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Abstract. The mintmum fill problem is to reorder the rows and columns of a given
sparse symmetric matrix so that its triangular factor is as sparse as possible. Equivalently,
it is to find the smallest set of edges whose addition makes a given undirected graph
chordal. The problem is known to be NP-complete, and no polynomial-time approximation
algorithms are known that provide any nontrivial guarantee for arbitrary graphs (matrices),
although some heuristics perform well in practice.

Nested dissection is one such heuristic. In this note we prove that every graph with
a fixed bound on vertex degree has a nested dissection order that achieves fill within a
factor of O(logn) of minimum. This does not lead to a polynomial-time approximation
algorithm, however, because the proof does not give an efficient method for finding the
separators required by nested dissection.

* Computer Science Department, Cornell University, Ithaca, NY 14853. Research par-
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1. Introduction. Let G be a connected, undirected graph with n vertices. An
elimination order on G is an ordering of the vertices which we will write as a one-to-one
function a : V(G) — 1,...,n. The filled graph G}, of G with respect to a is the graph
whose vertices are the vertices of G, and whose edges are all those edges {v,w} such that
there is a path v = vy, v2,...,v; = w in G with a(v;) < min(a(v),a(w)) for 1 < < k.
Thus G, is G plus some extra edges. The fill due to a is the number of edges in G:,.

The filled graph is useful in algorithms for sparse Cholesky factorization, which is a
version of Gaussian elimination used to solve systems of linear equations whose coefficient
matrices are symmetric and positive definite [15]. Suppose that G is the graph whose
adjacency matrix is the coefficient matrix A, with vertex v correspounding to row and
column a(v), and that L is the Cholesky factor of A (that is, L is the lower triangular
matrix with LLT = A). Then L+ LT is the adjacency matrix of the filled graph G,. To
perform Cholesky factorization efficiently in time and space, it is desirable to order the
rows and columns of A so that L will have as few nonzeros as possible; this corresponds
to choosing an order a for which G?, has as few edges as possible.

The minimum fill problem is, given G, to find a such that the number of edges in G,
is minimum. Yannakakis [17] proved this problem NP-complete. Little is known about
approximation algorithms for the minimum fill problem. Like graph coloring and the
maximum clique problem, a trivial algorithm gets within a factor of n of minimum; unlike
those problems, no polynomial-time algorithm is known that guarantees a solution within
even a factor of O(n/logn) of minimum. A greedy heuristic called minimum degree [3]
performs well in practice, but is known not to guarantee fill within a constant factor of
minimum on arbitrary graphs [8]. Another heuristic called nested dissection [3] performs
well in practice on some kinds of matrices, and guarantees fill at most O(n logn) on planar
graphs, two-dimensional finite element graphs, or graphs with a fixed bound on genus
[7, 16]. (Incidentally, it remains an open problem to determine whether minimum degree
guarantees O(nlogn) fill on all planar graphs, or even on a regular square grid graph.)

Nested dissection is a divide-and-conquer ordering scheme that uses cutsets called
separators, which are defined below. The theorem in this paper is that in any graph
of bounded vertex degree, the correct choice of separators leads to a nested dissection
ordering that guarantees fill within a factor of O(dlogn) of minimum, where d is the
degree bound. Unfortunately, this does not lead to a polynomial-time approximation
algorithm, because the proof does not give an efficient algorithm to find the separators
in question. Various heuristics are known to find separators, however (1, 2, 10], and this
result at least suggests that good separator heuristics are the right direction to lock for
good fill heuristics. Section 3 discusses directions in which it would be useful to strengthen
this result.

If G is a graph with n vertices, a separator for G is a set of vertices whose removal
leaves no connected component with more than n/2 vertices. Every graph has trivial
separators with O(n) vertices; classes of graphs with nontrivial separators include trees
[9], planar graphs [13], graphs of bounded genus [5], chordal graphs [6], and hypercubes
[4]. A balanced separator decomposition is a partition of the vertices of G into a tree of
separators, as follows. The root of the tree is a separator C for G. The subtrees are
balanced separator decompositions of the connected components of G — C. (The notation
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G — C means the subgraph of G induced by the vertices that are not members of C')

Separators can be used to construct elimination orders in a divide-and-conquer algo-
rithm called nested dissection, proposed by Alan George and extended and analyzed by
George, Liu, Lipton, Rose, Tarjan, and Gilbert [3, 7, 12]. A nested dissection order based
on a balanced separator decomposition with root C is an order that assigns the highest
numbers to the vertices of C (in any order), and numbers each subtree in nested dissection
order (recursively) with consecutive numbers. Intuitively, nested dissection orders limit
fill because no fill edges can join vertices in different subtrees of the tree of separators.
For example, planar graphs have nested dissection orders that limit fill to O(nlogn) 7,
12). Nested dissection orders are also useful for parallel sparse Cholesky factorization,
since they divide the problem into independent subproblems coupled only thrcugh the
separators [14].

A graph is chordal if every cycle of length at least 4 has a chord, which is an edge
joining two vertices that are not consecutive on the cycle. Rose [15] showed that a graph
G is chordal if and only if it has an order a for which G}, = G, that is, an order for which
no fill occurs. Finding a minimum fill order for an arbitrary graph is the same as finding
the smallest set of edges whose addition makes the graph chordal.

Gilbert, Rose and Edenbrandt [6] proved several separator theorems for chordal graphs
and weighted chordal graphs. The version we need is a special case of their Theorem 3.

Theorem 1 [B8]. Let G be a chordal graph with n vertices and m edges. Then G has
a separator C of O(/m) vertices such that every connected component of G — C has at
most n/2 vertices and at most 2m/3 edges. 1

(The theorem holds with en in place of n/2 and em in place of 2m/3, for any fixed
positive €.)

2. Main result.

Theorem 2. Let G be a connected, undirected graph with n vertices and maximum
degree d. There exists a balanced separator decomposition for G such that any nested
dissection order based on that decomposition gives a fill within a factor of O(dlogn) of the
mintmum fill for G.

Proof. Let a be a minimum fill order for G. Let H = G, be the filled graph for a, and
suppose H has h edges.

Form a separator decomposition for H as follows. Use Theorem 1 to find a separating
set C of size O(Vh) for H, such that every component of H — C has at most n/2 vertices
and at most 2h/3 edges. Let C be the root of the decomposition, and form similar de-
compositions of the components of H — C recursively. This decomposition is a balanced
separator decomposition for G. Let f be a nested dissection order based on it. Let K = GZ;
be the filled graph for 8, and suppose K has k edges.

We can bound k by an argument similar to that in Gilbert [4, Section 2.6]. It is easy to
show [7] that if {v,w} is an edge of K, with v in node A, of the separator decomposition
and w in node A, and B(v) < B(w), then A, is a descendant of A, in the tree ¢f separators,
and there is an edge {z,w} of G with z in a node A, that is a descendant of A4,. (We
include a node itself among its descendants.)
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First we count edges whose higher-numbered endpoints are in C. Each edge {v,w} of
K with w € C corresponds to some edge {z,w} of G with A; a descendant of 4,. Each
such {z,w} of G corresponds to at most cne {v,w} for each vertex v of G in a node on
the tree path from A, to C = A,. This tree path contains at most one node on each level
of the tree, so the total number of vertices of G on the path is

O(Vh +\2h/3+\/4h[9+---) = O(Vh).

Thus one edge {z, w} of G corresponds to O(vh) edges {v,w} of K. There are O(Vh)
vertices in C, each with at most d incident edges, so there are at most O(dh) edges of K

with higher-numbered endpoints in C.
Each edge of K either has an endpoint in C or is an edge of a component of K — C,
so k is bounded by the solution to the recurrence

k(h,n) = O(dh) + Y _ k(h;,n,),

where the sum is over the components of K — C, which satisfy h; < 2h/3, 3~ h; < A,
n; <n/2, and ), n; < n. This is actually a one-variable recurrence—it does not depend
on n—and its solution is k(h,n) = O(dhlogh). Since h is less than n?, this implies
k = O(dhlogn), so k is within O(dlogn) of minimum. g

3. Remarks. Many open questions remain, both about this result and about
approximate minimum fill algorithms in general. Can this result be tightened by a factor
of logn? Not every graph admits a balanced decomposition for which nested dissection
gives exactly the minimum possible fill; an example is an n-vertex path, for which nested
dissection gives a filled graph with nearly twice as many edges as minimum. However, I do
not know of a class of graphs for which every balanced decomposition gives a filled graph
that is too large by more than a constant factor. We may also ask whether the degree
bound is necessary in the statement of the theorem.

The main disadvantage of this result is that it gives no guidance in finding the sepa-
rators that give a good nested dissection order. A slightly stronger result than this one
would be to prove that an approximation algorithm for the minimum-size separator prob-
lem would necessarily give an approximation algorithm for the minimum fill problem. This
would be a step closer to finding a polynomial-time algorithm that guaranteed fill within
a nontrivial factor (i.e., o(n)) of minimum.

Fill is not the only criterion for a good ordering for sparse Cholesky factorization.
Another is arithmetic operation count, which is proportional to

Z ({w : @(w) > a(v) and {v,w} is an edge of G%}|)*.
vertices v

It may be possible to prove a result similar to this one for the minimization problem for
this measure; in practice, low fill and low operation count usually go together.

A third criterion is parallel depth, which is a measure of the degree of serial dependency
in a parallel elimination ordering. Parallel depth has been studied by Liu [14]; it can be
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defined as the length of the longest path in G, that is monotone increasing in ¢. In contrast
with operation count, orders that give small fill do not necessarily give small depth. For
example, the minimum-fill orders for a path of n vertices give depth at least n/2, while
a nested dissection order gives depth O(logn). The parallel depth of an order is at least
as large as the largest clique in G%; this can be used to show that every graph admits
a balanced decomposition whose nested dissection orderings have parallel depth within a
factor of O(log n) of minimum. A more detailed investigation of minimizing parallel depth
would be interesting.
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