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Abstract. We present the generalisation of some concepts in linear Chebyshev theory to the
nonlinear case. We feel these generalisations capture the inherent structure and characteristics of the
best Chebyshev approximation and that they can be usefully exploited in the computation of a solution
to the discrete Chebyshev problem.
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1. Introduction. A problem of the form:

(1.1) min max|fi(<)|

is called a discrete minimaz problem, where M is a finite index set. We seek to find
the minimum value for the maximum absolute function max;ep | fi(z)|.

In this paper, we are content to find a local minimum of (1.1) and we assume that
each fi(z) is continuously differentiable.

It is clear that a discrete Chebyshev problem (1.1) could be regarded as a special
case of a general minimax problem with:

(1.2) min max fi()

where

M={1,2,--- mm+1,---,2m},

fi+m($):—fi(x), z:l,,m
It is well known that problem (1.1) is equivalent to:

i
(1.3) subject to

z—f;(a:)ZO, ’iEM,

where 2 is an additional variable. The dimension of the variable space now becomes
n+ 1.
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Numerical methods for the discrete nonlinear Chebyshev/minimax problem are
less prolific than for the linear problem. Moreover, the maximum function () =
maX;epn fi(z) is not differentiable at kinks that arise whenever fi(z) = f;(z), i,j €
M, 1 # j. Therefore, traditional gradient type methods cannot be applied directly.

Existing numerical methods for discrete nonlinear Chebyshev problems could be
classified as first order methods, for which only the first derivatives are used, and
second order methods for which the Hessians of the functions whose value is equal
to the current maximum function are included. As we might expect, methods that
use approximations to these Hessians are also available. Most of these algorithms
have relied upon some general linear/nonlinear programming technique to solve a
linear/quadratic programming subproblem at each iteration.

A major class of first order methods establishes a linear subproblem at each
iteration and an algorithm for the linear Chebyshev problem is then invoked. The
methods of [1], [16] and [21] belong to this class.

The method of [7] is a first order method which uses an active set strategy. A
different approach was used in [2], where each subproblem is a differentiable least-pth
approximation problem.

A first order method is generally not sufficiently sophisticated for nonlinear prob-
lems because of its slow convergence rate. Second order methods have been considered
by various authors. Examples include [9], [12], [13], [14], [20] and [32].

If we omit the details of the different techniques for the line search and the second
order information approximation, the aforementioned second order methods can be
loosely classified into two classes.

The first class applies the sequential equality constrained quadratic programming
approach to the equivalent nonlinear programming problem (1.3). Examples are [9],
[20] and [32]. In [9], the subproblem is formulated in a more direct way in which the
objective function is taken from one of the maximum functions and the constraints
essentially make all the e-active functions ( i.e. within € of being active ) equivalent.
Each time the subproblem is solved as an equality constrained quadratic programming
problem, with an additional Newton step that attempts to make e-active functions
exactly active when close to a stationary point.

The methods of [13] and [30] are both based on the corresponding first order
method to solve the linear subproblems. The second order information is used when
one is near a stationary point and some equations established from the first order
optimality conditions are solved by Newton’s method. These methods require a switch
back and forth between solving the linear subproblem and the system of nonlinear
equations and they suffer the defect of being nondescent algorithms. Furthermore,
computationally, these methods are expensive in the sense that the calculation of the
search direction at each iteration requires the solution of a constrained linear minimax
problem. This normally requires an extensive number of inner iterations.

In summary, all the methods mentioned so far emphasize the role played by the
underlying mathematical programming problem.

However, the discrete Chebyshev problem has a rich structure. In [9] and [20],
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the special structure of the equivalent nonlinear programming problem (1.3) has been
emphasized in the sense that the original problem has a natural merit function, the
maximum function ¢(z).

The importance of the original structure of the Chebyshev problem in the design of
algorithms for linear Chebyshev problems has been recognised ( e.g. [5] and [27] ). We
would like to similarly exploit the structure of nonlinear Chebyshev problems. Hence,
one of the main objectives of this paper has been to recognise the characterisation of
the local solution from the computational point of view. The characterisation obtained
has a strong connection with Chebyshev theory and is equivalent to the Chebyshev
theory in the linear case.

2. Basic Notation. We introduce some notation.

We always use = and d to denote column vectors in R" while we use # to denote
scalars in R.

We also use V to denote the gradient operator with respect to z.

For a minimax problem (1.2), we define the maximum function by

¥(z) = max fi().

At any point z, we also refer to 1)(z) as the current mazimum deviation.

We use z & y to mean z is defined by y.
Cla, B] denotes the set of continuous functions defined on [, A].

DEFINITION 1. At any point z, the functions that achieve the mazimum deviation
are called the active functions. The active set is indezed by

(2.1) Az,0) = { 1| $(2) - fi(z) =0, I € M}.

The e-active functions are the functions that achieve the mazimum deviation within a
tolerance of €, a small positive constant. The set of e-active functions are

(22) Az, &) = { 1] ¥(z) - filz) <e, 1 € M}.

Given a vector set {v; | v; € R",i = 1,---,m}, the maximum number of vectors
within the vector set which are linearly independent is called the rank of the vector
set.

The sign function sgn(z) is defined as follows

1 ifz>0
sgn(z) =¢ 0 ifz=0 .
-1 ifz<O

We use A C B to denote A is a subset of B. Moreover, if A C B and A # B, we use
the notation A C B.
Subsequent notation will be introduced when it is needed.
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3. Chebyshev Approximation Theory. One common source of discrete Cheby-
shev problems (1.1) comes from function approximation.
A general one dimensional Chebyshev approzimation problem can be written as

(3.1) min max|¢(z, 1) - y(t)),

where T is a closed interval.

Discretising the problem on a finite set {¢1,---,%,}, we have:
(3.2) min max | fi(z)].

Here, M = [1,2,---,m]. Each fi(x) could be interpreted as ¢(z,t;) —y(¢;). Hence, the
discretised Chebyshev problem bears a close relation to the continuous approximation.

3.1. Linear Chebyshev Approximation Theory. When ¢(z,t) is in a finite
dimensional linear function subspace, i.e., ¢(z,t) = %, z;4,(t) where t € [a, f], the
problem (3.1) is termed a linear Chebyshev problem. In this case, there is an elegant
theory for existence, uniqueness and characterisation of the solution. Furthermore,
. there exist efficient algorithms to solve linear Chebyshev problems ( e.g., [3] and [4] ).
In this section, the results which are relevant to our discussion are summarised.

DEFINITION 2. Ann dimensional linear function subspace £ = span{¢:(t),- - -, dn(t)}
of Cla, B] is said to satisfy the Haar condition if and only if, for every nonzero
¢(z,t) € L, the number of roots of the equation ¢(z,t) = 0, as a function of t, within
[a, B] is less than the dimension of L.

There is a well-known theorem that characterises the best linear Chebyshev ap-
proximation explicitly ( see for example, [23], page 77 ).

THEOREM 3. [Characterisation Theorem]

Let £ be an n dimensional linear function subspace of C|a, B] that satisfies the Haar
condition and let y(t) be a continuous function on [, B] . Then ¢*(t) def é(z*,t) is the
best minimaz approzimation from L to y(t) if and only if there exist n+1 points {t:},
such that the conditions:

(3.3) a<tg<t<---<t, <P

and

(3.4) ly(t:) — ¢ ()] = lly(t) = ¢*(D)les 1 =0,1,---,m,
and

(3.5) Y(tir1) — 7(ti1) = —(y(t:) — ¢*(t:)), i =0,1,--,n—1,

are satisfied. Such a set of points {t;}, is often called an alternant of ¢*(t).
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DEFINITION 4. A reference is by definition a set {t;}7_, of n+1 distinct ordered
points

(3.6) a<t<t, <---<t, <P

Under the Haar condition, it can be proved that the corresponding values {¢(z,;)}
of any function ¢(z,t) in £ are related by a linear relation, called the characteristic
relation:

(37) AO(JS(:’:’tO) + /\1¢((L‘,t1) +--- 4+ Arl(ﬁ("z:atn) =0

with multipliers \; # 0 for j = 0,1, .-, n, where the \,’s are independent of x .

DEFINITION 5. Let ¢(z,t) be any function in L and f; = y(t;) — é(z,t;) be the
errors of the approzimation at the points t; of the reference {t;}. The function ¢(z,t)

is called o reference function with respect to the reference {t;} and the function y(t)
of and only if:

sgn(fi) = sgn(X;)  for all i, or
sgn(fi) = —sgn();) for all .

The levelled reference function with respect to a given reference {t;} is characterised
by the property that the errors { f;} have the same absolute value. The common absolute
value |f;| of the approzimation errors is called the reference deviation .

The reference deviation is always less than or equal to the maximum error [27].
The following theorem has been extracted from [23]( page 98 ) since it is useful
for later discussions.

THEOREM 6. Let £ be an n dimensional linear function subspace of Cla, (] that
satisfies the Haar condition, let {t;}7, be a set of reference points from [a, B that are
wn ascending order:

O!Sto<t1<"'<tn_<_ﬁ

and let {\}i, be a set of real multipliers that are not all zeros, and that satisfy the
equation:

Z /\i¢(xa ti) =0
1=0
for all functions ¢(z,t) in L. Then every multiplier is nonzero, and their signs alternate.

The following lemma illustrates that the reference function embodies the notion
of alternating signs.



LEMMA 7. Suppose ¢(z,t) = 3%, zi¢i(t) and the Haar condition is satisfied. Sup-
pose further ¢(Z,t) is a reference function with respect to a reference C and a function
y(t). Then, ¢(Z,t) — y(t) alternates in sign on the reference.

Proof. Follows directly from Theorem 6 and Definition 5. |

In terms of the reference, Theorem 3 can be stated as follows:

THEOREM 8. The function of the best approzimation is the levelled reference func-
tion with the mazimal reference deviation.

Computational methods for linear discrete Chebyshev problems have complied
with the linear Chebyshev theory in the sense that the numerical methods have de-
liberately or naturally searched for an approximation with the characteristics of the
best approximation.

3.2. One Dimensional Nonlinear Chebyshev Theory. The one dimensional
continuous nonlinear Chebyshev problem is described by

. (3.8) min max |4(z, ) — y(%)],

where ¢(z,t) is nonlinear in z and D C R" is a parameter space. We further assume
that ¢(x,t) is continuously differentiable with respect to .

Nonlinear Chebyshev problems have been much more intractable. The existence
of a best approximation is not guaranteed because, even when D C R" is compact,
the set {¢(z,t) | = € D} is often not compact under pointwise convergence ( see, for
example [25] ). The existence of a solution is not easily determined. An extended
linear Chebyshev theory holds only for a special class of nonlinear problems for which
the decidability of a problem belonging to the class is also difficult.

A first step in extending the linear Chebyshev theory was made by [19] and [28]
and further developed by [25]. The main results are described in this section, following
the terminology of [24] and [26].

As has been discussed in §3.1, any best linear Chebyshev approximation has
an alternant of degree n + 1 under the classical Haar condition. This important
characterisation has been generalised by [24] and [26] via the following five definitions.

DEFINITION 9. ¢(z,t) has Property Z of degree m at z if for every T # o,
¢(zo,t) — #(x,t) has at most m — 1 zeros for t € [a, B].

A function ¢(z,t) with Property Z of degree m at z, is a function that has a unique
interpolant over m points for the curve ¢(zo,t), if one exists. For linear Chebyshev
problems, the degree of Property Z is always n, under the classical Haar condition,
where D = R" and, of course, the interpolant always exists.

DEFINITION 10. A function ¢(z,t) is said to be locally solvent of degree m
at zo € D on [a,B] if given a set a < t; <t < -+ < tm < B and € > 0, there is a
6



6 = 6(zo,€,t1,t2,+ - ,tm) > O such that, for any set of m arbitrary numbers {y;}7,

|¢(x0)tj) - yJI < 5’] = 1) cee,Mm,
implies that there exists a solution x € D to the system é(z,t;) =y;, j=1,---,m,
with

max [¢(z,1) — d(zo, ) <.

The degree of local solvence describes a property of a function é(z,t), namely
that for any m points {y;}1*, close to {¢(zo,t:)}T", there always exists a ¢(z,t) in the
neighbourhood of the curve ¢(zo,t) that interpolates these m points. For the linear
Chebyshev family under the classical Haar condition, the degree of solvency is always
n, for D = R",

DEFINITION 11. A varisolvent function s a function ¢(x,t) which possesses
both of the properties in the Definition 9 and 10 with the same degree for each z € D.
* Thus ¢(z,t) has Property Z of degree m(z) at x, and ¢(z,t) is solvent of degree m(z)
at x. The degree of ¢(z,t) at = is the common degree of Property Z and local solvence.

It is clear that a linear Chebyshev family satisfying the Haar condition always
has local solvence of degree n. As a natural extension of the linear Chebyshev theory,
the following class of functions has been of interest.

DEFINITION 12. An approzimating function ¢(z,t), where D C R" and t € [a, ],
is said to be solvent of degree m if, given a set of distinct points {t;}7* C [a, 8] and
a set of m arbitrary numbers {y;}, there exists x € D such that

¢($,t,')=y,', i=1,--~,m.

Definition 12 differs from Definition 10 in that the solvability is global because
the set of numbers {y;}}" is not necessarily close to the curve ¢(zo, ).

DEFINITION 13. The approzimating function ¢(x,t), where D C R" and t € [, B],
is said to be a unisolvent function if (1) it is solvent of degree n, and (2) it has
property Z of degree n.

The linear Chebyshev theory has been extended to the family of unisolvent ap-
proximating functions as follows.

THEOREM 14. [24] ( page 73 )
Let ¢(z,t) be a unisolvent function on [0,1] with n parameters, and let y(t) be
continuous on [0,1]. Then
7



(i) y(t) possesses a best Chebyshev approzimation ¢(z*,t);

(it) ¢(z*,t) is a best approzimation to y(t) if and only if there are n + 1
points upon which the magnitudes of the errors achieve the mazimum
and the signs of these errors alternate;

(1ii) the best approzimation is unique.

For the varisolvent approximating function, the following characterisation for a
best Chebyshev approximation exists.

THEOREM 15. [26] ( page 10 )

Let ¢(z,t) be a varisolvent function with degree m(z) at x € D. Assume T is any
compact subset of [0,1]. Then the function ¢(z,t) is a best approzimation of y(t) on T
if and only if there are m(z)+ 1 points upon which the magnitudes of the errors achieve
the mazimum and the signs of these errors alternate.

Note that using the interval [0,1] in Theorem 15 implies no loss of generality.
Under certain conditions, the varisolvent approximating function is the only type
. of function that has a degree which gives a characteristic number of alternations of
best approximation. Furthermore, it has been shown that unisolvent functions are
the only approximating functions satisfying a certain closure hypothesis to which the
elegant linear theory may be extended. In this case, an approximation having an
alternant of n+1 points is necessary and sufficient for a best approximation ( see, for
example, [25] ).

Rational functions and exponential functions are varisolvent functions. However,
in general, determining whether a function belongs to the class of varisolvent functions
is not trivial.

Thus, under certain conditions, the best nonlinear approximation also possesses
special properties which are similar to those of best linear approximation. In such
cases, theorems 14 and 15 give explicit characterisation of the best nonlinear Cheby-
shev approximation.

4. Structure of the Solution to Minimax Problems. For certain class of non-
linear Chebyshev approximation problems, the existing nonlinear Chebyshev theory
gives explicit descriptions of the properties of the solution. However, since the char-
acterisation depends on the degree of solvency, which is unknown and varies with the
parameter z, it is difficult to exploit these properties computationally. Furthermore,
the nonlinear theory is restrictive in the sense that many approximating functions are
not varisolvent and moreover, the theory cannot be applied to discrete Chebyshev
problems.

We have stated that, under the classical Haar condition, the concepts of reference
and reference function together with extreme points uniquely describe a best linear
Chebyshev approximation.

The concept of reference is essential in describing the structure because it pro-
vides us with a template upon which the characteristic equation is satisfied. Further
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requiring an approximating function with the signs of the errors the same as those of
the corresponding multipliers completes the characterisation.

We feel that the reference and reference function characterise the best linear
Chebyshev approximation more fundamentally than the explicit alternating sign prop-
erty. As long as the approximating function satisfies certain conditions, the alternat-
ing sign property becomes a natural consequence of the fact that the signs of the
multipliers in the characteristic equation alternate.

In this section, we extend the concepts of linear Chebyshev approximation to a
general nonlinear Chebyshe problem ( discrete or continuous ). The extension also
applies to minimax problems.

Let us again consider an n dimensional linear function subspace

L = span{¢:(t), -, dn(t)}.

For any function ¢(z,t) € L,
#(z,t) = zn:$i¢i(t)-
=1

Given a reference ¢y < t; < -+ < t,, the characteristic equation (3.7) can be
equivalently written as

Aodo + Aay + -+ + Apa, =0,
where
a; = [$1(t;), -, $n(t)]".
Since
Vé(z,t;) = aj,

the characteristic equation can also be written as

(4.1) i)\jVQS(x,tj) = 0.

7=0

The gradient space with respect to the parameter z € R

o¢(z,t 0¢(z,t
J:span{%,...,%(j_)

1s equivalent to

J = span{@x(t), -, én(t)}.

Therefore, the gradient space uniquely determines the family of approximating func-
tions for linear Chebyshev problems.
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We now consider a continuous one dimensional nonlinear Chebyshev problem
written as in (3.8).

DEFINITION 16. [18] At any point zo, the linear gradient space J(t) of ¢(z,1)
refers to

J(t) = {ixiw, NER}

8¢(z0,t) 3¢(z0,t)}
oz; = Oz,

= span{
The dimension of this linear function space defined on t € [a, B] is denoted by d(zo).

For a linear space £ with the classical Haar condition, d(z) = n, for all z € R".

In contrast to a linear Chebyshev problem, the gradient space of a nonlinear
Chebyshev problem does not uniquely describe the family of approximating functions.

In the discrete case, where f;(z) = y(t;)— ¢(z, t;), instead of considering the whole
gradient function space J(t), we consider the following set of vectors denoted by the
" rows of the Jacobian matrix:

[ 8fi ... BA
T o Oxn
J(t1,t2,"',tm) — . .
Afm dfm
[ VT
| V%

Here we consider the gradients of the error functions fi(z) instead of those of the
approximating functions ¢(z,t;) because, for a discrete problem, we often do not have
the corresponding ¢(z,t;). Since the gradients are with respect to the parameter , it
is easy to see their equivalence. For linear Chebyshev approximation, if the classical
Haar condition is satisfied, then any n X n submatrix of J is nonsingular.

An important concept is now introduced.

DEFINITION 17. The vector set C = {Vf;,---,Vf,}, where the gradients are
evaluated at a given fized point z, is called a cadre if and only if:
1. ra'nk([vfioa T ,Vfi,]) =1
2. for any {vfju T ijz} c¢, rank([ijl, Tt ijz]) =l
Thus the concept of a cadre is a local one although frequently the argument z
will be omitted, its value being understood from the context.

The vector set C which is a cadre according to Definition 17 is sometimes referred
to as the minimum H-set [6].
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DEFINITION 18. For continuous Chebyshev problems (3.8), the set of points {t;;}}
is called a point cadre, at z, if and only if {Vf, -, Vf,} is a cadre, where f;,(z) =
y(tij) - ¢(m,tij)7 ] = 0’ ) l.

REMARK 19. Consider the linear Chebyshev approzimation where
£ = span{$i(2), -, du()}. If $(x,1) = T, 2:6i(t) € L, then

$1(t1), -+, oa(t1)
J(tly"’,tm)T:' . . .

¢1(£m)a "-', ¢n(tm)

Thus, a point set {ti,---,t;} is called a point cadre if and only if the gradient vectors
{vo, -, v} form a cadre where

é1(ti;)

bultis)

" Of course, here the cadre is independent of x. In [11], the point set {t;,--- ,ti} has
been called a cadre for a continuous linear Chebyshev problem. Desclouz [11] introduced
the concept of the cadre in the linear Chebyshev problem to describe the optimum when
{#1(2), - -, dn(t)} is not a Chebyshev set (i.e. the Haar condition is not satisfied). Since
we want to generalise Definition 17 to nonlinear discrete Chebyshev problems in R", we
prefer to refer to a cadre as a vector set and use the point cadre, in the continuous case,
to signify the set of points whose corresponding gradients form a cadre.

For one dimensional linear Chebyshev problems, a reference is defined to be any
n + 1 distinct points on the real line. Suppose that the classical Haar condition is
satisfied, then any reference is a point cadre by Definition 18. Therefore the concept
of point cadre could be considered to be a generalisation of the reference.

The rank of the cadre has essentially the same role as the largest degree of local
solvency for continuous Chebyshev problems. Assuming the approximating function
¢(z,t) is differentiable, if ¢(z,t) is a unisolvent function of degree n, then, at any
point z, the gradients at any n+1 points {V¢(z,t;,), -, Ve(z,t;,)} is always a cadre.
If ¢(z,1) is a varisolvent function, at any point z, the gradients at any ! points, where
l is the degree of solvency at z, is a cadre of rank [ — 1.

The following lemma provides a way of identifying a cadre.

LEMMA 20. A vector set C = {a;y,---,a;} is a cadre if and only if rank(C) =1
and there exists {\; #0,5 =0,1,---,1} such that

l
Z )\ja;]. = 0.
7=0

Proof. Necessity follows directly from the definition of the cadre.
11



Without loss of generality, suppose {a;,,- -, a;} is linearly independent. Assume
C is not a cadre. Then a subset of cardinality [ is rank deficient. Assume that
{aiy,- -+, ai_,} are linearly dependent. Since {a;,,---,a;_,} are linearly independent,
we have

-1
Aiy = Z Gja,-j.
i=1
By assumption, however,

l
ZAjaij = Oa Aj ?é 0
rd
Thus
l
a;0=25\ja;j, with A;#0, j=1,---L
J=1

Hence, we have
-1 . .
Z(Gj - )\j)a,'j - /\1(1,', = 0.
j=1

This is a contradiction since \; # 0.
The lemma has been proved. ]

DEFINITION 21. Assume C = {Vfi,---,Vf;} is a cadre. The multipliers {);}
satisfying

!
(4.2) S AV, =0, A\;#0, j=0,1,---,1,
Jj=0
are unique up to scaling. We normalise the multipliers as follows
(4:3) =0 i =1 i Tig X #0;
/\0 = 1 Zij:g /\j == 0;

We call such a normalised set {)\;}},, which is unique, the cadre multipliers associated
with C.

The relation (4.2) is also called the characteristic relation ( cf. (3.7) ).

Cadre multipliers are essentially different from the Lagrangian multipliers which
are used in optimization. The Lagrangian multipliers are only defined at a station-
ary point. The cadre multipliers are associated with any cadre, and are not even
necessarily based upon the active functions. Hence, we deliberately use the term
cadre multipliers instead of just multipliers in order to differentiate them from the
Lagrangian multipliers.

12



In the linear Chebyshev theory on R", it is clear that, in addition to the concept of
degree of solvency which is always n, the alternating sign property is also important.
This is captured by the concept of the reference function in the linear Chebyshev case.
Now, we generalise this concept as follows.

DEFINITION 22. A function &(t) o #(zo,t) is called a reference function at the
point xo, for a one dimensional dimensional continuous Chebyshev problem (3.8), on
the point cadre C = {t,,,---,t;}, if and only if

{ sgn( fi;(z0)) = sgn(};)  forj = 0, ---, I, or
Sgn(fij(-’l?o)) = —sgn(A;) forj =

where {A;}{, is the set of the cadre multipliers and f;;(xo) is the residualy(t;;)—¢(zo, ti;).
A reference function is called a levelled reference function if the absolute residuals
at each point in the cadre are the same.

o
-
-

~
-

In general, it is not known whether the alternating sign property holds for a
reference function on the cadre on which it is defined. Intuitively, it can be considered
" that we wish to know the number of “peaks” that characterise the optimal solution
and moreover, from the geometry, it is natural that these peaks alternate in sign
because in some sense one needs to average the maximum peaks.
In the discrete case, a similar concept is introduced.

DEFINITION 23. The set of functions {fi;,(z), j = 0,1,---,1} is called a reference
set of the discrete Chebyshe problem at y if and only if C = {Vf;(y), -+, Vfi(y)} is a
cadre and

{sgn(fe,»(y))=syn()\j) forj =0, 1, or
sgn(fi;(y)) = —sgn(A;) forj =0, -+, |,

where {;}} is the set of the cadre multipliers. Furthermore, the reference set is called
a levelled reference set if the magnitude of each function is the same, viz.,

[f()l = 1fa(W)l,  for any ij,ix € C.

REMARK 24. The concept of reference set is totally different from the concept of
reference. A reference set is a set of functions of the parameter x. A reference however,
refers to a set of values of the variable t. A reference set corresponds to a special cadre
on which each residual has the same sign as the corresponding cadre multiplier. A cadre
however, is an extension of the reference concept to nonlinear problems.

REMARK 25. Suppose we have a discretised problem. A reference set {fi;(z)} then
corresponds to the functions {¢(z,t;)} obtained from a reference function {¢(z,t)} on
the point cadre {t;;}. A reference set is therefore a discretisation of a reference function
on the cadre.
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The definition of a reference set can also be extended to the general minimax
problem.

DEFINITION 26. The functions {fi,(z), j =0,---,1} are said to be locally forming
a reference set of a minimaz problem (1.2) if C = {Vfi,---,Vfi,} ts a cadre such
that
1. The cadre multipliers {\;} satisfy \; >0, j =0,---,1;
2. The functions {fi,(z)} all have the same sign.
The reference set is further called a levelled reference set if the value of each function
s the same, viz.,

f‘j(x) = fik(x)? fOT‘ any ij’ 1 € C.

It can be proved easily that if a discrete Chebyshev problem is considered as a min-
imax problem, Definition 26 reduces to Definition 23. Note that the correspondence
fizm(z) = —fi(x) is taken care of since we must have that all A; > 0.

As we have stated in § 3.1, under the classical Haar condition, the best linear
Chebyshev approximation is a levelled reference function with the maximum devia-
“tion. This can be generalised to the nonlinear Chebyshev problem.

Consider a linear Chebyshev approximation problem under the Haar condition.
Then, given any point cadre ( equivalent to a reference in this case ), there exists
a unique levelled reference function defined on the point cadre and we say that the
reference function ¢(z,t) is spanned on the point cadre {to,---,%,}. For the nonlinear
Chebyshev problem, however, whether a set of points forms a point cadre depends on
the parameter = as well. Thus, the cadre itself becomes a local property. Furthermore,
it may or may not be possible to establish a levelled reference set upon the cadre.

We have generalized the reference and reference function concepts to a general
discrete Chebyshev problem and the minimax problem. Moreover, we believe that
these concepts continue to characterise the best Chebyshev approximation.

For the linear Chebyshev approximation problem with the Haar condition, it is
trivial to see that a reference set uniquely corresponds to a function whose errors
alternate in signs on n + 1 points.

5. Optimality Conditions for a Local Minimum of a Minimax Problem.
In this section, we review the optimality conditions for minimax problems. We also
establish more precise first order necessary conditions and hence recognise that the
structure and characterization which are important to the best Chebyshev approxi-
mation carries over to a local minimum of a minimax problem.

THEOREM 27. ( First Order Necessary Conditions )
If z* is a local minimizer of (1.2) then there exist multipliers {\;} such that

(5.1) Z )\,-Vf,'(x*) =0

i€EA(z*,0)

14



(5.2) > =1

i€ A(z*,0)
(5.3) >0, i€ Az*,0).

DEFINITION 28. Define a function

(5.4) L(z,)) = }_ Xifi(2),
JEM
This function is then called the Lagrangian function for the minimaz problem (1.2).
At any local minimum of (1.2), there ezists a set of multipliers {)\;} satisfying the
above first order necessary conditions (5.1), (5.2) and (5.3). These {\;} are called
Lagrangian multipliers.

These necessary conditions could be more precisely stated in the following theo-
rem.

THEOREM 29. Suppose z* is an optimal solution to a general minimaz problem.
Then, there exists a set of | + 1 functions such that
(1)' fij(x*) = ’Lb(.’E*), J = Oala"'vl;
(2). Tieo \iVfij(z*) =0;
(3). A; >0, 7=0,1,---,1;
(4). rank([Vfi(z*),- -, Vfi(z*)]) = L.

A similar theorem has been stated in [22] for linear Chebyshev approximation. A
proof of Theorem 29 can be found in [15] or [29].

DEFINITION 30. A point z* is called a stationary point of a minimaz problem
if and only if there exists a set of  + 1 functions such that the statements (1)-(4) of
Theorem 29 are satisfied.

In terms of the reference set, the necessary optimality conditions for a local min-
imum is summarised as follows.

THEOREM 31. Suppose z* is a local minimum for a minimaz problem (1.2). Then,
there ezists a set of I + 1 functions {fi,(z),- -, fi,(z)} which is a levelled reference set
at z* on the cadre C = {Vf; (z*), -, Vf,(z*)} with the mazimum deviation.

Proof. This follows immediately from Definition 26, Lemma 20 and Theorem 29.
[

At an optimum, the cadre multipliers associated with the cadre
{Vfi(z*),---, Vfi(z*)}, fi;(z*) = ¢(a*), are identical to the non-zero Lagrangian
multipliers.
15



This theorem illustrates the importance of the levelled reference set for the com-
putation of a local minimum for Chebyshev problems.

Although it is true that Theorem 31 is equivalent to the first order necessary
conditions, it is a characterisation of the local solution from another angle. Through
this characterisation and the experience with the linear problems, we realise the key
properties an efficient algorithm should attempt to construct, namely the reference
set. Hence, as has been done for linear Chebyshev problems, we hope to design an
efficient algorithm for the nonlinear problem.

In terms of continuous Chebyshev approximations, a reference function is an
approximation function which satisfies the first order necessary conditions on a cadre
without requiring the function values on the reference to be equal to the maximum
deviation. A levelled reference function is a reference function whose function values
on the reference are equivalent. A solution or a best approximation function is a
levelled reference function with the maximum error achieved on the reference.

Therefore, a natural approach to finding a solution is as follows. Firstly, a cadre is
located. Then, a reference set is constructed based on the cadre. Thirdly, a reference
set is levelled.

We believe the extensions are particularly important from the computational
point of view. In § 7, we will show how to exploit these characterisations but we first
give a definition of degeneracy.

6. Degenerate Chebyshev Problems. For Chebyshev problems, degeneracy
is a common occurrence.
We consider the general minimax problems of the form

(6.1) Im%lg%%xf(x,t)

where D C R" and 7 C R. Note that 7 can be either connected or not.

DEFINITION 32. A minimaz problem (6.1) is termed nondegenerate at a point
xo if and only if either the set of all active function gradients form a cadre at zo or the
gradients of the active functions {Vf(zq,t;),7 € A(z0,0)} are linearly independent.

If, at a local minimum z*, the minimax problem is nondegenerate, then the cadre
uniquely determines a levelled reference function. Otherwise, a cadre does not com-
pletely determine the structure of the solution, although the characterisation is still
on a cadre.

The definition of degeneracy is for any minimax problem, continuous or discrete,
linear or nonlinear.

In [22], the singular continuous linear Chebyshev problem has been studied. A
Chebyshev problem is called singular if, at the optimum, the set of extreme points
has cardinality less than n +1. We point out that the notion of singular is essentially
different from our concept of degenerate.
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For degenerate problems, there may be several cadres included in the set of ex-
tremal points at the optimal solution. Some of them might not satisfy the optimality
conditions, but at least one of them does.

7. Computational Exploitation of the Structure and Characterization.
We have established, algebraically, the structure and characterization for the solu-
tion of a minimax problem. We now investigate the possibility of computationally
exploiting these properties.

We consider algorithms which always decrease the maximum function ¥(z).

We will show that, for a discrete Chebyshev problem, it is possible to exploit the
above properties in the sense that we can attempt to construct a levelled reference
set and decrease the maximum function at the same time.

It is assumed that a discrete nonlinear Chebyshev problem

min max |fi(z)|

is considered as the minimax problem

(7.1) min max fi(z),
where
m = {1a am}a

M={1,2,---,mym+1,---,2m},

fi+m(m) = _fi(w), ? =17"°>m’

although, from a computational point of view, this is done implicitly rather than
explicitly. The reference set is defined according to Definition 26.

7.1. The Importance of Exploitation. For the linear Chebyshev problem ( with
the Haar condition satisfied ) and the varisolvent nonlinear Chebyshev approximation
problem, a certain number of extreme points together with the alternating sign prop-
erty uniquely determine a solution.

For function approximation problems or its discretised version, finding approx-
imating functions with the structure of the best approximation is important. For
other problems such as random problems, the importance is less obvious because two
approximations with similar structure might be quite different since the continuity is
lost.

As an example, let us consider the second Remez algorithm. Assuming the clas-
sical Haar condition, this algorithm for continuous linear Chebyshe approximation is
a quadratically convergent method and usually finds a solution quickly ( see, e.g. [8],
page 97 ). We point out however, that the fast convergence of the Remez algorithm
does not only come from the final iterations but is also a consequence of its global
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performance. At each iteration, the algorithm finds a set of n + 1 points attaining the
local minimum and local maximum residuals alternatively. These n 4+ 1 points always
constitute a point cadre and moreover, the corresponding functions form a reference
set. Hence the alternating sign property holds. Then a levelled reference function is
found by requiring

(72) zn:wi¢i(tij) + (_1)16 = y(tij)’ .7 = 0’ 1, T, N,
i=1

and z is in fact the Chebyshev solution on the reference {t;;}7,.

It is easy to observe that the structure of the characterisation of the best approx-
imation has been exploited in the second Remez algorithm.

The general Remez algorithm is very expensive because it requires finding n+1
points upon which the errors achieve the local maximum and local minimum residuals
alternately. In addition, it is also difficult to extend the general Remez algorithm to
solve nonlinear Chebyshev problems ( see, for example, [31], page 199 ). For linear
Chebyshev problems, the number of points an approximating function can uniquely
interpolate is always n. For continuous nonlinear Chebyshev approximations, however,
" the degree of the approximating function ¢(z,t) varies with the parameter z. Since the
Remez algorithm requires the degree of the function ¢(z,t) to be known in advance,
for nonlinear Chebyshev problems, it could be applied in a straightforward manner
only when the approximating function ¢(z,?) is a unisolvent function ( which always
has degree n ).

In spite of the difficulties and the cost of the Remez algorithm, the fast conver-
gence of the second Remez algorithm for continuous linear approximating functions
or even for the unisolvent family does demonstrate the importance of exploiting the
structure of the best approximations in algorithms for continuous Chebyshev prob-
lems.

Our experience with the linear Chebyshev problem [5] has also led us to believe
that, for Chebyshev problems, it is important for an efficient algorithm to utilise,
whenever possible, the structure and characterisation of the solution. In particular,
constructing a reference function and its levelling are both important steps of the
solution finding process.

7.2. The Working Set. If we assume any stationary point is a nondegenerate
local minimum, finding a local minimum of the Chebyshev problem is equivalent to
locating a levelled reference set including all the active functions.

DEFINITION 33. A working set W = {io,1,,---,%;} at a given point z is an indez
set of the functions which includes those of all the e-active functions and is such that
the following Jacobian matriz

A= [vfio - vfin"'avfio - Vfil]

evaluated at x, is of full rank.
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Thus, in the nondegenerate case, a point z* is a stationary point if and only if
there exists a working set at z* which forms a levelled reference set.

Ideally, the best working set, W, approximating the structure at optimality is
some reference set which includes all the current active functions. This corresponds
to solving the problem

min || 3 AV

iEM
subject to

=1, \N>0, Vie M,
1EM

Xi >0, Vie Az*,0).

If the minimum value is zero, W = { ¢ | A\; > 0 } will be the desired working set.
Unfortunately, it is relatively expensive to solve this problem and the existence of
. such a set is in general not guaranteed.

By Definition 26, a reference set is a function set, the gradients of which form a
cadre and the signs of the functions are the same. We assume, for now, that we have
ways of constructing the working set and we are able to identify whether a cadre has
been located. Thus, assume that we have located a working set whose gradients form
a cadre. Now we are going to see if we can construct a levelled reference set based on
this cadre.

7.3. Levelling a Reference Set. Assume W = {io,1,---,%;} is a working set
and all the functions in W form a reference set, not levelled. Then, moving along the
direction v which is a solution to

(7.3) fi(@) + Vfiv+€E=0

levels all the functions in W, up to the first order. Equivalently, the direction v can
be defined by

(7.4) v=—A(ATA)1®(z),
where

A= [vfio - Vfin"',vfio _Vfil]’

fio(@) = fu (2)

@(:l:) _ fio(m)—fiz(w)

. b

fiolz) = fulz)
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and 79 € A(z,0). We call v a vertical direction. If a unit step along v is taken,
®(z) + ATv =0,

then the functions in W would all have the same value, up to first order.
In this section, we will prove that the vertical direction obtained from a reference
set is always a descent direction. First, we describe the following result.

LEMMA 34. Let K be the convez hull of {a;}\_,. The system of linear inequalities:
a;lr <0, i=0,---,1

15 inconsistent if and only if 0 € K.
Proof. This follows from Gordan’s theorem ( see page 31, [17] ). n

Essentially, the lemma says that if zero is in the convex hull of a vector set
{a:}!_,, there exists no direction which decreases or increases all the linear functions
{a;Tz, i € K} simultaneously.

Assume W = {u,i1,---,4}. Thus | < n. It is clear that if W corresponds
' to a reference set, then 0 € Conv(Vf,, Vfi, -+, Vf;,). On the other hand, if 0 €
Conv(Vf,, Vfi, -+, Vf,) and {Vf,, Vfi,---,Vfi} is a cadre and the functions in W
have the same sign, then W is a reference set.

The importance of the lemma can be appreciated as follows. Suppose W is a
working set corresponding to a reference set. If we level the functions in W, we
cannot do this by increasing or decreasing all the functions in W together. Thus, the
only way in which these functions can be levelled is by decreasing the functions that
are maximum and increasing some functions that are not.

Now we obtain the following very important property of the Chebyshev problem
that justifies moving along the vertical direction when a reference set has been located.

LEMMA 35. Suppose the functions in W form a reference set which includes all
-the current active functions. Then, the vertical direction defined from W is a descent
direction for all the active functions if the reference set is not levelled.

Proof. Assume W = {pu,t,---,1;}, where f,(z) attains the maximum deviation
at . Therefore,

fi(z) < fu(z), 1t € W.

Furthermore, because W is not a levelled reference set, there exists at least one v such
that

fi(2) < fu(z), eW.

Since W is a reference set, there exist {);}!_, satisfying

i
)\OVf“ + Z )\,Vf,-j =0,
J=1
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where
l
Aj>0, j=0,--',l, and E/\]-l-Ao:l
=1

Therefore
V= DMV V).
=
By definition of the vertical direction (7.4),
Vifv = ZI;/\j(Vfu — Vfi;)To
=

1
= —E)‘j(f# - fij)
=1
< 0.

. Hence v is a descent direction for f,(z).
For any fi = fu, ¥k € W by hypothesis, and

(Vfu— Vfi;)Tv =0, where k = i,.
Thus
Vi, Tv =V Tv <0

and v is a descent direction for all the active functions. n

The fact that the vertical direction which levels functions in a reference set is also
a descent direction is an important property, exploitation of which is desirable in an
efficient algorithm.

We conclude this section by stating the following corollary of Lemma 35.

COROLLARY 36. The direction which levels a reference set W

fy - fij + (Vfu - Vfij)Td =0
always decreases the mazimum deviation A= max;ew f;j(z) of this reference set.

7.4. Construction of Reference Sets. If the working set W corresponds to a
cadre C but not a reference set, we want to be able to construct a reference set.

Assume W = {io, %, - -,4;}. By Definition 33, A(z,e¢) C W. If W is a cadre but
yet not a reference set, by Definition 26, this means that either a function value or a
multiplier has the incorrect sign, or both.

If A\; >0, =0,---,l, and some function f; (z) has the wrong sign, then, as we
will see below, ( Lemma 38) simply continuing to level the functions will lead to a
reference set.

21



Assume W = {iq, 11, -+, 01} and C = {Vf,---,Vf,} is a cadre. There exists {),}
such that

l
Zx\ijij=0,, Aj#0, 3=0,---,1
J=0

and

i%:{ 1 if S o\ #0;

= 0 otherwise.

Suppose Ax < 0. This suggests that f;,(z) should be exchanged with —f;, (). It
is important to note that the new set YW thus obtained is not a reference set because
the function values {fi;(z), :; € W} do not have the same signs ( cf. Definition 26 ).

If the working set W = {y, ¢y, --,4;} is a non-reference-set cadre and {)o, - -, \}
are the cadre multipliers, we define a new set W as follows:

Let W—0. Forj=0,---,1do
W —Wu {5;} if \; >0,
W WU {ij+m} if \;j<0andi; <m,
W e—Wu{i;—m} if\;<0andi;>m.

(7.5)

It is clear that ¢ = { Vf; | i € W} is also a cadre.

Now we demonstrate that, when W is not a cadre, levelling the functions in W
(up to first order) is constructive.

LEMMA 37. Suppose (7.1) is a discrete linear Chebyshev problem. Suppose {a;y,---,a;}
is a cadre, where a;; = Vf;. and W = {io,- -, 41} includes the indices of all active func-
tions. Assume W is obtained from (7.5). Then, after levelling the functions in W,
i.€.,

a%;:c—lr-{:bkj, kieW

( or equivalently a?;:v + 0 = bi;, 1; €W, where 0; = sgn(};) ) the functions in W
form a levelled reference set.

Proof. Assume W = {iq, 1, -,4}. From (7.5), W = {ko, k1, - - -, k;} where

ij lf/\J>0
tj+m ifd;<0andi; <m .
tj—m if \; <O0andi; >m

ki =

J

By the definition of k;, there exist positive multipliers {6; = o;A; >0, 7 =0,---,1}
such that

l
(7.6) Zﬁjakj = 0.
7=0
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Initially, { fx,(),- -, f,(z)} is not a reference set because the condition fi,(z)i(z) >
0 for all k;,5 = 0,---1is violated. Consider the linear system of equations

(7.7) age+é=by, k€W

Since ax; = 0ja;;, it is clear the transpose of the coefficient matrix

AT=|:aio aiz]

Oo e O]

has the same rank as that of

Furthermore, from (7.6), {Vfk,,- -, Vfy} is a cadre with the cadre multipliers sum-
ming to 1. Hence, the solution ; to

is unique up to a scaling. Hence, there does not exist §; with some 6; # 0 such that

! !
fjar; =0, where » 6;=0.
0 7=0

=

Thus, A, and hence A, is of full rank I+1. Since there are I+1 equations, we know the
above linear system has at least one solution and the functions in W can be levelled.

Assume  is a solution to (7.7). After the functions in W are levelled, the residuals
fr;(2) = afja“: — bi; have the same sign as {. Thus, W is a reference set at z. This
completes the proof. [

The lemma is true only in the linear case. For a nonlinear discrete Chebyshev
problem, since the gradients will be changed, the characteristic relation (7.6) does
not necessarily hold. However, for a nonlinear problem, it is still a constructive step
towards finding a reference set since it could be considered that the characteristic
relation holds approximately, at least in the neighbourhood of small changes.

From W, a new set W which would be a levelled reference set if the function
values were equal, is defined by (7.5). Thus, we attempt to construct the reference
set by levelling the functions in W via satisfying

fkj(:t) +¢{=0, k; e W.
Let 0; = sgn()\;), for j = 0,---,1. From the definition of W, the above is equal to

Ujf,'j(.’t) +¢=0, 1; €EW.
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Thus, the direction v defined by
(7.8) [Vfu— 000V i Tv = ~(fu — 000;fi;), G5 €W, i;# i,

attempts to level the functions in W. We refer to f,(z) as a representative function.
Equivalently, we can write (7.8) as

A

Ay = -9
-fl = [Vfu— 0001 Vfi,- -~ y Viu— oo V] .
® = [fu— 0001 fir,  , fu — 0001 fi))T

Next, we will see that this direction, v, is a descent direction for the maximum function

P().

(7.9)

LEMMA 38. Suppose C = {Vf,, Vfi,---,Vf,} is a non-reference-set cadre with
cadre multipliers {\;} summing to one and f.(z) achieves the current mazimum de-
viation for (7.1). Then, the vertical direction defined on W = {u,i1,---,4} by (7.9)
decreases all the active functions, assuming A(z,0) CW.

Proof. Suppose f,(r) = (). By assumption, C = {Vf,, Vf,,---,Vf,} is a cadre
and there exist cadre multipliers {); # 0} such that:

i 1
)\OVf“ + ZAij,‘J. =0, Z /\j = 1.

j:] j=0
Denote
Uj:sgn(’\j)a 7=0,1,---,1L
Consequently
1
(7.10) AoViu+ D 0000;(000;Vfi;) = 0.
i=1
Denote

l
s = )\0+2000j/\j-

J=1
Then sgn(s) = oo. Substituting for Ao, dividing both sides of (7.10) by s and denoting

0'00'_,'/\]'

6; =

>0, j=07"'717

we obtain that

l 1
(7.11) 201 = 1, and Vf“ = ZO,(Vf,, - O'OO'J‘Vf,'J.).
i=1

=0
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Using (7.8), we have
!
(7.12) Vv = =3 8i(fu— 000ifsy).
=1

We now prove Vf:{ v < 0 by considering the following two cases:
Case-I f;; = —f,, for somei; € W.
In this case, define

={btm Ausr
Thus
kj € A(z,0) C {u,11,---,u}.
Since Vfy;, = —Vfi,, {Vfy;, Vfi;} is a cadre. Hence I =1 (in (7.11) ) and
W={p,u}, p=k and co=0,=1.
Hence
Viiv = %(Vf,, — Vfi)Tv
= —5(u— 1)
= —fu<O.

Case-1I f;; > —f,, forall :; € W.
It is clear, from (7.12), that Vf,Tv < 0 unless

fHZO'QO'jf,'j, J=1,---,L

Since f,(z) > 0 and —f, < fi; < fu, we know Vfgv < 0, because, otherwise,
ooo; > 0,7 = 1,---,land f, = fi;,j = 1,---,1. This means C is a levelled
reference set, contradicting our hypothesis on C.

Note that f;; < —f, is impossible by definition of f, and the fact that both
fi; and —f;; are indeed amongst the f/s.

By the definition of the vertical direction (7.8) and (7.12), for any i, € W,

l
aoaqu,'uTv = fu— o000, fi, — Z 0;(fu— UOUjfij)'
J=1

For any v such that f;, = A, i, € W. If 0,00 = 1, it follows that &, = 0 and
we have

v, Tv=VfT <o.
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Ifo,00=—-1,
l
"‘vfi.,T = fp - O'OUVfiu - Z Hj(f# - anjfij)
Jj=1

1
> 2A(1 - Z 91)
Jj=1
= 2/,
> 0.

In conclusion, all the active functions will be decreased. This completes the proof. =

Assume W = {ig, -, 4} is the working set and C = {Vf;,,---,Vf;} is a cadre.
Associated with C, there exist unique cadre multipliers {);} such that

!
(7.13) Y AVfi,=0.
=0
We now establish an auxiliary lemma.

LEMMA 39. Assume {)\;}\_, is a set of real numbers which are not all zero and

E§=0 Aj equals either 1 or 0. Define

(7.14) ej:M>o, j=0,--- 1,
S
and
1

(715) S = /\0 + ZO’()O'J'AJ'.

Jj=1
Then,

0 if I\ =0;
7.16 1-2 0, = ) =04 !
( ) oo%:m ! { % lf Zj=0 /\j =L

Proof. By assumption,

!
/\0+Z/\;:5, where § =0 or 1.

=1

Define

—1 otherwise.

{1 if \; >0,
g; =
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This means

Since

we have that

(7.17)

From (7.15),

!
oo(ooro + 00 E Ai) =46, or

=1

0'0(0’0/\0 + Z M,I + Oo E )\,) = 4.

000 >0,i#0 000i<0

— Y Nl = Y cooioik

000; <0 000;<0

= Z JOAi,

000;<0

1
0‘0(00/\0 + Z |/\,| + 20‘0 Z /\,) = 4.
=1

090; <0

!
s = /\0+UOZI)‘i|

=1

which with (7.17) gives

0'0(0'03 - 200 Z 0‘00‘,')\,') = 6.

o00i<0

Dividing both sides by s we have

Thus,

000','/\,' 6
(1-2 2y = 2
0 f 3 X =0;
1-2 9~={ et S

holds. This completes the proof.

LEMMA 40.

Suppose W = {p,%1,---,14;} consists only of indices of the active

functions. Assume further that C = {Vf,,Vf;,---,Vf.} is a cadre. Assume the vertical
direction v is determined from W as in (7.9). Then:
1. all the active functions with negative multipliers will be decreased more rapidly

than all the other active functions if the cadre multipliers sum to one, i.e.

;:0 A.7 = 1’
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2. all the active functions are decreased equally ( up to first order ) if the cadre
multipliers sum to zero, i.e., Z;=0 Aj=0.
Proof. By assumption, C = {Vf,, Vf,,---,Vf,} is a cadre. Let A = ¢(z) and
oj = sgn(A;).
As for (7.12), there exists multipliers {6;} such that

! !
Vi ==Y 0i(fu—o000,fi;), where Y 6,=1, 6;>0, j=0,---,1
J=1 =0
Using the definition of v in (7.8), we have
000, Vi, v = (fu — 000, fi,) + V0.
Thus, for any ogo, = 1, we have
vfluTv = vfﬂTU'

For any 090, = —1, we have,

Vv = ~(fu+ fu) = Vi v.

Therefore
(7.18) —(fut fi) —ZVf“Tv
l
= —2A+2) 0;(fu — 00o;f;;)
=1
l
= —2M(1-)0;(1 —0o0;)) ( note f, = fi; = A)
7j=1
= —2/(1-2 ) §))
700;<0
- { D g 0N Y (by(118))
Thus,

Vi, o =VETv T oA =0,
Furthermore, since s has the same sign as o, we have, when z;zo Aj=1,

Vi, Tv < Vf,Tv, for any v, 0g0, <0, gg > 0
Vi Tv > Vf v, for any v, 00, <0, 6o < 0

1.e., all the active functions with negative multiplers are decreased faster than those
with positive multipliers. This completes the proof. [

Thus, if C is a cadre with the cadre multipliers satisfying $%_,A; =0, X; # 0, v
decreases all the active functions equally.
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If, on the other hand, a cadre is composed of the active functions and E§-=0 Aj =1,
all the active functions with negative cadre multipliers will actually be decreased faster
than the other active functions. This amounts to dropping activities in terms of the
underlying mathematical programming problem.

Dropping active constraints is an important part of active set methods for general
nonlinear programming problems. Whenever a minimum on a subspace determined
by the active constraints is reached and one of the multipliers is negative, a direction is
usually chosen to make such a constraint strictly inactive, i.e., to drop this constraint.
If more than one constraint has a negative multiplier, it is usually not possible for
an algorithm to delete all the corresponding constraints, because of the difficulty
of finding a feasible descent direction. Therefore, for most algorithms, instead of
checking the possibility of all the constraints with negative multipliers being removed
simultaneously, only a single constraint is deleted. By contrast, we are able to exploit
multiple droppings.

It is interesting to note that, moving along the vertical direction defined by (7.8)
will drop the functions with negative multipliers independently of the index associ-
ated with the representative function. There is no need to choose another representa-
. tive function even if the multiplier of the current representative function is negative.
Therefore, the only requirement for a representative function is that it is a func-
tion with maximum deviation. If more than one such function exists, the choice is
arbitrary.

We have looked at the vertical direction defined in (7.9) from two different points
of view. The motivation for the vertical direction is to construct a (levelled) reference
set, assuming a cadre has been found.

8. Summary. Itis well known that a best linear Chebyshev approximation corre-
sponds to a characteristic structure. Algorithms for computation of the linear solution
have been successfully able to make use of this structure. It is not so well recognised
that a solution of a nonlinear Chebyshev problem also possesses a rich structure and
characterisation can be computationally exploited.

Under the classical Haar condition, the best linear Chebyshev approximation is
a levelled reference function with the maximum deviation. There exist exactly n + 1
points which achieve the maximum deviation and the signs of the residuals on these
points alternate.

Nonlinear Chebyshev approximation theory indicates that, theoretically, for cer-
tain classes of nonlinear problems at least, useful characterisations still exist.

In this paper, we have generalized the basic concepts which are important in char-
acterising the best linear Chebyshev approximation to nonlinear Chebyshev problems.
These characterizations are particularly important computationally.

We have established the structure and characterisation of a solution to nonlinear
discrete Chebyshev problems which is a generalisation of the characterisation for a
best linear Chebyshe approximation. These generalisations are motivated by the linear
theory and our experience with Chebyshev problems. We emphasize the importance
of exploiting these properties. Moreover, we have provided with ways of making use
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of the characterisations when we have located a cadre, namely to construct a levelled
reference set from a reference set or a reference set from a cadre.
In [10], we present an efficient algorithm which exploits the theory of this paper.
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