EXPLAINING THE PERFECT SAMPLER

BU-1494-M

June, 2000

George Casella
Dept. of Biometry
Cornell University

Michael Lavine
ISDS
Duke University

Christian Robert
CREST, Insee,
Paris, France

Keywords: none provided.

Abstract: In 1996, Propp and Wilson introduced Coupling from the Past (CFTP), an algorithm for generating a sample from the exact stationary distribution of a Markov chain. In 1998, Fill proposed another so-called perfect sampling algorithm. These algorithms have enormous potential in Markov Chain Monte Carlo (MCMC) problems because they eliminate the need to monitor convergence and mixing of the chain. This article provides a brief introduction to the algorithms, with an emphasis on understanding rather than technical detail.
Explaining the Perfect Sampler

George Casella Michael Lavine
Cornell University Duke University
Dept. of Biometry ISDS

Christian Robert
CREST, Insee, Paris
and
Université Paris 9 – Dauphine

June 13, 2000

Abstract

In 1996, Propp and Wilson introduced Coupling from the Past (CFTP), an algorithm for generating a sample from the exact stationary distribution of a Markov chain. In 1998, Fill proposed another so-called perfect sampling algorithm. These algorithms have enormous potential in Markov Chain Monte Carlo (MCMC) problems because they eliminate the need to monitor convergence and mixing of the chain. This article provides a brief introduction to the algorithms, with an emphasis on understanding rather than technical detail.

1 Setting

A Markov chain is a sequence of random variables \(\{X_t\} \) that can be thought of as evolving over time, and where the distribution of \(X_{t+1} \) depends on \(X_t \), but not on \(X_{t-1}, X_{t-2}, \ldots \). When used in Markov chain Monte Carlo (MCMC) algorithms, Markov chains are usually constructed from a Markov transition kernel \(K \), a conditional probability density on \(\mathcal{X} \) such that \(X_{t+1} | X_t \sim K(X_t, X_{t+1}) \). Interest is usually in the stationary distribution of the chain, the distribution \(\pi \) that satisfies

\[
\int_{\mathcal{X}} K(x, B) \, d\pi(x) = \pi(B) \text{ for any } B \subset \mathcal{X}.
\]
Thus, if \(X_t \sim \pi \) then \(X_{t+1} \sim \pi \). In a common application \(\pi \) is the posterior distribution from a Bayesian analysis and \(K \) is constructed to have stationary distribution \(\pi \).

Here is an example that we follow throughout the article.

Beta-Binomial Following Casella and George (1992), and for some suitable parameters \(n, \alpha \) and \(\beta \), let \(\theta \sim \text{Beta}(\alpha, \beta) \) and \(X|\theta \sim \text{Bin}(n, \theta) \), leading to the joint density

\[
\pi(x, \theta) \propto \binom{n}{x} \theta^{x+\alpha-1} (1-\theta)^{n-x+\beta-1}
\]

and the conditional density \(\theta|x \sim \text{Beta}(\alpha + x, \beta + n - x) \).

We can construct a Markov chain, in fact a Gibbs sampler, having \(\pi \) as its stationary distribution by using the following transition rule for \((X_t, \theta_t) \mapsto (X_{t+1}, \theta_{t+1}) \):

1. choose \(\theta_{t+1} \sim \text{Beta}(\alpha + x_t, \beta + n - x_t) \), and
2. choose \(X_{t+1} \sim \text{Bin}(n, \theta_{t+1}) \).

This transition rule has transition kernel

\[
K((x_t, \theta_t), (x_{t+1}, \theta_{t+1})) = f((x_{t+1}, \theta_{t+1})|(x_t, \theta_t)) \propto \binom{n}{x_{t+1}} \theta^{x_{t+1}+\alpha+x_t-1} (1-\theta)^{\beta+2n-x_t-x_{t+1}-1}.
\]

For future reference we note that the subchain \(\ldots, X_t, X_{t+1}, \ldots \) is a Markov chain with \(X_{t+1}|x_t \sim \text{BetaBin}(n, \alpha + x_t, \beta + n - x_t) \) and transition kernel

\[
K(x_t, x_{t+1}) = f(x_{t+1}|x_t) \propto \binom{n}{x_{t+1}} \frac{\Gamma(\alpha + \beta + n)\Gamma(\alpha + x_t + x_{t+1})\Gamma(\beta + 2n - x_t - x_{t+1})}{\Gamma(\alpha + x_t)\Gamma(\beta + n - x_t)\Gamma(\alpha + \beta + 2n)}.
\]

Theorems about stationary distributions and ergodicity apply when the Markov chain satisfies the three properties of **irreducibility**, **reversibility** and **aperiodicity**, defined in Appendix 6.1. See Robert and Casella (1999, Chap. 4) for a brief description or Meyn and Tweedie (1993) and Resnick (1992) among others for book-length treatments. These properties are assumed true for the rest of this article.
The stationary distribution of the Markov chain is also a limiting distribution: X_t converges in distribution to $X \sim \pi$. For MCMC purposes two useful consequences of our assumptions are that $\frac{1}{M} \sum_{j=1}^M h(X_j) \rightarrow E_\pi[h(X)]$ (sometimes called the ergodic theorem) and that a central limit theorem holds.

It is typical in practice to have MCMC algorithms begin from an arbitrary chosen state at time $t = 0$, say, and run for a long time T, say, in the hope that X_T is a draw from π. One typically discards X_0, \ldots, X_{T-1} and estimates $E_\pi[h(X)]$ as $\frac{1}{M} \sum_{j=T}^{T+M-1} h(X_j)$. A serious practical problem is determining the "burn-in" time T. A second practical problem is determining the correlation between X_t and X_{t+1}, which is used to calculate the variance of the estimate. Perfect sampling avoids both problems because it produces independent draws having distribution π precisely.

Indeed, the major drawback with using MCMC methods is that their validity is only asymptotic: if we run the sampler kernel until the end of time, we are bound to explore the entire distribution of interest; but, since computing and storage resources are not infinite, we are bound to stop the MCMC sampler at some point. The influence of this stopping time on the distribution of the chain is not harmless and in some cases may induce serious biases (Roberts and Rosenthal, 1998). Perfect sampling alleviates this difficulty by producing exactly the same chain as one running an infinite number of steps, by simply replacing the starting time with $-\infty$ and ∞ with 0. And, at no additional cost, it also removes the dependence on the starting value! In other words, the burn-in time becomes infinite and the chain is indeed in the stationary distribution at time 0.

2 Coalescence

The first step in obtaining a perfect sample is to find a way to make X_t independent of the starting value. The answer is to work with coupled parallel chains.

Suppose there are k states in \mathcal{X}, and we start a Markov chain in each state at time $t = 0$. These are parallel chains. Parallel chains can be coupled through a transition rule ϕ and random numbers U_t. A transition rule determines X_{t+1} as a function of X_t and U_{t+1}. Note that the same ϕ and same U_0, U_1, \ldots are used for each chain. A common and convenient choice is to let $U_{t+1} \sim \text{Uniform}(0,1)$ and take $X_{t+1} = \phi(x_t, u_{t+1}) = F_{X_t+1|x_t}^{-1}(u_{t+1})$, the inverse-cdf function of $X_{t+1}|x_t$ determined by the kernel K. For illustration we return to the Beta-Binomial example.
Beta-binomial, continued. Consider the \(\{X_t\} \) subchain from the previous example, and let \(n = 2, \alpha = 2 \) and \(\beta = 4 \). The state space is \(X = \{0, 1, 2\} \). The transition probabilities are

\[
\begin{align*}
Pr(0 \rightarrow 0) &= .583, & Pr(0 \rightarrow 1) &= .333, & Pr(0 \rightarrow 2) &= .083, \\
Pr(1 \rightarrow 0) &= .417, & Pr(1 \rightarrow 1) &= .417, & Pr(1 \rightarrow 2) &= .167, \\
Pr(2 \rightarrow 0) &= .278, & Pr(2 \rightarrow 1) &= .444, & Pr(2 \rightarrow 2) &= .278
\end{align*}
\]

Thus we can draw \(U_{t+1} \sim \text{Uniform}(0, 1) \) and make the transitions illustrated by Figure 1.

Figure 1 shows that coupled chains will all go to the same state, or coalesce if there is ever a time \(t \) such that either \(U_t < .278 \) or \(U_t > .917 \). Once coupled chains coalesce at time \(t \), they remain coalesced at all times greater than \(t \). And because the \(U_t \)'s are mutually independent coalescence is guaranteed to happen eventually. The next theorem gives some general results about coalescence.

Theorem 1 Suppose we have \(k \) coupled Markov chains, \(X^{(1)}, X^{(2)}, \ldots, X^{(k)} \), where...
(i). $X^{(j)}$ starts in state j (so one chain starts in each state of X)

(ii). updating is performed according to $X_{t+1}^{(j)} = \phi(x_t^{(j)}, u_{t+1})$, where the U_i are mutually independent.

Then

(a). The time T to coalescence is a random variable that depends only on U_1, U_2, \ldots.

(b). The random variable X_T, the common value at coalescence, is independent of any starting values.

Proof: Part (a) is immediate by construction, and part (b) follows since X_T is a function only of U_1, \ldots, U_T and not of X_0.

Conclusion (b) of Theorem 1 says that T is a time at which the initial state of the chain has "worn off". One might therefore hope that X_T is a draw from the stationary distribution π. This hope is false. It is true that if T^* is a fixed time, and X_{T^*} is independent of X_0, then $X_{T^*} \sim \pi$. Unfortunately, T is a random time and in general, $X_T \not\sim \pi$, as the following example illustrates.

Two-state Consider the Markov chain with state space $\{1, 2\}$ and transition kernel $K(1, 1) = K(1, 2) = .5; K(2, 1) = 1; K(2, 2) = 0$. The stationary distribution is $\pi(1) = 2/3; \pi(2) = 1/3$. A little thought shows that parallel chains can coalesce only in $X_T = 1$ and therefore $X_T \not\sim \pi$.

3 Propp and Wilson

Propp and Wilson (1996) discovered how to take advantage of coalescence while sampling the chain at a fixed time, thereby producing a random variable having distribution π, exactly. Their algorithm is called Coupling from the Past (CFTP), and is based on the idea that if a chain were started at time $t = -\infty$ in any state $X_{-\infty}$, it would be in equilibrium by time $t = 0$, so X_0 would be a draw from π. This would happen since the chain would have run for an infinite length of time.
To implement this idea in an algorithm, we use the coalescence strategy. We first find a time $-T$ such that X_0 does not depend on X_r (coalescence occurs between time $-T$ and time 0), and then we determine X_0 by starting chains from all states at time $t = -T$ and following them to time $t = 0$.

CFTP is an algorithm for finding $-T$ and X_0, and goes as follows.

1. Start chains $X^{(1)}, X^{(2)}, \ldots, X^{(k)}$ at time $t = -1$ from every state of \mathcal{X}. Generate U_0.

2. Update each chain to time $t = 0$ by applying the transition rule $X^{(j)}_0 = \phi(x^{(j)}_{-1}, u_0)$. If the chains have coalesced at time $t = 0$, then $-T = -1$ and the common value X_0 is a draw from π.

3. Otherwise, move back to time $t = -2$, generate U_{-1}, and update each chain using $X^{(j)}_{-1} = \phi(x^{(j)}_{-2}, u_{-1})$ and $X^{(j)}_0 = \phi(x^{(j)}_{-1}, u_0)$. If the chains have coalesced at time $t = 0$, then $-T = -2$ and the common value X_0 is a draw from π.

4. Otherwise, move back to time $t = -3$ and continue.

It is crucial, when going back to $t = -2$, to use the same U_0 that was already drawn. Specifically, we start chains at time $t = -2$ from every state; draw U_{-1}; use U_{-1} to update all the chains to time $t = -1$; use the U_0 from before to update all the chains to time $t = 0$; check for coalescence; and either accept $T = -2$ and X_0 if the chains have coalesced or go back to time $t = -3$ if they haven’t. The algorithm continues backing through time until coalescence occurs.

Theorem 2 The CFTP algorithm returns a random variable distributed exactly according to the stationary distribution of the Markov chain.

Proof: The proof is based on establishing the following three facts:

1. The k Markov chains will coalesce at some finite time into one chain, call it X^*_t.

2. For each $j = 1, 2, \ldots, k$, $X^{(j)}_{-t} \rightarrow X \sim \pi$ as $t \rightarrow \infty$

3. For each $j = 1, 2, \ldots, k$, $X^{(j)}_t \rightarrow X^*_0$ as $t \rightarrow \infty$

It then follows that X^*_0 and X have the same distribution and, in particular, $X^*_0 \sim \pi$. See Appendix 6.2 for details.
We use the Beta-Binomial example for illustration.

Beta-Binomial, continued. Begin at time $t = -1$ and draw U_0. Suppose $U_0 \in (.833, .917)$. The next picture shows the result of updating all chains.

```
2 → 2
1 → 1
0 → 0
```

$t = -1$ $t = 0$

The chains have not coalesced, so we go to time $t = -2$ and draw U_{-1}. Suppose $U_{-1} \in (.278, 417)$. The next picture shows the result of updating all chains.

```
2 → 2 → 2
1 → 1 → 1
0 → 0 → 0
```

$t = -2$ $t = -1$ $t = 0$

The chains have still not coalesced so we go to time $t = -3$. Suppose $U_{-2} \in (.278, .417)$. The next picture shows the result of updating all chains.

```
2 → 2 → 2 → 2
1 → 1 → 1 → 1
0 → 0 → 0 → 0
```

$t = -3$ $t = -2$ $t = -1$ $t = 0$

All chains have coalesced into $X_0 = 1$. We accept X_0 as a draw from π. Note: even though the chains have coalesced at $t = -1$, we do not accept $X_{-1} = 0$ as a draw from π.

In CFTP, T and X_0 are dependent random variables. Therefore, a user who gets impatient or whose computer crashes and who therefore restarts
runs when T gets too large will generate biased samples. Another algorithm, due to Fill (1998), generates samples from π in a way that is independent of the number of steps.

4 Fill’s algorithm

A simple version of Fill’s algorithm (Fill) is:

1. Arbitrarily choose a time T and state $x_T = z$.
2. Generate $X_{T-1}|x_T, X_{T-2}|x_{T-1}, \ldots, X_0|x_1$.
3. Generate $[U_1|x_0, x_1], [U_2|x_1, x_2], \ldots, [U_T|x_{T-1}, x_T]$.
4. Begin chains in all states at time $T = 0$ and use the common U_1, \ldots, U_T to update all chains.
5. If the chains have coalesced by time T (and are in state z at time T), then accept x_0 as a draw from π.
6. Otherwise begin again, possibly with a new T and z.

We note that the U_1, \ldots, U_T used for the coalescing chains are generated in such a way to insure that $x \rightarrow z$. (We write $x \rightarrow z$ to denote that the chain goes from state x to state z in T steps.) So, for example, generate U_1 to be uniform on the set $\{u : x_1 = \phi(x_0, u)\}$, U_2 to be uniform on the set $\{u : x_2 = \phi(x_1, u)\}$ etc. See the example for a further illustration.

There are two ways to prove that Fill is correct. We present one here and one in the appendix. Let $C_T(z)$ be the event that all chains have coalesced and are in state z at time T.

First proof: Fill delivers a value only if $C_T(z)$ occurs, so we need to prove $\Pr[X_0 = x|C_T(z)] = \pi(x)$. This probability is

$$\Pr[X_0 = x|C_T(z)] = \frac{\Pr[z \rightarrow x]\Pr[C_T(z)|x \rightarrow z]}{\sum_{x'} \Pr[z \rightarrow x']\Pr[C_T(z)|x' \rightarrow z]}.$$

Now because the coalescence event entails each $x' \rightarrow z$, we have for every x'

$$\Pr[C_T(z)|x' \rightarrow z] = \frac{\Pr[C_T(z)|x' \rightarrow z]}{\Pr[x' \rightarrow z]} = \frac{\Pr[C_T(z)]}{\Pr[x' \rightarrow z]}.$$

(1)
and writing \(\Pr[x' \to z] = K^T(x', z) \) the probability becomes

\[
\Pr[X_0 = x|C_T(z)] = \frac{K^T(z, x) \Pr[C_T(z)]/K^T(x, z)}{\sum_{x'} K^T(z, x') \Pr[C_T(z)]/K^T(x', z)} = \frac{K^T(z, x)/K^T(x, z)}{\sum_{x'} K^T(z, x')/K^T(x', z)}.
\]

Using the detailed balance condition we have \(K^T(z, x)/K^T(x, z) = \frac{\pi(x)}{\pi(z)} \), and thus,

\[
\Pr[X_0 = x|C_T(z)] = \frac{\pi(x)/\pi(z)}{\sum_{x'} \pi(x')/\pi(z)} = \pi(x).
\]

We follow the Beta-binomial (2,2,4) example through the steps in Fill.

Beta-Binomial, continued.

1. We arbitrarily choose \(T = 3 \) and \(X_T = 2 \).
2. Our chain is reversible, so \([X_2|X_3 = 2] = [X_3|X_2 = 2] = \text{BetaBin}(2,4,4) \). The probabilities are given on page 4. We generate \(X_2 \). Suppose it turns out to equal 1. Similarly, \(X_1|X_2 = 1 \sim \text{BetaBin}(2,3,5) \); suppose we get \(X_1 = 2 \); \(X_0|X_1 = 2 \sim \text{BetaBin}(2,4,4) \); suppose we get \(X_0 = 1 \). The next picture shows the transitions we’ve generated.

3. \(X_0 = 1, X_1 = 0, X_2 = 1 \) and \(X_3 = 2 \) imply \(U_1 \sim U(0, 0.417) \); \(U_2 \sim U(0.583, 0.917) \); and \(U_3 \sim U(.833, 1) \). (See Figure 1.) Suppose we generate \(U_1 \in (.278, 0.417) \), \(U_2 \in (.833, .917) \) and \(U_3 > .917 \).
4. Begin chains in states 0, 1 and 2.
5. The next picture follows the chains through time \(t = 3 \).
6. The chains coalesce in $X_3 = 2$; so we accept $X_0 = 1$ as a
draw from π.

Fill depends on an arbitrary choice of T and X_T. To get some feeling
for how big T needs to be and whether the choice of X_T is important, we ran
Fill on a Beta-binomial(16, 2, 4) example. For each of $X_T = 0, 2, \ldots, 16$,
we ran Fill in a loop with $T = 1, 3, \ldots$ successively until the algorithm
returned a value. The whole simulation was repeated 50 times. Figure 2 is
a boxplot, sorted by X_T, of the T for which coalescence was achieved. The
horizontal axis is the value of X_T which we fixed in advance. The vertical
axis is the value of T for which coalescence occurred. The figure shows that
coalescence occurred much more quickly when we chose either $X_T = 0$ or
$X_T = 16$ than any other value of X_T.

5 Discussion

- A potentially troublesome point is detecting whether coalescence has
occurred. In general, starting and keeping track of chains from every
state is computationally infeasible. In (partially) ordered state spaces
with a monotone transition rule it is only necessary to keep track of
chains started from the maximal and minimal members. A monotone
transition rule is one in which $X_t \geq Y_t \Rightarrow X_{t+1} = \phi(X_t, u_{t+1}) \geq Y_{t+1} =
\phi(Y_t, u_{t+1})$. If our transition function is an inverse-cdf function that is
stochastically ordered, then the transition rule will be monotone.
This is the case in our example, where a chain started from state 1 is
sandwiched between chains started from states 0 and 2. Therefore it is
only necessary to keep track of chains started from 0 and 2 to determine
whether coalescence has occurred. In fact, if there exist maximal and
minimal elements, coalescence is detectable even with a continuous
state space. Non-monotone transition rules or state spaces without
minimal and maximal elements require more sophisticated methods.
See Fill et al. (1999) or Green and Murdoch (1999) for details and
extensions.

- In describing CFTP we set T successively equal to -1, -2, \ldots. In fact,
any decreasing sequence would do as well. Propp and Wilson (1996)
argue that $T = -1, -2, -4, -8, \ldots$ is near optimal. In Fill, if X_0 is
Figure 2: Time to coalescence for 50 runs of Fill's algorithm, for each value of X_T.
rejected, or if one is generating many realizations, one may wish to choose new values of T and z for the next proposal. Figure 2 shows that some combinations of (T, z) are more likely to lead to coalescence than others. There is no general theory at present to guide the choice of (T, z). In practice the results of early iterations may guide the choice of (T, z) in later iterations.

- In his original algorithm described here, when running the k chains for coalescence, Fill used constrained uniform variables U_1, \ldots, U_T conditional on X_0, \ldots, X_T, generating $[U_1|x_0, x_1], [U_2|x_1, x_2], \ldots, [U_T|x_T-1, x_T]$. This ensures that the chain starting in x will end up in z. This is practical as long as the conditional distribution of the U_i's given the X_i's is not too difficult.

An alternative to the algorithm described in Fill is to generate the U_i's unconditionally. (Typically $U_i \sim U(0, 1)$.) Using these U_i's, check whether $x_0 \rightarrow z$. If yes, then also check for $C_T(z)$ and either accept or reject X_0 accordingly. Otherwise, discard the U_i's and generate another set until finding one such that $x_0 \rightarrow z$. Ultimately we will accept x_0 with probability $\Pr[C_T(z)|x_0 \rightarrow z]$, as required.

- Some practical applications of Markov chains iterate between a discrete X and a parameter θ which might be either discrete or continuous. In such cases we can obtain perfect samples from the joint distribution of both X and θ. For example, consider modeling the data Y as a mixture of Normal distributions. The model is usually extended to include indicator variables X, which are not observed but which indicate which Y's come from the same mixture components. Conditional on X, the model is a straightforward collection of Normals. Let θ denote all unknown parameters other than X. The posterior is typically analyzed through a Gibbs sampler that iterates between $[X|\theta]$ and $[\theta|X]$. The iterates of X form a subchain on a finite state space and are amenable to perfect sampling. Given a perfect sample of X, one can simulate from $[\theta|X]$ to obtain a perfect sample of θ.

This remark extends to other latent variable models, but one must keep in mind that the size of the finite parameter space of X in the mixture example is k^n, which rapidly gets unmanageable unless monotonicity features can be exhibited, as in Hobert et al. (1999).

- To remove the difficulty with continuous state space chains, another promising direction relies on slice sampling. This technique is a special
case of Gibbs sampling (See Robert and Casella 1999, Sect. 7.1.2) and
takes advantage of the fact that the marginal (in x) of the uniform
distribution on $\{(x,u); u \leq \pi(x)\}$ is $\pi(x)$. The idea, detailed in Mira et al. (1999), is that, if x'_0 is a variable generated from the uniform
distribution on $\{x; \pi(x) \geq \epsilon \pi(x_0)\}$, it can also be taken as a variable
generated from the uniform distribution on $\{x; \pi(x) \geq \epsilon \pi(x_1)\}$ for all x_1's such that $\epsilon \pi(x_0) \leq \epsilon \pi(x_1) \leq \pi(x_0)$ by a simple accept-reject
argument. Therefore, assuming a bounded state space \mathcal{X}, if one starts
with x'_0 generated uniformly on \mathcal{X}, a finite sequence x'_0, \ldots, x'_T can
be used instead of the continuum of possible starting values, with x'_i
being generated from a uniform distribution on $\{x; \pi(x) \geq \pi(x'_{i-1})\}$,
and T being such that $\pi(x'_T) \geq \epsilon \sup \pi(x)$. Moreover, slice sampling
exhibits natural monotonicity structures which can be exploited to
further reduce the number of chains. The practical difficulty of this
approach is that uniform distributions on $\{x; \pi(x) \geq \epsilon \pi(x_0)\}$ may be
hard to simulate, as shown in Casella et al. (1999) in the setup of
mixtures.

- Perfect sampling is currently an active area of research. David Wilson
maintains a web site of papers on perfect sampling at
http://dimacs.rutgers.edu:80/~dbwilson/exact.html. The interested reader can find links to articles ranging from introductory
to the latest research.

References

J. A. Fill. An interruptible algorithm for perfect sampling via Markov chains.

James Allen Fill, Motoya Machida, Duncan J. Murdoch, and Jeffrey S.
Rosenthal. Extension of Fill’s perfect rejection sampling algorithm to
general chains. Technical report, The Johns Hopkins University, Dept. of

P. J. Green and D. J. Murdoch. Exact sampling for Bayesian inference:
towards general purpose algorithms. In J. M. Bernardo, J. O. Berger,

6 Appendix

6.1 A Markov Chain Glossary

We will work with discrete state space Markov chains. The following definitions can be extended to continuous state spaces as long as the usual measurability complications are carefully dealt with.

A Markov chain X_1, X_2, \ldots, is irreducible if the chain can move freely throughout the state space; that is, for any two states x and x' with $\pi(x') > 0$, there exists an n such that $\Pr[X_n = x'|X_0 = x] > 0$. Moreover, as the chains we are considering are all positive, that is, the stationary distribution
is a probability distribution, irreducibility also implies that the chain is recurrent. A recurrent chain is one in which the average number of visits to an arbitrary state is infinite.

A state x has period d if $P(X_{n+t} = x | X_t = x) = 0$ if n is not divisible by d, d being the largest integer with this property. For example, if a chain starts $(t = 0)$ in a state with period 3, the chain can only return to that state at times $t = 3, 6, 9, \ldots$. If a state has period $d = 1$, it is aperiodic. In an irreducible Markov chain, all states have the same period. If that period is $d = 1$, the Markov chain is aperiodic.

We then have the following theorems.

Theorem 3 Convergence to the stationary distribution If the countable state space Markov chain X_1, X_2, \ldots, is positive, recurrent and aperiodic with stationary distribution π, then from every initial state

$$X_n \to X \sim \pi.$$

A positive, recurrent and aperiodic Markov chain is often called ergodic, a name also given to the following theorem, a cousin of the Law of Large Numbers.

Theorem 4 Convergence of Sums If the countable state space Markov chain X_1, X_2, \ldots, is ergodic with stationary distribution π, then from every initial state

$$\frac{1}{n} \sum_{i=1}^{n} h(X_i) \to E_\pi h(X)$$

provided $E_\pi |h(X)| < \infty$

Adding the property of reversibility will get us a Central Limit Theorem. A Markov chain is reversible if the distribution of X_{t+1} conditional on $X_{t+2} = x$ is the same as the distribution of X_{t+1} conditional on $X_t = x$. For any set B we have

$$\sum_{y \in \mathcal{X}} \sum_{z \in B} K(y, x) = \sum_{y \in \mathcal{X}} \sum_{z \in B} K(x, y)$$

so the transition probabilities are the same whether we go forward or backward along the chain.

15
Theorem 5 Central Limit Theorem If the countable state space Markov chain X_1, X_2, \ldots, is ergodic and reversible with stationary distribution π, then from every initial state

$$\frac{1}{\sqrt{n}} \sum_{i=1}^{n} [h(X_i) - E_\pi h(X)] \to N(0, \sigma^2),$$

provided $0 < \sigma^2 = \text{Var} h(X_0) + \sum_{i=1}^{\infty} \text{Cov}_\pi (h(X_0), h(X_i)) < \infty$.

6.2 Proof of Theorem 2

We will establish the three facts stated in the outline of the proof of Theorem 2, and fill in the gaps in the arguments. First, we show that the k Markov chains will coalesce at some finite time with probability 1. We adapt the proof presented in Thönnes (1999).

Recall that we have k coupled Markov chains, $X^{(1)}, X^{(2)}, \ldots, X^{(k)}$, where $X^{(j)}$ starts in state j (so one chain starts in each state of \mathcal{X}). As each chain is irreducible, we can find N_j such that

$$P(X_{N_j}^{(j)} = x | X_0^{(j)} = j) > 0, \text{ for all } x \in \mathcal{X}.$$

Set $N = \max\{N_1, N_2, \ldots, N_k\}$. It then follows that each chain has positive probability of being in any state at time N, and that for some $\varepsilon > 0$

$$P(X_N^{(1)} = X_N^{(2)} = \cdots = X_N^{(k)}) > \varepsilon.$$

Now run the CFTP algorithm in blocks of size N as follows.

(i). Starting at time $-N$, run the k coupled chains to time 0. If they have not coalesced

(ii). Starting at time $-2N$, run the k coupled chains to time 0. If they have not coalesced

(iii). \vdots

Define the event

$$C_i = \{ \text{The } k \text{ chains coalesce in } (-iN, -(i - 1)N) \}.$$

From the above argument we have that $P(C_i) > \varepsilon$. Moreover, the C_i are independent because coalescence in $(-iN, -(i - 1)N)$ only depends on $U_{-iN}, U_{-iN-1}, \ldots, U_{-(i-1)N}$ (which are independent of all of the other Us)
and does not depend on the initial states. This is because we restart each iteration from all states, allowing us to recreate the chains using only the Us. (This last point is crucial, and shows why we must run the chains from the past to the present. If we went forward, we could not restart in every state, so coalescence might depend on the initial conditions. Only by running the chains from the past to the present, starting one chain in each state, can we guarantee independence from the initial conditions, and hence the independence of the C_is.)

Finally, we observe that

$$P(\text{No coalescence after } I \text{ iterations}) = 1 - \prod_{i=1}^{I}[1 - P(C_i)]$$

$$< (1 - \varepsilon)^I$$

$$\to 0 \text{ as } I \to \infty,$$

showing that the probability of coalescence is 1. We can, in fact, make the stronger conclusion that the coalescence time is almost surely finite by noting that

$$\sum_{i=1}^{\infty} P(C_i) = \infty \Rightarrow P(C_i \text{ infinitely often}) = 1,$$

from the Borel-Cantelli Lemma.

We next show that for $j = 1, 2, \ldots, k$,

$$X_{-t}^{(j)} \rightarrow X \sim \pi \text{ as } t \rightarrow \infty \quad (2)$$

and

$$X_{-t}^{(j)} \rightarrow X_0^* \text{ as } t \rightarrow \infty. \quad (3)$$

Since $X_t^{(j)}$ is a Markov chain with a limiting distribution, $X_t^{(j)} \rightarrow X \sim \pi$ as $t \rightarrow \infty$. Now (2) follows by reversibility, that is, the forward chain and the backward chain have the same transitions.

Result (3) is a consequence of the fact that the CFTP algorithm starts with a Markov chain in every state. This means that the realization of any Markov chain starting at $-\infty$ will, at some time $-t$, couple with one of the CFTP chains and thereafter be equal to X_t^*. Therefore X_0^* and X have the same distribution and, in particular, $X_0^* \sim \pi$.

\blacksquare
6.3 Alternate Proof of Fill

We can view Fill as a rejection algorithm: generate and propose $X_0 = x$; then accept x as a draw from π if $C_T(z)$ has occurred. The proposal distribution is the T-step transition density $K^T(z, \cdot)$. Fill is a valid rejection algorithm if we accept $X_0 = x$ with probability

$$\frac{1}{M} \frac{\pi(x)}{K^T(z,x)} \text{ where } M \geq \sup_x \frac{\pi(x)}{K^T(z,x)}.$$

From detailed balance we can write $\pi(x)/K^T(z,x) = \pi(z)/K^T(x,z)$ and, since $\Pr[C_T(z)] \leq K^T(x',z)$ for any x', and hence $\Pr[C_T(z)] \leq \min_{x'} K^T(x',z)$, we have the bound

$$\frac{\pi(x)}{K^T(z,x)} = \frac{\pi(z)}{K^T(x,z)} \leq \frac{\pi(z)}{\min_{x'} K^T(x',z)} \leq \frac{\pi(z)}{\Pr[C_T(z)]} = M.$$

So we accept $X_0 = x$ with probability $\frac{1}{M} \frac{\pi(x)}{K^T(z,x)}$, which is quite difficult to compute. However,

$$\frac{1}{M} \frac{\pi(x)}{K^T(z,x)} = \frac{\Pr[C_T(z)]}{\pi(z)} \frac{\pi(x)}{K^T(z,x)} = \frac{\Pr[C_T(z)]}{\pi(z)} \frac{\pi(z)}{K^T(x,z)} = \frac{\Pr[C_T(z)]}{K^T(x,z)},$$

where we have again used detailed balance. But now, from (1), we have that $\Pr[C_T(z)]/K^T(x,z) = \Pr[C_T(z)|x \rightarrow z]$, exactly the event that Fill simulates.

Finally, note that the algorithm is more efficient if M is as small as possible, so choosing z to be the state that minimizes $\pi(z)/\Pr[C_T(z)]$ is a good choice. This, also, will be a difficult calculation, but in running the algorithm, these probabilities can be estimated.