer k, $0<k\leq n$. We consider the problem of finding the values that occur more than $n+k$ times in b. The more general problem of finding values that occur more than r times, for $0<r<n$, can be solved in terms of the original problem by taking k as the smallest integer satisfying $n+k \leq r$. Thus, if $n=10$ and $r=4$, use $k=3$; find the values that occur more than 3, instead of 4, times; then count how many times each actually occurs in b.

We begin by considering the case $k=2$. The following algorithm identifies a value v: upon termination, no value except v occurs more than $n+2$ times, but the occurrences of v in b must be counted to determine whether v occurs more than $n+2$ times. The algorithm, which is linear in n, appears in [1].

This work was supported under Air Force grant AFOSR81-0205 A at Austin and NSF grant MCS81-03605 at Cornell.
(1) \[i, c := 0, 0; \]
\[\text{do } i \neq n \rightarrow \]
\[\text{if } c \leq 0 \land v = b[i] \rightarrow c, i := c + 1, i + 1 \]
\[\text{if } c \leq 0 \land v \neq b[i] \rightarrow c, i := c - 1, i + 1 \]
\[\text{if } c = 0 \rightarrow c, i, v := c + 1, i + 1, b[i] \]
\[\text{fi} \]
\[\text{od} \]

{only \(v \) may occur more than \(n \times 2 \) times in \(b[0:n-1] \)}

The algorithm may be understood most easily using the following loop invariant.

\[P: 0 \leq i \leq n \land 0 \leq c \land \text{even}(i + c) \land \]
\[v \text{ occurs at most } (i + c) \times 2 \text{ times in } b[0:i-1] \land \]
\[\text{each other value occurs at most } (i - c) \times 2 \text{ times in } b[0:i-1] \]

\(P \) is true after the initialization \(i, c := 0, 0 \), no matter what value is initially in \(v \), because \(b[0:i-1] \) is empty. It is easy to see that the first two alternatives of the alternative command of the loop body maintain the truth of \(P \); each increases one of \((i + c) \times 2 \) and \((i - c) \times 2 \) and leaves the other unchanged, depending on whether \(v = b[i] \).

Now consider the third alternative. Suppose the guard is true: \(c = 0 \). Then \((i + c) \times 2 = (i - c) \times 2 = i \). Further, \(i \) is even and no value occurs more than \(i \times 2 \) times in \(b[0:i-1] \). Therefore, the only value that can occur more times in \(b[0:i] \) is \(b[i] \). From this, it follows that execution of the last guarded command maintains the truth of \(P \).

Upon termination, the truth of \(P \) and falsity of the loop guard imply the desired result. Termination is obvious, using the bound function \(n - i \).

This algorithm and its invariant led us to develop two different algorithms for the case \(n \times k \) instead of \(n \times 2 \). Both algorithms determine a set \(t \) of values that may occur more than \(n \times k \) times in \(b \). To determine whether they do occur more times, one must actually count the number of occurrences in \(b \) of each one. This counting can be performed in time \(O(n \times \log(|t|)) \).

2. The First Algorithm

Given \(k \) and \(n \), \(0 < k \leq n \), and array \(b[0:n-1] \), we want to find the values that may occur more than \(n \times k \) times in \(b \). We formulate the result assertion of the algorithm as follows. Execution is to store in a set variable \(t \) a set of pairs \((v, c)\) such that

\[R: (\forall v, c: (v, c) \in t: v \text{ occurs at most } c \times k \text{ times in } b[0:n-1] \land c > n \land k \text{ divides } c) \land \]
\[\text{no other value occurs more than } n \times k \text{ times in } b \]
To develop the algorithm, we choose an invariant \(P \) that weakens result assertion \(R \) in a useful manner, using solution (1) for insight. \(P \) was developed after several different trials. It required the replacement of constant \(n \) by a variable \(i \) and the introduction of a fresh integer variable \(s \).

\[
P: 0 \leq i \leq n \land \left(\forall v, c: (v, c) \in t: v \text{ occurs at most } c+k \text{ times in } b[0:i-1] \land c > i \land k \text{ divides } c \right) \land s \geq 0 \land k \text{ divides } i-s \land \text{ any value not the first component of a pair in } t \text{ occurs at most } (i-s)k \text{ times in } b[0:i-1]
\]

A discussion follows the algorithm:

(2) \(i, s, t := 0, 0, \{\} \);
\[\begin{align*}
do & \ i \neq n + \\
& \text{Let } j \text{ be the index of a pair } v_j, c_j \text{ in } t \text{ satisfying } v_j = b[i], \text{ if no such pair exists let } j = 0; \\
& \text{if } j = 0 \land s \geq k-l \Rightarrow i, s := i+1, s-k+1 \\
& \text{if } j \neq 0 \land s < k-l \Rightarrow i, s, t := i+1, s+1, t \cup \{(b[i], i-s+k)\} \\
& \text{fi; } \\
& \text{Delete all pairs } (v_j, c_j) \text{ from } t \text{ for which } c_j = i; \text{ if any are deleted, set } s \text{ to } 0
\end{align*}\]

od

It is clear that the initialization establishes \(P \), that the algorithm terminates, and that upon termination the result holds (if \(P \) is true). It remains to show the invariance of \(P \) under execution of the loop body.

Consider the first two alternatives of the alternative command; \(j = 0 \) means that \(b[i] \) is not the first component of a pair in \(t \). Hence, there is no need to change the counts \(c_j \) of components in \(t \) when \(i \) is increased by 1. However, \(s \) must be decreased by \(k-1 \) so that the expression \((i-s)k \) is increased by 1. The latter may be done only if \(s \) remains \(\geq 0 \). If \(s < k-1 \), then \(b[i] \) might occur \(i+k+1 \) times in \(b[0:i] \), so \(b[i] \) must be placed in \(t \), along with the maximum number of times it might occur. This is the purpose of the second alternative.

In the case of the third alternative, \(b[i] \) is the first component of a pair \((v_j, c_j)\) in \(t \). Hence, \(v_j \) occurs one more time in \(b[0:i] \) than it does in \(b[0:i-1] \), and \(c_j \) is increased accordingly. As \(i \) is increased, \(s \) is increased to keep the value of \((i-s)k \) the same.

The third statement of the loop body deletes certain members from set \(t \), so that pairs \((v_j, c_j)\) of \(t \) satisfy \(c_j > i \).
The execution speed of this algorithm depends on the size and implementation of set \(t \). Unfortunately, we have been unable to determine a useful upper bound on the size of \(t \). We conjecture that it is a function of \(k \), and not of \(i \). We also conjecture that \(t \) becomes its largest if \(b \) has roughly the following form: it ends with \(k \) different values, preceded by \(k+2 \) different values, each occurring twice, preceded by \(k+3 \) different values, each occurring thrice, etc. Hence \(|t| \) might become as large as \(O(k \log(k)) \).

3. The Second Algorithm

The second algorithm rests on some extremely simple theory. Consider a bag —i.e. a collection of elements, with duplicates possible— and consider the operation of deleting \(k \) distinct elements from it. This operation may be performed several times. A \(k \)-reduced bag for bag \(B \) is a bag derived from \(B \) by repeating this operation until no longer possible. Note that the \(k \)-reduced bag is not unique. For example, for bag \(\{1,1,2,3,3\} \), one can arrive at three different \(2 \)-reduced bags using 5 different deletion sequences:

\[
\begin{align*}
\{1,1,2,3,3\}, & \text{ then } \{1,3,3\}, \text{ then } \{3\} , \\
\{1,1,2,3,3\}, & \text{ then } \{1,2,3\}, \text{ then } \{1\} , \\
\{1,1,2,3,3\}, & \text{ then } \{1,2,3\}, \text{ then } \{2\} , \\
\{1,1,2,3,3\}, & \text{ then } \{1,2,3\}, \text{ then } \{3\}, \text{ and } \\
\{1,1,2,3,3\}, & \text{ then } \{1,1,3\}, \text{ then } \{1\} \\
\end{align*}
\]

Suppose bag \(B \) has \(N \) elements. The operation of deleting \(k \) distinct elements can be performed at most \(N \mod k \) times, for after that \(B \) can contain at most \(N \mod k \) elements, which is \(< k \). Hence, the values that don't occur in a \(k \)-reduced bag for \(B \) can not occur more than \(N \mod k \) times in \(B \), —they have been deleted at most \(N \mod k \) times and no longer appear. This leads directly to a simple theorem:

(3) **Theorem.** The only values that may occur more than \(N \mod k \) times in bag \(B \) of size \(N \) are the elements in a \(k \)-reduced bag for \(B \). \(\square \)

Considering \(b[0:n-1] \) to be a bag, we use theorem (3) to develop an algorithm as follows. The result assertion is

\[R: t \text{ is a } k \text{-reduced bag for } b[0:n-1] \]

so that upon termination \(t \) will contain at most \(k-1 \) distinct values that may occur more than \(N \mod k \) times in \(b \). The invariant of a loop is found by replacing constant \(n \) by a variable \(i \) and introducing a second variable \(d \) **We use set notation for bags, e.g. \(b \cup \{v\} \) denotes the bag consisting of the elements of bag \(b \) together with the element \(v \).**
for efficency purposes:

\[P: 0 \leq i \leq n \land \]
\[t \text{ is a } k\text{-reduced bag for } b[0:i-1] \land \]
\[d \text{ is the number of distinct elements of } t \]

The algorithm is then written as follows; it should be compared to algorithm (2), and it should need no further explanation:

(4) \(i, d, t := 0, 0, \{\} \);
\[\text{do } i \neq n \rightarrow \]
\[\text{if } b[i] \notin t \land d < k-1 \rightarrow t, d := t \cup \{b[i]\}, d+1 \]
\[\text{if } b[i] \notin t \land d \geq k-1 \rightarrow t, d := t \cup \{b[i]\}, d+1; \]
\[\text{Delete } k \text{ distinct elements} \]
\[\text{from } t \text{ and update } d \]
\[\text{if } b[i] \in t \rightarrow t := t \cup \{b[i]\} \]
\[\text{od} \]

For algorithm (2), we were not able to determine the size of set \(t \). In algorithm (4), \(t \) has at most \(k \) distinct elements, and it has at most \(k-1 \) distinct elements before and after each iteration. We will subsequently show how to implement \(t \) so that, in total, the operations performed on it take no more than time \(O(n \times \log(k)) \).

Note the similarity of the algorithms; essentially, both use a bag \(t \) of elements and both have the same structure. It is only in the definition of \(t \) that they differ. Both were developed by trying to extend the algorithm for the case \(k = 2 \) given in the Introduction.

4. Implementing the Bag \(t \) of Algorithm (4)

Bag \(t \) of algorithm (4) has at most \(n \) elements and \(d \) distinct elements, \(d \leq k \). The operations to be performed on \(t \) and \(d \) are:

1. \(t := \{\} \). Performed once.
2. Search \(t \) for an element \(v \). Performed \(n \) times.
3. Insert an element into \(t \). Performed at most \(n \) times.
4. Delete \(k \) distinct elements from \(t \) and update \(d \) —performed at most \(n \times k \) times and only when \(t \) has exactly \(k \) distinct elements.

We implement bag \(t \) using an AVL tree \(T \) with \(d \) nodes; each node is a pair \((v_j, c_j)\), where \(v_j \) is one of the distinct elements of \(t \) and \(c_j \) is the number of times \(v_j \) occurs in \(t \). This requires \(O(k) \) space.

Operation 1 calls for initializing \(T \) to an empty tree —a constant-time operation. Operation 2, searching for an element in \(t \), requires time \(O(\log(k)) \), since \(T \) has at most \(k \) nodes. In total, operation 2
contributes time $O(n\times \log(k))$. Operation 3, inserting an element into t, calls for finding the value in a node j of T and adding 1 to c_j, or, if the element is not in t, adding it to T with count 1. In any case, the time is no worse than $O(\log(k))$, and operation 3 contributes time $O(n\times \log(k))$.

Operation 4, deleting k distinct elements from t when it has exactly k elements, calls for subtracting 1 from count c_j for each node j of AVL tree T and, if c_j becomes 0, deleting node j from T. This takes time at most $O(k\times \log(k))$. Since operation 4 is performed at most $n+k$ times, the total time spent in operation 4 is $O((n+k)\times k\times \log(k))$, which is $O(n\times \log(k))$.

Hence, the total time spent in operations dealing with bag t is $O(n\times \log(k))$.

5. **On the Complexity of Detecting Repeated Elements**

We begin by introducing a class of algorithms, called *decision-tree algoritms*, for determining whether any value occurs more than $n\times k$ times in $b[0:n-1]$. Each decision-tree algorithm consists of algorithm (5) (given below), together with a decision tree, which controls its execution. A decision tree D is a finite tree with the following characteristics:

1. Every nonterminal node of D has a label (i,j), where $0 \leq i < n, 0 \leq j < n$. The label is used to refer to elements $b[i]$ and $b[j]$.
2. Every nonterminal node has three branches, with labels $<$, $=$ and $>$.
3. Every terminal node has an label YES or NO.
4. Given $b[0:n-1]$, execution of algorithm (5) begins with c being the root of the tree and terminates with c being a terminal node; the label of c is YES if some value in b occurs more than $n\times k$ times and NO otherwise.

(5) $c := \text{root of } D$

\[\text{do } c \text{ is a nonterminal node with label } (i,j) \rightarrow \]
\[\text{Suppose } b[i] \text{ op } b[j], \text{ where op is one of the operators } <, =, >, \text{ and let } x \text{ be the son of node } c \text{ that is labeled op. Execute } c := x \]
\[\text{od}\]

Execution of algorithm (5) begins at the root of the decision tree and proceeds along some path to a terminal node, and the label at the terminal node indicates whether some value occurs more than $n\times k$ times in b. The path taken depends only on comparisons of array elements. All algorithms for solving the problem that are based on comparing elements of b can be thought of as decision-tree algorithms; further, decision trees enjoy the advantage
that the next action following a comparison can depend on all previous comparisons, without incurring the attendant cost.

We proceed as follows. Let $r = n \cdot k$. Hence, $n \cdot (r+1) \leq k \leq n \cdot r$. We introduce a set of lists, called r-lists, each with n elements. We show (Lemma (8)) that there are

$$\frac{n!}{r!^{n \cdot r} \cdot (n \mod r)}$$

different r-lists. Next, we show (Lemma (9)) that execution of a decision-tree algorithm (with a given decision tree) terminates at a distinct terminal node for each assignment of an r-list to b. Hence, a decision tree has at least as many terminal nodes as there are r-lists, so that the longest path length in a decision tree is at least

$$O(\log(n! / (r!^{n \cdot r} \cdot (n \mod r))))$$
$$= O(n \cdot \log(n) - (n \cdot r) \cdot r \cdot \log(r) - \log(n \mod r))$$
$$\geq O(n \cdot \log(n \cdot r))$$
$$\geq O(n \cdot \log(k))$$

This leads directly to

(6) **Theorem.** Any algorithm based on comparing array elements requires at least $O(n \cdot \log(k))$ comparisons to determine whether some value(s) occurs more than $n \cdot k$ times in $b[0:n-1]$. □

(7) **Definition.** An r-list is a list of n elements in which each of the values $0, 1, \ldots, n \cdot r - 1$ occurs r times and the value $n \cdot r$ occurs $n \mod r$ times. □

(8) **Lemma.** There are $n! / (r!^{n \cdot r} \cdot (n \mod r))$ different r-lists. □

Proof. An r-list can be constructed as follows. Choose any r indices out of n and store the value 0 there; choose any r indices out of the remaining $n-r$ possible indices and store the value 1 there; ...; after $r \cdot (n \cdot r)$ values have been stored, store the value $n \cdot r$ in the remaining $n \mod r$ positions. The number of different r-lists corresponds to the number of different possible choices in the procedure given above, which is

$$\prod_{i=0}^{n \cdot r - 1} \binom{n \cdot r}{i}$$

which simplifies to the expression given in the lemma. □
(9) **Lemma.** Consider a fixed decision tree. Execution of a decision-tree algorithm for different r-lists terminates at different nodes. □

Proof. No value occurs more than \(r \) times in an r-list; hence, execution of a decision-tree algorithm with an r-list terminates at a node labelled NO. Define a new list \(L = L_1 \circ L_2 \) from different r-lists \(L_1 \) and \(L_2 \) as follows:

\[
L[j] = \min(L_1[j], L_2[j]), \quad \text{for } 0 \leq j < n.
\]

Obviously, \(L \) satisfies the following for any indices \(i \) and \(j \):

(10) \(L_1[i] < L_1[j] \land L_2[i] < L_2[j] \Rightarrow L[i] < L[j] \)

\(L_1[i] = L_1[j] \land L_2[i] = L_2[j] \Rightarrow L[i] = L[j] \)

\(L_1[i] > L_1[j] \land L_2[i] > L_2[j] \Rightarrow L[i] > L[j] \)

Further, we show in lemma (11) that if \(L_1 \) and \(L_2 \) are different then some value in \(L \) occurs more than \(r \) times, so that execution of the decision-tree algorithm with input \(L \) terminates on a node with label YES.

Now assume the contrary of the lemma: execution of a decision-tree algorithm terminates at the same node \(x \) for both \(L_1 \) and \(L_2 \). Hence, the executions follow the same path in the decision tree. By property (10), execution of the decision-tree algorithm on list \(L \) must follow that same path, and hence must end in a terminal node with label NO. Since some value occurs more than \(r \) times in \(L \), this is a contradiction. □

(11) **Lemma.** If r-lists \(L_1 \) and \(L_2 \) are different, then some value occurs more than \(r \) times in \(L = L_1 \circ L_2 \).

Proof. Let \(s_1(v) \) and \(s_2(v) \) be the set of indices (positions) in \(L_1 \) and \(L_2 \), respectively, where a value that is at most \(v \) appears:

\[
s_1(v) = \{ j \mid L_1[j] \leq v \}
\]

\[
s_2(v) = \{ j \mid L_2[j] \leq v \}
\]

Since \(L_1 \neq L_2 \), there is some \(v \) satisfying \(s_1(v) \neq s_2(v) \). For \(v \geq n \times r \), \(s_1(v) = s_2(v) = \{ 1, 2, \ldots, n \} \). Hence, for some \(w < n \times r \), \(s_1(w) \neq s_2(w) \) holds.

Suppose \(i \in s_1(w) \cup s_2(w) \). Then either \(L_1[i] \leq w \) or \(L_2[i] \leq w \), so that \(L[i] = \min(L_1[i], L_2[i]) \leq w \). From the definition of r-list and the fact that \(w < n \times r \), \(|s_1(w)| = |s_2(w)| = (w+1) \times r \) holds. Since \(s_1(w) \neq s_2(w) \), \(|s_1(w)| \cup |s_2(w)| > (w+1) \times r \). By the pigeon-hole principle, some value that is at most \(w \) must appear more than \(r \) times in \(L \). □

References